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ABSTRACT
The advances in semiconductor technology have set the sha-
red-memory server trend towards processors with multiple
cores per die and multiple threads per core. We believe
that this technology shift forces a reevaluation of how to
interconnect multiple such chips to form larger systems.

This paper argues that by adding support for coherence
traps in future chip multiprocessors, large-scale server sys-
tems can be formed at a much lower cost. This is due to
shorter design time, verification and time to market when
compared to its traditional all-hardware counter part. In the
proposed trap-based memory architecture (TMA), software
trap handlers are responsible for obtaining read/write per-
mission, whereas the coherence trap hardware is responsible
for the actual permission check.

In this paper we evaluate a TMA implementation (called
TMA Lite) with a minimal amount of hardware extensions,
all contained within the processor. The proposed mecha-
nisms for coherence trap processing should not affect the
critical path and have a negligible cost in terms of area and
power for most processor designs.

Our evaluation is based on detailed full system simulation
using out-of-order processors with one or two dual-threaded
cores per die as processing nodes. The results show that a
TMA based distributed shared memory system can perform
on par with a highly optimized hardware based design.
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1. INTRODUCTION
While large-scale hardware-based shared memory systems

have been successfully built for many years, the cost in terms
of design and verification for each new generation is ever
increasing. This is, for example, due to multiple levels of
coherence, i.e., intra-snoop and inter-snoop domain coher-
ence. Recently, the continued decrease in transistor size and
the increasing delay of wires have lead to the development
of chip-multiprocessors (CMPs) [3, 22, 31]. With the intro-
duction of Sun’s 32-threaded Niagara chip [14] what we used
to know as mid-range servers actually do fit on a single die.
This raises a very interesting question: what is the most
cost-efficient way to connect multiple such chips together
to form larger shared memory systems without sacrificing
performance?

The traditional way of designing a large-scale shared-mem-
ory system is by modifying the memory system, leaving the
processor core unchanged. We propose the opposite; adding
a minimal amount of hardware support, contained within
each processor core, combined with an entirely unmodified
memory system designed and optimized for single-chip per-
formance. Our proposal is an extension of existing trap
mechanisms that enable efficient software handling of coher-
ence. We believe that the cost of these modifications and
additions in terms of area, power and engineer-years, are
small enough to justify incorporating them in designs span-
ning multiple market segments. The goal being a system
design cost and a system time-to-market that is equal to the
processor design time. We call our proposal a “trap-based
memory architecture,” or simply TMA. This system archi-
tecture presents a completely binary-transparent view to the
application and all necessary software support is contained
in system software. While a software coherence scheme in-
troduce some extra overhead when compared to a hardwired
system, it also comes with some very attractive properties.
The hard limit on the number of nodes in the system is
removed, protocol bugs can be fixed with software patches



and it is possible to change coherence schemes in a trivial
manner.

Since area and complexity are scarce resources in a proces-
sor design, this paper evaluates a minimalistic TMA imple-
mentation based on simple coherence trap support and an
incoherent commodity interconnect (e.g., InfiniBand [11]).
Our proof-of-concept implementation, called TMA Lite, is
evaluated with detailed full-system simulation of systems
formed from chip multiprocessors, where each core is a super-
scalar, multi-threaded, dynamically scheduled out-of-order
processor. We find TMA performance to be competitive
with a highly optimized hardware-based distributed shared
memory (DSM) system, with a vastly higher degree of com-
plexity and a significantly longer design time.

Even though trap-based coherence can be used across the
entire application domain, we believe that it is especially
well suited for system designs targeting the high-performance
computing market. This is partly because the recent trend
towards cluster-based systems where TMA can provide sha-
red memory and partly because the data access pattern reg-
ularity, often displayed by scientific codes, can be exploited
by optimized coherence schemes.

The contribution of this paper is fourfold:

• We present an application binary transparent system
based on fine-grained software coherence.

• We introduce a new architecture, the trap-based mem-
ory architecture (TMA) and a low-complexity imple-
mentation (TMA Lite) where all modifications are kept
within the processor.

• We propose a new processor hardware structure to ac-
celerate write permission checks, called write permis-
sion cache (WPC), and a comparator-based hardware
structure for detecting read permission violations.

• We present a full-system simulation evaluation using
out-of-order SMT chip-multiprocessors, showing that
a TMA system with optimized coherence routines per-
forms on par with a hardware system.

The core of the trap-based memory architecture is to de-
tect fine-grained coherence violations in hardware, trigger
a coherence trap when one occur and maintain coherence
by software in coherence trap handlers. The detection and
handling of coherence violations can be implemented with
a minimal amount of extra hardware support by exploiting
the trap mechanisms already existing in modern micropro-
cessors.

A system based on coherence traps can be implemented
at a fraction of the cost of the corresponding large-scale
hardware DSM system, while offering similar performance.
Our approach also removes the limit on the number of nodes,
since the coherence protocol is implemented in software and
all directory state resides in main memory.

2. PROCESSOR SUPPORT
This section describes load and store trap support and

discusses some implementation issues. A coherence trap is
in many ways similar to a page miss in a software managed
TLB. When a coherence violation is detected, a trap is sig-
naled and the effective address of the faulting load or store is
forwarded to the trap handler. The coherence protocol code

in the coherence trap handlers are based on the DSZOOM
system [24] and are further described in Section 3.2. The
coherence trap handler then fetches valid data and obtains
read/write permission. After completing the coherence ac-
tion, the faulting instruction is retried.

2.1 Load Support: �Magic� Value Sentinel
In the TMA Lite system, all coherence units in state in-

valid store a predefined “magic-value” as independently pro-
posed by Scales et al. [26] and Chiou et al. [8]. Read misses
can therefore be detected by comparing the value returned
by each load to this predefined value and trigger a read miss
coherence trap whenever a match is found. Note that a load
coherence trap does not always indicate a coherence miss.
This might happen if the loaded value is (and should be)
the magic value. These situations have been shown to be
rare and are simple to detect and handle within the proto-
col code [26].

2.2 Store Support
The simplest form of store permission support would be

to trap on all stores. This strategy has the drawback of
sometimes taking traps when the node already has store per-
mission. Ideally, a coherence trap should only occur when
the node does not have store permission. In this study, we
model these two “extremes” and a hardware store support
mechanism based on the previously proposed software write
permission cache [35]. If an address tag is present in the
WPC, it implies that the node already has write permission
for the coherence unit it represents. Hence when using a
WPC, the check for store permission must only be made
when a store misses in the WPC.

The hardware WPC offers binary transparency to the sys-
tem. It can be seen as a small (e.g., 8 or 16 entries) virtually
indexed, virtually tagged cache, that is looked up for each
store. When the effective address of a store is not present in
the WPC, the store is marked as faulting. The faulting in-
struction will then invoke the write miss trap handler, which
will obtain permission and fill the WPC.

2.3 Implementation Issues
While many optimizations can be implemented to speed

up the coherence trap handling, this paper focuses on an
implementation with the bare minimum set of hardware
changes. The TMA Lite implementation relies on the exist-
ing exception trap vector mechanism as defined by SPARC-
V9 [33] and use reserved entries in the trap vector for the
coherence trap protocol code. Register spill is avoided by
using the alternate global registers [33]. That is, no state
has to be saved as long as no context switch occurs. The
WPC structure can be manipulated through ASI-mapped
registers, requiring only a new ASI from an ISA perspec-
tive.1

We believe that the load coherence trap can be imple-
mented in many modern processor designs with negligible
cost in area and complexity. However, the target processor
must be able to take a trap when the read value is returned.
That is, a load instruction is not allowed to be commit-
ted/removed from the reorder buffer (ROB) until the value is
returned. Another alternative could be a checkpoint-based
design [13]. Similar techniques have also been described by
Qiu et al. [23] and Cain et al. [5]. Because a load trap only

1Address Space Identifiers [33]



needs to be detected before the load is committed, not be-
fore the data is forwarded to other dependent instructions, it
should be possible to implement without affecting the criti-
cal path.

The WPC can be implemented as a small cache accessed
in parallel with the TLB2 or as part of the TLB (similar to
the RS/6000 TLB design [21]). We model the former and be-
lieve that the WPC-based store trap can be implemented in
many modern processor designs with negligible cost in area
and complexity. Since the WPC is accessed in parallel with
the TLB, the WPC access should be off the critical path and
not affect the cycle time nor the single thread performance
(when turned off). Since our WPC implementation is vir-
tually indexed and virtually tagged, the TMA Lite system
can only provide extra scalability on the application level.
An implementation using physical addresses, on the other
hand, could provide real system level scalability and allow
operating systems to boot across multiple nodes.

3. PERFORMANCE EVALUATION
This section describes our simulation methodology, simu-

lator framework, benchmarks, results and the architectures
modeled.

3.1 Simulation Methodology
We use the Simics full system simulator [19] extended with

an out-of-order processor model, memory hierarchy and a
system interconnect model [32]. We simulate a SPARC-V9
system running an unmodified Solaris 9 operating system.
Our processor model is based on the Simics Micro Architec-
tural Interface which guarantees correctness leaving timing
modeling to processor and memory system models.

Core and Chip Model: We model a dual-core CMP
where each core is a superscalar, dynamically scheduled, 2-
way multi-threaded out-of-order processor. The processor
model is implemented in the following way. Both threads
fetch 8 instructions from a dual-ported instruction cache.
The scan stage scan instructions in the fetch buffer until a
predicted instruction falls outside the fetch buffer. As long
as the program execution follows the fall through path, no
fetch bubbles are generated. When a branch is taken, a
one cycle fetch bubble is generated before the scan unit is
able to redirect the instruction fetcher. The two threads
share branch-target buffer (BTB) and branch predictor, but
have separate return address stacks (RAS). Instructions are
selected from the dual fetch unit based on the ICOUNT
fetch policy and inserted into the 6-way superscalar decode-
rename stages. After register renaming, instructions are put
in the issue queue. Instructions may be issued and executed
out of order, but are committed in order. A round robin pol-
icy is used between the threads to select which instructions
to commit.

Our memory hierarchy simulator models the latency and
bandwidth of three levels of lockup-free caches per chip,
where the second and third level is shared among cores. We
model first-level write-through caches, while the second and
the third level caches both implement a write-back strategy.
The L3 latencies were chosen to model on-chip tags and off-
chip data. Table 1 shows simulated chip parameters, which

2In the case of both a TLB miss and a WPC miss, the TLB
miss takes precedence. The WPC miss will be triggered
when the instruction is retried.

Processor 2-way SMT, single- or dual-core

Frequency 3 GHz

Pipeline Stages 12

Fetch/Issue/Retire Width 16/6/8

Instruction Window 256

Store Buffer 32 entries per thread

L1 Data Cache 32KB 2-way, 4 MSHRs, 2 cycle hit

L1 Instruction Cache 64KB 2-way, 4 MSHRs, 2 cycle hit

L2 Shared Unified Cache 1MB 16-way, 16 MSHRs, 11 cycle hit

L3 Shared Unified Cache 8MB 16-way, 16 MSHRs, 81 cycle hit

L1/L2/L3 Block Size 64 bytes

Memory Latency 200 cycles, load-use

TMA Lite Store Support 16-entry hardware WPC

TMA Lite Load Support Magic-value comparator

Table 1: Simulated chip parameters.

4-node Configuration Dual-core chip, 4 threads per node

8-node Configuration Single-core chip, 2 threads per node

Interconnect Bandwidth 3 GB/sec per link

Network Topology Fully connected

Remote Memory latency 600 cycles, load-use

Table 2: Simulated system parameters.

were chosen to resemble a scaled down Power5 design.
System Configuration: Table 2 shows simulated sys-

tem parameters. We evaluate our system using both a 4-
node and an 8-node configuration, where each node consists
of a single chip. The 4-node system is built from dual-core
chips and the 8-node system from single-core chips. How-
ever, all cores contain 2 hardware threads regardless of sys-
tem configuration. Hence, there are a total of 16 threads
per system for both configurations.

Our nodes are fully connected to each others with a high-
bandwidth, low-latency interconnect. Our network supports
two different modes: a hardware-coherent and a non-coherent
mode. The hardware-coherent mode supports the coher-
ence messages used by the hardware-only system. While
the non-coherent mode support mechanisms for put, get, and
atomic operations to remote nodes’ memories, similar to In-
finiBand [11] or Sun Fire Link [29]. Remote operations are
accomplished without interrupting remote processors.

Interactions with Solaris: To make the trap handling
as realistic as possible, we use reserved trap types in the
SPARC-V9 instruction set to implement our coherence traps.
We have applied a binary patch that modifies the corre-
sponding trap vector entry in Solaris 9 with our coherence
protocol code.

The simulated load sentinel comparator and all three store-
permission checks modeled can signal load and store instruc-
tions as faulting. A coherence trap is taken when the instruc-
tion marked as faulting reaches the commit stage. When a
coherence trap occur, it is handled just as a normal trap and
the protocol routines are executed just as any other trap
handler instructions in the pipeline of the cycle-accurate
simulator, consuming pipeline resources and polluting the
caches.

TMA Lite relies on the operating system (OS) for detect-
ing when a private page moves to shared state (handled with



the virtual memory subsystem). The OS is also responsible
for local memory mappings, network interface mappings and
replication of pages in shared state. The coherence trap han-
dlers are used to maintain fine-grained coherence between
the “private copies” of all shared pages. For this to work we
assume private/shared functionality (such as a bit) per TLB
entry informing the coherence check hardware to trap on a
miss or not. This functionality is already existent in many
TLB designs and the information just has to be propagated
to the coherence check mechanism.

3.2 Simulated Protocols
This section describes the hardware-only and the software-

based coherence protocol (executed by coherence trap han-
dlers) modeled in this paper.

Hardware Protocol (HW): The hardware-only proto-
col is a highly optimized non-blocking MOSI directory pro-
tocol. The on-chip coherence agent, responsible for node-to-
node coherence, has dedicated directory memory and uses a
fully mapped bit vector to keep track of sharers [17].

Software Protocol (SW): The software-based protocol
is a port of the well tested DSZOOM protocol [35, 24], a
distributed synchronous directory coherence protocol [9, 24,
35]. Our software protocol assumes a high bandwidth, low
latency cluster interconnect, supporting fast mechanisms for
put, get and atomic operations to remote nodes’ memo-
ries, such as InfiniBand [11] or Sun Fire Link [29]. The
protocol further assumes that the write order between any
two endpoints in the network is preserved. These network
assumptions make it possible for a trapping processor to
get read/write permission without remote interrupt- and/or
poll-based asynchronous protocol processing [4, 24].

A processor that has detected the need for global coher-
ence activity (by a coherence trap) can lock a remote di-
rectory entry and independently obtain read and write per-
mission. The protocol allows several threads in the same
node to perform protocol actions at the same time. The
invalidation-based protocol (MSI) directory is located in the
nodes’ memories. Effective address bits of memory opera-
tions determine the location of a coherence unit’s directory
location, i.e., its “home node.”

To reduce the number of accesses to remote directory en-
tries caused by WPC fill traps, each node has one byte of
local state (MTAG) per global coherence unit indicating if
the coherence unit is locally writable. The directory is only
consulted if the MTAG indicates that the node currently
does not have write permission to the coherence unit. Since
a home node can detect with local memory accesses if it
has write permission (the directory is located in its local
memory), it does not need any extra MTAG state.

3.2.1 2-hop Write Miss Example
Figure 1 illustrates the protocol activity caused by a 2-

hop write miss to coherence unit A and a 3-hop read miss to
coherence unit B. The 2-hop write miss coherence activity is
started when a processor in node1 writes to coherence unit
A. The transactions are marked A1-A3. State transitions for
coherence unit A and B are shown below each node.

HW: The coherence agent starts the coherence activity
when the store operation is at the head of the store buffer
and the miss is detected. The coherence agent sends a
read-exclusive-request (A1 in Figure 1 (a)) to the home node
(node0). The home node responds with permission and data

(A2). Finally, node1 sends an acknowledgment (A3) to the
home node (off the critical path).

SW: The coherence activity is started since the request-
ing processor in node1 does not have write permission, and
hence, takes a coherence trap. The requesting processor ac-
quires exclusive access to A’s directory located in node0’s
memory (indicated by the remote atomic operation A1 in
Figure 1 (b)). When the directory is locked, it retrieves the
data from the home node with a remote get operation (A2).
To end the coherence activity, the requesting processor re-
leases and updates the directory with a single remote put
operation (A3), which is off the critical path.

3.2.2 3-hop Read Miss Example
Figure 1 also illustrates protocol activity caused by a 3-

hop read miss to coherence unit B. The coherence activity
starts when a processor in node3 reads coherence unit B.
The transactions are marked B1-B5.

HW: The coherence agent in node3 detects the coherence
miss and sends a read-request to the home node (B1 in Fig-
ure 1 (a)). The home sends an intervention to node2 (B2)
which has coherence unit B in state modified. Node2 re-
sponds with data and permission information to node3 (B3)
and enters owner state. Node3 ends the coherence activity
by sending an acknowledgment (off the critical path) to the
home node.

SW: The coherence activity starts with a load coherence
trap triggered by the magic-value sentinel. The requesting
processor in node3 locks the directory entry and determines
the identity of the node holding the data (B1 in Figure 1 (b)).
The data happens to reside in node2, in a modified state.
A second remote atomic operation (B2) to node2’s MTAG
structure disables write permission on that node. The data
is fetched with a remote get operation (B3). Node2’s MTAG
and the home’s directory are then released and updated.
These two put operations (B4 and B5) are off the critical
path.

3.2.3 Hardware/Software Protocol Discussion
While handling the coherence protocol using trap mech-

anisms on the requesting processor has advantages, it also
has some drawbacks. On most processors, handling a trap
is associated with a significant pipeline disruption. For ex-
ample, in our model, when a coherence trap is taken, all the
trapping hardware thread’s instructions are flushed from the
pipeline. The trap handler has to be fetched and the instruc-
tions have to fill the pipeline frontend before the actual ex-
ecution of the coherence routine is started. When the node
has read/write permission, the faulting instructions is re-
tried. That is, the instruction has to be fetched again and
walk through the entire pipeline.

Our software protocol has two major drawbacks compared
to its hardware-only counterpart. First, it needs more inter-
node hops to solve coherence misses (see Figure 1). Second,
the software store protocol is not capable of hiding store
misses, like store buffers often can in traditional hardware
protocols.

3.2.4 Memory Consistency and Deadlock Avoidance
Our coherence protocol maintains sequential consistency

(SC) [16] by requiring all acknowledges from the sharing
nodes to be received before a global store permission re-
quest is granted. The WPC does not weaken the memory
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Figure 1: Protocol examples for a 2-hop write miss and a 3-hop read miss.

model, since the WPC protocol requires all the remotely
shared copies to be destroyed before granting the write per-
mission. It simply extends the duration of the permission
tenure before the write permission is given up. Of course, if
the memory model of each node is weaker than sequential
consistency, it will dictate the memory model of the system.
Our nodes, and hence the system, implements total store
order (TSO) [33].

All WPC-related deadlock issues are solved by the coher-
ence run-time system. A processor’s WPC entries have to
be released at synchronization points, context switches, at
failures to acquire MTAG/directory entries and at thread
termination. To avoid deadlocks caused by user-level flag
synchronization, we also periodically flush all WPC entries.
This flush can be accomplished by the operating system, for
example, on timer interrupts or with a dedicated timer based
trap mechanism. Throughout this study, WPC entries are
flushed every 10,000 cycles.

3.3 Benchmarks
The benchmarks that are used in this paper are the well-

known workloads from the SPLASH-2 benchmark suite [34].
Data set sizes for the applications studied can be found in
Table 3. Since we evaluate our system on a cycle-accurate
simulator, we had to restrict our evaluation to a subset of
the SPLASH-2 benchmarks. The long turnaround time, up
to a week of simulation per data point, is also the reason
why we use small working set sizes.

It is not clear however which system is favored by small
working sets. In the hardware-only system, the large third-
level cache will capture most of the data set, and hence,
almost no extra coherence traffic is generated because of
limited sharing space. The TMA Lite system, on the other
hand, might get a slightly increased WPC hit rate, but be
penalized by the increased rate of synchronization events
that forces WPC flushes in order to avoid deadlocks.

The selected programs were chosen to represent a variety
of communication and synchronization requirements. For
example, fft has a communication-intensive behavior and

Program Problem Size

fft 64k points

lu-c 512×512 matrices, 16×16 blocks

lu-nc 512×512 matrices, 16×16 blocks

radix 256k integers, radix 1024

water-nsq 512 molecules, 3 time steps

water-s 512 molecules, 3 time steps

Table 3: SPLASH-2 benchmarks.

radix has a randomized store access pattern.
We warm the caches similarly to Woo et al. [34]. All ap-

plications are compiled with a gcc-3.4.3 compiler (optimiza-
tion level 3). PARMACS macros for locks and barriers are
based on user-level test&test&set spin locks. Pause/Event
macros are implemented with the POSIX Pthread library
(only radix uses a small amount of pauses).

3.4 Simulation Results
We start our performance evaluation by comparing the

performance of our coherence trap enabled TMA Lite sys-
tem to the hardware DSM system. As shown in Figure 2,
the performance of the TMA Lite system is on average 25
percent behind the hardware DSM. However, we will show
in this section how to increase the performance of the TMA
Lite system.

We have found the WPC hit rate to be critical for TMA
Lite performance. We therefore establish a lower and upper
bound (the two “extremes” from Section 2.2) on the perfor-
mance that can be obtained with the type of store coherence
mechanisms proposed in this paper. The lower bound is the
performance obtained with an “optimal” WPC implemen-
tation, i.e., store traps are only generated if the node does
not have write permission.3 Conversely, we use an imple-
mentation trapping on all stores, i.e., no write permission

3Note that some unnecessary cycles are spent nevertheless
filling WPC entries that never will be used.
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Figure 2: Software and hardware protocol performance. (4-nodes, coherence unit size: 64 bytes.)

caching is done at all, as an upper bound of the store coher-
ence trap overhead. The lower and upper bound is shown in
Figure 2 as trap on coherence (lower) and trap on all

stores (upper). As can be seen in Figure 2, and as one
might expect, the high penalty of taking a coherence trap
makes trapping on all stores a costly strategy. Note that
we have only trapped the processor on shared pages in this
study and that the overhead would have been significantly
higher without this capability. The performance of the trap

on coherence bar, on the other hand, is very encouraging
when compared to the hardware DSM system.

The hardware DSM system outperforms the lower-bound
software for applications with a lot of coherence activity,
this is for example the case for fft. On the other hand,
when the amount of coherence activity is low, as in water-s,
the optimal WPC performs on par with the hardware DSM
system. The performance difference between the TMA Lite
system and the optimal WPC comes from the fact that the
WPC has to be filled, even though the node might already
have permission. It has earlier been shown that the WPC hit
rate for radix is very poor [35]. This is the reason why the
WPC performs similar to the trap on all stores strategy
for this particular application.

We find that we are able to get a significant performance
effect from a simple 16-entry WPC compared to the trap-all
strategy. The performance obtained by the optimal write
permission caching makes more advanced WPC structures
look very promising. This is however beyond the scope of
this paper.

3.4.1 Trap Protocol Breakdown
In order to quantify and understand the different com-

ponents of the software protocol, we have broken down the
execution time into five different parts. Deadlock avoidance
handling (described in Section 3.2.4), load protocol, store
protocol, WPC fill and the remaining application execution
denoted as other protocol cycles. We have divided the store
handling into two different parts (store protocol and wpc fill)
to highlight the impact of the overhead caused by WPC fills
when the node already has permission. As can be seen in
Figure 3 (a) the overhead caused by WPC fills is non neg-
ligible. For all benchmarks except fft, more time is spent
filling the WPC than on the actual store protocol process-
ing. The relative WPC cost is extra large in applications

with little coherence activity.
We find that on average 31 percent of the overall execution

time is spent on coherence actions. Out of which 7 percent
is deadlock avoidance, 31 percent is load miss handling, 18
percent is store miss handling and 44 percent is WPC fill
handling. To further understand the cost associated with
coherence traps, we have quantified how much time is spent
entering and exiting the trap handlers as well as the time
spent waiting for remote get operations, lock handling and
the overhead of remaining protocol handling.

Figure 3 (b) shows a breakdown for each of the various
forms of traps, again, we separate WPC fill processing from
the store protocol. Each bar is divided into the following
five parts: trap enter, remote get, lock acquire, other protocol
cycles and trap exit.

Trap Enter: Represents the cost of filling the pipeline
with the corresponding trap handler. It accounts for the
total number of cycles from when the trap is taken until
the first instruction in the trap handler is committed. A
fetch unit optimization, similar to the one proposed in the
SMTp proposal [7], can almost remove this part of the trap
overhead.

Remote Get: This part is the total number of cycles
spent waiting for remote get operations to finish. That is,
when the load or store protocol needs to get valid data. This
part is, of course, highly dependent on the remote memory
access time. A longer (shorter) remote memory latency will
increase (decrease) this component of the trap handling.

Lock Acquire: Since the TMA Lite coherence protocol
is based on software handlers, atomic updates of the direc-
tory state located in main memory are needed. The lock
acquire part corresponds to the total number of cycles wait-
ing for remote and local lock aquire operations while inside
the protocol code. Note that the lock acquire part of the wpc
fill bar corresponds to local lock operations to the MTAG
structure.

Trap Exit: This part corresponds to the total number of
cycles from the actual commit of the retry instruction ending
the coherence trap routine until the pipeline is refilled and
the instruction that originally caused the coherence trap to
be taken is committed. A more advanced trap mechanism
that would not require a pipeline flush when a coherence trap
is taken, may decrease or completely eliminate this pipeline-
refill time [12, 36].
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Figure 3: TMA Lite execution time and protocol breakdown. (4-nodes, coherence unit size: 64 bytes, 16-entry
WPC, magic-value comparator.)

Other Protocol Cycles: The rest of the cycles of the
coherence trap handlers are contained in the other protocol
cycles part. These are typically cycles spent manipulating
directory bits, setting up RDMA actions or updating the
WPC. Note that the WPC is updated also in the store

protocol bar.
Figure 3 (b) shows that the pipeline fill (trap enter) and

the pipeline refill (trap exit) parts does not affect the per-
formance that much. For a more disruptive trap mechanism
this part may be significantly higher. Most of the cycles
in the wpc fill bar are consumed updating the WPC (the
other protocol cycles part). It is interesting to note that the
overhead caused by local lock acquires to the MTAG struc-
ture is not severe, despite the costs associated with atomic
operations. The store protocol bar, on the other hand,
consumes a lot of its time waiting for lock acquires to fin-
ish. The reason why this takes so much time is because
the directory often is located on remote nodes, and hence,
the remote atomic fetch-and-set operation takes much more
time than its local counter part. fft, radix and water-n

all have a significant amount of write misses where a remote
get of valid data is needed.

Most of the cycles in the load protocol breakdown are
consumed waiting for exclusive access to the directory (lock

acquire) and while getting valid data (remote get) from re-
mote nodes. Because these two kinds of operations are very
costly, the trap overhead (trap enter and trap exit) as well as
bit manipulation overhead (the other protocol cycles part)
are very small. Almost all cycles spent inside the dead-
lock avoidance handler are consumed while manipulating
the WPC and releasing the locally cached locks.

3.4.2 Coherence Unit Size Scaling
Software-based coherence protocols have the advantage of

making protocol changes trivial, enabling a degree of flexi-
bility difficult to implement in hardware within complexity
bounds. In this section we present the performance of the
TMA Lite system while varying coherence unit size from
64-256 bytes.4 We have broken down the execution time
into protocol components, to expose how each component
performs. As Figure 4 shows there are significant perfor-
mance gains that can be achieved by tuning the coherence
unit size. Except for radix, all applications benefit from
some coherence unit scaling.

The greatest performance improvement is seen for fft

4The TMA Lite system allows the coherence unit size to be
set at application launch.
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Figure 4: Normalized TMA Lite performance. (4-nodes, coherence unit size: 64-256 bytes, 16-entry WPC,
magic-value comparator.)

and lu-c, whose load and store protocol cycles scale very
well with coherence unit. The WPC fill cycles are also
decreased, especially for lu-c. The performance improve-
ment for the water applications comes from a 54 (60) per-
cent WPC miss rate improvement (when going from 64-128
bytes) for water-n (water-s), and hence, a large reduction
in WPC fill cycles. This is shown by the wpc fill part in
Figure 4.

Both fft and lu-c outperform the hardware DSM sys-
tem when a coherence unit size of 128 bytes is used. fft

(lu-c) is more than 26 (15) percent faster than the hard-
ware DSM system when a coherence unit size of 256 bytes
is used. However, it is well known that not all applications
scale with coherence unit size. lu-nc, for example, suffers
from false sharing when a coherence unit size larger than
128 bytes is used. This is indicated by the store protocol
component increase observable in Figure 4. The reason why
the other cycles part is not constant between TMA Lite con-
figurations while varying the coherence unit size is because
extensive trapping affects both threads in the pipeline. More
resources are freed/used, the fetch unit has to be redirected,
etc.

The right-most bar in Figure 4 shows the average TMA
Lite system performance when hand picking the best co-
herence unit for each application. The TMA Lite system
performs within one percent of the hardware DSM. More
advanced protocol optimizations will further improve TMA
Lite performance.

3.4.3 Node Scaling
In order to test the scalability of the coherence trap pro-

posal, we have modeled both 4- and 8-node hardware DSM
and TMA Lite systems. We have chosen to use a total count
of 16 hardware threads in all our configurations to avoid ap-
plication scalability interference in our results. The 4-node
configuration consists of four dual-core chips while the 8-
node configuration consists of eight single-core chips. The
8-node system will has less node locality than its 4-node
counter part, which will lead to more coherence activity.

By comparing the relative 4- and 8-node performance dif-
ference between the DSM and the TMA Lite system, we
can get an indication of how the TMA Lite proposal scales
compared to the DSM system. As can be seen in Figure 5,

the TMA Lite system scales similarly to the hardware DSM
system, except for water-s. For water-s we have noted
an increase in load and store protocol cycles, however not
enough to explain all of the performance degradation.

4. RELATED WORK
There is a wide range of options for hardware/software

trade-offs for implementing coherent shared memory, rang-
ing from all-hardware coherence to implementations relying
on no specific hardware support at all. It is fairly com-
mon, however, that systems rely on both hardware as well
as run-time software to improve the performance. Most
cache-coherent non-uniform memory access machines (CC-
NUMAs) rely on hardware performance counters to guide
the page migration software [17, 9]. The Sun WildFire sys-
tem has hardware support for detecting pages in need of
replication [9]. Replicated copies of each page can be instan-
tiated by software, but the coherence between the multiple
copies is kept by hardware on a cache-line sized basis.

The hardware/software boundary is also sometimes cross-
ed in order to handle some of the corner cases of the coher-
ence protocol. One such example is the MIT Alewife ma-
chine that added efficient support for trapping to a software
handler on the rare event of massive sharing [1]. These sys-
tems rely on hardware coherence and use software to sim-
plify part of the design. Our proposal removes all of the
inter-node hardware protocol from the memory system and
rely entirely on coherence traps and software handlers for
inter-chip coherence.

The trade-off between hardware/software is even more ap-
parent in systems with programmable coherence engines or
dedicated coherence processors such as Stanford’s FLASH
[15], Sun’s S3.mp [20] and Wisconsin’s Typhoon-0 [25]. Here,
the entire coherence protocol is controlled by specialized
software, which enable flexible protocol adoptions as well
as protocol bug correction. SMTp is a more recent pro-
posal [7] in which the coherence protocol is run by one SMT
thread that handles coherence actions on processor cache
misses. While these systems rely on software handlers for
coherence, they require either dedicated coherence proces-
sors capable of snooping the memory bus [15, 20, 25] or
extended memory controllers together with SMT processor
pipeline modifications [7] in order to work. The TMA Lite
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Figure 5: Normalized TMA Lite performance. (4/8-nodes, coherence unit size: 64 bytes, 16-entry WPC,
magic-value comparator.)

proposal on the other hand leaves the memory system com-
pletely unmodified while adding two very small and simple
hardware structures to the processor.

Page-based software-only DSM systems [18, 6, 2, 30, 4]
rely on the existing TLB hardware to detect permission vi-
olations. However, TMA is targeting a much more fine-
grained coherence granularity than a virtual memory page.
An appealing option in a page-based software DSM is to ex-
tend the functionality of the TLB to support fine-grain load
and store access control bits. For example, the RS/6000 [21]
provides a single access control bit for every 128-byte seg-
ment. This would allow the fast trap mechanisms that are
already present for handling TLB faults to also handle the
coherence faults. This scheme has the advantage of an ear-
lier detection than most other schemes, including our read
support. However, such modifications of the TLB are less
practical for TLBs with large or mixed page sizes.

The Blizzard-E [27] system demonstrated the use of the
existing trap mechanisms to handle read coherence viola-
tions. By corrupting the ECC bits of coherence units in
state invalid, an ECC trap is generated for all read misses.
Then once the ECC trap is triggered the trap handler ob-
tains read permission and corrects the ECC code. While
having the advantage that no “false” read coherence traps
are generated, the scheme have the drawback of requiring a
network interface capable of setting this special ECC value
in remote nodes5 if a synchronous coherence protocol is to be
used. While this approach may be suitable for read checks,
it is less practical for writes. In the Blizzard-E system as
well as in other fine-grained systems such as Shasta [26],
Sirocco-S [28] and DSZOOM [24], permission checks were
instrumented in the application code thereby breaking the
application binary transparency targeted by the trap-based
memory architecture.

The “Informing” memory operation proposal [10] is clos-
est to our goal: to keep added hardware complexity low.
While this is a very interesting approach for software coher-
ence, the out-of-order processor implementation is non triv-
ial. The coherence protocol assumes permission for all data
in the L1 cache. However, an informing load operation can

5A capability currently not supported in e.g. the InfiniBand
standard.

update the cache and later be squashed from the pipe (due
to control speculation or a preceding exception) leaving the
cache with data that have not been checked for permission.
Horowitz et al. permits the speculative informing load oper-
ation to update the cache on a miss and makes sure that this
data can not be read by another informing load operation
by extending the data forwarding mechanism [10]. Shared
L1 caches is likely to further complicate this scheme.

5. CONCLUSIONS
This paper explores a new design point in the trade-off be-

tween between hardware and software to implement shared
memory. We call our proposed architecture, a trap-based
memory architecture (TMA). In TMA, coherence trap hard-
ware is responsible for performing the permission check and
to generate a trap whenever a coherence violation is de-
tected. Coherence is then maintained in software by co-
herence trap handlers, allowing a greater protocol flexibility
than hardware implementations.

In this paper we evaluate a TMA implementation called
TMA Lite. TMA Lite is targeted at minimizing system
complexity, we have therefore assumed a commodity inter-
connect and employed a synchronous protocol. While the
traditional way of designing a DSM system is by modify-
ing the memory system leaving the processor unchanged,
in TMA Lite we propose the opposite; adding support for
coherence traps inside the processor core while leaving the
memory system unchanged. We believe the proposed pro-
cessor extensions; a hardware write permission cache (WPC)
and a magic value check for loads, can be added to many
processor designs with a very limited cost in terms of area,
power and complexity.

Detailed full-system simulation of 4- and 8-node systems,
based on chip multiprocessors, shows that our TMA Lite
system can perform on par with a highly optimized hardware
DSM system running on the same node and interconnect
hardware.
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