
Skewed Caches from a Low-Power Perspective

Mathias Spjuth, Martin Karlsson and Erik Hagersten
Uppsala University

Information Technology
Department of Computer Systems

P.O. Box 325, SE-751 05 Uppsala, Sweden

martink@it.uu.se

ABSTRACT
The common approach to reduce cache conflicts is to in-
crease the associativity. From a dynamic power perspective
this associativity comes at a high cost. In this paper we
present miss ratio performance and a dynamic power com-
parison for set-associative caches, a skewed cache and also
for a new organization proposed, the elbow cache. The el-
bow cache extends the skewed cache organization with a
relocation strategy for conflicting blocks.
We show that these skewed designs significantly reduce
the conflict problems while consuming up to 56% less dy-
namic power than a comparably performing 8-way set as-
sociative cache. We believe this to be the strongest case in
favor of skewed caches presented so far.

Categories and Subject Descriptions: B.3.m
[Memory Structures]: Miscellaneous

General Terms: Performance

Keywords: Skewed Caches, Low-Power, Elbow, CAT

1. INTRODUCTION
The emerging trends towards chip multiprocessors and

Symmetric Multi-Threading (SMT) make shared on-chip
caches increasingly common. With multiple threads sharing
a cache, it has been shown that the likelihood of destructive
sharing increases [10, 21]. To reduce conflict misses, the de-
gree of associativity is often increased. Adding associativity
usually comes at a cost in dynamic power consumption. As
power consumption has risen to become a first class per-
formance limiting factor, the cost of increasing associativity
from an chip power budget perspective may be significant,
especially considering highly replicated CMP designs.1 Con-
sequently there is a need for conflict tolerant caches with low
power consumption.

1Sun’s Niagara chip design e.g. contains 16 L1 caches, where
each cache is shared by 4 threads [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’05, May 4–6, 2005, Ischia, Italy.
Copyright 2005 ACM 1-59593-018-3/05/0005 ...$5.00.

Skewed 2-way associative caches have been shown to per-
form comparable with a 4-way set-associative cache [25]. We
will in this paper introduce a new skewed cache design with
a replacement strategy based on victim relocation and show
that this design outperforms conventional skewed caches.
This scheme is called the elbow cache.
Since skewed 2-way caches only use half as many bitlines
and sense amps as a 4-way associative for each read access,
one may suggest that it would consume half as much power.
On the other hand it requires two decoders, each connected
to half of the wordlines. Because of this the optimized access
time and power consumption is different from a conventional
2-way set-associative cache.
We will in this paper present a detailed comparison be-
tween the dynamic power consumption of a skewed cache,
set-associative caches and the proposed elbow cache orga-
nization. The cache designs evaluated was optimized by
subarray partitioning making the comparison between orga-
nizations as fair as possible.
Cache access time is a critical factor in many designs
and the additional delay incurred by the skewing function
has been viewed as a major drawback of skewed associa-
tive caches. We will present a pass-transistor based (XOR)
skewing function implementation. By exploiting the early
availability of the untranslated bits in the physical address
we are able to significantly reduce the delay incurred by the
skewing function. We believe this to make skewed caches a
much more attractive design choice for timing critical caches.
The contribution of this paper is fourfold:

• We present a power consumption evaluation that shows
that skewed caches are viable low power alternatives
to highly associative caches.

• We introduce a new cache scheme, the elbow cache,
that allows selected victims in a skewed cache to be
relocated.

• We describe a fast pass-transistor based skewing func-
tion implementation.

• We present various optimizations that could be ap-
plied to skewed caches, such as timestamp-based re-
placement and interleaved way-banks.

2. THE SKEWED ASSOCIATIVE CACHE
The skewed associative cache was first introduced by
Seznec et al. [25, 27]. A skewed cache is conceptually di-
vided into multiple sub-banks each indexed by a different

152

Copyright 2005 ACM 1-59593-019-1/05/0005...$5.00.

Bank I

DataTag

Bank II

DataTag

f

A’, B’, C’

A, B, C

(a) 2-way set-associ-
ative cache

Bank I

DataTag

Bank II

DataTag

f2f1

A2

B2

C2

A1, B1, C1

A, B, C

(b) Skewed cache

Figure 1: Describing a skewed cache organization.

hash function. The insight behind skewed caches is that
cache blocks that map to the same location in one of the
banks are likely to map to different locations in the other.
This is illustrated in Figure 1 with cache blocks A, B and C
conflicting in the set-associative case but not in the skewed
case. The effectiveness of the skewed strategy is of course
highly dependent on the skewing functions. Thorough dis-
cussions on skewing functions are provided in [8, 19, 25, 26,
27]. We have throughout this paper used the xor-based
skewing functions proposed by Bodin and Seznec [8], where
two subsets, A1 and A2, of the address bits are xor’ed to-
gether as described below. Let σ be the one bit rotational
shift on an n-bit number and ⊕ represents a bitwise xor.
The skewing functions are then:

f1(A) = A1 ⊕ A2 (1)

f2(A) = σ(A1)⊕ A2. (2)

3. TIMESTAMP-BASED REPLACEMENT
One of the challenges with skewed caches is the replace-
ment algorithm. Since there are no fixed sets, any combina-
tion of victim pairs, one block from each bank, is possible.
This makes it difficult to implement an exact ordering-based
replacement algorithm like LRU [6]. Instead, approximative
algorithms like the not recently used, enhanced (NRUE) have
been proposed [8]. Another way of providing an ordering be-
tween cache blocks is to store a timestamp for each block.
At replacement, the block with the least recent timestamp is
chosen for eviction. We have found such timestamp-based
replacement algorithms to outperform NRUE-replacement
for skewed caches at the cost of extra area to hold the times-
tamps. Results supporting this is presented in Section 6.1.
In [16] Karlsson and Hagersten showed the usefulness of

Cache Allocation Ticks (CAT)-based timestamps as block
survival time metric in the RASCAL-cache. Assuming a
uniform reference distribution, the likelihood of a cache line
remaining in a cache depends on the number of new alloca-
tions performed since the cache line was last touched. Not
on the number of cache accesses and/or the number of clock
cycles.2 This makes the scheme capable of identifying cache
lines that are involved in severe conflicts and thus run the
risk of being evicted from the cache unexpectedly early.

2The probability for a cache line to remain in a fully associa-
tive cache with random replacement is Phit = (1 − 1/L)C ,
where L is the number of cache lines in the cache and C
is the number of cache allocations since the line was last
accessed.

Bank I

DataTag

Bank II

DataTag

A
B

C

D
X?

A2

X1

X2

B1

(a) Elbow cache
miss

Bank I

DataTag

Bank II

DataTag

X
B

A

D X

A

A2

X1

(b) Elbow relocation

Summary of elbow cache actions:

Hit:

• The data and the tag of the two possible locations
of X is read.

• The hit is detected

• The current time is written to the timestamp asso-
ciated with X.

Miss:

• The data and the tag of the two possible locations
of X is read.

• X is detected as a cache miss.

• The alternate locations C and D of A and B, are
computed and the timestamps of A, B, C and D are
retrieved.

• The oldest cache block C is chosen as victim.

• If a secondary victim candidate, C, is selected as
victim it resides in a location not accessible to X so
another block, A, that is accessible to X, is moved
there and X is allocated where A used to be.

Figure 2: Describing an elbow cache replacement.

Another advantage of using cache allocations instead of
cache references or cycles is that the resolution of the time-
stamp is adjusted according to the miss ratio of the cache.
This means that the number of bits used in the timestamp
can be kept small without the risk of aliasing of the metric.
Such CAT-based timestamps give a coarse recency ordering
that is still fine-grained enough to distinguish between recent
and old data.
The scheme uses a k-bit3 global counter which is incre-
mented each time a new cache block is allocated in the
cache. For every cache access, the most significant bits of
the current CAT-counter become the new timestamp for the
cache block that was accessed. To limit the area overhead
of the timestamps only a few of the most significant bits
of the CAT-counter value is used. A sensitivity study has
shown that 5 bits are sufficient. We have therefore used 5-
bit CAT timestamps throughout this paper. Note that the
new timestamp simply overwrites the old so no read-modify-
write operation is needed.
At the time of a replacement, the timestamps of the cache
blocks are retrieved and the CAT-distance d for each block
is calculated as shown in Figure 4. Tcurr is the current value
of the global CAT-counter and n is the number of bits in the

3The maximum counter value is four times the number of
blocks in the cache (k = log2(blocks) + 2). This is usually
large enough to avoid aliasing effects.

153

BZIP2

CRAFTY
EON

GAP
GCC

GZIP
MCF

PARSER

PERLBMK
TWOLF

VORTEX
VPR

Average
0

20

40

60

80

100

N
or

m
al

iz
ed

 m
is

s
ra

tio
 (%

)

2-way

4-way

Skewed-NRUE

Skewed-LRU

Skewed-TS

Figure 3: Comparing replacement strategies for skewed caches (SPECint), normalized to a 2-way set-
associative cache.

d =

�
Tcurr − Tst Tcurr ≥ Tst

Tcurr + 2
n − Tst Tcurr < Tst

Figure 4: Calculating the timestamp distance.

timestamp. The cache block with highest distance is chosen
for replacement.

4. THE ELBOW CACHE
The use of timestamps as replacement metric enables a
coarse global, temporal ordering of all blocks in the cache.
This ordering property is exploited by the scheme proposed
in this paper, the elbow cache. An elbow cache extends a
skewed organization by carefully selecting its victim and, in
the case of a conflict, move the conflicting cache block to
its alternate location in the other bank. In a sense, the new
data item “uses its elbows” to make space for conflicting
data instead of evicting it.
In the common case, a cache hit, the elbow cache works
just as a CAT-based skewed cache and updates the time-
stamp for the accessed block. In the case of a cache miss
there are four possible victims: the two primary candidates,
at the locations hashed to by the address that generated
the miss, and also the two secondary candidates residing at
the alternate locations of the primary candidates. Figure 2a
illustrates this, where blocks A and B are the primary can-
didates (i.e. in the two locations where the new data item
X can be placed) and C and D are secondary candidates in
the alternate locations of A and B respectively. Among the
four blocks, the one with the oldest timestamp is selected
as the victim. If a secondary victim candidate is selected,
a relocation of the corresponding primary candidate occurs,
overwriting the selected victim and freeing space for new
data to be filled in (Figure 2b). If the victim is a primary
victim candidate no relocation is needed.
In case of a relocation the relocating cache block is written
concurrently with the cache fill. This is possible since the fill
and relocation always targets different banks. The preceding
read of the relocating cache block can also be performed in
parallel, in case the selected victim requires a writeback. If
the victim data is clean however the relocation read may

compete for cache access with regular accesses. To avoid
extra ports for relocation and ensure that relocations don’t
stall other cache accesses the cache port arbitration policy
may cancel a relocation altogether if no spare cache cycles
are found.

4.1 Reducing the number of relocations
A relocation is costly from a power perspective, since a
full cache block must be read and written. By imposing re-
strictions on when to relocate, the power consumption can
be reduced. For all the simulation results reported in this
paper the following restriction has been applied: First of all,
at most one relocation per four misses is allowed.4 We found
that this restriction prevents extensive power consumption
during high miss ratios, with negligible impact on perfor-
mance. Secondly, we make use of the temporal information
provided by our timestamps and only consider blocks with
a short reuse distance for relocation. Any other block would
be “old” and therefore less likely to be reused in the near
future. In our simulations, a relocation can occur only if the
selected primary victim has a distance of 3 or less. This sig-
nificantly reduces the number of relocations without having
any substantial impact on hit-ratio performance.

5. METHODOLOGY
The focus of this paper is comparing power consumption
for different cache organizations. We have therefore limited
our study to cache performance and do not present exe-
cution time approximations. Our performance results are
reported in terms of miss ratio. Estimations of the dynamic
power and access time of the elbow organization was ob-
tained by modifying the Cacti version 3.2 model [28]. We
have throughout this paper assumed a process technology of
100nm and simulated caches with a single read/write port.
We have also assumed a fixed cycle time for all studied cache
organizations, which is a conservative assumption on behalf
of the skewed caches since they have shorter access time
than the other organizations. This allows us to treat power
and energy as exchangeable entities when comparing orga-
nizations. The choice of a single read/write port was made

4We use a sliding window that allows for up to 16 replace-
ments during the last 64 misses.

154

since many designs use such as building blocks, through du-
plication or double-pumping, to build multi-ported caches.
We used the Simics full system simulator [22] to simu-
late our different workloads. The Simics setup simulated a
SPARC-V9 system running an unmodified Solaris 9 operat-
ing system. Our evaluation is based on the SPECint 2000
and SPLASH-2 benchmark suites together with two com-
mercial Java workloads. The input data sets for SPLASH
was taken from [24] while SPEC was run with the reference
dataset.
Our simulated system is a four-way multi-threaded pro-
cessor with a single data cache shared by all threads. We
ran the SPLASH benchmarks with four threads to simulate a
single application with several threads sharing the same ad-
dress space and sharing the same cache. The SPEC bench-
marks were used to simulate a machine with several un-
related applications running at once, also sharing the same
cache. To create multiprocessor benchmarks from the SPEC-
suite we mixed four different sub-benchmarks from the suite
into a single benchmark. The benchmark mix is shown in
Table 3, Appendix A. The two simulated Java middleware
workloads, ECperf and SPECjbb, was described in detail by
Karlsson et al. [17]. The Java workloads results are from
uniprocessor simulations.
The SPLASH benchmarks were studied only in the par-
allel region of the code, and the caches were all warmed up
before the measurements started. For the SPEC runs we
fast-forwarded 10 Billion instructions into the benchmark
before warming up the caches for 500 Million instructions.
The measurements were then obtained for the following 2
Billion instructions.
The skewed and elbow caches are compared to a number
of conventional set-associative caches with LRU replacement
and various degrees of associativity. We present results for
a 32KB data cache with 64-byte blocks. However, we have
observed similar results for 16KB and 64KB caches.

6. CACHE PERFORMANCE RESULTS
In this section we present miss ratio performance results
for a 2-way skewed cache, a 2-way elbow cache as well as
4- and 8-way set-associative caches. We present our perfor-
mance evaluation in the terms of miss ratio normalized to a
2-way set-associative cache. Table 2, Appendix A shows the
absolute miss ratios for the 2-way set-associative cache.

6.1 CAT-Timestamp Metric Performance
Our first performance experiment is a comparison between
different replacement metrics for skewed caches. We model
a simple uniprocessor system and run the SPECint bench-
marks. We simulate a perfect LRU replacement, a NRUE re-
placement and replacement based on CAT-timestamps (TS).
The results are shown, as miss ratios normalized to a two-
way set-associative cache, in Figure 3 where we also included
a four-way set-associative cache for comparison. The results
show that all replacement strategies perform similarly, but
that timestamp replacement performs slightly better than
NRUE-replacement.

6.2 Shared Cache Performance
The results of the SPLASH simulations are shown in Fig-
ure 5 When increasing associativity from 2-way to 4-way,
we observe a substantial miss ratio reduction. The reduc-
tion beyond 4-way is very limited for most benchmarks. We

do note however, that both the skewed and the elbow cache
perform well in comparison to the other two caches. For
the commercial java workloads we find that, in the case of
ECperf, all organizations except the 2-way perform almost
identically. In SpecJBB however the elbow cache performs
better than both the 4-way and the skewed cache.
The SPEC benchmarks results are shown in Figure 6. Un-
like the SPLASH benchmarks, the reductions from 2-way
set-associativity are quite small, around 10—20%. On the
other hand, the 2-way set-associative cache has significantly
higher miss ratio to begin with (See Table 2, Appendix A).
Like in the SPLASH case above, 4-way set-associativity cap-
tures most of the conflicting data. Benchmarks 1, 3 and
7 (BMK 01, BMK 03 and BMK 07) are exceptions however,
and show a much higher reduction for the 8-way, skewed
and elbow caches.5 This is indicating a high amount of con-
flict misses and that conflict reduction beyond 4-way set-
associativity is worthwhile. The results also show that both
skewed and our proposed elbow cache are effective for these
benchmarks.

7. POWER ESTIMATES
The power consumption of current architectures consists
almost entirely of dynamic power. However as process tech-
nology advances the static power consumption is projected
to make up an increasingly large portion of the total power.
In this section we compare dynamic power consumption
based on energy estimations for the skewed cache, the el-
bow cache and the 2, 4 and 8-way set-associative caches.
We assume that the static power is similar for all of these
designs.

7.1 Dynamic Power
As process technology scale to smaller feature sizes, the
power consumed by the cache’s sense-amplifiers makes up
an increasingly large fraction of the total power consumed
by a cache read. This can be observed by running Cacti
with different technology parameters. Since the number of
words read out in parallel determines how many bit-lines and
sense-amplifiers that need to be activated during an access,
associativity comes at an increasing cost in power.

0.0

0.2

0.4

0.6

0.8

E
n

e
rg

y
 (

n
J)

timestamp array
data output driver
compare and mux circuitry
tag side
decode data
wordline data
bitline data
sense amp data

Skewed 2-way 4-way 8-way

Figure 7: Energy breakdown per hit for a 32KB
cache.

5The higher miss ratios of the 4-way cache for BMK 01
and BMK 03 might seem unintuitive but results from non-
optimal replacement (LRU).

155

BARNES

CHOLESKY FFT
FMM

LU_C

OCEAN_C

RADIOSITY
RADIX

RAYTRACE

VOLREND

WATER_N

WATER_S

Avg. Splash

ECPERF

SPECJBB
0

20

40

60

80

100

N
or

m
al

iz
ed

 m
is

s r
at

io
 (%

)

2-way

4-way

8-way

Skewed

Elbow

Figure 5: Normalized miss ratio for one multi-treaded application sharing one data cache (SPLASH), com-
pared with a 2-way set-associative cache (miss ratios listed in Appendix A).

BMK_01

BMK_02

BMK_03

BMK_04

BMK_05

BMK_06

BMK_07

BMK_08

BMK_09

BMK_10

Average
0

50

100

N
or

m
al

iz
ed

 m
is

s
ra

tio
 (%

)

2-way

4-way

8-way

Skewed

Elbow

Figure 6: Normalized miss ratio for four single-threaded applications sharing one data cache (SPECint),
compared with a 2-way set-associative cache (miss ratios listed in Appendix A).

A common approach to reduce the access time and power
consumption of a cache is to divide the SRAM-cell array
into sub-arrays. Depending on the optimal aspect-ratio and
sub-array size, bit-line-wise and word-line-wise divisions are
applied. Hence an 8-way associative cache is not necessarily
twice as wide as a 4-way associative cache, nor consumes
twice as much power. In our evaluation, the sub-array di-
visions used for each particular organization was given by
Cacti’s optimization function. This function takes energy
as well as access time, area and aspect ratio into account.
As can be seen in Figure 7, the per lookup energy for a
cache hit, in the skewed/elbow cache6 is 17% higher than for
a 2-way set-associative cache, but only 75% and 44% of the
energy consumption of a 4-way and 8-way cache respectively.
The majority of this difference comes from the data sense
amps. For the skewed cache the energy cost of having two
decoders can also be seen in Figure 7.
The dynamic power consumed by a cache can be com-
puted by equation (3) below, where PLd denotes the power

6The power estimates are identical assuming that both
caches use timestamp-based replacement.

consumed by loads and PSt represents the power associated
with stores:

PDynamic = PLd + PSt (3)

PLdConv = PHit + LdMissF rac ∗ PF ill (4)

PLdElbow = PLdConv + LdMissF rac ∗ PRelocation ∗ freqReloc

(5)

To simplify our study we have opted to exclude store
power consumption.7 The PF ill term is the additional power
consumed while reading a new block from the L2 cache and
filling it into the L1 cache when a cache miss occurs. The to-
tal dynamic load power for a conventional (or skewed) cache
can be expressed as (4). More details of our implementation
assumptions are presented in Section 9.

7.2 Elbow Relocation Power
Due to the energy associated with a relocation in the el-
bow cache, the cache power consumption is also dependent
on how often relocations occur. This, in turn, depends on

7Since the tag and data is looked up sequentially in the case
of a write, the write power is approximately the same for all
organizations.

156

0.0

0.2

0.4

0.6

0.8

E
ne

rg
y

pe
r

ac
ce

ss
 (

nJ
)

L1

L2

Relocation

2-way 4-way 8-way Skewed Elbow

Figure 8: Average energy consumption per load
for different cache architectures across all SPLASH
benchmarks.

0.0

0.2

0.4

0.6

0.8

E
ne

rg
y

pe
r

ac
ce

ss
 (

nJ
)

L1

L2

Relocation

2-way 4-way 8-way Skewed Elbow

Figure 9: Average energy consumption per load for
different cache architectures across all SPEC bench-
mark mixes.

the miss ratio. Hence, in the case of zero percent miss ratio
and therefore no relocations, the elbow cache will consume
the same amount of power as a skewed cache. For non-zero
miss rates the power consumption will increase linearly with
the miss rate and relocation frequency. Formula (5) shows
the average load power for the elbow cache. freqReloc is the
probability of a relocation whenever a miss occurs.

7.3 Memory System Power
When evaluating power consumption for a certain level of
the memory hierarchy it is also important to consider the
power cost of accesses to the next level. To account for this
we have included the power consumption of a 64-byte block
load from an 8-way 1MB level two (L2) cache, with serial tag
and data array lookups, in the fill power term (PF ill). The
traffic between a large L2 cache and the lower levels of the
memory hierarchy should be similar for all the different L1
cache systems. The power consumption of other parts of the
memory hierarchy, like the bus and memory, will therefore
not affect our evaluation and is excluded.
Figures 8 and 9 show the average energy-per-access of the
SPLASH and SPEC simulations broken down into level one
and level two cache accesses. The energy consumption for
relocations in the elbow cache is also included. As can be
seen in the graphs, the total power consumption is highly
dependent on the miss ratio. For example, the total cache
system power consumption for SPLASH is higher for the 2-
way associative cache than for the skewed and elbow caches,
although it is lower from an L1 power perspective.

8. SKEWING DELAY AND ACCESS TIME
The access time of a cache is very important for system
performance, since it may affect the processor cycle time [12,
13]. Timing wise there are a few issues surrounding skewed
caches that one must bear in mind. Since the elbow cache
is an extension of the skewed cache concept it too will in-
herit these issues. One of the drawbacks of skewed caches,
primarily affecting L1 caches, is that an additional number
of physical address bits are required by the skewing func-
tions to calculate the index. This makes virtually-indexed
caches infeasible for realistic cache sizes. Another perhaps
more serious drawback is the additional critical-path delay
introduced by skewing functions. This extra delay can be
substantial in the context of timing-critical L1 caches.

a

b

a ⊕ b

a ⊕ b

b

a

Figure 10: Pass-transistor based skewing function.

To reduce the skewing delay we use a pass-transistor lay-
out [31] for the xor-functions (Figure 10). If bits b and
b-bar in the address are available before a and a-bar, this
design can be used to reduce the skew-delay to a fraction
of that of a logical gate. If the bit b is taken from the
part of the address that does not need to be translated via
the TLB, this criteria is fulfilled. This solution has limited
the number of bits that are available to the skewing func-
tion. If we assume a page size of 8KB,8 an address A can
be written as A = {aN , ..., a0, b12, ..., b0} were bits bn be-
long to the physical part and an to the virtual part. Bits
{b5, ..., b0} are used to index the word in each block. For our
32KB 2-way elbow cache that has 256 blocks in each bank,
bits {a0, b12, ..., b6} would be xor’ed with bits {a9, ..., a1} to
produce an ideal skewing function.9 If we instead only ap-
ply the xor-function to the sets {b12, ..., b6} and {a8, ..., a1},
and let a0 fill in the missing most significant bit, we get a
more restricted skew, but one were the pass-transistor layout
is possible. All performance results reported in this paper
use this type of skewing function, since the performance of
skewed caches is not very sensitive to this type of restric-
tion [30]. In our case, the pass-transistor design yield an
access time overhead for the skewing function of less than
0.7%. This is however dependant on the width of the pass-
transistors.
By changing the sub-array division of the cache, speed
can be traded for power and vice versa. We have chosen a
configuration that enables our skewed/elbow cache to have
a shorter access time, including skewing delay, than that of
the 4-way or 8-way set-associative caches. Table 1, lists the
access time and energy consumption results, together with
the sub-array configurations used. Our Cacti results yield a
skewed cache with an access time that is approximately the
same as the 4-way set-associative cache and 12% lower than

8Including page coloring.
9The inverse address bits, also needed by the address de-
coder, are obtained in the same way.

157

Arch. Access Energy Sub-array configuration

Time [ns] [nJ] Ndwl-Ndbl-Nspd–Ntwl-Ntbl-Ntspd

2-way 0.744 0.298 4-2-1–1-2-2

4-way 0.741 0.463 8-1-1–1-2-1

8-way 0.830 0.787 8-1-1–1-2-1

Skewed 0.740 0.349 4-2-1–1-2-2

Table 1: Access time, load energy consumption and
subarray partitioning for the evaluated caches.

the 8-way. Note that this study focuses on timing-critical
caches where tag and data are accessed in parallel. If the
latency of sequential tag and data lookup is tolerable, such a
design is of course far better from a dynamic power perspec-
tive. This may however result in up to 60% higher access
time [32]. We observe that the 2-way associative cache has
a higher access time than the Skewed cache despite the ad-
ditional skewing delay. This is a result of the fact that in
the skewed cache design only half as many bit cells are con-
nected to each decoder, and the shorter word line delay more
than compensates for the skewing delay.

9. IMPLEMENTATION DETAILS
This section describes the assumed implementation of the
skewed/elbow cache on which our modified Cacti-model was
based.
First we have added a separate timestamp structure to
hold the timestamp of each cache block in the cache. As-
suming a 64-byte cache block size and 5-bit timestamps this
gives an extra area cost of approximately 2% of the data ar-
ray. The timestamps are separated per bank so that the first
bank has one timestamp array and the second has another.

Decoders

Column
muxes

Sense
Amplifiers

SRAM cells

Wordline amplifiers

Way-select MUX

(a) 2-way set-associ-
ative cache.

Column
muxes

Sense
Amplifiers

SRAM cells

Decoders
Wordline amplifiers

Way-select MUX

(b) Skewed cache.

Figure 11: Way interleaving the logical banks of the
skewed cache.

Secondly we have used a physical layout of our skewed
cache such that the two logically separate way-banks are
interleaved into one physical bank. Therefore bit-line n from
the first bank is placed close to bit-line n from the second
bank, similar to the layout that of a 2-way set-associative
array (Figure 11). By doing so, we get a better aspect-
ratio on the array and also simplify the design of the way-
select logic. This helps when implementing the relocation

functionality in the elbow cache, since the bit-lines of any
two bit-cell pairs affected by the move will be physically
adjacent.
To be able to look up both logical banks concurrently, two
decoders are required. Each decoder is connected to half of
the cells in the array. We assume that the additional word-
lines can be routed in a different metal layer making extra
word-line spacing unnecessary. It is still possible to make
sub-array divisions with this arrangement, but when split-
ting an array bit-line-wise, restrictions must be made on the
skewing functions so that an address is always mapped into
the same sub-array by both way-functions. In the particular
layout for our 32KB elbow cache however, these restrictions
are less rigid than the ones already imposed by our solu-
tion to reduce the skewing delay, and do therefore not affect
performance.

10. RELATED WORK
Some of the earlier work that has addressed the issue
of reducing cache conflicts [13] is presented here. Jouppi
[29] presented the victim cache, primarily for use in
direct-mapped caches. Topham and Gonzales [15] studied
the use of hash-functions for indexing a cache. Agarwal and
Pudar [3] suggested column-associativity for improving
direct-mapped caches. Seznec and Bodin [27] pioneered the
work on skewed-associative caches. Further work on skewed
caches is presented in some of their later papers [8, 25, 26].
The power consumption of current architectures consist
almost entirely of dynamic power. However as process tech-
nology advances the static power consumption is projected
to make up an increasingly large portion of the total power.
The Elbow cache organization presented in this study is eval-
uated from a dynamic power consumption aspect. The static
power is expected to be the same as for a conventional 2-
way associative design. However the proposed architecture
may very well be combined with leakage power reduction
techniques [11, 18, 33].
Recently many proposals have been made of how to reduce
the dynamic power consumption in various on-chip memory
structures [2, 5, 7, 9, 14, 20, 34, 35].
To overcome the latency penalty of a sequential access,
Powell et al. proposes way-prediction [23], to predict which
way to access. This method has the drawback of multiple hit
times, a correctly predicted hit and a mispredicted hit, and a
significant prediction table size. An interesting alternative
to consider is to apply skewed caches in this context. A
skewed cache of lower associativity, and hence fewer ways
to choose from, could be used to simplify such a design and
improve the correct way-prediction rate.
Another proposed power saving approach is to shutdown
unnecessary parts of the cache during periods of low utiliza-
tion. Albonesi proposed the idea of Selective cache ways [4]
where unneeded ways in a cache are shutdown.

11. CONCLUSION
Skewed caches are often very effective in reducing con-
flicts. The multi-threaded nature of emerging processors
and the shared caches that follow, are likely to increase the
need for such highly conflict tolerant designs. In this paper
we revisit the skewed caches and evaluate them in the con-
text of power consumption. A timestamp-based replacement
metric is proposed.

158

We also introduce a new cache organization called the el-
bow cache. It extends a skewed cache by relocating conflict-
ing cache blocks to their alternate locations. In this study
we have evaluated the elbow cache in the context of data
caches. The idea of relocation of data to reduce conflicts
can however be applicable in many other areas as well, such
as instruction caches, TLBs, BTBs etc.
Dynamic power evaluations for both the skewed and elbow
caches are presented and compared to traditional set-associ-
ative caches. We find that despite the extra decoder and
timestamp structure, the skewed caches per access power
consumption is lower than that of an 8-way set-associative
cache. When also taking L2 power into account, we find
that the skewed and elbow cache configurations consume
significantly less total power than both 4-way and 8-way
set-associative cache configurations.
From our miss ratio evaluation we conclude that the times-
tamp based skewed cache shows surprisingly good perfor-
mance compared with set-associative caches. The elbow
cache further reduces the miss ratio at the cost of more
complexity. Considering the constrained power budgets of
today’s processors, a skewed or an elbow cache should make
an interesting alternative to those more traditional designs.

12. ACKNOWLEDGMENTS
We would like to thank Mark Hill for contributing to the
initial discussion leading up to the idea of relocation. We
would also like to thank Magnus Ekman for help with Cacti.
This work is funded by the PAMP research program, sup-
ported by the Swedish Foundation for Strategic Research.

APPENDIX

A. TABLES

SPECint mix SPLASH-2 & Java
BMK 01 4.91% BARNES 2.49%
BMK 02 6.74% CHOLESKY 5.75%
BMK 03 5.70% FFT 6.62%
BMK 04 18.99% FMM 2.21%
BMK 05 10.09% LU C 2.96%
BMK 06 8,95% OCEAN C 5.58%
BMK 07 9.26% RADIOSITY 3.94%
BMK 08 10.44% RADIX 15.40%
BMK 09 9.60% RAYTRACE 5.06%
BMK 10 20.79% VOLREND 6.95%

WATER N 4.97%
WATER S 5.57%

Avg. SPEC 10.55% Avg. Splash 5.62%
ECperf 6.09%
SpecJBB 10.26%

Table 2: Miss ratios for the 32KB, 2-way set-
associative reference cache.

B. REFERENCES

[1] Sun’s Niagara Pours on the Cores. Microprocessor
Report Newsletter, September 2004.

SPECint mix SPECint mix

BMK 01 BZIP2 GFX BMK 06 GCC 166

GAP GZIP LOG

GZIP LOG PERLBMK P

PERLBMK M VORTEX BE2

BMK 02 VORTEX BE1 BMK 07 CRAFTY

BZIP2 SRC GCC EXPR0

GCC 200 GZIP SRC

GZIP RND PERLBMK SM2

BMK 03 PERLBMK SM1 BMK 08 VPR PLAC

VORTEX BE3 EON KAJI

EON COOK GCC SCILAB

GCC INTEGR PARSER

BMK 04 MCF BMK 09 PERLBMK SM4

PERLBMK SM3 BZIP2 PGR

VPR ROUT GCC 200

EON RUSH GZIP SRC

BMK 05 GZIP GFX BMK 10 GAP

PERLBMK D MCF

TWOLF TWOLF

BZIP2 PGR CRAFTY

Table 3: The mix of four SPEC sub-benchmarks
used to create the four-cpu multiprocessor bench-
marks.

[2] J. Abella and A. Gonzalez. Power Efficient Data
Cache Designs. In Proceedings of the 21st
International Conference in Computer Design, 2003.

[3] A. Agarwal and S. D. Pudar. Column-Associative
Caches: A Technique for Reducing the Miss Rate of
Direct-Mapped Caches. In Proceedings of the 20th
International Symposium on Computer Architecture,
pages 179–190, May 1993.

[4] David H. Albonesi. Selective Cache Ways:
On-Demand Cache Resource Allocation. In
International Symposium on Microarchitecture, pages
248–, 1999.

[5] B. Bannon and T. N. Vijaykumar.
Reactive-Associative Caches. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, 2001.

[6] L. A. Belady. A study of replacement algorithms for a
virtual storage computer. IBM Systems Journal,
5:78–101, 1966.

[7] N. Bellas, I. Hajj, and C. Polychronopoulos. Using
dynamic management techniques to reduce energy in
high-performance processors. In Proceedings of the
1999 International Symposium on Low Power
Electronics and Design (ISLPED), 1999.

[8] F. Bodin and A. Seznec. Skewed associativity improves
program performance and enhances predictability. In
IEEE Transactions on Computers, May 1997.

[9] Magnus Ekman, Fredrik Dahlgren, and Per
Stenström. TLB and Snoop Energy-Reduction using
Virtual Caches in Low-Power Chip-Multiprocessors. In
Proceedings of the 2002 International Symposium on
Low Power Electronics and Design (ISLPED), 2002.

[10] Andrew Erlichson, Basem A. Nayfeh, Jaswinder Pal
Singh, and Kunle Olukotun. The Benefits of
Clustering in Shared Address Space Multiprocessors:
An Applications-Driven Investigation. In
Supercomputing, 1995.

[11] K. Flautner, N. Kim, S. Martin, D. Blaauw, and

159

T. Mudge. Drowsy Caches: Simple Techniques for
Reducing Leakage Power. In Proceedings of the 29th
Annual International Symposium on Computer
Architecture (ISCA’02), 2002.

[12] R. Heald, K. Shin, V. Reddy, I.-F. Kao, M. Khan,
W. L. Lynch, G. Lauterbach, and J. Petolino. 64kB
Sum-Addressed-Memory Cache with 1.6ns Cycle and
2.6ns Latency. IEEE Journal of Solid-State Circuits
33, page 16821689, 1998.

[13] M.D. Hill. Aspects of Cache Memory and Instruction
Buffer Performance. PhD thesis, University of
California, Berkeley, 1987.

[14] J. Jalminger and P. Stenström. Improvements of
Energy-Efficiency in Off-Chip Caches by Selective
Prefetching. Microprocessors and Microsystems, 2001.

[15] Nigel P. Topham and Antonio Gonzalez. Randomized
Cache Placement for Eliminating Conflicts. IEEE
Transactions on Computers, 48(2):185–192, 1999.

[16] M. Karlsson and E. Hagersten. Timestamp-based
Selective Cache Allocation. In Proceedings of the
Workshop on Memory Performance Issues, June 2001.
held in conjunction with the 28th International
Symposium on Computer Architecture (ISCA28).

[17] M. Karlsson, K. Moore, E. Hagersten, and D. A.
Wood. Memory System Behavior of Java-Based
Middleware. In Proceedings of the Ninth International
Symposium on High Performance Computer
Architecture (HPCA-9), Anaheim, California, USA,
February 2003.

[18] Stefanos Kaxiras, Zhigang Hu, and Margaret
Martonosi. Cache decay: Exploiting generational
behavior to reduce cache leakage power. In
Proceedings of the 28th International Symposium on
Computer Architecture, pages 240–251, 2001.

[19] Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin
Lee. Using Prime Numbers for Cache Indexing to
Eliminate Conflict Misses. In Proceedings of the 10th
International Symposium on High-Performance
Computer Architecture, pages 288–299, 2004.

[20] J. Kin, M. Gupta, and W. H. Mangione-Smith. The
filter cache:An energy efficient memory structure. In
Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO-30), 1997.

[21] Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers,
Kourosh Gharachorloo, Henry M. Levy, and Sujay S.
Parekh. An Analysis of Database Workload
Performance on Simultaneous Multithreaded
Processors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture
(ISCA’98), pages 39–50, 1998.

[22] P. S. Magnusson, M. Christensson, D. Forsgren
J. Eskilson, G. H̊allberg, J. Högberg, A. Moestedt
F. Larsson, and B. Werner. Simics: A Full System
Simulation Platform. IEEE Computer, February 2002.

[23] M. D. Powell, A. Agarval, T. N. Vijaykumar, Babak
Falsafi, and Kaushik Roy. Reducing Set-Associative
Cache Energy via Way-Prediction and Selective
Direct-Mapping. In Proceedings of the 34th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO-34), 2001.

[24] S. Woo, M. Ohara, E. Toorie, J.P. Singh, and
A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations.
In Proceedings of the 22th International Symposium
on Computer Architecture, pages 24–36, June 1995.

[25] A. Seznec. A case for two-way skewed associative
caches. In Proceedings of the 20th International
Symposium on Computer Architecture, pages 169–178,
May 1993.

[26] A. Seznec. A new case for skewed-associativity.
Internal Publication No 1114, IRISA-INRIA, July
1997.

[27] A. Seznec and F. Bodin. Skewed-associative caches. In
Proceedings of PARLE ’93, Munich, pages 305–316,
June 1993.

[28] P. Shivakumar and N. Jouppi. CACTI 3.0 An
integrated Cache Timing, Power and Area Model.
Technical Report 2001/2, DEC Western Research Lab,
2001.

[29] N. P. Jouppi. Improving Direct-Mapped Cache
Performance by the addition of a Small
Fully-Associative Cache and Prefetch Buffers. In
Proceedings of the 17th International Symposium on
Computer Architecture, June 1990.

[30] Hans Vandierendonck and Koen De Bosschere.
Trade-offs for Skewed-Associative Caches. In Parallel
Computing (PARCO), September 2003.

[31] N. H. E. Weste and K. Eshraghian. Principles of
CMOS VLSI Design. Addison-Wesley, second edition,
1993.

[32] S. Wilton and N. Jouppi. An enhanced access and
cycle time model for on-chip caches, 1994.

[33] Se-Hyun Yang, Michael D. Powell, Babak Falsafi,
Kaushik Roy, and T. N. Vijaykumar. An Integrated
Circuit/Architecture Approach to Reducing Leakage
in Deep-Submicron High-Performance I-Caches. In
International Symposium on High-Performance
Computer Architecture (HPCA), 2001.

[34] C. Zhang, F. Vahid, and W. Najjar. A highly
configurable cache architecture for embedded systems.
In Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA’03),
2003.

[35] Michael Zhang and Krste Asanovic.
Highly-Associative Caches for Low-Power Processors.
In Proceedings of Kool Chips Workshop held in
conjunction with International Symposium on
Microarchitecture (MICRO-33), Monterey, CA,
December, 2000.

160

