Structural Symmetry Handling

Pierre Flener

ASTRA Research Group Uppsala University

Sweden
www.it.uu.se/research/group/astra

SymCon'09 - The 9th International Workshop on Symmetry in (and?) Constraint Satisfaction Problems Lisbon (Portugal), 20 September 2009

Outline

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry Detection
(1) Prelude
2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

3 Structural Symmetry Detection

- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection

4 Postlude

Outline

Structural Symmetry Detection
Static Structural Symmetry Detection
Dynamic Structural Symmetry Detection

Postlude

1 Prelude

(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking
(3) Structural Symmetry Detection
- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection
(4) Postlude

Symmetry in Nature

Prelude

Broken Symmetry in Nature

Prelude

The Angora cat originated in the Turkish city of Ankara. It is admired for its long silky coat and quiet graceful charm. It is often bred to favour a pale milky colouring, as well as one blue and one amber eye. (Turkish Daily News, 14 Oct 2001)

The Future of SymCon?

Prelude

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking
Static Structural Symmetry Breaking

Structural Symmetry Detection
Static Structural Symmetry Detection Dynamic Structural Symmetry Detection

Postlude

The Nobel Prize in Physics 2008

"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"

Photo: University of Chicago
Yoichiro Nambu

(c) The Nobel Foundation Photo: U. Montan

Makoto Kobayashi

(c) The Nobel Foundation Photo: U. Montan

Toshihide Maskawa

Prelude

Outline

UPPSALA UNIVERSITET

Prelude

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry
Detection
Static Structural
Symmetry Detection
Dynamic Structural
Symmetry Detection
Postlude

2 Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

(3) Structural Symmetry Detection
 - Static Structural Symmetry Detection
 - Dynamic Structural Symmetry Detection

(4) Postlude

Structural Symmetry Breaking (SSB)

Definition: SSB = exploiting the combinatorial structure of a CSP toward eliminating, ideally in polynomial time \& space, all symmetric sub-trees at every node explored (even if there are exponentially many symmetries):

■ Dynamic structural symmetry breaking (DSSB): via dedicated search procedures
■ Static structural symmetry breaking (SSSB): via constraints
Reminder: The general SBD* and lex-leader schemes may take exponential time or space if there are exponentially many symmetries.

Prelude

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural

Structural Symmetry Breaking (SSB)

Definition: SSB = exploiting the combinatorial structure of a CSP toward eliminating, ideally in polynomial time \& space, all symmetric sub-trees at every node explored (even if there are exponentially many symmetries):

■ Dynamic structural symmetry breaking (DSSB): via dedicated search procedures
■ Static structural symmetry breaking (SSSB): via constraints

Reminder: The general SBD* and lex-leader schemes may take exponential time or space if there are exponentially many symmetries.
Size Does Not Matter: A number of symmetries is no indicator of the difficulty of breaking them! The full group S_{n} has n ! easily broken symmetries; the cyclic group C_{n} has n symmetries that are more difficult to break.

Definitions

Constraint satisfaction problems (CSPs):
■ Scalar CSP: each variable takes a scalar value
■ Set-CSP: each variable takes a set of scalar values Symmetries:

■ Full: any permutation (i.e., bijection) on the variables (or values) preserves solutions
■ Partial: any piecewise permutation on the variables (or values) preserves solutions Ex: weekdays vs the weekend, same-capacity boats
■ Wreath: any wreath permutation on the variables (or values) preserves solutions
Ex: Schedule meetings in (day, room) pairs, where the days are interchangeable, and the rooms are interchangeable within each day
■ Rotation: any rotation on the variables (or values) preserves solutions

Outline

UPPSALA UNIVERSITET

Prelude

Structural

Symmetry
Breaking
Dynamic Structural Symmetry Breaking
Static Structural
Symmetry Breaking
Structural
Symmetry
Detection
Static Structural
Symmetry Detection
Dynamic Structural
Symmetry Detection
Postlude

(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

(3) Structural Symmetry Detection
 - Static Structural Symmetry Detection - Dynamic Structural Symmetry Detection

(4) Postlude

Objective

Exploit the key strengths of CP (global constraints and search procedures) in order to break symmetries:

■ Express the closure (under all considered symmetries) of a no-good (a partial assignment that cannot be extended into a solution) by global constraints: Abstract no-good
■ Perform symmetry breaking during search (in the SBDD tradition), so as to avoid any interference with dynamic search heuristics (especially problem-specific ones):
Symmetry-free search procedure

Full Value Symmetry

Prelude
Structural Symmetry Breaking Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural Symmetry Detection

Example (European Map 4-Colouring)

Consider the two symmetric partial assignments:

$$
\begin{gathered}
\text { Portugal }=\text { green, Spain }=\text { blue, France }=\text { green } \\
\text { Portugal }=\text { blue, Spain }=\text { red, France }=\text { blue }
\end{gathered}
$$

Not the values, but the clustering of the variables matters!
Compact representation, using (new) global constraints:
allEq(Portugal, France), allDiff(Portugal, Spain)

Abstract no-good, based on one representative variable in the allDiff constraint for each equivalence class

Full Value Symmetry

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good

■ Linear-time algorithm for violation testing
■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg $(L u)$:

Full Value Symmetry

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good

■ Linear-time algorithm for violation testing
■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: allEq(Pt, Fr, Lu), allDiff(Pt, Es)

Full Value Symmetry

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good
- Linear-time algorithm for violation testing
- As many as open nodes in the DFS/... search tree

■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: allEq(Pt, Fr, Lu), allDiff(Pt, Es)
- if $L u=$ blue: all $E q(P t, F r)$, all $E q(E s, L u)$, allDiff(Pt, Es)

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Symmetry Breaking

Structural
Symmetry
Detection
Staic Structural Symmetry Detection Dynamic Structural Symmetry Detection

Postlude

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good

■ Linear-time algorithm for violation testing
■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: allEq(Pt, Fr, Lu), allDiff(Pt, Es)
- if $L u=$ blue: allEq(Pt, Fr), allEq(Es, Lu), allDiff(Pt, Es)
- if $L u=$ red: allEq(Pt, Fr), allDiff(Pt, Es, Lu)

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Symmetry Breaking

Structural
Symmetry
Detection

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good
- Linear-time algorithm for violation testing

■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: allEq(Pt, Fr, Lu), allDiff(Pt, Es)
- if $L u=$ blue: allEq(Pt, Fr), allEq(Es, Lu), allDiff(Pt, Es)
- if $L u=$ red: allEq(Pt, Fr), allDiff(Pt, Es, Lu)

But the colours of Pt, Es, and Fr are known: simplify!

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good
- Linear-time algorithm for violation testing

■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt,Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: no-good simplifies into $L u=$ green
- if $L u=$ blue: all $E q(P t, F r)$, all $E q(E s, L u)$, allDiff(Pt, Es)
- if $L u=$ red: allEq(Pt, Fr), allDiff(Pt, Es, Lu)

But the colours of $P t, E s$, and $F r$ are known: simplify!

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Properties of abstract no-goods for full value symmetry:
■ Linear-size representation of the closure of a no-good

- Linear-time algorithm for violation testing

■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: no-good simplifies into $L u=$ green
- if $L u=$ blue: no-good simplifies into $L u=$ blue
- if $L u=$ red: allEq(Pt, Fr), allDiff(Pt, Es, Lu)

But the colours of $P t, E s$, and $F r$ are known: simplify!

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good
- Linear-time algorithm for violation testing

■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es = blue, Fr = green, with abstract no-good allEq(Pt, Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: no-good simplifies into $L u=$ green
- if $L u=$ blue: no-good simplifies into $L u=$ blue
- if $L u=$ red: no-g. simplifies into allDiff(green, blue, $L u$)

But the colours of Pt, Es, and Fr are known: simplify!

Full Value Symmetry

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Properties of abstract no-goods for full value symmetry:

- Linear-size representation of the closure of a no-good
- Linear-time algorithm for violation testing

■ As many as open nodes in the DFS/... search tree
■ Specialisable, say for DFS: Re-consider the partial assignment $P t=$ green, Es $=b l u e, F r=$ green, with abstract no-good allEq(Pt,Fr), allDiff(Pt, Es), and find a colour for Luxembourg ($L u$):

- if $L u=$ green: no-good simplifies into $L u=$ green
- if $L u=$ blue: no-good simplifies into $L u=$ blue
- if $L u=$ red: no-g. simplifies into allDiff(green, blue, $L u$)

For each variable, only the colours already used and one so far unused colour, say red, need to be tried.

Full Value Symmetry (Er, 1988)

Initial call: list $(1,-1)$ for variables $X[1 . . n]$ over $0 . . k-1$

procedure list $(j, u$: integer) $\{u$ is the largest used value $\}$ if $j>n$ then
return true \{all symmetry is broken at all nodes!\} else

$$
\begin{aligned}
& \text { try all } i=0 \text { to } u+1 \text { do } \\
& \quad X[j] \leftarrow i ; \\
& \operatorname{list}(j+1, \max (i, u))
\end{aligned}
$$

Constant time \& space at every node explored! Variations: problem-specific (dynamic) var / val orders Applications: (by P. Van Hentenryck [and L. Michel])

■ Scene allocation (INFORMS JOC, 2002)
■ Steel mill slab design (CPAIOR'08)

Partial Value Symmetry (IJCAI'03)

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Let $D=D_{1}+D_{2}+\cdots+D_{m}$ be the domain of the variables, where the values in each set D_{i} are fully interchangeable. (Full value symmetry for $m=1$.)

■ Ex: weekdays vs the weekend, same-capacity boats
■ Abstract no-goods: Variable clustering for each set D_{i}.
■ Search procedure: For each variable, in each set D_{i}, only the values already used and one so far unused value need to be tried.
Constant time \& space at every node explored!

- Applications:
- Eventually-serialisable data service deployment (L. Michel, et al., and P. Van Hentenryck, CPAIOR'08)

Wreath Value Symmetry (IJCAl’O3)

Let $D=D_{1} \times D_{2}$ be the domain of the decision variables, where the values in each set D_{i} are fully interchangeable. (Full value symmetry for $\left|D_{2}\right|=1$.)
■ Example: Schedule meetings in (day, room) pairs, where the days are interchangeable, and the rooms are interchangeable within each day

Wreath bijection

Not a wreath bijection!

Wreath Value Symmetry (IJCAl’O3)

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

■ Abstract no-goods: One abstract no-good on D_{1}, and m abstract no-goods on D_{2} when m values of D_{1} are used, with variable clustering as for full value symmetry.
■ Search procedure: For each variable:
1 For the first value component, in set D_{1}, only the values already used and one so far unused value need to be tried. Let $d_{1} \in D_{1}$ be the chosen value.
2 For the second value component, in set D_{2}, only the values already used with d_{1} and one so far unused value need to be tried.
Constant time \& space at every node explored!

Selected Other Results

Consider a CSP with n variables over k values:
■ Generalisation to any value symmetry: general equivalence (GE) trees (C. Roney-Dougal et al., ECAl'04) $O\left(n^{4}\right)$ time overhead at every node explored.
■ Partial variable symmetry and partial value symmetry (M. Sellmann and P. Van Hentenryck, IJCAI'05) $O\left(k^{2.5}+n k\right)$ time overhead at every node explored. Coinage of the term 'structural symmetry breaking'.

Tractability of DSSB: State of the Art

Prelude

Structural
Symmetry
Breaking

		riabl	ymme		
	none	full	partial	wreath	
none		P	P	P	scalar CSP
ne		P	P	P	set-CSP
\geq	P	P	P	NP	scalar CSP
$\stackrel{\otimes}{8}$	P	NP	NP	NP	set-CSP
Eิ	P	P	P	NP	scalar CSP
ふ	P	NP	NP	NP	set-CSP
$\underline{\underline{0}}$	P	P	P	NP	scalar CSP
$\stackrel{\square}{>}$ wreath	P	NP	NP	NP	set-CSP
any	P				scalar CSP set-CSP

Combinatorial Generation

Listing, ranking, unranking, and randomly selecting the objects of some combinatorial structure (combination, partition, permutation, subset, tree, etc) w.r.t. some order:

■ Constant amortised time (CAT): in time proportional to the number of objects listed (after some initialisations)

- Backtracking ensuring success at terminals (BEST): every leaf of the backtracking tree is a desired object
■ Loopless: the next object is constructed without executing any loop
■ Memoryless: the next object is constructed without using any global variables (can start from any object)
Reference: Frank Ruskey, Combinatorial Generation, unpublished book draft, 2003. Available as www.1stworks.com/ref/RuskeyCombGen.pdf.

Combinatorial Objects

Consider the sequences of $n=3$ beads over $k=2$ colours:

Prelude

Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Symmetry Breaking

Structural
Symmetry
Detection
Staic Stuctural
Symmetry Detection
Dynamic Structural
Symmetry Detection
Postlude

tuples	unlabelled tuples	necklaces	unlabelled necklaces
000	000	000	000
001	001	001	001
010	010		
011	011	011	
100			
101			
110		111	
111			
no	full value	rotation variable	rot var + full val
symmetry	symmetry		

Combinatorial Objects

Consider the sequences of $n=3$ beads over $k=2$ colours:

Prelude

Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking

Symmetry Breaking

Structural
Symmetry
Detection
Staic Stuctural
Symmetry Detection
Dynamic Structural
Symmetry Detection
Postlude

tuples	unlabelled tuples	necklaces	unlabelled necklaces
000	000	000	000
001	001	001	001
010	010		
011	011	011	011
100			
101		111	
110			
111			
no	full value	rotation variable symmetry	rot var + full val symmetry
symmetry	symmetry		

Unlabelled Tuples (Er, 1988)

procedure list $(j, u$: integer) $\{u$ is the largest used value $\}$ var i : integer
if $j>n$ then
return true \{all sym broken at all nodes!\}
else
try all $i=0$ to $\min (u+1, k-1)$ do
if true then

$$
X[j] \leftarrow i
$$

$$
\operatorname{list}(j+1, \max (i, u))
$$

Initial call: list $(1,-1)$
Complexity: Constant amortised time \& space:
\#objects = \#unlabelled tuples

Necklaces (Ruskey \& Sawada, 2000)

procedure list $(j, p$: integer) $\{p=\#$ positions to replicate $\}$
var i : integer
if $j>n$ then
return $n \bmod p=0$ \{not all sym broken at all nodes!\}
else
try all $i=X[j-p]$ to $k-1$ do
if true then
$X[j] \leftarrow i ;$
$\operatorname{list}(j+1$, if $i=X[j-p]$ then p else $j)$
Initial call: $X[0] \leftarrow 0$; list $(1,1)$, where $X[0]$ is a dummy Complexity: Constant amortised time \& space:
$\#$ objects $\leq \#$ necklaces $\cdot(k /(k-1))^{2}$

Unlabelled Necklaces (ECAl’O8)

procedure list(j, p, u : integer)
var i : integer
if $j>n$ then
return $n \bmod p=0$ \{not all sym broken at all nodes!\}
else
try all $i=X[j-p]$ to $\min (u+1, k-1)$ do
if probe (j, i, p) then

$$
X[j] \leftarrow i
$$

$$
\operatorname{list}(j+1, \text { if } i=X[j-p] \text { then } p \text { else } j, \max (i, u))
$$

Initial call: $X[0] \leftarrow 0$; list $(1,1,-1)$, where $X[0]$ is a dummy Complexity: ?
\#objects ? \#unlabelled necklaces

Outline

UPPSALA UNIVERSITET

2 Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

Structural
Symmetry
Detection
Static Structural
Symmetry Detection
Dynamic Structural Symmetry Detection

Postlude

(3) Structural Symmetry Detection
 - Static Structural Symmetry Detection - Dynamic Structural Symmetry Detection

(4) Postlude

Main Results (CP'06)

Consider a CSP with n variables over $k=\ell \cdot m$ values:
■ Partial variable symmetry and partial value symmetry: $O(n+k)$ constraints break $O(n!\cdot k!)$ symmetries
■ Some theorems comparing SSSB with DSSB upon static variable and value orderings

- Generalisation:

Partial variable symmetry and wreath value symmetry: $O(n+k)$ constraints break $O\left(n!\cdot(m!)^{\ell} \cdot \ell!\right)$ symmetries

Example (Partial Variable \& Full Value Symmetry)

■ Make study groups for two sets of five indistinguishable students each. There are six indistinguishable tables.
■ The decision variables $\left\{f_{1}, \ldots, f_{5}\right\} \cup\left\{m_{6}, \ldots, m_{10}\right\}$ correspond to the students and are to be assigned table values from the ordered domain $\left\{t_{1}, \ldots, t_{6}\right\}$.
■ Constraints breaking the variable symmetries:

$$
f_{1} \leq f_{2} \leq f_{3} \leq f_{4} \leq f_{5} \& m_{6} \leq m_{7} \leq m_{8} \leq m_{9} \leq m_{10}
$$

- Constraints computing the signatures (counters):

$$
\begin{gathered}
\operatorname{gcc}\left(f_{1}, \ldots, f_{5}, t_{1}, \ldots, t_{6}, c_{1}^{f}, \ldots, c_{6}^{f}\right) \\
\operatorname{gcc}\left(m_{6}, \ldots, m_{10}, t_{1}, \ldots, t_{6}, c_{1}^{m}, \ldots, c_{6}^{m}\right)
\end{gathered}
$$

- Constraints breaking the value symmetries:

$$
\left(c_{1}^{f}, c_{1}^{m}\right) \geq_{\text {lex }} \cdots \geq_{\text {lex }}\left(c_{6}^{f}, c_{6}^{m}\right)
$$

Example (Partial Variable \& Full Value Symmetry)

Consider the satisfying assignment

Prelude
Structural
Symmetry
Breaking

$$
\begin{gathered}
\left\{f_{1} \mapsto t_{1}, f_{2} \mapsto t_{1}, f_{3} \mapsto t_{2}, f_{4} \mapsto t_{3}, f_{5} \mapsto t_{4},\right. \\
\left.m_{6} \stackrel{t_{1}}{ }, m_{7} \mapsto t_{2}, m_{8} \mapsto t_{2}, m_{9} \mapsto t_{3}, m_{10} \mapsto t_{5}\right\} .
\end{gathered}
$$

Indeed, the variable-symmetry constraints are satisfied:

$$
f_{1} \leq f_{2} \leq f_{3} \leq f_{4} \leq f_{5} \& m_{6} \leq m_{7} \leq m_{8} \leq m_{9} \leq m_{10}
$$

and the value-symmetry constraints are satisfied:

$$
(2,1) \geq_{\operatorname{lex}}(1,2) \geq_{\operatorname{lex}}(1,1) \geq_{\operatorname{lex}}(1,0) \geq_{\operatorname{lex}}(0,1) \geq_{\operatorname{lex}}(0,0)
$$

Note that a pointwise ordering would not have sufficed.

Example (Partial Variable \& Full Value Symmetry)

$$
(2,1) \geq_{\operatorname{lex}}(1,2) \geq_{\operatorname{lex}}(1,1) \geq_{\operatorname{lex}}(1,0) \geq_{\operatorname{lex}}(0,0) \not \geq_{\operatorname{lex}}(0,1)
$$

Prelude
Structural
Symmetry
Breaking

Static Structural Symmetry Breaking

Structural
Symmetry
Detection
Staic Structural Symmetry Detection Dynamic Structural Symmetry Detection

Postlude

Example (Partial Variable \& Full Value Symmetry)

If students m_{9} and m_{10} swap their assigned tables, producing a symmetrically equivalent assignment because both students are male:

$$
\begin{gathered}
\left\{f_{1} \mapsto t_{1}, f_{2} \mapsto t_{1}, f_{3} \mapsto t_{2}, f_{4} \mapsto t_{3}, f_{5} \mapsto t_{4},\right. \\
\left.m_{6} \mapsto t_{1}, m_{7} \mapsto t_{2}, m_{8} \mapsto t_{2}, m_{9} \mapsto t_{5}, m_{10} \mapsto t_{3}\right\}
\end{gathered}
$$

then the signatures do not change and hence the value-symmetry constraints remain satisfied, but the variable-symmetry constraints are violated, because

$$
m_{6} \leq m_{7} \leq m_{8} \leq m_{9} \not \leq m_{10}
$$

Outline

UPPSALA UNIVERSITET

Prelude
Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural Symmetry Detection

Postlude

(1) Prelude

(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

3 Structural Symmetry Detection

- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection

(4) Postlude

Structural Symmetry Detection (SSD)

Definition: SSD = exploiting the combinatorial structure of a CSP toward deriving, ideally in polynomial time \& space, (some of) the symmetries of the CSP (even if there are exponentially many derived symmetries):

■ Static structural symmetry detection (SSSD): before solving
■ Dynamic structural symmetry detection (DSSD): while solving
Reminder: General symmetry detection schemes are graph-isomorphism complete.

Outline

UPPSALA UNIVERSITET

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry
Detection
Static Structural Symmetry Detection
Dynamic Structural Symmetry Detection

Postlude

(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

3 Structural Symmetry Detection

- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection
(4) Postlude

Bottom-Up Derivation (SARA'05)

Prelude

Key insight: Once the symmetries of (global) constraints and functions are identified (manually), the symmetries of a constraint model with these constraints and functions can be derived compositionally, automatically, and efficiently:

- Symmetry identification
- Symmetry composition

A subset of our results turned out to be in (P. Roy and F. Pachet, ECAI'98 Workshop on Non-Binary Constraints).

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Stuctural Symmetry Breaking

Symmetry Identification

Consider a CSP or COP with variables X over domain D :
■ Constraint allDiff $\left(x_{1}, \ldots, x_{n}\right)$ has full value symmetry.

- Function $n b \operatorname{Distinct}\left(x_{1}, \ldots, x_{n}\right)$ has full value symmetry.
- Constraint atMost($\left.m, d,\left[x_{1}, \ldots, x_{n}\right]\right)$ has partial value symmetry over the partition $\{\{d\}, D \backslash\{d\}\}$ of D (at most m occurrences of d among the variables x_{i}).
- Constraint $x_{1}<x_{2}$ has partial variable symmetry over the partition $\left\{\left\{x_{1}\right\},\left\{x_{2}\right\}, X \backslash\left\{x_{1}, x_{2}\right\}\right\}$ of X.
Similarly for row and column symmetries.
Extend the Global Constraint Catalogue accordingly!

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry Detection
Static Structural Symmetry Detection Dynamic Structural Symmetry Detection

Postlude

Symmetry Composition

Consider a CSP/COP with variables X over $D=\{a, \ldots, h\}$:
\square If the constraints c_{1} and c_{2} have full value symmetry, then their conjunction $c_{1} \wedge c_{2}$ has full value symmetry.
■ Extension to functions. Example: The expression $3 \cdot n b D i s t i n c t\left(x_{1}, x_{2}, x_{3}\right)+4 \cdot n b D i s t i n c t\left(x_{4}, x_{5}, x_{6}\right)$ has full value symmetry.
■ Generalisation to partial symmetry (PS). Example: atMost (i, a, X) has PS over $\{\{a\},\{b, c, \ldots, h\}\}$, and atMost (j, b, X) has PS over $\{\{b\},\{a, c, \ldots, h\}\}$, so their conj. has PS over $\{\{a\},\{b\},\{c, \ldots, h\}\}$ if $i \neq j$, but PS over $\{\{a, b\},\{c, \ldots, h\}\}$ if $i=j$:
Need for prior constraint aggregation into atMost([i, j], $[a, b], X)$.
Each composition takes time polynomial in $|X|+|D|$.

Applications

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Outline

UPPSALA UNIVERSITET

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry
Detection
Static Structural Symmetry Detection
(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking

3 Structural Symmetry Detection

- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection
(4) Postlude

Prelude
Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural
Symmetry Detection
Static Structural

Constraint Projection

Example: Consider a CSP or COP with decision variables

 $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ over domain $D=\{a, \ldots, h\}$:■ The constraint atMost([3, 2], $[a, b], X)$ has partial value symmetry over $\{\{a\},\{b\},\{c, \ldots, h\}\}$.
■ The decision $x_{1}=a$ has partial value symmetry over $\{\{a\},\{b, \ldots, h\}\}$.
■ Their conjunction thus has partial value symmetry over $\{\{a\},\{b\},\{c, \ldots, h\}\}$.
■ Projection onto $X \backslash\left\{x_{1}\right\}$ of the original constraint gives atMost $\left([2,2],[a, b],\left[x_{2}, \ldots, x_{n}\right]\right)$, which has partial value symmetry over $\{\{a, b\},\{c, \ldots, h\}\}$: a new symmetry was dynamically detected!

UPPSALA UNIVERSITET

Évariste Galois (1811-1832)

Évariste Galois was one of the parents of group theory. Insight: The structure of the symmetries of an equation determines whether it has solutions or not.

Marginal note in his last paper: "lly a quelque chose à compléter dans cette démonstration. Je n'ai pas le temps." (There is something to complete in this demonstration.

I do not have the time.)

Outline

UPPSALA UNIVERSITET

Prelude

Structural Symmetry Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural Symmetry Detection
Static Structural Symmetry Detection Dynamic Structural Symmetry Detection

Postlude

(2) Structural Symmetry Breaking

- Dynamic Structural Symmetry Breaking
- Static Structural Symmetry Breaking
(3) Structural Symmetry Detection
- Static Structural Symmetry Detection
- Dynamic Structural Symmetry Detection

4 Postlude

Contributions

Prelude

■ Tractability map of SBDD-style symmetry breaking
■ Symmetry-free search procedures for CSP classes
■ Combinatorial generation
= dynamic structural symmetry breaking
■ First CSP classes where a polynomial (and even linear) number of constraints break an exponential number of compositions of variable and value symmetries
■ Structural detection of the symmetries of a model

Prelude

Structural
Symmetry
Breaking
Dynamic Structural Symmetry Breaking Static Structural Symmetry Breaking

Structural Symmetry Detection

Future Work: Other Orders

■ Lexicographic order: $12<_{\text {lex }} 13<_{\text {lex }} 21$

$$
000,001,010,011,100,101,110,111
$$

■ Co-lexicographic order: $21<_{\text {colex }} 12<_{\text {colex }} 13$ Shorter, faster, more elegant and natural algorithms!
■ Gray order (F. Gray, US Patent 2,632,058, 1953):

$$
\underline{000}, 001,0 \underline{1} 1,01 \underline{0}, \underline{110}, 11 \underline{1}, 1 \underline{101}, 10 \underline{0}
$$

Only one value (underlined) changes each time!
■ Boustrophedonic order (Ph. Flajolet et al., TCS, 1994): turning like oxen in ploughing; the writing of alternate lines in opposite directions (Merriam-Webster)
Used for listing objects in combinatorial generation (DSSB), but can / should be turned into constraints (for SSSB)!

Future Work

■ Exploiting other orders (Gray, boustrophedonic, ...)
■ Incomplete symmetry breaking
■ Push symmetry breaking into global constraints
■ Symmetry detection \& breaking in CP systems

Acknowledgements

Appendix

${ }^{5}$ STINT

- CORSA project (www.it.uu.se/research/group/astra/CORSA)
■ Uppsala University and Brown University
■ Institutional Grant IG2001-67
■ From September 2001 to December 2007

Main References

P. Flener, J. Pearson, and M. Sellmann.

Static and dynamic structural symmetry breaking.
Annals of Mathematics and Artificial Intelligence, 20xx.
(Supersedes our CP'06 paper with P. Van Hentenryck.)
(R. Flener, J. Pearson, M. Sellmann, P. Van Hentenryck, M. Ågren.

Dynamic SSB for constraint satisfaction problems.
Constraints, 14(4), December 2009.
(Supersedes our IJCAl'03 and IJCAl'05 papers.)
圊
P. Flener and J. Pearson.

Solving necklace constraint problems.
Journal of Algorithms, 64(2-3):61-73, April-July 2009.
(Supersedes our ECAI'08 paper.)
國 P. Van Hentenryck, P. Flener, J. Pearson, and M. Ågren.
Compositional derivation of symmetries for constraint satisfaction. Proc. of SARA'05. LNAI 3607:234-247. Springer-Verlag, 2005.

