
Generation of Implied Constraints for
Automaton-Induced Decompositions

M. Andréına Francisco, Pierre Flener, Justin Pearson

ASTRA Research Group on CP
Uppsala University

Sweden

November 6, 2013

Background

Although modern constraint solvers have many global constraints,
often a constraint that one is looking for is not there.

In [Beldiceanu, Carlsson, and Petit, CP2004], a framework is given for
defining global constraints by an automaton, possibly with counters,
which corresponds to a constraint checker. Using the automaton, the
new constraint is decomposed into a conjunction of already
implemented constraints.

Currently there are about 120 constraints in the Global Constraint
Catalog defined by one or more automata.

2 of 19

Example: The Exactly Constraint

The Exactly(N,V,P) constraint holds if and only if the sequence V
of decision variables contains exactly N elements taking the given
value P.

Exactly(2, [♥,♣,♥,♠],♥)

V = ♥ ♣ ♥ ♠

P P

N = 2 occurrences

3 of 19

Example: The Exactly Constraint

function Exactly(N,V,P)
i ← 0
c ← 0
while i < |V| do

if V[i] = P then
c ← c + 1

i ← i + 1

return N = c

ε{c ← 0} N = c

Vi 6= P {nop}

Vi = P {c ← c + 1}

4 of 19

Example: The Exactly Constraint

v1 v2 vn

q0 = ε q1 qn

s1 s2 sn

c0 = 0 c1 cn = N

S1 S2 Sn

T1 T2 Tn

∧n
i=1(Vi = P ⇔ si = true) ∧ (Vi 6= P ⇔ si = false)

∧ Trans(q0, c0, s1, q1, c1) ∧ · · · ∧ Trans(qn−1, cn−1, sn, qn, cn) ∧
q0 = ε ∧ c0 = 0 ∧ cn = N

5 of 19

Example: The Exactly Constraint

v1 v2 vn

q0 = ε q1 qn

s1 s2 sn

c0 = 0 c1 cn = N

S1 S2 Sn

T1 T2 Tn

∧n
i=1(Vi = P ⇔ si = true) ∧ (Vi 6= P ⇔ si = false)

∧ Trans(q0, c0, s1, q1, c1) ∧ · · · ∧ Trans(qn−1, cn−1, sn, qn, cn) ∧
q0 = ε ∧ c0 = 0 ∧ cn = N

5 of 19

Example: The Exactly Constraint

v1 v2 vn

q0 = ε q1 qn

s1 s2 sn

c0 = 0 c1 cn = N

S1 S2 Sn

T1 T2 Tn

∧n
i=1(Vi = P ⇔ si = true) ∧ (Vi 6= P ⇔ si = false)

∧ Trans(q0, c0, s1, q1, c1) ∧ · · · ∧ Trans(qn−1, cn−1, sn, qn, cn) ∧
q0 = ε ∧ c0 = 0 ∧ cn = N

5 of 19

Example: The Exactly Constraint

v1 v2 vn

q0 = ε q1 qn

s1 s2 sn

c0 = 0 c1 cn = N

S1 S2 Sn

T1 T2 Tn

∧n
i=1(Vi = P ⇔ si = true) ∧ (Vi 6= P ⇔ si = false)

∧ Trans(q0, c0, s1, q1, c1) ∧ · · · ∧ Trans(qn−1, cn−1, sn, qn, cn) ∧
q0 = ε ∧ c0 = 0 ∧ cn = N

5 of 19

Example: The Exactly Constraint

v1 v2 vn

q0 = ε q1 qn

s1 s2 sn

c0 = 0 c1 cn = N

S1 S2 Sn

T1 T2 Tn

∧n
i=1(Vi = P ⇔ si = true) ∧ (Vi 6= P ⇔ si = false)

∧ Trans(q0, c0, s1, q1, c1) ∧ · · · ∧ Trans(qn−1, cn−1, sn, qn, cn) ∧
q0 = ε ∧ c0 = 0 ∧ cn = N

5 of 19

Motivation

Unfortunately, generalised arc consistency (GAC) is in general not
maintained on decompositions induced by automata with counters,
even if GAC is maintained individually on the constraints.

For example, when decomposing the Distinct(x , y , z) constraint
into x 6= y , y 6= z , z 6= x , some propagation is lost.

D(x) = {1, 2}, D(y) = {1, 2}, D(z) = {1, 2, 3}

We propose a method to improve propagation for
automaton-induced decompositions!

6 of 19

Our Work

We added the following steps to the design process:

1. Derive loop invariants
◦ It is possible to use an automatic invariant generator like InvGen

[CAV2009]
◦ Normally requires code manipulation in order to:

• derive disjunctive invariants
• consider previous values of variables

2. Rewrite invariants as implied constraints and add them to the
decomposition, yielding the extended decomposition.

7 of 19

Example: The nGroup Constraint

In a sequence, a group is a contiguous subsequence with values from
a given set.

The nGroup(N,V,W) constraint holds if and only if there are N
groups of values from the set W in the sequence V of decision
variables.

nGroup(3, [♥,♥,♣,♦,♥,♠,♣,♦,♣], {♥,♦})

♥ ♥ ♣ ♦ ♥ ♠ ♣ ♦ ♣

group 1 group 2 group 3

8 of 19

The nGroup Constraint

function nGroup(N,V,W)
q ← ε; i ← 0
while i < |V| do

if V[i] ∈W then
if q = ε then

c ← c + 1
q ← γ

else
q ← ε

i ← i + 1

return N = c

ε

{c ← 0}

γ

V[i] ∈W {c ← c + 1}

V[i] /∈W V[i] ∈WV[i] /∈W

N = c

This checker does not have
interesting invariants

9 of 19

The nGroup Constraint

function nGroup(N,V,W)
c ← 0; c1 ← 0; c2 ← 0
q ← ε; i ← 0
while i < |V| do

c2 ← c1; c1 ← c
if V[i] ∈W then

if q = ε then
c ← c + 1
q ← γ

else
q ← ε

i ← i + 1

return N = c

We manipulate the checker to
keep track of previous values of
the variable c .
We obtain the invariants

c2 ≤ c ≤ c2 + 1

Rewrite invariants as constraints.

ci−2 ≤ ci ≤ ci−2 + 1

for all 1 < i ≤ |V|

10 of 19

Example: The JthNonZeroPos Constraint

The JthNonZeroPos(J,P,V) constraint holds if and only if the
Jth non-zero element is at position P (counting from 1) of the
sequence V of decision variables. Parameter J must be a constant.

JthNonZeroPos(2, 4, [♥,♣,♣,♥,♣,♥])

♥ ♣ ♣ ♥ ♣ ♥

1 2

1 2 3 4

♥ symbols are interpreted as NonZero

11 of 19

The JthNonZeroPos Constraint

function JthNonZeroPos(J,P,V)
i ← 0
j ← 0
p ← 0
while i < |V| do

if j < J then
if V[i] 6= 0 then

j ← j + 1

p ← p + 1

i ← i + 1

return j = J ∧ p = P

ε{j ← 0; p ← 0} 〈J,P〉 = 〈j , p〉

V = 0 {if j < J then p ← p + 1 else nop}

V 6= 0 {if j < J then j ← j + 1; p ← p + 1 else nop}

12 of 19

The JthNonZeroPos Constraint

function JthNonZeroPos(J,P,V)
i ← 0
j ← 0
p ← 0
while i < |V| do

if j < J then
if V[i] 6= 0 then

j ← j + 1

p ← p + 1

i ← i + 1

return j = J ∧ p = P

This checker has the following
invariants:

j ≤ J

0 ≤ j ≤ p ≤ i

Which can be rewriten as the
following constraints:

ji ≤ J

0 ≤ ji ≤ pi ≤ i

13 of 19

The JthNonZeroPos Constraint

function JthNonZeroPos(J,P,V)
i ← 0; j ← 0
p ← 0
while i < |V| ∧ j < J do

if V[i] 6= 0 then
j ← j + 1

p ← p + 1
i ← i + 1

while i < |V| ∧ j ≥ J do
i ← i + 1

return j = J ∧ p = P

(Technique by Sharma et al
CAV2011)
This checker has the following
invariants:

(j ≤ J ∧ p = i) ∨ (j = J ∧ p ≤ i)

These invariants allow us to derive
the following implied constraint:

ji < J ⇒ pi = i

14 of 19

The JthNonZeroPos Constraint

function JthNonZeroPos(J,P,V)
i ← 0; j ← 0; p ← 0
while i < |V| ∧ j < J − 1 do

if V[i] 6= 0 then
j ← j + 1

p ← p + 1
i ← i + 1

while i < |V| ∧ j ≥ J − 1 ∧ V[i] = 0 do
p ← p + 1
i ← i + 1

return j = J − 1 ∧ p = P − 1 ∧ V[i] 6= 0

This checker has the
following invariants:

(j ≤ J1 ∧ p = i)
∨

(j = J1 ∧ s = z ∧ p = i)

These invariants allow us to
derive the following implied
constraint:

(si = z ∨ ji1 6= J1)
⇒ pi+1 6= i

15 of 19

Experiments

1. We compared in SICStus Prolog version 4.2.1 the original and
extended decompositions of nGroup(N,V,W) and the
JthNonZeroPos(J,P,V) constraints.

2. We generated instances with random amounts of variables
(|V| ≤ 50), as well as random initial domains of N, P and Vi
(one value, two values, and intervals of length 2 or 3).

3. We ran millions of instances.

16 of 19

Results

• The extended decomposition of the JthNonZeroPos(J,P,V)
maintains generalized arc consistency.

• The extended decomposition of the nGroup(N,V,W) is on
average 2% faster, prunes 105% more and detects 8% more
failures when calculating the fixpoint of the constraint.

• Note that these implied constraints do not increase the time or
space complexity of computing the common fixpoint of the
decomposition (formal proof in the paper).

17 of 19

Future Work

The creative process on how to modify the checker in order to find
the right invariants is still manual.

We will now automate as many steps as possible of this methodology.

In particular, we want to automate the process of modifying the
checker and testing whether or not an implied constraint is useful or
not.

18 of 19

Questions?

19 of 19

