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Abstract

Java-based middleware is a rapidly growing workload
for high-end server processors, particularly Chip Multi-
processors (CMP). To help architects design future micro-
processors to run this important new workload, we pro-
vide a detailed characterization of two popular Java server
benchmarks, ECperf and SPECjbb2000. We first estimate
the amount of instruction-level parallelism in these work-
loads by simulating a very wide issue processor with perfect
caches and perfect branch predictors. We then identify per-
formance bottlenecks for these workloads on a more realis-
tic processor by selectively idealizing individual processor
structures. Finally, we combine our findings on available
ILP in Java middleware with results from previous papers
that characterize the availibility of TLP to investigate the
optimal balance between ILP and TLP in CMPs.

We find that, like other commercial workloads, Java mid-
dleware has only a small amount of instruction-level paral-
lelism, even when run on very aggressive processors. When
run on processors resembling currently available proces-
sors, the performance of Java middleware is limited by fre-
quent traps, address translation and stalls in the memory
system. We find that SPECjbb2000 differs from ECperf in
two meaningful ways: (1) the performance of ECperf is af-
fected much more by cache and TLB misses during instruc-
tion fetch and (2) SPECjbb2000 has more memory-level
parallelism.
Keywords: Java, Middleware, workloads, ILP, CMP,
Characterization

1 Introduction

The rapid rise of electronic commerce and Internet-
delivered computing services has triggered explosive
growth in the use of middleware. Simultaneously, Java
has gained popularity as the programming environment of

choice for Internet server software. Java-based middleware
hosts the Internet presence of some of the world’s largest
companies in industries from financial services to airlines,
making Java-based middleware one of the primary work-
loads for multiprocessor servers today.

The continued decrease in transistor size and the increas-
ing delay of wires relative to transistor switching speeds
has led to the development of chip multi-processors (CMPs)
[2][23][27]. The introduction of CMPs presents new chal-
lenges and trade-offs to computer architects. In particu-
lar, architects must now strike a balance between allocating
more resources to each processor against the number of pro-
cessors on a chip. The proper balance of resources devoted
to parallelism at the instruction level and parallelism at the
tread level depends on the application. Previous studies
have explored the limits to thread-level parallelism (TLP)
and characterized the multiprocessor memory system be-
havior of Java middleware [13][14]. Here, we investigate
the limits to instruction-level parallelism (ILP) and combine
our findings with insights to TLP from previous papers to
explore the design space of CMPs.

In this paper, we present a detailed characteriza-
tion of two popular Java server benchmarks, ECperf
and SPECjbb2000 (JBB). Where ECperf, also has
been repackaged with only minor changes and released
as SPECjAppServer2001 and SPECjAppServer2002.
ECperf closely resembles commercially deployed Internet
applications—it is a distributed system with clients, mid-
dleware and database all running separately. JBB emulates
a 3-tiered application in a single process by simulating
clients, and a database in the same Java virtual machine
(JVM) as the middleware.

We attempt to classify Java middleware as a workload
by comparing the behavior of ECperf to that of two other
important commercial workloads, on-line transaction pro-
cessing (OLTP) and static web serving (APACHE), and to
several SPEC benchmarks. We also compare and contrast
the behaviors of ECperf and JBB to see how well the simple
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JBB approximates the more complicated ECperf.
We find that the behavior of ECperf is similar to that of

other commercial workloads. Like OLTP and APACHE,
ECperf exhibits limited ILP, even on aggressive processors.
On very aggressive processors, its performance is limited
by address translation and frequent traps. We notice two
substantial differences between ECperf and JBB. JBB, like
the SPEC CPU2000 benchmarks, is not limited by misses in
the instruction cache or ITLB, and JBB has more memory-
level parallelism.

The rest of this paper is organized as follows: Section
2 describes our simulation methodology. Section 3 presents
the level of instruction-level parallelism (ILP) present in the
workloads and identifies several limiting factors. Section 4
analyzes the bottlenecks present in a realistic microproces-
sor. Section 5 discusses how our results from sections 3 and
4 might influence architects seeking to optimize per-chip
performance of Java middleware on a CMP. Section 6 out-
lines some related work in workload characterization. We
present our conclusions in Section 7.

2 Methodology

All of the results in this paper were generated with full-
system execution-driven simulation. We used full-system
simulation because the operating system makes up a sub-
stantial portion of the runtime for our commercial work-
loads. Execution-driven simulation allowed us to model
hardware that would be impossible to build. In particular,
we simulated several processor configurations with one fea-
ture “idealized,” or made perfect.

2.1 Workloads

To better understand the characteristics of our two Java
server workloads, we compared them to two other commer-
cial workloads, APACHE and OLTP, and four benchmarks
from the SPEC2000 suite [25]. Table 1 presents a descrip-
tion of each application and the input parameters we used
to run them. We ran both of our Java workloads on Sun’s
Hotspot 1.4.1 Server JVM and all of our workloads on So-
laris 8.

2.2 Simulation Environment

For our simulations, we used the Simics full-system sim-
ulator [17]. Simics is an execution-driven functional simu-
lator that models a SPARC V9 system accurately enough to
run Solaris 8 unmodified. To model the timing of complex
out-of-order processors we extend Simics with the Timing-
first simulator, TFsim [20], and a detailed memory hierar-
chy simulator [19]. TFsim is a detailed timing simulator

ECperf
ECperf is a middle-tier benchmark designed to test the performance and
scalability of a real 3-tier system. ECperf models an on-line business
using a “Just-In-Time” manufacturing process (products are made only
after orders are placed and supplies are ordered only when needed). It
incorporates e-commerce, business-to-business, and supply chain man-
agement transactions.

SPECjbb2000
SPECjbb2000 is a server-side Java benchmark that models a 3-tier sys-
tem, focusing on the middle-ware server business logic and object ma-
nipulation. The benchmark includes driver threads to generate transac-
tion as well as an object tree working as a back-end. Our experiment
use 24 driver threads (1.5 per processor) and 24 warehouses (with a total
data size of approximately 500MB).

APACHE
Static Web Content Serving: Apache with SURGE. We use Apache
2.0.43 configured to use a hybrid multi-process multi-threaded server
model with 64 POSIX threads per server process. Our experiments use
a hierarchical directory structure of 80,000 files (with a total data size
of approximately 1.8 GB) and a modified version of the Scalable URL
Reference Generator (SURGE [1]) to simulate 6400 users (400 per pro-
cessor) with an average think time of 12ms.

OLTP
On-Line Transaction Proccessing: DB2 with a TPC-C like workload.
The TPC-C benchmark models the database activity of a wholesale sup-
plier. Our OLTP workload is based on the TPC-C v3.0 benchmark using
IBM’s DB2 v7.2 EEE database management system. Our experiments
simulate 256 users (16 per processor)without think time. The simulated
users query a 5GB database with 25,000 warehouses stored on eight raw
disks and a dedicated database log disk.

SPEC CPU2000
We have chosen four benchmarks, GCC, BZIP, PERLBMK and MCF,
from the SPEC CPU 2000 Integer suite [25]. GCC is an compilation
with an aggressively optimized C compiler. BZIP is a compression and
decompression of a TIFF image, a program binary, and a source tar file.
PERLBMK is an PERL interpretor running a scripts for mail genera-
tion. MCF is a combinatorial optimization of a vehicle depot scheduling
problem.

Table 1. Benchmark descriptions.

that models an out-of-order processor loosely based on the
MIPS R10000 [28].

2.3 Measuring Performance Cost in Out-Of-
Order Processors

In order to isolate the ILP limiting effects of various pro-
cessor and memory system structures, we selectively ideal-
ize processor structures to approximate the cost of various
aspects of instruction processing. The cost of a structure is
defined as the difference between the performance with that
structure idealized, or made perfect, and the performance
of the base machine. Instead of measuring the costs of each
structure individually, for simplicity, we measure the sum of
the costs of various structures by idealizing structures such
as caches and branch predictors in succession.

Our methodology allows us to model both perfect caches
and perfect branch prediction on otherwise realistic pro-
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cessors. We model perfect branch prediction by record-
ing the direction or target of all branches in a branch trace.
We use separate traces for perfect branch direction predic-
tion and perfect branch target prediction so that our timing
simulator can execute arbitrarily far down a mispredicted
branch capturing wrong-path effects. This separation en-
ables us to distinguish the effect of idealizing the branch tar-
get buffer (BTB), return address stack (RAS) and the direc-
tional branch predictor. When simulating a perfect cache,
which always hits, we still model each access throughout
the memory hierarchy, which allows us to maintain approx-
imately the same cache behavior in the unified lower levels
of the memory hierarchy.

3 Limits on Instruction-Level Parallelism

Many modern microprocessors use out-of-order process-
ing, branch prediction, non-blocking caches and other tech-
niques to execute independent instructions in parallel. The
number of instructions that can be executed in parallel is
limited both by the characteristics of the workload and the
resources available in the processor. In this section, we
first estimate the amount of ILP available in each workload
by eliminating as many constraints as possible in the hard-
ware. This provides a generous estimate—albeit not a hard
limit—of the speedup that can be achieved by increasing
the size and complexity of each processor core. Next, we
identify specific limitations on ILP in Java middleware.

3.1 Estimating the Level of ILP

To estimate the practical limit of ILP in these work-
loads, we simulate a 64-issue uniprocessor with both per-
fect caches and perfect branch prediction (i.e., the branch
prediction is always correct and all memory accesses hit
in the L1 cache). Our simulated processor has a five-stage
pipeline, a 1024-entry reorder Buffer and infinite load/store
queues. We measure the number of instructions executed
per cycle (IPC) while increasing the size of the issue win-
dow.

Even this idealized processor is unable to exploit more
than a small amount of ILP in any of our commercial work-
loads. As shown in Figure 1 (a), issue windows larger than
64 entries benefit only one of our commercial workloads,
OLTP, on which performance peaks at a window size of
256 entries. Furthermore, much of the ILP exploited by our
idealized processor is due to its unattainable perfect mem-
ory hierarchy. To isolate the effect of memory accesses on
ILP, we simulate 2-cycle 4-way 32 KB L1 data cache, an
18-cycle 8-way 1 MB L2 cache and a 250-cycle memory
latency.1 Note that the instruction cache and branch pre-

1This is the same memory system configuration as for the medium core
shown in Table 6.

dictor are still perfect. Comparing Figure 1 (a) and Fig-
ure 1 (b) highlights the effect of replacing the perfect mem-
ory sytem with a more realistic memory hierarchy. Perfor-
mance improvement from increasing the window size is al-
most completely eliminated for all of the commercial work-
loads. Only PERL and BZIP continue to benefit from large
instruction windows when memory accesses are modeled.

3.2 Traps: An ILP Limitation

Frequent traps, limit the benefits of large windows in out-
of-order processors running Java middleware. On ECperf,
we measured an average of 4.8 traps per 1000 instructions,
which means that for a machine with a 1024-entry issue
window there are, on average, more than 4 instructions that
will cause a trap or exception in the window. Since ex-
ceptions are commonly detected at commit stage and usu-
ally require a pipeline flush, the cost of exceptions can be
quite significant for processors with large issue windows.
The effect of traps on ILP is not limited to Java workloads.
We also find that the two applications whose performance
scales the least with the issue window scaling, Apache and
MCF, show some of the highest trap frequencies.

As shown in Table 2, the most frequent types of traps in
Java workloads are TLB misses and register window spill/
fill exceptions. Although the most common traps in our
experiments are SPARC-specific—software-handled TLB
misses and register window spill and fill traps—we believe
that large instruction footprints and deep call stacks are in-
herent to Java middleware and will be an ILP limitation on
other architectures as well.

Throughout this paper we have simulated a software-
managed 128-entry four-way set-associative instruction and
data TLB’s and eight register windows. Unfortunately,
since the TLB’s and the register windows are part of the ar-
chitected state in the SPARC architecture, our current sim-
ulator infrastructure does not allow us to idealize them.

DTLB ITLB Spill/Fill Trap Total
ECperf 0.99 2.08 1.73 0.04 4.84
JBB 0.22 0.07 0.13 0.05 0.47
OLTP 0.92 1.00 1.47 0.07 3.47
APACHE 1.99 0.43 2.38 0.13 4.94
GCC 0.01 0.00 0.06 0.00 0.07
BZIP 0.03 0.00 0.00 0.00 0.03
PERL 0.06 0.00 0.30 0.00 0.37
MCF 8.50 0.00 0.00 0.00 8.50

Table 2. The number of traps/exceptions
taken per 1000 retired instructions
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(a) 64-issue machine with perfect caches
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(b) 64-issue machine with 32KB L1D and 1MB L2

Figure 1. Estimating the available amounts of instruction level parallelism with and without a perfect
data cache.

3.2.1 TLB Misses

TLB misses, especially ITLB misses, place a significant
limitation on the ILP in ECperf. We observe an ITLB
miss rate on ECperf (2.08 misses per 1000 instructions)
that is twice as high as the miss rate for OLTP and roughly
five times as that for APACHE. Since ITLB misses are ex-
tremely hard to overlap both with software or hardware
managed TLBs, we identify the ITLB performance as a sig-
nificant bottleneck to single-thread performance. We find
that the DTLB miss rate for ECperf is on par with OLTP,
which is known to have a significant execution stall time
due to DTLB misses.

One optimization that improves the performance of
TLBs for workloads with large instruction and data sets is
the use of large pages. Our JVM, HotSpot 1.4.1, includes
support for Intimate Shared Memory (ISM), a Solaris API
that supports the use of 4 MB pages (normal pages in Solaris
are 8 KB). In our configurations, however, HotSpot uses
these pages for the heap, but not for code compiled with
its just-in-time compiler. Therefore, when running ECperf,
the DTLB has a much greater reach than the ITLB. Solaris 9
contains a new API, MPSS, which replaces ISM [21]. When
run on Solaris 9, HotSpot uses MPSS to create large pages
for both code and heap. We anticipate that we will see fewer
ITLB misses in ECperf when we update our configuration
to Solaris 9.

The negative pipeline effects from software handling of
DTLB misses can be reduced by hardware managed TLB’s
or by inlining exception handlers, which avoids pipeline
flushes and allows independent instructions to complete out

of order with the faulting instruction as proposed by Jaleel
and Jacob [11]. Alternatively, Zilles et al. [29] propose
using idle threads in an multithreaded processor to handle
exceptions thereby avoiding squash and re-fetch of the in-
structions following the faulting instruction. Note, however,
that neither of these approaches can reduce the penalty of an
ITLB miss.

3.2.2 Register Window Manipulation

We observe a substantial amount of spill/fill traps in ECperf,
APACHE and OLTP. The register windows in the Sparc ar-
chitecture cause spill/fill traps when the call stack depth ex-
ceeds the number of available register windows—the pro-
cessors we simulate have 8 register windows. Although
register windows are specific to SPARC, the call stack be-
haviour that generates spill/fill traps could also limit per-
formance in a flat register architecture, where register con-
tent is manually saved on the stack between procedure calls.
Given the Call/Return frequencies observed in our Java
workloads, it is likely that several procedure calls would be
in-flight at the same time, leading to artificial dependencies
on the stack pointer, which could severly reduce the benefits
of large out-of-order windows.

Moreover, if multiple procedure calls at the same call
depth are in flight simultaneously, they will reuse the same
stack space. Hence loads and stores associated with the first
call will access the same stack addresses as loads and stores
of the second call. If these accesses are executed out of
order they may violate memory ordering rules leading to
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costly replay traps. Such traps, however, could potentially
be avoided with memory dependence prediction [22][6].

In Java, performance inhibitors such as frequent traps,
can be addressed in the virtual machine software as well as
in the hardware. We propose one such optimization based
on the following observation. We find that in ECperf the
JVM only uses spill 1 traps, which spills a single register
window. We also note that for 50% of the spill traps, three
or more spill 1 traps occur in a row before a fill trap hap-
pens. The SPARC architecture provides different spill/fill
traps for spilling/filling multiple register windows at a time.
For example, the Ultrasparc III can spill or fill one, three
or six register windows at a time. Our results indicate that
99 % of the spill traps in ECperf occur from only 15 differ-
ent user-level instructions. If these trap locations could be
indentified and changed statically or dynamically to spill 3
traps, the number of pipeline-disrupting spill traps could be
decreased by a third. We observe the same behavior for fill
traps as well.

3.3 MLP and Memory System Impact

Memory-level parallelism (MLP) is an important work-
load characteristic because it measures the ability of the pro-
cessor to overlap the latency of multiple cache misses. As
latencies continue to increase, the importance of exploiting
MLP becomes more and more important.

We estimate the amount MLP in our workloads by count-
ing the number of outstanding cache misses each time a
cache miss occurs. We perform these measurements using
our most aggressive processor (1024-entry issue window)
from Section 3.1 and Figure 1 (b) in order to maximize the
MLP.

Since the number of outstanding misses may vary signif-
icantly during execution, we present the maximum number
of outstanding cache misses recorded during various frac-
tions of the total misses in addition to the average number
of outstanding misses. Table 3 shows the highest number
of outstanding misses during the 95% and 99% of misses
with the least number of already outstanding misses—e.g.
for ECperf the 99% column indicates that only 1% of the
misses occurred when more than 5 L1 data cache misses
were already outstanding.

All of the commercial benchmarks except OLTP exhibit
a similar level of MLP. On average, OLTP has 8% more out-
standing L2 misses than JBB and 20% more than ECperf.
For the commercial workloads six MSHR’s for the L1 data
cache would be sufficient during 99% of the execution of all
the commercial workloads.

L1 Data Cache L2 Unified Cache
95% 99% Avg. 95% 99% Avg.

ECperf 2 5 1.73 2 5 1.71
JBB 3 5 1.99 3 5 1.91
OLTP 3 6 1.69 4 11 2.06
APACHE 3 5 1.53 3 5 1.52
GCC 1 1 1.57 0 1 1.44
BZIP 15 38 5.30 9 31 4.39
PERL 0 1 1.43 0 1 1.43
MCF 3 16 4.82 3 16 4.69

Table 3. Estimating the degree of memory
level parallelism. Maximum number of out-
standing misses recorded for 95 and 99% of
the miss events with a 1024 entry issue win-
dow.

4 Bottleneck Analysis

In order to find, quantify and isolate the limitations to
ILP for a more realistic machine, we measured the IPC
while idealizing structures like caches and branch predic-
tors. In this section, we model a more conservative 3-issue
processor, with a single load/store unit. We select this con-
servative design because our ILP limitation study in Sec-
tion 3 reveals that even a processor with a very high is-
sue width and large instruction window is unable to exploit
any significant degree of ILP for our Java workloads. We
also find that even more modest increases in issue width
produce only small performance improvements over our 3-
issue processor—e.g. an 8-issue processor with 2 load/store
units only gave a 21% speedup for ECperf.

The simulated machine has the baseline memory system
(2 cycle 4-way 32 KB L1 caches and an 18-cycle 8-way 1
MB L2 cache). Our baseline branch predictor are comprised
of a 2.5 KB YAGS directional predictor [8], a 256-entry cas-
caded indirect predictor [7] and a 16-entry return-address
stack [12].

For the experiments in this section, we also extend
the pipeline depth to 16 stages to more accurately model
pipeline effects. Our choice of 16 stages is a result of a
simplistic optimal pipeline depth analysis similar to the one
described by Hartstein et al. [10]. We determine the op-
timal pipeline depth by measuring the time per instruction
while we increase the pipeline depth by scaling the decode,
schedule and execute stages linearly—i.e., we add one addi-
tional stage at a time to each phase. In our model, a 22-stage
pipeline minimizes the time per instruction. However, we
conservatively choose to model a 16-stage pipeline because
the improvement from 16 to 22 was negligible.

We measured the cost of branch mispredictions and
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Figure 2. Performance improvements when idealizing certain structures compared to a 3-issue base-
line configuration (Medium core), while scaling the issue window.

misses to the instruction and data caches by comparing
the performance of our baseline machine to a similar ma-
chine with that one particular feature (a branch predictor or
cache) made perfect. For example, we measure the cost of
data misses to the unified L2 cache by simulating a perfect
second-level cache2 for all data accesses.

Figure 2 displays the performance improvement derived
from idealizing more and more structures. Starting with a
baseline design and then first idealize the branch predictors
and then idealizing more and more of the memory hierar-
chy. The height of the bar represents the performance ob-
tained when all structures are perfect.

4.1 Performance Effect of Cache Misses

We find that the performance of ECperf is more depen-
dent on the instruction cache than any of our other bench-
marks, which matches the high instruction cache miss rate
reported by Karlsson et al. [13]. For ECperf, idealizing the
L2 data accesses produces a considerable performance im-
provement. Idealizing the L1 data cache in addition, how-
ever, does not improve performance any further. We also
observe that increasing the size of the instruction window
beyond 64 entries does not significantly improve perfor-
mance on either our baseline or idealized processors for

2Note that a perfect cache is not the same as an infinite cache as a
perfect cache hits even for cold miss.

any of our commercial applications. However, the SPEC
applications BZIP and PERLBMK continue to benefit from
larger instruction windows.

Figure 2 illustrates the degree to which each structure
limits ILP for a particular workload, however, it does not
indicate how much those limitations can be reduced by im-
proving the structure. In order to test the feasibility of im-
proving the caches, we measure the relative performance
improvement of achievable optimizations such as doubling
the cache size or associativity.

L1 Data Cache L1 Instr Cache
Application 64KB 8-w 64KB 8-w
ECperf 0% 0% 0% 0%
JBB 0% 0% 0% 0%
OLTP 0% 0% 1% 0%
APACHE 2% 2% 3% 2%
GCC 0% 0% 0% 0%
BZIP 0% 0% 0% 0%
PERL 0% 0% 0% 0%
MCF 0% 0% 0% 0%

Table 4. Performance improvement over a 64-
entry issue window baseline configuration
when doubling cache size or associativity.
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Figure 3. Performance improvement with perfect branch predictions structures compared to a 3-issue
baseline configuration. Note this is a scaled up breakdown of the perfect prediction improvement
stack from Figure 2.

Not surprisingly, doubling the size and associativity of
the caches substantially reduces the cache miss rate. For
example, when doubling the cache size, the number of data
cache misses for ECperf and OLTP are reduced by 17%
and 16% respectively. However, Table 4 shows that there
is no corresponding improvement in performance for any
application except APACHE. This lack of performance im-
provement indicates that L1 cache misses are not a primary
bottleneck for these workloads running on our baseline pro-
cessor.

4.2 Performance Effect of Branch Prediction

Modern processors use several different mechanisms to
predict the instruction stream, including branch direction
prediction, branch target prediction and return address pre-
diction. We investigate breakdown the cost of several com-
mon types of mispredictions by measuring the effect of ide-
alizing different types of predictors over our baseline branch
predictor configuration.

As we can see in Figure 3, the bulk of the prediction
cost in performance for all workloads is due to mispredic-
tions of conditional branches. For ECperf, also perfecting
the branch target buffer and return address stack yields a no-
ticeable performance improvement. The same observation
can be made for PERL. Perfect prediction improves the rel-
ative performance of ECperf by 21%, which is more than

any of the other commercial benchmarks.

Branch Predictors
Application Direction BTB RAS All Perfect
ECperf 4% 0% 0% 21%
JBB 2% 0% 0% 19%
OLTP 6% 0% 0% 18%
APACHE 5% 2% 2% 11%
GCC 1% 0% 0% 5%
BZIP 1% 0% 0% 46%
PERL 3% 2% 0% 35%
MCF 0% 0% 0% 11%

Table 5. Performance improvement over a 64
entry issue window baseline configuration
when doubling predictor sizes.

As above, we estimate how much of the possible per-
formance improvement is attainable with realistic hardware
by measuring the overall IPC improvement over the base-
line when doubling the size of the different predictors. For
all applications, especially the commercial ones, we ob-
serve significant gains from doubling the direction predic-
tor. Doubling the BTB or the RAS only improves perfor-
mance for APACHE and PERL.
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Processor Core LARGE MEDIUM SMALL
Fetch/Issue/Commit 8 3 1
Branch Pred. 10KB 2.5KB 0.6KB
BTB 1024 256 64
Return Address Stack 32 16 8
Mispred. Penalty 13 13 13
L1 I-Cache (4-way) 64KB 32KB 16KB
L1 D-Cache (4-way) 64KB 32KB 16KB
L1 Latency (I & D) 3 cycles 2 cycles 2 cycles
L2 Unified (8-way) 1MB
L2 Latency 18 cycles
Memory Latency 250 cycles

Table 6. Processor Core configurations.

For ECperf, despite a 10% decrease in the BTB mispre-
diction rate, we observe no noticeable improvement in per-
formance. We hypothesize that this discrepancy is is due
to the fact that programmers and compilers often put save
and restore instructions in the delay slot of call and return
instructions. When a spill or fill trap occurs on such an
instruction, the pipeline is flushed. Therefore, any mispre-
dictions immediately preceding the trap will have little or
no effect on performance.3

5 Chip Multiprocessor Trade-offs

In order to make a back-of-the-envelope estimation of
the CMP design that is best suited for Java-middleware
workloads, we compare the performance of three proces-
sor configurations (small, medium and large) that represent
different ILP vs. TLP design points. We measure the perfor-
mance of each processor with three different L2 cache sizes.
The relative performance improvement from each increase
in processor size provides a rough estimate of the amount
of additional chip area or power consumption that may be
justified by the corresponding increase in throughput.

Our three processor configurations, large, medium and
small, are described in Table 6. The medium core parame-
ters were selected based on our earlier findings to represent
a modestly aggressive processor in terms of single-thread
performance, and relatively small in order to fit as many as
possible on a die. It has the baseline memory system and
branch predictor configurations. The small and large core
designs was chosen as reference points in terms of single-
thread performance and size.

The large and medium cores have issue windows with
128 and 32 entries, respectively, while the small core is
single-issue and in-order. The issue width and the size of

3We assume an aggressive trap mechanism that does not squash the
delay slot on a misprediction.

the L1 caches and predictors are increased by at least a fac-
tor 2 between each core. We also simulate each core with 1,
2 and 4 MB caches to observe each core’s performance de-
pendence on the L2 cache size. Previous studies on ECperf
have shown both that ECperf scales linearly up to 8 proces-
sors and that a few MB of cache captures the entire working
set [13][14] when shared by 8 threads. Based on these ob-
servations, we assume linear scaling on ECperf when com-
paring CMP designs.4

For ECperf, we notice a performance speedup of 2.5
times between the small and medium core, but only a 21%
improvement from medium to large. Therefore, the large
core can consume at most 21% more area than the medium
core for it to be as efficient from a throughput-per-chip-area
standpoint for this particular workload. For the medium
core, we note a 14% improvement when increasing the L2
size from 1MB to 2MB, but only an additional 11% when
increasing from 2MB to 4MB. Taking the area trade-off one
step further, we compare the performance effect of adding
cores instead of cache. For the medium core on ECperf,
this implies that since we assume linear scaling when in-
creasing the number of cores. Increasing the L2 cache size
from 2MB to 4MB must increase the area by no more than
11% to be more beneficial than adding additional cores for
ECperf.

When power is taken into consideration, cache would be
favored instead of cores since caches consume significantly
less power (both in terms of leakage and dynamic power)
than processor cores. Adding cache can also reduce mem-
ory bandwidth consumption, which could become a major
performance limitation in large CMPs as more cores on a
die will lead to fewer available pins per core.

6 Related Work

Several previous papers have also analyzed Java work-
loads. Li and John identify the large number of branch sites
in Java programs as the cause of poor branch prediction on
these workloads [15]. Luo and John present an analysis of
two Java server benchmarks (JBB and VolanoMark). They
find that Java server workloads have poor instruction cache
behavior and high ITLB miss rates [16]. Shuf et al. observe
that prefetching is ineffective on Java workloads due to high
TLB miss rates. Other studies characterize the memory sys-
tem behavior of Java server workloads [4][5][13][18][26].

Many previous papers have studied the behavior of other
commercial workloads. For example, Barroso et al. studied
the memory system of an OLTP workload [3]. Redstone

4Note that the linear scaling assumption does not hold for
SPECjbb2000, APACHE and OLTP, since their dataset is larger than the
simulated L2 cache sizes leading to potentially negative L2 sharing effects.
We include them as uniprocessor performance reference points.
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Figure 4. Chip trade-offs, Large cores vs. smaller cores and cores vs. cache

et. al. studied the operating system behaviour on an SMT
architecture using APACHE [24].

Ekman and Stenström studied the performance and
power impact of issue-width in CMP cores using the
SPLASH-2 benchmark suite [9] and found that CMP de-
signs with fewer wider-issue cores perform as well with a
comparable power consumption as designs with larger num-
bers of smaller cores.

7 Conclusions

Java middleware is an important and growing workload
for server processors. This paper is the first to character-
ize this emerging workload using the step-by idealization
of processor structures. We use this technique to illustrate
the behavior of ECperf and JBB. We offer greater insight
into the behavior of our Java workloads by comparing them
to other well-known commercial workload and to several of
the widely studied SPEC benchmarks.

We find that, at the processor level, Java middleware be-
haves much like other well known commercial workloads—

ILP is limited by memory system stalls, branch mispredic-
tions and frequent traps. For ECperf, as for other commer-
cial workloads, instruction fetch is a potential performance
bottleneck. Overall performance is limited by instruction
cache and TLB misses for ECperf, OLTP and APACHE.
Improving ITLB performance, perhaps by using large pages
for Just-In-Time compiled code, is essential to the effective
utilization of aggressive processors on ECperf.

For ECperf, we find that a modestly aggressive medium-
size processor core achieves very close to the performance
obtained by a more aggressive core. Our most aggres-
sive processor achieved only an 21% speedup over our
medium-size core despite having twice the issue width,
amount of L1 cache and branch predictor state. Ex-
tremely simple processors, on the other hand, sacrifice a
significant amount of easily exploitable ILP. Our medium-
size processor outperformed a simple in-order processor
by a factor of 2.5. Therefore, we believe that from a
performance-per-engineer-year, performance-per-mm2 and
performance-per-watt point of view modestly aggressive
processor cores may be the best CMP design choice for Java
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middleware.
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