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Abstract

Modern shared-memory multiprocessors require complex interconnection networks to provide su�cient com-
munication bandwidth between processors. They also rely on advanced memory systems that allow multiple
memory operations to be made in parallel. It is expensive to maintain a high consistency level in a machine
based on a general network, but for special interconnection topologies, some of these costs can be reduced.

We de�ne and study one class of interconnection networks, race-free networks. New conditions for sequential
consistency are presented which show that sequential consistency can be maintained if all accesses in a multi-
processor can be ordered in an acyclic graph. We show that this can be done in race-free networks without the
need for a transaction to be globally performed before the next transaction can be issued.

We also investigate what is required to maintain processor consistency in race-free networks. In a race-free
network which maintains processor consistency, writes may be pipelined, and reads may bypass writes.

The proposed methods reduce the latencies associated with processor write-misses to shared data.

1 Introduction

The presence of data in multiple copies in a machine and the possibility of performing memory accesses in parallel
have e�ects on which synchronization techniques can be used in a multiprocessor. Trade-o�s have to be made between
system performance versus hardware cost and generality of synchronization and inter-processor communication
models. Several memory-access models have been proposed. They di�er in the degree of consistency o�ered by the
multiprocessor. Stronger access models are more expensive to maintain in that they require some kind of serialization
between accesses, while looser models extensively can utilize techniques such as lockup-free caches [14] to improve
system performance.

Several network topologies have been proposed, ranging from the single shared bus to complex networks such as
meshes or multistage networks. This paper identi�es one class of interconnection networks, race-free networks, and
shows that the use of such networks can reduce cost in terms of tra�c overhead and wait times for maintaining dif-
ferent memory access-order models. In section 2 of this paper we investigate what conditions are needed to maintain
sequential consistency in a system. In section 3 the race-free network is de�ned. Section 4 deals with the conditions
needed to maintain sequential consistency in race-free networks. In section 5 we relax the scheme introduced to
maintain sequential consistency, and study two access-order models that lie close to processor consistency. Section
6 proposes di�erent methods for improving the bandwidth of a race-free network. A summary of presented results
is found in section 7.

1.1 Memory access models

Sequential consistency was introduced by Lamport in [11]. This is the highest consistency level, and guarantees that
the result of an execution of a program on a multiprocessor is the same as the execution on a single processor with
multitasking.

Processor consistency, introduced by Goodman [7], o�ers a lower level of consistency. It guarantees that the
result of any execution is the same as if the operations of each individual processor appear in the sequential order
speci�ed by its program, but the order in which writes from two processors occur need not be observed in the same
order by all processors.

Looser access models have been proposed by several groups (e.g. weak ordering [4, 2], release consistency [5]).
They have in common that processors only may communicate under explicit synchronization with primitives that
are recognized by hardware.

In a recent paper [6], Gharachorloo et al. present performance evaluation results for an architecture based on a
general network showing that the looser access models for several applications show results comparable to processor
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consistency, while sequential consistency always performs worse. They advocate that processor consistency is a
suitable trade-o� between demands on performance and implementation cost for systems with general networks.

1.2 General assumptions

In the following discussions, it is assumed that a multiprocessor may maintain multiple copies of data, for example,
by the use of caches. Caches may be multilevel, and can be local to a processor or used by several processors in
a part of a system. By global data we mean data that is common to several processors. By shared data, we mean
data that for the moment exists in several copies and is directly accessible to a processor by reads. By the term
write-miss we mean a write to data that is not exclusively owned by the writing processor. Data is allowed to reside
in di�erent parts of the system, for example in distributed memory blocks as in a NUMA (Non-Uniform Memory
Access) architecture. It is also assumed that the system uses some kind of coherence protocol that is based on a
write-invalidate policy.

Furthermore, for the sake of simplicity, we assume that the size of a coherence unit (here called item) is equal to
the line size of the caches, and that all processor communication is done through memory operations (inter-processor
interrupts propagated outside the race-free network for example are not allowed for communication here).

2 Sequential consistency

In this section we will show that sequential consistency can be maintained in a multiprocessor if certain conditions
on the ordering of accesses are satis�ed. These conditions are less restrictive than those presented earlier.

Lamport de�ned sequential consistency in [11]:

[A system is sequentially consistent if] the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order speci�ed by its program.

It is normally expensive to maintain sequential consistency in cache-based multiprocessors. Scheurich and Dubois
formulated in [15] a condition that is su�cient but not necessary to maintain sequential consistency in a cache-based
machine.

Condition A (Sequential consistency): \Sequential consistency is satis�ed in any system if an access may
not be performed with respect to any processor until the previous access by the same processor has been
globally performed and if accesses of each individual processor are globally performed in program order."

The key terms perform, perform with respect to and perform globally were de�ned by Scheurich and Dubois. We
formulate them as:

De�nition 1 (Perform with respect to)
A LOAD by processor i is considered performed with respect to processor k, at a point in time when a subsequently
issued STORE to the same address by processor k cannot a�ect the value returned by the LOAD.

A STORE by processor i is considered performed with respect to processor k at a point in time when a subsequently
issued LOAD to the same address by processor k returns the value de�ned by this STORE (or a subsequent STORE
to the same location).

De�nition 2 (Performing globally)
A STORE is globally performed when it is performed with respect to all processors. A LOAD is globally performed
if it is performed with respect to all processors and if the STORE which is the source of the returned value has been
globally performed.

Further, for simplicity we formulate:

De�nition 3 (Perform)
A STORE by processor P is considered performed when is is performed with respect to P .

A LOAD is considered performed when it is performed with respect to all processors.

As have been pointed out before [1, 3], Condition A is unnecessarily restrictive since it requires that each access
is globally performed before the following access may start.

We investigate the conditions for sequential consistency based on general relations between accesses in a multi-
processor. The reasoning here uses basically the same strategy as Lamport used in [11].

De�nition 4 (Access graph)
The Access graph is a directed graph of accesses in a multiprocessor with the arcs de�ned by the following relations:

� Accesses from the same processor are ordered in program order.
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� Two writes to the same address from di�erent processors are ordered.

� A read R is preceded by the write that is source of the value read by R.

� A write W , that follows another write Ws to the same address, is ordered after a read R if Ws is source of R.

Theorem 5 (Sequential consistency)
Sequential consistency is maintained in a multiprocessor if the Access graph is an acyclic graph.

Proof:

If the Access graph is an acyclic graph, then all accesses in the multiprocessor can be ordered in a
sequential order. Since the accesses of each processor appear in the access graph in program order, this
implies that sequential consistency is maintained.

It is interesting to note that from the Access graph, the data-ow relations between a read and its preceding write
can be extracted as a partial order. This gives the minimal conditions required to maintain sequential consistency
in a program if the de�nition by Lamport is interpreted so that the result of the execution of a program is the set
of data that the reads in the program return. The implications of this go beyond the scope of this paper.

The following conditions are su�cient to obtain an acyclic access graph, and thus su�cient for sequential con-
sistency:

Condition 6 (Sequential consistency)
If the following conditions are satis�ed in a multiprocessor, sequential consistency is maintained.

[w-w] Two consecutive writes from the same processor must be performed with respect to any processor in the order
speci�ed by the program.

[w-r] A read that follows a write W in the program of a processor, may not be performed until all writes before W
also have been performed with respect to the processor.

[r-r] A read that follows another read R in the program of a processor, may not be performed until all writes before
the source of R also have been performed with respect to the processor.

[r-w] A write that follows a read in the program of a processor may not be performed with respect to any processor
until the read has been performed.

[p-p] Two writes from di�erent processors to the same address, must be performed in the same order with respect to
any processor.

Proof:

We will show that with these conditions, only acyclic access graphs can be built.

[w-w], [w-r], [r-r] and [r-w] guarantee that the accesses of each processor appear as ordered in program
order.

[p-p] assures that writes from di�erent processors to the same address are ordered.

[w-r] and [r-r] guarantee that the source of a read is ordered before the read.

[p-p], [w-w] and [r-w] assures that a write that follows a source to a read are seen in this order by all
processors.

If the Access graph is not acyclic, then this implies that a cyclic relation exists between accesses. Program
order is by de�nition acyclic, thus a cycle in the graph must involve at least two processors. All access
relations between two processors relate accesses to the same address. The following transitions are then
possible: w 7!w, w 7!r and r 7!w. If we have a cycle with two writes to the same address, condition [p-p]
has been violated. If the cycle includes a write and a read, this implies that the write is the source of
the read and also that is follows the source of the read. This violates [w-w] or [w-r] since two writes
from a processor must be performed in program order with respect to any processor therefore it must
be well de�ned which write is source and which follows the source to the read, and further [w-r] and
[r-r] assures that the read may not be performed until all accesses ordered before the read in the access
graph also are performed with respect to the reading processor. Thus the access graph must be acyclic,
and sequential consistency is guaranteed
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Processor node

Network node

Figure 1: An example of a race-free network

3 Race-free networks

The fact that the cost of maintaining some kind of consistency in a multiprocessor varies for di�erent interconnection
network topologies has been briey mentioned in [7]. We will identify one class of networks, race-free networks (RFN),
that shows interesting topological properties and allows for more e�cient implementations of di�erent access-order
models than those based on general networks.

A network graph consists of processor nodes, network nodes and arcs connecting the nodes. Processor nodes are
in the tips of the network. By a path from a node X to another node Y we mean the sequence of network nodes that
a transaction has to pass to travel from X to Y. Processor nodes contain the processors and possibly distributed
memory and/or local caches. Network nodes may contain distributed memory or caches as well.

De�nition 7 (Race-free network)

� A race-free network is a network with the topology of any acyclic undirected network graph.

� Transactions propagate on the arcs in the network without the possibility of overtaking each other.

� Transactions may be bu�ered in the network nodes but bu�ers must maintain a strict FIFO order between
transactions.

For simplicity, the bu�ering in a node is considered to be done so that when a transaction arrives at a node, the
transaction is immediately handled. The resulting transactions (normally a forwarding of the old transaction) are
put in a FIFO bu�er common to all transactions about to leave the node. A node has issued a transaction when it
is bu�ered in the FIFO bu�er.

The race-free network has properties that facilitate the support of consistency in a system:

Theorem 8 (Transaction ordering)
In a race-free network, transactions issued in a speci�c order from one node are observed in the same order by all
other nodes.

Proof:

Transaction ordering follows from the inability of transactions to overtake each other in the network,
and because all transactions have to propagate along the same path, since the network is acyclic.

Causal correctness was formulated by Scheurich in [14]. We formulate the following theorem for race-free networks:

Theorem 9 (Causal correctness)
Any transaction A that has reached a node X in a race-free network before X issues a new transaction B will also
have reached any other node Y before it receives B.

Proof:
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The transaction A can be one of the following three types: 1) Transactions that �rst reach Y and then
propagate to X; 2) transactions that �rst reach X and then propagate in the network towards Y; 3)
transactions that reach a node Z which is the �rst node they reach that is in the path from X to Y. The
casual correctness (CC) is obviously satis�ed for a transaction A from group 1. That transactions from
group 2 satisfy CC follows from the transaction ordering. Transactions from group 3 have all passed Z
before B reaches Z, thus the transaction ordering from Z to Y gives that CC is true.

That this is satis�ed in any acyclic undirected graph was pointed out by Dahlgren in [16].
The properties of a race-free network also help support coherence. To handle coherence, a node in a network

that receives an invalidation of an item and has a bu�ered data transaction for the same item or receives a data
transaction for that item from another arc before the invalidation has been further propagated must invalidate the
data transaction and may not propagate it to any other node in the system. We call this property local coherence.
Similar functionality may also be required for example to detect and solve write races on an item from two or more
processors. Since this paper focuses on access ordering such mechanisms are assumed without explicit statement in
the following.

The nodes in a race-free network may be ordered in a tree. In some tree-ordered directory- or cache-based
systems, the network keeps state information about the locations of datum copies. If such knowledge is present and
a tree-ordering exists, the item is said to be exclusive in the subsystem which is the smallest subtree that contains all
copies of the item. The network node that is the root in the subtree is called the root node in the subsystem or for
that item. Note that this is a dynamic relation. If such information is not kept in the network or no tree-ordering
exists, a centralized node in the network is regarded as root node for all items, and all items are exclusive to the
whole system. In systems without tree ordering, by subsystems to a node, we mean nodes in the direction from the
central root and towards the tips of the network.

4 Sequential consistency with race-free networks

In this section we will investigate which demands are required for maintaining the highest consistency level, sequen-
tial consistency in a race-free network, and how this di�ers from the case of a general network.

4.1 General networks

The normal action taken to ensure sequential consistency is to suspend the processor (or at least prevent it from
accessing shared data) upon a write-miss to global data. An invalidation or write request of the item is then sent
out to all processors that share copies of the item. The processor can continue to execute when an invalidation
acknowledge has been received from all other processors indicating that all other copies have been destroyed. This
follows Condition A by Scheurich and Dubois presented above. The time the processor has to be suspended is then
equal to the longest time it takes for request and acknowledge messages to propagate.

4.2 Race-free networks

An informal argument why all invalidationsmust be acknowledged from all the processors in a general system before
the processor may continue execution is that otherwise a processor in a general network may continue execution
and perform a read without knowledge of all the writes made before its own write and thus precede its source.
With a race-free network, a better scheme can be used. Here, it is not necessary to let the processors acknowledge
invalidations; instead, an invalidation acknowledge can be sent out directly from a network node if it can guarantee
that the acknowledge will arrive at the processor after invalidations from all writes that precede this write.

The following conditions are su�cient for maintaining sequential consistency in a race-free network:

De�nition 10
A write-access is considered performed with respect to a node when the node has bu�ered the write-access for
propagation to all other nodes in its subsystem.

Condition 11 (Sequential consistency, RFN)
In a system with a race-free network sequential consistency is maintained if:

� A reading processor may continue execution when the read has been performed.

� A writing processor may continue execution when the write has been performed with respect to its root node,
and when all writes performed with respect to the root of this item previous to and including this write, also
have been performed with respect to all nodes in the path from the root downto the processor.

Proof:
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Sequential consistency is maintained if condition 6 is satis�ed.

Paragraph [w-w] is satis�ed since: 1) The �rst write is performed with respect to all nodes in the path
from the root to the processor before the second write may be issued, thus all processors with a path
to the writing processor that does not include the root will receive this write before the second due to
theorem 8; 2) all other nodes that share copies of both items will observe the �rst write before the second
write due to theorem 9.

[w-r] and [r-r] are satis�ed since an item read by a processor either is cached at the processor or not.
If it is cached we know that the source of the read can not be ordered before the processors last write,
since when the processor was allowed to continue execution, all previous writes had been performed with
respect to the processor. If the item not is cached, before it can be propagated to the processor, all
writes previous to the source have also been propagated. Since an access after a read is not performed
until the read is performed, [r-r] and [r-w] are obviously satis�ed.

[p-p] is satis�ed because all writes to the same item are sequentialized to an order by the root node in
the subsystem.

4.3 Scheme 1

We will here sketch the fundamental mechanisms of a protocol that ful�lls the condition 11 in a race-free network.
We call this scheme Scheme 1:

Scheme 1

� At a write-miss to global data, the processor sends a write request to the network and suspends execution.

� The network node that is root node for that item sends invalidations to other copies of the item and returns a
write acknowledge to the writing processor.

� A node that receives an acknowledge forwards the acknowledge to the writing processor and sends invalidations
to other subsystems.

� The processor may continue to access global data when the write acknowledge is received.

� At a read-miss the processor sends a read request to the network and suspends execution until data is received
from the network.

This scheme satis�es condition 11. Since reads are blocking, the condition for reads is satis�ed. Write-misses
meet the condition since the acknowledge transaction is preceded by all other transactions that arrived at the root
before the write-request; when a suspended processor receives an acknowledge, all transactions that reached the
root node before the write also will reach the processor before it receives the acknowledge. Further, due to the
transaction ordering properties of the network, all processors with shared data will see invalidations due to writes
in the same order as in which they appear in the access graph.

An example can be studied in �gure 2. Note that this only describes the fundamental mechanisms of the
access ordering in the network. A scheme similar to this was introduced by Warren and Haridi in [17] and a full
implementation is described in [10, 9].

In systems where the size of the smallest writeable unit (write unit size) is less than the item size (which is the
common, general case), a processor must have a copy of the item it writes to before it performs the write.2

In [1] Adve and Hill propose new optimizations for use in general networks. The optimizations allow a processor
to continue execution after a write has been issued as soon as the processor has a copy of the item written to. The
restriction is that the data the processor may access before it has received the write acknowledge must be exclusive
to that processor (i.e., it must suspend accesses to shared data). This method is possible to introduce in a race-free
network as well. It requires that no processor performs a write-access on data that someone else has exclusively
(this is satis�ed if a write requires that the writer �rst gets a copy of the item). A processor may continue execution
after a write has been issued as long as it only accesses data exclusive to the processor. The accessed data may not
be distributed to any other processor until the outstanding write acknowledge has been received. If an invalidation
is received instead of an acknowledge, the write must be retried. Incoming requests to items accessed during a
pending write may not be served until the write has been acknowledged.

2Or in an extreme case, keep information about each item exactly which parts are modi�ed. Extra care must also be taken when an
invalidation is performed so that no parts of an item is lost.
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Figure 2: A hierarchical system with �ve processors P1 { P5. P1, P3 and P5 have copies of X. Y is shared by P3,
P4 and P5. In this situation N3 is root node for Y, while N1 is root node for X. If P3 issues a write to X at the
same time as P5 issues a write to Y, both write requests will reach node N3. N3 sends the request for X to N1, an
invalidation of Y to P3, and an acknowledge for Y to P5. N1 returns an acknowledge for X to N3 and an invalidation
to P1. When N3 receives the acknowledge for X, it forwards the acknowledge to P3 and sends an invalidation of X
to P5.

4.4 Comparison between race-free and general networks

The race-free network scheme contributes in two ways to improve performance compared to the general case.

� The time a processor has to be suspended is reduced since the write acknowledge is returned directly from the
network. In the general case, the suspension time is: max(tinv�to�proci + tack�from�proci ), and with the new
scheme the processor is suspended: tinv�to�root + tack�from�root.

� The total network load is reduced with the new scheme since the number of transactions needed to maintain
consistency is reduced. For the general scheme, 2�N transactions are required if the item written is shared by
N processors. In a race-free network, 2+N transactions are sent. Note however that most of the transactions
in the latter case only are propagated in a small part of the network.

In tree-structured networks, the delay for writes to shared global data can be reduced by about 50 % with the new
scheme. How this e�ects system performance varies greatly depending on the fraction writes to global data vs other
memory accesses, the amount of sharing and cache sizes.

5 Lower consistency levels

It is possible to relax a few of the conditions for sequential consistency described above and thereby achieve new
access-order models close to processor consistency. The models described here are basically processor consistent. It
may however be interesting to note that they are somewhat stronger than that.

Processor consistency was de�ned by Goodman in [7]:

A multiprocessor is said to be processor consistent if the result of any execution is the same as if the
operations of each individual processor appear in the sequential order speci�ed by its program.

Gharachorloo et al. formulated in [5] the following access restrictions needed to obtain processor consistency in
a system with a general interconnection network:

(A) before a load is allowed to perform with respect to any other processor, all previous LOAD accesses
must be performed, and

(B) before a STORE is allowed to perform with respect to any other processor, all previous accesses
(LOADs and STOREs) must be performed.

The above conditions allow reads following a write to bypass the write.

For systems based on race-free networks, processor consistency can however be obtained under less restrictive
conditions. In addition to allowing reads to bypass writes, pipelining of writes is possible. The following conditions
are su�cient for processor consistency:

Condition 12 (Processor consistency)
Processor consistency is satis�ed in any system if:
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[w-w] Two consecutive writes from the same processor must be performed with respect to any processor in the order
speci�ed by the program.

[r-r] A read that follows another read R in the program of a processor, may not be performed until all writes before
the source of R also have been performed with respect to the processor.

[r-w] A write that follows a read in the program of a processor may not be performed with respect to any processor
until the read has been performed.

Condition [w-w] guarantees that all processors observe the same write-sequence from any other processor. The
conditions [r-r] and [r-w] require that the reads of the processor appear in this sequence in program order.

These conditions allow reads following a write to bypass the write and subsequent writes to be pipelined.

5.1 Scheme 2

Initially: X=Y=0 in processor caches.

P1: P2:

X=1; Y=1;
if (Y=0) then if (X=0) then

unique; unique;

Figure 3: Two processors execute the programs P1 and P2. In sequential consistency it is guaranteed that maximally
one processor enters the unique region. In Scheme 2, it may very well happen that both processors issue their writes
and perform their reads before the invalidations have propagated. Note the condition that they already share copies
of X and Y.

Let us start by relaxing the demand in Scheme 1 that a processor must be suspended from execution from when
it has issued a write request until it receives the acknowledge. If we prevent the processor from reading the value
written and prevent information about the value of the item to propagate to any other node in the network until
the acknowledge has been received an interesting situation arises.

Now, the way invalidations propagate in the network is modi�ed. In the previous scheme, invalidations were sent
out from the root node. If instead the write request propagating in the network towards the root directly causes
invalidations to be sent into the subsystems it passes, an interesting access-order model is achieved. We call this
new scheme Scheme 2. If the size of an item is larger than the smallest writeable unit additional care must be taken.
In [8] a protocol with similarities to this is shown in detail, which handles such false sharing.

Scheme 2

� At a write-miss to global data, the processor sends a write request for the item to the network.

� A network node that receives a write request from a subsystem sends invalidations of the item to other subsys-
tems. If it is the root of the item an acknowledge is returned; otherwise, the request is propagated towards the
root.

� The processor may continue to access global data as soon as the request has been issued, but may not read or
propagate the value of the item until the write acknowledge has been received.

� At a read-miss the processor sends a read request to the network and suspends execution until data is received.

This scheme meets the requirements of processor consistency because of the transaction ordering properties of
the network; all other processors receive invalidations of items in the same order as the requests are issued by the
writing node. Since the writes appear ordered and reads are blocking the scheme satis�es the requirements for
processor consistency. In addition to this, the following condition is satis�ed:

[p-p, other] Two writes to the same item from di�erent processors are performed in the same order with respect to
any other processor.

This is clear since writes still are ordered by the root node so that no information of a new item may be distributed
until all other writes before that write will be known by any processor when it receives the new value.

Sequential consistency however is no longer maintained. Since the [w-r] condition of sequential consistency not is
ful�lled a read that follows a write may appear to be done before the write. A simple example shows this in �gure 3.

Scheme 2 di�ers from sequential consistency in that no conclusion of the ordering of accesses can be drawn
from that a write has been executed. Note however that processors observing accesses by reads, all see the same
interleaving. It might be interesting to note, that if the algorithm in �gure 3 is modi�ed so that the variable written
is read again by the writer, correct operation is achieved.

8



5.2 Scheme 3

Scheme 2 di�ers from scheme 1 in that a processor may continue execution directly after a write has been issued.
It may however neither read the item written nor propagate its value until the acknowledge has been received. If
further relaxations are introduced we get a lower consistency level.

We introduce a third scheme, Scheme 3, which to a writing processor is equal to scheme 2 except that now the
processor may read the new value, as well as distribute it as soon as an invalidation of the item has been issued.
Here we assume that an item is the smallest writeable unit.

Now, no ordering of writes exists. ([p-p, other] is not satis�ed). The access order from each processor is
nonetheless maintained. This scheme is close to processor consistency, but maintains in addition still the causal
correctness o�ered by the network topology.

Scheme 3

� At a write-miss to global data the processor sends an invalidation of the item to the network.

� The invalidation is propagated in the subsystem where the item is exclusive.

� The processor may continue to access global data as well as read and propagate the new value of the item as
soon as the invalidation has been issued.

5.3 Comparison with general networks

We have shown two schemes that maintain access-order models that are weaker than sequential consistency but
slightly stronger than processor consistency. Implementations of processor consistency in general networks allow
reads following a write to bypass the write. Writes can be bu�ered but must be performed in program order and
may only be considered performed after receiving an acknowledge that all other copies are invalidated.

The race-free network allows the processor to have several outstanding writes. That is, the processor never
needs to stall on a write operation. The network topology guarantees that the write operations are seen in correct
sequential order by all other nodes.

6 Improving performance

A major drawback of the race-free network is that it has a possible bottleneck { the root. A general network can
obtain arbitrarily high bandwidth by introduction of redundance (i.e. several parallel paths between two processor
nodes). A race-free network may especially have bottlenecks that limit the bandwidth between distant processors
since this communication must pass the root node. These drawbacks can be reduced by splitting presented below.

6.1 Splitting paths

In a race-free network, (higher) levels in the hierarchy may be split. The splitting introduces multiple slices of a path
between network nodes to increase communication bandwidth. This was �rst suggested for a shared bus by Rudolph
and Segall in [13]. In a race-free network splitting must be done with caution. With multiple paths, transactions
propagating in the network may overtake each other, and the fundamental properties of race-free networks may be
lost.

1. Splitting is done so that a unique mapping (interleaving) of transactions is established that assigns di�erent
parts of the item space to di�erent slices of a path in the network (e.g. transactions associated with items
with even addresses take one slice, and transactions associated with odd addresses the other). In this manner,
all items see a network with only one single path.

2. The transaction sequence must be maintained so that all transactions issued from one node in the system are
received by all other nodes in the same issuance order, or so that the sequence between transactions can be
restored to the correct order by the receiving nodes.

The �rst condition is needed to maintain local coherence. The second is needed to keep the race-free properties of
the network. To restore the sequence between transactions if, for example, several transactions are sent in parallel,
there must be a unique prioritization between the di�erent slices in the split path so that the order between parallel
transactions on di�erent slices can be restored.

A node in a split network can split caches, directory memories, protocol machines etc which may be present in
the node. Note however that the FIFO bu�ering in the node must maintain a FIFO order common to all slices in
the node.
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Figure 4: A race-free network with two level splitting. Note that in the split node, the transaction sequence must
be maintained, so that the race-free properties not are lost.

Sequencer

Figure 5: A race-free, hierarchical bus network with splitting for relaxed transaction ordering.

6.2 Relaxing the transaction ordering in Scheme 1

In this section we introduce a way to further improve performance in a split network. The schemes, 1, 2 and 3 rely
on three main properties: transaction ordering, causal correctness and local coherence. It turns out that only a part
of all transactions need strict ordering.

Here we assume that a coherence protocol is assumed to be based on transactions from the following categories:
fRead, Data, Write, Acknowledge, Invalidateg. A Read transaction is a request to get information about the value
of an item. A Data transaction is a transaction that carries the value of an item, possibly sent as a reply to a Read.
A Write transaction is a request to write an item. An Acknowledge transaction is the reply that grants permission
to write. An Invalidate transaction is a demand to erase the information about the value of an item.

In Scheme 1, the critical transactions Invalidate and Acknowledge are propagated only from the root node towards
the processors, while Write requests are propagated only in the opposite direction.

If memory is distributed among the processors, transactions Read and Data are propagated in the network in
both directions. Transactions propagating up the network, towards the root node can thus be of types fRead, Data,
Writeg, and transactions propagating downwards can be fRead, Data, Acknowledge, Invalidateg.

To maintain Scheme 1, the requirement that transactions may not overtake each other can be relaxed. In fact
all transactions propagating upwards in the network, fR, D, Wg, bound for di�erent items can be propagated in an
arbitrary order. This requires some justi�cation. Since a processor is suspended during read and write misses, each
processor can only have one outstanding R or W transaction. Data transactions are propagated as replies to Read
requests, and may be sent out at any time, requests to writes waiting for acknowledge may however not be served
until the acknowledge has been received. Two Write requests propagating in the network originate from di�erent
processors. The order of these writes is a result of a race condition which is solved by their root nodes. Therefore
the ordering of two W transactions is arbitrary and may be altered by the network. The order of transactions of
the other types does not change the access ordering as long as they are made to di�erent items, and may thus also
be altered by the network. Note though, that all transactions for the same item still must be kept in order. This is
not a problem since they propagate along the same slice in a split path.

The relaxed transaction sequence facilitates implementations of split nodes. Now, only transactions sent from
a root node to its children need to be ordered. All the transactions from the sons and upwards can be sent in
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an arbitrary order. This results in that the available bandwidth can be utilized to a large extent, even with the
limitation that each transaction only can use one of the slices to propagate.

Note that this does not apply to schemes 2 and 3, where for example invalidation transactions must be ordered
even when propagated upwards.

6.3 Heterogeneous networks

A race-free network may be a part of a larger network. A simple example of this is architectures like for example
the DASH [12, 5]. In the DASH architecture a cluster of processors share a bus (which is a very simple race-free
network). Such clusters are interconnected with a general network (a pair of meshes).

It is however possible to use larger systems based on race-free networks as subsystems with a general network on
top. In this way the bene�ts of the two strategies can be combined. The number of transactions needed, and the
delay time in the general network can be drastically reduced while the power of the high bandwidth network can be
fully utilized.

The schemes presented above can be used locally in the race-free subsystems. The top node of each race-free
system must then implement a more general scheme to handle the general network. This is particularly useful in
Scheme 1 since minimal functionality needs to be added. If the subsystems follow Scheme 1 (sequential consistency)
the top-level protocol can be based on common principles with write/acknowledge messages sent between the root
nodes. A root node that issues a write must then wait for all other acknowledges to be able to return an acknowledge
down its own network. A root node that receives an invalidation from the general network may respond with an
acknowledge as soon as it has the invalidations due to the write bu�ered bound downwards.

Note that schemes 2 and 3 requires bu�ering of accesses by the root node in the race-free subsystems, which is
probably not worth while if global networks accesses are frequent. In Scheme 2 for write ordering to be global, all
writes must be bu�ered at the root node, and need acknowledge messages from all other roots to be performed. In
Scheme 3 an optimization may be done, as correct ordering of writes only need to exist between writes from the
same processor. If this is done the causal properties are lost.

7 Summary

In this paper, we have de�ned and studied one class of interconnection networks, race-free networks. We have shown
that for di�erent access-order models, such networks require less restrictive conditions on memory accesses than
have been used for general networks. These reduce latencies associated with writes to shared global data.

New conditions for sequential consistency have been presented which show that sequential consistency can be
maintained if all accesses can be ordered in an acyclic graph. We have shown how this can be done in a race-free
network without the need for a transaction to be globally performed before the processor can continue execution of
next instruction.

General networks require invalidation acknowledge messages from all other processors that share copies of the
item written to allow a writing processor to continue (to access shared global data). In race-free networks, such
an acknowledge can be sent out from a network node, and the writing processor can continue execution before
all other copies are invalidated. The time a processor is suspended in a general network is maxi(tinv�to�proci +
tack�from�proci ). For race-free networks the corresponding time is tinv�to�root + tack�from�root . In tree-structured
networks, tinv�to�root � tinv�to�proc=2, and tack�from�root � tack�from�proc=2. The network tra�c is also reduced.

We have also presented two schemes that are close to processor consistency. One guarantees processor consistency
and, in addition, that a global write-order can be observed by all reading processors. The other guarantees processor
consistency and causal correctness. These two models allow reads to bypass writes, and writes to be pipelined (retired
from the write bu�er as soon as they are issued into the network). This has previously only been achievable for
lower consistency levels.

8 Related work

A multiprocessor with a race-free interconnection network is under implementation at the Swedish Institute of
Computer Science. The machine is called the Data Di�usion Machine, DDM [9] and has a network based on
hierarchical buses. A full protocol for sequential consistency has been presented in [10, 9]. An implementation of a
protocol similar to Scheme 2 has been presented in [8].
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