
Contingency Plans for
Air Traffic Flow and Capacity Management

Karl Sundequist Blomdahl, Pierre Flener, and Justin Pearson

Department of Information Technology
Uppsala University

Box 337, SE – 751 05 Uppsala, Sweden
Karl.Sundequist Blomdahl.1559@student.uu.se, Pierre.Flener@it.uu.se (contact), Justin.Pearson@it.uu.se

Abstract—We present a constraint-based local search heuristic
that contributes to solving the problem of generating contingency
plans for air traffic flow and capacity management, which are to
be used in the case of a catastrophic infrastructure failure within
EUROCONTROL, the European Organisation for the Safety of
Air Navigation. Experiments with the heuristic, implemented
in Comet, on real-world flight plans for the entire European
airspace show that it is feasible to automate the development of
contingency plans, which is currently done by human experts.
This is desirable as the development time goes down from two
person months per year to a few CPU hours, and as it allows
contingency plans to be generated with an increased frequency.

Index Terms—Contingency planning, air traffic flow and ca-
pacity management, constraint programming, constraint-based
local search, tabu search

I. INTRODUCTION

A. Air Traffic Management

Air traffic management (ATM) is about managing and ensur-
ing a safe, efficient, and fair flow of air traffic, assuming a neg-
ligible amount of side-effects, such as adverse weather condi-
tions. During normal operation, the Central Flow Management
Unit (CFMU) of the European Organisation for the Safety of
Air Navigation (EUROCONTROL) uses several stages, each in
increasing detail, to satisfy these three conflicting operational
goals:

1) A strategic stage, taking place several months before the
day of operation.

2) A pre-tactical stage that starts six days before the day
of operation.

3) An online tactical stage during the day of operation.
This stage is called the air traffic flow and capacity
management (ATFCM) stage [1], and has two main
functions:

a) Calculate the demand of each airspace volume
using live flight plan information.

b) Adjust the number of allocated departure slots of
the involved aerodromes, such that they optimise
the objectives defined in the pre-tactical stage.
These objectives typically include, but are not

This work has been financed by the European Organisation for the Safety or
Air Navigation (EUROCONTROL) under its Care INO III programme (grant
08-121447-C). The content of the paper does not necessarily reflect the official
position of EUROCONTROL on the matter.

limited to, minimising the total flight delay and
the air volume overload.

During an average day, the ATFCM unit handles approxim-
ately 30 000 flights spread over about 1 500 aerodromes.

B. Contingency Planning

This study focuses on the special case of an ATFCM failure
due to any reason, such as downtime of the computer-assisted
slot allocation (CASA) system. In such a situation, where
no timely updates from ATFCM are available and the air
controllers of each aerodrome have no idea whether it is
proper to release a flight or not, a safe alternative is necessary.
EUROCONTROL addresses this by a contingency plan, which
contains a pre-defined number of allocated departure slots for
each major aerodrome in such a way that certain safety and
efficiency objectives are satisfied, for a maximum duration of
one day. During the last twelve years, such a situation has oc-
curred once, for a few hours. Nevertheless, EUROCONTROL
requires the existence of such contingency plans, and they take
time to develop.

An excerpt from such a contingency plan can be seen in
Figure 1. It defines the number of departure slots that the
aerodrome with the International Civil Aviation Organisation
(ICAO) identifier EBBR (Brussels National Airport, Belgium)
is allowed to release for each hour to various destination
aerodromes. For example, from 09:00 to 12:00, a maximum of
7 flights are allowed to take off in the flow EBBR1, which is
defined by the departure aerodrome EBBR and a destination
aerodrome whose ICAO identifier starts with C (Canada),
EG (Great Britain), EI (Ireland), K (United States), or M
(Central America and Mexico). Similarly, only 4 flights whose
departure and destination aerodrome match the description of
the flow EBBR2 are allowed to take off per hour from 06:00
to 17:00.

The current contingency plan can always be downloaded
from the CFMU website https://www.cfmu.eurocontrol.int/.

The generation of ATM contingency plans within the
EUROCONTROL Experimental Centre (EEC) and the CFMU
is currently done by two human experts (using a process
described in Section II-B). They biannually (for the winter and
summer timetables) develop a three-fold plan, namely one for
weekdays, one for Saturdays, and one for Sundays.

mailto:Karl.Sundequist_Blomdahl.1559@student.uu.se
mailto:Pierre.Flener@it.uu.se
mailto:Justin.Pearson@it.uu.se
https://www.cfmu.eurocontrol.int/

Flow identifier Flow description Time span Hourly rate
EBBR1 From: EBBR 00:00 – 06:00 2

To: C EG EI K M 06:00 – 09:00 3
09:00 – 12:00 7
12:00 – 14:00 4
14:00 – 22:00 8
22:00 – 24:00 2

EBBR2 From: EBBR 00:00 – 06:00 1
To: B EDDH EDDW EE EF EH EK EN ES 06:00 – 17:00 4

17:00 – 21:00 6
21:00 – 24:00 2

Figure 1. A contingency plan excerpt, which describes the hourly take-off rates of two flows originating from the aerodrome EBBR (Brussels National
Airport, Belgium).

The total contingency planning time is two person-months
per year, hence automated contingency planning is desirable.
Another benefit with automating the process is that it could be
done at the tactical level instead of the strategic level, which
would increase the quality of the generated contingency plans.

C. Contributions and Organisation of this Paper

This paper presents a local search [2] heuristic that solves
in just a few CPU hours the subproblem of finding the
optimal hourly numbers of departure slots for given flows
and time spans (which typically do not change much between
contingency plans anyway) for the entire European airspace.
It is intended as a feasibility study about replacing the human
experts with constraint programming (CP) technology [3]. To
our knowledge, this is the first time that contingency planning
has been at least partially automated.

We here outline the model and the best of the two local
search heuristics in our paper [5] at a specialist conference on
CP, but with many more explanations about CP and much less
technical detail about the model and the chosen heuristic.

The rest of this paper is split into four parts, dealing with
the contingency planning problem in increasingly concrete
terms: a formal definition of the problem as a constraint
model (Section II), a local search heuristic that operates on
the constraint model (Section III), experimental results with an
implementation of the heuristic (Section IV), and a conclusion
(Section V).

II. THE CONTINGENCY PLANNING PROBLEM

Informally, we address the following subproblem in contin-
gency planning. We are given a set of flight plans and a set of
flows with time spans. Our objective is to determine optimal
hourly departure rates for these flows over these time spans,
such that efficiency and safety of the global air traffic flow are
optimal, under a fair allocation of departure slots. We measure
efficiency as the total delay cost of all flights, under a first-
submitted, first-served allocation. We measure safety as the
total capacity overload cost of all air volumes. We minimise
the weighted sum of these two terms.

We now give a formal description of this combinatorial
optimisation problem as a constraint model, and give the
current state of the art algorithm.

A. Constraint Model

Our constraint model is implemented in Comet [4], an
object-oriented constraint programming language for the mod-
elling of combinatorial problems. It has back-end solvers for
(global) tree search interleaved with constraint propagation,
for constraint-based local search, and for mixed integer linear
programming. Comet is available at http://dynadec.com/.

Comet offers a very-high-level modelling language for fully
declaratively specifying a combinatorial optimisation problem
by (1) identifying the decisions that need to be made, namely
the so-called decision variables (or unknowns) and their sets
of possible values, called domains, (2) stating the constraints
that are to be satisfied, and (3) defining the expression (called
the objective function) that is to be minimised or maximised.
Such a constraint model is (in principle) independent of the
back-end solver.

An overview of our constraint model is given in Figure 2.
The inputs are a set of flight plans, and the main decision
variables denote the hourly rates of the output contingency
plan. Through constraints that simulate the slot allocation
process of air traffic control (ATC), the hourly rate decision
variables are connected to overload decision variables and
take-off delay decision variables, from which the safety and
efficiency terms of the total cost are respectively determined.
The fairness term of the total cost is obtained through the
search heuristic rather than through constraints.

An instance of the contingency planning problem is defined
by the following input and output data, where identifiers
starting with capital letters denote given sets, subscripted
identifiers denote constants, identifiers with indices within
square brackets denote decision variables, identifiers that are
Greek letters denote parameters, and all time moments are
measured in seconds since some fixed origin:
• A set of flights F = {f1, . . . , fm}, where each flight f` has

a departure aerodrome adep`, a destination aerodrome
ades`, an expected take-off time etot`, a calculated take-
off time ctot [`], an expected landing time eldt`, and a

http://dynadec.com/

Input Data Decision Variables

Constraints and Objective Function

Flight Plans Contingency Plan

CASA Simulation

Safety Efficiency Fairness

Total Cost

Figure 2. Overview of our constraint model.

take-off delay delay [`]. All later specified sets of flights
are subsets of F.

• A set of air volumes AV = {av1, . . . , avp}, where each
air volume ava ∈ AV has a capacity capa that limits the
hourly number of flights that can enter it for the duration
dura. There is also a flight set Fa ⊆ F for each air
volume ava that contains all flights that pass through
ava, where each flight f` ∈ Fa has an expected entering
time entera,` and a calculated entering time cnter [a, `].
In the real world, an air volume can represent either a
part of the airspace or an aerodrome.

• A set of flows F = {F1, . . . ,Fn}, where each flow Ff

consists of a set of flights Ff and a set of span-rate
pairs Rf = {r1, . . . , rof }, where each span-rate pair ri
consists of a time span spani denoting when it is active,
and an hourly rate of allocated departure slots rate[i] in
the integer interval [1, demandf,i], where demandf,i is
the maximum number of flights that are planned to depart
in flow Ff during the time span spani:

demandf,i = max
t∈Ti

|{f` ∈ Ff : ctot [`] ∈ [t, t+ 3600)}|

where set Ti contains the beginning times of all one-hour-
long time intervals that fit inside the time span spani of
the span-rate pair ri, with a five minute step:

Ti = {t ∈ spani : t+ 3600 ∈ spani ∧ t mod 300 = 0}

Further, for any two span-rate pairs ri and rj , where i 6=
j, their spans must not overlap; however, the union of
all spans does not need to be 00:00 – 24:00. There is
also a flight set Ff ⊆ F for each flow Ff that contains
all flights matching the flow description. For example,
Figure 1 defines two flows EBBR1 and EBBR2, where
the flights are defined by a subset of F that matches the
flow description, and the spans and rates are defined by
the two right-most columns.

Additional decision variables used in the objective function
will be defined in the following paragraphs.

Recall that ATM has three conflicting operational goals:
ensure an efficient flow of air traffic (by minimising the total
delay), ensure a safe flow of air traffic (by minimising the total
capacity overload), and ensure a fair flow of air traffic. During
a crisis situation, safety is especially important. Before giving
the objective function, we first discuss the constraints induced
by these operational goals.

1) Air Traffic Efficiency: The take-off delay delay [`] of any
flight f` is the difference between its calculated take-off time
ctot [`] and its expected take-off time etot`:

delay [`] = ctot [`]− etot`

where ctot [`] is calculated using the allocated departure slots
as defined by the span-rate pairs for each flow. These slots
are assigned to flights using the first-submitted, first-served
principle [6]. For example, consider the flow EBBR1 (defined
in Figure 1), where there are three departure slots allocated
for each hour between 06:00 and 09:00: if three flights
with expected take-off times 06:00, 06:30, and 06:35 were
available, then they would get the calculated take-off times
06:00, 06:40, and 07:00, and delays of 0, 600, and 1 500
seconds, respectively; note that no flight is given the 06:20
slot.

Similarly, the take-off delay delay [`] of any flight f` also is
the difference between its calculated entering time cnter [a, `]
into any air volume ava and its expected entering time
entera,` into that air volume:

delay [`] = cnter [a, `]− entera,`

The delay cost of any flight f` is defined by a weight
function, which was suggested to us by our research partners
at the EEC:

delayCost [`] =

1 if 0 h ≤ delay [`] < 1 h
10 if 1 h ≤ delay [`] < 2 h
20 if 2 h ≤ delay [`] < 3 h
50 otherwise

The weight scales exponentially because the real-world con-
sequences do, in case of major disruption. For example, a flight
with a low delay will probably only cause a slight interruption
in the schedule, while a high delay might cause many flights
to be cancelled.

The total delay cost is the sum of the delay costs of all the
flights.

2) Air Traffic Safety: The safety of air traffic is determined
by how crowded the air volumes are. The air volume ava is
capable of handling up to capa flights entering per hour, so
any flight above this capacity creates an additional risk. Hence,
safety is here defined by the amount that each air volume’s
hourly capacity is exceeded.

For each air volume ava, a set Ta is defined that contains
the beginning times of all one-hour-long time intervals that

time

de
m

an
d[

a,
t]

capacity

Figure 3. Demand for an air volume a over time: the vertical bars denote
overlapping one-hour-intervals that start every five minutes, and the height
of a bar for start time t indicates the number of flights scheduled to enter a
during the hour following t, so that any excess of a bar over the capacity of
a denotes a capacity overload.

Figure 4. Piecewise linear function giving the capacity overload cost
overloadCost [a, t] in terms of the capacity overload percentage.

fit inside the air volume’s capacity duration dura, with a five
minute step, as depicted by the x axis in Figure 3:

Ta = {t ∈ dura : t+ 3600 ∈ dura ∧ t mod 300 = 0}

The capacity overload of each air volume ava and begin-
ning time t ∈ Ta is the number of flights, beyond the capacity
of ava, that enter ava during the right-open time interval
[t, t+ 3600):

overload [a, t] = max (0,

|{f` ∈ Fa : cnter [a, `] ∈ [t, t+ 3600)}| − capa)

The capacity overload cost of air volume ava and beginning
time t ∈ Ta, denoted by overloadCost [a, t], is defined by a
piecewise linear function of the capacity overload percentage
overload[a,t]

capa
, where a suitable slope is defined for the over-

load percentage breakpoints 0%, 10%, 20%, and 30%. An
illustration of the chosen function can be seen in Figure 4.
Again, the cost scales exponentially, because a small capacity
overload will likely only increase the workload of the affected
ATM personnel slightly, while a large capacity overload might
result in a mistake by the ATM personnel.

The total capacity overload cost is the sum of the capacity
overload costs of all the air volumes and beginning times.

3) Air Traffic Fairness: The fairness of air traffic is here
defined by how fairly the departure slots are allocated among
the flows. No formal definition of fairness will be given at
this point, as fairness is ensured by the search heuristic rather
than by the constraint model, so we defer its discussion to
Section III-D.

4) The Objective Function: The objective function, to be
minimised, is a linear combination of the total delay cost and
the total capacity overload cost, where α and β are parameters
that can be chosen by the user:

cost = α ·
∑
f`∈F

delayCost [`]

+ β ·
∑

ava∈AV

∑
t∈Ta

overloadCost [a, t]
(1)

Experimental results and feedback from our research partners
at the EEC suggest that α = 6 and β = 1 are good values,
because there are about six times fewer flights than air volumes
and time steps. However, they can be changed to reflect any
desired balance between a low delay and a low capacity
overload.

B. Current State of the Art

The current state of the art, and the only known algorithm,
to solve the contingency planning problem is the unpublished
process used by the CFMU and EEC human experts. It has
been described to us in the following high-level steps:

1) A statistical analysis is performed in order to point out
the airspace volumes with a high demand. The duration
and capacity of each air volume are recorded (there may
be several durations per air volume).

2) An analysis of departing flows is made:
• For the major European airports (i.e., with more

than two arrivals or departures per hour on average),
the traffic needs to be divided into main flows,
where several destinations are grouped into each
flow.

• For the other airports, the flows are mainly divided
into two categories: domestic flights and interna-
tional flights. If the number of domestic flights
is low, it seems better that a local flow manager
handles this traffic.

Recall that it takes one person-month for two senior human
experts to perform this algorithm, and that all this is done
twice a year (once for the summer timetable and once for the
winter timetable), for weekdays, Saturdays, and Sundays.

III. LOCAL SEARCH HEURISTIC

Comet [4] also offers a very-high-level search language
for expressing a search procedure as well as its heuristics
and meta-heuristics. The Comet constraint solving architec-
ture takes care of all low-level, tedious, and error-prone
computational details at run-time, and thereby significantly
accelerates the development of effective and efficient search

procedures, as well as enormously eases the experimentation
with alternative constraints or (meta-)heuristics. Often, this
convenience is achieved at no additional cost in run-time
compared to a hand-crafted program written in a low-level
language. High-level Comet programs have even been reported
to out-perform low-level programs that were hand-crafted by
experts. Achievements based on Comet are listed at the Comet
web-site and are easily found on the internet.

We here report on using the local search [2] back-end
solver of Comet, which performs constraint-based local search
(CBLS) [4]. This backend was chosen because of the sheer size
of the data sets we have to handle. Trying the global search
back-ends (tree search interleaved with propagation, and mixed
integer linear programming) is considered future work.

In CBLS, constraints are used not only to state the problem
but also to control the search. Search heuristics are guided
by measures of constraint violation and variable violation.
Constraint violation measures how close a constraint is to
being satisfied. Variable violation measures for each decision
variable in a constraint the variation of the constraint vi-
olation that could be achieved if that variable was suitably
modified. Although these terms are not formally defined here,
it is possible for a large number of constraints to come up
with heuristically useful definitions of constraint and variable
violations, and to compute them quickly.

Given an initial assignment of domain values to all the
decision variables, a CBLS heuristic iteratively tries to find
a better assignment that decreases the amount of constraint
violation, by making a move to an assignment within the
neighbourhood of the current assignment, that is a set of
assignments that do not differ much from the current one.
An assignment with zero (or minimal) constraint violation
and an optimal value of the objective function is to be
found. Meta-heuristics are used to escape local minima, that is
when the neighbourhood contains no better assignments than
the current one. Since the constraint and variable violations
might thus need to be calculated thousands of times so as
to pick the best move, and since thousands of moves might
be needed, the algorithms and data structures implementing
these violation calculations must be very efficient and, where
possible, incremental.

We have developed two CBLS heuristics that operate on our
constraint model. We here outline the better one of the two
heuristics, which performs tabu search, and refer the reader to
our paper [5] for a detailed description of the other heuristic,
which performs large neighbourhood search.

The generalised local search machine (GLSM) of our tabu
search heuristic can be seen in Figure 5. A GLSM [2] is a
finite state machine that describes a local search heuristic by
breaking it down into smaller algorithms, such that each state
represents an individual algorithm and the edges represent the
conditions for switching between these algorithms.

Our heuristic uses a tabu [7] meta-heuristic for escaping
local minima. It uses a slightly modified objective function,
which adds a penalty term to (1) in order to guide the heuristic
toward a fair traffic flow, where Penalty is a set of values

Figure 5. The generalised local search machine (GLSM) [2] of our tabu
search heuristic.

maintained by integer invariants (discussed in Section III-D
below):

cost = α ·
∑
`∈F

delayCost [`]

+ β ·
∑

a∈AV

∑
t∈Ta

overloadCost [a, t]

+
∑

p∈Penalty

p

The heuristic can be summarised in the following steps, where
each step and new terminology will be described in further
details below:

1) (Re)start the search by assigning each flow rate variable
rate[i] a random value in its domain.

2) Hill-climb the current solution, until a local minimum
has been reached.

3) Do a single run of tabu search, and then pick a random
real number u ∈ [0, 1]. If u < 0.05, then pick a flow
rate variable rate[i] with an unfair value, add its penalty
to the set Penalty , and repeat Step 3. Otherwise, if
more than 200 iterations have gone by since the last
improvement, then go to Step 1, else repeat Step 3.

The heuristic terminates once maxIter iterations have been
completed, where maxIter is initialised to 1 000 and is set to
the number of the current iteration plus 500 whenever a new
best solution is found, unless this sum is smaller than 1 000.

The main source of diversification (directing the search
toward another region of the search space) is Step 1, the main
source of intensification (focussing the search on promising
regions of the search space) is Step 2, while Step 3 performs
a mix of both diversification and intensification.

A. The Restart Mechanism

The restart mechanism is the main source of diversification
in our heuristic. It completely (re)starts the search by assigning
each flow rate variable rate[i] a random value in its domain. It

also clears the tabu list, which is the list of most recently vis-
ited assignments, stored for the sake of avoiding an untimely
return to them.

B. Hill-climbing

The hill climbing algorithm is a non-greedy algorithm:
during each iteration, it picks the first move rate[i] := v such
that the objective function is decreased. It does so until no such
move can be found, that is until a local minimum has been
reached. The method used to find this assignment is through
the use of a meta-neighbourhood, which is a circular list of
neighbourhoods {N1, . . . , Nq} (where q is the total number
of flow rate variables) that are searched in successive order
until an improving assignment is found. Each neighbourhood
Ni consists of all moves on flow rate variable rate[i]. The
method terminates once a cycle has been completed with no
improving assignment found.

C. Tabu Search

The tabu search [7] is the core of the heuristic. While it is
the main contributor of neither intensification nor diversific-
ation, it ensures that the neighbourhood of a local minimum
has been properly explored so that no improvements have been
missed. During each iteration, it searches a neighbourhood (to
be defined in the next paragraph) for a best non-taboo move
rate[i] := v and, after making the inverse move taboo for the
number of iterations defined by the tabu tenure, it performs the
assignment rate[i] := v. The only exception to this process
is the aspiration criterion, which kicks in if the candidate
solution is better than any solution found so far. If this is the
case, then a move is performed even if it is in the tabu list.
Our experiments were made with a tabu tenure τ = 8.

The tabu search uses an asymmetrical stochastic neighbour-
hood that is designed to reduce the most severe air volume
capacity overloads. It does so by finding the peak of each
overload, and then picks one of these peaks to reduce at
random, where the probability of each peak being picked is
proportional to its value, hence higher peaks have a higher
probability to be reduced. Once a peak has been determined,
the neighbourhood consists of all moves on the flow rate
variables rate[i], where span-rate pair ri corresponds to all
flows Ff that contain a flight contributing to this peak (flights
that cannot be anywhere else can be ignored).

D. Penalty Invariant

The apply-penalty state is the part of the heuristic that tries
to ensure a high level of fairness of the air traffic flow. It
does so by suitably modifying the value of the cost function
under a fixed probability after each run of tabu search, such
that the flow rate variable rate[i] with the minimum rate[i]

demandf,i

quotient is deemed unfair and an expression that tries to guide
rate[i] toward a fairer value is added to the set Penalty . It is
an exponential expression that decreases the higher the value
of rate[i]:

γ · e−8·
rate[i]

demandf,i

where γ is a user-definable parameter that controls how
aggressively the heuristic should be guided toward fairness.
In our experiments, we used γ = 200, which is only slightly
aggressive.

IV. EXPERIMENTAL RESULTS

Three real-life flight plans, which are comparable to those
used by EUROCONTROL when generating the official con-
tingency plans, have been provided by the EEC, and have been
used as training flight plans:
• A weekday (Friday 2008-06-27), with 261 flows (320

rates), 36 161 flights, and 348 air volumes.
• A Saturday (2008-08-30), with 256 flows (387 rates),

29 842 flights, and 348 air volumes.
• A Sunday (2008-08-31), with 259 flows (397 rates),

31 024 flights, and 348 air volumes.
When translated into a constrained optimisation problem, each
instance yields approximately 150 000 constraints and 50 000
decision variables.

All experiments were done on a Linux x86-64 dual-core
laptop with 4GB of primary memory, 2MB of L2 cache, and
a CPU frequency of 2.2GHz. Under Comet version 2.0.1, the
tabu search usually terminated after approximately three CPU
hours.

Our own comparison between contingency plans generated
by our heuristic and contingency plans generated by the EEC
and CFMU human experts (denoted by EEC) can be seen in
Figure 6, giving the expected take-off delay (in seconds, only
for the delayed flights) and the 95th percentile thereof, as well
as the expected air volume capacity overload percentage (only
for the overloaded sectors) and the 95th percentile thereof. We
observe that our heuristic outperforms the EEC algorithm on
both measures.

This good performance of our heuristic has been validated
independently by the EEC and CFMU human experts, using
their internal simulation tool COSAAC. They compared our
contingency plans and their contingency plans on realistic test
flight plans (which were not given to us), though not according
to the objective function we used during our optimisation, but
more realistically according to a CASA-style slot allocation,
as if CASA was actually not down. Indeed, our objective
function and constraints only simulate (our understanding of)
CASA, as calls to CASA itself for every candidate move in
the neighbourhood of every iteration of local search would be
prohibitively expensive.

Figures 7 and 8 respectively give the average take-off delay
(in seconds, only for the delayed flights) and the average capa-
city overload percentage (only for the overloaded air volumes),
on a weekday, a Saturday, and a Sunday in the European
summer 2008 timetable according to the contingency plans
generated by the algorithm of the EUROCONTROL Exper-
imental Centre (EEC), our tabu search heuristic (tabu), and
our large neighbourhood heuristic (LNS). We observe that our
heuristic significantly decreases both the average take-off delay
(among the delayed flights) and the capacity overload (among

Contingency Plan E(delay) p95(delay) E(overload) p95(overload)
EEC 2008-06-27 645.6 sec 2340.0 sec 29% 100%
Tabu 2008-06-27 310.2 sec 1200.0 sec 27% 72%

EEC 2008-08-30 528.1 sec 1800.0 sec 23% 61%
Tabu 2008-08-30 316.1 sec 1200.0 sec 22% 56%

EEC 2008-08-31 407.0 sec 1500.0 sec 29% 68%
Tabu 2008-08-31 345.9 sec 1264.5 sec 24% 57%

Figure 6. Our analysis: Expected take-off delay (in seconds, only for the delayed flights) and the 95th percentile thereof, as well as the expected air volume
capacity overload percentage (only for the overloaded air volumes) and the 95th percentile thereof, on a weekday, a Saturday, and a Sunday in the European
summer 2008 timetable according to the contingency plans generated by the algorithm of the EUROCONTROL Experimental Centre (EEC) and our tabu
search heuristic (tabu).

Figure 7. EEC/CFMU analysis: Average take-off delay (in seconds), only for
the delayed flights, on a weekday, a Saturday, and a Sunday in the European
summer 2008 timetable according to the contingency plans generated by
the algorithm of the EUROCONTROL Experimental Centre (EEC), our tabu
search heuristic (tabu), and our large neighbourhood heuristic (LNS).

overloaded air volumes) of the contingency plans generated
by the human experts.

Our tabu search heuristic not only decreases the take-off
delay of delayed flights (as seen in Figure 7) but also delays
significantly fewer flights compared to the EEC algorithm
(26% vs 35% on the chosen weekday, 31% vs 38% on the
chosen Saturday, and 31% vs 35% on the chosen Sunday).

Finally, our tabu search heuristic not only decreases the
capacity overload of overloaded air volumes (as seen in
Figure 8) but also overloads fewer air volumes compared to the
EEC algorithm (27% vs 28% on the chosen weekday, 30% vs
31% on the chosen Saturday, and 26% vs 28% on the chosen
Sunday).

V. CONCLUSION

This work is part of a feasibility study about whether it is
possible to automate the development of contingency plans for
EUROCONTROL, the European Organisation for the Safety

Figure 8. EEC/CFMU analysis: Average capacity overload percentage, only
for the overloaded air volumes, on a weekday, a Saturday, and a Sunday
in the European summer 2008 timetable according to the contingency plans
generated by the algorithm of the EUROCONTROL Experimental Centre
(EEC), our tabu search heuristic (tabu), and our large neighbourhood heuristic
(LNS).

of Air Navigation. Our positive results were expected, due to
the similarities between the contingency planning problem and
scheduling problems, which have been solved successfully us-
ing constraint programming technology for a couple decades.
It thus seems to be possible to automate contingency planning
efficiently enough with constraint programming technology.

Regarding future work, recall that this paper addresses the
subproblem of finding the optimal hourly departure rates for
predefined flows and time spans. The latter have been produced
by human experts, and do actually then not change much from
one year to another. However, this dependency on predefined
flows and time spans must be eliminated. Currently, this is our
most important issue. Ideally, the search for an optimal set of
flows and time spans would be integrated into our heuristic.

Acknowledgements

We thank Serge Manchon, Elisabeth Petit, and Bernard
Kerstenne at the EUROCONTROL Experimental Centre for
their feedback on our progress. Many thanks also to the
anonymous referees for their useful suggestions.

REFERENCES

[1] EUROCONTROL, Air Traffic Flow & Capacity Management Users
Manual, 14th ed. EUROCONTROL CFMU, March 2010, avail-
able at http://www.cfmu.eurocontrol.int/j nip/cfmu/public/standard page/
library handbook supplements.html.

[2] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann, 2004.

[3] F. Rossi, P. van Beek, and T. Walsh, Eds., Handbook of Constraint
Programming. Elsevier, 2006.

[4] P. Van Hentenryck and L. Michel, Constraint-Based Local Search. The
MIT Press, 2005.

[5] K. Sundequist Blomdahl, P. Flener, and J. Pearson, “Contingency plans for
air traffic management,” in Proceedings of CP’10, the 16th international
conference on Constraint Programming, ser. Lecture Notes in Computer
Science, vol. 6308, D. Cohen, Ed. Springer-Verlag, 2010, pp. 643–657.

[6] EUROCONTROL, General & CFMU Systems, 14th ed. EUROCON-
TROL CFMU, March 2010, available at http://www.cfmu.eurocontrol.int/
j nip/cfmu/public/standard page/library handbook supplements.html.

[7] F. Glover and M. Laguna, “Tabu search,” in Modern Heuristic Techniques
for Combinatorial Problems. John Wiley & Sons, 1993, pp. 70–150.

http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html
http://www.cfmu.eurocontrol.int/j_nip/cfmu/public/standard_page/library_handbook_supplements.html

	Introduction
	Air Traffic Management
	Contingency Planning
	Contributions and Organisation of this Paper

	The Contingency Planning Problem
	Constraint Model
	Air Traffic Efficiency
	Air Traffic Safety
	Air Traffic Fairness
	The Objective Function

	Current State of the Art

	Local Search Heuristic
	The Restart Mechanism
	Hill-climbing
	Tabu Search
	Penalty Invariant

	Experimental Results
	Conclusion
	References

