Time-Series Constraints: Improvements and
Application in CP and MIP Contexts

Ekaterina Arafailova!, Nicolas Beldiceanu!, Rémi Douence!, Pierre Flener?,

Maria Andreina Francisco Rodriguez?, Justin Pearson?, and Helmut Simonis®

! TASC/ASCOLA (CNRS/INRIA), Mines Nantes, FR — 44307 Nantes, France
{Ekaterina.Arafailova,Nicolas.Beldiceanu,Remi.Douence}@mines-nantes.fr
2 Uppsala University, Dept of Information Technology, SE — 751 05 Uppsala, Sweden
{Pierre.Flener,Maria.Andreina.Francisco,Justin.Pearson}@it.uu.se
3 Insight Centre for Data Analytics, University College Cork, Ireland
Helmut.Simonis@insight-centre.org

Abstract. A checker for a constraint on a variable sequence can often
be compactly specified by an automaton, possibly with accumulators,
that consumes the sequence of values taken by the variables; such an
automaton can also be used to decompose its specified constraint into
a conjunction of logical constraints. The inference achieved by this de-
composition in a CP solver can be boosted by automatically generated
implied constraints on the accumulators, provided the latter are updated
in the automaton transitions by linear expressions. Automata with non-
linear accumulator updates can be automatically synthesised for a large
family of time-series constraints. In this paper, we describe and evaluate
extensions to those techniques. First, we improve the automaton synthe-
sis to generate automata with fewer accumulators. Second, we decompose
a constraint specified by an automaton with accumulators into a conjunc-
tion of linear inequalities, for use by a MIP solver. Third, we generalise
the implied constraint generation to cover the entire family of time-series
constraints. The newly synthesised automata for time-series constraints
outperform the old ones, for both the CP and MIP decompositions, and
the generated implied constraints boost the inference, again for both the
CP and MIP decompositions. We evaluate CP and MIP solvers on a
prototypical application modelled using time-series constraints.

1 Context and Motivation

Frameworks are given in [4,14] for specifying a constraint on a sequence of vari-
ables in a high-level way by means of a finite automaton, possibly augmented
with accumulators in the framework of [4]. An automaton can be seen as a
checker for ground instances of the specified constraint. For example, in a nono-
gram puzzle, a row constrained to contain two stretches of black cells, of lengths
4 and 3 in this order, separated by at least one white cell but preceded and
followed by any amounts of white cells, can be checked by an automaton equiv-
alent to the regular expression w*b*wtb3w*, where the row is represented by a
sequence of variables whose domain value ‘w’ stands for white and ‘b’ for black.

Accumulators enable the specification of a constraint v on a variable sequence X
by an automaton whose size does not depend on the length of X: accumulators
are initialised at the start state and are updated through the transitions; upon
acceptance, the accumulators are linked to another variable of v via an arith-
metic constraint. For example, one could constrain the number of white cells
between the two black stretches in the nonogram constraint above to be at most
half the length of the row.

The framework of [14] lifts an automaton without accumulators into a propa-
gator for the specified constraint; it maintains domain consistency in polynomial
time. The more general framework of [4] lifts an automaton, possibly with accu-
mulators, into a decomposition of the specified constraint in terms of constraints
with existing propagators; in the presence of accumulators, this decomposition
does not maintain domain consistency in general [2]. Encoding the potential ac-
cumulator values in the states of the automaton may lead to an exponentially
large automaton. In this paper, we focus on automata with accumulators.

The propagation achieved by the automaton decomposition of [4] in a CP
solver can be boosted by invariants, seen as implied constraints, on the accumula-
tors. If the latter are updated in the automaton transitions by linear expressions
on the accumulators — such as increments and decrements by constant amounts
(as in ¢ :== ¢ + 1) or by other accumulators (as in ¢ := ¢+ r), or resets (as in
¢ = 0) — then such implied constraints can be automatically generated [11].

Automata with non-linear accumulator updates can be automatically syn-
thesised for a large family of structural time-series constraints [3]. A time se-
ries is here a sequence of integers, corresponding to measurements taken over a
time interval. Time series are common in many application areas, such as the
power output of electric power stations over multiple days, or environmental data
(temperature, humidity, COg level) in buildings. Time series are constrained by
physical or organisational limits, which restrict the evolution of the series.

After a summary of the background material in Section 2, the contributions
and impact of this paper are as follows:

— We improve the automated automaton synthesis of [3] so as to synthesise
automata with fewer accumulators and simpler accumulator updates, using
fewer ‘min’ and ‘max’ operators, say (Section 3).

— We decompose a constraint specified by an automaton with accumulators
into a linear-sized conjunction of linear inequalities, for use by a mixed-
integer programming (MIP) solver (Section 4).

— We generalise the implied constraint generation of [11] so as to cover the en-
tire family of time-series constraints of [3] and to rank the generated implied
constraints by decreasing propagation strength, thereby easing the human
selection of which implied constraints actually to use (Section 5).

— We show that the newly synthesised automata for time-series constraints
outperform the automata of [3], for both the CP and MIP decompositions,
and that the newly generated implied constraints boost the inference, again
for both the CP and MIP decompositions (Section 6).

— We evaluate CP and MIP solvers on a prototypical application modelled
with the help of time-series constraints (Section 7).

2 Specifying (Time-Series) Constraints using Automata

We showed in [3] that many constraints (N, (Xo,...,X,—1)) on an unknown
time series (X, ..., X,,—1) of given length n can be specified as a triple (p, f,g),
where p is a regular expression over the alphabet {<,=,>} and is called the
pattern; f € {max, min, one, range, surface, width} is called the feature; and
g € {Max, Min, Sum} is called the aggregator. The semantics is that integer
variable N is required to be the aggregation, computed using g, of the list of
features f of all maximal words matching p within the sequence (S, ..., Sn—2)
of variables, called the signature sequence, which is linked to the time series via
the signature constraints (X; < X;41 & S;i=‘“<)AN(Xi=Xip1 & S =
ENVA(X > X & S;=¢>7) forall ¢ € [0,n — 2]. A list of 23 patterns was
identified, giving 266 constraints. We now introduce our running example.

Ezample 1. The MAXWIDTHSTRICTLY DECREASINGSEQUENCE (N, X)) constraint,
requiring N to be the maximum width of the maximal strictly decreasing se-
quences within the time series X, is specified by the pattern >, the feature
width, and the aggregator Max. The time series (4,4,3,2,2,6,3,5) contains two
maximal strictly decreasing sequences, namely 4 > 3 > 2 and 6 > 3, of widths 3
and 2, so their maximum width is N = 3. The following figure shows how to check
MAXWIDTHSTRICTLY DECREASINGSEQUENCE(3, (4,4, 3,2, 2,6, 3,5)) by (I) build-
ing the signature sequence by comparing adjacent time-series values; (II) finding
all maximal words matching the regular expression >7; (III) computing the fea-
ture width of each such strictly decreasing sequence; and (IV) aggregating the
feature values using the Max aggregator:

Max 3 (IV) feature aggregation
width [3 ‘ [2 (III) feature sequence
1—2-3 5—6
>t > > > (IT) maximal occurrences
‘ =|>]1> = ‘ <|>|< ‘ (I) signature sequence
‘ 4 ‘ 4 ‘ 3 ‘ 2 ‘ 2 ‘ 6 ‘ 3 ‘ 5 ‘ time series
0 1 2 3 4 5 6

An automaton with a memory of m > 0 integer accumulators [4] is a tuple
(@, X,0,q0,1, A, o), where @ is the set of states, X' the alphabet, §: (Q x Z™) x
Y — @ X Z™ the transition function, q9 € @ the start state, I the m-tuple
of initial values of the accumulators, A C @ the set of accepting states, and
a: Z™ — 7 the acceptance function, transforming the memory of an accepting
state into an integer. If the left-to-right consumption of the symbols of a word
w in X* transits from ¢y to some accepting state and the m-tuple C' of current
accumulator values, then the automaton returns the value a(C), else it fails.

Ezxample 2. A ground instance of the constraint of Example 1 holds if and only
if its value of NV is returned by the automaton in Figure 1 after consuming the
signature sequence linked to its time series X. The automaton uses m = 2 accu-
mulators: at any moment, accumulator ¢ has the length of the current strictly
decreasing sequence, while r has the length of the longest strictly decreasing

>

{{e,r) ={c,7)} {{e,7) = (0,r)} {{e,r) = (c+ 1,max(r,c+ 1))}

{<C7 T> = <07 0>} {<Cv T) = <27 max(r, 2)>}

Fig. 1: Automaton for MAXWIDTHSTRICTLY DECREASINGSEQUENCE

sequence seen so far. The state set @ is {s,u}: at s the current sequence is not
strictly decreasing, and at u the current sequence is strictly decreasing. The
start state qg = s is indicated by an arc coming from nowhere, annotated within
braces by the initialisation to zero of both ¢ and r, hence I = (0,0). The al-
phabet X' is {<,=,>}. The arc from s to u depicts the transition of § from s
to u upon consuming symbol >, and is annotated within braces by accumulator
updates: r is updated to its maximum with 2, and c is set to 2. All states are
accepting, hence A = Q. The acceptance function « transforms a memory (c,r)
into r at both states, and is given in a box linked to s and u by dotted lines. O

An automaton can be seen as a constraint checker. The framework of [14] lifts
an automaton with m = 0 accumulators into a CP propagator for the specified
constraint; it maintains domain consistency in time polynomial in the automaton
size and sequence length. The more general framework of [4] lifts an automaton
with m > 0 accumulators into a CP decomposition of the specified constraint in
terms of constraints with existing CP propagators; when m > 1, this decomposi-
tion does not maintain domain consistency in general [2]. Encoding the potential
accumulator values in the states of the automaton, so as to get an automaton
with m = 0 accumulators, may lead to a large automaton.

In this paper, we focus on automata with m > 1 accumulators, motivated [4]
by the wish to specify a constraint on a sequence X by an automaton whose
size does not depend on the length of X; this is the case for the automaton in
Figure 1. In Section 3, we improve our synthesiser 3| of automata from (p, f, g
specifications of time-series constraints, so that it automatically synthesises au-
tomata with fewer accumulators and simpler accumulator updates, namely linear
accumulator updates rather than updates involving the min and max operators.
In Section 4, we lift an automaton with m > 1 accumulators into a MIP decom-
position of linear inequalities. In Section 5, we boost the inference achieved for
the CP and MIP decompositions by generalising our generator [11] of constraints
implied by an automaton, so that it covers the entire family of time-series con-
straints of this section and [3]. Those sections are orthogonal and any subset
thereof can be read in any sequence.

3 Simplification of Synthesised Time-Series Automata

In [3] we synthesise automatically an automaton from a triple (p, f, g) specifying
a time-series constraint. The synthesis relies on a declarative encoding of proce-
dural knowledge into what we call decoration tables [3]. Each pattern is specified
by a transducer [6,15] obeying wellformedness conditions. The decoration tables
are parametrised by features and aggregators, and define substitution rules on
the transducers that allow an automaton with m = 3 accumulators to be syn-
thesised. The future work in [3] included simplifying the synthesised automata,
as they often have more accumulators and more complex accumulator updates
than manually designed ones: this may slow down the checker and weaken CP or
MIP decompositions of the constraint specified by the synthesised automaton.

In this paper, we largely overcome this bottleneck. Rather than designing
a procedural minimisation algorithm for automata with accumulators, we have
again opted for capturing such procedural knowledge in a declarative and thus
more easily reusable way: it suffices to specialise the decoration tables of [3] for
some combinations of algebraic properties of pattern-feature-aggregator triples.

First, we recall the concept of pattern e-occurrence from [3], capturing where
a feature value is extracted from the time series.

Definition 1. Given a pattern p; a sequence Xg,...,X,_1; its signature se-
quence So, . ..,S,—2; and a non-empty subsequence S;, Sit1,...,S; forming a
mazximal word that matches p, with 0 < i < j < n — 2; the e-occurrence of that
mazximal word is the interval [£,u] of corresponding indices within Xo, ..., Xp—_1.

In Example 1, the sequence X = (4,4,3,2,2,6,3,5) gives the signature se-
quence S = (=,>,> =, <,>, <), which contains two maximal words matching
the pattern > of strictly decreasing sequences, namely (S7,S2) = (>,>) and
(Ss5) = (>), corresponding to the strictly decreasing sequences (X7, X5, X3) =
(4,3,2) and (X5, Xg) = (6, 3), hence the e-occurrences are [1, 3] and [5, 6]. A pat-
tern occurrence (S;,...,S;) within the signature sequence has the e-occurrence
[i,7 + 1] for this constraint, but it could be [i + 1, j] for other constraints [3].

All synthesised automata in [3] have the accumulators ¢, d, and 7, which
respectively denote the feature value of the current pattern e-occurrence (such
as accumulator ¢ in Figure 1); the feature value of a potential part of a pattern
e-occurrence (no such accumulator is needed in Figure 1, and achieving this is
the purpose of this section); and the aggregated result value for the feature val-
ues of the pattern e-occurrences already encountered (such as accumulator r in
Figure 1). Figure 2B&C gives the functions used to compute the feature and
aggregation values. If the pattern, feature, and aggregator satisfy some proper-
ties, then either it is enough to perform the accumulator update only on one
specific transition of the automaton, as in Definition 3, or it is possible to start
aggregating immediately upon finding an e-occurrence, as in Definition 4. To
state these properties, we need another concept.

Definition 2. A transition from state q to state ¢' in an automaton is called a
‘found’ transition if it is the only transition on some path from the initial state qg
to ¢’ that modifies the accumulator c.

Simplification Percentage Feature f id; miny max; ¢y 5}

aggregate once 28.9 % one 1 1 1 1 1
immediate aggreg. 45.9 % width 0 0 n + 1
other properties 11.6 % surface 0 —oo +oo + X;
unchanged automata [3] 13.6 % max —00 —00 +0o max X;
min +00 —00 +00 min X;
(A) range 0 0 +4oo n/a X;
Aggregator g defaulty, s ©)
Max miny
Min max ¢
Sum 0
B)

Fig. 2: (A) Percentage, among the 266 time-series constraints, of automata that
can be simplified using the discovered properties. (C) Features: their identity,
minimum, and maximum values; the functions ¢ and 5} are used to compute
recursively the feature value v, of a sequence (Xy,..., X,) by vy = ¢5(idy, (5?)
and v; = ¢5(vi—1, 5}) for ¢ > /£; note that 5;} provides the contribution of X; to
the value of feature f; (B) Aggregators and their default values.

For example, the transition from the start state s to state u in Figure 1 is a
‘found’ transition, as it sets ¢ to 2.

Definition 3. Given a time-series constraint v on feature f, an e-occurrence
[¢,u] of its pattern such that X, triggers a ‘found’ transition of its automa-
ton, with s € [¢,u], we say that v is an aggregate-once constraint if (5‘;; equals

dr(os(... (bf(idf,éfc), . .,5}‘71),6}?), where ¢y and 8% are as in Figure 2B.

For aggregate-once constraints the feature value of an e-occurrence depends
only on the value of 6%, hence we need only one counter for aggregating.

For example, any constraint with feature f = one, i.e., any constraint count-
ing the number of occurrences of a pattern, is an aggregate-once constraint,
because for any e-occurrence [£,u] and any i,i+1 € [¢,u] we have ¢ (55, 5?‘1) =
86 = 64Tt = ... = §» = 1. Also, consider any constraint with feature f = max and
pattern ‘<(<|=)*(>|=)*>’, which means there is a strict increase followed by a
non-strictly increasing subsequence, possibly a plateau, and then a non-strictly
decreasing subsequence, followed by a strict decrease. The maximal value 5]% of an
e-occurrence [¢, u] of that pattern is found already when we traverse the ‘found’
transition for s € [¢, u], which is the first transition on signature symbol ‘>’: there
is no need then to consider other elements of the e-occurrence because the rest
of the pattern is a non-strictly decreasing sequence, so we can aggregate once we
know 533. Formally, such a constraint is an aggregate-once constraint, because

for any e-occurrence [¢,u] we have that ¢;(¢f(. ..qu(idf,éfc), .. .,5?‘1),(5;) =

max(idy, 6%, ...,6%) = max(ids, X§,..., X}) = X, = 6%, where X, triggers a
‘found’ transition of the automaton, with s € [¢, u].

The second kind of time-series constraints, in Definition 4 below, is char-
acterised by a combination of feature and pattern properties for which we can
start aggregating a current feature value into the result accumulator r as soon as
when we find out that we are within a pattern e-occurrence, i.e., without waiting
for the end of that pattern e-occurrence. To understand how a synthesised au-
tomaton works, we define the following functions, parametrised by entries from
Figure 2B&C, representing the updates of the accumulators ¢ and 7:

— Ff :ZXZ*}ZXZ (Ci7ri)}_>(¢f(ci757}), Ti)
— G;j’g: X1 — 7 x 7 (Ci,’l"i) — (idf, g(cz’(bf(cué}))) i
- Gf,g: LXL—LXL (Ci,’l"i) = (¢f(cl75f)7 g(’riv ¢f(cla6f)))

When a synthesised automaton from [3] computes the value of feature f for an
e-occurrence [¢,u] and aggregates it into the result accumulator r, the new value
of r is computed by first applying u — ¢ times the function F'y and then applying
the function G/ﬁ ,- However it is often possible to aggregate this feature value into
r without waiting for the end of the e-occurrence. There are two such situations:
either (a) before aggregating, we must evolve the feature value of the e-occurrence
in accumulator ¢; or (b) we need not evolve this feature value in ¢, but after each
aggregation c is reset to the id; value from Figure 2B. We apply u — ¢ times the
function G’} | or G'; | for the situations (a) and (b) respectively. Finally G is
applied once for both (a) and (b), since we do not have to keep in accumulator ¢
the feature value when we are at the end of the e-occurrence. The old [3] order
of accumulator updates corresponds to G}_’g oFjo---0Fy, called order (1), while
the new order of updates corresponds to either G}’g) G}’g 0---0 G}’g, called
order (2), or G ;0 G} jo---0GY , called order (3).

Definition 4. A time-series constraint is an immediate-aggregation constraint
if for any e-occurrence the use of order (1) has the same result as using either
order (2) or order (3).

Due to the immediate-aggregation property, we do not have to distinguish
the potential and current parts anymore. In [3], updating r is done after the end
of an e-occurrence, taking into account the current feature value in c. However,
we need not aggregate after the end of an e-occurrence, as the update of r
should happen when we are sure that the current element X; belongs to the
e-occurrence, so we can use c¢ for keeping both the potential and current parts.

For example, the MAXWIDTHSTRICTLY DECREASINGSEQUENCE constraint
is an immediate-aggregation constraint. This is illustrated in Figure 3, where ¢;
and r; respectively denote the values of accumulators ¢ and r after consuming X;:
we consider an e-occurrence [¢, u] and apply the two orders (1) and (3); after the
last update, the value of the accumulator r coincides for both orders. The column
‘before’ contains the value of the accumulators just before the e-occurrence [¢, u).
The simplified automaton for this constraint is given in Figure 1.

The percentage of constraints for which we can simplify the automata using
the different types of simplifications is given in Figure 2A.

before update 1 -+ update u — ¢ update u — £+ 1

order (1)

c update cp =cp—1+1 ces Cy—1 = Cy—2+1 cy =0

r update Te = Te_1 e Ty = Ty—2 ry = max(ry—1,Cy—1 + 1)
(c,m) (0,7¢—1) (1,7¢-1) e (u— 4 re—1) (0, max(re—1,u — £+ 1))
order (3)

¢ update cp=cp_1+1 et Cy_1 = Cy_2+1 cy, =0

r update re = max(re—1,c—1 + 1) -+ ry—1 = max(ry—2,cu—2 + 1) ry, = max(ry—1,cu—1 + 1)
(e,m) (0,7¢—1) (1, max(re—1,1)) o (uw— £, max(re—1,u — £)) (0, max(re—1,u — £+ 1))

Fig. 3: MAXWIDTHSTRICTLY DECREASINGSEQUENCE immediately aggregates

4 MIP Decomposition of Automaton-Based Constraints

Consider a constraint (N, (Xo, ..., X,—1)) and signature constraints linking its
n variables X; to n+1 —w signature variables .S;, each S; being functionally de-
termined by a linear relation on w consecutive X; variables. For ease of notation,
we here assume w = 2: each 5; is linked to X; and X1, as for the time-series
constraints in Section 2. (Other frequent scenarios are w = 1, where each S; is
linked to X; only, and the absence of signature constraints, in which case one
would assume S; = X; are the signature constraints, also with w = 1.)

Assume a ground instance of (N, (Xo, ..., X,—1)) holds iff an automaton A
with m > 1 accumulators a; that are updated by linear expressions ¢, possibly
using the ‘max’ and ‘min’ operators, returns the value of its variable NV, called the
result variable, after consuming the values of its signature variables Sy, ..., S,—_2.

Following [1], we decompose v for a MIP solver by formulating logical con-
straints that model the triggering of transitions in A (Section 4.1) and linearising
those constraints (Section 4.2). For m = 0, there is the flow-based MIP decom-
position of [8]. For m = 1 accumulator that is only updated through increments
by positive integers, there is the column-generation approach of [9].

4.1 Logical Constraints

Beside the integer variables Xg, ..., X,,_1 and N of -, to model the behaviour of
A={(Q,X,0,q0,1, A, a) on the signature variables Sy, ..., S,_o over X, the key

idea is to represent the states visited by A using state variables Qq, ..., Qn_1
over @: each Q; denotes the state reached after consuming S;_1, with Qg = qo.
Also, we need transition variables Ty, ..., T,_o over the set T = Q x X of

constants denoting all the transitions of the total function §: each T; denotes the
(i + 1)t triggered transition of A, that is while consuming S;.

Last, we need accumulator variables A; ; for i € [0,n—1] and j € [1,m]: each
integer A; ; denotes the value of accumulator a; after the i*® transition of A,
that is after consuming S;_;; each Ag ; is given in the tuple I of initial values.

The signature constraints functionally determine each signature variable .S;
from a linear relation on X; and X;;. For example, the signature constraints
for time-series constraints are given at the beginning of Section 2.

The transition constraints encode the transitions of ¢ as follows:

Qo =qo
Qi=qANSi=0=Qiy1 =0(q,0) NT; = (g,0), Vi€ [0,n—2], Vg €Q, Vo € X

For example, a representative transition constraint for the automaton of Figure 1
i:Q; =8NS, =<"= Qi1 =sA\T; = (s,<), Vi € [0,n—2].

The accumulator constraints are of three kinds: the values of the accumulator
variables Ag ; before any transitions are found in the m-tuple I of initial values;
there is an implication constraint for each transition of § with its accumulator
updates; and the values of the accumulator variables A,_1 ; after all transitions
are linked to the result variable N according to the acceptance function «. If
A C @, then we have to pose the additional constraint Q,,—; € A.

For example, the accumulator constraints for the automaton in Figure 1 are
as follows, using the accumulator variables C; and L; for denoting the successive
values of the accumulators ¢ and ¢ respectively: the constraints Ly = 0 and Cy =
0 correspond to the pair I = (0,0) of initial values; the constraint N = L,
stems from the acceptance function; further:

T, =t = Cip1 = C4, Vt€{<8,<>,<$,:>},v7;€[,n 2]
T = <S, >>:> Ci+1 =2, Vi € [O,TL — 2]
T, =t = Ciy1 =0, vt € {(u, <), (u,=)}, Vi € [0,n — 2]
T; = (u,>= Ciy1 = C; + 1, Vi e [0,n — 2]
T, =t = Liy1 = L;, vt € {(s, <), (s,=), (1, <), (u,=)}, Vi € [0,n — 2]
T, = (s,>)= L;y1 = max(L;, 2), Vi€ [0,n — 2]
T, = (u, >} Liy1 = max(L;, C; + 1), Vi e [0,n —2]

For n variables X; and m accumulators, there are n — 1 signature variables,
n state variables, n—1 transition variables, and mn accumulator variables, hence
O(n) variables in total, since m is a constant. Since 4 has a constant size, each
variable occurs in a constant number of constraints, so there are ©(n) constraints.

4.2 Linearising the Logical Constraints

To obtain a linear model, we linearise each group of logical constraints.

For each variable S; over X', we introduce 0-1 variables S7, with 1 denoting
truth and 0 denoting falsity, hence the semantics Sy =1 & §; = o for all
i € [0,n —2] and o € X. This requires that exactly one of the S takes value 1:

> 87 =1, Vie[o,n-2| (1)

cex

We replace each atom S; = o by the Boolean SY in each logical constraint.

We perform the same operation for the @); and T; variables with respect to
their domains, getting variables Q7 and T for allg € Q and t € T. If A C @,
then we additionally require Q¢ |, =0 for all ¢ € Q \ A.

To linearise the transition constraints, which are now implications where
both sides are conjunctions of Boolean variables, we use the technique of [17,
pages 172-177].

The accumulator constraints have the general logical form

T,=t=A11,=¢, withie [0,n—2], j€[l,m], andt €T

where ¢ is here a linear expression, possibly using the ‘max’ and min’ operators,
that mentions variables A; ; denoting accumulator values before the considered
it? transition. We linearise such an implication as follows:

Ai—i—l,j —¢ < Mj . (1 —T;-t), with i € [0,71—2], j e [1,7’71], andteT
Ai—i—l,j 7(775 Z Mj . (th —].)7 with i € [O,TL*Q],] € [1,m], andt e T

where constant M), chosen with respect to the function ¢, is such that the
constraints above always hold. Computation of M; may also require calculation
of the values serving as plus and minus infinities. For example, for a time-series
constraint specified by a triple (p, f, g), we have that each M; depends on the
extrema of feature f. If ¢ uses the ‘max’ and min’ operators, then we first
linearise it using the technique of [10, pages 4-5], introducing a constant number
of new variables.

We linearise the signature constraints by using the following technique, ex-
plained on the example of time-series constraints, where the minimum difference
between two consecutive integer variables X; is 1. We rewrite the signature con-

straint X; < X;11 < 5; = ‘<’ as two linear inequalities enforcing Si< =1if
X; < Xi41, and S& = 0 otherwise:
Xip1 — X; Xiy1 — X3 2M] -1
- R L~ Vie[0,n—2
ar o =SS Ty el

where constant M/ is |lw—v| 4+ 1, for all ¢ € [0,n — 2],

vEdom(Xi)r,ng}E(dom(X¢+1)
assuming dom(Y’) denotes the domain of variable Y. The linearisation of X; >
Xit1 & S; = >’ is symmetric. The linearisation of X; = X;11 & 5; =‘="1is
S5 =0AS;7 =0, since the instance S~ + 57~ + 57 =1 of (1) implies S = 1.
For n variables X; and m accumulators, there are (n — 1) - |X| signature
variables, n - |Q| state variables, (n — 1) - |@Q| - | X transition variables, and mn
accumulator variables. Linearising any of the (n — 1) - |Q] - |X| accumulator
constraints requires a constant number of new variables, if any. So we still have
O(n) variables in total, since m, |Q|, and |X| are constants; for the time-series
constraints, we have |Q| < 4 for 240 of the 266 automata and |Q| < 13 otherwise,
m < 3 upon the improvements in Section 3, and |X| = 3. Since each variable
occurs in a constant number of constraints, there still are ©(n) constraints.

5 Improved Generation of Implied Constraints

Given an automaton A with m > 1 accumulators a;, our tool ImpGen [11]
generates invariants of the form aya; + - - - + aman, + v > 0: these inequalities

hold at every state of A for any symbols consumed so far. Let variable A; ; denote
the value of accumulator a; after A has consumed the first ¢ symbols of a sequence
of n symbols: these variables appear in the CP decomposition [4], for a sequence
of n variables S;, of the constraint specified by A. This decomposition in general
does not achieve domain consistency when m > 1 [2]: achieving it is NP-hard for
such a constraint in general [5]. Each invariant translates into n + 1 constraints
of the form ay A; 1 + -+ + @mAim +v >0, for all 0 <4 < n. We showed in [11]
that these constraints are implied by the mentioned CP decomposition, and that
the implied constraints translating a suitable selection of invariants improve the
propagation strength and speed of that decomposition. The generation of implied
constraints is specific to an automaton, but neither to a constrained sequence of
variables S; nor to its length n, and can thus be done offline.

ImpGen handles automata where each accumulator update is a linear ex-
pression on accumulators. This includes increments and decrements by constant
amounts (as in ¢ := ¢+ 1) or other accumulators (as in ¢ := ¢ + £), resets (as
in ¢ := 0), etc. This excludes updates via the ‘max’ and ‘min’ operators, for
instance: ImpGen handles only 64 of the 266 time-series constraints in Section 2.

Towards handling all the time-series constraints, we need to extend ImpGen
to handle also conditional accumulator updates of the form ¢ := if p then ¢ else 1,
where p is a linear (in)equality and ¢, v are linear expressions on accumulators:
following an idea in [16], we extend the encoding of automaton transitions by
allowing preconditions to be expressed. ImpGen now automatically first rewrites
accumulator updates containing the binary ‘min’, ‘max’, or ‘abs’ operators into
conditional updates. For example, the accumulator update on the arc from s to ¢
in Figure 1 is rewritten as (c,¢) :== (2,if £ > 2 then ¢ else 2).

Finally, we extend ImpGen to rank the implied constraints by decreasing
propagation strength when added to the CP decomposition: this is done based on
a series of random instances. This enables automated selection via a top-k rule for
a user-chosen parameter k, as opposed to the previous manual selection among
a set of implied constraints. For example, the top three implied constraints
generated from the automaton in Figure 1 are L; > L; 4, L; > L; o, and
L;+L; 1 >2-L; o, where L; denotes the value of accumulator ¢ after consuming
the first ¢ symbols. The new tool is available online.!

Intuitively, the implied constraints generated by ImpGen can improve infer-
ence also for the MIP decomposition of Section 4 because they are generated
directly from an automaton and are not necessarily linear combinations of the
linear inequalities in that decomposition [13]. Our experiments in the next sec-
tion confirm that implied constraints that improve the propagation of the CP
decomposition can also improve the inference of the MIP decomposition.

! http://www.it.uu.se/research/group/astra/software/impGen.zip.

http://www.it.uu.se/research/group/astra/software/impGen.zip

(A) Runtime (B) Backtracks

100 T T T %107

1x10°

100000 |

10000 £

1000 |

0.01 0.1 1 10 100 1 10 100 1000 10000 100000 1x10° 1x107

Fig.4: Time in seconds (left) and backtracks (right) to maximise the result vari-
able for random instances under SICStus Prolog 4.3.2 on a 2011 MacBook Pro
2.2 GHz quad-core Intel Core i7-950 machine with 6MB cache and 16 GB mem-
ory. The z-axis is for the new automata and the y-axis is for the old automata:
points below the diagonal represent good results for the new automata.

6 Benchmark on CP and MIP Solvers

To evaluate the CP and MIP decompositions of the time-series constraints, we
compared their old automata [3] against the new automata of Section 3, and the
new automata with and without implied constraints generated as in Section 5.

To compare the old automata against the new automata for CP, we generated
instances for all the 266 time-series constraints over time series of length 15 over
the domain {1,2,3}. Note that a domain of size 3 is large enough to allow all
patterns to occur and to focus the propagation effort on the transition constraints
and accumulator constraints but not on the signature constraints. We maximised
the result variable, and used a timeout of 100 seconds. As can be seen in Figure 4,
the decompositions of the new automata are almost always faster (actually 1.6
times faster on average) and always have fewer backtracks (actually 25% fewer
backtracks on average) than those of the old automata.

To compare the new automata with and without implied constraints both
for CP and MIP, we generated 40 instances for each constraint used in Section 7
below over time series of length 100 and random sub-intervals of [0,1000] as
domains. We maximised the result variable, and used a timeout of 300 seconds.

Using SICStus Prolog [7], we chose a static search strategy, assigning the
variables X; by increasing index and trying values from smallest to largest.
This means that the first solution found is the same with and without implied
constraints, and that the times and backtrack counts are directly comparable.
The decompositions of the new automata are always faster in the presence of
the top two implied constraints, namely 3.33 times faster on average, and always
have fewer backtracks, by up to 5 orders of magnitude. In particular, all instances
of half the constraints are now solved in less than 1 second instead of timing out.

Using the Gurobi 6.5 [12] MIP solver, the decompositions of the new au-
tomata are almost always faster in the presence of the top two implied con-
straints, namely also 3.33 times faster on average, and can solve to optimality
14% more instances. For the considered constraints, the decompositions of the
new automata are always faster than those of the old automata, namely 1.63
times faster on average.

7 Evaluation on a Staff Scheduling Application

For a more realistic evaluation, we introduce a prototypical staff scheduling ap-
plication that uses a number of time-series constraints. We consider the case of
a service company, where demand varies over time, and has to be met at each
time point. In order to provide the service level required, we have to define a
manpower resource profile over time. Resource cost may vary over time, i.e.,
employees may be paid different rates at different times. If we could hire and
fire personnel arbitrarily, we could follow the demand curve exactly, but this is
not allowed, as business processes, employment rules, and union contracts limit
how quickly we can change the number of persons employed. We are therefore
required to sometimes employ more people than strictly necessary. Note that
we are not dealing with a shift rostering problem, where the demand must be
covered by people working different shift patterns. In the current problem we
are only interested in the total manpower curve, over a long-term horizon.

The overall problem is to cover the given resource demand over time, while
minimising overall resource cost, and at the same time satisfying the given time-
series constraints.

7.1 Notation, Constants and Variables

In our benchmark, we use a time resolution of one week over a one year horizon,
i.e. we consider n = 52 time points. The integer variables X; describe the sched-
uled resource level at time i. These variables form a single time-series X1, ..., X,
all constraints are expressed over this time-series or over one of its sub-sequences.
The symbols d; define the given, fixed demand at each time point ¢. The sym-
bols ¢; define the cost of a resource unit at time point ¢. For each constraint we
also introduce an integer variable which represents the aggregated feature value
for the constraint. The lower or upper domain bound of these variables will be
constrained.

7.2 Objective Function

The objective is to minimise the total cost of the schedule, i.e.

n
0bj* = min Z Xic;
i=1

The overhead obj* — Y7, d;c; is the increase in cost due to the working rules.
We can use the overhead also to evaluate the potential cost/savings due to
adding/removing a specific working rule. Another lower bound is the sum of
the lower domain bounds after initial propagation: we use this to compute the
finite-domain optimality gap in our evaluation.

7.3 Constraints

There are two types of constraints, one concerning the demand profile, and the
other a set of time-series constraints. At each timepoint, the resources provided
must exceed the required demand X; > d;.

The constraints on the time series are given in natural language form below,

we also note the constraints used, following the naming scheme in [3].

1.

10.

11.

12.

The manpower profile can have at most two peaks. This is expressed with a
NBPEAK constraint with a parameter variable with an upper bound of two.
The manpower profile can have at most two valleys. This is handled by the
NBVALLEY constraint.

The maximal manpower level at any peak of employment is 250. The num-
bers employed at the start or end of the planning period can be higher. The
MAXMAXPEAK constraint handles this condition.

We can hire at most 5 persons in one week. This limit is caused by the in-
duction training required. The induction covers safety training, where spaces
in each course are limited. We use the MAXRANGEINCREASING constraint
to model this condition.

We can fire at most 7 persons in one week (expressed with a MAXRANGEDE-
CREASING constraint).

We can only have at most four consecutive increases of personnel in the
planning period. This is expressed by the MAXWIDTHSTRICTLY INCREAS-
INGSEQUENCE constraint, considering that four consecutive increases lead
to a pattern of width five.

We can only have at most six consecutive decreases of personnel numbers
in the planning period (using MAXWIDTHSTRICTLY DECREASINGSEQUENCE
from Example 1).

If we reach a peak in the employment, the profile has to stay constant for at
least 10 weeks. Otherwise, we will be violating a “hire and fire” union rule.
This is handled by a MINWIDTHPLATEAU constraint.

If we fire a person, we can not hire another person for four weeks. Instead,
we should keep on employing the person (MINWIDTHPLAIN).

We are not allowed to fire persons in the two weeks before Christmas (ex-
pressed with a NBDECREASING constraint on a sub-sequence).

In every month, we can have at most 20 new hires. This is due to limitations
of the human resources department. For this we use one SUMRANGEIN-
CREASING constraint for each month.

The difference between the highest and lowest peak should not be more than
30. We already have a MAXMAXPEAK constraint to constrain the level of

the highest peak. A MINMAXPEAK constrains the height of the lowest peak,
an inequality between the parameters limits the difference to at most 30.

Manually generated redundant constraints In order to find solutions more
easily, we initially manually defined some redundant constraints controlling the
domain envelope. Constraint (4) can be approximated by inequalities X1 <
X, + ¢ with a constant ¢ equal to five (this is also generated by ImpGen), while
constraints (4) and (6) imply inequalities of the form X,y,11 < X; + pe, as
any sequence of p + 1 intervals can contain at most p = 4 increases. These
constraints are currently out of the scope of ImpGen because they are linear
only at the instance level.

7.4 Search Routine and Experimental Setup

In order to evaluate the impact of different implementations of the constraints,
we choose a static search strategy, assigning the X; variables by increasing in-
dex, and enumerating values from smallest to largest. This means that the first
solution found is the same for all CP models used, and the times and backtrack
counts are directly comparable.

We create random sample problem instances that follow a common structure.
There are demand peaks in Spring and Autumn, and reduced demand during
Summer and Winter. The minimal difference between peaks and valleys is con-
trolled by a parameter P, which we vary from 10 to 40 in steps of 5. For each
parameter value, we generate 100 instances.

We compare different implementations of the time-series constraints, together
with manually or automatically generated implied constraints, using the solvers
described in Section 6, on the hardware introduced in Figure 4. On their own, the
time-series constraints perform quite poorly. Both the old and the new automata
definitions only solve instances for the easiest instance set (P=10), finding solu-
tions for 12, respectively 16, of the 100 problems. Adding either manually defined
constraints or the top two implied constraints as described in Section 5 to the
new automata allow us to find solutions for all problem instances for all parame-
ter values. Using the old automata with the manually defined constraints solves
90, 70, 45, 36, 31, 35, and 32 out of 100 instances for parameter values 10 to 40.

For the combinations of automata and implied constraints that solve all in-
stances we compare backtracks and solution times for the CP model in Table 1,
which also shows the average and maximal optimality gap for both the CP and
MIP models. Note that the finite-domain solver typically only finds a first solu-
tion, and cannot prove optimality within the timeout period. We report results
for finding that first solution. At the moment, the MIP solver, even when using
the implied constraints and with a timeout of 300 seconds, only finds optimal
solutions for some of the problem instances (column Opt), and performs worse
than the CP model for some instances.

We can see that both automatically and manually generated implied con-
straints are important, and that their combination significantly reduces the

Table 1: Backtracks, Execution Times, Solution Quality

new+implied new-+manual new-+impl.4+man. optimality gap
back time back time back time cp mip

p| avg max|avg max|avg max| avg max|avg max| avg max| avg max| avg max|opt

10| 20 55(0.08 0.10(478 2168|0.37 1.41| 12 35|0.09 0.12|2.86 8.45|1.75 7.97
15] 80 730[0.11 0.34]548 2144|0.47 1.59| 18 42|0.09 0.12]3.27 11.25|1.82 7.22
201 200 990(0.17 0.63]|496 3921|0.49 4.07| 18 43|0.09 0.12|3.42 9.67|2.28 18.77
25(1034 17719]0.60 9.30(766 6119|0.73 5.30| 35 448|0.10 0.33|3.20 10.54|2.15 17.25
301001 17726|0.68 13.01|789 6452|0.80 5.85| 34 452(0.10 0.35/3.20 8.02|2.04 6.34
35(1247 17726]0.86 15.17|824 6621|0.85 6.96| 36 460/0.10 0.40|3.38 8.25/2.03 6.21
40(1992 25986|1.23 15.44|962 7369|1.02 5.80| 37 468|0.10 0.39(3.51 17.32|1.97 10.47

Ut

(=]

14
13
27
24
26
28
18

search space explored. On average, the best CP solutions found are within 4% of
the lower bound, but for some instances the gap is as large as 17%. The average
MIP optimality gap is smaller, but the worst cases are even higher, and do not
occur for the same instances as for the CP model.

8 Conclusion

Within the context of automaton-specified constraints in general, and time-series
constraints in particular, the theoretical contributions of this paper have been
shown to improve significantly both CP and MIP models. We hope our work
motivates the quest for other general results that have a positive impact on
different solving technologies, such as CP, MIP, local search, and SAT.

Acknowledgements. We thank Michel Minoux for his feedback on the integer
linear programming decomposition in Section 4. We thank Mats Carlsson for
his useful input during the early discussions of this paper. We also thank the
anonymous referees for their helpful comments. The first and second authors are
partially supported by the Gaspard-Monge programme. The authors at Mines
Nantes are supported by project GRACeFUL, which has received funding from
the European Union’s Horizon 2020 research and innovation programme under
grant agreement Ne 640954. The authors at Uppsala University are supported
by grants 2011-6133 and 2012-4908 of the Swedish Research Council (VR). The
last author was supported by Science Foundation Ireland under Grant Number
SFI/10/IN.1/13032. The INSIGHT Centre for Data Analytics is supported by
Science Foundation Ireland under Grant Number SFI/12/RC/2289.

References

1. Arafailova, E.: Reformulation of automata for time series constraints as linear
programs. Master’s thesis, Université de Nantes, France (2015)

2. Beldiceanu, N., Carlsson, M., Debruyne, R., Petit, T.: Reformulation of global
constraints based on constraints checkers. Constraints 10(4), 339-362 (2005)

10.

11.

12.

13.
14.

15.
16.

17.

Beldiceanu, N., Carlsson, M., Douence, R., Simonis, H.: Using finite transducers for
describing and synthesising structural time-series constraints. Constraints 21(1),
22-40 (2016), http://dx.doi.org/10.1007/510601-015-9200-3

Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: CP 2004. LNCS, vol. 3258, pp. 107—-122. Springer (2004)
Beldiceanu, N., Flener, P., Pearson, J., Van Hentenryck, P.: Propagating regular
counting constraints. In: AAAT 2014. pp. 2616-2622. AAAI Press (2014)

Berstel, J.: Transductions and Context-Free Languages. Teubner (1979)

Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191-206. Springer (1997), the solver is at http://sicstus.sics.se

Coté, M.C., Gendron, B., Rousseau, L.M.: Modeling the regular constraint with
integer programming. In: CPAIOR 2007. LNCS, vol. 4510, pp. 29-43. Springer
(2007)

Demassey, S., Pesant, G., Rousseau, L.M.: A Cost-Regular based hybrid column
generation approach. Constraints 11(4), 315-333 (2006)

FICO: MIP formulations and linearizations. Fair Isaac Corporation (June 2009),
http://www.fico.com/en/node/81407file=5125

Francisco Rodriguez, M.A., Flener, P., Pearson, J.: Implied constraints for automa-
ton constraints. In: GCAI 2015. EasyChair Epic Series in Computing (forthcom-
ing), preprint at http://www.it.uu.se/research/group/astra/publications
Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2015), http://
WWW.gurobi.com

Minoux, M.: Personal communication (July 2015)

Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: CP 2004. LNCS, vol. 3258, pp. 482-495. Springer (2004)

Sakarovitch, J.: Elements of Language Theory. Cambridge University Press (2009)
Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: SAS 2004. LNCS, vol. 3148, pp. 53—68. Springer (2004)

Williams, H.P.: Model Building in Mathematical Programming. Wiley (2015)

http://dx.doi.org/10.1007/s10601-015-9200-3
http://sicstus.sics.se
http://www.fico.com/en/node/8140?file=5125
http://www.it.uu.se/research/group/astra/publications
http://www.gurobi.com
http://www.gurobi.com

	 Time-Series Constraints: Improvements and Application in CP and MIP Contexts

