L |
(Dcetic

Your Connection to ICT Research

Routing Optimisation
with OscaR.cbls
and some context

OscaR v4.0 - Spring 2017

Renaud De Landtsheer, Yoann Guyot, o @
Christophe Ponsard, Gustavo Ospina,

OscaR

OPERATIONAL RESEARCH IN SCALA

CelicC

Your C Researc h

* Academia:
— Given
* the distance matrix
— Find

* The cheapest permutation

* In the real world:

— You have to compute the distance matrix
100 points leads to ~10k distance

0.1 sec per distance leads to 16 minutes

] .
(Dcetic

Your Researc h

e Staff: 42
* Budget 2015: 4.8 M€

* Three research department:
— Software & System Engineering

* Software engineering, formal methods, code analysis,

optimization) requirements engineering

— Softwareand service technologies
* Cloud computing, distributes architectures, data management

— Embedded and Communication Systems
* |oT, heterogeneous hardware architectures

e Two economical activities:

Research projects:

 H2020, Cornet, Regional, etc

- §ETvIce 10 IOUSTTY:

e custom, short term, paid by company, IP transferred

CelicC

Your C Researc h

* PIPAs project: Job-shop scheduling
— Lot of budget; develop a CBLS engine with iFlatRelax: Asteroid

* Merging code base with Scampi (Pierre Schaus): OscaR
* Service on routing optimization, delivered wit GoogleCP

* SimQRi research project: Cornet

— Research on how to represent search strategies, notion of
combinators

e Service on Routing optimization round?2:

— Generating the distance matrix (a lot of work)

* with traffic jam
 Lots of algorithmic there (closed source, NDA)

— Switching to OscaR.cbls (not so much work)
* Because GoogleCP could not handle traffic jams

e Speed improvement,
* routing neighbourhoods into combinator framework

CelicC

Your C Researc h

* Internships: symmetry elimination, parallel
propagation, routing, bin packing, PDP, etc.

* Ongoing projects with OscaR.cbls:
— SAMOBI research project

* Sequence variable, refreshing the routing engine, PDP

— H2020 TANGO
* Flexible job-shop
— 2 Regional

* Large capacitated warehouse with additional constraints
* Routing /scheduling stuff (not clear yet)

— Cornet
* Stochastic scheduling

— (?factory scheduling?, eval ongoing)
* Tutorial ongoing

— Oscar OSCaR

OPERATIONAL RESEARCH IN SCALA

* Open source framework for combinatorial optimization

o CIP, DFO engines

— Open source LGPL license
* https://bitbucket.org/oscarlib/oscar
* Implemented in Scala

— Consortium
. UCL, N-Side Belgium

* Contributions from@UPPSALA) Sweden

6

b N
(Dcetic

Your Connectionto ICT Research

Content

* Introduction
— CETIC, OscaR.cbls
— OscaR.Cbls
e Using OscaR.cbls
— Local Search
— Warehouse location
* The OscaR.cbls framework
— Modelling
— Searching
* Routing with OscaR.cbls
— Modelling
— Searching
— Asimple example
— A complex example
* More examples:
— car sequencing
— FlowShop

e Conclusion

e Whois Who
* Some fun, in case you have questions

i, .
(Dcetic

onnectionto ICT Researc h

Local search in one slide

TSP : all the possible tours

n cities; (n-1)! tours

g - - - -

@ Point in the search space

Some black magic required
to escape from local minima

TSP : random tour?
Pick an initial solution

Repeat
Explore neighborhood
Move to best neighbor
Until no better neighbor

TSP : moving a city
to another position in the tour
Current state:a > b 2c 2d e 2a
Moving city c yields three neighbors:
a>c>b>d>e>a
a>b>d>c>e>a
a>b>d>e>c>a
O(n?) neighbors when considering all cities

)cehc

ectionto ICT Researc

‘I

"he basic equation of local search

Local search—based solver = model + search procedure

?

Defines
variables
constraints
Objectives

Neighborhoods That modify
some variables of the problem

CelicC

Your C Researc h

* Given
— S: set of stores that must be stocked by the warehouses

— W: set of potential warehouses
« Each warehouse has a fixed cost f,,
- transportation cost from warehouse w to store s is ¢,

* Find
— O: subset of warehouses to open
— Minimizing the sum of the fixed and the transportation

cost.
Z fw + ZminWeO (Cws) L4 ¢ ? * ?
weO seS e 2 o
) ° . ? ° . 2 o
* Notice '

— A store is assigned to its nearest open warehouse

C) b A WLP solver written with
Scelhic neighbourhood combinators

val m = new Store()

val warehouseOpenArray = warehouses.map(
CBLSIntVar(m, 0to 1, 0, "warehouse_" + _+"")).toArray

val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = stores.map(
min(distanceCost(_), openWarehouses,
defaultCostForNoOpenWarehouse)).toArray

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))
m.close()

val neighborhood = (BestSlopeFirst(List(
AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse"),
SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")),
onExhaustRestartAfter(
RandomizeNeighborhood(warehouseOpenArray, W/10), 2, obj))

val it = neighborhood.doAllMoves(obj)

[
cetic

Your Connectionto Research

* Non exhaustive
— Seldom proof of optimality, only benchmarking

* Needs tuning:

— Neighborhood rule
* What neighborhood? What parameters?

— Modeling
* Soft, hard, implicit, automatic constraint?
— Meta-heuristics
* When to call neighborhoods? tabu? Restart? Simulated annealing?

e ...Butit(can) work
— 3-opt for TSP <3% to optimum in practice!!
— iFlatiRelax <1% to optimality for cumulative jobShop

- Need for benchmarking, tuning, etc

OscaR.cbls is about making this quick, so you
can get the most of your algorithm

C) . Local search is
et cehic (most of the time) black magic!
* Non exhaustive ma%\c‘

— Seldom proof of optimality, only bench~ C\(
* Needs tuning: 3 S b\a
— Neighbr*' \\ \

CelicC

Your C Researc h

* Three types of variables
— IntVar, SetVar, and SeqgVar

* |nvariant library
—Logic:
 Access on array of Int/SetVar, Filter, Cluster, etc.
—MinMax:
* Min, Max, ArgMin, ArgMax
—Numeric:
* Sum, Prod, Minus, Div, Abs, etc.
—Set:
* Inter, Union, Diff, Cardinality, etc.
—Seq:
* Concatenate, Size, Content , etc.
—Routig on Seq:
* Constant Distance, Node-Vehicle restrictions, etc.
Summing up to roughly 100 invariants in the library

C> b A quick look under the hood:
Scelhic Propagation graph for the WLP(4,6)

WO

W1
OpenWs
W2 WsCost Openmg
Cost]
i obj
W3 WsToSO OpenWToS0
WsToS1 OpenWToS1
From the
WsToS2 OpenWToS2
Distance — P Transport
matrix WsToS3 OpenWToS3 Cost
WsToS4 OpenWToS4
— WsToS5

OpenWToS5

Propagation: update the output(s) to reflect a change on the inputs
— Single wave: elements are touched at most once
— Incremental: all invariants update their outputs incrementally
— Selective: only things that need to be updated wrt. changes are updated

— Partial: only things contributing to the needed output are updated
Automatic when using objectives, so mostly you do not have to worry about that

[
cetic

Your Connectionto Research

* Three sets of neighbourhoods
— Domain-independent: assign, swap, flip, roll, shift, etc.
— Routing: one point move, 2-opt, 3-opt, insert point, etc.
— Scheduling: flatten, relax
lots of tuning: symmetry elimination, hot restart, best/first, search zone, etc.

* Neighbourhood combinators
— Selecting neighbourhood
— Stop criteria
— Solution management
— Meta-heuristics: restart, simulated annealing
— Combined neighbourhood: cross-product “AndThen”, linear aggregation
— Graphical display of objective function vs. run time

* Can also use customized search procedure
based on linear selectors

-

.\ - °
(Dcetic Three shades of Warehouse Location

Your Connectionto ICT Research

* All Assigns, all swaps, all assigns, etc

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust ob))

e ... with best move for switch

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse ", best=true)
exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust ob))

e Tabu search (requires model extension)

search = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse "
searchZone = nonTabuWarehouses , best=trug)

cceptAll
fterMoveOnMove((a:AssignMove) => tabu(a.id) = It.value + tabulength; It += 1)

maxMoves xx withoutimprovementOver ob))
saveBestAndRestoreOnExhaust ob))

CelicC

Your Connectionto Researc h

* Modelling

— The sequence variable

— Library of invariants
e Searching

— Library of neighbourhoods

— Compatible with our combinators
* Example

— Simple benchmark VRP
— A complex search strategy for deliveries

CelicC

Your C Researc h

* Why? SPEED & GENERICITY !!

— Efficient representation of moves in the sequence
— Symbolic information on moves & check pointing

* Makes it possible to develop efficient constraints and
invariants

— Library of efficient constraint and invariants,
* Routing: distance matrix, node-vehicle restriction, etc.
e Standard: size, content, flip, append, etc.

 Dedicated, efficient data-structures

T @ @0 000

All
Ve
Ve
Ve

ve
NIC
NIC

NIC

nicle in the same sequence variable

e [0..v-1] start from nodes [0..v-1]

e starts are always in the sequence in that order
e implicitly come back to their start point

— All invariants use this assumption

— You can “tune” distance matrices if it is not the case
Vehicle starts cannot be moved

— But you can of course move all other nodes

At most one occurrence of every value in the
sequence

I :
(Dcetic Routing: an (optional) VRP class

Your Connectionto ICT Research

class

MySimpleRoutingWithUnroutedPoints (n:Int,v:Int,
symmetricDistance:Array[Array[Int]],m:Store, maxPivot:Int)

extends VRP (n,v,m,maxPivot) .
with ClosestNeighbors { traits that add standard features.

You can also add features in the class below

override def getDistance (from:Int,to:Int) :Int=

val

val

val

val

val

val

def

symmetricDistance (from) (to)

penaltyForUnrouted = 10000

routed = Content(routes.createClone (50))
unrouted = Diff(CBLSSetConst (SortedSet (nodes: *)),
routed)

totalDistance = ConstantRoutingDistance(routes, v ,false,
symmetricDistance, true) (0)

obj] = Objective(totalDistance +
(penaltyForUnrouted* (n - Size(routes))))

closestNeighboursForward = computeClosestNeighborsForward ()

size = routes.value.size

I
cetic

Your Connectionto Research

* ConstantRoutingDistance

— given a distance matrix,

— maintains the driven distance

— options: isSymmetric? perVehicle? preCompute?

— 0O(1) update on classical neighbourhoods (with proper options)
* ForwardCumulativelntegerDimensionOnVehicle

— given a function (node x content x node’) =>content’

— maintains an array node=>content

 ForwardCumulativeConstraintOnVehicle
— given
e afunction (node x content x node’) =>content’
* A max capacity

— maintains a violation per vehicle (sum of overshoot per node)

* NodesOfVehicle

— given route
— maintains vehicle => set of nodes reached by vehicle

CelicC

Your C Researc h

* NodeVehicleRestrictions
— given set of couples (node,vehicle)

— maintains number of such couples (n,v) such that vehicle v
reaches node n

— 0O(1) update on classical neighbourhoods!

e RouteSuccessorAndPredecessors
— given route

— maintains two IntVar arrays: node => predecessor, node =>
successor

— you can declare virtually anything from these arrays, using
element invariant

e VehicleOfNodes

— given route
— maintains a SetVar array: vehicle => nodes reached by vehicle

[
cetic

Your Connectionto Research

* |nsertPoint

— InsertPointRoutedFirst:
for(r <- routed)
for(u <- unrouted relevant wrt r)

— InsertPointUnroutedFirst
for(u <- unrouted)
for(r <- routed relevant wrt u)

* OnePointMove
* RemovePoint
 SegmentExchange
* ThreeOpt
* TwoOpt

— TwoOptl

— TwoOpt2

Ocetic Symetric VRP (v = 100) N vs. run time

Your Connectionto ICT Research

val search = (BestSlopeFirst(List (
insertPointUnroutedFirst (k=10),
insertPointRoutedFirst (k=10),
onePointMove (k=10),
twoOpt (k=10),
threeOpt (k=10)))
exhaust threeOpt (k=20))

Median over 10 runs with symmetric distance:
square map with randomly placed points and straight line distance

30 26,7
25

20
15

10

Run time [second]

1k 3k 5k 7k 9k 11k
Number of points

CelicC

Your C Researc h

* Basic Problem: routing a tanker truck
— Serve as many customers as possible
— Need to refill at depot to serve more customer

* Problem: inserting depot pass is not desirable

* Solution: insert depot and additional customer at
the same time to make it desirable

— Dedicated two-point-insert, built through cartesian
product of neighbourhoods

val routingWithDepotSearch =
insertPoint
orElsecnseriDepot andThen inseriPoini]=>
exhaustBack new arning concromtMove ,
threeOpt ,swaplnsert , ..

cehc

Your Connectionto Researc

* Comet

— First CBLS implem by pascal van Hentenryck

— Not maintained since 2008?
* Kangaroo

— One paper @CP2011, status unknown, not available
* LocalSolver

— Commercial tool, with acad licence

— Only Booleans and floats, very few invariants

— Closed search procedure, closed source
 Easylocal++

— No support for modelling
 GoogleCP

— Not a CBLS tool; a CP engine mimicking CBLS, less scalability
e [nCell

e Lion

[
cetic

Your Connectionto Research

Modelling part: Rich modelling language

IntVar, SetVar, SeqVar

~100 invariants: Logic, numeric, set, min-max, etc.

17 constraints: LE, GE, AlIDiff, Sequence, etc.
Constraints can attribute a violation degree to any variable
Model can include cycles

Fast model evaluation mechanism
* Efficient single wave model update mechanism
e Partial and lazy model updating, to quickly explore neighbourhoods

Search part

Library of standard neighbourhoods
Combinators to define your global strategy in a concise way
Handy verbose and statistics feature, to help you tuning your search

Business packages: Routing, scheduling

Model and neighbourhoods

FlatZinc Front End [Bj015]

49kLOC

\.)CQNC Who is behind OscaR.cbls?

ectionto ICT Researc

* CETIC team
— Renaud De Landtsheer
— Yoann Guyot
— Fabian Germeau
— Gustavo Ospina
— Christophe Ponsard

* Contributions from Uppsala
— Jean-Noél Monette
— Gustav Bjordal

* |Internships & MS Theses

— UMONS: Gaél Thouvenin, Sébastien Drobisz, Florent Ghilain,
Jannou Bohée

— |PL: Fabian Germeau
— HENALUX: Quentin Wautelet

[.
(Dcetic

Your Researc h

* Repository / source code
— https://bitbucket.org/oscarlib/oscar/wiki/Home

e Released code and documentation
— https://oscarlib.bitbucket.org/

 Discussion group / mailing list

— https://sroups.google.com/forum/?fromgroups#!foru
m/oscar-user

https://bitbucket.org/oscarlib/oscar/wiki/Home
https://oscarlib.bitbucket.org/
https://groups.google.com/forum/?fromgroups

I
cetic

Your Connec tionto ICT Research

 Why don’t you use C/C++ with templates, and
compile with gcc —03? You would be 2 times faster!

* [can develop a dedicated solver that will run 2
times faster because it will not need the overhead

data structures of OscaR.cbls

... these remarks are correct, but ...

o . Brain cycle
SCelic is more valuable than CPU cycle

e Algorithmic tunings deliver more than 2 to 4!
— Ex: symmetry elimination on neighbourhoods

— Ex: Restricting your neighbourhood to relevant search
zones

— Ex: Tuning when your neighbourhoods are actually used
— We lately had a speedup 10 by tuning a search procedure

 Our framework cuts down dev cost,
so you have time to focus on these high-level tunings!

 TODO: parallel propagation
— Goal: same “basic speed” as dedicated implem
— A core is cheaper than a single day of work for an engineer

N
Ocetic ssrensen’s conjecture (Prof UAntwerp)

nnectionto ICT Researc h

In the real world, solving
optimization problems
using exact methods is a
waste of resources

