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Abstract

The introduction of general-purpose microprocessors
running multiple threads will put a focus on methods and
tools helping a programmer to write efficient parallel appli-
cations. Such a tool should be fast enough to meet a soft-
ware developer’s need for short turn-around time, but also
be accurate and flexible enough to provide trend-correct
and intuitive feedback.

This paper presents a novel sample-based method for
analyzing the data locality of a multithreaded application.
Very sparse data is collected during a single execution of
the studied application. The architectural-independent in-
formation collected during the execution is fed to a mathe-
matical memory-system model for predicting the cache miss
ratio. The sparse data can be used to characterize the ap-
plication’s data locality with respect to almost any possible
memory system, such as complicated multiprocessor mul-
tilevel cache hierarchies. Any combination of cache size,
cache-line size and degree of sharing can be modeled. Each
modeled design point takes only a fraction of a second to
evaluate, even though the application from which the sam-
pled data was collected may have executed for hours. This
makes the tool not just usable for software developers, but
also for hardware developers who need to evaluate a huge
memory-system design space.

The accuracy of the method is evaluated using a large
number of commercial and technical multi-threaded appli-
cations. The result produced by the algorithm is shown to be
consistent with results from a traditional (and much slower)
architecture simulation.

1 Introduction

Data locality is central to modern computer designs. The
widening gap between processor speed and memory latency
has introduced the need for a deep hierarchy of caches.
Thus, the performance of an application is to a large ex-
tent dependent on the amount of data locality the caches can
exploit. Some data locality comes naturally from the way
most programs are written and the way their data is allo-
cated in memory. Compilers further try to create data local-

ity by loop transformations and optimized data layouts. Dif-
ferent ways of writing a program and/or laying out its data
may improve an application’s locality even more. However,
it is far from obvious how such a locality optimization can
be achieved, especially since the optimizing compiler may
have left the optimization job half done. Thus, efficient
tools are needed to guide the software developers on their
quest for data locality.

CPU chips running multiple threads will likely become
more common as a result of the introduction of multi-core
chips. This motivates new methods for understanding the
performance of systems built from such chips. This paper
introduces a novel method for analyzing data cache behav-
ior and communication patterns in a computer system built
from CPUs with multiple cores.

We have in previous papers presented the statistical
cache model StatCache. StatCache is a technique for es-
timating capacity misses of a single-processor computer [3,
4]. StatCache is based on sparse sampling and can pro-
duce accurate results at a very low sampling rate. The low
sampling rate, in combination with a natural mapping be-
tween the properties sampled and the available functional-
ity in modern CPUs and operating systems, enables efficient
implementations.

In this paper we present methods for extending Stat-
Cache to model cold misses as well as to handle a system
consisting of multiple processors connected in a symmet-
ric or semi-symmetric configuration to a common mem-
ory, i.e., a SMP, NUMA or a chip multi processor (CMP).
The new StatCacheMP framework presented can differenti-
ate between misses caused by cache capacity replecements,
cold misses and most cache misses caused by the coherence
protocol.

StatCacheMP is very flexible. The statistical data sam-
pled during an execution are independent of the architec-
tural parameters of the host computer where the data were
collected, such as its cache size and cache-line size. The
cache behavior of the application for a selection of cache
parameters can then be determined off-line using a mathe-
matical model.

The mathematical cache model can be used to model any
possible design-point of a CMP by just changing a few pa-



rameters of the formula and then applying it to the relatively
small set of sample points collected during the sampling.
The model presented in this paper supports the design pa-
rameters: cache size, cache-line size and degree of sharing,
i.e., the number of processors sharing a cache, to be var-
ied when solving the mathematical formula. This way, the
performance numbers of a new design point can be deter-
mined within a fraction of a second. While this flexibility
may come handy for a hardware designer exploring a large
design space, it can also be used to determine special char-
acteristics of an application.

This paper first recaptures the theory of StatCache and
then extends the original StatCache model by including cold
misses and coherence misses. The evaluation section com-
pares the estimated results from StatCacheMP with results
from a more traditional (but slower) full-system simulator,
while varying some cache memory parameters. The paper
is ended with a discussion about possible implementation
options and a conclusion.

2 Related Work

Simulators are likely the most common method for eval-
uating hardware design tradeoffs. There are both commer-
cial platforms and open-source software available for build-
ing simulators at different levels of detail. These range from
slow timing-accurate simulators to fast but less accurate
simulators [12, 16]. These simulators can be very accurate
and/or very flexible. However, simulators are rarely used to
give feedback to software developers because of their slow
speed, which is not compatible with the short turn-around
time used in software development. Furthermore, the setup
of a simulation environment capable of running a complex
application can often be cumbersome.

Simulation can be combined with sampling to reduce
run-time overhead. Different approaches exist [8, 10, 11,
20]. The simplest possible scheme is to just run part of the
application, that is, first warm the simulator and then run
the experiment some fixed number of cycles, instructions or
transactions. The drawback is that the samples may be very
unrepresentative. Several research groups have addressed
this issue. One way to overcome the problem is to pick sev-
eral short samples and use well known statistical algorithms
for finding the error bounds [21]. The experiment has to be
repeated with a higher sampling rate if the error estimates
are unacceptable. Another popular approach is to rely on
phase detection algorithms in order to select the representa-
tive samples [15].

Static analysis is a completely different approach. It is
based on one of the more well-known cache miss equa-
tions, such as the ones suggested by Martonosi [9] and oth-
ers [7, 18]. Static analysis is a potentially very fast method.
Static analysis can also be parameterized in terms of in-
put data size etc. However, statistical analysis still requires
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Figure 1. This figure illustrates the reuse-
distance concept. Assume that the letters
A, B, C, A, ... in the boxes represent cache-
line-sized pieces of memory accessed in that
order by a target application. The reuse dis-
tance, �, is the number of intervening ac-
cesses to other memory locations.

some representative input of the characteristics of a execu-
tion. In order to capture these characteristics some simula-
tion environment is often necessary.

The approach taken by StatCache can be viewed as a
combination of sparse short samples and statistical analy-
sis. However, StatCache can model large caches accurately
even though sparse short samples are used.

3 Notation and Definitions

This section defines some commonly used symbols.

Reuse distance �:
Reuse distance, is central to both StatCache and Stat-
CacheMP. Intuitively, reuse distance is the number
of memory references between the current and previ-
ous memory reference to one specific cache-line-sized
piece of memory. Figure 1 illustrates the concept. Note
that all intermediate memory references are counted,
not just different ones, as is the case for stack dis-
tance [14]. The reuse distance or stack distance can not
easily be used to categorize the memory behavior as is,
even though several attempts have been made [6, 5],
but could be used for a more elaborate analysis to find
cache miss ratios [22, 13].

Largest measured reuse distance ����:
The largest measured reuse distance.
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������ �

������ �	

�

������� ��������


Read capacity miss ratio:
������ �

����� �����	�� �	

�

������� ��������




Write capacity miss ratio:
������ �

�
���� �����	�� �	

�

������� ��������


Cold miss ratio:
����� �

����� �	

�

������� ��������


Read cold miss ratio:
������� �

����� ���� �	

�

������� ��������


Write cold miss ratio:
������� �

�
���� ���� �	

�

������� ��������


Read communication miss ratio:
������� �

����� �	

�
 ���
�� �� ������ 	����	���	��

������� ��������


Write communication miss ratio:
������� �

�
���� �	

�
 ���
�� �� ������ 	����	���	��

������� ��������


4 Capacity Misses: A StatCache Primer

This section recaptures the theory and implementation
from the original StatCache proposal which is capable of es-
timating the capacity miss ratio of a single-processor com-
puter.

4.1 The Basic Single Processor Model

Even though the reuse distances are hard to interpret as
is, they can be transformed into cache-miss ratios using a
statistical model. The basic StatCache model gives the miss
ratio of a fully associative cache of arbitrary size with ran-
dom replacement, as intuitively described here (please see
[3] for a detailed description).

Assume that we know the reuse distance for all memory
accesses. Then sort the reuse distances of all the memory
accesses into histogram buckets, �	. Let �� be the number
of memory accesses with reuse distance one, �� the number
of memory accesses with reuse distance two, and so on. We
can then state that an equality equation for the total number
of misses of the application: the average miss rate for the
application (�) multiplied by number of memory references
(� ) is equal to the sum of the miss probability ��	� for each
bucket multiplied by the number of memory references of
that bucket �	, as shown in Equation 1.

� �� � ���� � ���� � � � �� ���������� (1)

Assuming a fully associative cache with random replace-
ment, the miss probability�	 can be calculated by the func-
tion ���	
��, which calculates the probability that a cache
line has been evicted from a cache with � cache lines given
that �	
� replacements have occurred since we touched the
cache line, as shown in Equation 2.

���	
�� � �� ��� ���
���� (2)

Now, replacing �	 in Equation 1 with ���	
�� from
Equation 2, where the number of replacements is approx-
imated as the reuse distance times the miss probability �,
yields the main equation of StatCache. This is shown by
Equation 3, from which the miss ratio � easily can be
solved numerically.

� �� � ��������������� � � ��������������� (3)

4.2 Sampling

Knowing the reuse distance for all accesses is a doable,
but very in-efficient way of characterizing the behavior of
an application. Fortunately, the shape of the histogram dis-
tribution ���� is easily approximated by sampling. It has
been shown that the histogram distribution ���� for sparsely
and randomly chosen samples of memory accesses is ap-
proximately equal to the shape of ���� based on every ac-
cess [3].

Equation 3 is only valid if the miss ratio is approxi-
mately constant during the entire execution, which is not al-
ways the case. To handle this, StatCache divides the target-
application run into several short periods, where each period
is short enough for the miss ratio to be approximately con-
stant. Such a period of the execution is called a sampling
window. The sparse sample collected during each sample
window is used as input to Equation 3 in order to estimate
the miss ratio for that sample window and the overall miss
ratio of the application is simply the arithmetic mean of the
miss ratio of every sampling window.

4.3 An efficient implementation of StatCache

A prototype version of StatCache sampling, capable of
taking StatCache samples from any unmodified application
binary, exists and runs with a slowdown of about forty per-
cent [4]. The execution of the application binary is halted
about every ��� � �� access by a user-level “spy process”.
The spy process will determine the address of a load or
store performed by the application binary, set an operating
system watchpoint for that address and determine the num-
ber of loads/stores performed since the application started
by reading some hardware counter. A trap occurs the next
time that address is touched and the hardware counter is
read again in order to determine the reuse distance for that
StatCache sample. More details of the method can be found
elsewhere [4]

5 Cold Misses

The previous StatCache [3] proposal does not take cold
misses into account. For short runs and/or large working
sets, the cold misses become a significant fraction of all the
misses and need to be handled in the equations. This section
describes how to compute the cold miss ratio and how to
extend StatCache to also handle cold misses.



5.1 Estimating the Cold Miss Ratio

A cold miss occurs when the processor accesses a cache-
line-sized piece of memory that has never been touched
before. Considering an application with a footprint of �
cache-line-sized objects, each cache line will cause exactly
one cold miss. Thus, the number of cold misses will be � .
The cold miss ratio can be calculated as:

����� �
�����	 ���	� �� ����
����

��	���� �	�	�	��	�
(4)

One way of estimating the footprint� would be to detect
the first time each cache-line-sized object is touched and to
count those events. Another way, which is more suitable
for our sampling scheme, is to detect the last time each
cache-line-sized memory object is touched and to count
those events.

If we sample every memory access, the footprint �
would correspond to the number of “dangling” samples
at the end of the execution for which no reuse dis-
tance has been detected. If we instead sample with
���
�	 ���	, the footprint� corresponds to ���
�	 ���	�
��������� ���
�	�. Furthermore, the number of memory
references would correspond to ���
�	 ���	�����
�	�.
This yields the equation:

����� �
���
�	 ���	���������� ���
�	�

���
�	 ���	�����
�	�
(5)

����� �
��������� ���
�	�

����
�	�
(6)

5.2 Extending StatCache with Cold Misses

We need to factor in the impact of cold misses in Equa-
tion 3, which is only valid for capacity misses. First, let
������� be the number of warm memory references, i.e., the
number of memory references that do not cause cold misses.
Thus, ������� � ��� �������, where ����� is the cold
miss ratio. Next, use Equation 3 but refine the right-hand
side estimate of the total number of cache misses by also
adding the number of cold misses.

� �� � � �������������� � � ��������������� (7)

which is easily transformed into

��������� �������

�������

� ������ � � � �� �������������

(8)
Similarly to the original StatCache capacity miss formula,
this formula assumes a constant miss rate throughout the
application. Thus, the sample-window strategy we used in
the original StatCache model is also needed in this cold-
miss aware model.

6 Coherence Misses and Sharing

The StatCache model described so far can only estimate
cache behavior for single-threaded execution. In this sec-
tion we describe the extended sampling mechanism and the
theory needed by StatCacheMP.

StatCacheMP models a MSI coherence protocol and
classifies cache misses caused by invalidations as coherence
misses. No upgrade misses are currently detected. While
upgrade misses also could cause latency for an application,
especially when run on a strong memory model, their detec-
tion would lead to a more complicated sampling model. Re-
peated upgrade misses to the same cache line will also most
likely appear in concert with invalidation misses, which are
detected by our model. We consider upgrade misses as fu-
ture work.

6.1 More Detailed Sampling Description

Handling coherence misses and dividing the miss ratio
into the categories capacity, cold and communication is a
two step procedure. The first step is to estimate the over-
all miss ratio using the method described in Section 5.2 and
the second step is to once again iterate through all the sam-
ples and estimate their respective cache miss probability. To
enable the second step we must not only record the reuse
distance histogram, but also record information about each
individual sample. Note that the reuse distance is still con-
sidered to be a single processor (or possibly cluster of pro-
cessors) metric, i.e., we keep monitoring the cache line until
the same processor references the cache line again. The data
we record for each sample is:

� The type of the first instruction, i.e., the instruction the
sampling mechanism selects (load or store).

� The type of the second instruction, i.e., the instruction
that causes a reuse to be detected.

� The reuse distance, �.

� The local processor ID, i.e., the ID of the processor
executing the first instruction.

� Writer list: A list of the IDs of all other processors that
write to the monitored cache line.

Given this information, the second step is straightforward.
One simply iterates through all the samples and calculates
their respective cache miss probabilities using Equation 2,
��	

 � �������, where � is the reuse distance of the sam-
ple, and �� is the estimated miss ratio of the sampling win-
dow � that the sample belongs to. If the writer list contains
a processor connected to another cache (another processor
have written the data), the cache line was invalidated during
the reuse distance measurement. However, this cache miss
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Figure 2. An example architecture configura-
tion. Our multiprocessor cache model en-
ables us to predict the miss ratio at all cache
levels.

is only to be classified as a communication miss if the data
would have resulted in a cache hit if no intervening write
had occurred. Thus, an invalidated sample is deemed com-
munication miss with the probability �� ��� � ���. Sum-
ming the respective miss probabilities of each individual
sample and dividing by the number of samples estimate the
final capacity and communication miss ratio. The samples
may then be divided into categories according to whether
the second instruction is a load or a store.

When creating sample data for several cache-line sizes
from a single run, the reuse distance for each size must be
monitored and a separate reuse histogram created for each
cache-line size. Once a memory reference to the address �
has been selected for reuse distance measurement, the reuse
distance for the largest studied cache-line size containing
� is monitored. Once a reuse for this cache-line size has
been detected by an access to address � of this cache line,
the histogram corresponding to the largest cache line is up-
dated with this reuse value. Now we turn to the next largest
cache-line size. If it can be determined that � and � also
share the same cache line of the second largest cache-line
size, its histogram is also updated with the reuse value. If
not, the reuse distance for the second largest cache-line size
containing � is measured, and so on.

6.2 Exploring the Multiprocessor Design Space

Similarly to single-processor StatCache, it is possible
to use StatCacheMP to model several cache configurations

based on the statistics collected from one execution. While
StatCache allows different cache sizes and cache-line sizes
to be modeled, StatCacheMP can also vary the degree of
cache sharing in its post processing. Varying the degree
of cache sharing requires a slight alteration to the capacity
miss and cold miss equation so that all the samples from
processors sharing a cache are taken into consideration for
the calculation. Similarly, write accesses from another pro-
cessor sharing the same cache will not cause coherence
misses in the modeled system. (The ability to change con-
figuration in terms of sharing is the reason why we collect a
writer list and not simply mark a sample as invalidated.)

The StatCache and StatCacheMP equation only models
one level of cache. However, if cache inclusion is assumed
between the different levels of caches, the miss ratio of the
different levels can be calculated independently. The same
holds for different degrees of cache sharing at the differ-
ent levels. Figure 2 shows one possible configuration for a
CMP system with three levels of caches: sixteen 16kB pri-
vate L1 caches, four 512kB shared by four L2 caches, and
one 32MB shared by all L3 cache. One runs StatCacheMP
on a selected benchmark and calculate separate curves for
1-, 4- and 16-node systems using StatCacheMP’s post pro-
cessing model in order to estimate the cache miss ratios for
all cache levels in the example architecture. The miss ratio
of the private first-level caches can be found in the 16-node
data where the cache size is 256kB (the sum of all private L1
caches). The miss ratio of the second-level caches is found
by dividing the 4-node data where the cache size is 2MB
(the sum of all L2 caches) with the first-level cache’s miss
ratio. The first-level cache acts like a filter for the second-
level cache. The miss ratio of the third-level cache can be
calculated in a similar way.

7 Evaluation

This section evaluates the accuracy of the proposed algo-
rithm for estimating the behavior of multiprocessor mem-
ory systems. Our earlier experiences from efficient Stat-
Cache implementations identified the importance of pick-
ing samples completely independent of each other, as well
as sampling methods that overcome some of the difficulties
imposed by modern CPU architectures. In order to isolate
all such effects from the evaluation of the new mathemat-
ical algorithm presented in this paper, we have chosen a
simulation-based evaluation methodology.

7.1 Simulation Methodology

Correctly interleaved memory reference traces are gen-
erated using the Simics full-system simulator [12]. Sim-
ics is configured to simulate a symmetric multiprocessor
UltraSPARC-based system with 16 processors running So-
laris. We use the traces to drive our reference cache simu-



lator as well as to collect the reuse distance samples fed to
the multiprocessor-enhanced StatCache model.

The reference simulator models a single-level cache sys-
tem. The processors in the reference simulator can either be
connected in a symmetric configuration where each proces-
sor has its own data cache or connected in a non-uniform
configuration where the processors are clustered in nodes
where all processors in the same node share a common data
cache. The caches are kept coherent using an MSI coher-
ence protocol. The simulated caches are fully associative
and implements random replacement. We have run the sim-
ulator with cache sizes from 2k byte to 64M byte and cache-
line sizes from 32 bytes to 512 bytes.

We use a sampling rate of �	��� in all experiments.
This sampling rate gives between ten thousand and 25 thou-
sand samples per thread for each benchmark. Our earlier
StatCache work has shown that this amount of sample data
should be enough to get reasonably good accuracy.

7.2 Benchmarks

APACHE: Static Web Content Serving: We use Apache
2.0.43 configured to use a hybrid multi-process multi-
threaded server model with 64 POSIX threads per server
process [1]. Our experiments use a hierarchical directory
structure of 80,000 files (with a total data size of approxi-
mately 1.8 GB) and a modified version of the Scalable URL
Reference Generator (SURGE [2]) to simulate 6400 users
(400 per processor) with an average think time of 12ms.

SPECjbb2000: SPECjbb2000 is a server-side Java
benchmark that models a 3-tier system, focusing on the
middle-ware server business logic and object manipula-
tion [17]. The benchmark includes driver threads to gen-
erate transactions as well as an object tree working as a
back-end. Our experiment use 24-driver threads (1.5 per
processor) and 24-warehouses (with a total data size of ap-
proximately 500MB).

SPLASH-2: We have also chosen to study a subset
of the well-known workloads from the SPLASH-2 bench-
mark suite [19]. The selected programs were chosen to
represent a variety of communication and synchronization
requirements. For example, we use fft because of its
communication-intensive behavior and lu-nc because it
shows a lot of false sharing at large cache-line sizes.

Data set sizes for the applications studied can be found
in Table 1. All SPLASH-2 applications are compiled with
gcc-3.4.3 (optimization level 3). PARMACS macros for
locks and barriers are based on user-level test&test&set
spin locks. Pause/Event macros are implemented with the
POSIX Pthread library (only radix uses a small amount
of pauses).

Program Problem Size

apache 1000 transactions
fft 256k points
jbb 5000 transactions
lu-c 512�512 matrices, 16�16 blocks
lu-nc 512�512 matrices, 16�16 blocks
radix 4M integers, radix 1024
water-nsq 512 molecules, 3 time steps
water-sp 512 molecules, 3 time steps

Table 1. Working set sizes of our benchmarks.

7.3 Breakdown comparison

Both the reference simulator and the StatCacheMP
model produce the following miss ratios: total miss ratio,
read and write capacity miss ratio, read and write cold miss
ratio, and finally, read and write communication miss ratio.

The diagrams in Figure 3 show the cache-miss-ratio
breakdown. Each diagram shows the breakdown for all
benchmarks, the difference between the diagrams is the
cache-line size and the cache size. We vary the cache-line
size from 32 bytes to 512 bytes and presents results for the
cache size 1M bytes and 16M bytes. Two bars are shown for
each benchmark in each diagram, the left bar shows the out-
put from the model, StatCacheMP, and the right bar shows
the output from our reference simulator, RefSim. Each bar
is divided into the cache miss types described above.

The results clearly show that StatCacheMP is able to
identify the benchmarks with the largest amount of com-
munication misses and also presents a rough estimate for
the miss-ratio break down. It is easy to identify domi-
nating cache-miss types, like cold misses or communica-
tion misses and it is also easy to study how communica-
tion varies with the cache-line size. Compare for example
the cache-miss-breakdown diagrams for apache, when the
cache line grows from 32 bytes to 512 bytes. StatCacheMP
models in this case the increasing read communication with
a promising accuracy and we believe that such analysis
should prove useful for many purposes.

7.4 Cache- and Line-Size

StatCache allows for a fast way of exploring the miss
ratio as a function of cache size since the cache size is a
parameter in the model. It is therefore natural to evaluate
the accuracy of StatCacheMP by plotting the miss ratio es-
timates of our model in the same graph as the reference sim-
ulator. The closer the curves are, the better is the accuracy.
Figure 4 and 5 show such graphs for all our benchmarks
when the cache size varies between 2kB and 16MB with
the cache-line sizes 32, 128 and 512 bytes.
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Figure 3. Miss ratio breakdown. For each benchmark, the left bar shows the StatCacheMP result and
the right bar shows the reference simulator result. 16-processor, 4-node data.



 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

APACHE

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

FFT

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

JBB

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

LU_C

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

LU_NC

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

 0

 10

 20

 30

 40

 50

16M8M4M2M1M512K256K128K64K32K16K8K4K2K2K

M
is

s 
ra

tio
 (

%
)

Cache size (bytes)

RADIX

Cache-line size 32, StatCacheMP
Cache-line size 32, RefSim

Cache-line size 128, StatCacheMP
Cache-line size 128, RefSim

Cache-line size 512, StatCacheMP
Cache-line size 512, RefSim

Figure 4. Miss ratio comparison of StatCacheMP and the reference simulator for apache, fft, jbb,
lu-c, lu-nc and radix when the cache size is varied from 2kB bytes to 16MB. The cache-line sizes
are 32, 128 and 512 bytes. 16-processor, 4-node data.
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Figure 5. Miss ratio comparison of StatCacheMP and the reference simulator for water-n and water-
s when the cache size is varied from 2kB to 16MB. The cache-line sizes are 32, 128 and 512 bytes.
16-processor, 4-node data.

StatCacheMP captures general trends very well. The
curves of StatCacheMP follow the curves of the reference
simulator very closely. The slopes are correct and the inter-
sections between the curves for different line sizes are lo-
cated at approximately the same places. The cold miss ratio
estimated by StatCacheMP, i.e., the miss ratio of very large
caches is also very close to that of the reference simulator.
Note that the miss ratio is very large for very small caches
and large cache-line sizes. The reason is that the cache con-
tains very few cache lines. The extreme case is a 2kB cache
with 512B cache lines. That cache configuration only has
four cache lines, but StatCacheMP still estimates the miss
ratio of such small caches well for most benchmarks.

An interesting example is radix. The knees of the
curves are at different cache sizes for the different line sizes
but StatCacheMP still produces results very similar to the
reference simulator. This and similar examples strongly
indicate that StatCacheMP handles a variety of complex
memory reference patterns well, without loosing accuracy.

7.5 Sharing

Figure 6 and 7 show the miss ratio as a function of the
cache size for the applications apache and lu-nc. Fig-
ure 6 (apache) shows three different configurations: 1
node means that all processors share a single cache, 4 nodes
means that four processors share a cache and that the system
has four caches in total, and 16 nodes means that each pro-
cessor has its own private cache. All the configurations have
a cache-line size of 64 bytes. We find it very interesting to
see that a shared cache reduces the cache misses as much as
they do for apache. We believe this is partly because of
the big amount of time spent in the operating system.
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Figure 6. Miss ratio for apache while varying
the degree of sharing in a multiprocessor sys-
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Figure 7 (lu-nc) has the same node configurations as
described for apache but includes two cache-line sizes:
128 and 256 bytes. The graph clearly shows that a cache-
line size of 128 bytes is to prefer for the first-level cache
and the second-level cache of our example architecture (see
Figure 2). However, the third-level cache, which is shared
between all the processors, does not suffer from false shar-
ing and will benefit from a cache-line size of 256 bytes.
Figure 8 shows in more detail that it is the false sharing that
causes lu-nc to perform badly with multiple nodes and
a cache-line size larger than 128 bytes. The figure shows
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Figure 7. Miss ratio for lu-nc while varying
the degree of sharing in a multiprocessor sys-
tem. 16-processor, 1-, 4- and 16-node data.

the capacity, cold and communication misses plotted as a
function of cache-line size. The miss ratio decreases for
line sizes up to 128 bytes because of the decreasing num-
ber of cold misses and the extra spatial locality. For line
sizes above 128 bytes, the miss ratio starts growing rapidly
because of false sharing.

The graphs in Figure 6 and 7 can also be used to deter-
mine the miss ratio at each cache level in a memory system.
The miss ratio of the first-level cache in our example ar-
chitecture shown in Figure 2 is represented by the 16-node
line for a cache size of 256kB (the cache size in the graph
is the sum of all caches at that level), i.e., 9.1 percent for
apache. The miss ratio for the second-level cache is read
at the 4-node line for a cache size of 2 MB divided by the
first-level cache miss ratio1, i.e., 60 percent. In a similar
way, the miss ratio of the third-level cache is 61 percent.

7.6 Result and Error Discussion

As all analytical models and sampling-based methods,
there are a few possible error sources for StatCache. As al-
ways when it comes to sampling, it is very unlikely that the
collected samples exactly represent the studied population.

The most important simplification in the model is likely
the assumption that the miss ratio is constant in the sam-
pling windows. If the sampling window is too long, a miss
ratio that varies much is hard to estimate. A too short sam-
pling window will cause poor results because each sampling
window will contain too few samples to give a good approx-
imation of the reuse-distance distribution. We have found
the results to be pretty stable for window sizes between 30
and 300 samples.

1Assuming inclusion between the cache levels.
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The handling of cold misses also introduces possible er-
rors. Cold misses are not uniformly distributed across the
application run. Instead, we get the average cold miss ratio
for a period of time. This time period is ten times the sam-
pling window in this implementation. The sampling rate
is �	��� and the sampling window size is ��� samples in
our experiments, i.e., the cold miss ratio is assumed to be
constant over a period of half a million memory references.

The breakdown of the categories capacity, cold and com-
munication into the subcategories read and write assumes
that the miss probabilities for memory read and write in-
structions are independent. In practice, read and write in-
structions are not independent; rather, they often appear in
repeated patterns for example caused by loops.

StatCacheMP allows for an efficient exploration of a
huge design space. However, it also introduces a possi-
ble source of errors in the estimations. A different cache
configuration will most likely result in a different memory
access interleaving. Hence, a slightly different amount of
coherence misses might be encountered. While we believe
that a program’s sharing behavior rather is a property of the
program than a property of the latencies in a certain con-
figuration, this is a very important and interesting study we
plan to address as future work.

This paper does not include any error estimates. How-
ever, the absolute values in the breakdown graphs are over-
all rather accurate in comparison with the reference sim-
ulator. StatCacheMP also captures important trends, such
as the amount of false sharing as a function of cache-line
size. Of course there might be pathological cases where
StatCacheMP might not work, but we have not come across
any such case.



8 Implementation Discussion

We have previously presented a prototype implementa-
tion with a run-time overhead of about forty percent, but
believe that a full-fledged implementation with operating
system support will have an overhead of only a few per-
cent. The prototype can collect sample data from complex
applications running natively on the host. The sampler is
implemented as a background process monitoring the stud-
ied application.

The extended sampling mechanism needed to extend the
original StatCache proposal for modeling multiprocessor
systems should not add much more overhead. The only dif-
ference is that the watchpoint must be thread-global.

9 Conclusion

This paper describes a flexible and fast way of modeling
an application’s behavior on a multiprocessor memory hi-
erarchy. Based on sparse architecturally independent data
collected from a single multithreaded execution, a plentiful
of different multiprocessor memory systems can be mod-
eled using a mathematical model. The number of cache
levels, their respectively cache size and cache-line size as
well as the degree of cache sharing at each level can all be
chosen arbitrarily when the mathematical formula is solved.
The performance estimate for each such design-point takes
fractions of a second to calculate, even though the actual
application studied may take hours to run in a production
environment.

The performance estimates produced by the model are
broken up into six different miss categories. We show that
the results obtained are fairly accurate in spite of the flexi-
bility and speed provided by the method.
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