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Shared Cache Matters

1. OMNeT++

Performance as a function of shared

cache allocation
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We can accurately predict scaling!
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We run up to four instances of the same application on a quad core
Nehalem with 8MB of shared cache

Each instance takes equal portion of the cache.

Naively expect: throughput to scale perfectly.

Measured data: show that shared caches and bandwidth have a great
impact on performance (not surprising).

With Cache Pirating we can accurately predict the performance
impact due to cache sharing on real hardware with 5.5% overhead.

2. LBM

Performance as a function of shared

cache allocation
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Scaling prediction is wrong!
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Bandwidth
consumption?

Bandwidth as a function of shared

cache allocation
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Explanation: Beyond 3 instances we

hit the memory wall!
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Overview

Cache Pirating is a low overhead method
for measuring application performance and
off-chip bandwidth as a function of the
available shared cache capacity on real
hardware.

The Target application is co-run with a
Pirate application that steals shared cache.
The Pirates steals the desired amount of
cache to control how much the Target gets.

Cache Pirating uses performance counters
to measure the Target’s behavior. Any
performance metric available on the
hardware can be measured.

Cache Pirating
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The Target runs
with the re-
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Performance
counters are
used to measure
the Target’s
behavior 3

The Pirate miss
ratio is moni-
tored. The Pi-
rate is success-
ful stealing the
desired cache
space as long as
its cache miss
ratio is zero
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Application Insights from Cache Pirate Data
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1) Miss Ratio ' Fetch Ratio →

prefetching is not effective

2) Bandwidth and Miss Ratio →

10x increase

3) But CPI constant →

insensitive to latency
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1) Miss Ratio ≤ Fetch Ratio →

small amount of prefetching

2) Bandwidth and Miss Ratio →

20x increase

3) But CPI increase by 50% →

somewhat sensitive to increased

memory latency
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1) Miss Ratio < Fetch Ratio →

prefetching is doing significant job
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2) Bandwidth and Miss Ratio →

2x increase

3) CPI constant →

heavily leverages prefetching but

also heavily benefits from it
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