Generation of Implied Constraints for
Automaton-Induced Decompositions

Maria Andreina Francisco Rodriguez, Pierre Flener, and Justin Pearson
Department of Information Technology
Uppsala University
Uppsala, Sweden
Email: {Maria.Andreina.Francisco, Pierre.Flener, Justin.Pearson} @it.uu.se

Abstract—Automata, possibly with counters, allow many con-
straints to be expressed in a simple and high-level way. An
automaton induces a decomposition into a conjunction of already
implemented constraints. Generalised arc consistency is not
generally maintained on decompositions induced by counter
automata with more than one state or counter. To improve
propagation of automaton-induced constraint decompositions,
we use automated tools to derive loop invariants from the
constraint checker corresponding to the given automaton. These
loop invariants correspond to implied constraints, which can be
added to the decomposition. We consider two global constraints
and derive implied constraints to improve propagation even to
the point of maintaining generalised arc consistency.

Keywords-constraint programming; implied constraints; global
constraints; generalised arc consistency; invariants; automata

I. INTRODUCTION

In constraint programming (CP), a global constraint restricts
a non-fixed number of decision variables. For example, the
ALLDIFFERENT(Z1, . ..,Zy,) constraint holds if and only if
the n decision variables x; take m distinct values. Global
constraints are important components of modern CP solvers.
A global constraint does two things: from the modelling per-
spective, it allows a modeller to express a commonly occurring
combinatorial substructure; from the solving perspective, it
comes with a propagation algorithm, called a propagator,
which removes impossible values from the domains of its
decision variables when invoked during systematic search.
There are global constraints for many combinatorial structures,
such as scheduling [1], [2], packing [3], and rostering [4].
For a fairly exhaustive survey, see the Global Constraint
Catalogue [5].

Although modern constraint solvers have many global con-
straints, often a constraint that one is looking for is not there.
In the past, the choices were either to reformulate the model
or to write one’s own propagator.

In [6], [7], a framework is given for defining many global
constraints in a relatively simple and high-level way by a
deterministic finite automaton, possibly with counters (in the
case of [6]). Such an automaton corresponds to a constraint
checker, expressed as a simple imperative program. Based
on the automaton, the framework of [6] decomposes the
specified new global constraint into a conjunction of already
implemented (global) constraints. This conjunction gives the
semantics of the specified global constraint and provides the

propagation. Unfortunately, generalised arc consistency (GAC)
is in general not maintained on decompositions induced by
counter automata with more than one state or more than
one counter, which means that when the propagators of the
constraints of the decomposition reach a common fixpoint, not
all infeasible values have been removed from the domains of
the decision variables, even if GAC is maintained individually
on those constraints.

In this paper, we investigate deriving loop invariants from
constraint checkers and use them as implied constraints to
extend the corresponding automaton-induced decomposition
in order to improve propagation. To illustrate the process we
study two global constraints, namely the JTHNONZEROPOS
and NGROUP constraints, and show that propagation is im-
proved. Moreover, in the case of the JTHNONZEROPOS
constraint we prove that GAC is maintained by the ex-
tended decomposition, that is, the automaton-induced de-
composition extended with the implied constraints. The
JTHNONZEROPOS constraint (having the too long name
ITH_POS_DIFFERENT_FROM_O in [5]) was motivated by a
real-life application in molecular biology [8] and can also be
used for personnel rostering problems. It has no published
propagator, but a decomposition into a conjunction of con-
straints that have propagators is given in [5]. The NGROUP
constraint captures an important combinatorial substructure of
the GROUP constraint [5] of the CHIP solver, and has many
applications, including personnel rostering.

After a summary of the background material in Section II,
the contributions and impact of Sections III and IV of this
paper are as follows:

o From an analysis of checkers corresponding to counter
automata, we identify, by means of an automatic invariant
generator and other techniques, logically implied con-
straints that we add to the respective decompositions. In
particular, we use the JTHNONZEROPOS and NGROUP
constraints as examples.

o We show that the presence of these implied constraints
does not increase the time or space complexity of com-
puting the common fixpoint of the propagators of the
decomposition. Moreover, we show that these implied
constraints often improve propagation, incurring little or
no time overhead.

o We show that in the presence of these implied constraints,

GAC can be maintained on the decomposition of the
JTHNONZEROPOS constraint, demonstrating that these
implied constraints can be quite powerful. However, the
objective of our research is to improve propagation,
regardless of whether or not GAC is maintained on the
extended decomposition.

Finally, in Section V, we conclude and discuss related as well
as future work.

II. BACKGROUND

To make this paper self-contained, we define the used
concepts, namely constraints, constraint problems, solutions,
supports, generalised arc consistency (GAC), checker [6], loop
invariant [9], disjunctive invariant [10].

A constraint is a pair R(S), where S = (wy,...,w,) is
a tuple of decision variables, called the scope, and R is a
set of n-tuples. During search, every decision variable w; is
associated with a current set of possible values, called its
domain and denoted by D(w;). A solution to a constraint
R(S) is an assignment {w; = di, ., Wy = dp} toits
decision variables such that (d;,...,d,) € R. A constraint
problem is a conjunction of constraints, sometimes given as
a set of constraints with an implicit conjunction between its
elements. A solution to a constraint problem is an assignment
to all its decision variables that contains a solution to all its
constraints.

The assignment {wy = di} is supported by a constraint
(problem) if there is a solution to that constraint (problem)
where wj, = dj;, and all decision variables take values in their
current domains.

There is generalised arc consistency (GAC) on a constraint
R(S) if every domain value of every decision variable of S
is supported by R(S); we also say that R(S) is GAC.

There is GAC on a constraint problem if every domain value
of every decision variable of the problem is supported by the
problem; we also say that the problem is GAC.

A checker is an algorithm that returns true if and only if an
assignment is a solution to a constraint. For example, consider
the constraint EXACTLY (XN, V, P), which holds if and only
if the sequence V of decision variables contains exactly N
elements taking the given value P. Parameters /N and P must
be constants, under the restriction 0 < N < |V|. For instance,
EXACTLY (2, [4,2,4,5],4) holds since exactly 2 elements of
the sequence [4,2,4,5] take the value 4. A checker for the
EXACTLY constraint is given in Algorithm 1.

Informally, a loop invariant is a predicate on the variables
occurring in the loop, that should be true on entry into a loop
and that is guaranteed to remain true on every iteration of
the loop. This means that on exit from the loop both the loop
invariant and the loop termination condition can be guaranteed.
Consider again Algorithm 1. The loop has, among others, the
invariant 7 < |V|.

A key problem in automatic invariant generation is the
inference of disjunctive invariants, which contain at least one
disjunction. In order to simplify the generation of disjunctive
invariants, we use a technique proposed in [10] to decompose

Algorithm 1 Checker for the EXACTLY constraint

1: function EXACTLY(N,V,P)
2 10

3 c+ 0

4 while ¢ < |V| do
5: if V[i] = P then
6

7

8

c+c+1
i1+ 1
return N = ¢

a loop into a semantically equivalent sequence of loops, each
of which has only conjunctive invariants. An example will be
given in Section IIL

III. THE JTHNONZEROPOS GLOBAL CONSTRAINT

The JTHNONZEROPOS(J, P, V) constraint [5] holds if and
only if the J" non-zero element is at position P (counting
from 1) of the sequence V of decision variables. Parameter
J must be a constant and parameter P can be a decision
variable, under the restriction 1 < J < P < |V|. For instance,
JTHNONZEROPOS(2,4,[5,0,0,1,3]) holds since the second
non-zero element is at position 4 (namely 1) of [5,0,0, 1, 3].

The JTHNONZEROPOS constraint can be used in personnel
rostering. For instance, if each element of V represents the
shift of a daily duty of a worker, using the special value 0 for
being off-duty, then one can constrain the unknown position
P of the J™ off-duty day so that it does not occur too early
or late.

The constraint was inspired by multiplex dispensation or-
der generation, a real-life problem for DNA sequence anal-
ysis with the pyrosequencing method [8]. They used two
precursors of this constraint. The FIRST(V, P) constraint
holds if and only if JTHNONZEROPOS(1, P, V) holds. The
FoLLOW([v1,...,vy,], L, Q) constraint holds if and only if
JTHNONZEROPOS(1,Q—L, [vp41,- - - ,v,]) holds, where pa-
rameter L must be a constant and () can be a decision variable,
under the restriction 1 < L < Q < n.

A. Automaton-Induced Decomposition

A deterministic finite automaton (taken from [5]) is given
in Fig. 1 for JTHNONZEROPOS(J, P,V). The only state,
o, is both the start state (marked by an arrow coming in
from no state) and an accepting state (double circle). The
alphabet is {z,nz} rather than the domain of the sequence
decision variables v; of)V, because each decision variable
v; is assumed to be paired with a new decision variable s;,
called a signature decision variable, which takes the value
‘z’ (zero) if and only if v; takes the special value 0, and the
value ‘nz’ (non-zero) otherwise; this can be achieved with
(v =0& s, =2)A(v; 0 & s; = nz), called a signarure
constraint (the second conjunct is logically superfluous, but we
keep it here for completeness). The automaton is extended [6]
with two counters j and p, both initialised to 0; they evolve on
each transition as indicated between braces. Until J non-zero
elements have been found, counter j maintains the number

nz {if j < J then j+ j+1; p< p+1 else nop}

{7 0; p0}

z {if j < J then p < p+ 1 else nop}

(J, P) = (j,p)

Fig. 1: Automaton with two counters for the

JTHNONZEROPOS(J, P, V) constraint

of non-zero values among the elements of V), while counter p
maintains the number of all values. After J non-zero elements
have been found, both counters stop evolving. Consider for
example an instance where J = 2. After consuming the prefix
[1,0,1], we have j3 = 2 and p3 = 3. Moreover, for all i > 3
we have that j; = 2 and p; = 3. Upon acceptance, the final
value of the counter pair (j,p) is constrained to be equal to
(J, P); this constraint is called the acceptance constraint and
is depicted in a box attached to the accepting state.

This counter automaton induces the following decomposi-
tion under the framework of [6]:

90 = o A (jo, po) = (0,0) A
Ni—i TRANS(qi—1, (ji—1,Pi-1), 5, i (Ji> Pi)))
AN gn=0N <.jn7pn> = <J7P>
AN Niy(v; =08 s, =2) A (v; #0 < s; =nz)

The s; are the already mentioned signature decision variables;
notice the signature constraints in the last conjunct of the de-
composition. Each ¢; is a new decision variable, called a state
decision variable, denoting the state of the automaton after the
signature decision variables si,...,s; have been consumed,
with ¢ € [0,n]. Each j; and p; is a new decision variable,
called a counter decision variable, denoting the values of
counters j and p of the automaton after the signature decision
variables si,...,s; have been consumed, with ¢ € [0,n].
The constraint TRANS(¢, (4',p'),s,¢”, (", p")) holds if and
only if the automaton in Fig. 1 has a transition from state
q’ to state ¢’ labelled by symbol s that updates the counters
(j,p) from values (j’,p’) to values (5”,p"); it is called a
transition constraint. As this automaton has only one state, one
could in principle project the state decision variables away; we
keep them to be consistent with the general decomposition of
automata in [6].

A folklore result of CP being that GAC is maintained on
Berge-acyclic constraint hypergraphs if (but not only if) GAC
is maintained on each constraint, in general, in the presence
of at least one counter an automaton-induced decomposition
has a Berge-cyclic constraint hypergraph, so that GAC might
not be maintained on such decompositions [6]. In particular,
we now show that maintaining GAC on each constraint of
the decomposition (1) of the JTHNONZEROPOS constraint
does not maintain GAC on JTHNONZEROPOS. Consider the
ground instance JTHNONZEROPOS(2, P, [v1, v2, 0, v4]), with
D(P) = {2,...,4} and unrestricted domains of the wv;.

Maintaining GAC on the JTHNONZEROPOS constraint would
prune the value 3 from the domain of P, but maintaining
GAC on each constraint of the decomposition will not. Indeed,
since the element at position 3 is 0, there is no solution
where P = 3, neither to the decomposition nor to the
JTHNONZEROPOS constraint (recall that P is a position where
a non-zero element is to occur). To show this, consider the
constraints T3 = TRANS(o, (ja2, p2), 83,0, (j3,p3)) and Ty =
TRANS(0, (js, P3), S4,0, (ja,ps)) in the decomposition (1),
which share the decision variables j3 and ps. As illustrated
in Fig. 2, there is no solution to T3 with {j3 = 2,p3 = 3},
even though there are solutions to 75 where j3 = 2, namely
{j2 = 2,p2 = 2,83 = z,j3 = 2,p3 = 2}, and to T3
where p3 = 3, namely {jo = 1,p2 = 2,83 = 2,j3 =
1,p3 = 3}. Note that the assignments {j3 = 2,p3 = 2}
and {j3 = 1,p3 = 3} are contained in solutions to Ty. The
assignment {js = 2,ps = 3} is however also contained in
solution {j3 = 2,p3 = 3,84 = 2,44 = 2,p4 = 3} to Ty.
In consequence, we have 3 € D(p4) because the assignment
{ps = 3} is supported by T}, even though there is no solution
to the decomposition where P = 3. Hence, maintaining GAC
on the decomposition is not enough to maintain GAC on the
JTHNONZEROPOS constraint.

B. Deriving Implied Constraints

The automaton in Fig. 1, together with the signature con-
straints, can be translated into the checker in Algorithm 2. The
automatic invariant generator InvGen [11] derives, in addition
to other ones that do not improve propagation (for example
1 < |V|), the following invariants:

g<J 2
O0<j<p<i 3)

In order to transform these invariants into implied constraints,
we note that, for example, the invariant p < ¢ is satisfied
at every iteration. On each iteration, the element at position
1 of the sequence V is visited. This notion corresponds to
the automaton consuming ¢ elements, and so the decision
variables j; and p; denote the values of the variables j and
p after consuming ¢ elements. In consequence, we write the
invariants (2) and (3) as the following implied constraints:

i <J 4
0<7:<p; <1)

for 0 < 4 < |V|. Note that the quantification corresponds to
the values of ¢ before and after the loop.

Disjunctive invariants generally arise from the existence
of conditionals in the loop body. Given that the disjunctive
invariant mode of InvGen is currently experimental, we use
the technique proposed by [10] to derive disjunctive implied
constraints. Note that not all conditionals imply that a dis-
junctive invariant exists, but for example, conditionals whose
predicate is related to the number of iterations the loop has
been executed, as well as predicates that will never be satisfied
again after a given numbers of iterations usually do. The idea

D(jo) x D(po) D(j1) x D(p1)

z nz

D(ja) x

D(p2) D(js) x D(ps) D(ja) x D(pa)

/’
nz

(1,1) /= (2,2)

(1,2) -

(1,3) ——=(2,4)

(2,2) 7w (2,2)

Fig. 2: Solutions to the transition constraints projected onto the induced decision variables of the decomposition (1) of
JTHNONZEROPOS(2, P, [v1, v2, 0, v4]). Assignments unsupported by (1) are boxed.

is to find a splitter predicate, which informally means that
the predicate can be used to divide the loop into a sequence
of loops. We split the loop in Algorithm 2 into two loops
using the conditional j < J as splitter predicate, obtaining
Algorithm 3. Note that both checkers are equivalent. From
Algorithm 3, InvGen derives the predicate j < J A p=1 as
an invariant of the first loop, and the predicate j = J A p <1
as an invariant of the second loop. As a result, the disjunction
of both predicates is a disjunctive invariant of the loop in Al-
gorithm 2. These invariants allow us to derive, using standard
logic transformations, the following implied constraint:

Ji<J=pi=i (6)

We now remove the second loop in Algorithm 3, which does
not affect the correctness of the checker, and split the first
loop using the splitter predicate 5 < J — 1. After splitting, we
simplify the second loop obtaining Algorithm 4. The predicate
V[i] # 0 is added to the return statement in order to verify that
the while loop ended because an element different from 0 was
found and not because all the elements in the sequence have
been visited. From Algorithm 4, InvGen derives the predicate
7 < J—1 A p = 4 as an invariant of the first loop,
and the predicate j = J —1 A s =2z A p =1 as an
invariant of the second loop. As a result, the disjunction of both
predicates is a disjunctive invariant of the loop in Algorithm 2.
These invariants allow us to derive, using standard logic
transformations, the following implied constraint:

(SZ‘:Z\/ji_17éJ—1):>pi+17éi (7N

for 0 < ¢ < m. As can be verified, either by hand or by using a
theorem prover (for instance Z3 [12]), if we consider the return
condition in Algorithm 4 always to be satisfied, together with
the implied constraint (7), we obtain the implied constraint:

(Si:Z\/ji_l#Jf].)@pH_l#i (8)
for 0 < < n.

C. The Effect of the Implied Constraints: Maintaining GAC

In the presence of the implied constraints (4), (5), (6), and
(8), the transition constraints support only pairs of values for
the counter decision variables j; and p; that are reachable by

Algorithm 2 Checker for the JTHNONZEROPOS constraint

1: function JTHNONZEROPOS(J,P,)V)
2 140

3 7«0

4: p+ 0

5: while ¢ < |V| do

6 if 7 < J then

7 if V[i] # 0 then

8 J+—J+1

9: p—p+1

10: 11+ 1

11: return j =J Ap=P

Algorithm 3 Checker for the JTHNONZEROPOS constraint
after splitting the loop once

1: function JTHNONZEROPOS(J,P,V)
2 10; 70

3 p+0

4 while i < |[V|Aj < J do
5: if V[i] # O then

6 j—J+1

7 p+—p+1

8 14— 1+1

9: while ¢ < |[V|Aj > J do
10: 14— 1+1

11: return j = JAp=P

the counters j and p. In consequence, as proved next, main-
taining GAC on each constraint of the extended decomposition
will maintain GAC on the decomposition.

Theorem 1. Assume we add the constraints (4), (5), (6),
and (8), for each 0 < i < n, to the decomposition (1) of
JTHNONZEROPOS(J, P, V). If each constraint of the extended
decomposition is GAC, then the whole decomposition is GAC.

Proof: The proof has two parts. First we show that the
implied constraints are sound, in the sense that they do not re-
duce the number of solutions to the (sound decomposition (1)
of the) JTHNONZEROPOS constraint. Second we show that

Algorithm 4 Checker for the JTHNONZEROPOS constraint
after splitting the loop twice

1: function JTHNONZEROPOS(J,P,)V)
2: 14-0; 7 0; p<0

3 while i < [V|Aj < J—1do
4 if V[i] # O then

5 j—Jg+1

6: p+—p+1

7 141+1

8 while i < |[V|Aj>J—1AV[i]=0do
9: p+—p+1

10: 141+ 1

11: return j =J —1Ap=P—1AV[i]|#0

it is always possible to construct a solution to the constraint
using every value in every domain after GAC is maintained
on each constraint in the extended decomposition.

Soundness. It is easy to show that the constraints (4) to
(6) are sound. The implied constraints (8) capture that if a
given signature decision variable s; is assigned the value ‘z’,
then there is no solution to the JTHNONZEROPOS constraint
where P = 1. Moreover, if there are fewer than J —1 signature
decision variables that can take the value ‘nz’ among s;
till s;_1, then there is no solution to the JTHNONZEROPOS
constraint were P = i.

Constructing solutions. For each value in the domain
of each decision variable, we will show that if the value
is supported by the extended decomposition, then it is part
of a solution to the constraint. Recall that parameter J is
a constant, satisfying 1 < J < P < n = |V|. In this
decomposition there are five classes of decision variables: the
sequence decision variables v;; the state decision variables g;;
the counter decision variables j; and p;; the signature decision
variables s;; and the problem decision variable P. Each
sequence decision variable v; appears in only one constraint
(a signature constraint), with scope (v;, s;), so that the v; need
not be considered because maintaining GAC on the signature
constraints will be enough, since we can show that every
domain value of every signature decision variable is supported
by the decomposition. Also, we do not consider the state
decision variables ¢; because each is necessarily set to o,
because o is the only state.

The s; decision variables. For any given s; we will show
every value in D(s;) is supported by the constraint, by showing
there exists some value &k in D(P) and values in the domains
of the other signature decision variables giving a solution to
the constraint. We will not consider all the decision variables
p; and j; as their values will be fixed by transition constraints
once values have been assigned to the s; and P.

For a chosen s;, we will show that if there is some
k in D(P) with k < 4, then the signature decision vari-
ables can be divided into two groups: the decision variables
Sk41s---ySiy---,Sn, wWhich can be assigned any value in
their domains and be part of an assignment that satisfies the

constraint; and the decision variables s1, ..., si, where there
must be exactly J decision variables that can be assigned the
‘nz’ value and exactly k£ — J decision variables taking the ‘z’
value to give a solution when P is assigned k.

We will now show that such an assignment is possible, when
k is less than . If we assign to P the value k, then no values
are pruned from the domain of the chosen s;. By (8) we know
that s;, has the domain {nz}; further, by (8) and by the TRANS
constraints, the decision variable j; will have the domain {.J}.
By the transition constraints and the implied constraints (5)
and (6) for each 0 < ¢ < k the decision variable p; will
have the domain {7}, and again by the transition constraints
D(pr+1) = D(pg+2) = -+ = D(pn) = {k}, because, after
assigning P to be k, the decision variable j; will be equal to
J, and jq is always assigned the value 0 in the decomposition.
When the j; decision variables are assigned, by the transition
constraints each j;4; has the value j; or the value j;+1. Hence
when GAC is maintained on the transition constraints, it is
guaranteed that there are exactly J signature decision variables
taking the ‘nz’ value and exactly k — J signature decision
variables taking the ‘z’ value in the sequence si,..., Sk,
because the domains of the j; and p; decision variables are
constrained by the values in the domains of the s; decision
variables.

For a chosen s;, if there is no k in D(P) with k < 4, then we
have to show that, after assigning s; any value in its domain,
the domain of P will never be empty. If D(P) has exactly
one element k£ > ¢, then we know that the decision variables
Sk+1,--.,5n can be assigned any values for satisfying the
constraint. Then, as in the previous paragraph when we
assigned P the value k, ji will be assigned J, and hence when
GAC is maintained on the transition constraints it is guaranteed
that there are exactly .J signature decision variables taking the
value ‘nz’ and exactly k—.J signature decision variables taking
the value ‘z’ in the sequence s1, ..., si. If the domain of D(P)
has more than one element, then assigning s; any value in its
domain will remove at most one element from D(P). Hence,
for an assignment of s;, any value in D(P) can be picked to
give a solution extending the assignment of s; as in the case
where we assumed that D(P) = {k}.

The P decision variable. After assigning P any value
k in its domain, by the implied constraints (8) and after
propagation the decision variable s; will be assigned ‘nz’ and
the decision variable j;_; will be assigned J — 1. If ‘nz’ is
not in D(s;) or J — 1 is not in D(j5_1), then by the implied
constraints (8) the value & would not be in D(P). Again the
signature decision variables can be divided into two groups:
the decision variables sg41, ..., s, can be assigned any values
in their domains in order to satisfy the constraint; and the
decision variables sy, ..., sy, where there must be exactly J
decision variables taking the ‘nz’ value and exactly k — J
decision variables taking the ‘z’ value. Since P is assigned
k, after propagation p; will be assigned k and jj is assigned
J. As before, because jo = 0 and jr = J when GAC is
maintained on the transition constraints it will be guaranteed
that there are exactly J signature decision variables taking the

‘nz’ value and exactly k—.J signature decision variables taking
the ‘z’ value in the sequence si, ..., Sk.

The decision variables p; and j;. After GAC is maintained
on all constraints in the extended decomposition, the domains
of the p; and j; are constrained by the TRANS constraints and
the values in the domains of the s; decision variables. Hence,
for each value in the domain of a p; or j; it is possible using
the arguments above to pick values for the s; and P to satisfy
the constraint.]

GAC can be maintained on each implied constraint individ-
ually, since J and 7 are constants for each of them, and on the
transition constraints [6].

As a sanity check, we implemented in SICStus Pro-
log version 4.2.1 [13] the extended decomposition of
JTHNONZEROPOS(J, P, V). We generated instances with ran-
dom amounts (n < 50) of signature decision variables
[$1,- .., 8n] as well as random initial domains of P (one value,
two values, and intervals of length 2 or 3) and the s; (one
value, and binary domains). The extended decomposition is
never faster than the original decomposition (but 20% slower
on average); such a time overhead is in practice probably
compensated by fewer invocations of the propagators of the
other constraints of the problem. Note that we did not use
the built-in automaton decomposition in SICStus Prolog in
our experiments. The reason is that, in general, its transition
constraint does not maintain GAC. If we use our own GAC
implementation (outlined in the following sub-section) of the
TRANS constraint, then this sanity check can also be used
to search for counterexamples to GAC on the decomposition:
upon many millions of generated random instances, no such
counterexample was found, lending further credence to Theo-
rem 1.

D. Complexity of GAC on the Extended Decomposition

Maintaining GAC on the JTHNONZEROPOS(J, P, V) con-
straint decomposition (1) takes ©(n?) time and 2(n) space.
In order to obtain this lower bound, one would need to
maintain GAC on each transition constraint in constant time
and use constant space to store the domain of each induced
decision variable. Using the multi-valued decision diagram
constraint [14], we managed to maintain GAC on each tran-
sition constraint in O(n) time, giving O(n?) time and O(n?)
space on the whole decomposition: we omit the details, as
they are not needed for proving that, using the lower bound,
the added implied constraints bear no asymptotic overhead on
maintaining GAC on the decomposition.

Theorem 2. Maintaining GAC on the implied constraints (4),
(5), (6), and (8), does not increase the asymptotic time and
space complexity of maintaining GAC on the original decom-
position (1) of the JTHNONZEROPOS(J, P, V) constraint.

Proof: There are 4(n — 1) implied constraints. Each
requires constant time and is at worst woken |D(P)| times
down any branch of the search tree, that is O(n) times. Prop-
agating all implied constraints down a branch of the search
tree therefore takes O(n?) time. Hence, the time complexity

ni in {c+c+1} in

ni

Fig. 3: Predicate counter automaton (with one counter) for the
NGROUP(N,V, W) constraint.

of the decomposition is not affected even if GAC is maintained
on the transition constraints in constant time.

Since none of the implied constraints requires a new data
structure or extra decision variables, there is no asymptotic
extra space required. Hence, the space complexity of the
decomposition is not affected by the implied constraints. M

IV. THE NGROUP CONSTRAINT

In a sequence, a group is a contiguous subsequence with
values from a given set. Here we consider only part of
the GROUP constraint [5]. The NGROUP(N, V, W) constraint
holds if and only if there are N groups of values from the
set W in the sequence)V of decision variables. For example,
NGROUP(3,[2,4,1,6,4,3,4],{2,4,6}) holds since there are
three groups of even values in [2,4, 1,6, 4, 3, 4], namely [2, 4],
[6,4], and [4].

A. Automaton-Induced Decomposition

A counter automaton (taken from [5]) is given in Fig. 3
for NGROUP(N, V, W), using the notation and terminology
of Section III. The start state is called € and is reached if the
most recently consumed symbol (if any) is not in a group.
The other state is called v and is reached if the most recently
consumed symbol is in a group. Both states are accepting. The
alphabet is {in,ni}, because the signature constraint (v; €
W & s; =in) A (v; € W < s; = ni) pairs the sequence
decision variable v; with a new signature decision variable
s; whose domain is that alphabet. Counter ¢ maintains the
number of groups within the prefix of V consumed so far.
The acceptance constraint is /N = ¢ for both accepting states.
This automaton, together with the signature constraints, can
be translated into the checker given in Algorithm 5.

This counter automaton induces the following constraint
decomposition:

qgo=€Ncg=0
A TRANS(qo; €0, 51,41, ¢1) A
A TRANS(¢n—1,Cn—1, Snsqn, Cn) 9)
Nc, =N A
Nioi(v; €W & s; =in) A (v; €W < s; = ni)

where the new decision variables are the signature de-
cision variables s;, the state decision variables ¢;, and
the counter decision variables c¢;. The transition constraint
TRANS(q, ', s,q’,¢") holds if and only if the automaton in
Fig. 3 has a transition from state ¢ to state ¢’ labelled by
symbol s that updates the counter ¢ from value ¢’ to value ¢”.

We now consider the constraint instance
NGROUP(N, [v1,v9,v3, v4], {2, 4,6}). The signature
constraints are s; = 1 < v € {2,4,6} and
si = 0 & v; ¢ {2,4,6}. The value of N is set by
propagation to the value of the induced counter decision
variable ¢4, and hence the domain of NV is the set {0,...,4}.
GAC on all the constraints in the decomposition does not
suffice to tighten the upper bound of the domain of each

decision variable ¢; to |i/2].

B. Deriving Implied Constraints

The automaton in Fig. 3, together with the signature con-
straints, can be translated into the checker in Algorithm 5.
Note that in the automaton in Fig. 3, every path of two
transitions increases the counter value by at most 1. Let us
extend the checker in Algorithm 5 in order to keep track
of the previous values of the counter variables c, obtaining
the checker in Algorithm 6. Variable c; denotes the value of
variable c at the previous iteration, and variable co denotes its
value two iterations ago. From the checker in Algorithm 6,
InvGen derives the invariants:

c2<c<e+1 (10)

Note that ¢; does not appear on the invariants, and we use it
only to keep track of the previous value of c. We translate the
invariants (10) into the implied constraints:

(1)

Ci—1 < ¢ip1 < ¢+ 1

for 0 < < n.
At this point we believe that the implied constraints (g; =
e Nsj = ni) = ¢ < c¢; can also be derived from

loop invariants and would suffice to maintain GAC on the
NGROUP constraint decomposition. However, the long-term
objective of our research is to automatically extend automaton-
induced decompositions by adding implied constraints that of-
ten strictly improve propagation, without significantly slowing
the propagation down, if slowing it down at all. Whether or
not these implied constraints actually help maintain GAC on
the decomposition is out of the scope of our objective.

C. The Effect of the Implied Constraints

Even though after adding the implied constraints (11) prop-
agation is improved, GAC on every constraint in the extended
decomposition is not enough to maintain GAC on the NGROUP
constraint. For example, consider again the constraint instance
NGROUP(N, [v1,v2,v3,v4],{2,4,6}). After the assignment
$o = in, there is at least one group in the sequence V), that is
N > 0, but GAC on every constraint is not enough to prune
the value 0 from the domains of all ¢; with ¢ > 2, and so 0
is not pruned from the domain of N.

Towards testing the implied constraints, we implemented
in SICStus Prolog version 4.2.1 [13] the original and ex-
tended decompositions of NGROUP(N,V, W). We generated
instances with random amounts (n < 50) of signature decision
variables [s1, ..., s,] as well as random initial domains of N
(one value, two values, and intervals of length 2 or 3) and the

Algorithm 5 Checker for the NGROUP constraint

function NGROUP(N,V, W)
: c+ 0

1:

2

3 q<¢€

4 140

5: while i < |V| do
6 if V[i] € W then
7

8

9

if ¢ = € then
c+—c+1
q<7
10: else
11: q <€
12: i1+ 1
13: return N = ¢

Algorithm 6 Checker for the NGROUP constraint keeping
track of previous counter values

1: function NGROUP(N,V, W)
2: c+0; ¢+ 0; co+ 0
3 g€

4: 140

5: while i < |V| do

6 Co < C1

7 c1 < ¢C

8 if V[i] € W then

9 if ¢ = € then

10: c+—c+1

11: q <y

12: else

13: g€

14: 141+ 1

15: return N = ¢

s; (one value and binary domains). Note that, in the presence
of the signature constraints, generating random domains for
the signature decision variables is equivalent to generating
random domains for the decision variables [v1, ..., v,]. Upon
many millions of such instances, it turns out that the extended
decomposition is never slower than the original decomposition
(but 2% faster on average), but always prunes at least as many
values (but 105% more on average) and detects at least as
many failures (but 8% more on average) as the latter.

D. Complexity of the Extended Decomposition

Maintaining GAC on the implied constraints (11) does
not increase the asymptotic time and space complexity of
maintaining GAC on the original decomposition (9) of the
NGROUP(N, V, W) constraint. The proof is similar to the one
of Theorem 2 in Section III-D, based on the observation that
there are 2(n — 1) implied constraints.

V. CONCLUSION, RELATED WORK, AND FUTURE WORK

Counter automata provide a uniform representation format
for many constraints. We believe that automatically deriving

implied constraints that are necessary for maintaining GAC,
or that simply improve propagation, on counter-automaton-
induced constraint decompositions can be seen as an auto-
mated way to design propagators. Proving manually that a
candidate (extended) decomposition maintains GAC is very
tedious: witness the long and hard proof for the JTHNONZE-
ROPOS constraint in Theorem 1. It took us a very long time to
find this proof, partly because we initially manually derived the
implied constraints, starting from an analysis of the failure to
prove GAC. Manual proofs are also error-prone, which is why
we also ran the sanity check on the extended decomposition
of JTHNONZEROPOS at the end of Section III-C.

The hypergraphs of the decompositions (1) and (9) are
actually a-acyclic [15]. The main objective of our research
is to examine when and how (a consistency level close to)
GAC is maintained on Berge-cyclic (for instance a-acyclic)
constraint hypergraphs (rather than a deep desire to settle open
questions about the little known constraints studied in this
paper, very useful though they are).

A. Related Work

It was observed [6] that an a-acyclic constraint hypergraph
maintains GAC when all constraints are pairwise consis-
tent [16], but no further analysis was given.

There is also a large body of related work (e.g., [17], [18],
[19], [20]) on decomposing global constraints manually in or-
der to maintain GAC on the whole decomposition. This paper
can be seen as a more systematic approach to maintaining
GAC, via automaton-induced decompositions.

Initial experiments with using automated reasoning sys-
tems towards inferring implied algebraic constraints from a
constraint problem are reported in [21], [22], both using an
extension [21] of the PRESS equation solver. In contrast, the
present work uses a loop invariant generator; it is aimed at
a specialised class of constraint problems (namely counter-
automaton-induced decompositions) and at a specialised class
of implied constraints (on the induced counter decision vari-
ables), and is therefore more successful.

There is also some related work using graph invariants to
systematically derive implied constraints in [23] in order to
improve efficiency. Our paper explores a different approach,
which is capable of finding other invariants and it does not
require a database of invariants.

B. Future Work

We have given a methodology to infer useful implied
constraints, using an automated invariant generator, that can be
added to an automaton-induced decomposition. We will now
automate as many steps as possible of this methodology, for
the AUTOMATON constraint in SICStus Prolog.

ACKNOWLEDGEMENTS

The authors are supported by grants 2011-6133 and 2012-
4908 of the Swedish Research Council (VR). Many thanks to
the anonymous referees for their helpful comments.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

REFERENCES

A. Aggoun and N. Beldiceanu, “Extending CHIP in order to solve com-
plex scheduling and placement problems,” Mathematical and Computer
Modelling, vol. 17, no. 7, pp. 57-73, 1993.

P. Baptiste, C. Le Pape, and W. Nuijten, Constraint-Based Scheduling:
Applying Constraint Programming to Scheduling Problems. Kluwer
Academic Publishers, 2001.

M. Carlsson, N. Beldiceanu, and J. Martin, “A geometric constraint over
k-dimensional objects and shapes subject to business rules,” in CP 2008,
ser. LNCS, P. J. Stuckey, Ed., vol. 5202. Springer, 2008, pp. 220-234.
S. Bourdais, P. Galinier, and G. Pesant, “HIBISCUS: A constraint
programming application to staff scheduling in health care,” in CP 2003,
ser. LNCS, F. Rossi, Ed., vol. 2833. Springer, 2003, pp. 153-167.

N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, “Global con-
straint catalogue: Past, present, and future,” Constraints, vol. 12, no. 1,
pp. 21-62, March 2007, the current working version of the catalogue is
at http://www.emn.fr/z-info/sdemasse/aux/doc/catalog.pdf.

N. Beldiceanu, M. Carlsson, and T. Petit, “Deriving filtering algorithms
from constraint checkers,” in CP 2004, ser. LNCS, M. Wallace, Ed., vol.
3258. Springer, 2004, pp. 107-122.

G. Pesant, “A regular language membership constraint for finite se-
quences of variables,” in CP 2004, ser. LNCS, M. Wallace, Ed., vol.
3258. Springer, 2004, pp. 482-495.

M. Carlsson and N. Beldiceanu, “Multiplex dispensation order gen-
eration for pyrosequencing,” in Proceedings of the Workshop on CSP
Techniques with Immediate Application (held at CP 2004), 2004.

C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576-580, Oct. 1969.
R. Sharma, I. Dillig, T. Dillig, and A. Aiken, “Simplifying loop invariant
generation using splitter predicates,” in CAV 2011, ser. LNCS, vol. 6806.
Springer, 2011, pp. 703-719.

A. Gupta and A. Rybalchenko, “InvGen: An efficient invariant genera-
tor,” in CAV 2009, ser. LNCS, vol. 5643. Springer, 2009, pp. 634-640.
L. De Moura and N. Bjgrner, “Z3: an efficient SMT solver,” in TACAS
2008, ser. LNCS. Springer, 2008, pp. 337-340.

M. Carlsson, G. Ottosson, and B. Carlson, “An open-ended finite domain
constraint solver,” in PLILP 1997, ser. LNCS, vol. 1292. Springer, 1997,
pp. 191-206.

K. C. Cheng and R. H. Yap, “An MDD-based generalized arc consistency
algorithm for positive and negative table constraints and some global
constraints,” Constraints, vol. 15, no. 2, pp. 265-304, Apr. 2010.

C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, “On the desirability
of acyclic database schemes,” Journal of the ACM, vol. 30, no. 3, pp.
479-513, July 1983.

R. Fagin, “Degrees of acyclicity for hypergraphs and relational database
schemes,” Journal of the ACM, vol. 30, no. 3, pp. 514-550, July 1983.
C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh, “Circuit
complexity and decompositions of global constraints,” in IJCAI 2009,
C. Boutilier, Ed., 2009, pp. 412-418.

C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, C.-G. Quimper, and
T. Walsh, “Reformulating global constraints: The slide and regular
constraints,” in SARA 2007, ser. LNAI, vol. 4612. Springer, 2007,
pp. 80-92.

C. Bessiere, G. Katsirelos, N. Narodytska, C.-G. Quimper, and T. Walsh,
“Decomposition of the NValue constraint,” in CP 2010, ser. LNCS,
D. Cohen, Ed., vol. 6308. Springer, 2010, pp. 114-128.

C.-G. Quimper and T. Walsh, “Decomposing global grammar con-
straints,” in CP 2007, ser. LNCS, C. Bessiere, Ed., vol. 4741. Springer,
2007, pp. 590-604.

B. Hnich, J. Richardson, and P. Flener, “Towards automatic generation
and evaluation of implied constraints,” Department of Information Tech-
nology, Uppsala University, Sweden, Tech. Rep. 2003-014, originally
written in August 2000, available at www.it.uu.se/research/reports/2003-
014.

A. M. Frisch, I. Miguel, and T. Walsh, “Extensions to proof
planning for generating implied constraints,” in Proceedings
of Calculemus 2001, 2001, pp. 130-141, available at
http://www.calculemus.net/meetings/siena01/.

N. Beldiceanu, M. Carlsson, J.-X. Rampon, and C. Truchet, “Graph
invariants as necessary conditions for global constraints,” in CP 2005,
ser. LNCS, P. van Beek, Ed., vol. 3709. Springer, 2005, pp. 92-106.

