
1 SPARQL Language Overview 

Scientific SPARQL query language is a superset of the W3C SPARQL 1.1 
Standard, and is designed to query RDF with Arrays datasets. The semantics 
of SciSPARQL is thus focused both on graph pattern matching, defined by 
the SPARQL standard, and on array processing introduced in our extension  

The purpose of this section is to introduce the essential features of 
SPARQL, as specified by the W3C Standard, including different kinds of 
graph patterns (basic, optional, alternative), property path expressions, 
filters, grouping and aggregation. W3C SPARQL 1.1 Specification can also 
be recommended as a tutorial for the standard language.  

The next part continues this overview by discussing the extensions 
introduced in SciSPARQL, including array expressions, parameterized 
views, lexical closures, and second-order functions. Together these features 
make a noticeable shift towards a functional query language, albeit retaining 
the property of declarativeness. 

1.1 Example Dataset 
An RDF graph consists of nodes and edges. Edges are always identified by 
URIs, while nodes can be either URIs (globally unique), blank nodes 
(unique within a graph or union of graphs to be queried), or literals: 
numbers, text strings, temporal or logical values.  
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Figure 1. Example of RDF graph using FOAF vocabulary 

Figure 1 shows an example of an RDF graph using the FOAF vocabulary. 
There is one class node for foaf:Person, four instance nodes for that class 
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identified by blank nodes, and a foaf:name property for each of them. 
Additionally they participate in the foaf:knows relationships, which happen 
to be symmetric - double-sided arrows indicate pairs of symmetric 
properties.  

At the same time, an RDF graph is also a set of (subject, property, value)1 
triples. Subject and value of each triple correspond to nodes in the graph, 
while properties corresponds to edges. 

1.1.1 Turtle Syntax 
There is a number of ways to serialize RDF graphs to text. The RDF graph 
in Figure 1 can be expressed as a set of triples, e.g. 

_:a a foaf:Person ; 
    foaf:name "Alice" ; 
    foaf:knows _:b , _:d . 
_:b foaf:knows _:a . 
... 

Throughout this Thesis we will use Turtle - Terse RDF Triple Language 
to present the RDF datasets. The fully specified triples are separated by dot 
'.', while triples sharing the same subject are separated by semicolon ';', and 
triples sharing both subject and property are separated by comma ',', and we 
usually place them in the same line. So the above fragment contains five 
triples, with two unique subjects and four unique subject-property pairs. The 
same syntax is used for specifying triple patterns in SPARQL, as shown in 
Section 1.2.  

Generally, the dot sign separating the triples in RDF and SPARQL has the 
semantics of a conjunction (along with comma and semicolon). So what 
technically appears to be a set of triples, from the epistemological 
perspective is a conjunction of facts. 

Both Turtle and SPARQL use prefixes in order to abbreviate URIs. The 
Turtle file with the dataset on Figure 1 would contain a prefix definition 

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

It specifies that e.g. foaf:name property is a shorthand for the URI 
<http://xmlns.com/foaf/0.1/name>. The reserved property a stands for 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, otherwise commonly 
abbreviated as rdf:type. It indicates the relationship between instances and 
classes when both are represented by RDF nodes. 

                                                      
1 Another common way to refer to triple components is (subject, predicate, object). We prefer 
to avoid the confusion with ObjectLog predicates. 

2 



Blank nodes, e.g. _:a are used whenever no URI is provided to identify 
the node, and different blank node labels specify different nodes. Blank 
nodes are typically used to represent instances identified by the values of 
their key properties (as foaf:Person intances are identified by foaf:name 
values in our example). Another common use case are linked lists, formed 
with rdf:first and rdf:rest properties. Turtle has a compact syntax to 
represent such lists, e.g the following Turtle construct:  

:s :p ((1 2) (3 4)) . 

It encodes a graph, with six blank nodes generated by the Turtle reader, 
along with 12 triples of the hierarchical linked list. 

1.2 Graph Patterns 
At the core of all non-trivial SPARQL queries there is at least one graph 
pattern, for example  

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?person 
 WHERE { ?person foaf:name "Alice" } 

contains a graph pattern  

?person “Alice”
foaf:name

 

This graph pattern consists of a single triple pattern, with the variable 
?person used as a wildcard to match a graph node. The result of such a 
query would be the set of bindings for the projected variable ?person. If 
applied to the dataset on Figure 1, this would result in a single blank node 
_:a.  

A graph pattern may be more complex and include a conjunction of 
several triple patterns, connected with the '.' operator. Whenever the triple 
patterns have the same subject, '.' is substituted with ';' for a more compact 
syntax2: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { ?person foaf:name "Alice" ; 
                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name } 

                                                      
2 ... and whenever the triple patterns have the same subject and property, comma sign ',' is 
used to connect them - similarly to the Turtle syntax explained in Section 1.1.1. 
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Here we need to distinguish between the query results, which contain the 
binding only for the projected variable ?friend_name, and the solutions, 
which contain the bindings for all variables in the WHERE block. Given the 
dataset on Figure 1, the solutions would consist of: 

?person ?friend ?friend_name 
_:a _:b "Bob" 
_:a _:d "Daniel" 

In cases when variables are used only once to connect the triple patterns, 
the common practice with SPARQL is to use the unlabelled blank nodes [] 
as a substitute. When a variable (like ?friend) is used to connect a value of 
one triple pattern to a subject of another triple pattern, the property and value 
of the latter can be put inside these square brackets. With both of these 
reductions applied, the last query would we written as: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { [] foaf:name "Alice" ; 
            foaf:knows [ foaf:name ?friend_name ] } 

Here blank nodes are substituting some of the variables in the graph pattern: 
 

“Alice”
foaf:name

foaf:name
?friend_name

foaf:knows

 

1.3 Combining the Graph Patterns 
SPARQL is designed to produce deterministic results in the cases of 
incomplete, redundant, and even conflicting data, which might be published 
by the independent parties, with little or no common guidelines besides the 
use of the RDF data model per se.  In order to address these challenges, a 
SPARQL query may include optional or alternative graph patterns, existence 
and non-existence quantifiers, and explicitly match different graph patterns 
to the particular sources. 

1.3.1 Optional Graph Patterns 
Consider that the RDF graph in Figure 1 would feature additional 
foaf:mbox properties for some of the foaf:Person instances. The 
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following query will return the emails of Alice friends, if they are available, 
and return their names in any case: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name ?friend_email 
 WHERE { ?person foaf:name "Alice" ; 
                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name . 
         OPTIONAL { ?friend foaf:mbox ?friend_email } } 

The nested OPTIONAL graph pattern is thus a source of unbound values in 
both query solutions and the results of the query: 

?friend_name ?friend_email 
"Bob" mailto:bob@example.org 
"Daniel"  

Being largely similar to the relational algebra left outer join  operator 
applied to the sets of solutions, the OPTIONAL keyword in SPARQL 
introduces certain issues with declarativeness. In short, there are cases where 
moving around two OPTIONAL graph patterns may result in a non-equivalent 
query.  

1.3.2 Matching Alternatives  
Assume some of the emails in the graph are listed using the FOAF standard 
foaf:mbox property, while others use a domain-specific property 
<http://example.org/email>. There are two ways to address this 
inconsistency. The general Semantic Web approach would use an OWL 
equivalence statement owl:sameAs, so that all SPARQL queries, with OWL 
entailment enabled, would treat these two properties as equivalent in all 
RDF graphs.  

However, one might instead prefer to treat a set of properties as 
equivalent just for the purpose of a specific SPARQL query, without 
manipulating the datasets and affecting the results of other queries. This 
would be one of the use cases for the alternative graph patterns, combined 
with UNION, as in the query: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX ex: <http://example.org/> 
SELECT ?friend_name ?friend_email 
 WHERE { ?person foaf:name "Alice" ; 
                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name . 
         { ?friend foaf:mbox ?friend_email } 
         UNION 
         { ?friend ex:email ?friend_email } } 
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Arbitrary graph patterns can be used as alternatives. For the purpose of 
another example, consider that the foaf:knows relationship is not restricted 
to be symmetric in the dataset, so we would like to trace it in either 
direction. The following query returns the names of all people who know 
Alice and all people whom Alice knows: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { ?friend foaf:name ?friend_name . 
         ?alice foaf:name "Alice" . 
         { ?alice foaf:knows ?friend } 
         UNION 
         { ?friend foaf:knows ?alice } } 

This query will effectively express two alternative graph patterns: 

?alice “Alice”
foaf:name

?friend
foaf:name

?friend_name

foaf:knows

?friend

“Alice”

foaf:name

?alice
foaf:name

?friend_name

foaf:knows

 

However, if the foaf:knows relationship happens to be mutual in some 
case, the same bindings will be generated twice for ?friend and 
?friend_name. To avoid this, and return every person at most once, one 
would use DISTINCT option on the ?friend variable in the SELECT clause: 

SELECT DISTINCT ?friend ?friend_name 

Different branches of the same union might provide bindings for the 
different variables. For example, the following query might return a more 
informative result, while generating some unbound values as well: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name_Alice_knows ?name_knows_Alice 
 WHERE { ?alice foaf:name "Alice" . 
         { ?alice foaf:knows [ foaf:name ?friend_name] } 
         UNION 
         { [] foaf:knows ?alice ; 
              foaf:name ?friendOf_name } } 

1.3.3 Existence Quantifiers and Other Filters 
The presence of at least a single solution to a graph pattern, or the absence of 
such, can be turned into a Boolean value using the existence quantifiers. For 
example, the following query checks for the persons who have 
foaf:homepage property but no foaf:mbox property: 
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PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name_Alice_knows ?name_knows_Alice 
 WHERE { ?p rdf:type foaf:Person . 
         FILTER ( EXISTS { ?p foaf:homepage [] } && 
                  NOT EXISTS { ?p foaf:mbox [] } ) } 

The FILTER conditions in SPARQL queries may appear in a conjunction 
with graph patterns. They may contain any kind of logical expression, using 
the logical '&&' (conjunction), '||' (disjunction), and '!' (negation) operators. 
Besides the quantifiers used in these examples, a large variety of arithmetic 
and string expressions can be used as terms in the filter conditions. If a filter 
expression evaluates to anything else than a Boolean value, the Effective 
Boolean Value of the expression is used. The values equivalent to true are 
non-zero numbers, non-empty strings and typed RDF literals, all possible 
date/time values and URIs. 

1.3.4 Addressing Multiple Graphs 
The queries presented so far did not explicitly identify the dataset they 
address - in this case, they were accessing the default graph of the SPARQL 
endpoint they are sent to. In the Semantic Web context, a multitude of 
graphs is typically combined for the purpose of querying. An explicit set of 
graphs to be combined can thus be specified in the FROM clause of a 
SPARQL query. Another option is to treat these graphs separately, 
addressing the specific graph patterns to each of them. 

W3C Specifications suggest the following example (presented here with 
minor simplifications): 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?who ?g ?mbox 
  FROM NAMED <http://example.org/alice> 
  FROM NAMED <http://example.org/bob> 
 WHERE { ?who foaf:made ?g 
         GRAPH ?g { ?x foaf:mbox ?mbox } } 

This query retrieves the foaf:mbox information from either of the 
named source graphs, and returns it along with the source graph identifier 
and the publisher. Here, the graph pattern querying for the foaf:mbox 
property is matched against every available graph, which is listed in the 
default graph as a value in a foaf:made triple. 

1.4 Property Path Expressions 
A powerful feature introduced in the W3C SPARQL 1.1 Standard are 
regular path expressions as another kind of graph patterns, making it easy to 
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specify chains of properties, alternative and reversed properties. For 
example, the first two queries in Section 1.3.2 can be reformulated using 
patterns like 

?friend foaf:mbox|ex:email ?friend_email 

and 

?alice foaf:knows|^foaf:knows ?friend 

respectively, where the '|' operator denotes the alternatives and '^' specifies 
the reversed property. 

Still, the main power of the regular path expressions is the ability to query 
for graph nodes connected by chains of properties of arbitrary length but 
with certain repeating structure. For example, the following query would list 
the names of people who are listed as Alice's friend, friend-of-a-friend (that's 
what FOAF vocabulary name actually stands for), and so on: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { [] foaf:name "Alice" ; 
            foaf:knows+/foaf:name ?friend_name } 

Here the '+' operator denotes the transitive closure of the foaf:knows 
property, and '/' denotes the chaining of property paths. If the '*' operator 
were used instead of '+', the reflexive-transitive closure would include 
"Alice" among the results.  

The transitive and reflexive-transitive closures are implemented as graph 
traversal algorithms, which internally check for equivalence of the nodes, 
and terminate at the point where no new nodes can be reached.  

1.4.1 Precedence of Path Operators 
Path operators can be freely combined in a path expression. According to 
W3C SPARQL 1.1 Specifications the precedence order of the path 
operators3 is the following: 

 transitive '+', reflexive  '?', and reflexive-transitive closure '*' 
 reversal '^' 
 chaining '/' 
 alternative paths '|' 

                                                      
3 We do not include the negated property set operator in the current version of SciSPARQL, 
due to the problems with its standard definition, explored in [88]. Though not theoretically 
ambiguous, together with reversal it introduces certain counter-intuitive 'butterfly effect' in 
the set of query solutions. 
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Whenever a different precedence is desired, parentheses can be used to 
control associatively. For example, a graph pattern 

?x (ex:motherOf|ex:fatherOf)+/foaf:name "Alice" 

would bind ?x to all ancestors of a person named Alice. 

1.4.2 Algebraic Properties of Path Operators 
Even though the W3C Standard does not list the properties of path operators 
explicitly, they are trivial to deduce, and are invaluable if one would like to 
transform the regular path expressions within their class of equivalence, for 
the purpose of simplification or normalization. The SPARQL users, 
formulating queries with path expressions, might also benefit from the 
structured summary presented in this section.  

In the following triangular table (Table 1) we summarize the equivalent 
expressions that arise when one or two path operators are combined. Given 
A, B, and C are path fragments, the identities listed in the table cells always 
hold. 

Table 1. Algebraic properties of path operators 
 + * ? ^ / | 

+ A++ = A+ 
(A+)* = A*
(A*)+ = A*

(A?)+ = A* ^A+ = (^A)+ - - 

*  A** = A* 
(A?)* = A*
(A*)? = A*

^A* = (^A)* - - 

?   A?? = A? ^A? = (^A)* - - 
^    ^^A = A ^(A/B) = ^B/^A ^(A|B) = ^A|^B 

/     
A/(B/C) = 
= (A/B)/C 

(A|B)/C = A/C|B/C 
A/(B|C) = A/B|A/C 

|      
A|B = B|A 

A|(B|C) = (A|B)|C 

In mathematical terms, Table 1 lists the following properties: 
 idempotence of closure operators '+', '*', and '?', 
 subsumption of transitive '+' and reflexive '?' closures into the 

reflexive-transitive closure '*' - the latter can also be constructed by 
applying transitive closure '+' on top of the reflexive closure '?' (but 
not the other way around), 

 involution property of the reversal operator '^', 
 commutative property of the alternative operator '|', 
 self-distributiveness and mutual distributiveness of chaining '/' and 

alternative '|' operators, 
 distributiveness of the reversal operator '^' with respect to closures 

and  the alternative '|' operator, and 
 reversal of the chains of path fragments with the reversal operator '^'. 
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1.5 Aggregation and Grouping 
The SELECT part of a SPARQL query may contain a list of projected 
variables (as seen in all the queries presented so far), or named expressions. 
A variety of functions, including arithmetic and string manipulation, are 
available, and, in the case of SciSPARQL, easily extensible, as we show in 
Section 2.4. For example a query with the SELECT statement 

SELECT (round(?x) AS ?result) ... 

would return the rounded value for each ?x binding among the query 
solutions, i.e. the round() function will be applied independently every 
time the query is about to emit. 

There are, however, certain SPARQL functions which operate on bags 
(multisets) of bindings - the aggregate functions. Most of them, like SUM(), 
AVG() etc. operate only on numerical values, whereas COUNT() operates on 
all kinds of values. For example, the following query would return minimum 
and maximum age of persons listed in the graph: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT (MIN(?age) AS ?min_age) (MAX(?age) AS ?max_age) 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:age ?age } 

emitting a single result (or none if no persons or their age information is 
found). 

If one would need to compute e.g. the average age of each persons 
friends, this would require grouping the query solutions by person, and 
applying the aggregate AVG() function within each group. This is achieved 
with the GROUP BY clause: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name (AVG(?friend_age) AS ?avg_friend_age)  
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:name ?name ; 
            foaf:knows ?friend . 
         ?friend foaf:age ?friend_age } 
 GROUP BY ?p ?name 

Note that we need to group by the variable ?p, bound to foaf:Person 
instance nodes, not by the person name (which might not be unique).  
Listing ?name as an additional grouping variable might seem redundant, as 
?name is fully functionally dependent on ?p, i.e. we do not expect different 
?name values for the same person. Unfortunately, SPARQL requires that 
every variable projected out from the aggregate query (or used for post-
filtering or ordering) should be also listed in GROUP BY clause. In 
SciSPARQL we lift this restriction, implicitly adding such variables to the 
effective GROUP BY clause. 
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Additional post-filter conditions can make use of the aggregate values 
computed. For example, adding  

HAVING (?avg_friend_age <= 30 && COUNT(?friend) > 3) 

to the end of the last query would restrict the resulting groups of solutions by 
size and average age. Note that this adds another aggregate value to be 
computed for each group. 

1.6 Error Handling 
It is worth noting that in SPARQL every valid query is always evaluated 
without raising any exceptions. This is achieved by two separate 
mechanisms: 

I. The validity of the query can be determined at compile time - a process 
separate from actually executing the query on a given dataset. A SPARQL 
query processor emits a wide range of error conditions at different phases of 
validating the query. The lexical and syntactic errors, corresponding e.g. to 
an unmatched quotation mark or an unexpected keyword, indicate that the 
query cannot be reconstructed from a given textual representation. Next, a 
range of semantic checks is performed - a semantic error can be raised e.g. if 
aggregate function calls are nested. Finally, the query is transformed to an 
execution plan, making sure that every variable gets a finite multiset of 
potential bindings. If this is found impossible, the query will be reported as 
non-executable. 

II. A valid query may still produce errors, when applied to a certain 
dataset. Division by zero, or a non-numeric operand passed to an arithmetic 
operator (since SPARQL is dynamically typed) produce a special error 
value, which is passed further through the expressions. Query solutions 
containing an error value for a variable never produce a result. Hence, 
evaluating a FILTER expression to error is equivalent to evaluating it to 
false. A SELECT expression evaluating to error effectively discards the 
solution. This includes aggregate functions evaluating once per group.  

For example, if a group of solutions contains a non-numeric binding for a 
variable under SUM(), the aggregate function would return error, and the 
group will not be part of query result. In our system, returning error value 
from a function is in all ways equivalent to returning no values at all. Saying 
that a function does not return in a certain case should be understood as 
returning error value in the standard SPARQL terms. 
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1.7 Ordering and Segmentation 
By default, the result of a SPARQL query is a multiset of bindings for the 
query output variables. It is, however, possible to return these bindings in a 
certain order, by using the ORDER BY clause.  

The following query would list the persons in the dataset sorted by age (in 
descending order) and, in the case of coevals, by name (alphabetically): 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name ?age 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:name ?name 
            foaf:age ?age } 
 ORDER BY DESC(?age) ?name 

Once the order of the results is defined, it becomes possible to retrieve 
certain portions of results. For example, adding 

LIMIT 3 

to the end of the query would make it return the information about the three 
oldest people (thus probably saving considerably on communication), and 
adding instead 

OFFSET 500 LIMIT 100 

would be typical for a query retrieving the portions of results on demand. 

Since the SPARQL standard specifies that the comparison '<' and '>' 
operators are defined only on the values of the same type, the order of results 
where an ordering variable is bound to values of the different (incomparable) 
types is not defined, and hence the segmentation cannot be used in the 
reliable way. SciSPARQL addresses this problem by defining a certain order 
among the values of all possible types in RDF with Arrays, including URIs, 
blank nodes, all kinds of literals and arrays. 

1.8 Constructing New RDF Graphs 
As mentioned before, the result of a SELECT query in SPARQL is a list of 
mappings of its output variables to values (which might include unbound 
values). Sometimes, it is instead desirable to produce a set of triples, which 
can be regarded as a derived RDF graph. For this purpose, CONSTRUCT 
queries are available in the language4. 

                                                      
4 The W3C SPARQL standard also specifies ASK queries, wich are the shorthand of using 
EXISTS quantifier, and mentions DESCRIBE queries, not actually defined in the standard. 
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The following query would construct a derived graph, listing 
ex:mutualFriend properties for all pairs of persons connected with 
foaf:knows relationship both ways: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX ex: <http://example.org/> 
CONSTRUCT { ?x ex:mutualFriend ?y } 
 WHERE { ?x rdf:type foaf:Person ; 
            foaf:knows ?y ; 
         ?y rdf:type foaf:Person ; 
            foaf:knows ?x } 

The CONSTRUCT clause contains a graph construction pattern. For every 
solution of the WHERE block, the corresponding triples will be constructed 
and emitted. Note that since the graph pattern in the WHERE clause is 
symmetric there will be two solutions for each matching pair of persons. 

The solutions with unbound variables will not produce triples in those 
construction patterns where these variables are used.  

1.9 Updating the Datasets 
The separate W3C Standard Recommendation governs the SPARQL Update 
language.  

The Data Definition Language is limited to creating (with the CREATE 
statement) and dropping (with the DROP statement) the named RDF graphs, 
since, in contrast to the relational data model, there are no schemas to be 
defined separately from the data. 

The Data Manipulation Language is mainly represented by the 
DELETE/INSERT statement. For example, instead of deriving a new RDF 
graph (as in Section 1.8), one could insert the new triples into the same 
graph, by simply changing the CONSTUCT keyword to INSERT.  

Deleting triples is as simple - the following statement would delete all 
personal emails from the graph:  

PREFIX ex: <http://example.org/> 
DELETE { ?p foaf:mbox ?email } 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:mbox ?email ; 

For every solution of the WHERE block (i.e. for every combination of ?p 
and corresponding ?email values), this statement will delete all triples 
according to the deletion triple pattern. In principle, this would be possible 
to do with some of the pattern variables free, but SPARQL (and the current 
implementation of SciSPARQL) requires that all delete pattern variables 
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should be bound. It is part of the future work on SciSPARQL to lift this 
unnecessary restriction.  

The DELETE and INSERT clauses can be combined in a single statement, 
sharing the WHERE block (e.g. for replacing certain properties according to a 
pattern). Deletion and insertion patterns may include a named GRAPH 
specifier, similarly to the syntax shown in Section 1.3.4, or a named graph 
addressed by the whole statement can be specified using the WITH keyword. 
A different graph can be used in the WHERE block, introduced with the 
USING keyword instead. 

A different mechanism is used for evaluating simple INSERT DATA and 
DELETE DATA statements: they do not contain a WHERE block, hence their 
patterns are free from variables and are purely constant. Their purpose is the 
massive insertion or deletion of RDF triples in a streamed fashion. They are 
evaluated at parse time, and thus can be arbitrarily long. 
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2 Scientific SPARQL 

The main purpose of Scientific SPARQL is to enable data processing tasks 
common in science and engineering to be expressed as queries in extended 
SPARQL. These tasks are generally characterized by extensive 
computations, and also by large amounts of numeric data, typically ordered 
along a number of orthogonal axes. Such data can be represented as numeric 
multidimensional arrays, which become a class of RDF terms in our 
extended RDF with Arrays data model. 

Computations are used either for filtering or post-processing the retrieved 
data, and may typically be expressed in a functional way. Existing 
computational libraries (many of which became de-facto standards in 
scientific computing, and are often referred for reproducibility of results) can 
be interfaced and invoked from the query language as foreign functions. 
Cost estimates and alternative directions of evaluation can be additionally 
specified (see Section 2.4), in order to aid the construction of better 
execution plans. 

Though real-life scientific computing tasks find much more compact 
formulations in SciSPARQL than in high-level algorithmic languages like 
Matlab (mainly thanks to declarativeness and more natural metadata 
management), we expect complex tasks to be formulated as complex 
queries. Good query modularity becomes as important for scalability as good 
data design and annotation. In this respect, SciSPARQL allows expressing 
common query sub-tasks as functional views, i.e. SciSPARQL functions 
defined as parameterized queries.  

Such flexibility in defining functions and using them in queries is further 
strengthened by functional language abstractions such as lexical closures 
and second-order functions. When it comes to the array processing tasks, 
besides a library of the most common functions, SciSPARQL offers array 
constructors, mappers and condensers as second-order functions.  

This chapter summarizes the contributions presented in Scientific 
SPARQL as a language extension in terms of syntax and semantics. 
Implementation details are reserved for the next chapter, however, certain 
notes on potential scalability opportunities are given, in order to encourage 
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the formulation of expressive and straightforward SciSPARQL queries that 
our system (SSDM) is well-optimized for.  

2.1 Array Queries 
We define an array as a mapping function A from a finite domain to an 
infinite range, which is stored explicitly: 

RDA :  

The domain of arrays in SciSPARQL is always a Cartesian product of the 
sets of integers ranging from 1 to dimk: 

   nD dim...1...dim...1 1   
Here n is the number of dimensions in the array, kdim  is the array size in 
the dimension k and the ndim,...dim1  vector is called the array shape. 
We call arrays of the same shape aligned arrays. The range of an array can 
either be a set of Integer, Real or Complex numbers, or Boolean values. 

The RDF with Arrays data model, underlying SciSPARQL queries, 
incorporates arrays into RDF graphs as another kind of nodes, along with 
other literal types. Array values may only appear in the value position of 
RDF triples. However, due to compatibility concerns with pure RDF and 
SPARQL, the predicates rdf:first and rdf:rest commonly used with RDF 
collections are polymorphic in SciSPARQL and may be matched with arrays 
appearing on the subject position in queries. 

A typical RDF with Arrays dataset contains numeric multidimensional 
data - in form of arrays, and the associated metadata - in form of an RDF 
graph. Figure 2 shows a simple example, which will be further extended in 
the next chapter (where also a serialization in extended Turtle format is 
presented). It features an RDF with Arrays description of an experiment 
(given in a generic way, it might be a stochastic simulation of a partial 
differential equations system, for example) denoted as an instance of 
ex:OurExperiment, and consisting of a number of realizations, connected 
using the ex:inExperiment property. Both experiment and realization 
instances have literal-valued properties representing associated data and 
metadata at the respective levels of detail. The properties ex:initialState 
and ex:result are array valued, and represent the numeric part of RDF with 
arrays dataset. 
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Figure 2. An example RDF with Arrays dataset (fragment) 

We will refer to the queries aimed at retrieving arrays from RDF with 
Arrays datasets, and containing array-specific operations as array queries.  

A trivial (but important) case is retrieving an array based on the 
associated metadata. For example, one might be interested in the ex:result 
arrays together with the corresponding realization ids, based on the 
experiment properties and realization parameters: 

SELECT ?id, ?A 
 WHERE  
    { ?e a ex:OurExperiment 
         ex:simulationMethod ex:OurSimulationAlgorithm . 
      ?r ex:inExperiment ?e ; 
         ex:parameter_A 0.3 ; 
         ex:parameter_B ?b ; 
         ex:id ?id ; 
         ex:result ?A . 
      FILTER ( ?b > 0.8 ) } 

The rest of this section introduces the key features of array queries. In the 
examples we deliberately omit the PREFIX part of the queries, since 
SciSPARQL allows the prefix declarations to be specified once per session - 
with a separate statement: 

PREFIX ex: <http://udbl.uu.se/ex#> 

2.1.1 Array Dereference Syntax 
SciSPARQL allows array subscripts in square brackets, where subscripts for 
the respective dimensions are separated with commas. 

For each dimension either single subscripts or range selections can be 
specified. By default, range selections are specified with a colon as lo:hi, 
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and selections with a stride as lo:stride:hi, where both lo and hi address the 
elements that are included in the selection, and the elements are counted 
from 1. This design was chosen to make Matlab users feel at home5. 

Either or both lo and hi values can be omitted, with default for lo being 1 
and default for hi always being the array size in the respective dimension. 
Thus the expressions ?A[:] and ?A[:1:] are always equivalent to ?a. 

If valid single subscripts for all array dimensions are specified, the array 
is dereferenced to a single element. Otherwise, complete ranges are assumed 
for the remaining dimensions. SciSPARQL thus makes a difference between 
three kinds of array dereferences: 

 single element dereference, for example ?A[2,1] for a 2D array ?a, 
where single subscripts are provided for all dimensions. The result is 
always a number, or error if a subscript falls out of range. 

 projection dereference, for example ?A[:,1] or ?A[2] or 
?A[1:3,2] or ?A[2,:5:] for a 2D array ?A, where single 
subscripts are provided for some dimensions, and range selections 
(explicit or implicit) for the others. The result is a smaller array with 
fewer number of dimensions (only those of the original dimensions 
for which ranges were provided), or error if a single subscript falls 
out of range or the range selection results in an empty selection. 

 range selection dereference, for example ?A[1:5,2:3], ?A[1:5], 
?A[:5,:2:], where range selections (explicit or implicit) are 
provided for all array dimensions. The result is a smaller array with 
the same number of dimensions as the original one, or error if the 
range selection results in an empty selection. 

The latter two are also collectively called array slicing operations. Each 
array slicing is resulting in an array subset Figure 3 shows the elements 
selected from a 2D array using projection on the first (rows) dimension, and 
range  selection on the second (columns) dimension.  

                                                      
5 However, with the _sq_python_ranges_ flag a user may opt for a different dialect of 
SciSCPARQL, which supports Python notation for ranges. In this case, elements are counted 
from 0, hi element is never part of the selection, and optional strides are specified as 
lo:hi:stride. No other differences are introduced. This switch only takes effect at the stage 
when a SciSPARQL query, update, or function definition is passed to the interpreter. The 
definitions of SciSPARQL functions and parameterized updates are stored internally in a way 
that is invariant to these syntactic differences, so it is safe to switch back and forth between 
the two dialects in a session. In the rest of this work, the default (Matlab) notation is used. 
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Figure 3. A projection and range selection ?A[4,3:2:7], applied to a 2D array 

If a range selection effectively specifies a single element, it is still treated 
as a range selection with respect to the dimensionality reduction. Thus, 
(unlike Matlab) SciSPARQL makes a difference between arrays that have 
different number of "single-element" trailing dimensions, and between 
singleton arrays and numbers, so that ?A[2,3:3] is not equal to ?A[2,3]. 
For a 2D array ?A where these subscripts are valid, the former expression 
would return a 1D-projection with a single element in it, whereas the latter 
expression would dereference directly to that element. 

Since SciSPARQL is designed to handle very large arrays, any 
dereference operation that returns a derived array does not allocate any 
memory to store the new array's elements - internally, it just allocates a new 
descriptor object pointing to the same storage space. Thus, creating sets of 
projections and slices of arrays is very cheap, and is encouraged as a simple 
way to formulate many data-reduction operations. This principle extends to 
arrays stored externally (and retrieved lazily). 

2.1.2 Variables Bound to Array Subscripts 
One important feature of SciSPARQL as a declarative query language is the 
possibility to automatically bind a query variable to its valid range of values. 
Just as a triple pattern  

?x foaf:name "Alice" . 

binds variable ?x to every node that has a property foaf:name with value 
"Alice", an array dereference expression 

?A[?i] 

with the otherwise unbound variable ?i becomes an array access pattern: 
the variable ?i will assume all valid subscript values, that is, integers from 1 
and up to the size of array ?A in its first dimension.  

Unless otherwise restricted, such binding will form a Cartesian product 
with bindings for other variables in the query solution. So, for example, 

SELECT ?i, ?j (?A[?i,?j] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A } 
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will return every element of the 2D array ?A (or respective projections if ?A 
is array of grater dimensionality, or nothing otherwise), together with 
subscript values. Similarly, 

SELECT ?i, ?j (?A[?i,?j] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A . 
         FILTER ( ?i >= ?j ) } 

will return bottom-left triangle of ?A, and  

SELECT ?i (?A[?i,?i] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A } 

will return the diagonal elements.  

2.1.3 Built-in Array Functions 
A number of basic functions are defined in SciSPARQL in order to access 
the array shape and element type, construct arrays and perform operations 
not covered by the array dereference syntax: 

 adims(?a) - return the shape of an array as a 1D integer array 
containing sizes of a in each dimension. To obtain the number of 
dimensions, use adims(adims(?a))[1]. 

 elttype(?a) - return element type of array, with 0 for Integer, 1 for 
Double, 2 for Complex. 

 A(?e1, ?e2, ?e3, ...) - construct a 1D array of the given numeric 
elements. 

 find(?a, ?e) - return the indexes of elemets in ?a equal to ?e, as 
1D integer arrays. 

 permute(?a, ?d1, ?d2, ...) - change the shape of array by 
rearranging its dimensions (generalized transposition). The integer 
values ?d1, ?d2, ... denote the new order for the array dimensions. 
The effect the is same as with Matlab permute() function6. 

 transpose(?a) - simple 2D matrix transposition, equivalent to 
permute(?a, 2, 1). 

Rearranging array dimensions, similarly to an array slicing operation, 
involves no copying of array elements, and thus produces a derived array. 

2.1.4 Array Arithmetic 
The standard binary operators operating on numbers in SPARQL are 
extended to operate element-wise on arrays in SciSPARQL. This includes 
addition '+', subtraction '-', multiplication '*', and division '/' operators. For 

                                                      
6 http://mathworks.com/help/matlab/ref/permute.html 
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example, an expression ?a + ?b will be evaluated in four cases, as shown 
in the Table 2. 

Table 2. Polymorphism of an arithmetic operator in SciSPARQL (example) 

?a binding ?b binding value of ?a + ?b 
number number number 
number array array, where ?a is added to each element of ?b 
array number array, where ?b is added to each element of ?a 
array array array of sums of corresponding ?a and ?b 

elements, if ?a and ?b have the same shape 

However, in order to let the SciSPARQL query optimizer distinguish 
between scalar and array-valued operations (the latter are expected to be 
sufficiently more expensive, both in terms of computation and memory), 
SciSPARQL users are encouraged to use the special array-oriented dot-
prefixed operators, for example '.+' in cases where array values are 
expected. 

The expression ?a .+ ?b is semantically equivalent to ?a + ?b as 
described by Table 2, e.g. it produces a number if both operands are 
numbers. However, it hints the query optimizer that an array value is 
expected here, so it will try to schedule this operation at the point where 
fewer intermediate results (i.e. candidate bindings for ?a and ?b) are 
anticipated. 

This is different for the comparison operators '<', '<=', '>', '>=', which, 
when applied to an array (or two arrays of the same shape) will produce a 
deterministic albeit not a meaningful result, used only for ordering. Equality 
of arrays, however, is well defined below in Section 2.1.6. In the same cases, 
dot-prefixed comparison operators will produce a new array of type 
Boolean, containing the results of element-wise comparison. 

Numeric aggregate functions, like SUM(), MIN(), MAX(), AVG(), etc. are 
also extended to handle bags of array values. They return only if all arrays in 
the bag have the same shape, and construct a new array value. No optimizer 
hints are available.  

Another possibility is that due to the modular structure of SciSPARQL 
queries, there might be two parameterized aggregate subqueries invoked as 
functions from a third query on the same level - then the optimization might 
benefit from knowing which aggregation involves arrays and which one 
does not. We leave these optimization opportunities, based on a more 
accurate cost estimate for the aggregate functions as a matter of the future 
work.  
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2.1.5 Intra-array Computations 
Arrays, apart from bags, form another conceptual layer of collections in 
SciSPARQL. While it is possible to combine all elements of a bag of 
numbers (or arrays) with the aggregate function SUM(), it should also be 
possible to apply an aggregate function to all (or certain) elements of a given 
array. There are actually three ways to do this in SciSPARQL: 

I. Shorthand functions as array_sum(), array_avg(), array_min(), 
and array_max() are available in SciSPARQL for the basic computation 
tasks, and should be preferred as the most efficient ones. They operate on all 
elements of a given array, and ignore the logical dimensionality. 

II. It is always possible to "open" an array into a bag of its elements, as 
shown in Section 2.1.2, and then apply a traditional aggregate function. This 
allows arbitrary conditions on the element places and values to be expressed 
in a query. For example, the following query would sum up only positive 
elements on even positions in the main diagonal of ?A: 

SELECT (SUM(?A[?i,?i]) AS ?sum_diag_even_positive) 
 WHERE { [] ex:id 1 ; ex:result ?A . 
         FILTER ( ?A[?i,?i] > 0 ) && mod(?i, 2) = 0 } 

Here, the free variable ?i binds to all valid values for the row and column 
subscripts of ?A, and then is checked for an even value. Only in those cases, 
array elements are considered eligible to be summed up. As the example 
shows, this way is highly general, but might clutter the FILTER expression 
(which is typically used for metadata conditions) and also forces bag-based 
aggregation where it could have been avoided. 

III. In order to alleviate for the said shortcomings, SciSPARQL borrows 
Array Algebra primitives used in Rasdaman, as a matter of ongoing 
integration. The second-order functions MAP(), CONDENSE(), and 
ARRAY()are supported in our system, making use of the powerful lexical 
closure mechanism, explained in Section 2.3. 

2.1.6 Array Equality 
The only cases where dot-prefixed operators differ from the original ones is 
the comparison of arrays with '=' and '!=', which results in a single Boolean 
value, and the comparison of array elements with '.=' and '.!=', which 
results in array of Boolean. While the second case is trivial, the equality of 
arrays needs a definition. 

Two arrays are equal iff all of the following conditions are satisfied: 
 they have the same number of dimensions,  
 they have the same size in each respective dimension, 
 their respective elements are numerically equal. 
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Note that the same element type is not a requirement - an integer array 
might be equal to an array of real numbers. However, whenever the floating-
point arithmetic is involved, it is always a good idea to round the array 
elements down to a certain precision before comparing, in order to avoid 
precision-induced artifacts. For this purpose the round() function is 
extended to handle arrays, taking the desired precision as a second argument. 

SciSPARQL does not trim the trailing dimensions of size 1 as e.g. Matlab 
does, which might lead to the loss of structural metadata, important in our 
setting. Hence e.g. a 1-dimensional array of size 3 can never be equal to a 2-
dimensional 3x1 array, even though they both might represent the same 
mathematical object - a column vector. Similarly, SciSPARQL does not treat 
simple numeric values as equivalent to singleton arrays: a number 5 is not 
equal to an array with a single element of 5. 

2.2 Parameterized Queries - Functional Views 
The good modularity of potentially complex SciSPARQL queries is 
achieved by isolating common parts as parameterized queries, also known 
as functional views. We use these two terms interchangeably, since by 
stressing different aspects of the same mechanism, together they convey the 
desired dualistic notion of the subject. 

There is DEFINE FUNCTION statement in SciSPARQL. As shown below 
in Section 2.4, its use extends far beyond the functional views and 
SciSPARQL per se; however, for the purpose of this section its use is quite 
simple. The following example defines a function resultById() retrieving 
the value of ex:result property of a realization of the ex:OurExperiment 
experiment class, given the realization id: 

DEFINE FUNCTION resultById(?id) AS  
SELECT ?A 
 WHERE { ?r ex:inExperiment [ a ex:OurExperiment ] ; 
            ex:id ?id ; 
            ex:result ?A } 

Naturally, a call to this function can be used as a part of an expression. 
This has the potential of formulating short queries without a proper WHERE 
clause at all. For example, the following query returns the third row of the 
ex:result matrix of a realization with id = 1: 

SELECT (resultById(1)[3] AS ?row3) 

A function definition is parsed and validated (but not optimized) at the 
moment it is submitted as a SciSPARQL statement. This implies, in 
particular, that the prefixes used in a function definition (unless supplied 
directly before the DEFINE FUNCTION clause) should be already defined for 
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a session. Similarly, any other functions called inside the definition should 
already be defined. This way SciSPARQL forbids mutual- and self-
recursion, and imposes an acyclic dependency graph among the function 
definitions it maintains.  

This principle does not extend to accessing the named RDF graphs. A 
graph specified in a FROM, FROM NAMED, or GRAPH clause inside a function 
definition does not need to be present among the available graphs at the time 
of function definition - thus the library of functional views can be loaded into 
a SciSPARQL session (using SOURCE directive) independently of loading or 
creating the named RDF graphs. 

Apart from query modularity benefits, with functional views it is possible 
to express some otherwise inexpressible computations in a single query. In 
particular, it is possible to nest aggregate operations - for example 
computing the sum of positive diagonal elements of ex:result for each 
array, and then finding the average value across all realizations in the given 
experiment instance: 

DEFINE FUNCTION sum_diag_positive(?r) AS  
SELECT (SUM(?A[?i,?i]) AS ?res) 
 WHERE  { ?r ex:result ?A . 
          FILTER ( ?A[?i, ?i] > 0 ) } 
 
SELECT (MAX(sum_diag_positive(?r)) AS ?max) 
 WHERE { ?r ex:inExperiment ex:experiment1 } 

In the next section (2.3), we show how functions similar to 
sum_diag_positive(), returning numeric values, can be used with 
second-order functions like ARGMIN() and ARGMAX(). 

Another important benefit of functional views is the ability to express  
top-k selections for a non-fixed parameter k. For example, the following 
function will find the given number of highest values on the ex:result 
diagonal: 

DEFINE FUNCTION k_top_diag(?r ?k) AS 
SELECT (?A[?i,?i] AS ?e) 
 WHERE { ?r ex:result ?A } 
 ORDER BY DESC(?e) LIMIT ?k 

While the SPARQL Standard requires that LIMIT and OFFSET values 
should be constants, in SciSPARQL they can be expressions not depending 
on the variables inside the query. A parameter in a parameterized query thus 
may be used.  
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2.3 Lexical Closures and Second-Order Functions 
SciSPARQL offers second-order functions that allow expressing common 
computational tasks easily. For example, optimizing a function over a finite 
domain is the in the general case done by evaluating it for every valid set of 
arguments and comparing the results. In order to express this declaratively, 
SciSPARQL features the ARGMIN() and ARGMAX() second-order functions. 
For example, finding a realization having the greatest sum of positive 
diagonal elements in ex:result matrix is expressed as 

SELECT (ARGMAX(sum_diag_positive(*)) AS ?r_max) 

or, since SciSPARQL allows function calls as separate statements, simply: 

ARGMAX(sum_diag_positive(*)) 

The free parameter denoted by the asterisk will sweep across all nodes in the 
RDF graph, matched as subjects by the triple patterin inside the function  
sum_diag_positive(), as it is defined in the previous section. 

Another feature inspired by Array Algebra are the generic array 
constructor, mapper and condenser, represented by the ARRAY(), MAP(), 
and CONDENSE() second-order functions in SciSPARQL, explained below 
in Section 2.3.1. 

All of these take a functional argument - a lexical closure, consisting of a 
function name and values provided for some (or none) of its parameters, 
with other parameters marked by asterisk '*' placeholder. Inside a second-
order function, a lexical closure is evaluated exactly like a normal function 
with a number of arguments equal to the number of asterisks. For example, 
ARGMIN() and ARGMAX() require unary functions - the lexical closures will 
always contain one asterisk. The rest of the arguments are bound to values 
provided at the point of closure formation.  

For example, Minkowski distance is a function of three arguments - two 
vectors and one scalar exponent: 
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In SciSPARQL, this example would look like 

DEFINE FUNCTION Dminkowski(?X ?Y ?p) AS 
SELECT (power(SUM(power(abs(?X[?i] - ?Y[?i]), ?p)), 
              1/?p) AS ?distance) 

In many practical cases, however, the exponent p is provided upfront, 
whereas the two vectors are the "real" arguments that the function typically 

 25 



maps over. For example, Euclidean distance can be defined as a function of 
two arguments 

   2,,, yxdyxd Minkowski

Def

Euclid    

Lexical closures eliminate the need of defining and naming single-use 
functions. So, instead of separately defining, and then providing dEuclid as a 
functional argument, one could directly use Dminkowski(*, *, 2) as an 
equivalent binary function.  

2.3.1 Array Algebra Second-order Functions 
An array constructor returns an array of given type and shape. It expects a 
unary function (or closure) that takes a vector of logical subscripts as a 
single argument, and computes the array elements: 

ARRAY(type, shape, mapper) 

An array mapper maps over a collection of  aligned arrays. It 
returns a new array of given type aligned to that collection. It expects an n-
ary function (or closure) that is mapped over the respective elements of the 
given arrays: 

1n

MAP(type, mapper, v1, ..., vn) 

An array condenser computes an intra-array aggregate value applying a 
given aggregate operation to all array elements. No particular order is 
guaranteed; hence the aggregate operation (represented by a binary function 
or closure) is required to be commutative and have identical domain and 
range.  

CONDENSE(op, v) 

An additional unary filter function, if provided, will be applied first, in 
order to select elements based on their value: 

CONDENSE(op, v, filter) 

Intra-array aggregate functions like array_sum(), array_avg(), etc. 
are equivalent to particular condenser calls.  

2.4 Foreign Functions 
As mentioned above, a typical scientific or engineering data processing task 
involves both data retrieval and extensive computations. While the querying 
capabilities of SciSPARQL address the data retrieval task in a more general 
and expressive way than generally seen in manually written programs, 
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calling various computational routines should stay similar to the way it is 
normally done in C, Python, or Matlab. At the same time, the query 
optimizer should retain the freedom to call the filtering and post-procesing 
tasks in the optimal order, based on the cost and cardinality estimates, as 
explained below. 

For this purpose, SciSPARQL offers a mechanism for extensibility with 
foreign functions. While being implemented in algorithmic languages 
(currently C/C++, Java, Lisp, Python, or Matlab), these functions are used 
directly in a query: the SELECT clause typically contains the post-processing 
expressions, and FILTER/HAVING clauses contain the expressions that filter 
the potential query solutions. In the same way as functional views, foreign 
functions can be used to form lexical closures and be passed to second-order 
functions, as explained in Section 2.3. 

The process of introducing a foreign function to SciSPARQL typically 
involves three steps: 
 providing a function implementation or a wrapper for a library 

function, with the signature (header) compatible to SciSPARQL, 
 linking the implementation to SSDM (mechanisms for different 

languages vary), and 
 defining the new SciSPARQL function using the DEFINE FUNCTION 

statement, optionally providing cost and cardinality estimates. 

For example, the following function implemented in Java would return 
real square roots (if any) of its real or integer argument: 

public class MyLib { 
  public void sqroot(CallContext cxt, Tuple tpl) throws AmosException 
  { 
    double x; 
    if (tpl.isDouble(0)) x = tpl.getDoubleElem(0); 
    else if (tpl.isInteger(0)) x = tpl.getIntElem(0);  
    else return; 
 
    if (x >= 0.0) { 
      double r = Math.sqrt(x); 
      tpl.setElem(1, r); 
      cx
      if (x > 0.0) { 

t.emit(tpl); 

        tpl.setElem(1, -r); 
        cxt.emit(tpl); 
      } 
    } 
  } 
} 

Such a Java implementation of a SciSPARQL foreign function is 
effectively static, and returns the results by calling cxt.emit(). Each call to a 
foreign function may thus yield zero or more results. The arguments and 
results are passed using a single Tuple instance, where the first 
tpl.getArity()-1 positions are filled with arguments, and the function has to 
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fill the last one with its result before emitting. In all these respects, C/C++ 
and Lisp interfaces are similar and offer the same degree of flexibility, while 
Python and Matlab interfaces offer a direct mapping of SciSPARQL 
function arguments to those of the implementing function. 

Since SciSPARQL is a dynamically typed language, in all cases a runtime 
type check is necessary. By convention, as explained in Section 1.6, a 
runtime error is not an exception, but instead the absense of any emitted 
result. An invalid value passed to a filter or postprocessing function is 
equivalent, e.g., to an unmatched triple pattern, simply resulting in a 
discarded solution. Hence, AmosException is reserved only for so-called 
internal errors, and cannot be thrown because of the wrong input.  

Linking of such a Java implementation is achieved by including the 
bytecode for MyLib into Java's CLASSPATH when running SSDM under JVM. 
In case of Python, the source code needs to be placed in PYTHONPATH.  In case 
of C/C++, linking involves compiling a separate dynamic-link library, and 
dynamically loading it into SSDM process, by issuing 
LOAD_EXTENSION('mylib'), referring to mylib.dll in Windows path or 
libmylib.so in Linux library path. Lisp source files are loaded in a similar 
way using SOURCE_LISP(). Matlab foreign functions require no additional 
linking, since they are available as callbacks from the SSDM process 
embedded into Matlab. 

Finally, the SciSPARQL definition of sqroot() would look like:  

DEFINE FUNCTION sqroot(?x)  
  AS JAVA 'MyLib/sqroot' COST 4 FANOUT 1 

Here the optional COST and FANOUT parts specify the cost and cardinality 
estimates. Even very rough estimates would help the optimizer much better 
than the absence of any. By convention, the unit cost corresponds to a simple 
arithmetic operation like + or * over scalar operands. FANOUT specifies the 
average amount of results emitted per function call - in our case it averages 
to one (i.e. zero for negative arguments and two for positive). 

Whenever possible, the users are encouraged to provide foreign functions 
as multidirectional so that the optimizer might choose to compute the 
function arguments if the result happens to be bound eariler. Such 
definitions are made by specifying the alternative binding patterns as strings 
composed of 'b' for bound and 'f' for free (or, respectively, '-' and '+'), and 
providing an implementation for each. For example, if a similar 
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implementation square() is defined7 in MyLib Java class, the multidirectional 
definition would be: 

DEFINE FUNCTION sqroot(?x) AS 
  FOR 'bf' JAVA 'MyLib/sqroot' COST 4 FANOUT 1 
  FOR 'fb' JAVA 'MyLib/square' COST 1 FANOUT 1 

In this example we have shown a function dealing with simple types, like 
Double and Integer, wich are mapped to Java's (or other languages') native 
type system. Since the RDF with Arrays data model introduces RDF-specific 
types, like langage- and locale-annotated strings, typed literals, URIs, and 
most notably, Numeric Multidimensional Arrays; each language interface 
provides the additional classes for each of these. For example, a Java 
implementation would use UString, TypedRDF, URI, and NMA (array) wrapper 
classes defined in ssdm package. Each of them provides constructors and 
field accessors to facilitate the native data processing.  

The complete extensibility interface documentation for each language is a 
part of the SciSPARQL User Manual. 

2.5 Calling SciSPARQL from Algorithmic Languages 
SciSPARQL queries can easily be incorporated into traditional algorithmic 
programs - this appoach would be somewhat opposite to the one descibed in 
the previous section. However, both approaches are typically combined in 
sufficiently complex real-life applications. Declarative SciSPARQL queries 
may thus be embedded in traditional data processing routines, which might 
include data acquisition, logging, visualisation, user interactions, or 
feedback loops in a control system.  

The process of calling SciSPARQL queries (or SciSPARQL functions as 
parameterized queries - see Section 2.2) relies on the concepts of connection 
and scan (result set), and involves the following steps: 

 establishing a connection to SSDM server, 
 passing a query string (or a function name and actual arguments) to 

the server, and retrieving a scan, 
 iterating through the scan, effectively running the query execution 

plan just enough to retrieve yet another result, 
 closing the scan, 
 closing the connection. 

                                                      
7 The implementation of square() should be aware of the binding pattern it is called 

with, as it has to retrieve its de-facto argument from position 1 and write its result into 
position 0. For this reason, sqroot_fb() might be a better  name for such implementation. 
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An important scalability feature is the lazy evaulation of SciSPARQL 
queries. A query does not have to be executed in its entirety in order to 
obtain a scan. Instead, it is the scan object that calls back SSDM in order to 
advance the query execution on demand. After retrieving each result, the 
application program is free close the scan, thus terminating the query - a 
feature more powerful than LIMIT clause inside a query, as any application 
logic can be involved. However, providing the LIMIT clause is still a good 
practice when the number of results to retrieve is fixed - this provides more 
freedom to the optimizer. 

Usage of embedded SciSPARQL queries, in the context of Matlab 
integration, is demonstrated here. Java, C/C++, and Python programs may 
use the respective APIs, implementing the Connection and Scan classes.  


