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Abstract

Prefetching has proven to be a useful technique for re-
ducing cache misses in multiprocessors at the cost of in-
creased coherence traffic. This is especially troublesome for
snoop-based systems, where the available coherence band-
width often is the scalability bottleneck.

The bundling technique presented in this paper reduces
the overhead caused by prefetching in two ways: piggy-
backing prefetches with normal requests, and requiring only
one device to perform the snoop lookup for each prefetch
transaction. This can reduce both the address bandwidth
and the number of snoop lookups compared with a non-
prefetching system. We describe bundling implementations
for two important transaction types: reads and upgrades.

While bundling could reduce the overhead of most exist-
ing prefetch schemes, the evaluation of bundling performed
in this paper has been limited to two of them: sequential
prefetching and Dahlgren’s adaptive sequential prefetch-
ing. Both schemes have their snoop bandwidth halved
for all commercial and scientific benchmarks in the study.
The combined effect of bundling applied to these prefetch
schemes lowers the cache miss rate, the address bandwidth
and the snoop bandwidth, compared with a system with no
prefetching, for all applications.

Bundling, will not reduce the data bandwidth introduced
by a prefetch scheme. However, we argue that the data
bandwidth is more easily scaled than the snoop bandwidth
for snoop-based coherence systems.

1 Introduction

Many important applications spend a substantial time
waiting for memory transactions [4, 14]. A cache miss rate
of 1 percent may add as much as 1.0 to the overall CPI
number, assuming an access cost to memory of 400 CPU
cycles and a 25 percent ratio of memory instructions. Much
research effort has been devoted to reducing the number

of cache misses using various latency-hiding and latency-
avoiding techniques, such as prefetching.

While most existing prefetch techniques efficiently re-
duce the amount of cache misses, they also increase the ad-
dress traffic and snoop lookups, which are scarce resources
in a shared-memory multiprocessor. This is especially true
for systems based on snooping coherence, where each de-
vice has to perform a cache lookup for every global ad-
dress transaction. The address networks of systems based
on directory coherence are more scalable, since the address
transactions are sent point-to-point. Still, systems based
on snooping are often preferred because of their superior
cache-to-cache transfer time. Note, that there is no dif-
ference in scalability of the data network between systems
based on snooping coherence and systems based on direc-
tory coherence, since data packets can be sent point-to-point
in both cases. Actually, commercial snoop-based systems
have been built where the data network handles 50 percent
more data traffic than the available snoop bandwidth sup-
ports [5].

The goal of this research is to use prefetching to reduce
the cache miss rate without increasing the address traffic
and snoop lookups. Our proposal, bundling, piggybacks
prefetch transactions on ordinary cache miss transactions.
An alteration of the coherence protocol allows for a very
selective snooping, such that only one device needs to per-
form a snoop lookup on each prefetch transaction. Bundling
in combination with existing prefetch proposals may actu-
ally decrease the bandwidth of the address bus, and more
importantly, also decrease the coherence activity, i.e., the
number of address snoops, compared with a system without
prefetching.

This paper uses the simple, but effective, adaptive se-
quential prefetching of read transactions, proposed by
Dahlgren et al. [6], as a baseline system. We propose
bundling techniques for read and upgrade transactions.
Next, the efficiency of bundled prefetch protocols are stud-
ied. Bundling reduces the address snoops with 49 percent
and the cache misses with 12 percent relative to the original
fixed sequential prefetch protocol on average. The bundled



adaptive protocol reduces the address snoops with 41 per-
cent and the cache misses with 7 percent compared with
the original adaptive protocol. The data traffic is similar for
bundled and non-bundled prefetchers. We also discuss the
complexity of the proposal and provide a more detailed de-
scription of one possible implementation of bundling on an
existing architecture.

We end the paper with a performance discussion of vari-
ous prefetch protocols and make a comparison between the
bundled prefetch protocols and non-prefetching protocols.
Combining the adaptive prefetch scheme with bundling al-
lows us to cheaply prefetch read transactions as well as up-
grade transactions, resulting in a miss reduction of 30 per-
cent for the scientific benchmarks (SPLASH-2) and a miss
reduction of 19 percent for the commercial benchmarks. It
also reduces the snoop lookups by 20 percent and 12 percent
respectively compared to a system without prefetching. It is
interesting to note that we lower the miss rate and the snoop
lookups for all studied applications.

While the evaluation section of this paper studies the ef-
fect of bundling on the Dahlgren sequential prefetching and
pure sequential prefetching, it does not argue that these nec-
essarily are the strategies of choice. However, it does make
the case that various forms of bundling can help reduce
the coherence overhead caused by most prefetch strategies.
While bundling reads and upgrades may seem obvious, it
has not previously been proposed. We are not aware of any
prefetch study reporting a reduction of both cache misses
and address snoops for all studied applications.

2 Background: Multiprocessor Prefetching

Several prefetching techniques have been proposed
which efficiently reduce the cache miss rate of multipro-
cessors. The prefetches can either be handled in soft-
ware or hardware. However, both software and hard-
ware prefetching lead to certain disadvantages. Software
prefetching [17, 18, 19, 23] relies on inserting prefetch in-
structions in the code and results in an instruction overhead.
The hardware prefetching techniques [3, 6, 7, 11, 13, 15, 21]
require hardware modifications to the cache controller to
speculatively bring additional data into the cache. They of-
ten rely on detecting regularly accessed strides. A com-
mon approach to avoid unnecessary prefetches in multi-
processors is to adapt the amount of prefetching at run
time [11, 13, 21]. These proposals introduce small caches
that detect the efficiency of prefetches based on the data
structure accessed. Baer and Chen proposed to predict the
instruction stream with a look-ahead program counter [3].
A cache-like reference predictor table is used to keep previ-
ous predictions of instructions. Correct branch prediction is
needed for successful prefetching.

Another hardware prefetch approach is to exploit spa-

tial locality by fetching data close to the originally used
cache line. A larger cache line size can achieve this. Un-
fortunately, enlarging the cache line size is not as effi-
cient in multiprocessors as in uniprocessors since it can
lead to a large amount of false sharing and an increase
in data traffic. The influence of cache line size on cache
miss rate and data traffic has been studied by several au-
thors [9, 10, 12, 24, 25]. To avoid false sharing and at
the same time take advantage of spatial locality, sequential
prefetching fetches a number of cache lines having consec-
utive addresses on a read cache miss. The number of addi-
tional cache lines to fetch on each miss is called the prefetch
degree.

Sequential prefetching in multiprocessors was first stud-
ied by Dahlgren [6]. The increased prefetch traffic tends to
hurt multiprocessors more than uniprocessors. This is es-
pecially a problem in bus-based multiprocessors where the
available snoop bandwidth is limited [22]. Dahlgren pro-
posed two types of sequential prefetching schemes, a fixed
version and an adaptive version. Prefetches are only gener-
ated on read misses in these schemes and the focus on the
study was on prefetching to the second level cache.

The fixed sequential prefetch scheme issues prefetches
to the K consecutive cache lines on each cache read miss. If
the consecutive cache lines are not already present in a read-
able state in the cache, a prefetch message for each missing
cache line is generated on the interconnect. The prefetch de-
gree K is fixed to a positive integer in this scheme. The fixed
sequential prefetch scheme requires only small changes to
the cache controller of the prefetching cache. In addition
to this, a special prefetch request has to be handled by the
interconnect and the memory system.

The adaptive sequential prefetch scheme is identical
to the fixed sequential prefetch scheme, except that the
prefetch degree K can be varied during run time. The
prefetch degree is varied based on the success of previous
prefetches. Dahlgren’s approach to finding an optimal value
of K is to count the number of useful prefetches. The proto-
col uses two counters that keep track of the total number of
prefetches and the number of useful accesses to prefetched
cache lines. Prefetched cache lines are tagged for later de-
tection. Every sixteenth prefetch the useful prefetch counter
is checked. If the number of useful prefetches is larger than
twelve, K is incremented. K is decremented if the number
of useful prefetches is lower than eight or divided by two if
less than three prefetches are useful. The scheme also has
a method of turning prefetching on, since no detection can
be carried out if the prefetch degree is lowered so that no
prefetches are performed.

Both schemes proposed by Dahlgren reduce the cache
misses significally. However, both the address and the data
traffic are increased [6].



3 Bundling

Snooping protocols result in a much lower latency for
cache-to-cache transfers than directory-based protocols.
However, the available snoop bandwidth of snoop-based
systems limits their scalability. Data packets do not need the
broadcast capabilities and can be returned on a general net-
work, such as a crossbar switch or a point-to-point network,
and do not suffer from such limitations. An example is
the architecture of Sunfire 6800, which has a data intercon-
nect capable of transferring 14.4 GB/s while its snooping
address network only supports 9.6 GB/s worth of address
snoops [5]. The main goal of our proposal is to limit the
snoop bandwidth consumed by the address network, while
the amount of bandwidth used in the data network is con-
sidered to be less critical.

A simple form of bundling applied only to read transac-
tions has previously been studied together with the capacity
prefetching technique [24]. However, no evaluation of the
possible performance gains of read bundling has previously
been performed. This paper also extends the previous pub-
lication with a thorough discussion on how to implement
bundled reads on an existing architecture, the SunFire 6800,
as well as to also introduce bundling for upgrades. Bundling
is also studied together with an adaptive prefetch scheme.

3.1 Packet Format

Traditionally, hardware prefetchers, e.g., sequential
prefetchers, send address transactions for the original cache
miss as well as for all prefetch transactions. The number
of address transactions sent on the network can be signifi-
cantly reduced if the original transaction, and its associated
prefetch transactions are bundled into a single transaction.
Each original transaction has to be extended with a prefetch
bit mask that indicates which extra cache lines to prefetch
beyond the original one according to Figure 1. While this
would reduce the number of address transactions on the bus,
it would not reduce the number of snoop lookups each cache
has to perform, since existing coherence protocols require a
snoop lookup also for each prefetch address.

Original address   tt   pbm

   tt = transaction type
pbm = prefetch bit mask

Figure 1. Bundled transaction.

3.2 Read Bundling

The increase in snoop lookups has led us to alter the se-
mantics of the coherence for two types of coherence activi-

ties, reads and upgrades, to limit the number of caches that
snoops each prefetch transaction.

A single bundled read transaction consists of the address
A of the cache miss and information about the address off-
sets to the K prefetches. The address offsets relative to the
original address are encoded in a prefetch bit mask. All
devices on the bus need to perform a snoop lookup for ad-
dress A, but only the device owning cache line A performs
snoop lookups for the prefetched cache lines. This device
will reply with data for each prefetched address for which it
is the owner. Otherwise, an empty NACK data packet will
be supplied for the prefetched cache line. Since the states of
the other caches are not affected by the prefetch transaction,
they do not need to snoop the prefetch addresses.

This extension will not add any states to the ordinary
cache protocol, but will require the main memory to add
an one-bit state: Owner. The Owner bit is cleared on a
ReadExclusive or an Invalidate request and is set again on a
Write-back request. This will allow the memory controller
to perform the bundling optimization as well.

3.3 Upgrade Bundling

The semantics of upgrade requests, i.e., a write request
to cache lines in state Shared, has also been altered to limit
the number of snoop lookups for bundled upgrade requests.
First, we introduce one additional flavor of the Owner state
in the cache coherence protocol. Second, a similar exten-
sion is made to the memory states.

The two flavors of the Owner state, Owner� (Owner 2)
and Owner� (Owner many) are used to keep track of how
many shared copies that are available in the system. The
first time a cache line becomes downgraded from the Mod-
ified state, the cache line will enter the Owner� state. In the
Owner� state, we know that there is at most one other cache
sharing the data. If additional read requests are issued to
the same address by another processor, cache lines in the
Owner� state will change their states to the Owner� state.
Cache lines in this state can be shared by an unknown num-
ber of caches. Figure 2 shows a transition state diagram.

On a prefetched upgrade request, the invalidate requests
for each of the K consecutive cache lines being in the Shared
state in the requesting device are bundled with the Invali-
date request of address A on the bus. Address A is snooped
by all devices, possibly causing a cache invalidation. If a
device has address A in the Owner� state, it will also in-
validate each of the prefetch cache lines it currently has in
the Owner� state. Since cache lines in the Owner� state are
shared by at most one other device, i.e., the requesting de-
vice, we know that the copy in the requesting device now is
the only copy left. The device owning address A will send a
reply to the requesting node indicating which of the bundled
upgrade cache lines it now safely can put into the Modified
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Figure 2. Transition state diagrams for bus and CPU gen-

erated transitions.

state. Cache lines being invalidated in the Owner� state
can not be handled the same way since we do not know the
number of sharers. In this case, only the original address
will be invalidated.

Upgrade bundling should work well in all programs
where at most two processors share a cache line. This be-
havior occurs in programs experiencing migratory sharing,
which has been identified as one of the major sources of
global invalidations in multiprocessors [12].

3.4 Details of the Bundled Snooping Protocol Im-
plementation

This section presents an implementation of read
bundling on a specific architecture. Although this section
assumes a cache coherence implementation similar to that
of Sunfire 6800 [5], read bundling implementations should
be fairly similar in other modern snooping architectures.

In Sunfire 6800, snooping cache coherence is imple-
mented using logically duplicated cache state tags: the
snoop state (OSI) and the access state (MSI). A similar
scheme is also used in the Sun E6000 servers [20]. The
action taken for each snooped transaction depends on the
snoop state. A service request may be put in the service
queue for the cache as the result of the snoop state lookup,
e.g., an Invalidate request or a Copy-Back request. The
snoop state is changed before the next address transaction

lookup is started. Entries may be added to the queue also
when a cache snoops its own transaction, e.g., a My-Read
request or a My-ReadExclusive request. Eventually, each
service request will access the cache and change its ac-
cess state accordingly. The cache’s own requests are not
removed from the head of the queue until the correspond-
ing data reply is received and can thus temporarily block the
completion of later service requests [20].

The UltraSPARC III processor, used in Sunfire 6800, im-
plements the two logically duplicated states as a combina-
tion of the snoop result from the lookup in the main cache
state and in the much smaller transition state table, which
contains the new state caused by the snooped transactions
still in the request queue. The hit in the transitional state
table has precedence over a hit in the main cache state.

Bundled read prefetches in Sunfire 6800 will only re-
trieve the data if the owner of the original transaction also
is the owner of the prefetched data. All caches snoop the
address of the original read transaction address in order to
determine if they are the owner. Only the owner will add an
entry in its service queue: a Read-Prefetch request. Thus,
the snoop bandwidth will not increase for the other caches.
When the transaction reaches the head of the request queue,
it is expanded to behave like one Copy-Back request for
each prefetch cache line. If the cache is not the owner of
a prefetch line, it will reply with a null-data NACK packet
to the requesting CPU, which will simply remove the My-
Read request from its service queue. The requesting cache
must assume a shared snoop state for each prefetched cache
line when the original request is sent out. This may create
false invalidate requests if the null data is returned from the
owner cache.

The owner state bit must be added to each cache line in
main memory. The SunFire 6800 already has some state
(gI, gS and gO) associated with each cache line for other
reasons [5]. The extra bits used for these states are gained
by calculating the ECC code over a larger data unit and are
available at no additional cost. There is one such unused bit
in memory that comes handy for the owner state bit. That
bit should be cleared on the first ReadExclusive request to
the cache line and set again on its Write-Back request.

3.5 Implementation Complexity

Our experience from designing commercial shared-
memory systems has taught us that much of the implemen-
tation complexity lies in the details of an implementation –
often at a level of details far below the description found in
research papers. Here, we will nevertheless try to carry out
a complexity discussion at a higher level.

Read bundling will introduce most complexity of the two
bundling schemes. That is also why we covered it in some
more detail in Section 3.4. While this kind of bundling



will neither alter the core of the coherence protocol nor add
new states, it will introduce more corner cases in its imple-
mentation, e.g., the invalidation of prefetched data that are
NACKed. However, we feel that our detailed description
would solve such corner cases at the cost of a reasonable
amount of logic adjacent to the service queue. Another ma-
jor cost for read bundling could be adding the one Owner
state to the memory if the existing system not already has a
memory state associated with each cache line in memory.

The upgrade bundling does add more states to the caches
and the memory. However, it does not alter the core coher-
ence scheme, since both Owner states behave the same way
from a global coherence point of view. Adding one state
may force you to add one extra state bit, if there should not
be any unused pattern using the current bits. The mecha-
nisms to handle the corner cases for read bundling should
be sufficient for implementing also upgrade bundling.

4 Simulation Environment

The Simics [16] full-system simulator is used in all the
experiments. The simulation is execution-driven and mod-
els the in-order SPARC v9 ISA. We have implemented an
invalidation-based MOSI (Modified, Owner, Shared, In-
valid) protocol extension to Simics as a baseline cache co-
herence protocol. In all experiments, we model a bus-based
16-processor system with one level of 4-way associative
unified data and instruction caches per CPU. Since our goal
is to reduce the second level cache misses and we assume
an inclusive cache hierarchy with a write-through first level
cache, we have chosen to only model one cache level. A
single level simulation will yield the same number of cache
misses as for a two level hierarchy, but the miss-ratio will
be lower since more read accesses will reach the cache com-
pared with a multi-level cache hierarchy.

The cache miss characterization in this paper is similar
to the one proposed by Eggers and Jeremiassen [8]. We
include the conflict misses in the capacity miss category.

The studies are performed on the SPLASH-2
benchmarks [25] and two commercial workloads,
SPECjbb2000 [2] and ECperf [1].

The cache size is chosen to match the data foot-
prints. The SPLASH-2 programs are rather old bench-
marks with small data footprints. Therefore, the cache
size for the SPLASH-2 simulations is chosen accordingly
to only 64 KB. At this cache size, the number of com-
munication misses (false, true and upgrade misses) and
non-communication misses (cold and capacity misses) are
roughly equal and the different cache miss categorizes could
be observed and evaluated for all applications. If a larger
cache size is used, the diagrams are entirely dominated by
cold misses and with a smaller cache size, very few commu-
nication misses occur. The workloads are chosen according

to the default values specified in the SPLASH-2 release [25]
with some minor changes: the Cholesky benchmark is op-
timized for the cache size, the FFT benchmark is run with
65536 data points, the Raytrace benchmark allocates a to-
tal of 64 MB global memory, and the Radiosity benchmark
uses the small test scene provided in the distribution instead
of the default room scene to limit the simulation time. The
benchmarks are run using 16 parallel threads, and the mea-
surements are started right after the child processes are cre-
ated in all applications except Barnes and Ocean, where the
measurements are started after two time steps.

ECperf and SPECjbb2000 are both commercial Java-
based middleware benchmarks. ECperf is a benchmark
modeling Java Enterprise Application Servers that use a
number of Java 2 Enterprise Edition (J2EE) APIs in a web
application. ECperf is a complicated, multi-tier benchmark
that runs on top of a database server and an application
server. SPECjbb2000 evaluates the performance of server-
side Java. It can be run on any Java Virtual Machine. Both
are commercial benchmarks, which set heavy demands on
the memory and cache system. The SPECjbb2000 and
ECperf workloads are configured according to Karlsson et
al. [14]. The commercial benchmarks have larger data foot-
prints and therefore the cache size is chosen to 1 MB for
these applications for a more realistic mixture of cache
misses. ECperf models the number of successfully com-
pleted “benchmark business operations” during a time pe-
riod. Such operations include business transactions such as
a customer making an order, updating an order or check-
ing the status of an order. The ECperf transactions take
long time and a total of 10 transactions are run with a
3-transaction warm-up period. SPECjbb2000 transactions
take less time and we simulate 50,000 transactions includ-
ing 10,000 transactions of warm-up time.

5 Efficiency in Prefetch Protocols

Figure 3 shows the efficiency of bundling for the fixed
sequential prefetch scheme and the Dahlgren adaptive
prefetch scheme. The prefetch strategies are evaluated in
terms of cache misses, snoop lockups and data traffic for all
benchmarks. The adaptive protocol Dr is the one described
by Dahlgren [6]. The abbreviation Dr indicates that this
is the adaptive protocol proposed by Dahlgren, which only
prefetches on reads. The F3r protocol is a f ixed scheme
that issues prefetches to the next 3 consecutive cache lines
for read misses, i.e., one read request followed by three
prefetches.

The F3ru configuration prefetches the three consecu-
tive addresses on each read and on each write generating
upgrades. The F3Bru configuration is the bundled proto-
col prefetching three cache lines on each read and upgrade
miss. The B indicates that the protocol uses bundling. The



(a) Cache misses (b) Snoop lockups and data traffic

(c) Cache misses (d) Snoop lockups and data traffic

(e) Cache misses (f) Snoop lockups and data traffic

(g) Cache misses (h) Snoop lockups and data traffic

Figure 3. Influence of bundling on a fixed and an adaptive sequential prefetch scheme. Cache misses, snoop lockups and data traffic

for three fixed, F3r, F3ru, F3Bru and three adaptive, Dr, Dru, DBru prefetch schemes are presented. The fixed schemes are normalized

relative to the baseline fixed prefetch scheme F3r and the adaptive schemes relative to the baseline adaptive prefetch scheme Dr.



Dru and DBru are similar to the F3ru and F3Bru protocols
except that they use adaptive prefetch degrees. The cache
misses, data traffic and snoop lookups are normalized rela-
tive to the baseline fixed and adaptive schemes F3r and Dr
in the figure. Hence, we can easily study the efficiency of
the bundling proposals on the prefetch schemes.

Some of the bundled prefetch requests will get NACKed.
Will not the effect on the cache miss rate be negative com-
pared with non-bundled prefetching, since less prefetches
are completed? There seems to be a fairly small difference.
Actually, sometimes bundling seems to have a positive ef-
fect. If the owner of the original transaction is not also the
owner of the prefetch data, this may indicate that they do not
have a common history and do not belong to the same soft-
ware object. Not prefetching could therefore be the action
of choice. A small positive effect can be seen by compar-
ing the miss rate for F3ru and F3Bru or Dru and DBru in
ECperf and SPECjbb2000.

There are more cold misses in the adaptive protocol Dru
than in Dr for some applications, e.g., Cholesky, LU, Water-
Sp and SPECjbb2000. The reason for this is that useful
prefetches are detected also for upgrades in the Dru scheme.
Upgrades generally take advantage of a smaller prefetch de-
gree than reads. This makes the Dru more restrictive at
prefetching and causes the cold misses to increase in this
protocol compared to the Dr protocol.

Prefetching on reads and upgrades leads to increased
data traffic compared with only prefetching on reads. How-
ever, when the reads and upgrades are bundled, the data traf-
fic becomes smaller. The cache misses are generally lower
for protocols prefetching on both reads and upgrades than
the baseline read prefetch protocols. On average, the bun-
dled protocols has fewer cache misses than the non-bundled
protocols. This is an effect of bundling since unnecessary
prefetches for data belonging to separate software objects
are avoided. Using bundling, prefetches can be issued on
upgrades, thus decreasing the cache misses, without the
negative effect on data traffic. There is also a positive ef-
fect of bundling on false sharing since the more restrictive
prefetching prevents unnecessary prefetches in, e.g., Ra-
diosity, Water-Sp and SPECjbb2000.

The largest difference between the bundled and non-
bundled protocols is in address snoops. The bundled adap-
tive protocol DBru requires much less address snoops than
the Dr and Dru protocols for all applications. The decrease
in address snoops is 42 percent between Dr and DBru on
average for all applications. The decrease is even larger
compared with the non-bundled protocol prefetching also
on upgrades. The fixed protocol always issues three addi-
tional prefetches on each miss. This makes the total num-
ber of prefetches much larger in this protocol. Bundling is
therefore more efficient at reducing address snoops in this
protocol. The average reduction is 49 percent between the

F3r and F3Bru protocols. The bundling technique is more
efficient at reducing address snoops in protocols which is-
sue a large amount of prefetches per cache miss.

6 Performance Discussion

So what are the performance effects of bundling on a
real system? Generally, the net effect on execution time of
prefetch schemes can be shown to be either positive or neg-
ative depending on the parameters chosen for the simulation
study. A prefetching computer system with plentiful of co-
herence bandwidth will be dominated by the positive effects
of the lower cache miss rate, while the negative effects from
increased queuing delay in the interconnect will dominate if
the coherence traffic is close to the available bandwidth of
the system.

The contention bottleneck makes it very difficult to sim-
ulate the potential performance gain of prefetchers. In ap-
plications that spend a lot of their time waiting for memory
transactions, the simulated execution time will vary very
much depending on the bandwidth assumptions. For these
applications, the wall clock time will follow the amount of
cache misses if the available bandwidth is chosen large. If
the simulated bandwidth is small, the execution time will
instead depend on a combination of the required bandwidth
and the amount of cache misses.

Figure 4. Effects of contention on latency.

Singhal et al. performed measurements of the impact
of contention on memory latency in the snoop-based Sun
E6000 family of servers [20]. A similar diagram has been
drawn in Figure 4. The figure indicates that contention
only has a modest influence on memory access time as long
as the systems available bandwidth has not been reached.
However, when the interconnect is contended, the access
time increases largely. This makes it difficult to come up
with one unbiased speedup number associated with a good-
news/bad-news proposal, such as prefetching 1.

1Or rather, it is quite easy to come up with any desired number depend-
ing on what you would like to prove.



(a) Cache misses (b) Snoop lockups and data traffic

(c) Cache misses (d) Snoop lockups and data traffic

(e) Cache misses (f) Snoop lockups and data traffic

(g) Cache misses (h) Snoop lockups and data traffic

Figure 5. Cache misses, snoop lockups and data traffic for three non-prefetching protocols with different cache line sizes and the

bundled fixed and adaptive sequential prefetchers. The results are normalized relative to the 32 B non-prefetching configuration. The

cache miss ratios are indicated for the 32 B configuration for each application.



However, this paper is not about evaluating prefetching
per se, but to evaluate the effects bundling has on prefetch
algorithms. We have shown that bundling can cut the snoop
bandwidth roughly in half and the cache misses by ten per-
cent for the two baseline prefetch algorithms, while the data
traffic is largely unaffected (Figure 3). We could easily have
chosen simulation parameters to demonstrate a 100 percent
speedup by limiting the snoop bandwidth. We could also
have shown no speedup if the data bandwidth had been
made the major bottleneck, or just a modest speedup if there
are plentiful of both.

One could argue that we have chosen very primitive
prefetch algorithms as our baseline systems, and this is why
we can demonstrate the large cut in bandwidth. This may be
a valid argument, which has lead us to compare the perfor-
mance effects of bundling in combination with these primi-
tive prefetch algorithms, with the non-prefetching 32 B pro-
tocol. Looking for example at Ocean in Figure 5, its drop
in miss ratio from 3.1 to 1.7 percent for DBru would re-
sult in a CPI reduction from 4.1 to 2.7 (35 percent) using
the rough memory access latency numbers given in the in-
troduction. If the available snoop bandwidth had been the
dominating bottleneck, a speedup of 33 percent could have
been achieved, and a data bandwidth bottleneck would have
yielded a slowdown of 15 percent. In Table 1, similar val-

Cache miss Snoop BW Data BW
bottleneck bottleneck bottleneck

Barnes 0.7 2.1 -65.1
Cholesky 16.0 31.3 -10.0
FFT 27.3 29.7 -22.8
FMM 1.3 8.0 -44.3
LU 13.8 36.2 -10.0
Ocean 34.9 32.8 -15.0
Radiosity 0.2 9.8 -30.0
Radix 14.3 19.2 -17.4
Raytrace 11.5 23.5 -89.4
Volrend 1.6 7.8 -66.9
Water-Nsq 5.1 20.6 -65.0
Water-Sp 0.6 21.9 -50.7
ECperf 5.1 7.2 -35.8
SPECjbb2000 14.9 17.5 -36.0

Table 1. The performance difference in percent between the
bundled adaptive protocol DBru and the original non-prefetching
32 B protocol depending on whether the performance bottleneck
is the number of cache misses, the snoop bandwidth or the data
bandwidth. The cache miss bottleneck assumes 25 percent mem-
ory references and a 400 CPU cycle miss penalty. Non-memory
refererences are assumed to have a CPI of 1.0.

ues are presented for all the applications. The table shows
that if the available snoop and data bandwidths are large
enough, the prefetching scheme will reduce the execution

time for all applications. Even larger speedups can be ex-
pected if the scarce resource is snoop bandwidth. If instead
the data bandwidth is the limiting factor, the performance
will decrease with the bundled adaptive scheme.

In Figure 5, three non-prefetching protocols with cache
line sizes of 32, 64 and 128 B are compared to the bun-
dled fixed and adaptive prefetchers, F3Bru and DBru. The
figures are normalized relative the 32 B configuration since
this is the cache line size used in the prefetching schemes.

The bundled adaptive prefetch configuration, DBru, has
28 percent less cache misses, 19 percent fewer snoop
lookups and 40 percent more data traffic than the 32 B con-
figuration on average for all studied applications. The bun-
dled fixed prefetcher, F3Bru, reduces the cache misses with
31 percent, the snoop lookups with 19 percent and increases
the data traffic with 72 percent compared with the 32 B con-
figuration on average for all applications.

However, based on the simulation results for protocols
of different cache line sizes, we can conclude that the most
probable choice of an “optimum” cache line for the design
of a multiprocessor using our benchmarks is 64 B. At the
64 B cache line size, the cache misses and address snoops
on average are significantly decreased compared with a
32 B cache line, while the data traffic is much smaller than
in the 128 B configuration. The 64 B cache line size is also
the design choice of the SunFire 6800 servers. The bun-
dled adaptive prefetch configuration, DBru, has 11 percent
less cache misses, the same amount of snoop lookups and
11 percent less data traffic than the 64 B configuration on
average for all applications.

7 Conclusion

Prefetching is useful for reducing cache misses in multi-
processors. Also rather small cache miss rates of less than
1.0 percent can harm the overall performance severely in
multiprocessors as the gap between processor speed and
memory access time grows. However, many prefetching
schemes largely increase the address snoops and data traffic.

Snoop-based systems are generally limited by how fast
snoop lookups can be performed. By using the two bundling
techniques proposed in this paper for read and upgrade
transactions, the address snoops in prefetch protocols can
be reduced. Bundling, lumps several snoop transactions to-
gether in a way that requires most of the caches to snoop
only one of the transactions. We have investigated the effi-
ciency of bundling in two different prefetchers, one fixed se-
quential prefetch scheme and one adaptive prefetch scheme
proposed by Dahlgren [6]. Compared with the original
adaptive Dahlgren proposal, the bundled adaptive Dahlgren
protocol requires 42 percent less address snoops on average
for all studied applications

We show that combining bundling with the Dahlgren



adaptive scheme gives a protocol that reduces the cache
misses with 28 percent, the snoop lookups with 19 percent
and increases the data traffic with 40 percent compared with
the original 32 B cache line non-prefetching protocol on av-
erage for all studied applications.

This is the first prefetch paper that reports a reduction in
the coherence activity, e.g., snoop lookups, as well as cache
misses for all studied applications. Bundling requires only
small changes to the coherence protocol. The technique is
not limited to sequential prefetch schemes but could be used
together with more sophisticated prefetch proposals.
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gren, G. Hållberg, J. Högberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, 2002.

[17] T. C. Mowry. Tolerating Latency in Multiprocessors
Through Compiler-Inserted Prefetching. ACM Transactions
on Computer Systems, 16(1):55–92, 1998.

[18] T. C. Mowry and A. Gupta. Tolerating Latency Through
Software-Controlled Prefetching in Shared-Memory Multi-
processors. Journal of Parallel and Distributed Computing,
12(2):87–106, 1991.

[19] T. C. Mowry, M. S. Lam, and A. Gupta. Design and Evalu-
ation of a Compiler Algorithm for Prefetching. In Proceed-
ings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
1992.

[20] A. Singhal, D. Broniarchyk, F. Cerauskis, J. Price, L. Yuan,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvey, and
E. Hagersten. Gigaplane: A High Performance Bus for
Large SMPs. In Proceedings of IEEE Hot Interconnects,
1996.

[21] M. K. Tcheun, H. Yoon, and S. R. Maeng. An Effective On-
Chip Preloading Scheme to Reduce Data Access Penalty.
In Proceedings of the International Conference on Parallel
Processing, 1997.

[22] D. M. Tullsen and S. Eggers. Limitations of Cache Prefetch-
ing on a Bus-Based Multiprocessor. In Proceedings of the
International Symposium on Computer Architecture, 1993.

[23] D. M. Tullsen and S. J. Eggers. Effective Cache Prefetch-
ing on Bus-Based Multiprocessors. ACM Transactions on
Computer Systems, 13(1):57–88, 1995.

[24] D. Wallin and E. Hagersten. Miss Penalty Reduction Using
Bundled Capacity Prefetching in Multiprocessors. In Pro-
ceedings of the International Parallel and Distributed Pro-
cessing Symposium, 2003.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. In Proceedings of the International
Symposium on Computer Architecture, 1995.


