
Uppsala Programming for Multicore
Architectures Research Center

Cache Pirating: Measuring the Performance
Impact of Cache Sharing

Nikos Nikoleris, David Eklov, David Black-Schaffer and Erik Hagersten

Shared Cache Matters

1. OMNeT++

Performance as a function of shared

cache allocation

0.0

0.5

1.0

1.5

2.0

2.5

2M 4M 6M 8M

C
P

I

cache size

We can accurately predict scaling!

1

2

3

4

1 2 3 4

T
hr

ou
gh

pu
t

cores

ideal

measured

predicted

We run up to four instances of the same application on a quad core
Nehalem with 8MB of shared cache

Each instance takes equal portion of the cache.

Naively expect: throughput to scale perfectly.

Measured data: show that shared caches and bandwidth have a great
impact on performance (not surprising).

With Cache Pirating we can accurately predict the performance
impact due to cache sharing on real hardware with 5.5% overhead.

2. LBM

Performance as a function of shared

cache allocation

0.0

0.4

0.8

1.2

1.6

2M 4M 6M 8M

C
P

I

cache size

Scaling prediction is wrong!

1

2

3

4

1 2 3 4

T
hr

ou
gh

pu
t

cores

ideal

measured

predicted
δ

Bandwidth
consumption?

Bandwidth as a function of shared

cache allocation

0

1

2

3

2M 4M 6M 8M

B
an

dw
id

th
(G

B
/s

)

cache size

Explanation: Beyond 3 instances we

hit the memory wall!

0

4

8

12

1 2 3 4

B
an

dw
id

th
(G

B
/s

)

cores

10.4GB/s

Overview

Cache Pirating is a low overhead method
for measuring application performance and
off-chip bandwidth as a function of the
available shared cache capacity on real
hardware.

The Target application is co-run with a
Pirate application that steals shared cache.
The Pirates steals the desired amount of
cache to control how much the Target gets.

Cache Pirating uses performance counters
to measure the Target’s behavior. Any
performance metric available on the
hardware can be measured.

Cache Pirating

Memory

CPU

Shared Cache

Core 3

Pirate

Core 2Core 1Core 0

Target

The Pirate
steals the de-
sired amount of
cache

1

The Target runs
with the re-
maining cache
space 2

Performance
counters are
used to measure
the Target’s
behavior 3

The Pirate miss
ratio is moni-
tored. The Pi-
rate is success-
ful stealing the
desired cache
space as long as
its cache miss
ratio is zero

4

Application Insights from Cache Pirate Data

F
/M

R
at

io

435.gromacs

B
W

C
P

I

cache size

Miss Ratio
Fetch Ratio

0.1%

0.2%

0.3%

0.0

0.1

0.2

0.3

0.0

0.6

1.2

1M 3M 5M 7M

1) Miss Ratio ' Fetch Ratio →

prefetching is not effective

2) Bandwidth and Miss Ratio →

10x increase

3) But CPI constant →

insensitive to latency

F
/M

R
at

io

482.sphinx3

B
W

C
P

I

cache size

Miss Ratio
Fetch Ratio

0%

2%

4%

0

1

2

0.0

0.5

1.0

1M 3M 5M 7M

1) Miss Ratio ≤ Fetch Ratio →

small amount of prefetching

2) Bandwidth and Miss Ratio →

20x increase

3) But CPI increase by 50% →

somewhat sensitive to increased

memory latency

F
/M

R
at

io

470.lbm

B
W

C
P

I

cache size

Miss Ratio
Fetch Ratio

0%

3%

6%

0

1

2

3

0.0

0.8

1.6

1M 3M 5M 7M

1) Miss Ratio < Fetch Ratio →

prefetching is doing significant job

pr
ef

et
ch

in
g

2) Bandwidth and Miss Ratio →

2x increase

3) CPI constant →

heavily leverages prefetching but

also heavily benefits from it

Department of Information Technology, Uppsala University http://it.uu.se/


