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TSP is often polynomial (joke?)

• Academia:

– Given 

• the distance matrix

– Find

• The cheapest permutation

• In the real world:

– You have to compute the distance matrix

100 points leads to ~10k distance

0.1 sec per distance leads to 16 minutes



CETIC Research and Tech transfer

• Staff: 42
• Budget 2015: 4.8 M€
• Three research department: 

– Software & System Engineering
• Software engineering, formal methods, code analysis, algorithmic, 

optimization, requirements  engineering

– Software and service technologies
• Cloud computing, distributes architectures, data management

– Embedded and Communication Systems
• IoT, heterogeneous hardware architectures

• Two economical activities:
– Research projects: 

• H2020, Cornet, Regional, etc

– Service to industry: 
• custom, short term, paid by company, IP transferred



History of OscaR.cbls

• PIPAs project: Job-shop scheduling
– Lot of budget; develop a CBLS engine with iFlatRelax: Asteroïd

• Merging code base with Scampi (Pierre Schaus): OscaR
• Service on routing optimization, delivered wit GoogleCP
• SimQRi research project: Cornet

– Research on how to represent search strategies, notion of 
combinators

• Service  on Routing optimization round2: 
– Generating the distance matrix               (a lot of work)

• with traffic jam 
• Lots of algorithmic there (closed source, NDA)

– Switching to OscaR.cbls (not so much work)
• Because GoogleCP could not handle traffic jams
• Speed improvement, 
• routing neighbourhoods into combinator framework



History of OscaR.cbls

• Internships: symmetry elimination, parallel 
propagation, routing, bin packing, PDP, etc. 

• Ongoing projects with OscaR.cbls: 
– SAMOBI research project

• Sequence variable, refreshing the routing engine, PDP

– H2020 TANGO
• Flexible job-shop 

– 2 Regional
• Large capacitated warehouse with additional constraints
• Routing /scheduling stuff (not clear yet)

– Cornet
• Stochastic scheduling

– (?factory scheduling?, eval ongoing)

• Tutorial ongoing
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– Oscar

• Open source framework for combinatorial optimization

• CP, CBLS, MIP, DFO engines

– Open source LGPL license

• https://bitbucket.org/oscarlib/oscar

• Implemented in Scala

– Consortium 

• CETIC, UCL, N-Side    Belgium

• Contributions from UPPSALA, Sweden
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Local search in one slide

Pick an initial solution

Explore neighborhood

Move to best neighbor

Repeat

Until no better neighbor

Point in the search space

TSP : moving a city 
to another position in the tour

Current state: a  b  c  d  e  a
Moving city c yields three neighbors: 

a  c b  d  e  a
a  b  d  c e  a
a  b  d  e  c  a

O(n²) neighbors when considering all cities

TSP : all the possible tours 
n cities; (n-1)! tours

TSP : random tour?

Some black magic required 
to escape from local minima



The basic equation of local search

Local search–based solver = model + search procedure

Defines 
variables 
constraints
Objectives
…

Neighborhoods That modify 
some variables of the problem



The uncapacitated warehouse 

location problem

• Given

– S: set of stores that must be stocked by the warehouses

– W: set of potential warehouses 
• Each warehouse has a fixed cost fw

• transportation cost from warehouse w to store s is cws

• Find 

– O: subset of warehouses to open

– Minimizing the sum of the fixed and the transportation 
cost. 

• Notice

– A store is assigned to its nearest open warehouse
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A WLP solver written with 

neighbourhood combinators

val m = new Store()

val warehouseOpenArray = warehouses.map(
CBLSIntVar(m, 0 to 1, 0, "warehouse_" + _ + "")).toArray

val openWarehouses = Filter(warehouseOpenArray) 

val distanceToNearestOpenWarehouse = stores.map(
min(distanceCost(_), openWarehouses, 

defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse) 
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (BestSlopeFirst(List(
AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse"),
SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")),

onExhaustRestartAfter(
RandomizeNeighborhood(warehouseOpenArray, W/10), 2, obj))

val it = neighborhood.doAllMoves(obj)



Local search is 

(most of the time) black magic!

• Non exhaustive
– Seldom proof of optimality, only benchmarking

• Needs tuning: 
– Neighborhood rule

• What neighborhood? What parameters?

– Modeling
• Soft, hard, implicit, automatic constraint?

– Meta-heuristics
• When to call neighborhoods? tabu? Restart? Simulated annealing?

• … But it (can) work
– 3-opt for TSP <3% to optimum in practice!!
– iFlatiRelax <1% to optimality for cumulative jobShop

 Need for benchmarking, tuning, etc

OscaR.cbls is about making this quick, so you 
can get the most of your algorithm
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Modeling Support with OscaR

• Three types of variables
– IntVar, SetVar, and SeqVar

• Invariant library
–Logic: 

• Access on array of Int/SetVar, Filter, Cluster , etc.
–MinMax: 

• Min, Max, ArgMin, ArgMax
–Numeric: 

• Sum, Prod, Minus, Div, Abs , etc.
–Set: 

• Inter, Union, Diff, Cardinality , etc.
–Seq: 

• Concatenate, Size, Content , etc.
–Routig on Seq:

• Constant Distance, Node-Vehicle restrictions, etc.
Summing up to roughly 100 invariants in the library



A quick look under the hood:

Propagation graph for the WLP(4,6)

Propagation: update the output(s) to reflect a change on the inputs
– Single wave: elements are touched at most once
– Incremental: all invariants update their outputs incrementally
– Selective: only things that need to be updated wrt. changes are updated
– Partial: only things contributing to the needed output are updated

Automatic when using objectives, so mostly you do not have to worry about that
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Search support with OscaR

• Three sets of neighbourhoods
– Domain-independent: assign, swap, flip, roll, shift, etc.
– Routing: one point move,  2-opt, 3-opt, insert point, etc.
– Scheduling: flatten, relax
lots of tuning: symmetry elimination, hot restart, best/first, search zone, etc.

• Neighbourhood combinators
– Selecting neighbourhood
– Stop criteria
– Solution management
– Meta-heuristics: restart, simulated annealing
– Combined neighbourhood: cross-product “AndThen”, linear aggregation
– Graphical display of objective function vs. run time

• Can also use customized search procedure
based on linear selectors



Three shades of Warehouse Location

• All Assigns, all swaps, all assigns, etc

• … with best move for switch

• Tabu search (requires model extension)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ", best=true)
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse "
searchZone = nonTabuWarehouses , best=true)

acceptAll
afterMoveOnMove((a:AssignMove) => tabu(a.id) = It.value + tabulength; It += 1)
maxMoves xx withoutImprovementOver obj)
saveBestAndRestoreOnExhaust obj)

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)



Routing with OscaR.cbls

• Modelling

– The sequence variable

– Library of invariants

• Searching

– Library of neighbourhoods

– Compatible with our combinators

• Example

– Simple benchmark VRP

– A complex search strategy for deliveries



New sequence variable, for routing

• Why?   SPEED & GENERICITY !!

– Efficient representation of moves in the sequence

– Symbolic information on moves & check pointing

• Makes it possible to develop efficient constraints and 
invariants

– Library of efficient constraint and invariants, 

• Routing: distance matrix, node-vehicle restriction, etc.

• Standard: size, content, flip, append, etc.

• Dedicated, efficient data-structures



Routing convention

• All vehicle in the same sequence variable
• Vehicle [0..v-1] start from nodes [0..v-1]
• Vehicle starts are always in the sequence in that order
• Vehicle implicitly come back to their start point

– All invariants use this assumption
– You can “tune” distance matrices if it is not the case

• Vehicle starts cannot be moved
– But you can of course move all other nodes

• At most one occurrence of every value in the 
sequence

0 8 5 12 1 6 9 4 2 3
V=4



Routing: an (optional) VRP class
class MySimpleRoutingWithUnroutedPoints(n:Int,v:Int,

symmetricDistance:Array[Array[Int]],m:Store, maxPivot:Int)

extends VRP(n,v,m,maxPivot)

with ClosestNeighbors{

override def getDistance(from:Int,to:Int):Int= 

symmetricDistance(from)(to)

val penaltyForUnrouted = 10000

val routed = Content(routes.createClone(50))

val unrouted = Diff(CBLSSetConst(SortedSet(nodes:_*)),

routed)

val totalDistance = ConstantRoutingDistance(routes, v ,false, 

symmetricDistance, true)(0)

val obj = Objective(totalDistance + 

(penaltyForUnrouted*(n - Size(routes))))

val closestNeighboursForward = computeClosestNeighborsForward()

def size = routes.value.size

}

traits that add standard features. 
You can also add features in the class below



Main routing invariants (1/2)

• ConstantRoutingDistance
– given a distance matrix, 
– maintains the driven distance
– options: isSymmetric? perVehicle? preCompute?
– O(1) update on classical neighbourhoods (with proper options)

• ForwardCumulativeIntegerDimensionOnVehicle
– given a function (node × content × node’) =>content’
– maintains an array node=>content

• ForwardCumulativeConstraintOnVehicle
– given 

• a function (node × content × node’) =>content’
• a max capacity

– maintains a violation per vehicle (sum of overshoot per node)

• NodesOfVehicle
– given route
– maintains vehicle => set of nodes reached by vehicle



Main routing invariants (2/2)

• NodeVehicleRestrictions
– given set of couples (node,vehicle)

– maintains number of such couples (n,v) such that vehicle v 
reaches node n

– O(1) update on classical neighbourhoods!

• RouteSuccessorAndPredecessors
– given route

– maintains two IntVar arrays: node => predecessor,   node => 
successor

– you can declare virtually anything from these arrays, using 
element invariant

• VehicleOfNodes
– given route

– maintains a SetVar array: vehicle => nodes reached by vehicle



Routing neighbourhoods

• InsertPoint
– InsertPointRoutedFirst:    

for(r <- routed) 
for(u <- unrouted relevant wrt r)

…

– InsertPointUnroutedFirst
for(u <- unrouted)  

for(r <- routed relevant wrt u)
…

• OnePointMove
• RemovePoint
• SegmentExchange
• ThreeOpt
• TwoOpt

– TwoOpt1 
– TwoOpt2



Symetric VRP (v = 100) N vs. run time
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val search = (BestSlopeFirst(List(

insertPointUnroutedFirst(k=10), 

insertPointRoutedFirst(k=10), 

onePointMove(k=10),

twoOpt(k=10), 

threeOpt(k=10))) 

exhaust threeOpt(k=20))

Median over 10 runs  with symmetric distance:
square map with randomly placed points and straight line distance



Another example of search strategy

• Basic Problem: routing a tanker truck

– Serve as many customers as possible

– Need to refill at depot to serve more customer

• Problem: inserting depot pass is not desirable

• Solution: insert depot and additional customer at 
the same time to make it desirable

– Dedicated two-point-insert, built through cartesian
product of neighbourhoods



Other CBLS tools

• Comet
– First CBLS implem by pascal van Hentenryck
– Not maintained since 2008?

• Kangaroo
– One paper @CP2011, status unknown, not available

• LocalSolver
– Commercial tool, with acad licence
– Only Booleans and floats, very few invariants
– Closed search procedure, closed source

• EasyLocal++
– No support for modelling

• GoogleCP
– Not a CBLS tool; a CP engine mimicking CBLS, less scalability

• InCell
• Lion



Conclusion: Features of Oscar.cbls

• Modelling part: Rich modelling language
– IntVar, SetVar, SeqVar
– ~100 invariants: Logic, numeric, set, min-max, etc.
– 17 constraints: LE, GE, AllDiff, Sequence, etc.
– Constraints can attribute a violation degree to any variable
– Model can include cycles
– Fast model evaluation mechanism

• Efficient single wave model update mechanism
• Partial and lazy model updating, to quickly explore neighbourhoods

• Search part
– Library of standard neighbourhoods
– Combinators to define your global strategy in a concise way
– Handy verbose and statistics feature, to help you tuning your search

• Business packages: Routing, scheduling
– Model and neighbourhoods

• FlatZinc Front End [Bjö15]

• 49kLOC



Who is behind OscaR.cbls?

• CETIC team
– Renaud De Landtsheer
– Yoann Guyot
– Fabian Germeau
– Gustavo Ospina
– Christophe Ponsard

• Contributions from Uppsala
– Jean-Noël Monette
– Gustav Björdal

• Internships & MS Theses
– UMONS: Gaël Thouvenin, Sébastien Drobisz, Florent Ghilain, 

Jannou Bohée
– IPL: Fabian Germeau
– HENALUX: Quentin Wautelet



Where is OscaR?

• Repository / source code

– https://bitbucket.org/oscarlib/oscar/wiki/Home

• Released code and documentation

– https://oscarlib.bitbucket.org/

• Discussion group / mailing list

– https://groups.google.com/forum/?fromgroups#!foru
m/oscar-user

https://bitbucket.org/oscarlib/oscar/wiki/Home
https://oscarlib.bitbucket.org/
https://groups.google.com/forum/?fromgroups


Two typical remarks on OscaR.cbls

• Why don’t you use C/C++ with templates, and 
compile with gcc –o3? You would be 2 times faster!

• I can develop a dedicated solver that will run 2 
times faster because it will not need the overhead 
data structures of OscaR.cbls

… these remarks are correct, but …



Brain cycle 

is more valuable than CPU cycle

• Algorithmic tunings deliver more than 2 to 4!
– Ex: symmetry elimination on neighbourhoods

– Ex: Restricting your neighbourhood to relevant search 
zones

– Ex: Tuning when your neighbourhoods are actually used

– We lately had a speedup 10 by tuning a search procedure

• Our framework cuts down dev cost, 
so you have time to focus on these high-level tunings! 

• TODO: parallel propagation
– Goal: same “basic speed” as dedicated implem

– A core is cheaper than a single day of work for an engineer



Sörensen’s conjecture (Prof UAntwerp)

In the real world, solving

optimization problems

using exact methods is a

waste of resources


