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Abstract

The widening memory gap reduces performance of
applications with poor data locality. Therefore, there
is a need for methods to analyze data locality and help
application optimization. In this paper we present Stat-
Cache, a novel sampling-based method for performing
data-locality analysis on realistic workloads. StatCache
is based on a probabilistic model of the cache, rather
than a functional cache simulator. It uses statistics
from a single run to accurately estimate miss ratios of
fully-associative caches of arbitrary sizes and generate
working-set graphs.

We evaluate StatCache using the SPEC CPU2000
benchmarks and show that StatCache gives accurate re-
sults with a sampling rate as low as ����. We also pro-
vide a proof-of-concept implementation, and discuss po-
tentially very fast implementation alternatives.

1 Introduction

Most modern high performance computers use cache
memories to bridge the widening gap between DRAM
access time and processor cycle time. This causes poor
performance in many memory-intensive applications.
Therefore, we need efficient methods to locate and ex-
plain cache-related performance bottlenecks.

Cache misses can be divided into conflict, capacity
and cold misses. These different types of cache misses
have different causes and are subsequently reduced us-
ing different methods. For example conflict misses
can often be reduced by padding data structures, while
blocking is efficient in reducing capacity misses. This
paper focuses on the often dominating capacity misses,
and to reduce these misses we need to improve appli-
cation data locality. To quantify the data locality, we
can study the miss ratio of fully-associative caches and

plot working-set graphs, that is, the miss ratio of a fully-
associative cache plotted as a function of its size.

Simulating fully-associative caches is time-
consuming. For long-running applications, the
simulation time is often unbearable. Two common
methods to reduce simulation time is time sampling
and set sampling, but both have drawbacks [11]. Time
sampling often requires very long warm-up periods, and
set sampling is often very sensitive to unrepresentative
set selection.

We present StatCache, a novel probabilistic approach
to estimate miss ratios of fully-associative caches.
Rather than implementing a functional fully-associative
cache simulator, StatCache uses a probabilistic model
of a fully-associative cache to estimate its miss ratio. A
major advantage is that it is based on a statistic that is
easy to sample. In the paper, we show that StatCache
gives accurate results with an overall sampling rate as
low as ����. We present a proof-of-concept implemen-
tation with an average execution-time slowdown of only
5.8 times, and suggest other potentially very fast imple-
mentations. While this paper focuses on program opti-
mization and tuning, the method could prove useful in
other areas as well, such as workload characterization
in computer architecture. An extended version of this
paper is available as a technical report [2].

2 StatCache

StatCache is a method for analyzing run-time data lo-
cality and cache behavior. It monitors the addresses of
the memory read and write operations of an application
and models its data cache behavior. In this sense Stat-
Cache is comparable to trace-driven cache simulation,
but StatCache is based on a probabilistic model of the
cache, rather than a functional simulator. The proba-
bilistic model uses the fact that a piece of data is less
likely to reside in the cache the longer time it has been
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Figure 1. The figure illustrates the reuse
distances. The arrows indicate reuse of
cache lines, and the numbers next to the
arrows are the corresponding reuse dis-
tances assigned to the memory references
pointed at by the arrows.

unused.
StatCache is divided into a run-time part and a post-

processing part. During run time, StatCache collects
a cache-size-independent easy-to-sample data-access
statistic. However, it is not possible to directly read out
quantitative cache performance from the run-time statis-
tic. Therefore, StatCache incorporates a post-processing
system that applies the probabilistic cache model to the
collected statistics and estimates average cache miss ra-
tios of arbitrary-sized fully-associative caches.

2.1 Run-time Statistics

The application StatCache examines reads and writes
memory. This gives a sequence of memory addresses,
called address trace. The addresses in the trace are
enumerated from � to � , where � is the total num-
ber of read and write operations the application per-
forms. We will refer to addresses in the address trace
as memory references, or simply references. StatCache
considers the addresses of different data words within
the same cache-line-sized piece of memory to be equal.
The method currently do not consider timing effects and
treats read and write operations equally.

Reuse distance is the run-time statistic that StatCache
uses. It is defined as follows: Assume that the references
� and � (� � �) access the same cache-line-sized piece of
memory,�, and that there are no intermediate references
to �. Then the reuse distance of reference � is �� �� �,
that is, the reuse distance is the number of intermediate
memory references. Figure 1 illustrates this. Assume
the application accesses the cache lines ����� � � � The
arrows indicate reuse, and the numbers next to the ar-
rows indicate the reuse distance. Note that this differs
from the stack distance in that it counts all intermediate
references, not just different ones. For example the stack
distance of reference 6 is only 2 [20] .

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1  10  100  1000  10000  100000

N
um

be
r 

of
 m

em
or

y 
re

fe
re

nc
es

Reuse distance

ART reuse distance distribution
ART sampled distribution

EQUAKE reuse distance distribution
EQUAKE sampled distribution

Figure 2. Reuse-distance histograms for
the benchmarks art and equake. The di-
agram shows two graphs for each bench-
mark, one based on every reuse distance,
and one based on sampling.
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Figure 3. Sampling reuse distances.

2.2 Reuse Distance Histogram

The distribution of reuse distances can be viewed as
a histogram. We call such a histogram 	, and let 	��� be
the number of memory references with reuse distance
zero, 	��� the number of memory references with reuse
distance one, and so on. Figure 2 shows two examples
of such histograms for the SPEC benchmarks art and
equake.

2.3 Sampling

The simple definition of the reuse distance makes
sampling easy. The post-processing part of StatCache
does not need the reuse distance of every memory refer-
ence, but base its miss-ratio estimates on reuse-distance
distributions, like those shown in Figure 2. Such dis-
tributions can be estimated by measuring the reuse dis-
tance of only a small fraction of all memory refer-
ences. In Figure 2, there are two versions of the reuse-
distance histogram for each benchmark, one based on
the reuse distance of every reference, and one approx-



imation based on sampling. The shape of the sampled
and original distributions are very similar despite an
overall sampling rate of only one in ten thousand.

StatCache implements sampling by monitoring ran-
domly selected references. The run-time system in Stat-
Cache needs the following support mechanisms to do
this:

A sample selector The sample selector selects random
load and store instructions and start monitoring the
cache-line-sized piece of data that is read or written
by that instruction.

A watchpoint mechanism The watchpoint mechanism
monitors the selected cache-line-sized pieces of
memory and informs the StatCache run-time sys-
tem when the application accesses monitored mem-
ory.

A memory reference counter The StatCache run-time
system uses the memory reference counter to cal-
culate reuse distances.

Figure 3 illustrates how these mechanisms are used. The
sample selector first selects a memory reference to study
and the StatCache run-time system sets a watchpoint
on the corresponding cache-line-sized piece of mem-
ory. This happens at reference 1 in the example. The
watchpoint then detects when the application attempts
to access the same cache line again and reports to the
run-time system, reference 6 in the figure. The run-time
system uses the reference counter to calculate the reuse
distance and records the result. It may be necessary to
have several active watchpoints at a time.

2.4 Post-processing

The post-processing system in StatCache uses a prob-
abilistic model to estimate cache miss ratios from the
run-time statistic, that is, the reuse-distance histogram,
described earlier.

Assume that a cache is fully associative, has 
 cache
lines and uses random replacement policy. The proba-
bility is ��� ��
� that a cache line remains in the cache
after one cache miss and ��� �

�
�� after � cache misses.

Let 
��� be the probability that a cache line does not
remain in the cache after � cache misses, i.e.


��� � ��

�
��

�




��
(1)

Next, assign a stochastic variable �� to every memory
reference. Let

�� �

�
� if reference � results in a cache miss
� otherwise
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Figure 4. Estimating cache misses using
reuse distance.

and let �� be a function such that �� � �����.
We want an estimate of ��, that is, the probability

that reference � causes a cache miss. First, let ���� be
the reuse distance of reference �. Then use the reuse
distance to find the previous reference that accessed the
same cache line, this is reference ������� �. Figure 4
illustrates this. The sum

��������� ���������� � � � ������� �

������� � ��������� � � � �� ����

estimates the number of actual misses in the interval.
Function 1 gives an estimate of ��:

�� � 
�������� � ��������� � � � �� ����� (2)

We can now sum both sides of this expression from 1
to � , which gives:

��
���

�� �

��
���


�������� � ��������� � � � �� ����� (3)

This expression gives a relation between all ��, but it
contains too many unknowns to deduce a formula for the
overall miss ratio. Therefore, assume for now, that the
overall miss ratio, �, does not change over time, which
means that

�� � ���� � � � �� ������ � � � � (4)

where � � �� ��� �� � � .
Note that the argument of 
 in expression 3 contains

���� terms. We apply assumption 4 and get ������� �
���������� � � ������ � ���� ��. Furthermore, the left
side of expression 3 becomes equal to � � �. Thus

� �� �

��
���


 ����� � �� � (5)

Consider the sum in this expression. The number of
terms with ���� equal to some constant �, is equal to
the number of memory references with reuse distance



�. The run-time statistic, the histogram 	, tells us that
there are 	��� memory references with reuse distance
�. This allows expression 5 to be rewritten as

�� � 	���
����	���
�����	���
����� � � � (6)

StatCache solves this equation for � and the solution
is an approximation to the miss ratio. The formula is
implicit, but is easy to solve with numerical methods.

Our early experiments showed that equation 6 gives
accurate results for applications that satisfy the assump-
tion that the miss ratio does not change over time, but
the accuracy is poor for other applications. The solution
is to approximate the varying miss ratio with a piece-
wise constant function. StatCache splits the execution
into small time slots and generates a histogram for each
slot. It then estimates the miss ratio of each time slot
with equation 6 and finally calculates the average over
all time slots to get an overall miss ratio.

We use a time slot length of about 200k references in
this paper. This gives a rather rough histogram approx-
imation, but our experiments showed that it was best to
use short time slots. Also, the shorter the time slot is,
the more miss ratios are used in the calculation of the
average overall miss ratio.

2.5 Generating Working-Set Graphs

The number of cache lines, 
, can be set arbitrarily
when solving equation 6. Thus, a single run generates
all information needed to calculate miss ratios of fully
associative caches of arbitrary sizes. By solving equa-
tion 6 for different values of 
, working set graphs can
easily be generated. Note that the number of cache lines,

, need not be a power of 2.

2.6 Cold Misses

StatCache will simply ignore all references to mem-
ory that have not been accessed before, because the
reuse distance is not defined for the first references to a
piece of data. Therefore, the miss ratios StatCache gives
will not include cold misses. However, the number of
cold misses is usually small, so the effect can often be
ignored. The good thing is that capacity misses are sep-
arated from both conflict misses and cold misses.

3 Experimental Evaluation

We have evaluated StatCache by comparing it to a
functional cache simulator. The evaluation is based on
trace-driven simulation, using traces generated by the
Simics [17] full system simulator. It simulates a Sun

UltraSPARC II workstation-like computer. We simu-
late both StatCache and the fully-associative caches we
compare with so that the StatCache method as such may
be evaluated, and exclude possible deficiencies in an
implementation. To cut simulation time, we used the
twenty benchmarks from the SPEC CPU2000 suite that
are available with large reduced input data sets [12]. The
length of the reduced traces are between 	� � ��� and

�� � ��� references.

The StatCache simulator sequentially reads the trace
and increments a common memory reference counter
for every memory reference. Using a random gener-
ator it samples memory references and adds their ad-
dresses and the corresponding value of the memory ref-
erence counter to a list of watchpoints. When an address
from the trace matches a watchpoint, the reuse distance
is added to a reuse distance histogram, like that in Fig-
ure 2, and the watchpoint is removed. The execution
is split into time slots as described in section 2.4 to get
accurate miss ratio estimates.

We have also simulated fully-associative caches with
random replacement from 2 K Byte to 4M Byte us-
ing the traces from Simics. The miss ratios Stat-
Cache computes exclude cold misses, and to exam-
ine the effect of this, the results come in two flavors,
with cold misses (FA RND) or without cold misses
(FA RND NOCOLD). If the cold misses are negligible
we only present miss ratios including cold misses, oth-
erwise we present both results. Fully associative caches
with LRU replacement (FA LRU) have also been simu-
lated to investigate if there is a significant difference be-
tween the LRU and random replacement policies. The
cache line size is 32 bytes throughout the paper.

3.1 StatCache Accuracy

Figures 5 shows miss ratios of fully associative
caches with random replacement (FA RND) compared
to miss ratios estimated by StatCache using a sampling
rate of ����. StatCache manages to accurately esti-
mate the absolute values of the miss ratios, to capture
the overall shape of the working set graphs well, and
to give stable, smooth curves. In the case of art, twolf,
and vpr route, they are almost identical. For perlbmk,
the curves deviate between 2K Byte and 4K Byte be-
cause we have only simulated fully associative caches
with power-of-two sizes. Note that the low sampling
ratio gives only 9000 - 80000 samples per application,
which is less than the warm up period for large caches.
Equake, mcf and mesa have a large fraction of cold
misses. For these applications we also show graphs for
fully associative caches with the cold misses removed
(FA RND NOCOLD).
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Figure 5. StatCache compared to fully-associative caches with random replacement (labeled
FA RND). The graphs show the miss ratio as a function of cache size for 20 benchmarks. Stat-
Cache accurately estimates the miss ratio of the fully-associative cache and the general behav-
ior is well captured. The graphs for equake and mcf show that StatCache does not measure
cold misses. StatCache is much closer to the graphs without cold misses (FA RND NOCOLD)
than the graphs that include cold misses (FA RND).



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

2K2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

StatCache, art
FA_RND, art
FA_LRU, art

StatCache, gzip_program
FA_RND, gzip_program
FA_LRU, gzip_program

 0

 1

 2

 3

 4

 5

2K2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

StatCache, bzip2_graphic
FA_RND, bzip2_graphic
FA_LRU, bzip2_graphic

Figure 6. Examples of the difference
between LRU-(FA LRU) and random-
(FA RND) replacement policies of fully-
associative caches on the benchmarks
art, gzip program, and bzip2 graphic. The
graphs show that the two replacement
policies usually give similar miss ratios.

3.2 Impact of Replacement Policy

Using random or LRU-replacement policy have little
effect on the miss ratio for most applications, but small
differences exist, as Figure 6 shows. For bzip2 graphic,
LRU-replacement gives a smaller miss ratio for small
caches, but the difference vanishes as the cache size
grows.

For art, LRU-replacement policy tend to give larger
miss ratios for caches between 256K byte and 1M byte.
This is typical of applications that traverse large amounts
of data without reusing them for a long time. Compare
with Figure 2, where the reuse-distance histogram of art
has a bump for large reuse distances. For some applica-
tions, like gzip program, the difference is very small.

4 Implementation

An implementation of StatCache must provide the
sampling and watchpoint mechanisms, and the memory
reference counter described in section 2.3.

The proof-of-concept implementation is based on
code instrumentation. We use the SAIT[9] SPARC as-
sembly code instrumentation tool to insert a small piece
of code, called snippet, next to every load and store in-
struction. The application is first compiled into assem-
bly code using the usual C or F90 compiler, then instru-
mented, and finally compiled into object files that are
linked with the StatCache runtime system.

The inline code snippet first decrements the reference
counter. If the reference counter reaches zero it calls a
sample handler that sets a watchpoint on the accessed
cache line and resets the reference counter with a ran-
dom value that indicates when the next sample should
be taken. The snippet also uses a hash table to check
for watchpoints and, if it is a hit, calls a watchpoint han-
dler. The watchpoint handler removes the watchpoint,
calculates and records the reuse distance, and updates
the hash table.

The performance is mostly determined by the watch-
point mechanism that must check every memory access,
but efficient watchpoint mechanisms may be available in
hardware. Most modern processors have at least a few
programmable hardware watchpoints, and the MMU
and memory protection system may be used to imple-
ment watchpoints.

We used the SPEC reference inputs to evaluate the
performance of the proof-of-concept implementation on
ten benchmarks 1. We run the benchmarks on a Sun
E450 with four 450MHz Ultra SPARC II CPUs. The
average slowdown was 5.8 times on optimized code 2.

Figure 7 shows the working-set graph of ammp gen-
erated by the proof-of-concept implementation and ref-
erence input. Observe that the shape of the curve and
the absolute values deviate from the results presented in
Figure 5. This emphasizes the importance of performing
measurements on realistic data sets.

5 Related Work

There are several ways to investigate an applications
memory and cache behavior, each modelling different

1168.wupwise, 171.swim, 172.mgrid, 173.applu, 177.mesa,
178.galgel, 179.art, 183.equake, 187.facerec, and 301.apsi

2The uninstrumented code we used as baseline were compiled with
Sun Forte C and Fortran compiler, version 5.4 and 7 respectively.
Compiler flags for C/Fortran: -xO5 -xarch=v8plus. Same or lower
optimization were used for instrumented codes.
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levels of detail: full system computer simulation, in-
struction set simulation, user level simulation or code in-
strumentation, source code instrumentation, trap driven
cache simulation and measurements on hardware using
hardware profiling support.

Full system simulators include Simics [17] and
SimOS [15]. They allow very detailed cache simula-
tions, but suffer from large slowdown. Many tools have
been built using binary code instrumentation tools like
DIOTA [16], ATOM [7] or EEL [13]. Examples are
SIGMA [6], CPROF [14] and MemSpy [18][19]. These
tools are much faster than simulators, but their slow-
downs are still considerable, between 5 and 50 times is
common. They can simulate caches to the desired detail,
but cannot capture operating system interaction. Source
instrumentation have also been explored, for example in
MHSIM [10].

Trace sampling is used to speed up cache hierar-
chy simulation. It can be applied to all levels of detail
of computer and application simulation. The common
methods of sampling are time sampling [22][11] [5][8]
and set sampling [11] [5].

Hardware monitoring tools collect statistics from
hardware and present the information in aggregated
form to the user. Examples are DCPI [1], which uses an
advanced hardware support to collect detailed informa-
tion to the programmer, and PAPI [3] which is a com-
mon programming interface to access hardware moni-
toring aids. Histogramming and tracing hardware may
be used to detect for example cache conflicts [21] and

locate problem areas [4]. The execution time overhead is
very small, but they can only provide information about
the configuration of the current machine. Interference
between different applications may also be a problem.

6 Conclusions

In this paper, we have presented StatCache, a novel
sampled-based method to analyze data locality. Based
on sparse discrete samples of memory references and
measurement of their reuse distances, StatCache esti-
mates miss ratios of fully associative caches of arbitrary
sizes and generates working set graphs. This informa-
tion is useful for the study of application data locality.

We have evaluated the method using the SPEC
CPU2000 benchmarks, and shown that StatCache gives
accurate results with a sampling rate as low as ����. Our
investigations also indicate that the replacement policy
has limited impact on the shape of the working set graph
of the benchmarks in this study. Finally, we have pre-
sented a proof-of-concept implementation capable of an-
alyzing realistic workloads with an average slowdown of
only 5.8 times, and discussed very fast implementations
alternatives.
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