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ABSTRACT
We propose solution neighbourhoods, which contain only so-
lutions to a chosen constraint, as the solutions to a constraint
capture the structure of the constraint. We save the time
needed for neighbourhood evaluation of that constraint by
using a solution neighbourhood. This may be useful espe-
cially for constraints for which there exists no known constant-
time algorithm for neighbour evaluation. We design a solu-
tion neighbourhood for the very useful automaton constraint,
and demonstrate the practicality of our approach on a li-
brary of nurse scheduling instances. We show the feasibility
of designing solution neighbourhoods for other constraints.

1. INTRODUCTION
In constraint-based local search (CBLS, e.g., [6]), constraints

are used to describe and control local search for solving a
combinatorial problem. From an initial assignment of values
to all decision variables, CBLS iteratively moves to ano-
ther assignment, which ideally decreases the total amount
of constraint violation, by exploring a neighbourhood of
small changes to the current assignment, until an assign-
ment with zero constraint violation is found or until allo-
cated resources are exhausted. Meta-heuristics are used to
escape local optima. In CBLS, search can be constraint-
directed or variable-directed, and it is crucial to choose a
good neighbourhood and explore it efficiently. We address
how to design a neighbourhood in constraint-directed search.
In constraint-directed search (CDS), first a (possibly most)

violated constraint is selected, and then a (possibly best)
move is found by exploring a neighbourhood of that constraint,
where a (possibly best) move is a move that (possibly maxi-
mally) decreases the violation of the whole constraint sys-
tem. There are at least two ways to design a neighbourhood
of a chosen constraint: a variable-directed neighbourhood se-
lects a few decision variables of the constraint, and designs
a neighbourhood by changing the assignments to those de-
cision variables; a constraint-directed neighbourhood designs
a neighbourhood according to the possible violation changes
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of the chosen constraint. With a variable-directed neighbou-
rhood, the search focuses on a small and prospective neigh-
bourhood, which is efficient but easily trapped at a local
optimum. With a constraint-directed neighbourhood, the
search exploits some of the substructure of the combinatorial
problem, namely the chosen constraint, but it may be ineffi-
cient if the neighbourhood is large. Hence it is interesting to
integrate the two methods, and design a hybrid neighbou-
rhood, namely a variable-directed and constraint-directed
neighbourhood, so that we can benefit from the advantages
of both. We address how to design a hybrid neighbourhood
for the very useful automaton constraint [3], a particular
case of which is also known as the regular constraint [5].

When designing a hybrid neighbourhood for the automaton

constraint, we are interested in a neighbourhood where all
neighbours satisfy the constraint, called a solution neigh-

bourhood, for the following reasons: first, it is easy to find
a solution to an automaton constraint that is close to a gi-
ven violating assignment by exploring the structure of the
automaton constraint; second, as far as we know, the best al-
gorithm for neighbour evaluation of the automaton constraint
takes time linear in its number of decision variables [4],
which is expensive, thus we can avoid such an expensive
neighbour evaluation by using a solution neighbourhood.

There is of course a cost of designing a solution neighbou-
rhood. Usually, neighbourhoods are generated in constant
time per neighbour, and a neighbour evaluation takes constant
time for many constraints, but it (necessarily) takes more
than constant time for some constraints; e.g., the automaton

constraint. We investigate the following question: when
does it pay off to generate a small neighbourhood of solu-
tions to a given constraint, in non-constant time per neigh-
bour, so as to achieve evaluation in zero time of these neigh-
bours for that constraint? We show that such an investment
in neighbourhood generation is well amortised for such ex-
pensive constraints as automaton, and that even some cheap
constraints such as alldifferent can benefit from this idea.

The contributions and organisation of this paper are as
follows: we introduce the idea of using a hybrid neighbou-
rhood for CDS in Section 2; we show how to design a solution
neighbourhood for the automaton constraint in Section 3,
where all neighbours are solutions to the chosen constraint
and introduce useful diversification (in addition to any di-
versification introduced by a meta-heuristic); we present ex-
periment results establishing the practicality of our method
in Section 4; finally, in Section 5, we show the feasibility
of designing solution neighbourhoods for other constraints,
summarise this work, and discuss related and future work.



Algorithm 1 A CDS generic procedure with a hybrid neigh-
bourhood for k variables to solve a CSP P within imax steps

1: generic procedure CDSearch(P = 〈X,D,C〉, imax, k)
2: i← 0
3: a ← an initial assignment of the decision variables X
4: best←

∑

c∈C
Violationc[a]; ā ← a

5: while best > 0 and i < imax do
6: select a ((most) violated) constraint c′ ∈ C do
7: select a sequence V of at most k ((most) violating)

decision variables of c′ do
8: N ← Neighbourhoodc′(V, aXc

′
)

9: select a neighbour n ∈ N maximising
∑

c∈C
(Violationc[a]− Violationc[n]) do

10: update a w.r.t. n; v ←
∑

c∈C
Violationc[a]

11: if best > v then best← v; ā ← a

12: i← i+ 1

2. CDS WITH A HYBRID NEIGHBOURHOOD
Let P = 〈X,D,C〉 denote a constraint satisfaction pro-

blem (CSP), where X is a finite sequence of decision va-
riables, D is the sequence of domains of X, and C is a finite
set of constraints; let a be the current assignment of X;
for any constraint c ∈ C, let Xc ⊆ X be the decision va-
riables involved in c; and let aXc

be the current assignment
of Xc. In a CBLS system (such as the CBLS back-end of
Comet [6]), two data structures are automatically main-
tained incrementally: Violationc[a] denotes the violation of
constraint c under the assignment a; Violationc[x, a] denotes
the violation of decision variable x in constraint c under the
assignment a. We call

∑

c∈C
Violationc[a] the system viola-

tion and
∑

c∈C
Violationc[x, a] the system variable violation

of decision variable x under assignment a.
The generic procedure CDSearch(P, imax, k) in Algorithm 1

describes how P is solved in CDS with a hybrid variable-
directed (line 7) and constraint-directed (line 8) neighbou-
rhood. The choice of parameter k is problem-specific; we
will address this issue for the experiments in Section 4.2.1.
It first initialises the iteration counter i to zero (line 2), a
to an initial assignment (line 3), best (which denotes the
violation of the current best assignment) to the violation
of the initial assignment, and ā (which denotes the current
best assignment) to the initial assignment (line 4). It then
checks the termination condition (either a solution has been
found or the maximum number imax of iterations has been
reached) of the search (line 5). If the termination condition
is not met, then it selects a ((most) violated) constraint
c′ ∈ C (line 6) and a sequence V of at most k ((most) vio-
lating) decision variables of c′ (line 7), and then designs a
hybrid variable-directed (by V ) and constraint-directed (by
c′) neighbourhood N under the current assignment a by cal-
ling the function Neighbourhoodc′(V, aXc

′
) (line 8), which

returns a neighbourhood obtained by reassigning V , an ins-
tance for the automaton constraint being described in Al-
gorithm 2 and discussed in Section 3.2.1. Each neighbour
n ∈ N is evaluated by the sum of the differentially compu-
ted violation changes over all constraints c ∈ C upon the
corresponding move (line 9), and a randomly chosen best
move achieving the maximum violation decrease for C is
made (line 10). If a new best assignment is found upon the
move, then best and ā are updated (line 11). The iteration
counter i is increased after each iteration (line 12).
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Figure 1: A DFA for a simple work scheduling
constraint for one employee

Algorithm 1 lacks meta-heuristics to escape local optima,
as these are orthogonal issues that can be addressed separa-
tely [6]. Diversification and intensification are not discussed
here for the same reason, because we make no assumptions
on the assignment a. Note that each constraint has its own
neighbourhood generator based on the implementation of
the function Neighbourhoodc(V, aXc

). This can be imple-
mented as an API extension to the constraint class of some
CBLS system, such as the CBLS back-end of Comet [6]
(available at dynadec.com).

3. SOLUTION NEIGHBOURHOODS
After an introduction to the automaton constraint, we

show how to design a solution neighbourhood for the automaton

constraint. We only consider the automaton constraint wi-
thout counters here, but plan to expand on this.

3.1 The Automaton Constraint
The automaton constraint is defined as automaton(X,M),

where X is a sequence of decision variables, and M is a
deterministic finite automaton (DFA). A DFA is a tuple
〈Q,Σ, δ, q0, F 〉, where Q is a finite set of states, Σ is the
alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q
is the start state, and F ⊆ Q is the set of accepting states.
The automaton constraint is satisfied iff M accepts the word
made of the values of the sequence X of decision variables.

For example, Figure 1 gives a DFA that describes a work
scheduling constraint for one employee. There are values for
two work shifts, namely day (d) and evening (e), and a value
for enjoying a day of vacation (v). The set of words accepted
by this DFA defines the set of acceptable shift sequences.

Given an automaton(X,M) constraint with |X| = n de-
cision variables and the DFA M = 〈Q,Σ, δ, q0, F 〉, the (mi-
nimised) conjunctive product of M with the DFA accepting
Σn gives a DFA M ′ that only accepts n-letter words in the
language of M . This construction is known in CP as the un-
rolling of M for words of length n [5]. For example, the DFA
M ′ obtained by unrolling M in Figure 1 for words of length
n = 6 is in Figure 2 (the reader can ignore the different line
styles of the transitions and states at the moment). Note
that any state qm of M in vertical layer j is named qjm in
M ′. Any assignment made of the values labelled on the arcs
of a path in M ′ is a solution to the automaton constraint,
and vice versa. Note that whenever a path in M ′ is men-
tioned, we mean a path from the start state of M ′ to any
accepting state of M ′. In Figure 2, there are 49 such paths,
hence the automaton(X,M) constraint with |X| = n = 6
decision variables and the DFA M in Figure 1 has 49 solu-
tions among the |Σ|n = 36 = 729 possible assignments. By
an abuse of language, we sometimes refer to an assignment
as a path, such that the assignment is made of the values
labelled on the arcs of the path.

As far as we know, there are two versions of violation
measure [4], based on Hamming distance, for the automaton
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Figure 2: The DFA M ′ obtained by unrolling the DFA M in Figure 1 for words of length 6. State qm
of M in layer j is named qjm in M ′. Given the current assignment a = 〈d, v, v, e, d, v〉 to the decision variables
X = 〈X1, . . . , X6〉, and the sequence V = 〈X1, X4〉 of k = 2 decision variables chosen to be reassigned for designing
a neighbourhood, the resulting neighbourhood contains all the 7 dashed paths.

constraint in CBLS. We use the one that is shown in [4] to
work both theoretically and experimentally much better.

3.2 Designing a Solution Neighbourhood
Consider an automaton(X,M) constraint with a current

assignment a to the decision variables X, a sequence V ⊆ X
of decision variables to be reassigned for designing a solution
neighbourhood, and the DFA M ′ obtained by unrolling M
for words of length |X|. With the structure of solutions to
the automaton constraint as described in Figure 2, topolo-
gical sorting is used, as in Algorithm 2, to design efficiently
a solution neighbourhood for the automaton constraint.

3.2.1 Description of the Algorithm
Algorithm 2 with the unique parameter |V | = k works

by dashing some states and transitions in the DFA M ′ ob-
tained by unrolling the DFA M for words of length |X|
(lines 2 to 11), so that every dashed path in M ′ (except
the current assignment a) denotes a neighbour in the neigh-
bourhood; and it returns the neighbourhood containing all
dashed paths except a in M ′ (line 12). When considering
decision variable Xi and visiting a dashed state qi−1

m in M ′:
if Xi is in V , then all outgoing transitions from state qi−1

m

and their target states in M ′ are dashed (lines 5 to 7), so
that all feasible assignments (in the sense that a dashed
path can be extended) to decision variable Xi are inclu-
ded in the neighbourhood; otherwise Algorithm 2 tries to
extend a dashed path by preserving the assignment of Xi

(lines 8 and 9), or (at failure to do so; line 10) by choosing
randomly one outgoing transition from qi−1

m , hence provi-
ding the chance to change also the assignment of Xi /∈ V
(line 11; this introduces more diversity, so as to stop the
search easily being trapped in some local optimum). As all
transitions and states not leading to an accepting state are
by construction not in M ′, there is a path to an accepting
state of M ′ passing each state of M ′. Hence for each dashed
state (in lines 2, 7, 9, and 11), Algorithm 2 always finds such
a path passing this dashed state. As any path in M ′ is a
solution to the automaton constraint, Algorithm 2 designs
a solution neighbourhood for the automaton constraint.
For example, in Figure 2 with the current assignment

a = 〈d, v, v, e, d, v〉 to |X| = 6 decision variables and a se-

Algorithm 2 Design a solution neighbourhood directed by
an automaton(X,M) constraint and a sequence V ⊆ X of
decision variables under the current assignment a to the de-
cision variables X, where the DFA M ′ obtained by unrolling
the DFA M for words of length |X| is pre-computed.

1: function Neighbourhood
automaton(X,M)(V, a)

2: dash the start state of the DFA M ′

3: for all i← 1 to |X| do
4: for all dashed states qi−1

m in M ′ do
5: if Xi ∈ V then
6: for all outgoing transitions t from qi−1

m in M ′ do
7: dash t and its target state in M ′

8: else if exists an outgoing transition t from qi−1
m so

that t is labelled with the value of Xi under a then
9: dash t and its target state in M ′

10: else
11: select a random outgoing transition t from qi−1

m

and dash t and its target state in M ′

12: return all dashed paths except a in M ′

quence V = 〈X1, X4〉 of k = 2 decision variables, the re-
sulting neighbourhood contains all assignments related with
any dashed path in M ′. There are 7 dashed paths, hence the
resulting neighbourhood has 7 neighbours among the 49 so-
lutions. Algorithm 2 first dashes the start state O0 in layer 0
of M ′ (line 2). Then it dashes all outgoing transitions from
O0 and their target states (D1, E1, and G1) in layer 1, as
X1 ∈ V (lines 5 to 7). Next it visits the dashed states D1,
E1, G1 in this order: when visiting D1, as there is no out-
going transition from D1 that is labelled with v (the value
assigned to X2 under a), the only outgoing transition from
D1 and its target state W 2 in layer 2 are dashed (line 11);
when visiting E1, as there is an outgoing transition from E1

that is labelled with v, this transition and its target state
G2 in layer 2 are dashed (lines 8 and 9); when visiting G1,
as there is an outgoing transition from G1 that is labelled
with v, this transition and its target state H2 in layer 2 are
dashed (lines 8 and 9). The process continues for a while,
then Algorithm 2 will visit E4 in layer 4. As there is no out-
going transition from E4 that is labelled with d (the value



assigned to X5 under a), one (and only one) random transi-

tion between the two outgoing transitions (E4 v
−→ G5 and

E4 e
−→ W 5) will be chosen to be dashed (in Figure 2, the

transition E4 v
−→ G5 is chosen). The process continues until

all dashed states are visited, and returns the neighbourhood
of 7 neighbours (7 dashed paths on Figure 2).

3.2.2 Complexity and Theoretical Evaluation
To establish the time complexity of Algorithm 2, let M =
〈Q,Σ, δ, q0, F 〉 be the DFA of an automaton(X,M) constraint
with |X| = n decision variables, let all decision variables
x ∈ X have the same domain Σ, let M ′ denote the DFA
obtained by unrolling M for words of length n, and let a se-
quence V ⊆ X of k decision variables be chosen to design a
solution neighbourhood. Lines 3 to 11 explore all transitions
and states inM ′ at most once, thus takeO(n·|δ|+n·|Q|) time
(since M ′ has O(n · |δ|) transitions and O(n · |Q|) states);
line 12 explores all dashed paths in M ′ once, thus takes
O(n · |N |) time (every path has a length of n), where |N | is

O(|Σ|k), since for each reassignment of V , at most one path
will be found and inserted into the neighbourhood. Hence
Algorithm 2 takes O(n · (|δ|+ |Q|+ |Σ|k)) time in total.
Compared with designing a pure variable-directed neigh-

bourhood, which takes Θ(|Σ|k) time (designing a neighbou-

rhood of size |Σ|k − 1), our method of designing a solution
neighbourhood for the automaton constraint takes n times
more time. However we do not need to evaluate the viola-
tion changes for the chosen automaton constraint when ex-
ploring the solution neighbourhood, as the violation changes
for that automaton constraint are all the same (the solution
neighbourhood contains only solutions to that automaton

constraint) and make no contribution to distinguishing the
neighbours. Note that the best known algorithm for diffe-
rential neighbour evaluation for the automaton constraint on
n decision variables takes O(n) time [4], which is expensive.
Hence the time cost of designing the solution neighbourhood
with large enough k will be paid off by the time needed for
exploring the neighbourhood of the automaton constraint.
Consider the frequent problem pattern with at least two

automaton constraints, each on n decision variables, so that
there is no sharing of decision variables between any two
automaton constraints. A search directed by the automaton

constraints normally takes O(n) time per neighbour (of
the chosen automaton constraint) for differentially evalua-
ting the impact on all the automaton constraints. The be-
nefit of our proposal is that this cost can be brought down
to zero time per neighbour (the time of evaluating the im-
pact on any constraints that share decision variables with
the chosen automaton constraint is unchanged), by inves-
ting the cost of designing a solution neighbourhood instead.
Usually, the saving of O(n) time per neighbour amortises
that investment. We study a rostering problem of this pat-
tern in Section 4. In Section 5, we show that even constraints
with differential neighbour evaluation in O(1) time can be-
nefit from a solution neighbourhood.

4. EXPERIMENTAL EVALUATION
We now investigate experimentally the practicality of the

proposed CDS with a solution neighbourhood, by comparing
it to a non-hybrid neighbourhood, here called the differ-by-

one neighbourhood, that contains all assignments that dif-
fer from the current assignment in any decision variable

of a chosen constraint is explored at each iteration. Note
that the differ-by-one neighbourhood is much larger than a
variable-directed neighbourhood, which contains neighbours
obtained by only changing the assignment of one chosen
decision variable of a chosen constraint, and the differ-by-one
neighbourhood usually works better for CDS. We implemen-
ted Algorithm 2 for the CBLS back-end of Comet [6] and
ran experiments on the benchmark of NSPlib [7].

Note that the objective of our experiments is not to beat
the state of the art of nurse rostering, but to show that
using a solution neighbourhood can speed up CDS without
re-tuning the meta-heuristics.

4.1 The Problem and the Model
NSPlib [7] is a very large repository of (artificially genera-

ted) instances of the nurse scheduling problem (NSP), which
is about constructing a duty roster for nursing staff. Let N
be the number of nurses, D the number of days of the sche-
duling horizon, and S the number of shifts. The objective is
to construct an N×D matrix of values in the integer interval
[1, . . . , S], with value S representing the off-duty shift.

In instance files, there are hard coverage constraints and
soft preference constraints; we only use the former (as opti-
misation is orthogonal to our searching concerns),which can
be modelled by atLeast constraints on the columns. There
are instance files for 30× 28 and 60× 28 rosters.

In case files, there are hard constraints on the rows. We
model all the constraints on a row with a single automaton

constraint. There are 8 case files for the N × 28 rosters.
Comet has the atLeast constraint as a built-in; howe-

ver its definition of the violation of decision variables does
not work well for our experiments. In the Comet (current
version 2.1.1) implementation of the atLeast constraint, va-
riable violations can be non-zero even if the atLeast constraint
is satisfied; this may mislead the search if variable violations
are used. We coded a revised atLeast constraint for our ex-
periments, where the violations of all decision variables are
zero iff the violation of the atLeast constraint is zero. Our
experiments (not reported here for space reasons) show that
our revised atLeast constraint works up to 5 times faster
(and never slower) than the built-in one on our search pro-
cedures for the NSPlib problem.

The automaton constraint is not a built-in of the CBLS
back-end of Comet; we implemented it as in [4].

4.2 The Search Procedures
Two search procedures were tried for the NSPlib problem.

4.2.1 CDS with a Solution Neighbourhood
We instantiate as follows the CDS generic procedure with

a hybrid neighbourhood described in Algorithm 1.
When selecting a most violated constraint (line 6 of Algo-

rithm 1), a constraint with the maximum constraint viola-
tion is usually selected; however, in our experiments, we ob-
served that selecting a constraint that has the maximum sum
of the system variable violations of the decision variables in
the constraint works up to 3 times better (and never slower)
than selecting a constraint with the maximum constraint
violation (these experiments are not reported here for space
reasons). We also observed that always selecting a most
violated automaton constraint works up to 10 times faster
(and never slower) than selecting a most violated constraint
among all automaton and atLeast constraints.



When selecting |V | = k decision variables to design a solu-
tion neighbourhood (line 7), we first select a random viola-
ting decision variable, and then select k−1 random decision
variables. We observed that this always works up to 7 times
faster than selecting the k most violating decision variables,
and that this works up to 2 times faster than selecting k ran-
dom decision variables (these experiments are not reported
here for space reasons).
There are two ways to determine the value of k: (1) Choo-

sing a static value. We experimented with k = 1 until k = 4
to avoid designing a too large neighbourhood. Note that
every decision variable in NSPlib has the same domain of
S = 4 values, thus a solution neighbourhood has a maxi-
mum size of Sk = 44 = 256 for k = 4. (2) Choosing a value
dynamically during search. We experimented with k = 1
initially; if a better assignment cannot be found in k2 · 2k−1

iterations (experimentally determined threshold; details are
omitted for space reasons) and k < 4, then we increase the
value of k by one. We never decrease the value of k, as we did
not find a good way yet of doing it. We give a comparison
of the two methods in Section 4.3.
Our chosen meta-heuristic is tabu search with restarts.

The length of the tabu list is the maximum between 6 and
the sum of the violations of all constraints. The best assi-
gnment so far is maintained. Restarting is done every N ·D
iterations. The expression for the length of the tabu list and
the restart criterion were experimentally determined; details
are omitted for space reasons.

4.2.2 Classical CDS
In [4], a variable-directed search is used to solve the NS-

Plib problem. However, we can achieve an improvement by
a factor of up to 50 over [4] by replacing its variable-directed
search with constraint-directed search, where a most viola-
ted automaton constraint is selected at each iteration (as
in Section 4.2.1), the differ-by-one neighbourhood of the
constraint is explored, and a best move that maximally de-
creases the system violation is made. Our chosen meta-
heuristic is tabu search with restarts (as in Section 4.2.1).

4.3 The Results
In Table 1, we give a comparison of the two search pro-

cedures in Sections 4.2.1 and 4.2.2 on NSPlib instances [7],
except for those known from [2] to be unsatisfiable (in order
to accelerate the experiments). Other instances might be
unsatisfiable (this information cannot be extracted from the
NSPlib website), hence the percentage of solved instances
might not reach 100% for that reason.
All experiments were run under Comet (version 2.1.1)

and Suse Linux 11.3 on a 3.07 GHz Intel Core i7 with a
3GB RAM. All runs were allocated 30 CPU seconds, and the
average performance was recorded for each instance over 25
runs. For each run of an instance, all search procedures star-
ted with the same randomly generated initial assignment.
We did not run instances of cases 1 to 10 and cases 12 to 14,
as they are very easy [2]; we also did not run instances of
case 11, as the DFAs (30 or 60 DFAs with 11816 states and
41922 transitions each, before unrolling) for these instances
are too large for handling by the automaton constraint of [4]
under Comet (version 2.1.1) on the chosen hardware. Note
that this memory problem is independent of search, hence
both our search procedures in Sections 4.2.1 and 4.2.2 suffer
from the same memory problem.

In Table 1, the average performance over 25 runs each of
selected instances (namely 10 instances each for all combina-
tions of the NSPlib complexity indicators) for each case and
N is given. Each row first specifies the instances (denoted
by Case, N , and Instances), and then gives the performance
of each search procedure, namely the average percentage of
instances solved without timing out (denoted by %S), the
average runtime in seconds (denoted by Sec), and the ave-
rage number of iterations (denoted by Iter). Numbers that
denote the best performance in each row are boldfaced, and
runtimes with a margin of 5% of the best performance in
each row are also boldfaced. There are four rows for each
case and N : the first one denotes the average performance
over all selected instances; the following three denote the
performance of three hand-picked instances, which represent
three difficulty levels with the order of difficulty increasing.

Comparing the two methods mentioned in Section 4.2.1
for choosing the value of k, we observed that: (1) Consi-
dering the average percentage of solved instances and the
average runtime, the method with dynamic k and the me-
thod with k = 4 are the winners. (2) Considering the ave-
rage number of iterations, the method with k = 4 always
wins, as it explores the largest neighbourhood. (3) Conside-
ring the three difficulty levels among the selected instances,
the method with k = 1 always wins for solving the easy ins-
tances, but never works for the harder instances; the method
with k = 4 and the method with dynamic k always win for
solving the harder instances; the method with dynamic k
works well among all the three difficulty levels.

Comparing the two search procedures in Sections 4.2.1
and 4.2.2, we observed that the search procedure with a so-
lution neighbourhood in Section 4.2.1, except for those with
static k = 1 and k = 2, always beats the search procedure
in Section 4.2.2: considering the average runtime over all
selected instances, our method can be up to 2 times faster;
considering the runtime of one particular hard instance, our
method can be up to 40 times faster.

5. CONCLUSION
In summary, we have shown that the idea of using a solu-

tion neighbourhood can be useful for constraint-directed lo-
cal search. We have demonstrated the idea of designing a so-
lution neighbourhood for the very useful automaton constraint.
Our experiment results show that our approach not only out-
performs the described improvement of [4] on the NSPlib
problem, but also outperforms any other CDS procedure
that we have tried. Note again that the objective of our
experiments was not to beat the state of the art of nurse
rostering; thus we do not compare with the large amount of
related literature on (meta-)heuristics, because most of it is
orthogonal to our work on neighbour evaluation [6].

Three constraint-directed neighbourhoods are introduced
in [1], namely the decreasing neighbourhood, preserving neigh-
bourhood, and increasing neighbourhood, which contain neigh-
bours that decrease, preserve, and increase the constraint
violation individually upon making the move. Differently
from [1], we are here interested in a non-increasing neighbou-
rhood where all neighbours satisfy the constraint. There
is of course a cost of designing a solution neighbourhood for
a chosen constraint, however our experiment results show
that this cost for the automaton constraint is justified by
its benefits. For some other constraints, there are ways
to design a solution neighbourhood. For example, consi-
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der the alldifferent(X) constraint, where X = 〈X1, . . . , X5〉
is a sequence of 5 decision variables with the same domain
{1, . . . , 5}. Given an assignment a = 〈1, 3, 5, 4, 5〉 with a
sequence V = 〈X3〉 of k = 1 chosen decision variable, we
can design a solution neighbourhood for the alldifferent(X)
constraint as follows: we try each possible reassignment of
V ; if a solution to the constraint is obtained (e.g., with
X3 = 2), then the solution is added to the neighbourhood;
otherwise (e.g., with X3 = 4), we try to find a solution by
further changing the assignment of some decision variables
not in V (e.g., with X4 = 2), and add the solution (if found)
to the neighbourhood. We did experiments with the magic
square problem, where the alldifferent constraint is used,
and our experiment results (not reported here for space rea-
sons) show that the cost of designing a solution neighbou-
rhood for the alldifferent constraint is also justified by a
runtime speed up of more than 3 times for instances of size
larger than 5×5. Note that we do not force the use of a solu-
tion neighbourhood for every constraint, as each constraint
has its own neighbourhood as described in the generic pro-
cedure of Algorithm 1; but we argue that using a solution
neighbourhood for some constraints can be helpful.

Consider the connectedness of solution neighbourhoods.
Given a constraint c(X) over a sequence of n decision va-
riables X and its solution neighbourhood generator, assume
that if there is a solution to c extending the current assign-
ment of decision variables 〈X1, . . . , Xi〉(1 ≤ i < n), then the
generator can find a neighbour of the current assignment by
preserving the assignment of 〈X1, . . . , Xi〉. This is the case
for the automaton and alldifferent constraints. From an ar-
bitrary initial assignment, any solution s to c can be reached
within at most

⌈

n
k

⌉

moves by moving closer to s (changing
the assignment of X1 until Xn) iteratively. As any solution
to a CSP must be a solution to each constraint in the pro-
blem, we have that any solution to the problem is reachable,
and solution neighbourhoods are connected.

Future work includes designing solution neighbourhoods
for the automaton constraint with counters and other constraints.
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[1] M. Ågren, P. Flener, and J. Pearson. Revisiting constraint-

directed search. Inf. Comput., 207(3):438–457, 2009.
[2] N. Beldiceanu, M. Carlsson, P. Flener, and J. Pearson. On

matrices, automata, and double counting. In CP- AI-OR’10,
LNCS 6140, pages 10–24. Springer, 2010.

[3] N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering
algorithms from constraint checkers. In CP’04, LNCS 3258,
pages 107–122. Springer, 2004.

[4] J. He, P. Flener, and J. Pearson. An automaton constraint
for local search. Fundam. Inform., 107(2–3):223–248, 2011.

[5] G. Pesant. A regular language membership constraint for
finite sequences of variables. In CP’04, LNCS 3258, pages
482–495. Springer, 2004.

[6] P. Van Hentenryck and L. Michel. Constraint-Based Local
Search. The MIT Press, 2005.

[7] M. Vanhoucke and B. Maenhout. On the characterization
and generation of nurse scheduling problem instances. Eur.
J. Oper. Res., 196(2):457–467, 2009.


