
Towards Solver-Independent Propagators?

Jean-Noël Monette, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, Uppsala, Sweden
{jean-noel.monette,pierre.flener,justin.pearson}@it.uu.se

Abstract. We present an extension to indexicals to describe propaga-
tors for global constraints. The resulting language is compiled into actual
propagators for different solvers, and is solver-independent. In addition,
we show how this high-level description eases the proof of propagator
properties, such as correctness and monotonicity. Experimental results
show that propagators compiled from their indexical descriptions are
sometimes not significantly slower than built-in propagators of Gecode.
Therefore, our language can be used for the rapid prototyping of new
global constraints.

1 Introduction

One of the main assets of constraint programming (CP) is the existence of nu-
merous filtering algorithms, called propagators, that are tailored specially for
global constraints and allow one to solve efficiently hard combinatorial prob-
lems. Successful CP solvers enable the definition of new constraints and their
associated propagators. However, it may be a tedious task to implement a propa-
gator that is correct, efficient, compliant with the specific interface of the solver,
and hand-coded in the solver’s implementation language, such as C++.

In this paper, we propose a solver-independent language to describe a large
class of propagators. Our contribution towards such a language is twofold.

First, we ease the implementation and sharing of propagators for constraints.
The propagators are described concisely and without reference to the implemen-
tation details of any solver. Implementations of propagators are generated from
their description. This allows one to prototype rapidly a propagator for a new
constraint, for which one has no built-in propagator or no (good enough) de-
composition; the generated propagator may even serve as a baseline for further
refinement. This also allows one to integrate an existing constraint into another
solver, as each solver can be equipped with its own back-end for the propagator
description language. We believe that such a language can play the same role for
sharing propagators between solvers as solver-independent modelling languages
play for sharing models between solvers.

Second, we ease the proof of propagator properties, such as correctness and
monotonicity. The higher level of abstraction of our propagator description lan-
guage allows us to design tools to analyse and transform a propagator. This
provides a method to apply systematically theoretical results on propagators.

? This work is supported by grant 2011-6133 of the Swedish Research Council (VR).
We thank the anonymous reviewers and Christian Schulte for their useful comments.

Our approach is based on the seminal work on indexicals [27]. In a nutshell,
an indexical defines a restriction on the domain of a decision variable, given
the current domains of other decision variables. Indexicals have been used to
implement user-defined constraints in various finite-domain systems, such as
SICStus Prolog [6]. While indexicals can originally only deal with constraints
of fixed arity, we extend them to deal with constraints of non-fixed arity (often
referred to as global constraints) by handling arrays of decision variables and
operations on such arrays (iteration and n-ary operators). Also, in contrast to
classical implementations of indexicals, indexicals are not interpreted here, but
compiled into instructions in the source language of the targeted solver.

The paper is structured as follows. After defining the relevant background
(Section 2) and presenting motivating examples of propagator descriptions in our
language (Section 3), we list our design decisions behind the language (Section 4).
Next we describe our language (Section 5), show how to analyse propagators
written in it (Section 6), discuss our current implementation (Section 7), and
experimentally evaluate it (Section 8). We end the paper with a review of related
work and a look at future research directions (Section 9).

2 Background

Let X be a set of integer decision variables that take values in some universe U ,
where U can be Z but is in practice a subset thereof. In a finite-domain (FD)
solver, a store is a mapping S : X → P(U), where P(U) is the power set of U . For
a variable x ∈ X, the set S(x) is called the domain of x and is the set of possible
values of x. A store S is an assignment if every variable has a singleton domain;
we say that such variables are ground. A store S is failed if some variable has an
empty domain. A store S is stronger than a store T (denoted by S v T) if the
domain under S of each variable is a subset of its domain under T .

A constraint C(Y) on a sequence Y over X is a restriction on the possible
values that these variables can take at the same time. The constraint C(Y) is a
subset of Un, where n is the length of Y . An assignment A satisfies a constraint
C(Y) if the sequence [v | {v} = A(y) ∧ y ∈ Y] is a member of C(Y). Given a
store S, a value v ∈ S(y) for some y ∈ Y is consistent with a constraint C if
there exists an assignment A v S with A(y) = {v} that satisfies C. A constraint
C is satisfiable in a store S if there exists an assignment A v S that satisfies C.
A constraint C is entailed in a store S if all assignments A v S satisfy C.

A checker for a constraint C is a function that tells if an assignment satisfies
C or not. A propagator for a constraint C is a function from stores to stores
whose role is to remove domain values that are not consistent (or inconsistent)
with C. We are here interested in writing propagators. In actual solvers, the
propagators are not returning a store but modifying the current store. There are
a number of desirable properties of a propagator:

– Correct : A correct propagator never removes values that are consistent with
respect to its constraint. This property is mandatory for all propagators.

– Checking : A checking propagator decides if an assignment satisfies its con-
straint. This divides into singleton correctness (accept all satisfying assign-
ments) and singleton completeness (reject all non-satisfying assignments).

– Contracting : A propagator P is contracting if P (S) v S for all stores S.
– Monotonic: A propagator P is monotonic if S v T implies P (S) v P (T) for

all stores S and T .
– Domain consistent (DC): A DC propagator removes all inconsistent values.

Weaker consistencies exist, such as bounds consistency and value consistency.
– Idempotent : A propagator P is idempotent if P (S) = P (P (S)) for all stores
S. This allows an improved scheduling by the solver [22].

In addition, and for efficiency reasons, one aims at propagators with a low
time complexity. This is the reason why domain consistency is often replaced
by weaker consistencies. Another concern is to avoid executing a propagator
that cannot remove any value from the current store. Several mechanisms may
be implemented by propagators to avoid such executions: report idempotency,
report entailment, subscribe only to relevant modification events of the domains.

Indexicals were introduced in [27] to describe propagators for the cc(FD)
solver. An indexical (expression) is of the form x in σ, meaning that the do-
main of the decision variable x must be restricted to the intersection of its
current domain with the set σ; the set σ may depend on other variables, and
if so is computed based on their domains in the current store. An indexical is
executed whenever the domain of one of the variables appearing in σ is mod-
ified. A propagator is typically described by several indexicals, namely one for
each decision variable of the constraint. Indexicals have been included in several
other systems, featuring extensions such as checking indexicals [6], conditional
expressions [23], [6], and guards [28].

3 Examples of Propagator Descriptions

In this paper, we extend the syntax of indexicals to deal with arrays of decision
variables and operations on such arrays (iteration and n-ary operators). We
first present a few examples of propagator descriptions that showcase the main
features of our language. This will lead us to explain the decisions we made in
the design of the language, and a more precise definition of the language.

Figure 1 presents the Sum(X,N) constraint, which holds if the sum of the
values in the array X is equal to N . It is possible to describe several propagators
for a constraint, and to write an optional checker. In particular, we have here
two propagators: v1 uses the entire domains of the variables (e.g., dom(N)), while
v2 only uses their bounds (e.g., min(N)). A propagator description is comprised
of a set of indexicals. The domains of variables can be accessed using the four
functions dom, min, max, and val. Arithmetic operators can be applied on integers
as well as on sets. The sum operator is n-ary, as it operates on a sequence of values
of arbitrary length. The rng operator denotes the range of indices of an array,
and `..u the range of integers from ` to u included. Line 9 reads as: “The domain
of N must be intersected with the range whose lower bound is the sum of the

1 def SUM(vint[] X,vint N){

2 propagator(v1){

3 N in sum(i in rng(X))(dom(X[i]));

4 forall(i in rng(X)){

5 X[i] in dom(N) - sum(j in {k in rng(X):k!=i})(dom(X[j]));

6 }

7 }

8 propagator(v2){

9 N in sum(i in rng(X))(min(X[i])) .. sum(i in rng(X))(max(X[i]));

10 forall(i in rng(X)){

11 X[i] in min(N) - sum(j in {k in rng(X):k!=i})(max(X[j])) ..

12 max(N) - sum(j in {k in rng(X):k!=i})(min(X[j]));

13 }

14 }

15 checker{ val(N) = sum(i in rng(X))(val(X[i])) }

16 }

Fig. 1. Code for the Sum constraint, with two propagators

smallest values in the domains of all the variables in X, and whose upper bound
is the sum of the largest values in the domains of all the variables in X.” This
example also shows how to write loops (forall in lines 4–6 and 10–13).

Figure 2 presents the Exactly(X,N, v) constraint, which holds if exactly N
variables of the array X are equal to the given value v. This example illustrates
the use of conditions (when), boolean-to-integer conversion (b2i(false) = 0 and
b2i(true) = 1), and reference to other constraints (EQ and NEQ, constraining
a variable to be respectively equal to, and different from, a given value). The
functions entailed and satisfiable check the status of a constraint given the
current domains of the variables, while post invokes a propagator of the given
constraint. Lines 3–4 restrict the domain of N to be between two bounds. The
lower bound is computed as the number of variables in X that must be assigned
to v, and the upper bound as the number of variables that may be assigned to
v. The body of the loop removes v from the domain of a variable (lines 6–9),
or fixes a variable to v (lines 10–13), when some conditions involving the other
variables are respected. The domain modifications are performed by invoking
the propagation of other constraints.

4 Language Design Decisions

The language, as showcased in the previous section and defined more precisely
in the next section, has been designed according to the following decisions.

The language is based on indexicals. Indexicals have already been used suc-
cessfully in several solvers, and a fair amount of work has been done to deal with
their use and properties, e.g. in [5] and [9]. Also, indexicals are very simple to
understand and are often very close to the first reasoning one might come up

1 def EXACTLY(vint[] X, vint N, int v){

2 propagator{

3 N in sum(i in rng(X))(b2i(entailed(EQ(X[i], v)))) ..

4 sum(i in rng(X))(b2i(satisfiable(EQ(X[i], v))));

5 forall(i in rng(X)){

6 once(val(N) <=

7 sum(j in {j in rng(X):i!=j})(b2i(entailed(EQ(X[j], v))))){

8 post(NEQ(X[i], v));

9 }

10 once(val(N) >

11 sum(j in {j in rng(X):i!=j})(b2i(satisfiable(EQ(X[j], v))))){

12 post(EQ(X[i], v));

13 }

14 }

15 }

16 checker{ val(N) = sum(i in rng(X))(b2i(val(X[i]) = v)) }

17 }

Fig. 2. Code for the Exactly constraint

with when thinking about a propagator. One of the restrictions that we currently
preserve is that indexicals are stateless, hence we cannot describe advanced prop-
agators, such as a DC propagator for the AllDifferent constraint [19]. This
is quite a strong limitation, but a choice must be made between the simplicity
of the language and the intricacy of the propagators. However, a large number
of constraints have efficient enough stateless propagators.

The language is strongly typed, in order to simplify the understanding and
compilation of propagators. This requires the addition of the b2i operator.

We introduce arrays and n-ary operators to deal effectively with global con-
straints. For example, the expression sum(i in rng(X))(val(X[i])) is para-
metrised by the looping index (i here), its domain (rng(X) here), and the index-
dependent expression (val(X[i]) here) that must be aggregated (summed here).

We also introduce meta-constraints, constraint invocation, and local variables
in order to help write concise propagators. See Section 5 for details.

For simplicity of use, we want only a few different operators and language
constructs. This also allows us to have a relatively simple compilation procedure.
However it is not impossible that some new constructs will be added in the future,
but with care.

For generality (in the FD approach), we refrain from adding solver-specific
hooks. In particular, our language only has four accessors (see Section 5) to
the domain of a variable. The other communication channels with a solver are
domain narrowing functions, which are provided by any FD solver, and a fail
mechanism (which can be mimicked by emptying a domain).

Our language is also missing some constructs that are found in the imple-
mentation of constraints, such as entailment detection, watched literals [13], and

fine-grained events [15]. Part of our future work will be dedicated to studying
how these can be included without overcomplicating the language.

5 Definition of the Language

In Section 5.1, we define the syntax and semantics of our language. It is strongly
typed and has five basic types: integers (int), booleans (bool), sets of integers
(set), integer decision variables (vint), and constraints (cstr). This last type
is discussed in Section 5.2. We support arrays of any basic type (but currently
not arrays of arrays). Identifiers of (arrays of) decision variables start with an
uppercase letter. Identifiers of constants denoting integers, booleans, sets, and
arrays thereof start with a lowercase letter.

5.1 Syntax and Semantics

Figure 3 presents the grammar of our language. We now review the different
production rules. The main rule (CSTR) defines a constraint. A constraint is
defined by its name and list of arguments. A constraint definition also contains
the description of one or more propagators and an optional checker.

A propagator has an optional identifier and contains a list of instructions.
An instruction (INSTR) can be an indexical, x in σ, whose meaning is that the
domain of the decision variable x must be restricted to the intersection of its
current domain with the set σ. Other instructions are fail and post. The effect
of fail is to transform the current store into a failed store. The instruction
post(C,P) invokes the propagator P of constraint C; if P is not specified, then
the first (or only) propagator of C is invoked. There are two control structures.
The forall control structure creates an iteration over a set, and once creates
a conditional block; the reason for not naming the latter if is to stress that
propagators should be monotonic, and that once the condition becomes true, it
should remain true. See Section 6 for a discussion on monotonicity.

Most of the rules on sets, integers, and booleans do not need any explanations
or were already explained in Section 3. Some constants are defined: univ denotes
the universe U , inf its infimum, sup its supremum, and emptyset the empty
set. Arithmetic operations on integers are lifted as point-wise operations to sets.

There are four accessors to the domain of a decision variable: dom(x), min(x),
max(x), and val(x) denote respectively the domain of decision variable x, its
minimum value, its maximum value, and its unique value. As val(x) is only
determined when the decision variable x is ground, the compiler must add guards
to ensure a correct treatment when x is not ground.

While the instruction post invokes the propagator of another constraint,
the functions entailed, satisfiable, and check query the status of another
constraint. Let S be the current store: entailed(c) and satisfiable(c) decide
whether the constraint c is entailed (respectively, satisfiable) in S; if S is an
assignment, then the function check(c) can be called and decides whether S
satisfies the constraint c (an example will be given in the next sub-section).

CSTR ::= def CNAME(ARGS){ PROPAG+ CHECKER?)}
PROPAG ::= propagator(PNAME?){ INSTR* }
CHECKER ::= checker{ BOOL }
INSTR ::= VAR in SET ; | post(CINVOKE,PNAME?); | fail; |

once(BOOL){ INSTR* } | forall(ID in SET){ INSTR* }
SET ::= univ | emptyset | ID | INT..INT | rng(ID) | dom(VAR) |

NSETOP(ID in SET)(SET) | -SET | SET BSETOP SET |

{INT+} | {ID in SET:BOOL}
INT ::= inf | sup | NUM | ID | card(SET)| min(SET) | max(SET) |

min(VAR) | max(VAR) | val(VAR) | - INT | INT BINTOP INT |

b2i(BOOL) | NINTOP(ID in SET)(INT)

BOOL ::= true | false | ID | INT INTCOMP INT | INT memberOf SET |

SET SETCOMP SET | not BOOL | BOOL BBOOLOP BOOL |

NBOOLOP(ID in SET)(BOOL) |

entailed(CINVOKE) | satisfiable(CINVOKE) | check(CINVOKE)

BINTOP ::= + | − | ∗ | / | mod

NINTOP ::= sum | min | max

BSETOP ::= union | inter | minus | + | − | ∗ | / | mod

NSETOP ::= union | inter | sum

INTCOMP ::= = | ! = | <= | < | >= | >
SETCOMP ::= = | subseteq

BBOOLOP ::= and | or | =
NBOOLOP ::= and | or

CINVOKE ::= CNAME | CNAME(ARGS)

Fig. 3. BNF-like grammar of our language. Constructions in grey were already in
previous definitions of indexicals [27], [6]. The rules corresponding to ARGS (list of
arguments), CNAME, PNAME, ID, VAR (respectively identifier of a constraint, propagator,
constant, and variable), and NUM (integer literal) are not shown.

5.2 Meta-constraints

A new feature of our language is what we call a meta-constraint, which is a
constraint that takes other constraint(s) as argument(s). Meta-constraints allow
one to write more concise propagators by encapsulating common functionalities.

For example, the Among(X,N, s) constraint, which holds if there are N
elements in array X that take a value in set s, would be described almost identi-
cally to the Exactly(X,N, v) constraint in Figure 2. The common code can be
factored out in the meta-constraint COUNT(vint[] X, vint N, cstr C, cstr

NC), whose full description is not shown here, but whose meaning is defined by its
checker: val(N) = sum(i in rng(X))(b2i(check(C(X[i])))), that is exactly
N variables of the array X satisfy constraint C. The argument NC is the negation
of constraint C (see [3] for how to negate even global constraints), and is used
in the propagator of Count (in the way NEQ is used on line 8 of Figure 2).
We can then describe Exactly and Among as shown in Figure 4. The Count
meta-constraint is closely related to the cardinality operator [25] but we allow
the user to describe more meta-constraints.

def EXACTLY(vint[] X, vint N, int v){

propagator{

cstr EQv(vint V):= EQ(V,v);

cstr N_EQv(vint V):= NEQ(V,v);

post(COUNT(X,N,EQv,N_EQv));

}

}

def AMONG(vint N, vint[] X, set s){

propagator{

cstr INs(vint V):= INSET(V,s);

cstr NINs(vint V):= NOTINSET(V,s);

post(COUNT(X,N,INs,NINs));

}

}

Fig. 4. Exactly and Among, described using the Count meta-constraint

6 Syntactic Analysis and Tools

One of our objectives is to ease the proof of propagator properties. Before turning
to the actual compilation, we show how our language helps with this, and with
other propagator-writing related functionalities.

6.1 Analysis

Among the properties of a propagator presented in Section 2, most are difficult
to prove for a given propagator (except contraction, which indexicals satisfy
by definition). However, as has been shown in [5], it is possible to prove the
monotonicity of indexicals. This result can be lifted to our more general language.
We show further how to prove the correctness of some propagators with respect
to their constraints.

Monotonicity. The procedure to check the monotonicity of indexicals is com-
bined with the addition of guards for val accesses. The syntax tree representing
the indexicals is traversed by a set of mutually recursive functions. To ensure
monotonicity of the whole propagator, each function verifies an expected be-
haviour of the subtree it is applied on. The recursive functions are labelled
monotonic, anti-monotonic, and fixed for boolean expressions; increasing, de-
creasing, and fixed for integer expressions; growing, shrinking, and fixed for set
expressions; and monotonic for instructions. For instance, the increasing func-
tion verifies that its integer expression argument is non-strictly increasing when
going from a store to a stronger store. These functions return two values: whether
the expression is actually respecting its expected behaviour, and the set of vari-
ables that need to be ground to ensure a safe use of the val accessor. This set of
variables is used to add guards in the generated propagator. Those guards are
added not only to instructions, but also inside the body of b2i expressions.

For lack of space, we cannot exhibit all the rules that make up the recursive
functions (there are about 200 rules). Instead we show a few examples. As an
example of a rule, consider the call of the function increasing on an expression
of the form min(i in σ)(e). For this expression to be increasing, σ must be
shrinking and e must be increasing. In addition, the set of variables to guard
is the union of the variables that must be ground for those two subexpressions.

The table below shows some examples of the results of the procedure. In this
table, ground(x) represents an operator (not part of our indexical language)
that decides if variable x is ground. The second column shows where guards
are added to indexicals. The third column reports if the indexical is proven
monotonic or not.

Original expression Guarded expression Mono
X in {val(Y)} once(ground(Y)) X in {val(Y)} true
B in b2i(val(X)=v) ..

ab2i(v memberOf dom(X))

B in b2i(ground(X) and val(X)=v) ..

abcdefghxijkl b2i(v memberOf dom(X))

true

once(min(B)=1) X in {v} once(min(B)=1) X in {v} false
once(min(B)>=1)X in {v} once(min(B)>=1) X in {v} true
once(val(B)=1) X in {v} once(ground(B) and val(B)=1)X in {v} true

The first line just adds a guard to the indexical. The second line shows that a
guard can be added inside a b2i expression so that it returns 0 while X is not
ground. The three last lines show how small variations change the monotonic-
ity of an expression. The condition min(B)=1 is (syntactically) not monotonic,
because in general this condition might be true in some store and become false
in a stronger store; however if we know that B represents a boolean (with do-
main 0..1), then we can replace the equality by an inequality as done in the
fourth example. The last line shows another way to get monotonicity, namely by
replacing the min accessor by val; this requires the addition of a guard.

The soundness of the monotonicity checking procedure can be shown by in-
duction on the recursive rules, as suggested in [5]. However, as this procedure
is syntactical, it is incomplete. An example of propagator for Eq(X,Y) that is
monotonic but not recognised as such is given on the left of Figure 5. The proce-
dure does not recognise the monotonicity because it requires the sets over which
the forall loops iterate to be growing (because the indexical expressions that
are applied on a store must also be applied on a stronger store), while dom(x)
can only shrink. However, this is not the simplest way to describe propagation for
this constraint: a 2-line propagator can be found on the upper right of Figure 5.

Correctness. To prove algorithmically that a propagator is correct with respect
to its constraint, we use the known fact that a propagator is correct if it is
singleton-correct and monotonic. We devise an incomplete but sound procedure
to prove that a propagator P is singleton-correct with respect to its checker C,
and hence with respect to its constraint (assuming the checker is correct). We
need to prove that if an assignment satisfies C, then it is not ruled out by P .
To this end, from the indexical description of P , we derive a formula C(P) that
defines which assignments are accepted by the propagator. Singleton correctness
then holds if the formula C ∧ ¬C(P) is unsatisfiable (i.e., if C ⇒ C(P)). To
derive C(P), we transform the indexicals into an equivalent checking formula
using the following rewrite rules:

1 def EQ(vint X1, vint X2){

2 propagator{

3 forall(i in dom(X1)){

4 once(not i memberOf dom(X2)){

5 X1 in univ minus {i};

6 }

7 }

8 forall(i in dom(X2)){

9 once(not i memberOf dom(X1)){

10 X2 in univ minus {i};

11 }

12 }

13 }

14 }

1 def EQ(vint X, vint Y){

2 propagator{

3 X in dom(Y);

4 Y in dom(X);

5 }

6 checker{ val(X) = val(Y) }

7 }

1 def EQ(vint X, int cY){

2 propagator{

3 X in {cY};

4 once(not cY

5 memberOf dom(X))

6 fail;

7 }

8 checker{ val(X) = cY }

9 }

Fig. 5. Variations of the Eq constraint

dom(x) → {val(x)} x in σ → val(x) memberOf σ
min(x) → val(x) once(b){y} → (not b) or y
max(x) → val(x) forall(i in σ){y} → and(i in σ)(y)
fail → false

Our current procedure to prove the unsatisfiability of C ∧ ¬C(P) tries to
simplify the formula to false using rewrite rules. We implemented around 240
rewrite rules, ranging from boolean simplification (e.g., false or b→ b) to inte-
ger and set simplification (e.g., min(i in `..u)(i) → `) and partial evaluation
(e.g., 2 + x+ 3→ x+ 5). As this procedure is incomplete and able to prove sin-
gleton correctness only for a small portion of the propagators (see Section 7.2),
we plan to improve it by calling an external prover.

As an example, applying the propagator-to-checker transformation on the
propagator on the upper right of Figure 5 results in the formula val(X) memberOf

{val(Y)} and val(Y) memberOf {val(X)}. This formula can be shown equiv-
alent to the checker of the constraint (using the following rules: x memberOf {y}
→ x = y, b and b→ b, and b and not b→ false). In summary, this propaga-
tor can be automatically proven monotonic, singleton correct, singleton complete
(see below), and therefore correct and checking.

Checking. The approach to proving correctness can also be used to prove that a
propagator is checking. Indeed, singleton completeness is shown by proving the
implication C(P)⇒ C (the converse of singleton correctness), and a propagator
that is singleton-correct and singleton-complete is checking (i.e., C(P)⇔ C).

6.2 Transformation

In addition to the analysis, we can algorithmically transform a propagator. We
have devised two first transformations that seem of interest: changing the level
of reasoning, and grounding some decision variables.

Changing the level of reasoning. As shown in the Sum example (Figure 1), a
propagator can be described to use different levels of reasoning according to the
amount of data it uses:

– Under domain reasoning, the whole domains of decision variables may be
used to perform propagation.

– Under bounds reasoning, only the bounds of the domains are used (i.e., the
dom accessor does not appear).

– Under value reasoning, no propagation is performed until some variables are
ground (i.e., only the val accessor is used).

A few remarks are necessary here. First, the level of reasoning can be distinct
for the different variables of a constraint. Second, those levels of reasoning are
not directly linked to the usual notions of consistency (domain, bounds, or value
consistency). Indeed, using the dom accessor does not provide any guarantee
of domain consistency. Conversely some propagators that do not use dom may
achieve domain consistency. Third, the level of reasoning is also distinct from
the level of narrowing of variables, which is how propagation affects the domain
of variables, i.e., if it only updates the bounds, or if it can create holes.

It is possible to change the level of reasoning from a strong level to a weaker
one, i.e., from domain reasoning to bounds reasoning, and from bounds reasoning
to value reasoning. All one has to do is to replace the appearances of dom(x)
by min(x)..max(x), and of min(x) and max(x) by val(x). This allows one to
describe one propagator, and have for free up to three different implementations
that one may try and compare.

Variable grounding. Another propagator transformation is the grounding of some
variables, that is the replacement of a variable argument by a constant (or of an
array of variables by an array of constants). Again, this allows one to describe
only one propagator for the general case and then specialise it to specific cases.
For instance, one might want to derive a propagator for the EQ(vint,int) con-
straint from the one of EQ(vint,vint). The transformation is close in spirit to
the computation of the equivalent checking formula of a propagator presented
in Section 6.1. The transformation is however only applied to one variable (the
one being grounded). The most interesting rewrite rule is that if variable x is
replaced by a constant c, then x in σ is replaced by once(not c memberOf σ)
fail. Most of the time this check is redundant with the other instructions of the
propagator (as in the example on the lower right of Figure 5, where lines 4–6
check a condition enforced by line 3). However, we have not found yet a general
and cheap way to tell when this instruction is indeed redundant. Currently, it is
the responsibility of the user to remove it if he wants to.

7 Compilation

We now discuss our compiler design decisions and our current compiler.

7.1 Compiler Design Decisions

Instead of interpretation, we made the decision to compile our language into the
language in which propagators are written for a particular solver. This has the
double advantage of having an infrastructure that is relatively independent of
the solvers (only the code generation part is solver-dependent), and of having
compiled code that is more efficient than interpreted code. The generated code
is also self-contained (it can be distributed without the compiler).

The compiled propagators are currently stateless (as are indexical propaga-
tors) and use coarse-grained wake-up events. This choice is meant to simplify the
compilation. However, upon a proper analysis, it should be possible to produce
propagators that incorporate some state or use more fine-grained events.

The compilation produces one propagator for each propagator description.
The compilation does not alter the order of the indexicals inside a propagator.
Furthermore, to get idempotency, the full propagator is repeated until it reaches
its internal fixpoint. Another valid choice would have been to create a propagator
for each indexical, and let the solver perform the scheduling. We have not evalu-
ated all the potential trade-offs of this choice. An intermediate approach would
be to analyse the internal structure of the propagator description to generate
a good scheduling policy of the indexicals inside the propagator. This requires
substantially more work and is left as future work.

The invocations of propagators (post) or checkers (check) are replaced by
the corresponding code. This is similar to function inlining in classical program-
ming languages. For the functions entailed and satisfiable, the description
of the corresponding checker is first transformed in order to deal with stores that
are not assignments. This is done by about 130 rewrite rules forming a recursive
procedure similar to the one for monotonicity checking. As a difference, the val

accessors are replaced by min, max, or dom when possible, or are properly guarded
otherwise. For example, calling the shrinking function on the singleton {val(x)}
returns dom(x), but calling the growing function adds a guard instead. Entail-
ment requires a monotonic boolean formula, and satisfiability an antimonotonic
formula. For example, the generated satisfiability checker of EQ(X,Y) is not

dom(X) inter dom(Y) = emptyset. In turn, the generated entailment checker
of EQ(X,Y) is ground(X) and ground(Y) and val(X)=val(Y).

The choice of inlining constraint invocations greatly simplifies the compila-
tion process. However, this means that all referenced constraints must be de-
scribed by indexicals. We plan to explore how we can remove this limitation in
order to be able to invoke propagators built into the targeted solver.

7.2 Implementation and Target Solvers

We have written a prototype compiler in Java. It uses Antlr [18] for the pars-
ing and StringTemplate [17] for the code generation. Currently, we compile into

propagators for Comet [10], Gecode [12], and Scampi [21]. A big part of the
compilation process amounts to rewriting the n-ary operators as loops. Some
optimisations are performed, such as a dynamic programming pre-computation
of arrays (replacing nested loops by successive loops) [24, Section 9] and the fac-
torisation of repeated expressions. The compiler detects the events that should
wake up the propagator; this is performed by walking the syntax tree and gath-
ering the variable accessors. The compiler also adds entailment detection to the
propagator of constraint c, by testing if entailed(c) is true.

Currently, we have written about 700 lines of indexicals for describing 76
propagators of 48 constraints, of which 14 are meta-constraints, 17 are global
constraints, and 17 are binary or ternary constraints. Out of the 76 propaga-
tors, 69 are proven monotonic, of which 16 are proven singleton-correct and 29
are proven singleton complete, making 16 propagators provably correct. These
numbers could be improved with a better unsatisfiability proof procedure.

To get an idea of the conciseness of the language, note that our compiler
produces from the 17-line description of Exactly in Figure 2 a propagator for
Comet that is about 150 lines of code, and one for Gecode of about 170 lines.
We estimate the code for the built-in propagator of this constraint to be around
150 lines of code in Gecode.

The current prototype, as well as the propagator descriptions, are available
on demand from the first author.

8 Experimental Evaluation

To assess that propagators described by indexicals behave reasonably well, we
compare a few generated propagators with built-in propagators of Gecode and
simple constraint decompositions. We do not expect the generated propagators
to be as efficient as the hand-crafted ones, but the goal is to show that they
are a viable alternative when one has little time to develop a propagator for a
constraint.

Our experimental setting is as follows. We use Gecode 3.7.3. For each con-
straint, we search for all its solutions. We repeat the search using several branch-
ing heuristics to try and exercise as many parts of the propagators as possible.

The studied constraints are Sum, Maximum, Exactly, and Element. Their
indexical descriptions are representative of the other constraints we implemented.
In addition, they share the property that one of the variables is functionally de-
pendent on the other ones. This allows us to compare the different propagators
of a constraint with a dummy problem where the constraint is absent but the
functionally dependent variable is instead fixed to an arbitrary value. As the
considered constraint is only defining the functional dependency, the number of
solutions is the same and the size of the search tree is the same, but the time
spent by propagation is null. We can then compute the runtime of a propagator
by subtracting the total runtimes.

For Sum and Maximum, we use bounds-reasoning versions of the indexicals
and built-in propagators; for Exactly and Element, we use domain-reasoning

Table 1. Relative runtimes (in percent)

Maximum abSumcd Exactly Element

Built-in 100 100 100 100
Indexicals 125 269 252 118
Decomposition 195 296 313 204
Automaton 675 n/a n/a 487

versions. The indexical descriptions of Sum and Exactly are shown in Figures 1
(v2) and 2 respectively. For space reasons, Maximum and Element are not
shown. The decompositions of Sum(X,N) and Maximum(X,N) introduce an
array A of n = ‖X‖ auxiliary variables. The decomposition of Sum is expressed
as A[1] = X[1]∧∀i∈2..n (A[i− 1] +X[i] = A[i])∧A[n] = N , and the one of Maxi-
mum is A[1] = X[1]∧∀i∈2..n (max(A[i− 1], X[i]) = A[i])∧A[n] = N . The decom-
position of Exactly(X,N, v) introduces an array B of boolean variables and is
defined as ∀i∈1..n (B[i] ≡ X[i] = v)∧N =

∑
i∈1..nB[i]; the sum of boolean vari-

ables is implemented by a built-in propagator. The Element(X,Y, Z) constraint
(holding if X[Y] = Z) is decomposed into Y ∈ 1..n∧∀i∈1..n (Y = i⇒ X[i] = Z).
Additionally, we use the automaton formulations of Maximum and Element,
given in the Global Constraint Catalogue [4]. The automata of Maximum and
Element and the decomposition of Element do not perform all the possible
pruning (while the other decompositions do so, at least under the used heuris-
tics). This incurs an overhead of about 15% more nodes visited for the automata,
and 7% for the decomposition of Element.

Table 1 presents the relative runtimes of the different implementations of the
constraints for arrays of 9 variables over domains of 9 values. The used search
heuristics are some combinations of the variable ordering (order of the arguments
of the constraints, and within an array the smallest or the largest domain first)
and of the value ordering (assign the minimum, split in two, assign the median).
For each constraint and each propagator, the runtimes are summed over the dif-
ferent search heuristics. Then the sum of the times to explore the search tree is
subtracted. Finally, for each constraint, the sum of the times of each propagator
is divided by the sum of the times of the Gecode built-in propagator. Compared
to the built-in propagators, the generated propagators induce only a small over-
head for Maximum and Element, but do not behave so well for Sum and
Exactly. However, in all cases, the indexicals have a better runtime than the
decomposition, though sometimes only slightly. In particular, for the Exactly
constraint, the decomposition has a better runtime for some smaller instances
(not shown). We explain the behaviour of the indexicals on this constraint by
the fact that it is awakened each time the domain of a variable changes, even
though some variables might not affect the constraint status anymore. The built-
in propagator and the decomposition are more clever and ignore the variables
that cannot take the given value anymore. The indexicals have a much better
runtime than the automata.

The propagators compiled from indexicals have an average runtime per call
that (necessarily) increases linearly with the number of variables. The runtimes
of the built-in propagators increase also but with a much gentler slope.

These experiments show that indexical descriptions of global constraints are
useful, but that there is still room for improvement in the compilation.

9 Conclusion

We have presented a solver-independent language to describe propagators. The
aim is to ease the writing and sharing of propagators and to make proving their
formal properties much easier. The resulting language, based on indexicals, is
high-level enough to abstract away implementation details and to allow some
analyses and transformations. It is compiled into source code for target solvers.

The idea of letting the user write his own propagators is not new. The sys-
tem cc(FD) [27] is one of the first to have proposed this, through the use of
indexicals. Since then, most CP solvers claim to be open, in the sense that any
user can add new propagators (especially for global constraints) to the kernel
of built-in propagators. In such systems, the user writes code in the host pro-
gramming language of the solver and integrates it with the solver through an
interface defining mainly how to interact with the variables and the core of the
solver. Some solvers take a quite different approach and propose a language to
define propagation, examples include constraint handling rules [11] and action
rules [28]. Our language is a level of abstraction above those approaches, as it
can be translated into code for any solver. From this point of view, it is close
in spirit to what a solver-independent modelling language is to solvers: a layer
above solvers to describe easily problem models, which are then compiled into
the solver input language. In our case, propagators are described, not models.

Propagators have also been described using atomic constraints and propa-
gation rules [8]. However, that description language has been devised to reason
about propagators, and it is not practical for actually implementing propaga-
tors in FD solvers, except for approaches based on SAT solvers that use such
low-level constraints (e.g., lazy-clause generation [16]).

The pluggable constraints of [20] also decouple the implementation of con-
straints from the solver architecture, using a solver-independent interface for the
communication between the two components. Our approach aims at a higher
level of abstraction, possibly losing some fine control.

This paper opens several interesting research directions, in addition to those
already listed in Sections 4 and 7.1 for overcoming initial design decisions: the
language needs to allow better control of the propagation algorithm while staying
simple and general. Simplicity is important, as we believe that having automated
propagator analysis tools eases the writing of propagators.

Future compilation targets are other FD solvers (e.g., Choco [7] and Ja-
CoP [14]), lazy-clause generators in SAT [16], cutting plane generators in MIP [1],
and penalty functions or invariants in constraint-based local search [26], [2].

References

1. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1, 1–41 (2009)

2. Ågren, M., Flener, P., Pearson, J.: Inferring variable conflicts for local search. In:
Benhamou, F. (ed.) Proceedings of CP’06. LNCS, vol. 4204, pp. 665–669. Springer-
Verlag (2006)

3. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global
constraints. Tech. Rep. T2012:02, Swedish Institute of Computer Science (February
2012), available at http://soda.swedish-ict.se/view/sicsreport/

4. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, 2nd Edition
(revision a). Tech. Rep. T2012:03, Swedish Institute of Computer Science (February
2012), available at http://soda.swedish-ict.se/view/sicsreport/

5. Carlson, B., Carlsson, M., Diaz, D.: Entailment of finite domain constraints. In:
Proceedings of ICLP’94. pp. 339–353. MIT Press (1994)

6. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) Proceedings of PLILP’97.
LNCS, vol. 1292, pp. 191–206. Springer-Verlag (1997)

7. CHOCO: An open source Java CP library, http://www.emn.fr/z-info/choco-
solver/

8. Choi, C.W., Lee, J.H.M., Stuckey, P.J.: Removing propagation redundant con-
straints in redundant modeling. ACM Transactions on Computational Logic 8(4)
(2007)

9. Dao, T.B.H., Lallouet, A., Legtchenko, A., Martin, L.: Indexical-based solver learn-
ing. In: Proceedings of CP’02. LNCS, vol. 2470, pp. 541–555. Springer-Verlag
(2002)

10. Dynadec, Dynamic Decision Technologies Inc.: Comet tutorial, v2.0 (2009),
http://dynadec.com/

11. Frühwirth, T.W.: Theory and practice of constraint handling rules. Journal of
Logic Programming 37(1–3), 95–138 (1998)

12. Gecode Team: Gecode: A generic constraint development environment (2006),
available from http://www.gecode.org/

13. Gent, I.P., Jefferson, C., Miguel, I.: Watched literals for constraint propagation in
minion. In: Proceedings of CP’06. LNCS, vol. 4204, pp. 182–197 (2006)

14. JaCoP: Java constraint programming solver, http://jacop.osolpro.com/
15. Mohr, R., Henderson, T.: Arc and path consistency revisited. Artificial Intelligence

28, 225–233 (1986)
16. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.

Constraints 14, 357–391 (2009)
17. Parr, T.J.: Enforcing strict model-view separation in template engines. In: Proceed-

ings of the 13th international conference on the World Wide Web. pp. 224–233.
ACM (2004)

18. Parr, T.J.: The Definitive ANTLR Reference: Building Domain-Specific Languages.
The Pragmatic Bookshelf (2007)

19. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Hayes-
Roth, B., Korf, R.E. (eds.) Proceedings of AAAI’94. pp. 362–367. AAAI Press
(1994)

20. Richaud, G., Lorca, X., Jussien, N.: A portable and efficient implementation of
global constraints: The tree constraint case. In: Proceedings of CICLOPS 2007.
pp. 44–56 (2007)

21. Scampi (2011), https://bitbucket.org/pschaus/scampi/
22. Schulte, C., Stuckey, P.J.: Speeding up constraint propagation. In: Proceedings of

CP’04. LNCS, vol. 3258, pp. 619–633. Springer-Verlag (2004)
23. Sidebottom, G., Havens, W.S.: Nicolog: A simple yet powerful cc(FD) language.

Journal of Automated Reasoning 17, 371–403 (1996)
24. Tack, G., Schulte, C., Smolka, G.: Generating propagators for finite set constraints.

In: Proceedings of CP’06. LNCS, vol. 4204, pp. 575–589. Springer-Verlag (2006)
25. Van Hentenryck, P., Deville, Y.: The cardinality operator: A new logical connective

for constraint logic programming. In: Proceedings of ICLP’91. pp. 745–759 (1991)
26. Van Hentenryck, P., Michel, L.: Differentiable invariants. In: Benhamou, F. (ed.)

Proceedings of CP’06. LNCS, vol. 4204, pp. 604–619. Springer-Verlag (2006)
27. Van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-

uation of the constraint language cc(FD). Tech. Rep. CS-93-02, Brown University,
Providence, USA (January 1993), revised version in Journal of Logic Programming
37(1–3):293–316, 1998. Based on the unpublished manuscript Constraint Process-
ing in cc(FD), 1991.

28. Zhou, N.F.: Programming finite-domain constraint propagators in action rules.
Theory and Practice of Logic Programming 6, 483–507 (September 2006)

