
Solving String Constraints:
The Case for Constraint Programming

Jun He1,2, Pierre Flener1, Justin Pearson1, and Wei Ming Zhang2

1 Uppsala University, Department of Information Technology, Uppsala, Sweden
2 National University of Defense Technology, School of Information System and

Management, Changsha, Hunan, China
{Jun.He,Pierre.Flener,Justin.Pearson}@it.uu.se,wmzhang@nudt.edu.cn

Abstract We improve an existing propagator for the context-free gram-
mar constraint and demonstrate experimentally the practicality of the
resulting propagator. The underlying technique could be applied to other
existing propagators for this constraint. We argue that constraint pro-
gramming solvers are more suitable than existing solvers for verification
tools that have to solve string constraints, as they have a rich tradition
of constraints for membership in formal languages.

1 Introduction

For constraint programming (CP) languages, user-level extensibility has been an
important goal for over a decade. Global constraints for formal languages are
promising for this purpose. The Regular constraint [16] requires a sequence of
decision variables to belong to a regular language, specified by a deterministic
finite automaton (DFA) or a regular expression; the Automaton constraint [2]
takes a DFA with counters. The CFG constraint [17,20] requires a sequence of
decision variables to belong to a context-free language, specified by a context-free
grammar (CFG). For many applications, the length n of a sequence constrained
to belong to some formal language is known in advance. Since every fixed-size
language is finite and hence regular, the need for a CFG constraint in such
applications depends on the grammar and the complexities of the propagators. It
takes O(n |A|) time to achieve generalised arc consistency (GAC) for a Regular

constraint with an automaton A, but O(n3 |G|) time for a CFG constraint with a
grammar G. In [12], the authors introduce a reformulation of a grammar into an
automaton for a fixed length n, and show that this reformulation is preferable if
the resulting automaton is not huge. However, their reformulation itself needs a
CFG propagator to achieve domain consistency at the root of the search tree so
that the resulting automaton is smaller. In [7], the authors introduce a forklift
scheduling problem, where there is no tractable reformulation of a grammar into
an automaton as the size of the resulting automaton is exponential in n. Hence,
a CFG propagator is necessary in this case. To the best of our knowledge, no
CP solver includes the CFG constraint.

In the analysis, testing, and verification of string-manipulating programs,
constraints on sequences (strings) of decision variables arise. Kieżun et al. [14]



argue that custom string solvers should not be designed any more, for sustainab-
ility reasons, since powerful off-the-shelf solvers are available: their tool, Hampi,
translates a Regular or CFG constraint on a fixed-size string into bit-vector con-
straints so as to solve them using the SMT solver STP [6], much more efficiently
than three custom tools and even up to three orders of magnitude faster than the
SAT-based CFGAnalyzer tool [1]. The solver Kaluza [19] handles constraints
over multiple string variables, unlike the restriction of Hampi to one such vari-
able, and it also generates bit-vector constraints that are passed to STP. Fu et
al. [5] argue that it is important to model regular replacement operations, which
are not supported by Hampi and Kaluza, and introduce the custom string
solver Sushi, which models string constraints via automata instead of a bit-
vector encoding. So the question arises whether the formal language constraints
of CP are competitive with Hampi, Kaluza, and Sushi.

In this paper, we revisit the CFG constraint and make the following contri-
butions:

– We improve the CFG propagator of [11], which improves the one of [20],
by exploiting an idea of [14] for reformulating a grammar into a regular
expression for a fixed string length. We conjecture that this idea also applies
to the CFG propagators of [7,13,17,18]. (Section 3)

– We implement our CFG propagator for the Gecode [8] open-source CP
solver, and demonstrate experimentally its practicality. (Sections 4.1 to 4.3)

– We show that the CP solver Gecode with our CFG propagator (or even its
ancestor [11]) systematically beats Hampi and Kaluza, by up to four orders
of magnitude, on Hampi’s benchmark (Section 4.3). We show that Gecode
with the built-in Regular propagator systematically beats Kaluza and
Sushi, by a factor up to 130, on Sushi’s benchmark (Section 4.4).

2 Background

We first give some background material on grammars (e.g., see [10]).

2.1 Context-Free Grammars

A CFG is a tuple 〈Σ,N,P, S〉, where Σ is the alphabet and any value v ∈ Σ is
called a terminal, N is the finite set of non-terminals, P ⊆ N × (Σ ∪N)

∗
is the

finite set of productions, and S ∈ N is the start non-terminal. A CFG is said to
be in Chomsky normal form (CNF) iff P ⊆ N ×

(
Σ ∪N2

)
. Every CFG can be

converted into an equivalent grammar in CNF.

Example 1. Consider the CFG GB = 〈Σ,N,P, S〉, where Σ = {`, r}, N = {S},
and P = {S → `r, S → SS, S → `Sr}. It defines a language of correctly
bracketed expressions (e.g., `r`r and ``rr), with ‘`’ denoting the left bracket
and ‘r’ the right one. Its CNF is G′B = 〈Σ,N ′, P ′, S〉, where N ′ = {L,M,R, S}
and P ′ = {S → LR, S → SS, S →MR, M → LS, L→ `, R→ r}.
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Figure 1. The CYK-based propagator parses a sequence 〈X1, . . . , X4〉 of n = 4 decision
variables with the same domain {`, r} under the CFG G′B of Example 1.

The Cocke-Younger-Kasami (CYK) algorithm is a parser for CFGs in CNF.
We describe it for a sequence of decision variables instead of values. Given a CFG
〈Σ,N,P, S〉 in CNF and a sequence 〈X1, . . . , Xn〉 of n decision variables, the
CYK parser computes a table V , where Vi,j (with 1 ≤ j ≤ n and 1 ≤ i ≤ n+1−j)
is the set of non-terminals (or at most the start non-terminal S for i = 1 and
j = n) that can be parsed using a sequence of j values in the domains of Xi

to Xi+j−1 respectively, using dynamic programming:

Vi,j =


{W | (W → b) ∈ P ∧ b ∈ dom (Xi)} if j = 1
j−1⋃
k=1

{
W

∣∣∣∣∣ (W → Y Z) ∈ P ∧ (j < n ∨ W = S)

∧ Y ∈ Vi,k ∧ Z ∈ Vi+k,j−k

}
otherwise

For example, Figure 1 gives the CYK table V when parsing a sequence X of
4 decision variables with the same domain {`, r} under the grammar G′B of
Example 1. We have V1,1 = {L,R} and V1,4 = {S}. Note that we use dom (Xi)
to denote the domain of the decision variable Xi.

Given a word w ∈ Σn, let wi (with 1 ≤ i ≤ n) denote the letter at position i
of w. If all decision variables Xi have dom (Xi) = {wi}, then w is accepted by G
iff V1,n = {S}.

2.2 The CFG Constraint

The CFG constraint is defined as CFG(X,G), where X is a sequence of decision
variables and G is a grammar. An assignment w to X is a solution iff w is a
word accepted by G.

Given a CFG G = 〈Σ,N,P, S〉 in CNF and a sequence X of n variables, let
|G| =

∑
p∈P |p| be the size of G, and |p| the number of (non-)terminals in the

production p. The propagator of [11] achieves GAC for the CFG(X,G) constraint
in O

(
n3 |G|

)
time with O

(
n2 |G|

)
space, which is better than the propositional

satisfiability (SAT) based propagator of [18], which decomposes and achieves
GAC for the CFG constraint in O

(
n3 |G|

)
time and space. More recently, an-

other SAT-based propagator is introduced in [7], which works similarly to the
propagator of [11] and outperforms the propagator of [18].



In this paper, we use the propagator of [11] as an example to show how to
improve a CFG propagator. We conjecture that the same idea can be used to
improve the propagators of [7,13,17,18].

To describe elegantly the propagator of [11] and ours (given in Section 3), we
first introduce a novel concept. Informally, given a non-terminal W in Vi,j of the
CYK table, a low support for this W , namely (W → Y Z, k), denotes that two
non-terminals lower down in V , namely Y in Vi,k and Z in Vi+k,j−k, support the
existence of W in Vi,j ; and this low support corresponds to two high supports,
namely (W → Y Z, j) of Y in Vi,k and Z in Vi+k,j−k. Formally:

Definition 1 (Support). For any 1 < j ≤ n, 1 ≤ i ≤ n + 1 − j, and non-
terminal W in Vi,j of the CYK table, the set LSi,j (W ) = {(W → Y Z, k) |
(W → Y Z) ∈ P ∧ 0 < k < j} is called the candidate low-support set for W
in Vi,j. The set LSi,j (W ) = {(W → Y Z, k) ∈ LSi,j (W ) | Y ∈ Vi,k ∧ Z ∈
Vi+k,j−k} is called the low-support set for W in Vi,j. For j = 1 and any 1 ≤
i ≤ n and non-terminal W in Vi,1, we define LSi,1 (W ) = {(W → b) ∈ P} and
LSi,1 (W ) = {(W → b) ∈ LSi,1 (W ) | b ∈ dom (Xi)}.

For any 1 ≤ j < n, 1 ≤ i ≤ n + 1 − j, and non-terminal W in
Vi,j of the CYK table, the set HSi,j (W ) = {(Y → QZ, k) | (Y → QZ) ∈
P ∧ (W = Q ∨ W = Z) ∧ j < k ≤ n} is called the candidate high-support set
of W in Vi,j. The set HSi,j (W ) = {(Y → QZ, k) ∈ HSi,j (W ) | (W = Q ∧ Y ∈
Vi,k ∧ Z ∈ Vi+j,k−j) ∨ (W = Z ∧ Y ∈ Vi−j,k ∧ Q ∈ Vi−j,k−j)} is called the high-
support set of W in Vi,j. For any 1 ≤ i ≤ n and value b in dom (Xi), we define
HSi (b) = {(W → b) ∈ P} and HSi (b) = {(W → b) ∈ HSi (b) | b ∈ dom (Xi)}. ut

For example, in the CYK table V of Figure 1, LS1,4 (S) =
{S → LR,S → SS, S →MR} × {1, 2, 3} has 9 candidate low supports; only
2 thereof are low supports for non-terminal S in V1,4, namely (S → SS, 2)
(depicted by the solid arcs), and (S →MR, 3) (depicted by the dash-dotted
arcs). The low support (S → SS, 2) for S in V1,4 denotes that it is supported
by S in V1,2 and V3,2, hence the low support corresponds to 2 high supports,
namely (S → SS, 4) of S in V1,2 and V3,2.

The propagator of [11] achieves GAC for the CFG(X,G) constraint as follows:
(1) The CYK parser computes the table V . (2) A bottom-up process finds the
first low support in every LSi,j (W ). A top-down process finds the first high
support in every HSi,j (W ). All non-terminals W with no support are removed
from V . (3) The first high support in every HSi (b) is found, and all values b in
any dom (Xi) with no high support are removed from dom (Xi). When a support
is found in steps 2 and 3, its position in the candidate support set is recorded.
When a support is lost as the domains shrink, the next support is to be found
starting after the previous support in the candidate support set. The propagator
is incremental, and explores all candidate supports at most once.

3 An Improved Propagator

Inspired by [14], we present, verify, and analyse an improved version of the
propagator of [11] for the CFG constraint.



3.1 Motivation and Theoretical Foundation

There are two dependent opportunities for improving the propagator of [11].

Encoding the Support Sets Space-Efficiently. The propagator of [11] explores
all candidate supports once in the worst case, hence its time complexity

is bounded by
∣∣LS
∣∣ +

∣∣HS
∣∣ =

n∑
j=1

n+1−j∑
i=1

∑
W∈Vi,j

∣∣LSi,j (W )
∣∣ +

∣∣HSi,j (W )
∣∣ =

O
(
n3 |G|

)
. If we can make the propagator run on the small support sets

instead of the large candidate support sets, then the propagator probably
runs faster. Consider that LSi,j (W ) ⊇ LSi,j (W ) and HSi,j (W ) ⊇ HSi,j (W )
(from Definition 1), and that the gaps may be huge. For example in Fig-
ure 1, LS1,4 (S) = {(S → SS, 2) , (S →MR, 3)} is of size 2, while LS1,4 (S) =
{S → LR,S → SS, S →MR}×{1, 2, 3} is of size 9; HS2,1 (R) = {(S → LR, 2)}
is of size 1, while HS2,1 (R) = {S → LR, S →MR}×{2, 3, 4} is of size 6. How-
ever, the challenge is to avoid having to pay with space what we save in time.

Given a CFGG = 〈Σ,N,P, S〉 in CNF and n decision variables, Kadıoğlu and
Sellmann [11] claim that storing all support sets takes O

(
n3 |G|

)
space, which is

expensive. Their propagator thus runs on the large candidate support sets, which
can be encoded very space-efficiently. Two sets Out (W ) = {(W → Y Z) ∈ P}
and In (W ) = {(Y → QZ) ∈ P | W = Q ∨ W = Z} are computed for
any W ∈ N , so that LSi,j (W ) = Out (W ) × {1, . . . , j − 1} and HSi,j (W ) =
In (W ) × {j + 1, . . . , n}. For any j, the sets {1, . . . , j − 1} and {j + 1, . . . , n}
need not be stored. Hence encoding all candidate support sets only takes O (|G|)
space by storing all Out (W ) and In (W ). As it takes O

(
n2 |G|

)
space to store

the CYK table V , the overall space complexity is O
(
n2 |G|

)
.

However, we can decrease the space requirement for encoding all low-support
sets and a superset of all high-support sets (given in Theorem 2 below) from
O
(
n3 |G|

)
to O

(
n2 |G|

)
, which is the same as the one needed to store the CYK

table V , by using an idea of [14] for reformulating a grammar into a regular
expression for a fixed string length n. In that reformulation, a regular expression
is obtained by using the same domains: dom (Xi) = Σ for all 1 ≤ i ≤ n.
A regular expression E1,j for the sub-sequence 〈X1, . . . , Xj〉 is computed and
stored as a template for every 1 ≤ j ≤ n, and then the regular expression Ei,j

for the sub-sequence 〈Xi, . . . , Xi+j−1〉 turns out to be equal to E1,j for every
1 < i ≤ n+ 1− j. Similarly, in Figure 1, we find that Vi,j = V1,j and every non-
terminal in Vi,j has the the same low supports as in V1,j . For example, V3,2 =
V2,2 = V1,2 = {S} and LS3,2 (S) = LS2,2 (S) = LS1,2 (S) = {(S → LR, 1)}.
Based on this observation, we give the following theorem (we show in Section 3.2
how to lift the same-domain restriction):

Theorem 1. Given a CFG G = 〈Σ,N,P, S〉 in CNF and a se-
quence 〈X1, . . . , Xn〉 of n decision variables, if all Xi have the same domain,
then for any 1 ≤ j ≤ n and 1 < i ≤ n+ 1− j:

1. Vi,j = V1,j



2. ∀W ∈ Vi,j : LSi,j (W ) = LS1,j (W )

Proof: We prove claim 1 by complete induction on j.
(Base: j = 1) For any non-terminal W , we have W ∈ Vi,1 iff there exists a

production (W → b) ∈ P such that b ∈ dom (Xi). As dom (Xi) = dom (X1), we
have W ∈ Vi,1 iff W ∈ V1,1.

(Step: 1 < j ≤ n) For any 1 ≤ j′ < j, the induction hypothesis is Vi,j′ = V1,j′

for any 1 < i. We want to prove Vi,j = V1,j for any 1 < i ≤ n + 1 − j. For any
non-terminal W , we have W ∈ Vi,j iff there exists a production (W → Y Z) ∈ P
and 1 ≤ k < j such that Y ∈ Vi,k and Z ∈ Vi+k,j−k. As Vi,k = V1,k and
Vi+k,j−k = V1,j−k = V1+k,j−k, we have W ∈ Vi,j iff W ∈ V1,j .

Using this, claim 2 follows from Definition 1. ut

The next theorem enables a space-efficient encoding of the support sets
(again, we show in Section 3.2 how to lift the same-domain restriction).

Theorem 2. Given a CFG G = 〈Σ,N,P, S〉 in CNF and a sequence
〈X1, . . . , Xn〉 of n decision variables, if all Xi have the same domain, then
it takes O

(
n2 |G|

)
space to encode the CYK table V and all support sets.

Proof: For any 1 ≤ j ≤ n and 1 < i ≤ n+ 1− j:
By Theorem 1, we have Vi,j = V1,j . Hence we obtain the whole CYK

table V by storing all V1,j in
∑n

j=1 |V1,j | = O (n |N |) = O (n |G|) space, as
|G| =

∑
p∈P |p| > |N |.

By Theorem 1, we have LSi,j (W ) = LS1,j (W ). Hence we obtain

all low supports by storing all LS1,j (W ) in

n∑
j=1

∑
W∈V1,j

|LS1,j (W )| ≤

n∑
j=1

|P × {k | 1 ≤ k < j}| =

n∑
j=1

O (n |G|) = O
(
n2 |G|

)
space, as |G| =

∑
p∈P
|p| >

|P | and each low support takes constant space.
Considering the high-support set HSi,j (W ), it takes O

(
n3 |G|

)
space to store

all HSi,j (W ) as HSi,j (W ) = HS1,j (W ) is not true for all 1 ≤ j ≤ n and
i > 1. For example in Figure 1, we have HS2,1 (R) = {(S → LR, 2)}, while

HS1,1 (R) = ∅. To save space, we compute the set HS′i,j (W ) =
⋃n+1−j

k=1 HSk,j (W )

instead of HSi,j (W ), as we can encode HS′i,j (W ) efficiently. Note that we

still have HS′i,j (W ) ⊆ HSi,j (W ) as HSi,j (W ) = HS1,j (W ) (its formulation

in Definition 1 is independent of i) and HS′i,j (W ) =
⋃n+1−j

k=1 HSk,j (W ) ⊆⋃n+1−j
k=1 HSk,j (W ) = HS1,j (W ). Hence we obtain all HS′i,j (W ) by computing

and storing all HS′1,j (W ) in O
(
n2 |G|

)
space, as HS′i,j (W ) = HS′1,j (W ) and

n∑
j=1

∑
W∈V1,j

∣∣HS′1,j (W )
∣∣ ≤ 2

n∑
j=1

∑
W∈V1,j

|LS1,j (W )| = O
(
n2 |G|

)
(the definition of

HS′i,j (W ) is independent of i and one low support corresponds to at most two
high supports).



Hence we can encode the CYK table V , all LSi,j (W ), and all HS′i,j (W ) in

O
(
n2 |G|

)
space. ut

Using Theorem 2, it is practical to make the propagator run on LSi,j (W )
and HS′i,j (W ), which are subsets of the candidate support sets, with O

(
n2 |G|

)
space. Although Theorem 2 requires all dom (Xi) to be the same, this is not an
obstacle in practice, as shown in Section 3.2 below. Note that |LS| +

∣∣HS′
∣∣ and∣∣LS

∣∣+ ∣∣HS
∣∣ are asymptotically the same (as shown in Section 3.3 below), hence

we cannot improve the propagator of [11] asymptotically.

Counting the Supports. For each non-terminal W in the CYK table, the propag-
ator of [11], which is based on the arc-consistency (AC) algorithm AC-6 [3],
decides whether W has low and high supports by exhibiting two actual supports
(one low and one high). However, this is not necessary. We can simply count the
supports for W as in AC-4 [15], and then just decrease the counter by one when
a support is lost. Although Bessière [3] shows that AC-4 is worse than AC-6 for
binary CSPs given extensionally because initialising the counters is expensive, in
our case initialisation is much cheaper because we have |LSi,j (W )| = |LS1,j (W )|
initially when using our efficient encoding of the support sets. However, by using
counters, we do not need complex data structures and operations to trace which
non-terminal in the CYK table is currently supporting and supported by which
non-terminal(s), as in [11]. Indeed, our experiments (omitted for space reasons,
see Appendix C of [9]) show that counting with our efficient encoding of the
support sets works better (up to 12 times) than using only the latter, which
already works better (up to 20 times) than the propagator of [11].

3.2 Description and Proof of Our Propagator

Consider a CFG G = 〈Σ,N,P, S〉 in CNF and a sequence X = 〈X1, . . . , Xn〉 of
n decision variables. We introduce a propagator for the CFG(X,G) constraint
using the AC-4 framework, which computes all supports and counts them when
posting the constraint (see Algorithm 1), and then only decreases the support
counters during propagation (see Algorithm 2), without changing the support
sets. Hence, to satisfy the condition of Theorem 2, we only need to make all de-
cision variables temporarily take the same domain when posting the constraint.
Our propagator has no limitation on the initial domains of the decision vari-
ables, as we will show how our propagator lifts the temporary restriction at no
asymptotic overhead.

Let CLS
i,j (W ) (or CHS

i,j (W )) denote the number of low (or high) supports for
(or of) a non-terminal W in Vi,j of the CYK table during propagation. Sim-
ilarly, let CLS

i (b) (or CHS
i (b)) denote the number of low (or high) supports

for (or of) a terminal b in dom (Xi). Note that every (non-)terminal has two
counters and there is no sharing of counters between any two (non-)terminals,
as the counters will be changed independently during propagation. Using The-
orem 2, Algorithm 1 posts the CFG(X,G) constraint, encodes the CYK table



and support sets, counts the supports, and achieves GAC. Given all propag-
ator state variables, which are also shared by Algorithm 2, initialised so that
V1,j = LS1,j (W ) = HS′1,j (W ) = ∅ and CHS

i,j (W ) = 0 (lines 2 to 4), Algorithm 1

works as follows. First, it constructs a virtual domain Dom′ =
⋃n

i=1 dom (Xi)
(line 5), and uses it to post the CFG(X,G) constraint, hence the condition of
Theorem 2 is satisfied as all domains are now the same. Using the virtual do-
main may introduce extra solutions, and we show in the last step how to avoid
this. Second, it uses a bottom-up process (lines 6 to 17) based on the CYK
parser to compute all V1,j , LS1,j (W ), HS′1,j (W ), and CLS

i,j (W ). Note that we
only need to compute V1,j by Theorem 1, and any reference to Vi,j is replaced
by V1,j . The same holds for LSi,j (W ), and HS′i,j (W ) (by its definition inde-
pendently of i in Theorem 2). If the start non-terminal S is not in V1,n, then
it fails (line 18; no word from the current domains is accepted by G, hence no
solution exists). Third, it uses a top-down process (lines 19 to 25) to compute all
CHS

i,j (W ). Fourth, it removes all values with no high support from the domains
(lines 26 to 28). Finally, it constructs a set ∆ of all variable-value pairs that
are not in the domains of X but in the virtual domain (line 29), and calls the
function filterFromUpdate (in Algorithm 2, discussed next) to re-establish GAC
after removing all such variable-value pairs (line 30). Hence the side effect of us-
ing the virtual domain is lifted; we show in Section 3.3 that calling the function
filterFromUpdate does not increase the asymptotic complexity of Algorithm 1.

Given a set ∆ of all recently filtered variable-value pairs by other propagators
or a branching of the search tree, the function filterFromUpdate in Algorithm 2
incrementally re-establishes GAC for the CFG(X,G) constraint as follows. First,
it creates two arrays QLS and QHS of initially empty queues (line 2), with QLS[j]
(or QHS[j]) storing all non-terminals W in the j-th row of the CYK table with
no low (or high) supports due to the domain changes ∆. Second, it iterates over
all removed values in ∆, decreasing the counter CLS

i,1 (W ) for all non-terminals W
in the bottom row supported by a removed value, and adding all W with no low
support to the queue QLS[1] (lines 3 to 7). Third, a bottom-up process (lines 8
to 11) calls the procedure rmNoLS handling all W in the queue QLS[j]. Given a
non-terminal W with no low support, rmNoLS iterates over each high support
of W , decreasing the three counters related with this lost high support, and
enqueuing QLS[j] (or QHS[j]) whenever a low (or high) support counter is zero
(lines 22 to 33). Fourth, a top-down process (lines 12 to 14) calls the proced-
ure rmNoHS (omitted for space reasons, see Appendix C of [9]), which works
similarly to rmNoLS, handling all W in the queue QHS[j]. Finally, it removes in-
consistent values (with no high support) from the domains of X (lines 15 to 20),
and reaches a fixpoint (line 21). Note that Algorithm 2 is a direct usage of the
AC-4 framework. Once Algorithm 1 initialises the support sets and counters
correctly, the correctness of Algorithm 2 is guaranteed by the AC-4 framework.

Theorem 3. Our propagator achieves GAC for CFG(X,G).

Proof: A value is removed by our propagator from the domains of X iff it has
no high supports, as with the propagator of [11]. Hence the two propagators are
equivalent. The result follows from Theorem 2 on page 132 of [11]. ut



Algorithm 1 An improved propagator for the CFG(X,G) constraint, where
X = 〈X1, . . . , Xn〉 is a sequence of n decision variables and G = 〈Σ,N,P, S〉 is
a CFG in CNF
1: function post(CFG(X,G))
2: for all W ∈ N and j ← 1 to n do
3: V1,j ← LS1,j (W )← HS′1,j (W )← ∅
4: for all i← 1 to n+ 1− j do CHS

i,j (W )← 0
5: Dom′ ←

⋃n
i=1 dom (Xi)

6: V1,1 ← {W | (W → b) ∈ P ∧ b ∈ Dom′}
7: LS1,1 (W )← {W → b | (W → b) ∈ P ∧ b ∈ Dom′}
8: HS′1 (b)← {W → b | (W → b) ∈ P ∧ b ∈ Dom′}
9: for all j ← 2 to n do

10: for all (W → Y Z) ∈ P and k ← 1 to j − 1 do
11: if Y ∈ V1,k ∧ Z ∈ V1,j−k ∧ (j < n ∨W = S) then
12: V1,j ← V1,j ∪ {W}
13: LS1,j (W )← LS1,j (W ) ∪ {(W → Y Z, k)}
14: HS′1,k (Y )← HS′1,k (Y ) ∪ {(W → Y Z, j)}
15: HS′1,j−k (Z)← HS′1,j−k (Z) ∪ {(W → Y Z, j)}
16: for all j ← 1 to n and W ∈ V1,j do
17: for all i← 1 to n+ 1− j do CLS

i,j (W )← |LS1,j (W )|
18: if S /∈ V1,n then return failed
19: for all j ← n to 2, W ∈ V1,j , and i← 1 to n+ 1− j do
20: if CHS

i,j (W ) > 0 ∨ j = n then
21: for all (W → Y Z, k) ∈ LS1,j (W ) do
22: CHS

i,k (Y ) ++; CHS
i+k,j−k (Z) ++

23: for all W ∈ V1,1 and i← 1 to n do
24: if CHS

i,1 (W ) > 0 then
25: for all (W → b) ∈ LS1,1 (W ) do CHS

i (b) ++
26: for all i← 1 to n and b ∈ dom (Xi) do
27: if CHS

i (b) = 0 then dom (Xi)← dom (Xi) \ {b}
28: if dom (Xi) = ∅ then return failed
29: ∆← {(Xi, b) | Xi ∈ X ∧ b ∈ Dom′ \ dom (Xi)}
30: return filterFromUpdate(CFG(X,G),∆)

3.3 Complexity Analysis

We first investigate the worst-case time complexity of our propagator for
the CFG(X,G) constraint. In Algorithm 1, the time complexity of lines 2
to 29 is dominated by lines 19 to 25, which explore at most all low-support

sets LSi,j (W ) (referenced as LS1,j (W )) once in

n∑
j=1

n+1−j∑
i=1

∑
W∈V1,j

|LS1,j (W )| <

n

n∑
j=1

∑
W∈V1,j

|LS1,j (W )| = O
(
n3 |G|

)
time, by Theorem 2; line 30 calls the

function filterFromUpdate in Algorithm 2, which explores once all LSi,j (W )



Algorithm 2 Given a set ∆ of domain changes, the function filterFromUpdate
incrementally re-establishes GAC for the CFG(X,G) constraint on a se-
quence X = 〈X1, . . . , Xn〉 of n decision variables.

1: function filterFromUpdate(CFG(X,G),∆)
2: for all j ← 1 to n do QLS[j]← [ ]; QHS[j]← [ ]
3: for all (Xi, b) ∈ ∆ do
4: CHS

i (b)← 0
5: for all (W → b) ∈ HS′1 (b) do
6: if CLS

i,1 (W ) > 0 then
7: if −−CLS

i,1 (W ) = 0 then QLS[1].enqueue((W, i))
8: for all j ← 1 to n do
9: while QLS[j] 6= [ ] do

10: if j = n then return failed as S1,n has no low support
11: (W, i)← QLS[j].dequeue(); rmNoLS(W, i, j,QLS, QHS)
12: for all j ← n− 1 to 2 do
13: while QHS[j] 6= [ ] do
14: (W, i)← QHS[j].dequeue(); rmNoHS(W, i, j,QLS, QHS)
15: while QHS[1] 6= [ ] do
16: (W, i)← QHS[1].dequeue()
17: for all (W → b) ∈ LS1,1 (W ) do
18: if CHS

i (b) > 0 then
19: if −−CHS

i (b) = 0 then dom (Xi)← dom (Xi) \ {b}
20: if dom (Xi) = ∅ then return failed
21: return at-fixpoint

22: procedure rmNoLS(W, i, j,QLS, QHS)
23: if CHS

i,j (W ) > 0 then
24: for all (F → Y Z, k) ∈ HS′1,j (W ) do
25: if W = Y ∧ F ∈ Vi,k ∧ Z ∈ Vi+j,k−j then
26: (iF , jF , B, iB , jB)← (i, k, Z, i+ j, k − j)
27: else if W = Z ∧ F ∈ Vi−j,k ∧ Y ∈ Vi−j,k−j then
28: (iF , jF , B, iB , jB)← (i− j, k, Y, i− j, k − j)
29: else skip lines 30 to 33
30: if CLS

iF ,jF
(F ) > 0 ∧ CHS

iB ,jB
(B) > 0 ∧ CHS

i,j (W ) > 0 then
31: if −−CLS

iF ,jF
(F ) = 0 then QLS[jF ].enqueue((F, iF ))

32: if −−CHS
iB ,jB

(B) = 0 then QHS[jB ].enqueue((B, iB))
33: if −−CHS

i,j (W ) = 0 then QHS[j].enqueue((W, i)); return

and HS′i,j (W ) in the worst case, hence takes

n∑
j=1

n+1−j∑
i=1

∑
W∈Vi,j

|LS1,j (W )| +∣∣HS′1,j (W )
∣∣ = O

(
n3 |G|

)
time, for similar reasons. Hence there is no asymp-

totic overhead by line 30, and the overall time complexity is O
(
n3 |G|

)
.

Consider now the worst-case space complexity of our propagator. By The-
orem 2, encoding the CYK table V , all LSi,j (W ), and all HS′i,j (W ) takes

O
(
n2 |G|

)
space. There are

n∑
j=1

n+1−j∑
i=1

|Vi,j | =

n∑
j=1

n+1−j∑
i=1

|V1,j | = O
(
n2 |N |

)
=



O
(
n2 |G|

)
non-terminals in V , hence storing the support counters for all non-

terminals takes O(n2 |G|) space. There are n |Σ| terminals in the domains, hence
storing the support counters for all terminals takes O(n |G|) space. The two ar-
rays QLS and QHS of queues contain at most all non-terminals in V , hence take
O(n2 |G|) space. The overall space complexity is thus O

(
n2 |G|

)
.

Although our propagator has the same worst-case time and space complexity
as the one of [11], which is probably optimal anyway, our experiments below show
that our propagator systematically beats it in practice (by up to two orders of
magnitude), which might be confirmed by an average-case complexity analysis.

4 Experimental Evaluation

We now demonstrate the speed-up of our CFG propagator over its ancestor [11].
We implemented our propagator and the one of [11] in Gecode [8]. Katsirelos
et al. [12] show how to reformulate a CFG into a DFA for a fixed length, as
propagation for the Regular constraint is much cheaper than for CFG. This
reformulation needs a propagator for the CFG constraint to shrink the initial
domains of all decision variables to achieve GAC for all constraints at the root
of the search tree, so that the obtained DFA is smaller. Hence this reformulation
also benefits from a more efficient propagator for the CFG constraint.

Note that Sections 4.3 and 4.4 demonstrate that CP outperforms some state-
of-the-art solvers from the verification literature by orders of magnitude on their
own benchmarks. Our experimental results show that those benchmarks are
trivial, but these benchmarks were not known to be trivial before this paper, and
we have neither discarded any non-trivial benchmarks (of Hampi and Sushi)
nor included the benchmarks that were in the meantime known to be trivial.

We use the Gecode built-in Regular propagator. We ran the experiments
of Sections 4.1, 4.2, and 4.3 under Gecode 3.7.3, Hampi 20120213, and Ubuntu
Linux 11.10 on 1.8 GHz Intel Core 2 Duo with 3GB RAM; and we ran the
experiment of Section 4.4 under Gecode 3.7.3, Kaluza, Sushi 2.0, and Ubuntu
Linux 10.04 with 1GB RAM in Oracle VirtualBox 4.2.4 (recommended by the
Sushi developers) on the same hardware. As our chosen search heuristics do not
randomise, all instances of Sections 4.1, 4.2, and 4.3 were run once. However, for
Section 4.4, we ran each instance 10 times and recorded the average runtime, as
the performance of the virtual machine might vary significantly.

4.1 A Shift Scheduling Problem

Demassey et al. [4] introduce a real-life shift scheduling problem for staff in a
retail store. Let w be the number of workers, p the number of periods of the
scheduling horizon, and a the number of work activities. The aim is to construct
a w×p matrix of values in [1, . . . , a+ 3] (there are 3 non-work activities, namely
break, lunch, and rest) to satisfy work regulation constraints, which can be
modelled with a CFG constraint for each worker over the p periods and some
global cardinality constraints (GCC).



Katsirelos et al. [12] model this problem as an optimisation problem, so
that the reformulation of the grammar into a DFA takes only a tiny part of
the runtime; they show that this optimisation problem is extremely difficult
for CP-based CFG and Regular propagators. We are here, like [11], primarily
interested in the first solution to the satisfaction version of this problem. We
use the search heuristic of [11], namely selecting the second-largest value from
the first decision variable with the minimum domain size in the last period with
unassigned variables. Hampi cannot handle multiple variables, while Hampi,
Kaluza, and Sushi cannot model GCC, so we do not compare with them.

Table 1 gives our results: each row gives the instance, the search tree size, the
DFA size after the reformulation of [12] of CFG into Regular, and the runtimes
of four methods in seconds, namely our propagator (denoted by G++), the one
of [11] (denoted by G), and the reformulation, using the two CFG propagators
respectively (denoted by DFAG++ and DFAG). We find that G++ always works
much better (up to 18 times) than G; DFAG++ always works much better (up to
10 times) than DFAG, as the reformulation of [12] itself needs a CFG propagator
to shrink the initial domains at the root of the search tree (the reformulation,
which is instance-dependent, is here taken on-line and takes about 85% of the
total runtime) and as G++ works better than G; overall, G++ wins on 15
instances, and DFAG++ wins on the other 2 instances. When solving for all or
best solutions, DFAG++ gradually takes over as the best method, as predicted
by [12], but G++ continues to dominate G, and DFAG++ decreasingly dominates
DFAG, as instances get harder.

4.2 A Forklift Scheduling Problem

Gange and Stuckey [7] introduce a forklift scheduling problem. Let s be the
number of stations, i the number of items, and n the length of the scheduling
horizon. There is a unique forklift and a shipping list giving the initial and final
stations of each item. The aim is to construct an array of n actions, where an
action can move the forklift from a station to any other station with a cost
of 3, load an item from the current station onto the top of the forklift tray with
a cost of 1, unload the item from the top of the forklift tray at the current
station with a cost of 1, or do nothing with a cost of 0, so that the shipping
list is accomplished with a minimised cost under forklift behaviour constraints,
which can be modelled with one CFG constraint and i Regular constraints. We
use the first-fail search heuristic, namely selecting the smallest value from the
first decision variable with the minimum domain size, to solve this optimisation
problem. Since Hampi, Kaluza, and Sushi cannot solve optimisation problems,
we do not compare with them.

Table 2 gives our results over the instances solvable in one CPU hour: each
row specifies the instance and gives the runtimes of two methods in seconds,
namely our propagator (denoted by G++) and the one of [11] (denoted by G).
We find that G++ always works better (up to 5 times) than G. The reformulation
of [12] of the CFG constraint into the Regular constraint is not suitable for this
problem, as the resulting automaton is of size exponential in n.



benchmark (p = 96) search tree size DFA runtimes of four methods in seconds

instance a w #nodes #propagations #fails |A| G++ DFAG++ DFAG G

1 1 1 1 11 438 1 446 0.24 0.49 4.26 3.93
1 2 1 3 133 2123 33 998 0.90 3.78 15.38 12.87
1 3 1 4 349 5790 137 998 1.68 4.10 19.48 19.49
1 4 1 5 95 1836 7 814 1.18 2.41 21.99 20.53
1 5 1 4 71 1332 3 722 0.92 1.75 16.95 16.32
1 6 1 5 76 1567 3 722 1.17 2.01 21.16 20.17
1 7 1 6 3623 56635 1773 814 7.87 2.97 25.56 47.48
1 8 1 2 57 1005 10 998 0.52 3.59 10.76 8.47
1 9 1 1 19 460 1 630 0.22 0.80 4.41 3.94
1 10 1 7 12699 209988 6305 814 23.31 4.02 30.14 100.95
2 1 2 2 46 1414 8 984 0.93 1.69 16.76 15.97
2 5 2 4 83 2208 20 1209 1.02 3.15 18.51 16.41
2 6 2 5 89 1801 12 1207 1.35 2.94 23.03 21.57
2 7 2 6 258 5847 104 944 1.97 2.63 32.22 32.03
2 8 2 2 1046 28691 500 1774 2.86 7.75 23.09 24.09
2 9 2 1 35 1249 8 1460 0.63 4.11 14.21 11.03
2 10 2 7 4690 100007 2302 1506 7.64 7.82 43.24 53.90

Table 1. Runtimes for the shift scheduling problem

instance runtimes in seconds instance runtimes in seconds

s i n G++ G s i n G++ G

3 4 15 4.35 20.02 3 4 16 22.64 103.75
3 4 17 20.98 100.48 3 4 18 76.77 382.31
3 4 19 72.66 338.69 3 4 20 197.98 1013.78
3 5 16 67.54 297.55 3 5 17 81.67 368.65
3 5 18 200.91 1058.17 3 6 18 1134.58 5008.90
4 5 17 388.92 1631.94 4 5 18 819.82 3876.87

Table 2. Runtimes for the forklift scheduling problem

4.3 Intersection of Two Context-Free Languages

Hampi [14] selects a subset of 100 CFG pairs (from the benchmark of CFGAna-
lyzer [1]), where a string of length 1 ≤ n ≤ 50 accepted by both CFGs in each
pair is to be found (8 instances are satisfiable and 92 are unsatisfiable; disjoint-
ness of two context-free languages is undecidable). The CFGs of this benchmark
have 10 to 600 productions in CNF and up to 18 alphabet symbols. This problem
can also be solved using tools from automata theory. On this benchmark, Hampi
beats CFGAnalyzer by a large margin. Hampi also beats other ad hoc solvers
on other benchmarks, which are too easy (Hampi solves them in one second),
hence any improvements might be subject to runtime measurement errors.

Instead of running each CFG pair 50 times with the n-th run to find a string
of length n accepted by both CFGs, we search once, namely for the first solution
string of length up to 50 for each pair. Given a CFG G = 〈Σ,N,P, S〉, we create
a new CFG G′ = 〈Σ′, N ′, P ′, S′〉 with Σ′ = Σ∪{#} (let # /∈ Σ denote a dummy
symbol), N ′ = N ∪ {S′}, and P ′ = P ∪ {S′ → S | S′#}. If a string s′ of length



n is accepted by G′, then the string s obtained by removing all ‘#’ at the end
of s′ has a length up to n and is accepted by G.

Given a CFG pair (G1, G2), our model is CFG(X,G′1)∧CFG(X,G′2), where
X is a sequence of n decision variables with dom (Xi) = Σ′1 ∪ Σ′2. Our search
heuristic is to select the first value from the last unassigned variable. Figure 2
gives the runtimes of Hampi and the two CFG propagators for the 55 instances
where Hampi takes at least one second. Each ‘×’ (or ‘+’) denotes the compar-
ison between our propagator (or the one of [11]) and Hampi; each ‘∆’ denotes
the solving time of the bit-vector solver STP. For all 100 instances, the two
propagators always work much better (up to 9000 times) than Hampi, and even
always work much better than STP when the fixed-sizing of the grammar into a
regular expression and the transformation into bit-vector constraints are taken
off-line; our propagator always works much better (up to 250 times) than the
one of [11]. As 97 instances turn out to be solvable at the root of the search tree,
the reformulation of [12] of the CFG constraint into the Regular constraint has
similar results; for the other 3 instances, our CFG propagator is 3 to 5 orders
of magnitude faster (details omitted for space reasons, see Appendix C of [9]).
The two CFG propagators always beat Hampi for all n < 50 (up to 380 times
even with n = 10), and whether run on the CFG pair (G′1, G

′
2) or the original

pair (G1, G2). We get similar speed-ups (details omitted for space reasons, see
Appendix C of [9]) over 99% of the CFG pairs even with the first-fail search heur-
istic. Note that Kaluza uses Hampi’s functionality to solve the CFG constraint,
hence Kaluza has the same performance as Hampi on this benchmark.

4.4 Solving String Equations

Fu et al. [5] introduce just one benchmark of 5 string equations with a parameter
1 ≤ n ≤ 37 to demonstrate the practicality of their string solver Sushi against
Kaluza. Sushi handles string variables of unbounded length. Like Kaluza, we
expect a user-given parameter n and look for the first solution string of up to
n symbols. Unlike Kaluza, which tries all lengths until n, we allow strings to
end with dummy symbols ‘#’ (as in Section 4.3) and add length constraints.
For a sequence X = 〈X1, . . . , Xn〉, let decision variable nX with dom (nX) =
{0, . . . , n} denote the index of the right-most non-dummy symbol in X. The
length constraint is ∀1 ≤ i ≤ n : Xi = # ⇔ nX < i. String concatenation X =
Y +Z is modelled as nX = nY +nZ∧〈X1, . . . , XnX

〉 = 〈Y1, . . . , YnY
, Z1, . . . , ZnZ

〉
with reification constraints. Regular language membership X ∈ L(R), where
L(R) denotes the language accepted by the regular expression R, is modelled
as Regular(X,R#∗). We use the first-fail search heuristic. Table 3 gives the
runtimes of Gecode, Sushi, and Kaluza for equations 1 to 3 with the hardest
setting n = 37 and the Kaluza models (for a fair comparison). As Kaluza
solves the equations for some n ≤ n < 3n, we pessimistically set n = 4n for
Gecode, and Gecode still beats Sushi and Kaluza, by up to 130 times.
Gecode solves our better models than the Kaluza ones of equations 4 and 5
within 0.10 seconds, beating Sushi and Kaluza by up to 3000 times.
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Figure 2. Runtimes for the CFG-intersection problem

eq1: 3 string variables eq2: 2 string variables eq3: 4 string variables
n Gecode Sushi Kaluza Gecode Sushi Kaluza Gecode Sushi Kaluza

37 0.15 1.34 10.40 0.05 1.82 3.94 0.07 2.52 5.71

Table 3. Runtimes (in seconds) for solving string equations

5 Conclusion

We argue that CP solvers are more suitable than existing solvers for verification
tools that solve string constraints. Indeed, CP has a rich tradition of constraints
for membership in formal languages: their propagators run directly on descrip-
tions, such as automata and grammars, of these languages. Apparently tricky
features, such as string equality or multiple string variables (with shared char-
acters), pose no problem to CP. Future work includes designing propagators for
string constraints over strings of (un)bounded length.
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