

ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

121

Andrej Andrejev

Semantic Web Queries
over Scientific Data

Dissertation presented at Uppsala University to be publicly examined in Lecture hall 2446,
Polacksbacken, Uppsala, Wednesday, 23 March 2016 at 14:00 for the degree of Doctor of
Philosophy. The examination will be conducted in English. Faculty examiner: Professor
Gerhard Weikum (Max Planck Institute for Informatics).

Abstract
Andrejev, A. 2016. Semantic Web Queries over Scientific Data. Uppsala Dissertations from
the Faculty of Science and Technology 121. 214 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-554-9465-0.

Semantic Web and Linked Open Data provide a potential platform for interoperability of
scientific data, offering a flexible model for providing machine-readable and queryable
metadata. However, RDF and SPARQL gained limited adoption within the scientific
community, mainly due to the lack of support for managing massive numeric data, along
with certain other important features – such as extensibility with user-defined functions, query
modularity, and integration with existing environments and workflows.

We present the design, implementation and evaluation of Scientific SPARQL – a language for
querying data and metadata combined, represented using the RDF graph model extended with
numeric multidimensional arrays as node values – RDF with Arrays. The techniques used to
store RDF with Arrays in a scalable way and process Scientific SPARQL queries and updates
are implemented in our prototype software – Scientific SPARQL Database Manager, SSDM,
and its integrations with data storage systems and computational frameworks. This includes
scalable storage solutions for numeric multidimensional arrays and an efficient implementation
of array operations. The arrays can be physically stored in a variety of external storage systems,
including files, relational databases, and specialized array data stores, using our Array Storage
Extensibility Interface. Whenever possible SSDM accumulates array operations and accesses
array contents in a lazy fashion.

In scientific applications numeric computations are often used for filtering or post-processing
the retrieved data, which can be expressed in a functional way. Scientific SPARQL allows
expressing common query sub-tasks with functions defined as parameterized queries. This
becomes especially useful along with functional language abstractions such as lexical closures
and second-order functions, e.g. array mappers.

Existing computational libraries can be interfaced and invoked from Scientific SPARQL
queries as foreign functions. Cost estimates and alternative evaluation directions may be
specified, aiding the construction of better execution plans. Costly array processing, e.g.
filtering and aggregation, is thus preformed on the server, saving the amount of communication.
Furthermore, common supported operations are delegated to the array storage back-ends,
according to their capabilities. Both expressivity and performance of Scientific SPARQL are
evaluated on a real-world example, and further performance tests are run using our mini-
benchmark for array queries.

Keywords: RDF, SPARQL, Arrays, Query optimization, Second-order functions, Scientific
workflows

Andrej Andrejev, Department of Information Technology, Division of Computer Systems, Box
337, Uppsala University, SE-75105 Uppsala, Sweden.

© Andrej Andrejev 2016

ISSN 1104-2516
ISBN 978-91-554-9465-0
urn:nbn:se:uu:diva-274856 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-274856)

Contents

1 Introduction ...9

2 Background and Related Work..14
2.1 Semantic Web ..14
2.2 RDF Repositories ...15

2.2.1 SPARQL endpoints and Linked Data....................................16
2.2.2 SPARQL extensions ..16
2.2.3 Storing RDF graphs ...17

2.3 Exposing Non-RDF Data as RDF ..18
2.3.1 Relational data to RDF ..18
2.3.2 Objects to RDF ..19
2.3.3 XML to RDF ...20
2.3.4 Spreadsheets to RDF..21
2.3.5 Multidimensional data in RDF ..22

2.4 Array Models..24
2.5 Array Databases ...25
2.6 The Amos II System...27

3 SPARQL Language Overview ..29
3.1 Example Dataset...29

3.1.1 Turtle Syntax ...30
3.2 Graph Patterns ..31
3.3 Combining the Graph Patterns ...32

3.3.1 Optional Graph Patterns ..33
3.3.2 Matching Alternatives ...33
3.3.3 Existence Quantifiers and Other Filters.................................35
3.3.4 Addressing Multiple Graphs..35

3.4 Property Path Expressions..36
3.4.1 Precedence of Path Operators ..37
3.4.2 Algebraic Properties of Path Operators37

3.5 Aggregation and Grouping...38
3.6 Error Handling..39
3.7 Ordering and Segmentation..40
3.8 Constructing New RDF Graphs ...41
3.9 Updating the Datasets...42

4 Scientific SPARQL..43
4.1 Array Queries ...44

4.1.1 Array Dereference Syntax ...45
4.1.2 Variables Bound to Array Subscripts47
4.1.3 Built-in Array Functions..48
4.1.4 Array Arithmetic..48
4.1.5 Intra-array Computations...50
4.1.6 Array Equality ...50

4.2 Parameterized Queries - Functional Views51
4.3 Lexical Closures and Second-Order Functions53

4.3.1 Array Algebra Second-order Functions.................................54
4.4 Foreign Functions...55
4.5 Calling SciSPARQL from Algorithmic Languages57

5 Scientific SPARQL Database Manager...59
5.1 Architecture overview ..60

5.1.1 Example Dataset ..61
5.1.2 Example Query ..63

5.2 Numeric Multidimensional Arrays...69
5.2.1 Storage of Resident Arrays..69
5.2.2 Array Transformations...71

5.3 Data Loaders ..74
5.3.1 File Links...74
5.3.2 RDF Collections ..75
5.3.3 Data Cube Vocabulary...76

5.4 Scientific SPARQL Query Processor...79
5.4.1 SciSPARQL Query Structure ..80
5.4.2 Compositional vs. Operational SPARQL Semantics.............86
5.4.3 AmosQL Query Structure..95
5.4.4 Extensions to ObjectLog and Physical Algebra101
5.4.5 The Translation Algorithm ..105

5.5 Polymorphic Properties Problem..127
5.5.1 Directionality Problem...127
5.5.2 Normalization Problem..128

6 External Storage of RDF with Arrays ...130
6.1 Array Storage Extensibility Interface.......................................131

6.1.1 Placing APR Calls into the Translation133
6.1.2 APR Implementations..135
6.1.3 Problems and Solutions ...136

6.2 Relational Back-end ...138
6.2.1 Storage Schema ...139
6.2.2 The Problem of Retrieving Array Content142

6.2.3 Strategies for Formulating SQL Queries during APR144
6.2.4 Resolving Bags of Array Proxies ..145
6.2.5 Sequence Pattern Detector (SPD) Algorithm154

6.3 Comparing the Storage and Retrieval Strategies......................156
6.3.1 Query Generator ..158
6.3.2 Experiment 1: Comparing the Retrieval Strategies158
6.3.3 Experiment 2: Varying the Buffer Size171
6.3.4 Experiment 3: Varying the Chunk Size172
6.3.5 Summary of the Comparison Experiments175

6.4 Real-Life Query Performance Evaluations176
6.4.1 BISTAB: an Application from Computational Biology177
6.4.2 BISTAB Data Model as RDF with Arrays180
6.4.3 Experiment Setup and Data Loading182
6.4.4 BISTAB Application Queries..183
6.4.5 Query Performance..186

7 Integration of SciSPARQL into Matlab ..188
7.1 Usage Scenario...188
7.2 A Workflow Example ..190
7.3 Matlab Interface to SSDM ...192
7.4 Discussion ..194

8 Summary and Future Work ...195

Summary in Swedish ..198

Acknowledgement ..200

References...201

Glossary ..212

Abbreviations

AAPR aggregate array-proxy-resolve function
APR array-proxy-resolve function
ASEI Array Storage Extensibility Interface
API Application Programming Interface
DBMS Database Management System
DNF Disjunctive Normal Form
ER-diagram Entity-Relationship diagram
HDF Hierarchical Data Format
JDBC Java Database Connectivity
MCR Matlab Common Runtime
RDBMS Relational DBMS
RDB-to-RDF Relational Database to RDF
RDF Resource Description Framework
SciSPARQL Scientific SPARQL
SIMD Single Instruction, Multiple Data
SLR(1) parser Simple Left-to-right reversed Rightmost derivation parser

with single look-ahead
SPARQL SPARQL Protocol And RDF Query Language

(recursive acronym)
SSDM Scientific SPARQL Database Manager
TCP Transmission Control Protocol
TLA function Top-Level Aggregate function
UDF User-Defined Function
URI Universal Resource Identifier
W3C World Wide Web Consortium

 9

1 Introduction

The amount of scientific and engineering data has grown exponentially in
recent decades [163], and this growth includes a rapid increase in the amount
of data sources publicly available on the web [76, 165]. Complexity and
diversity (structural, terminological, etc.) of this data is also expected to rise
steadily in the coming decades, as novel data models emerge along with new
and unforeseen applications. The efforts directed towards data integration
and interoperability are becoming of vital importance [22, 67, 112].

One promising direction of these efforts is the search for a lingua franca -
a model general and flexible enough, so that the other, more specific data
models can be mapped into it in a lossless way; and yet being meaningful
and easy to understand and query. Semantic Web [23] and Linked Open
Data [29] are conceived as a potential solution [79]: all kinds of data and
metadata can be represented as a graph with nodes and (classes of) edges
identified by globally unique URIs. The original aim of this data model was
to describe the resources available on the web - hence the name: Resource
Description Framework (RDF) [129].

For querying RDF datasets the graph-based pattern-matching query
language SPARQL [155] was proposed and recommended by W3C. In its
current state, SPARQL 1.1 allows queries that retrieve data from an RDF
graph, filter the potential query solutions, and postprocess them before
emitting the results. SPARQL bridges the gap between the traditionally
separated data and metadata, the latter being the semantic, structural,
statistical, and other kinds of descriptions of the former. A potential to fully
combine data and metadata search and conditions in one query, thus
simplifying the process and eliminating extra round-trips to the remote data
sources, is contained within the Semantic Web paradigm but is not fully
realized.

The main problem is that although most kinds of other data models can be
mapped to RDF (as shown in Section 2.3), the efficiency and usefulness of
such mappings might become unsatisfactory. For example, numeric
multidimensional arrays, a data abstraction that is central in all natural
sciences and constitutes the main bulk of accumulated data, when mapped to
RDF have to be transformed into graphs, thus making even the simplest

10

array operations (e.g. element access) unfeasible to perform or even express
in a general case.

So far RDF and SPARQL gained limited adoption within the scientific
community, due to the lack of array support [102] and other important
features – such as extensibility with user-defined functions, query
modularity, integration with existing environments and workflows. Some
users turn towards the 'more mature' relational database technology (e.g.
[164], eventually extending it with missing array functionality [41, 49, 119,
125], while others find the idea of relational schema design too restrictive,
resorting to specialized file formats (e.g. NetCDF [111]) or hierarchical
databases (e.g. ROOT [36]). In either case, array data is separated from
metadata and the latter sometimes ends up encoded into eventually very
complex file names, so that data retrieval and processing become a
nontrivial task for a programmer. While many complications arise from the
need of manual data/metadata re-integration, another challenging task is the
adequate estimation of data quantities and distributions, in order to come up
with an optimal order of data retrieval operations.

Automating the task of programming the data retrieval and processing is
the essence of query optimization. Relational database management systems
(RDBMSs) were taking care of data statistics and evaluation cost models, in
order to produce optimal execution plans since 1970s [148, 39]. The modern
RDF stores [50, 65, 98, 112, 113, 168, 183] employ similar techniques based
on indexing, query rewriting and materialized views in order to address the
challenges of web-scale query processing [1, 66, 73, 88, 94, 126, 134, 144].

Addressing different data and metadata sources in a single query is
possible within a data integration framework where machine-readable
descriptions of the structure and semantics of the available data are present.
RDF is specifically designed for publishing such descriptions by creating
and referring to vocabularies of globally-scoped terms, and by defining the
logical relationships within and across such vocabularies, using the RDF
Schema [33] and OWL [19] formalisms.

The main research questions addressed in this Thesis are:

1. How can RDF and SPARQL be extended to be suitable for scientific
and engineering numeric data representation and analysis tasks, in
particular, those which combine data and metadata?

2. How can extended SPARQL query processing be implemented on the
basis of a database management system? In particular:

a. What extensions to the underlying query processing and algebra
operators are needed for efficient processing of SPARQL queries?

 11

b. How can existing state-of-art data persistence approaches
(RDBMSs, specialized file formats, array databases) be utilized for
scalable storage and querying of RDF data with arrays?

c. How can query functionality of extended SPARQL be integrated
into existing environments and workflows for scientific and
engineering data analysis?

d. How do we measure the impact of data storage decisions and
retrieval strategies on the overall query performance?

In few words, the aim of this work is providing a viable solution (both
conceptual and technical) opening the benefits of the Semantic Web
approach to scientific data management, and making scientific data available
and interoperable on the Semantic Web.

To answer Research Question 1, the RDF data model has been extended,
so that numeric multidimensional arrays of arbitrary shape and
dimensionality (including those exceeding the main memory limit) can be
attached as values in subject-property-value RDF triples. We call this model
RDF with Arrays, and it is backwards-compatible with the basic RDF
model: arrays that are recognized within the imported RDF graphs are
consolidated, i.e. their elements are co-located and the array shape is
determined. Internal array storage facilities are used in that case, and such
structured data becomes available to the queries using array-oriented
features. In order to query RDF with Arrays collections, the W3C SPARQL
language has been extended with array syntax and semantics, as well as
other useful features, including user defined functions (UDFs),
parameterized views, second-order functions, and lexical closures. We will
refer to a SciSPARQL query containing array operations as an array query.
Chapter 4 introduces the Scientific SPARQL (SciSPARQL) language and
provides usage examples.

To answer Research Questions 2 we developed the publicly available and
ready-to-use Scientific SPARQL Database Manager, SSDM [6]. It is an
extensible main-memory DBMS built to process the SciSPARQL queries.
SSDM loads and stores RDF with Arrays datasets and processes
SciSPARQL queries over the stored data. It utilizes object-relational query
optimization techniques, extensibility, and inter-process communication of
the underlying main-memory DBMS Amos II [136], and, being a major
system extension, introduces some novel features at all levels, including:

• physical representations of arrays and other RDF terms, together with
their serializations,

• new execution algebra operators, to reflect distinctive SPARQL
semantics,

• lazy data retrieval based on array proxy objects,

12

• a library of array-specific operations, and extensions to existing
(scalar) arithmetic, designed to support array computations.

Chapter 5 presents the SSDM architecture. Regardless of the architectural
choices, SSDM can be utilized as a stand-alone system, a client-server
system, or a cluster of processes based on peer-to-peer communication.

To answer Research Question 2a, Chapter 5 describes the process of
answering SciSPARQL queries including a complete definition of the
translation of SciSPARQL queries into the domain calculus based query
language of Amos, specialized query normalization and rewriting
techniques, cost-based optimization, and extensions to the execution algebra
with a library of array operators for executing SciSPARQL queries.

To answer Research Question 2b, Chapter 6 presents two approaches for
how SSDM can be extended to store and query metadata and massive
numeric array data by utilizing external data managers:

• utilizing back-end systems for the storage of array data loaded (e.g.
binary file formats or SQL-compliant RDBMSs), by deploying an
SSDM-managed relational storage schema or other external storage
management - the back-end scenario, or

• linking arrays that are already stored in external storage systems into
user-specified RDF graphs managed by SSDM – the mediator
scenario.

To answer Research Question 2c, Chapter 7 presents a client-server
integration of a SciSPARQL client into the scientific computing
environment Matlab, thus providing tight integration of SciSPARQL queries
into scientific workflows [7]. It is shown how handy SciSPARQL queries
can be for Matlab users, especially in a collaborative environment.
Furthermore, Semantic Web styled metadata can be used for annotation and,
eventually, search for the numeric computation results, while essentially
preserving the traditional workflows.

To answer Research Question 2d Section 6.3 presents a mini-benchmark
featuring some typical array access patterns, including the best and worst
cases for each storage choice. An extensive experimental evaluation of the
array query performance of SSDM was performed, both benchmark-based
and application-driven, [6]. The evaluation furthermore sets the context for
our ongoing integration [8] with the Rasdaman array database [16].

The following papers were published in the course of this work:
• Scientific SPARQL: Semantic Web Queries over Scientific Data [5]

introduces the query language, array data model, and in-memory
implementation of array operations.

• Scientific Analysis by Queries in Extended SPARQL over a Scalable
e-Science Data Store [6] puts SciSPARQL in the context of a real-

 13

world scientific computing application. In order to accommodate for
massive numeric data involved, storage extensibility mechanisms and
lazy array data retrieval are introduced.

• Scientific Data as RDF with Arrays: Tight Integration of
SciSPARQL Queries into Matlab [7] presents the integration of
SciSPARQL queries and updates, facilitating the Semantic Web way
of handling metadata about scientific experiments into Matlab and
typical computational workflows, demonstrating the benefits and the
low cost of adoption of our approach.

• Spatio-Temporal Gridded Data Processing on the Semantic Web [8]
positions Scientific SPARQL as a next unification step in handling
geographic and other kinds of gridded coverage data on the web. As
an example of a hybrid data store approach suggested, it features
SSDM as a SciSPARQL front-end, and the Rasdaman [16] system for
scalable storage of massive gridded datasets.

The author of this Thesis is the main contributing author in all research
papers listed above.

The outline of this Thesis is as follows: Chapter 2 gives an extensive
overview of the background and related work, including Semantic Web, data
integration approaches, other SPARQL extensions, and array databases.
Chapter 3 introduces the SPARQL query language in detail, encompassing
most of its features and can thus be regarded as an extended background,
crucial for understanding Scientific SPARQL features and usage, which are
described in Chapter 4. Chapter 5 describes the architecture and
SciSPARQL query processing in general, and Chapter 6 focuses on
providing the storage for array data, and presents performance evaluations.
The integration of SciSPARQL queries into the Matlab environment is
presented in Chapter 7. Finally, Chapter 8 summarizes the contributions of
this work, and points out directions for further development.

14

2 Background and Related Work

2.1 Semantic Web
The Semantic Web initiative, first proposed in 2001 [23], promotes utilizing
a graph data model (Resource Description Framework - RDF) for describing
all kinds of resources on the web. Graph-oriented query languages (e.g.
SPARQL 1.1 [155]) were designed for querying RDF graphs. The main
intention is to provide a structured, yet easily extensible way of expressing
the complex metadata in the evolving application contexts.

Universal Resource Identifiers (URI, or IRI if Unicode is used) are
employed to identify classes, instances, and relationships in the RDF data
model. The term 'universal' means that every publishing party is able to
define their own manageable identifiers within their own namespace, which
thus become globally unique. Generalizing the Universal Resource Locators
(URL), which may look similar, URIs may or may not be dereferenceable on
the web. Dereferenceable URIs point to RDF documents containing
additional information about the identified resource.

Higher-order specifications of object-oriented data models, including
class hierarchies - ontologies [31, 81, 117] are typically expressed with RDF
Schema [33] vocabulary, featuring standard terms for inheritance, domain,
and range specifications. Interactive visual tools (e.g. Protégé [67]) help in
the development and presentation of such models, with the resulting
metadata becoming an extension of the RDF graph it describes.

Further modeling, including disjointness, cardinality, and symmetry can
be expressed with Web Ontology Language - OWL [19]. Knowledge
inference and reasoning rules can be codified with RIF [92] / SWRL [78] on
top of such data and metadata, opening way to classical symbolic AI
approaches: making the human-oriented knowledge structured and available
to computers for further processing.

All this information, including resource description data, schemata, and
inference rules is normally merged into an RDF graph. The graph query
language (and communication protocol) SPARQL is designed to query RDF
graphs by formulating graph patterns and additional constraints as queries.

 15

The result of a query is a set of bindings of query variables that reference
values from the RDF graph in case of a SELECT query, or a new RDF
graph in case of a CONSTRUCT query. Chapter 3 below provides an
extensive introduction to SPARQL queries and updates.

Semantic Web has gained a lot of traction in recent years, as efficient
RDF Stores and SPARQL query processors became available [4, 34, 37, 55,
112, 113, 115, 158, 183]. According to [68], already by 2013 more than four
million Web domains contained RDF markup. Wide adoption of common
vocabularies like DublinCore [51], FOAF [32], schema.org brings hope for
automating data integration tasks (also reasoning, decision support, etc) at a
new level.

Within the Scientific SPARQL project, we follow the Semantic Web
approach for storing and querying metadata as a most promising solution,
already earning attention by different communities in science e.g. [10, 87,
140, 150, 170] and engineering e.g. [30, 103], as well as in more
interdisciplinary contexts e.g. [69]. We promote using the Semantic Web
descriptions of experiments, parameter cases, data provenance etc. in order
for the experimental data to become interoperable across different sources.

2.2 RDF Repositories
An RDF Repository is a DBMS capable of storing and querying RDF
graphs. Querying is typically done with a graph query language. SPARQL is
the most common option, though its predecessors (e.g. RQL [90], TRIPLE
[152], Versa [174]) and alternatives native to a particular RDF Repository,
e.g. SeRQL for Sesame [34] are supported by some systems. The diversity
of RDF query languages in pre-SPARQL era led to emergence of layered
mediation frameworks, e.g. Datalog-based EDUTELLA [110]. Certain graph
databases are not officially RDF repositories, but allow SPARQL mappings
along with a native graph language, e.g. Cypher [77] for Neo4J [173]. There
is also an ongoing project to integrate the essential SPARQL-like syntax and
semantics into a superset of SQL [157].

A number of file formats, or serializations are defined to facilitate easy
interchange and storage of RDF data outside the repositories. RDF/XML
[130], Turtle [21] / Ntriples [20], and Notation3 [24] are the most widely
used ones, along with embeddings of RDF information into the HTML
documents, e.g. with RDFa [131]. Throughout this work we will use Turtle
notation for our RDF examples.

16

2.2.1 SPARQL endpoints and Linked Data
Most RDF Repositories offer a SPARQL Endpoint - a web service answering
SPARQL queries using a SPARQL communication protocol to encode the
queries and results being transmitted. Thus, SPARQL became lingua franca
in the decentralized Linked Data [29] environment, where, basically,
everyone is free to publish their part of the global RDF graph, and RDF
terms represented by URIs are dereferenced to obtain additional information.
Figure 1 shows a fragment of the Linked Data cloud diagram, listing some
representative RDF datasets publicly available. One of the major
connectivity hubs is DBpedia [11], the RDF-encoded fact tables from
Wikipedia articles.

Figure 1. Linked Data Cloud Diagram (fragment)1

2.2.2 SPARQL extensions
Application-specific extensions of SPARQL also exist, e.g. GeoSPARQL
[15] for GIS applications was standardized by W3C. More general
extensions include SPARQL Update [156], previously known as SPARUL,
stream-processing C-SPARQL for continuous queries [14], A-SPARQL for
archival [160], and many others. Presented in this Thesis Scientific
SPARQL can be seen as another big extension, being a strict superset of
W3C SPARQL 1.1 and adding substantial amount of new functionality,
effectively extending the conceptual power of SPARQL beyond the
traditional metadata queries.

We will be referring to our RDF Repository implementing SciSPARQL
queries as Scientific SPARQL Database Manager, or SSDM for short.

1 original at en.wikipedia.org/wiki/File:LOD_Cloud_Diagram_as_of_September_2011.png

 17

Besides SciSPARQL, it is able to process the underlying systems native
functional query language AmosQL [136]. A number of APIs, including C,
Java, Python, and Lisp are available, making the system easy to extend or
embed. Chapter 7 presents such an embedding of SciSPARQL into Matlab.

2.2.3 Storing RDF graphs
Storage-wise, RDF Repositories use one or more of the following
approaches: in-memory, native RDF store / graph store, or built on top of
either relational or NoSQL DBMSs.

In-memory storage is perhaps the most viable solution for most RDF
applications up to the present day, since RDF is typically used to represent
metadata and/or formalized knowledge, and the sizes of RDF graphs are still
small enough to fit in main memory, especially when normalized properly.
Other main-memory databases, like Starcounter [157] and SAP HANA
[141] offer graph models. A memory snapshot can typically be dumped to
disk and loaded back to memory in order to survive the server restarts.
SSDM uses this approach, when not connected to a back-end storage for
RDF with Arays.

Native RDF stores provide persistence mechanisms to store larger
amounts of RDF triples on disk, including purposely-built indexing
infrastructures. There is a wide spectrum of approaches presented: some
systems (like RDF-3X [112]) store heavily-indexed normalized RDF triples,
some (like Neo4J [173], though not officially an RDF store, but providing
the RDF/SPARQL layer on top) store large graph structures with pointers.
Many closed-source projects, including NitrosBase [115], AllegroGraph [4],
and Stardog [158] also fall into this category.

RDBMS-based storage of RDF, for example Jena [84], Virtuoso [54],
Ultrawrap [154], Ontop [137] rely on an underlying Relational DBMS to
locate the data being queried, and to perform all the joins. They utilize the
indexing and execution plan optimization capabilities of the underlying
RDBMS. The relational schema used to store RDF is subject to further
classification [139]: (a) single table, (b) partitioning by value type (c)
partitioning by predicate, (d) partitioning by correlating predicates, or (e)
wrapping from any arbitrary relational schema (typically read-only). SSDM
supports options (b) and (e), as described in Chapter 6, with the RDB-to-
RDF view definitions based on the SWARD [124] framework.

A correct SPARQL-to-SQL translation plays a central role for RDBMS-
based RDF Repositories. There is an ongoing discussion [46, 121, 122, 40]
within the Semantic Web community about the potential semantic
mismatches between different approaches to translation in general. We
revisit this problem in Section 5.4.2, even though we translate SciSPARQL

18

queries to our functional AmosQL language, where they can be further
translated [182] to SQL queries or other API calls to different storage back-
end.

NoSQL DBMS-based storage, utilizing the emerging 'not-only-SQL'
databases (e.g. HBase [74] column store, Couchbase [43] document store),
utilize data model flexibility of the underlying DBMS, while usually having
to perform joins and other database operations externally. Cudré-Mauroux
et. al. [45] offer a comprehensive overview of the current approaches, along
with performance comparisons of RDF/SPARQL layers over these
(generally, distributed) database systems. The conclusion is that column-
store based RDF stores may outperform native RDF stores on simple
SPARQL queries, the functional minimalism of the underlying DBMS
results in lesser freedom for SPARQL query optimization, thus loosing the
race on more complex queries. Still, we expect that NoSQL database APIs
will become richer in the future, and are looking forward to interfacing such
NoSQL databases as storage back-ends for SSDM. Some preliminary
integration and performance tests are already presented in [101].

2.3 Exposing Non-RDF Data as RDF

2.3.1 Relational data to RDF
Creating RDF views reflecting relational data (and schemata) was a research
issue from the early days of RDF adoption [124, 159], since the relational
databases are by far the most prevalent source of structured data. Relaxing
this structure, and mapping application-scoped relational table semantics to
globally-unique RDF terms (typically defined by standard
vocabularies/ontologies) is obviously a step towards greater data integration
and query interoperability across disparate data sources.

Another reason why RDF models on top of relational storage have
emerged so early was the substantial overhead in processing arbitrary RDF
data in form of triples (before the native RDF Stores matured, and the
computational power grew sufficient) due to the following reasons:

• a typical SPARQL query, when viewed as referring to a single
subject-property-value table, contains a lot more join operations than
a similar query to an equivalent relational model;

• cardinality of such a table of triples is also substantially bigger than
the total cardinalities of tables in the corresponding relational schema,
making the physical access paths longer;

• statistical information about distributions of different properties and
values needs to be maintained in a novel way (e.g. RDF-3X indexes

 19

also act as histograms [112, 113]), making old relational-style query
optimization approaches blind and inefficient.

The Relational-to-RDF mapping approach offered a solution, since it is
practically always possible to translate a SPARQL query back to SQL
queries against the underlying relational databases. This way, the conceptual
flexibility of RDF and SPARQL was combined with efficiency of the
relational storage and query processing solutions, as long as the data
originated from the relational databases anyway. This solution, however, is
not simple [122], and there have been recent advances [182] on further
optimizing the SQL query generation when translating SPARQL.

Practically, there have been a number of mappings defined. The current
W3C standard recommendations include Direct Mapping of Relational Data
to RDF [9], which automatically generates URIs to define tables (as node
classes) and rows (as instances), but does not allow specifying custom URIs
and does not map schema information. The first shortcoming is addressed by
RDB to RDF Mapping Language recommendation [127]. Schema mapping
is proposed in the Semantic Archival of Relational Data project [160, 161],
and constraint mapping, which is potentially helpful to native SPARQL
query optimization, is proposed in [97]

As a minimum, any Relational-to-RDF mapping is going to have the
following components, for a given relational schema:

• a mapping of table names to RDF classes
• a mapping of attributes to RDF properties
• a mapping of primary key values in each table to RDF node instances
• for tables with no primary keys defined, a mapping of their rows to

RDF blank nodes
• a mapping of foreign keys to RDF properties

Additional schema and constraints information can also be provided in the
mapping. The software solutions implementing Relational-to-RDF mappings
include D2RQ [47], SWARD [124], SARD [160], Virtuoso [55], Ultrawrap
[149], Ontop [137] and others. SSDM is built on the same platform as
SWARD / SARD, and thus can access mediated relational databases.
However, this benefit concerns basic RDF models, and thus is orthogonal to
the extentions introduced by SciSPARQL.

2.3.2 Objects to RDF
As a graph data model RDF supports object-oriented data modeling:
relationships like class/instance, inheritance, declared properties, domain
and range specifications, are available within RDFS and OWL frameworks.
When viewed in terms of object-oriented programming, the model is
multiple-inheritance, with static and dynamic properties, and extensible on-

20

the-fly - this allows stricter models to easily fit in. Additionally and
alternatively, RDF Literal values, being comprised of type URI and string-
serialized value, can also be seen as 'stringified' representations of arbitrary
objects whose class is known.

There are object-oriented DBMS around, designed to provide persistence
to objects exactly as they are defined in the programming languages,
including ObjectStore [95], and many others. Some DBMS provide object-
oriented APIs for the developers, along with other data models - e.g.
Starcounter [157] and SAP HANA Open ODS Views [141].

An Object-to-RDF mapping may also be provided for classes of objects in
a programming language, like C++ or Java. In fact, it is so straightforward
that with the RDFBeans framework [132] it takes just a simple annotation to
the classes and properties, for example

@RDFBean("http://xmlns.com/foaf/0.1/Person")
public class Person
{ ...

 @RDF("http://xmlns.com/foaf/0.1/name")
 public String getName()
 { ...
}}

Results in all instances of Person class to be accessible as RDF via the
provided RDF Store API.

Another approach is when an Object (or Object-Relational) RDBMS
exposes a SPARQL query interface for its objects, like Starcounter [157]
does, effectively making it an RDF Store at the same time. In this case,
details like RDF namespaces for classes and properties need to be provided
to the DBMS.

As SSDM is built on top of the Amos II mediator architecture [136], that
supports objects natively and implements interfaces to object databases,
including ROOT [89], it is relatively easy to expose these mediated object
models as RDF - one just needs to provide RDF namespaces for classes and
properties.

2.3.3 XML to RDF
Mapping semi-structured data (like XML documents) to RDF requires
certain conventions, but is nonetheless important, given that XML is a
widely adopted information interchange format across a wide spectrum of
disparate applications. XML Schema plays an important role in the process
of formulating the mapping rules. The overview [25] presents the state of art
in the field, and suggests the SPARQL2XQuery framework, further

 21

elaborated in [26, 27]. There is, however, no publicly available software
implementation of the mapping technique.

Another project, named XSPARQL [28, 176] extended by Ali et.al. [3]
simply combines the essential parts SPARQL and XQuery syntax in one
language, making it possible to natively query both RDF and XML. Both
works are centered around translating SPARQL to XQuery expressions,
including update functionality. Creation of metadata-rich, well-annotated
XML documents available for semantic querying is certainly an important
research direction for the Semantic Web adaptation, especially in business
and industrial application.

2.3.4 Spreadsheets to RDF

While the general 'spreadsheet' paradigm assumes a 2D space of
enumerated rows and columns (as traditionally seen in Lotus 1-2-3 and MS
Excel), where each cell is an interactive model-view-controller element, it
can also be treated as data alone, making no difference between the stored
and derived values. Some specialized data stores can be easily adapted to
this spreadsheet view, and some are built with this model in mind - for
example the Chelonia [114, 166] data store developed for e-Science
applications within the NorduGrid [116] project.

var
k_1 k_a k_d k_4 realization result

1 32.159 79.279 782750669.857 53.286 1

2 19.151 39.044 300035857.676 73.445 1

var
k_1 k_a k_d k_4 realization result

1 32.159 79.279 782750669.857 53.286 1

2 19.151 39.044 300035857.676 73.445 1

task id

Figure 2. An example dataset (BISTAB experiment (see Section 6.4.4) stored in
Chelonia, with cubes denoting numeric array data stored as values

Chelonia organizes the dataset orthogonally into enumerated tasks and
named variables, and stores instances of named variables, at most one per
task (which might be regarded a row in an MS Excel workbook). An
instance can hold a numeric value, a string, or a numeric array of arbitrary
size, independently of other instances. Figure 2 shows an example of dataset
stored in Chelonia. When expressed with an Entity-Relationship diagram
(Figure 3) it turns out to be quite simple: an experiment can be seen as a

22

group of tasks, while tasks and variables comprise the 2D space of a
(possibly sparse) spreadsheet.

Experiment Task
Type &
Value

Variable
1 N N N

Figure 3. Chelonia storage schema

Within the scope of the SSDM project we have experimented with
integrations of e-Science tools into the SciSPARQL environment. Reflecting
Chelonia data, including experiments, tasks, variables, types and values of
their instances with an RDF view proved to be conceptually straightforward,
as explained in [6]. In short, every instance was represented by a single RDF
triple, with subject derived from task number, and property derived from
variable name. Since both Chelonia and SciSPARQL support numeric arrays
as values, this array data was mapped without changes.

In general any spreadsheet data, for example MS Excel workbooks can be
(with certain manual guidance) mapped to RDF in a similar way, with e.g.
rows becoming subjects and columns becoming properties in RDF triples.
More complex mappings, with a certain degree of programmability, are
available in the RDF123 [71] and XLWrap [96] projects, This opens yet
another horizon to the generality of the Semantic Web approach in querying
disparate data in diverse models and formats. Additionally, spreadsheets are
often used to contain numeric arrays, thus providing an extra motivation for
using RDF with Arrays model, queriable with SciSPARQL.

2.3.5 Multidimensional data in RDF
There are several approaches to treating multidimensional data as RDF that
have been adopted by the Semantic Web community. The simplest one is
nested RDF collections. A more elaborate framework, designed for
representing statistical data (e.g. OLAP Data Cubes [66]) is called RDF Data
Cube [133].

2.3.5.1 Collections
Ordered collections of RDF terms are normally incorporated into an RDF
graph as linked lists using rdf:first and rdf:next as relationships and
rdf:nil as a terminating node - similarly to linked lists in e.g. Lisp. Such
ordered connections can be nested and used to represent, among other
things, multidimensional arrays of numbers.

 23

1_:a
rdf:first

rdf:rest

_:b
rdf:first

2

rdf:rest

_:c
rdf:first

rdf:nil

3

rdf:rest

_:e
rdf:first

4

rdf:rest

_:f
rdf:first

rdf:nil

rdf:rest

_:d
rdf:first

rdf:rest

rdf:nil

:s
:p

1_:a
rdf:first

rdf:rest

_:b
rdf:first

2

rdf:rest

_:c
rdf:first

rdf:nil

3

rdf:rest

_:e
rdf:first

4

rdf:rest

_:f
rdf:first

rdf:nil

rdf:rest

_:d
rdf:first

rdf:rest

rdf:nil

:s
:p

Figure 4. A graph with RDF collection representing a 2x2 matrix

Since any array should be integrated into the RDF graph (otherwise there
is no way to navigate to it), it will be stored as a value of at least one other
RDF triple (:s :p _:a in our example). Some RDF serialization formats
provide a condensed syntax for expressing RDF collections. For example,
the dataset from Figure 4 can be expressed by a single Turtle statement:

:s :p ((1 2) (3 4)) .

This, however, does not decrease the complexity of the RDF graph - the
same 13 triples would need to be generated and made available to SPARQL
queries. In order to navigate to an array element, a SPARQL query needs to
use chains of rdf:first and rdf:next properties. A query addressing element
[2,1] in the above example (value 3), can be expressed in SPARQL as

SELECT ?element21
 WHERE { :s :p ?array .
 ?array rdf:rest ?x .
 ?x rdf:first ?slice2 .
 ?slice2 rdf:first ?element21 }

In general, a query addressing an element [x,y] in a 2D array will contain
a property path of (x+y) triple patterns, and (x+y-1) additional variables.

Apart from inefficiency arising from this 'too general' graph-based storage
and processing of arrays, this representation also fails to give important
guarantees about the data structure. For example, different leaf elements in
the collections might be of different types, including numeric, string, and
user-typed literals, URIs and blank nodes. The nested array slices might not
match in their shape, and referring to array slices by the intermediate blank
nodes (like _:b or _:e) between the queries is not officially allowed, since
such blank nodes might change whenever two RDF datasets are combined.

24

As SciSPARQL extends the RDF data model with arrays, the graph
representation of nested RDF collections becomes much more compact.
While importing RDF into SSDM, such collections are recognized and
stored internally as numeric arrays, as described in Section 5.3.2

2.3.5.2 RDF Data Cube Vocabulary
RDF Data Cube [133] was developed as a Semantic Web adaptation of
SDMX (Statistical Data and Metadata eXchange) [147], the ISO standard for
exchanging and sharing statistical data and metadata among organizations.
RDF Data Cube builds upon a set of other vocabularies, including SKOS
[154] for statistical concepts, VoiD [175] for data access specifications, and
Dublin Core [51] for publication-related information.

SSDM interprets the RDF Data Cube semantics, consolidating the
numeric multidimensional array data and thus drastically reducing the graph
size of a Data Cube dataset, while preserving all information therein, as
described in Section 5.3.3. Another important benefit is speeding up pattern-
matching queries, as they have to deal with much smaller RDF graph.

2.4 Array Models
Since the emergence of APL [82], we have seen a wide spectrum of array
data models, along with the algebras of array operators. Baumann & Holsten
[18] give a comprehensive theoretical comparison of four representative
models: including AQL [99], AML [104], Array Algebra [17], and RAM
[12, 13, 42].

The array model used in SciSPARQL is similar Array Algebra used in
Rasdaman [16], though it is a bit more narrow by design. In Rasdaman each
array dimension is defined with lok and hik integer bounds, and the range is
defined as a record of named and typed fields. SciSPARQL presents a
simple particular case of Rasdaman arrays, however, the numeric Rasdaman
arrays can be mapped losslessly to the SciSPARQL array model by
providing an additional vector of lok values. Arrays of records of numeric
types can be represented by collections of aligned arrays in SciSPARQL.

As for the more general array data models, i.e. ones with non-integer
dimensions, or with non-numeric ranges, those can be modeled by creating
dictionaries (one-dimensional vectors of arbitrary values) for each
dimension/range. This is exactly the approach used to represent Data Cube
datasets with numeric multidimensional arrays in SSSDM, as described in
Section 5.3.3.

 25

Regarding the array operators, recent developments of SciSPARQL [8]
introduce the second-order functions, central to Array Algebra [17], directly
as SciSPARQL language primitives.

2.5 Array Databases
Historically, there have been three kinds of approaches to handle arrays in
the database context.

(1) Databases, normalizing arrays in terms of their main data model,
representing each array element as one or several records. SciQL [91], along
with its predecessor RAM [12, 13, 42] treat each array as a relational table,
where columns are divided into dimension and non-dimension attributes,
and SQL is extended to provide array operations in addition to the native
relational operations, e.g. selection and join over arrays. Similar
normalization technique is used under-the-hood in certain UDF-based array
integrations into the relational DBMSs, including [119] and [41]. Data Cube
Vocabulary [133] suggests a way to represent multidimensional statistical
data in terms of an RDF graph, which can be handled by any RDF store.

While allowing to keep the original set of semantic primitives in queries
and updates, and making all existing DBMS features (query optimizer,
access paths, consistency control, etc.) work for arrays as well, this approach
has important downsides, both in storage and access overheads, and
sometimes in flexibility: every array in SciQL needs to have a name (as a
relational table), and a numbered set of arrays can only be modeled as an
extra dimension. Otherwise, insertion of an array instance effectively
involves schema modification, as noted by Misev & Baumann [107].
Furthermore, iteration across a set of arrays becomes obviously problematic.

(2) Databases, incorporating arrays as a value type. This includes
PostgreSQL [125], recent development of ASQL [108] on top of Rasdaman
[16] system, and the extensions to MS SQL Server based on BLOBs and
UDFs [49]. In the context of relational databases, this is regarded as the
'array-as-attribute' approach following the classification in [107].

There are also semi-declarative high-level dataflow programming
languages centered around array processing, e.g. DSL [118], and Array-QL
[64], both finding their origins in Single Assignment C [143] - a functional
programming language supporting array operations. A similar functional
approach was implemented earlier in Amos II system, specifying matrix
expressions at a high level, while the implementations are automatically
matched to the matrix subclasses [120].

26

SciSPARQL follows the 'array-as-attribute' paradigm beyond the
relational world, bringing numeric multidimensional arrays as values into
the RDF data model. It integrates the Semantic Web [23] flexibility in
metadata management (including ontologies, knowledge inference, adding
new properties 'on-the-fly', and querying based on these 'optional' properties)
with efficient array storage and processing, so that array data and metadata
search can be combined in the same query.

(3) Dedicated array-only databases, offering only specialized array
query languages, (e.g. SciDB [35, 44] and the core Rasdaman system [16]).
A number of earlier developments, including AQL [99], AML [104], RIOT
[179, 180], and ArrayStore [154] also fall into this category. This would also
include lightweight queryable database layers on top of popular array file
formats, with SAGA [172] being the most recent example, inspired by
NoDB approach [2] that does not require a data loading step.

The main problem with this approach is inherited from the underlying
concept of array data formats: everything is arrays. For example, scientific
users miss an infrastructure for storing and querying the descriptions of
experiments, including parameters, terminology mappings, provenance
records and other kinds of metadata. At best, this information is stored in a
set of variables in the same files that contain large numeric arrays of
experimental data, and thus is prone to duplication and is hard to update.
Query (or dataflow programming) languages are designed as another
abstraction layer on top of array file APIs, and thus are array-centered. In
contrast, SciSPARQL is a superset of the standard W3C SPARQL 1.1 query
language and its array semantics does not limit the underlying graph-based
query semantics.

Storing the arrays in files has its benefits for performance and eliminating
the need for data ingestion, as shown by comparison of SAGA to SciDB [35,
44]. SciSPARQL incorporates this option, as presented in the context of its
tight integration into Matlab [7]. In that case, SSDM maintains a main-
memory RDF database, and the massive array data is stored in native .mat
files. Both data and metadata are queriable, array proxies refer to files but
otherwise work exactly as main-memory array descriptors described in
Section 5.2. Chunking and caching, however, is done entirely by the OS /
file system. Still, in the present technological context we believe that
utilizing state-of-the-art relational DBMS to store massive array data
promises better scalability, thanks to cluster and cloud deployment of these
solutions, and mature partitioning and query parallelization techniques.

In summary, SciSPARQL extends RDF with arrays as values, allows
users to query and update the arrays together with RDF metadata (as shown
on a real-world application in [6]), and stores the arrays either in specialized
file formats, similarly to SAGA [172], or in BLOBs stored by RDBMS,

 27

similarly to [49], but not relying on DBMS-side UDFs. SSDM is
implemented based Amos II DBMS [136], making use of its flexible
extensibility mechanisms.

One important difference from e.g. Rasdaman [16] is that we use a
simpler partitioning approach for arrays. Instead of specifying dimension-
aligned 'tiles', whose shape and overlap should be tuned for particular array
processing tasks [60, 105], we split the arrays into one-dimensional chunks,
so that the chunk size is the only parameter and its auto-tuning heuristics are
simple. Instead of designing tiles to increase the chances of array access
patterns becoming predictably regular, we instead discover that regularity at
query runtime.

As SAGA system evaluation [172] has shown, even in the absence of
SQL-based back-end integration, the sequential access to chunks provides a
substantial performance boost over random access.

2.6 The Amos II System
Amos II [136] is an functional main-memory DBMS, employing its own
functional and declarative domain calculus query language, AmosQL.
Stored functions in AmosQL correspond to tables in the relational data
model, and derived functions serve as parameterized views, effectively
making the query structure modular. The system is easily extensible with
foreign functions, implemented in algorithmic programming languages
(currently supported C, Java, Python, and Lisp), and such foreign functions
can be invertible and specify a cost and cardinality estimates for the
optimizer.

Furthermore, AmosQL has aggregate functions, nested subqueries,
disjunctive queries, quantifiers and second-order functions, and is
relationally complete. The queries operate on atomic values, vectors, tuples,
records, and bags (i.e. multisets), implementing the DAPLEX [151]
semantics, which governs the evaluation of bag-valued functions. Inner (and
other kinds of) joins, Cartesian products, and compositions of bag-valued
functions are defined.

Internally, Amos II uses an extension of Datalog [169], called ObjectLog
[100], to represent the structure of a query as a logical expression of stored
and foreign predicates. Predicate flattening, normalization, and rewrite rules
are applied. The ObjectLog representation of a query is translated into object
algebra [86] by the cost-based optimizer. The cost-based optimizer reorders
the predicates in each conjunction, minimizing the total cost of execution,
according to the cost model provided. This process is shown by example in
5.1.2, where a SciSPARQL query is translated to AmosQL in the first step.

28

There are many features in Amos II making it an advanced object-
oriented DMBS and a research vehicle, including late binding [57], active
rules [145], distributed data stream processing [178, 177], extensible
indexing [167], complex query optimization [59], and more. One
characteristic trait relevant to SciSPARQL usage is the mediator architecture
[136] of Amos II.

Federated queries are split into parts which can be delegated to the
underlying data sources, taken account for their generic capabilities like
joins, arithmetic operations, aggregates etc. The process is quite flexible, and
any remaining predicates can always be executed by the mediator. This
includes the process of query translation, and has allowed addressing e.g.
both complete-functionality SQL [72], and limited-functionality SQL,
offered by Google BigTable [181]. Also, the mediator architecture has
enabled Amos II to wrap High Energy Physics datasets in the hierarchical
ROOT [36] database format, and successfully optimize scientific queries
searching for certain kinds of collision events [59] - the task which was
traditionally solved by making ad-hoc algorithmic implementation of each
query.

The last example has demonstrated how beneficial it is to use declarative
queries to specify the database search criteria in a form of mathematical
expressions: equations and inequalities. The DBMS is generally well-
equipped to come up with a fairly optimal execution plan, making use of the
available cost model and statistics. With SciSPARQL we make a step
further, offering a superset of the standard and well-accepted query language
SPARQL, already well-suited for data integration, and designed to operate
in the context of Linked Open Data [29] - an internet-scale federation of
RDF data sources. Another step further w.r.t. both AmosQL and SPARQL is
the array functionality, addressing the needs of scientific and engineering
data processing.

As a matter of related work, Datalog-based predicate calculus has been
widely used for decades, and still maintains a good reputation. As pointed by
J.Hellerstein [75], the Datalog extensions have the potential and elegance in
addressing such challenging tasks as parallelization and asynchronous
communication, apart from being well-suited for expressing recursion (as we
show in 5.4.5.3) and implementing query decomposition. Besides, Datalog
has been the basis for AI approaches to knowledge inference in database -
so-called deductive databases [128] - a concept similar to OWL entailment
and RIF/SWRL reasoning in the Semantic Web.

 29

3 SPARQL Language Overview

Scientific SPARQL query language [5] is a superset of W3C SPARQL 1.1
standard [155], and is designed to query RDF with Arrays datasets. The
semantics of SciSPARQL is thus focused both on graph pattern matching,
defined by the SPARQL standard, and on array processing introduced in our
extension

The purpose of this section is to introduce the essential features of
SPARQL, as specified by the W3C Standard [155], including different kinds
of graph patterns (basic, optional, alternative), property path expressions,
filters, grouping and aggregation. This part should be regarded as an
extended background, crucial for understanding the contributions of this
work.

The next chapter continues this overview by discussing the extensions
introduced in SciSPARQL, including array expressions, parameterized
views, lexical closures, and second-order functions [8], together make an
noticeable shift towards a functional query language, albeit retaining the
property of declarativeness.

Neither part can be regarded as a substitute for the complete
documentation on the query language. SciSPARQL User Manual is
available on the project homepage [146], and W3C SPARQL 1.1
Specification [155] can also be recommended as a tutorial for the standard
language.

3.1 Example Dataset
An RDF graph consists of nodes and edges. Edges are always identified by
URIs, while nodes can be either URIs (globally unique), blank nodes
(unique within a graph or union of graphs to be queried), or literals:
numbers, text strings, temporal or logical values.

Figure 5 shows an example of an RDF graph using the FOAF [32]
vocabulary. There is one class node for foaf:Person, four instance nodes for
that class identified by blank nodes, and a foaf:name property for each of
them. Additionally they participate in the foaf:knows relationships, which

30

happen to be symmetric - double-sided arrows indicate pairs of symmetric
properties.

“Cindy”
foaf:name

_:c

rdf:type

foaf:Person

“Bob”
foaf:name

_:b

foaf:knows

“Alice”
foaf:name

_:a

“Daniel”
foaf:name

_:d

rd
f:ty

pe

rd
f:ty

perdf:type

foaf:knows

fo
af

:k
no

w
s

“Cindy”
foaf:name

_:c

rdf:type

foaf:Person

“Bob”
foaf:name

_:b

foaf:knows

“Alice”
foaf:name

_:a

“Daniel”
foaf:name

_:d

rd
f:ty

pe

rd
f:ty

perdf:type

foaf:knows

fo
af

:k
no

w
s

Figure 5. Example of RDF graph using FOAF vocabulary

At the same time, an RDF graph is also a set of (subject, property, value)2
triples. Subject and value of each triple correspond to nodes in the graph,
while properties correspond to edges.

3.1.1 Turtle Syntax
There is a number of ways to serialize RDF graphs to text. The RDF graph
in Figure 5 can be expressed as a set of triples, e.g.

_:a a foaf:Person ;
 foaf:name "Alice" ;
 foaf:knows _:b , _:d .
_:b foaf:knows _:a .
...

Throughout this Thesis we will use Turtle [21] - Terse RDF Triple
Language to present the RDF datasets. The fully specified triples are
separated by dot '.', while triples sharing the same subject are separated by
semicolon ';', and triples sharing both subject and property are separated by
comma ',', and we usually place them in the same line. So the above
fragment contains five triples, with two unique subjects and four unique
subject-property pairs. The same syntax is used for specifying triple patterns
in SPARQL, as shown in Section 3.2.

Generally, the dot sign separating the triples in RDF and SPARQL has the
semantics of a conjunction (along with comma and semicolon). So what
technically appears to be a set of triples, from the epistemological
perspective is a conjunction of facts.

Both Turtle and SPARQL use prefixes in order to abbreviate URIs. The
Turtle file with the dataset on Figure 5 would contain a prefix definition

2 Another common way to refer to triple components is (subject, predicate, object). We prefer
to avoid the confusion with ObjectLog predicates.

 31

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

It specifies that e.g. foaf:name property is a shorthand for the URI
<http://xmlns.com/foaf/0.1/name>. The reserved property a stands for
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, otherwise commonly
abbreviated as rdf:type. It indicates the relationship between instances and
classes when both are represented by RDF nodes.

Blank nodes, e.g. _:a are used whenever no URI is provided to identify
the node, and different blank node labels specify different nodes. Blank
nodes are typically used to represent instances identified by the values of
their key properties (as foaf:Person intances are identified by foaf:name
values in our example). Another common use case are linked lists, formed
with rdf:first and rdf:rest properties. Turtle has a compact syntax to
represent such lists, e.g the following Turtle construct:

:s :p ((1 2) (3 4)) .

It encodes the graph shown on Figure 4 in Section 2.3.5.1, with six new
blank nodes generated by the Turtle reader, along with 12 additional triples.

3.2 Graph Patterns
At the core of all non-trivial SPARQL queries there is at least one graph
pattern, for example
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?person
 WHERE { ?person foaf:name "Alice" }

contains a graph pattern

?person “Alice”
foaf:name

This graph pattern consists of a single triple pattern, with the variable
?person used as a wildcard to match a graph node. The result of such a
query would be the set of bindings for the projected variable ?person. If
applied to the dataset on Figure 5, this would result in a single blank node
_:a.

A graph pattern may be more complex and include a conjunction of
several triple patterns, connected with the '.' operator. Whenever the triple
patterns have the same subject, '.' is substituted with ';' for a more compact
syntax3:

3 ... and whenever the triple patterns have the same subject and property, comma sign ',' is
used to connect them - similarly to the Turtle syntax explained in Section 3.1.1.

32

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?friend_name
 WHERE { ?person foaf:name "Alice" ;
 foaf:knows ?friend .
 ?friend foaf:name ?friend_name }

Here we need to distinguish between the query results, which contain the
binding only for the projected variable ?friend_name, and the solutions,
which contain the bindings for all variables in the WHERE block. Given the
dataset on Figure 5, the solutions would consist of:

?person ?friend ?friend_name
_:a _:b "Bob"
_:a _:d "Daniel"

In cases when variables are used only once to connect the triple patterns,
the common practice with SPARQL is to use the unlabelled blank nodes []
as a substitute. When a variable (like ?friend) is used to connect a value of
one triple pattern to a subject of another triple pattern, the property and value
of the latter can be put inside these square brackets. With both of these
reductions applied, the last query would we written as:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?friend_name
 WHERE { [] foaf:name "Alice" ;
 foaf:knows [foaf:name ?friend_name] }

Here blank nodes are substituting some of the variables in the graph pattern:

“Alice”
foaf:name

foaf:name
?friend_name

foaf:knows

3.3 Combining the Graph Patterns
SPARQL is designed to produce deterministic results in the cases of
incomplete, redundant, and even conflicting data, which might be published
by the independent parties, with little or no common guidelines besides the
use of the RDF data model per se. In order to address these challenges, a
SPARQL query may include optional or alternative graph patterns, existence
and non-existence quantifiers, and explicitly match different graph patterns
to the particular sources.

 33

3.3.1 Optional Graph Patterns
Consider that the RDF graph in Figure 5 would feature additional
foaf:mbox properties for some of the foaf:Person instances. The
following query will return the emails of Alice friends, if they are available,
and return their names in any case:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?friend_name ?friend_email
 WHERE { ?person foaf:name "Alice" ;
 foaf:knows ?friend .
 ?friend foaf:name ?friend_name .
 OPTIONAL { ?friend foaf:mbox ?friend_email } }

The nested OPTIONAL graph pattern is thus a source of unbound values in
both query solutions and the results of the query:

?friend_name ?friend_email
"Bob" mailto:bob@example.org
"Daniel"

Being largely similar to the relational algebra left outer join operator
applied to the sets of solutions, the OPTIONAL keyword in SPARQL
introduces certain issues with declarativeness, as discussed in Section 5.4.2.
In short, there are cases where moving around two OPTIONAL graph patterns
may result in a non-equivalent query.

3.3.2 Matching Alternatives
Assume some of the emails in the graph are listed using the FOAF standard
foaf:mbox property, while others use a domain-specific property
<http://example.org/email>. There are two ways to address this
inconsistency. The general Semantic Web approach would use an OWL [19]
equivalence statement owl:sameAs, so that all SPARQL queries, with OWL
entailment enabled, would treat these two properties as equivalent. While
establishing equivalence between the terms used in different datasets is one
of the main tools for the data integration in the context of Semantic Web, the
objectivity of the identity relation itself might be limited to some but not all
possible contexts, leading to the so-called Identity Crisis [70].

One might instead prefer to treat a set of properties as equivalent just for
the purpose of a specific SPARQL query, without manipulating the datasets
and affecting the results of other queries. This would be one of the use cases
for the alternative graph patterns, combined with UNION, as in the query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.org/>
SELECT ?friend_name ?friend_email
 WHERE { ?person foaf:name "Alice" ;

34

 foaf:knows ?friend .
 ?friend foaf:name ?friend_name .
 { ?friend foaf:mbox ?friend_email }
 UNION
 { ?friend ex:email ?friend_email } }

Arbitrary graph patterns can be used as alternatives. For the purpose of
another example, consider that the foaf:knows relationship is not restricted
to be symmetric in the dataset, so we would like to trace it in either
direction. The following query returns the names of all people who know
Alice and all people whom Alice knows:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?friend_name
 WHERE { ?friend foaf:name ?friend_name .
 ?alice foaf:name "Alice" .
 { ?alice foaf:knows ?friend }
 UNION
 { ?friend foaf:knows ?alice } }

This query will effectively express two alternative graph patterns:

?alice “Alice”
foaf:name

?friend
foaf:name

?friend_name

foaf:knows

?friend

“Alice”

foaf:name

?alice
foaf:name

?friend_name

foaf:knows

However, if the foaf:knows relationship happens to be mutual in some
case, the same bindings will be generated twice for ?friend and
?friend_name. To avoid this, and return every person at most once, one
would use DISTINCT option on the ?friend variable in the SELECT clause:

SELECT DISTINCT ?friend ?friend_name

Different branches of the same union might provide bindings for the
different variables. For example, the following query might return a more
informative result, while generating some unbound values as well:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name_Alice_knows ?name_knows_Alice
 WHERE { ?alice foaf:name "Alice" .
 { ?alice foaf:knows [foaf:name ?friend_name] }
 UNION
 { [] foaf:knows ?alice ;
 foaf:name ?friendOf_name } }

 35

3.3.3 Existence Quantifiers and Other Filters
The presence of at least a single solution to a graph pattern, or the absence of
such, can be turned into a Boolean value using the existence quantifiers. For
example, the following query checks for the persons who have
foaf:homepage property but no foaf:mbox property:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name_Alice_knows ?name_knows_Alice
 WHERE { ?p rdf:type foaf:Person .
 FILTER (EXISTS { ?p foaf:homepage [] } &&
 NOT EXISTS { ?p foaf:mbox [] }) }

The FILTER conditions in SPARQL queries may appear in a conjunction
with graph patterns. They may contain any kind of logical expression, using
the logical '&&' (conjunction), '||' (disjunction), and '!' (negation) operators.
Besides the quantifiers used in these examples, a large variety of arithmetic
and string expressions [155] can be used as terms in the filter conditions. If a
filter expression evaluates to anything else than a Boolean value, the
Effective Boolean Value of the expression is used. The values equivalent to
true are non-zero numbers, non-empty strings and typed RDF literals, all
possible date/time values and URIs.

The general expression syntax of SPARQL is fairly standard, and hence is
omitted in this introduction. However, the exhaustive list of all possible
expression constructs in SciSPARQL is presented in Section 5.4.5.4, for the
purpose of defining their translation to AmosQL and ObjectLog.

3.3.4 Addressing Multiple Graphs
The queries presented so far did not explicitly identify the dataset they
address - in this case, they were accessing the default graph of the SPARQL
endpoint they are sent to. In the Semantic Web context, a multitude of
graphs is typically combined for the purpose of querying. An explicit set of
graphs to be combined can thus be specified in the FROM clause of a
SPARQL query. Another option is to treat these graphs separately,
addressing the specific graph patterns to each of them.

W3C Specifications [155] suggest the following example (presented here
with minor simplifications):

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?who ?g ?mbox
 FROM NAMED <http://example.org/alice>
 FROM NAMED <http://example.org/bob>
 WHERE { ?who foaf:made ?g
 GRAPH ?g { ?x foaf:mbox ?mbox } }

36

This query retrieves the foaf:mbox information from either of the
named source graphs, and returns it along with the source graph identifier
and the publisher. Here, the graph pattern querying for the foaf:mbox
property is matched against every available graph, which is listed in the
default graph as a value in a foaf:made triple.

3.4 Property Path Expressions
A powerful feature introduced in the W3C SPARQL 1.1 standard are regular
path expressions as another kind of graph patterns, making it easy to specify
chains of properties, alternative and reversed properties. For example, the
first two queries in Section 3.3.2 can be reformulated using patterns like

?friend foaf:mbox|ex:email ?friend_email

and

?alice foaf:knows|^foaf:knows ?friend

respectively, where the '|' operator denotes the alternatives and '^' specifies
the reversed property.

Still, the main power of the regular path expressions is the ability to query
for graph nodes connected by chains of properties of arbitrary length but
with certain repeating structure. For example, the following query would list
the names of people who are listed as Alice's friend, friend-of-a-friend (that's
what FOAF vocabulary name actually stands for), and so on:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?friend_name
 WHERE { [] foaf:name "Alice" ;
 foaf:knows+/foaf:name ?friend_name }

Here the '+' operator denotes the transitive closure of the foaf:knows
property, and '/' denotes the chaining of property paths. If the '*' operator
were used instead of '+', the reflexive-transitive closure would include
"Alice" among the results.

The transitive and reflexive-transitive closures are implemented as graph
traversal algorithms, which internally check for equivalence of the nodes,
and terminate at the point where no new nodes can be reached.

 37

3.4.1 Precedence of Path Operators
Path operators can be freely combined in a path expression. According to
W3C SPARQL 1.1 Specifications [155] the precedence order of the path
operators4 is the following:

• transitive '+', reflexive '?', and reflexive-transitive closure '*'
• reversal '^'
• chaining '/'
• alternative paths '|'

Whenever a different precedence is desired, parentheses can be used to
control associatively. For example, a graph pattern

?x (ex:motherOf|ex:fatherOf)+/foaf:name "Alice"

would bind ?x to all ancestors of a person named Alice.

3.4.2 Algebraic Properties of Path Operators
Even though the W3C Standard [155] does not list the properties of path
operators explicitly, they are trivial to deduce, and are invaluable if one
would like to transform the regular path expressions within their class of
equivalence, for the purpose of simplification or normalization. The
SPARQL users, formulating queries with path expressions, might also
benefit from the structured summary presented in this section.

In the following triangular table (Table 1) we summarize the equivalent
expressions that arise when one or two path operators are combined. Given
A, B, and C are path fragments, the identities listed in the table cells always
hold.

Table 1. Algebraic properties of path operators
 + * ? ^ / |

+ A++ = A+
(A+)* = A*
(A*)+ = A*

(A?)+ = A* ^A+ = (^A)+ - -

* A** = A*
(A?)* = A*
(A*)? = A*

^A* = (^A)* - -

? A?? = A? ^A? = (^A)* - -
^ ^^A = A ^(A/B) = ^B/^A ^(A|B) = ^A|^B

/
A/(B/C) =
= (A/B)/C

(A|B)/C = A/C|B/C
A/(B|C) = A/B|A/C

|
A|B = B|A

A|(B|C) = (A|B)|C

4 We do not include the negated property set operator in the current version of SciSPARQL,
due to the problems with its standard definition, explored in [88]. Though not theoretically
ambiguous, together with reversal it introduces certain counter-intuitive 'butterfly effect' in
the set of query solutions.

38

In mathematical terms, Table 1 lists the following properties:
• idempotence of closure operators '+', '*', and '?',
• subsumption of transitive '+' and reflexive '?' closures into the

reflexive-transitive closure '*' - the latter can also be constructed by
applying transitive closure '+' on top of the reflexive closure '?' (but
not the other way around),

• involution property of the reversal operator '^',
• commutative property of the alternative operator '|',
• self-distributiveness and mutual distributiveness of chaining '/' and

alternative '|' operators,
• distributiveness of the reversal operator '^' with respect to closures

and the alternative '|' operator, and
• reversal of the chains of path fragments with the reversal operator '^'.

The more formal definition of the regular path expressions, together with
their translation to AmosQL and eventually ObjectLog, are given in Section
5.4.5.3.

3.5 Aggregation and Grouping
The SELECT part of a SPARQL query may contain a list of projected
variables (as seen in all the queries presented so far), or named expressions.
A variety of functions, including arithmetic and string manipulation, are
available [155], and, in the case of SciSPARQL, easily extensible, as we
show in Section 4.4. For example a query with the SELECT statement

SELECT (round(?x) AS ?result) ...

would return the rounded value for each ?x binding among the query
solutions, i.e. the round() function will be applied independently every
time the query is about to emit.

There are, however, certain SPARQL functions which operate on bags
(multisets) of bindings - the aggregate functions. Most of them, like SUM(),
AVG() etc. operate only on numerical values, whereas COUNT() operates on
all kinds of values. For example, the following query would return minimum
and maximum age of persons listed in the graph:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT (MIN(?age) AS ?min_age) (MAX(?age) AS ?max_age)
 WHERE { ?p rdf:type foaf:Person ;
 foaf:age ?age }

emitting a single result (or none if no persons or their age information is
found).

 39

If one would need to compute e.g. the average age of each persons
friends, this would require grouping the query solutions by person, and
applying the aggregate AVG() function within each group. This is achieved
with the GROUP BY clause:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name (AVG(?friend_age) AS ?avg_friend_age)
 WHERE { ?p rdf:type foaf:Person ;
 foaf:name ?name ;
 foaf:knows ?friend .
 ?friend foaf:age ?friend_age }
 GROUP BY ?p ?name

Note that we need to group by the variable ?p, bound to foaf:Person
instance nodes, not by the person name (which might not be unique).
Listing ?name as an additional grouping variable might seem redundant, as
?name is fully functionally dependent on ?p, i.e. we do not expect different
?name values for the same person. Unfortunately, SPARQL requires that
every variable projected out from the aggregate query (or used for post-
filtering or ordering) should be also listed in GROUP BY clause. In
SciSPARQL we lift this restriction, implicitly adding such variables to the
effective GROUP BY clause.

Additional post-filter conditions can make use of the aggregate values
computed. For example, adding

HAVING (?avg_friend_age <= 30 && COUNT(?friend) > 3)

to the end of the last query would restrict the resulting groups of solutions by
size and average age. Note that this adds another aggregate value to be
computed for each group.

3.6 Error Handling
It is worth noting that in SPARQL every valid query is always evaluated
without raising any exceptions. This is achieved by two separate
mechanisms:

I. The validity of the query can be determined at compile time - a process
separate from actually executing the query on a given dataset. A SPARQL
query processor emits a wide range of error conditions at different phases of
validating the query. The lexical and syntactic errors, corresponding e.g. to
an unmatched quotation mark or an unexpected keyword, indicate that the
query cannot be reconstructed from a given textual representation. Next, a
range of semantic checks is performed - a semantic error can be raised e.g. if
aggregate function calls are nested. Finally, the query is transformed to an
execution plan (Section 5.1.2 illustrates how this is done in our system),

40

making sure that every variable gets a finite multiset of potential bindings. If
this is found impossible, the query will be reported as non-executable.

II. A valid query may still produce errors, when applied to a certain
dataset. Division by zero, or a non-numeric operand passed to an arithmetic
operator (since SPARQL is dynamically typed) produce a special error
value, which is passed further through the expressions. Query solutions
containing an error value for a variable never produce a result. Hence,
evaluating a FILTER expression to error is equivalent to evaluating it to
false. A SELECT expression evaluating to error effectively discards the
solution. This includes aggregate functions evaluating once per group.

For example, if a group of solutions contains a non-numeric binding for a
variable under SUM(), the aggregate function would return error, and the
group will not be part of query result. In our system, returning error value
from a function is in all ways equivalent to returning no values at all. Saying
that a function does not return in a certain case should be understood as
returning error value in the standard SPARQL terms.

3.7 Ordering and Segmentation
By default, the result of a SPARQL query is a multiset of bindings for the
query output variables. It is, however, possible to return these bindings in a
certain order, by using the ORDER BY clause.

The following query would list the persons in the dataset sorted by age (in
descending order) and, in the case of coevals, by name (alphabetically):

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?age
 WHERE { ?p rdf:type foaf:Person ;
 foaf:name ?name
 foaf:age ?age }
 ORDER BY DESC(?age) ?name

Once the order of the results is defined, it becomes possible to retrieve
certain portions of results. For example, adding

LIMIT 3

to the end of the query would make it return the information about the three
oldest people (thus probably saving considerably on communication), and
adding instead

OFFSET 500 LIMIT 100

would be typical for a query retrieving the portions of results on demand.

 41

Since the SPARQL standard specifies that the comparison '<' and '>'
operators are defined only on the values of the same type, the order of results
where an ordering variable is bound to values of the different (incomparable)
types is not defined, and hence the segmentation cannot be used in the
reliable way. SciSPARQL addresses this problem by defining a certain order
among the values of all possible types in RDF with Arrays, including URIs,
blank nodes, all kinds of literals and arrays.

3.8 Constructing New RDF Graphs
As mentioned before, the result of a SELECT query in SPARQL is a list of
mappings of its output variables to values (which might include unbound
values). Sometimes, it is instead desirable to produce a set of triples, which
can be regarded as a derived RDF graph. For this purpose, CONSTRUCT
queries are available in the language5.

The following query would construct a derived graph, listing
ex:mutualFriend properties for all pairs of persons connected with
foaf:knows relationship both ways:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX ex: <http://example.org/>
CONSTRUCT { ?x ex:mutualFriend ?y }
 WHERE { ?x rdf:type foaf:Person ;
 foaf:knows ?y ;
 ?y rdf:type foaf:Person ;
 foaf:knows ?x }

The CONSTRUCT clause contains a graph construction pattern. For every
solution of the WHERE block, the corresponding triples will be constructed
and emitted. Note that since the graph pattern in the WHERE clause is
symmetric there will be two solutions for each matching pair of persons.

The solutions with unbound variables will not produce triples in those
construction patterns where these variables are used. We show how the
CONSTRUCT statements are handled by the SciSPARQL query processor, by
defining their translation in Section 5.4.5.11.

5 The W3C SPARQL standard [155] also specifies ASK queries, wich are the shorthand of
using EXISTS quantifier, and mentions DESCRIBE queries, not actually defined in the
standard.

42

3.9 Updating the Datasets
The separate W3C Standard Recommendation [156] governs the SPARQL
Update language.

The Data Definition Language is limited to creating (with the CREATE
statement) and dropping (with the DROP statement) the named RDF graphs,
since, in contrast to the relational data model, there are no schemas to be
defined separately from the data.

The Data Manipulation Language is mainly represented by the
DELETE/INSERT statement. For example, instead of deriving a new RDF
graph (as in Section 3.8), one could insert the new triples into the same
graph, by simply changing the CONSTUCT keyword to INSERT.

Deleting triples is as simple - the following statement would delete all
personal emails from the graph:

PREFIX ex: <http://example.org/>
DELETE { ?p foaf:mbox ?email }
 WHERE { ?p rdf:type foaf:Person ;
 foaf:mbox ?email ;

For every solution of the WHERE block (i.e. for every combination of ?p
and corresponding ?email values), this statement will delete all triples
according to the deletion triple pattern. In principle, this would be possible
to do with some of the pattern variables free, but SPARQL (and the current
implementation of SciSPARQL) requires that all delete pattern variables
should be bound. It is part of the future work on SciSPARQL to lift this
unnecessary restriction.

The DELETE and INSERT clauses can be combined in a single statement,
sharing the WHERE block (e.g. for replacing certain properties according to a
pattern). Deletion and insertion patterns may include a named GRAPH
specifier, similarly to the syntax shown in Section 3.3.4, or a named graph
addressed by the whole statement can be specified using the WITH keyword.
A different graph can be used in the WHERE block, introduced with the
USING keyword instead. Section 5.4.5.12 details the translation of
DELETE/INSERT statements to procedural AmosQL statements, containing
declarative translation of the WHERE block.

A different mechanism is used for evaluating simple INSERT DATA and
DELETE DATA statements: they do not contain a WHERE block, hence their
patterns are free from variables and are purely constant. Their purpose is the
massive insertion or deletion of RDF triples in a streamed fashion. They are
evaluated at parse time, and thus can be arbitrarily long.

 43

4 Scientific SPARQL

The main purpose of Scientific SPARQL is to enable data processing tasks
common in science and engineering to be expressed as queries in extended
SPARQL. These tasks are generally characterized by extensive
computations, and also by large amounts of numeric data, typically ordered
along a number of orthogonal axes [102]. Such data can be represented as
numeric multidimensional arrays, which become a class of RDF terms in
our extended RDF with Arrays data model.

Computations are used either for filtering or post-processing the retrieved
data, and may typically be expressed in a functional way. Existing
computational libraries (many of which became de-facto standards in
scientific computing, and are often referred for reproducibility of results) can
be interfaced and invoked from the query language as foreign functions.
Cost estimates and alternative directions of evaluation can be additionally
specified (see Section 4.4), in order to aid the construction of better
execution plans - the process illustrated in the beginning of Chapter 5.

Though real-life scientific computing tasks, as we have shown in [6], find
much more compact formulations in SciSPARQL than in high-level
algorithmic languages like Matlab (mainly thanks to declarativeness and
more natural metadata management), we expect complex tasks to be
formulated as complex queries. Good query modularity becomes as
important for scalability as good data design and annotation. In this respect,
SciSPARQL allows expressing common query sub-tasks as functional views,
i.e. SciSPARQL functions defined as parameterized queries.

Such flexibility in defining functions and using them in queries is further
strengthened by functional language abstractions such as lexical closures
and second-order functions. When it comes to the array processing tasks,
besides a library of the most common functions, SciSPARQL offers array
constructors, mappers and condensers as second-order functions. These
constitute a highly flexible mechanism of expressing custom array
operations, demonstrated on the example of Geo-Science applications in [8].

This chapter summarizes the contributions presented in Scientific
SPARQL as a language extension in terms of syntax and semantics.
Implementation details are reserved for the next chapter, however, certain

44

notes on potential scalability opportunities are given, in order to encourage
the formulation of expressive and straightforward SciSPARQL queries that
our system (SSDM) is well-optimized for.

4.1 Array Queries
We define an array as a mapping function A from a finite domain to an
infinite range, which is stored explicitly:

RDA →:

The domain of arrays in SciSPARQL is always a Cartesian product of the
sets of integers ranging from 1 to dimk:

{ } { }nD dim...1...dim...1 1 ××=
Here n is the number of dimensions in the array, kdim is the array size in
the dimension k and the ndim,...dim1 vector is called the array shape.
We call arrays of the same shape aligned arrays. The range of an array can
either be a set of Integer, Real or Complex numbers, or Boolean values.

The RDF with Arrays data model, underlying SciSPARQL queries,
incorporates arrays into RDF graphs as another kind of nodes, along with
other literal types. Array values may only appear in the value position of
RDF triples. However, due to compatibility concerns with pure RDF and
SPARQL, the predicates rdf:first and rdf:rest commonly used with RDF
collections are polymorphic in SciSPARQL and may be matched with arrays
appearing on the subject position in queries (examples in Section 5.5) This
makes arrays into a particular case of RDF collections - Section 5.3.2
explains the relationship between arrays and collections in greater detail.

A typical RDF with Arrays dataset contains numeric multidimensional
data - in form of arrays, and the associated metadata - in form of an RDF
graph. Figure 6 shows a simple example, which will be further extended in
the next chapter (where also a serialization in extended Turtle format is
presented). It features an RDF with Arrays description of an experiment
(given in a generic way, it might be a stochastic simulation of a partial
differential equations system, for example) denoted as an instance of
ex:OurExperiment, and consisting of a number of realizations, connected
using the ex:inExperiment property. Both experiment and realization
instances have literal-valued properties representing associated data and
metadata at the respective levels of detail. The properties ex:initialState
and ex:result are array valued, and represent the numeric part of RDF with
arrays dataset.

 45

ex:OurExperiment

ex:OurExperimentRealization

ex:experiment1

_:r1

rdf:type

rdf:type

ex:inExperiment

ex:OurSimulationAlgorithm

ex:simulationMethod

1 ex:id

0.3
ex:parameter_A

0.85
ex:parameter_B

ex
:in

itia
lS

ta
te ex:result

ex:OurExperiment

ex:OurExperimentRealization

ex:experiment1

_:r1

rdf:type

rdf:type

ex:inExperiment

ex:OurSimulationAlgorithm

ex:simulationMethod

1 ex:id

0.3
ex:parameter_A

0.85
ex:parameter_B

ex
:in

itia
lS

ta
te ex:result

Figure 6. An example RDF with Arrays dataset (fragment)

We will refer to the queries aimed at retrieving arrays from RDF with
Arrays datasets, and containing array-specific operations as array queries.

A trivial (but important) case is retrieving an array based on the
associated metadata. For example, one might be interested in the ex:result
arrays together with the corresponding realization ids, based on the
experiment properties and realization parameters:

SELECT ?id, ?A
 WHERE
 { ?e a ex:OurExperiment
 ex:simulationMethod ex:OurSimulationAlgorithm .
 ?r ex:inExperiment ?e ;
 ex:parameter_A 0.3 ;
 ex:parameter_B ?b ;
 ex:id ?id ;
 ex:result ?A .
 FILTER (?b > 0.8) }

The rest of this section introduces the key features of array queries. In the
examples we deliberately omit the PREFIX part of the queries, since
SciSPARQL allows the prefix declarations to be specified once per session -
with a separate statement:

PREFIX ex: <http://udbl.uu.se/ex#>

4.1.1 Array Dereference Syntax
SciSPARQL allows array subscripts in square brackets, where subscripts for
the respective dimensions are separated with commas.

46

For each dimension either single subscripts or range selections can be
specified. By default, range selections are specified with a colon as lo:hi,
and selections with a stride as lo:stride:hi, where both lo and hi address the
elements that are included in the selection, and the elements are counted
from 1. This design was chosen to make Matlab users feel at home6.

Either or both lo and hi values can be omitted, with default for lo being 1
and default for hi always being the array size in the respective dimension.
Thus the expressions ?A[:] and ?A[:1:] are always equivalent to ?a.

If valid single subscripts for all array dimensions are specified, the array
is dereferenced to a single element. Otherwise, complete ranges are assumed
for the remaining dimensions. SciSPARQL thus makes a difference between
three kinds of array dereferences:

• single element dereference, for example ?A[2,1] for a 2D array ?a,
where single subscripts are provided for all dimensions. The result is
always a number, or error if a subscript falls out of range.

• projection dereference, for example ?A[:,1] or ?A[2] or
?A[1:3,2] or ?A[2,:5:] for a 2D array ?A, where single
subscripts are provided for some dimensions, and range selections
(explicit or implicit) for the others. The result is a smaller array with
fewer number of dimensions (only those of the original dimensions
for which ranges were provided), or error if a single subscript falls
out of range or the range selection results in an empty selection.

• range selection dereference, for example ?A[1:5,2:3], ?A[1:5],
?A[:5,:2:], where range selections (explicit or implicit) are
provided for all array dimensions. The result is a smaller array with
the same number of dimensions as the original one, or error if the
range selection results in an empty selection.

The latter two are also collectively called array slicing operations. Each
array slicing is resulting in an array subset Figure 7 shows the elements
selected from a 2D array using projection on the first (rows) dimension, and
range selection on the second (columns) dimension.

If a range selection effectively specifies a single element, it is still treated
as a range selection with respect to the dimensionality reduction. Thus,

6 However, with the _sq_python_ranges_ flag a user may opt for a different dialect of
SciSCPARQL, which supports Python notation for ranges. In this case, elements are counted
from 0, hi element is never part of the selection, and optional strides are specified as
lo:hi:stride. No other differences are introduced. This switch only takes effect at the stage
when a SciSPARQL query, update, or function definition is passed to the interpreter. The
definitions of SciSPARQL functions and parameterized updates are stored internally in a way
that is invariant to these syntactic differences, so it is safe to switch back and forth between
the two dialects in a session. In the rest of this work, the default (Matlab) notation is used.

 47

(unlike Matlab) SciSPARQL makes a difference between arrays that have
different number of "single-element" trailing dimensions, and between
singleton arrays and numbers, so that ?A[2,3:3] is not equal to ?A[2,3].
For a 2D array ?A where these subscripts are valid, the former expression
would return a 1D-projection with a single element in it, whereas the latter
expression would dereference directly to that element.

p
ro

je
ct

io
n

i

lo hi
stride

range selection
Figure 7. A projection and range selection ?A[4,3:2:7], applied to a 2D array

Since SciSPARQL is designed to handle very large arrays, any
dereference operation that returns a derived array does not allocate any
memory to store the new array's elements - internally, it just allocates a new
descriptor object pointing to the same storage space. Thus, creating sets of
projections and slices of arrays is very cheap (further explained in Section
5.2), and is encouraged as a simple way to formulate many data-reduction
operations. This principle extends to arrays stored externally (and retrieved
lazily), as we discuss in Chapter 6.

4.1.2 Variables Bound to Array Subscripts
One important feature of SciSPARQL as a declarative query language is the
possibility to automatically bind a query variable to its valid range of values.
Just as a triple pattern

?x foaf:name "Alice" .

binds variable ?x to every node that has a property foaf:name with value
"Alice", an array dereference expression

?A[?i]

with the otherwise unbound variable ?i becomes an array access pattern:
the variable ?i will assume all valid subscript values, that is, integers from 1
and up to the size of array ?A in its first dimension.

Unless otherwise restricted, such binding will form a Cartesian product
with bindings for other variables in the query solution. So, for example,

SELECT ?i, ?j (?A[?i,?j] AS ?value)
 WHERE { [] ex:id 1 ; ex:result ?A }

48

will return every element of the 2D array ?A (or respective projections if ?A
is array of grater dimensionality, or nothing otherwise), together with
subscript values. Similarly,

SELECT ?i, ?j (?A[?i,?j] AS ?value)
 WHERE { [] ex:id 1 ; ex:result ?A .
 FILTER (?i >= ?j) }

will return bottom-left triangle of ?A, and

SELECT ?i (?A[?i,?i] AS ?value)
 WHERE { [] ex:id 1 ; ex:result ?A }

will return the diagonal elements. We will study the performance of such
patterns in Chapter 6.

4.1.3 Built-in Array Functions
A number of basic functions are defined in SciSPARQL in order to access
the array shape and element type, construct arrays and perform operations
not covered by the array dereference syntax:

• adims(?a) - return the shape of an array as a 1D integer array
containing sizes of a in each dimension. To obtain the number of
dimensions, use adims(adims(?a))[1].

• elttype(?a) - return element type of array, with 0 for Integer, 1 for
Double, 2 for Complex.

• A(?e1, ?e2, ?e3, ...) - construct a 1D array of the given numeric
elements.

• find(?a, ?e) - return the indexes of elemets in ?a equal to ?e, as
1D integer arrays.

• permute(?a, ?d1, ?d2, ...) - change the shape of array by
rearranging its dimensions (generalized transposition). The integer
values ?d1, ?d2, ... denote the new order for the array dimensions.
The effect the is same as with Matlab permute() function7.

• transpose(?a) - simple 2D matrix transposition, equivalent to
permute(?a, 2, 1).

Rearranging array dimensions, similarly to an array slicing operation,
involves no copying of array elements, and thus produces a derived array.

4.1.4 Array Arithmetic
The standard binary operators operating on numbers in SPARQL are
extended to operate element-wise on arrays in SciSPARQL. This includes
addition '+', subtraction '-', multiplication '*', and division '/' operators. For

7 Officially documented in http://mathworks.com/help/matlab/ref/permute.html

 49

example, an expression ?a + ?b will be evaluated in four cases, as shown
in the Table 2.

Table 2. Polymorphism of an arithmetic operator in SciSPARQL (example)

?a binding ?b binding value of ?a + ?b
number number number
number array array, where ?a is added to each element of ?b
array number array, where ?b is added to each element of ?a
array array array of sums of corresponding ?a and ?b

elements, if ?a and ?b have the same shape

However, in order to let the SciSPARQL query optimizer distinguish
between scalar and array-valued operations (the latter are expected to be
sufficiently more expensive, both in terms of computation and memory),
SciSPARQL users are encouraged to use the special array-oriented dot-
prefixed operators, for example '.+' in cases where array values are
expected.

The expression ?a .+ ?b is semantically equivalent to ?a + ?b as
described by Table 2, e.g. it produces a number if both operands are
numbers. However, it hints the query optimizer that an array value is
expected here, so it will try to schedule this operation at the point where
fewer intermediate results (i.e. candidate bindings for ?a and ?b) are
anticipated.

This is different for the comparison operators '<', '<=', '>', '>=', which,
when applied to an array (or two arrays of the same shape) will produce a
deterministic albeit not a meaningful result, used only for ordering. Equality
of arrays, however, is well defined below in Section 4.1.6. In the same cases,
dot-prefixed comparison operators will produce a new array of type
Boolean, containing the results of element-wise comparison.

Numeric aggregate functions, like SUM(), MIN(), MAX(), AVG(), etc. are
also extended to handle bags of array values. They return only if all arrays in
the bag have the same shape, and construct a new array value. No optimizer
hints are available, since the evaluation of aggregate functions separates the
inner and outer contexts of a query (more technicalities in Sections 5.4.1.2
and 5.4.3.4), and there is typically little freedom to move the predicates
around it (see, e.g. [38]).

Another possibility is that due to the modular structure of SciSPARQL
queries (as described in Section 5.2.2), there might be two parameterized
aggregate subqueries invoked as functions from a third query on the same
level - then the optimization might benefit from knowing which aggregation
involves arrays and which one does not. We leave these optimization

50

opportunities, based on a more accurate cost estimate for the aggregate
functions as a matter of the future work.

4.1.5 Intra-array Computations
Arrays, apart from bags, form another conceptual layer of collections in
SciSPARQL. While it is possible to combine all elements of a bag of
numbers (or arrays) with the aggregate function SUM(), it should also be
possible to apply an aggregate function to all (or certain) elements of a given
array. There are actually three ways to do this in SciSPARQL:

I. Shorthand functions as array_sum(), array_avg(), array_min(),
and array_max() are available in SciSPARQL for the basic computation
tasks, and should be preferred as the most efficient ones. They operate on all
elements of a given array, and ignore the logical dimensionality.

II. It is always possible to "open" an array into a bag of its elements, as
shown in Section 4.1.2, and then apply a traditional aggregate function. This
allows arbitrary conditions on the element places and values to be expressed
in a query. For example, the following query would sum up only positive
elements on even positions in the main diagonal of ?A:

SELECT (SUM(?A[?i,?i]) AS ?sum_diag_even_positive)
 WHERE { [] ex:id 1 ; ex:result ?A .
 FILTER (?A[?i,?i] > 0) && mod(?i, 2) = 0 }

Here, the free variable ?i binds to all valid values for the row and column
subscripts of ?A, and then is checked for an even value. Only in those cases,
array elements are considered eligible to be summed up. As the example
shows, this way is highly general, but might clutter the FILTER expression
(which is typically used for metadata conditions) and also forces bag-based
aggregation where it could have been avoided.

III. In order to alleviate for the said shortcomings, SciSPARQL borrows
Array Algebra [17] primitives used in Rasdaman [16], as a matter of
ongoing integration. The second-order functions MAP(), CONDENSE(), and
ARRAY()are supported in our system, making use of the powerful lexical
closure mechanism, explained in Section 4.3.

4.1.6 Array Equality
The only cases where dot-prefixed operators differ from the original ones is
the comparison of arrays with '=' and '!=', which results in a single Boolean
value, and the comparison of array elements with '.=' and '.!=', which
results in array of Boolean. While the second case is trivial, the equality of
arrays needs a definition.

 51

Two arrays are equal iff all of the following conditions are satisfied:
• they have the same number of dimensions,
• they have the same size in each respective dimension,
• their respective elements are numerically equal.

Note that the same element type is not a requirement - an integer array
might be equal to an array of real numbers. However, whenever the floating-
point arithmetic is involved, it is always a good idea to round the array
elements down to a certain precision before comparing, in order to avoid
precision-induced artifacts. For this purpose the round() function is
extended to handle arrays, taking the desired precision as a second argument.

SciSPARQL does not trim the trailing dimensions of size 1 as e.g. Matlab
does, which might lead to the loss of structural metadata, important in our
setting. Hence e.g. a 1-dimensional array of size 3 can never be equal to a 2-
dimensional 3x1 array, even though they both might represent the same
mathematical object - a column vector. Similarly, SciSPARQL does not treat
simple numeric values as equivalent to singleton arrays: a number 5 is not
equal to an array with a single element of 5.

4.2 Parameterized Queries - Functional Views
The good modularity of potentially complex SciSPARQL queries is
achieved by isolating common parts as parameterized queries, also known
as functional views. We use these two terms interchangeably, since by
stressing different aspects of the same mechanism, together they convey the
desired dualistic notion of the subject.

There is DEFINE FUNCTION statement in SciSPARQL. As shown below
in Section 4.4, its use extends far beyond the functional views and
SciSPARQL per se; however, for the purpose of this section its use is quite
simple. The following example defines a function resultById() retrieving
the value of ex:result property of a realization of the ex:OurExperiment
experiment class, given the realization id:

DEFINE FUNCTION resultById(?id) AS
SELECT ?A
 WHERE { ?r ex:inExperiment [a ex:OurExperiment] ;
 ex:id ?id ;
 ex:result ?A }

Naturally, a call to this function can be used as a part of an expression.
This has the potential of formulating short queries without a proper WHERE
clause at all. For example, the following query returns the third row of the
ex:result matrix of a realization with id = 1:

SELECT (resultById(1)[3] AS ?row3)

52

A function definition is parsed and validated (but not optimized) at the
moment it is submitted as a SciSPARQL statement. This implies, in
particular, that the prefixes used in a function definition (unless supplied
directly before the DEFINE FUNCTION clause) should be already defined for
a session. Similarly, any other functions called inside the definition should
already be defined. This way SciSPARQL forbids mutual- and self-
recursion, and imposes an acyclic dependency graph among the function
definitions it maintains.

This principle does not extend to accessing the named RDF graphs. A
graph specified in a FROM, FROM NAMED, or GRAPH clause inside a function
definition does not need to be present among the available graphs at the time
of function definition - thus the library of functional views can be loaded into
a SciSPARQL session (using SOURCE directive) independently of loading or
creating the named RDF graphs.

Apart from query modularity benefits, with functional views it is possible
to express some otherwise inexpressible computations in a single query. In
particular, it is possible to nest aggregate operations - for example
computing the sum of positive diagonal elements of ex:result for each
array, and then finding the average value across all realizations in the given
experiment instance:

DEFINE FUNCTION sum_diag_positive(?r) AS
SELECT (SUM(?A[?i,?i]) AS ?res)
 WHERE { ?r ex:result ?A .
 FILTER (?A[?i, ?i] > 0) }

SELECT (MAX(sum_diag_positive(?r)) AS ?max)
 WHERE { ?r ex:inExperiment ex:experiment1 }

In the next section (4.3), we show how functions similar to
sum_diag_positive(), returning numeric values, can be used with
second-order functions like ARGMIN() and ARGMAX().

Another important benefit of functional views is the ability to express
top-k selections for a non-fixed parameter k. For example, the following
function will find the given number of highest values on the ex:result
diagonal:

DEFINE FUNCTION k_top_diag(?r ?k) AS
SELECT (?A[?i,?i] AS ?e)
 WHERE { ?r ex:result ?A }
 ORDER BY DESC(?e) LIMIT ?k

While the SPARQL Standard requires that LIMIT and OFFSET values
should be constants, in SciSPARQL they can be expressions not depending
on the variables inside the query. A parameter in a parameterized query thus
may be used.

 53

4.3 Lexical Closures and Second-Order Functions
SciSPARQL offers second-order functions that allow expressing common
computational tasks easily, as demonstrated in [6, 8].

For example, optimizing a function over a finite domain is the in the
general case done by evaluating it for every valid set of arguments and
comparing the results. In order to express this declaratively, SciSPARQL
features the ARGMIN() and ARGMAX() second-order functions. For
example8, finding a realization having the greatest sum of positive diagonal
elements in ex:result matrix is expressed as

SELECT (ARGMAX(sum_diag_positive(*)) AS ?r_max)

or, since SciSPARQL allows function calls as separate statements, simply:

ARGMAX(sum_diag_positive(*))

The free parameter denoted by the asterisk will sweep across all nodes in the
RDF graph, matched as subjects by the triple patterin inside the function
sum_diag_positive(), as it is defined in the previous section.

Another feature inspired by Array Algebra [17] are the generic array
constructor, mapper and condenser, represented by the ARRAY(), MAP(),
and CONDENSE() second-order functions in SciSPARQL, explained below
in Section 4.3.1.

All of these take a functional argument - a lexical closure, consisting of a
function name and values provided for some (or none) of its parameters,
with other parameters marked by asterisk '*' placeholder. Inside a second-
order function, a lexical closure is evaluated exactly like a normal function
with a number of arguments equal to the number of asterisks. For example,
ARGMIN() and ARGMAX() require unary functions - the lexical closures will
always contain one asterisk. The rest of the arguments are bound to values
provided at the point of closure formation.

For example, Minkowski distance is a function of three arguments - two
vectors and one scalar exponent:

()
p

i

p

ii

Def

Minkowski yxpyxd
1

,,

 −=

In SciSPARQL, this example would look like

DEFINE FUNCTION Dminkowski(?X ?Y ?p) AS
SELECT (power(SUM(power(abs(?X[?i] - ?Y[?i]), ?p)),
 1/?p) AS ?distance)

8 Section 5.4.5.10 has the translation of this example to AmosQL.

54

In many practical cases, however, the exponent p is provided upfront,
whereas the two vectors are the "real" arguments that the function typically
maps over. For example, Euclidean distance can be defined as a function of
two arguments

() ()2,,, yxdyxd Minkowski

Def

Euclid =

Lexical closures eliminate the need of defining and naming single-use
functions. So, instead of separately defining, and then providing dEuclid as a
functional argument, one could directly use Dminkowski(*, *, 2) as an
equivalent binary function.

4.3.1 Array Algebra Second-order Functions
An array constructor returns an array of given type and shape. It expects a
unary function (or closure) that takes a vector of logical subscripts as a
single argument, and computes the array elements:

ARRAY(type, shape, mapper)

An array mapper maps over a collection of 1≥n aligned arrays. It
returns a new array of given type aligned to that collection. It expects an n-
ary function (or closure) that is mapped over the respective elements of the
given arrays:

MAP(type, mapper, v1, ..., vn)

An array condenser computes an intra-array aggregate value applying a
given aggregate operation to all array elements. No particular order is
guaranteed; hence the aggregate operation (represented by a binary function
or closure) is required to be commutative and have identical domain and
range.

CONDENSE(op, v)

An additional unary filter function, if provided, will be applied first, in
order to select elements based on their value:

CONDENSE(op, v, filter)

Intra-array aggregate functions like array_sum(), array_avg(), etc.
are equivalent to particular condenser calls.

The usage examples of these second-order functions are given in [8], in
the context of a geo-informatics application.

 55

4.4 Foreign Functions
As mentioned above, a typical scientific or engineering data processing task
involves both data retrieval and extensive computations. While the querying
capabilities of SciSPARQL address the data retrieval task in a more general
and expressive way than generally seen in manually written programs,
calling various computational routines should stay similar to the way it is
normally done in C, Python, or Matlab. At the same time, the query
optimizer should retain the freedom to call the filtering and post-procesing
tasks in the optimal order, based on the cost and cardinality estimates, as
explained below.

For this purpose, SciSPARQL offers a mechanism for extensibility with
foreign functions. While being implemented in algorithmic languages
(currently C/C++, Java, Lisp, Python, or Matlab), these functions are used
directly in a query: the SELECT clause typically contains the post-processing
expressions, and FILTER/HAVING clauses contain the expressions that filter
the potential query solutions. In the same way as functional views, foreign
functions can be used to form lexical closures and be passed to second-order
functions, as explained in Section 4.3.

The process of introducing a foreign function to SciSPARQL typically
involves three steps:

• providing a function implementation or a wrapper for a library
function, with the signature (header) compatible to SciSPARQL,

• linking the implementation to SSDM (mechanisms for different
languages vary), and

• defining the new SciSPARQL function using the DEFINE FUNCTION
statement, optionally providing cost and cardinality estimates.

For example, the following function implemented in Java would return
real square roots (if any) of its real or integer argument:

public class MyLib {
 public void sqroot(CallContext cxt, Tuple tpl) throws AmosException
 {
 double x;
 if (tpl.isDouble(0)) x = tpl.getDoubleElem(0);
 else if (tpl.isInteger(0)) x = tpl.getIntElem(0);
 else return;

 if (x >= 0.0) {
 double r = Math.sqrt(x);
 tpl.setElem(1, r);
 cxt.emit(tpl);
 if (x > 0.0) {
 tpl.setElem(1, -r);
 cxt.emit(tpl);
 }
 }
 }
}

56

Such a Java implementation of a SciSPARQL foreign function is
effectively static, and returns the results by calling cxt.emit(). Each call to a
foreign function may thus yield zero or more results. The arguments and
results are passed using a single Tuple instance, where the first
tpl.getArity()-1 positions are filled with arguments, and the function has to
fill the last one with its result before emitting. In all these respects, C/C++
and Lisp interfaces are similar and offer the same degree of flexibility, while
Python and Matlab interfaces offer a direct mapping of SciSPARQL
function arguments to those of the implementing function.

Since SciSPARQL is a dynamically typed language, in all cases a runtime
type check is necessary. By convention, as explained in Section 3.6, a
runtime error is not an exception, but instead the absense of any emitted
result. An invalid value passed to a filter or postprocessing function is
equivalent, e.g., to an unmatched triple pattern, simply resulting in a
discarded solution. Hence, AmosException is reserved only for so-called
internal errors, and cannot be thrown because of the wrong input.

Linking of such a Java implementation is achieved by including the
bytecode for MyLib into Java's CLASSPATH when running SSDM under JVM.
In case of Python, the source code needs to be placed in PYTHONPATH. In case
of C/C++, linking involves compiling a separate dynamic-link library, and
dynamically loading it into SSDM process, by issuing
LOAD_EXTENSION('mylib'), referring to mylib.dll in Windows path or
libmylib.so in Linux library path. Lisp source files are loaded in a similar
way using SOURCE_LISP(). Matlab foreign functions require no additional
linking, since they are available as callbacks from the SSDM process
embedded into Matlab.

Finally, the SciSPARQL definition of sqroot() would look like:

DEFINE FUNCTION sqroot(?x)
 AS JAVA 'MyLib/sqroot' COST 4 FANOUT 1

Here the optional COST and FANOUT parts specify the cost and cardinality
estimates. Even very rough estimates would help the optimizer much better
than the absence of any. By convention, the unit cost corresponds to a simple
arithmetic operation like + or * over scalar operands. FANOUT specifies the
average amount of results emitted per function call - in our case it averages
to one (i.e. zero for negative arguments and two for positive).

Whenever possible, the users are encouraged to provide foreign functions
as multidirectional [58] so that the optimizer might choose to compute the
function arguments if the result happens to be bound eariler. Such
definitions are made by specifying the alternative binding patterns as strings
composed of 'b' for bound and 'f' for free (or, respectively, '-' and '+'), and
providing an implementation for each. For example, if a similar

 57

implementation square() is defined9 in MyLib Java class, the multidirectional
definition would be:

DEFINE FUNCTION sqroot(?x) AS
 FOR 'bf' JAVA 'MyLib/sqroot' COST 4 FANOUT 1
 FOR 'fb' JAVA 'MyLib/square' COST 1 FANOUT 1

In this example we have shown a function dealing with simple types, like
Double and Integer, wich are mapped to Java's (or other languages') native
type system. Since the RDF with Arrays data model introduces RDF-specific
types, like langage- and locale-annotated strings, typed literals, URIs, and
most notably, Numeric Multidimensional Arrays; each language interface
provides the additional classes for each of these. For example, a Java
implementation would use UString, TypedRDF, URI, and NMA (array) wrapper
classes defined in ssdm package. Each of them provides constructors and
field accessors to facilitate the native data processing.

The complete extensibility interface documentation for each language is a
part of the SciSPARQL User Manual [146].

4.5 Calling SciSPARQL from Algorithmic Languages
SciSPARQL queries can easily be incorporated into traditional algorithmic
programs - this appoach would be somewhat opposite to the one descibed in
the previous section. However, both approaches are typically combined in
sufficiently complex real-life applications. Declarative SciSPARQL queries
may thus be embedded in traditional data processing routines, which might
include data acquisition, logging, visualisation, user interactions, or
feedback loops in a control system.

The process of calling SciSPARQL queries (or SciSPARQL functions as
parameterized queries - see Section 4.2) relies on the concepts of connection
and scan (result set), and involves the following steps:

• establishing a connection to SSDM server,
• passing a query string (or a function name and actual arguments) to

the server, and retrieving a scan,
• iterating through the scan, effectively running the query execution

plan just enough to retrieve yet another result,
• closing the scan,
• closing the connection.

9 The implementation of square() should be aware of the binding pattern it is called

with, as it has to retrieve its de-facto argument from position 1 and write its result into
position 0. For this reason, sqroot_fb() might be a better name for such implementation.

58

An important scalability feature is the lazy evaulation of SciSPARQL
queries. A query does not have to be executed in its entirety in order to
obtain a scan. Instead, it is the scan object that calls back SSDM in order to
advance the query execution on demand. After retrieving each result, the
application program is free close the scan, thus terminating the query - a
feature more powerful than LIMIT clause inside a query, as any application
logic can be involved. However, providing the LIMIT clause is still a good
practice when the number of results to retrieve is fixed - this provides more
freedom to the optimizer.

Chapter 7 describes the usage of embedded SciSPARQL queries in
greater detail, in the context of Matlab integration. Java, C/C++, and Python
programs may use the respective APIs, implementing the Connection and
Scan classes.

Both this API and the Foreign Functions interface described in the
previous section are the essential parts of the underlying Amos II [136]
database management system. SSDM extends both of these in order to
handle its type system - RDF types and arrays, and provides its own
documentaion and usage examples. The API documentian is part of the
SciSPARQL User Manual [146], libraries, header files, and code examples
are part of SSDM.

 59

5 Scientific SPARQL Database Manager

Scientific SPARQL was developed along with its implementation - a
software system called Scientific SPARQL Database Manager, or SSDM for
short.

This chapter describes the internal architecture of SSDM's kernel, while
the back-end and storage manager interfaces are explained in Chapter 6.
Section 5.1 first presents an architectural overview including the query
processing steps, illustrated by an example. Next, in Section 5.2 in-memory
implementations of arrays and array operations in SSDM are explained in
detail. Section 5.3 introduces data loaders from RDF serialization formats,
including the array apprehension mechanisms, and external links that may
be followed in a lazy fashion, resulting in array proxies.

Section 5.4. describes the process of translating SciSPARQL queries to
AmosQL. It begins with the formal defintion of the SciSPARQL statement
structure in Section 5.4.1, followed by the necessary refinement of the
standard SPARQL semantics in Section 5.4.2. Certain restrictions are lifted,
and a clear operational semantics is defined for all valid SciSPARQL
queries. Next, the target language query structure and semantics is described
in detail in Section 5.4.3, along with the extensions made to it in order to
implement SciSPARQL (Section 5.4.4). Finally, Section 5.4.5 gives a formal
definiton of the translation algorithm - we reccommend this section mainly
for those who are going to do their own implementation of SPARQL or a
similar language, and are facing related challenges. Translations of
aggregate functions, grouping, array access, functional views, second-order
functions and path queries are explained in separate sub-sections.

Section 5.5 completes the discussion by raising interesting issues with the
rdf:first and rdf:rest properties, which become polymorphic in
SciSPARQL, due to the backwards-compatibility requirement. Solutions are
presented, along with illustrative examples.

60

5.1 Architecture overview
Structurally, SSDM is comprised of a core (central box in Figure 8) capable
of answering SciSPARQL queries, loading RDF with Arrays data for storage,
executing external functions and implementing an open set of
wrapper/mediator and storage back-end interfaces.

RDBMS

RDF
Database

Numeric
arrays

• Relational
backend API
(JDBC-based)

SSDM
SciSPARQL Database Manager

USER

SciSPARQL
queries / updates

SciSPARQL
results Python,

Java,
MATLAB, ..

engines

External
functions

In-memory database

RDF importer

generic storage back-end/wrapper
interface

• file
wrapper

functional
extensibility

interface

binary files

... ...

• serialized
RDF

• file links

RDBMS

RDF
Database

Numeric
arrays

• Relational
backend API
(JDBC-based)

SSDM
SciSPARQL Database Manager

USER

SciSPARQL
queries / updates

SciSPARQL
results Python,

Java,
MATLAB, ..

engines

External
functions

In-memory database

RDF importer

generic storage back-end/wrapper
interface

• file
wrapper

functional
extensibility

interface

binary files

... ...

• serialized
RDF

• file links

Figure 8. The SSDM Architecture, including interfaces and extensions

Technically, SSDM is a major extension to the Amos II main-meory
DBMS, utilizing its query processing facilities including AmosQL and
ObjectLog query representations, query optimizer, cost model, execution
algebra, extensibility mechanisms, inter-process communications, and other
facilities that proved quite useful both in research prototyping and
production scenarios.

SSDM uses the in-memory database of Amos II to store/cache RDF
graphs, so that the graph pattern matching is performed using its main-
memory based indexing mechanisms. Array data can also be stored and
procesessed in main memory - we will refer to this case as the main-memory
scenario in Chapter 6. Since SSDM is built to accommodate large amounts
of numeric data, the generic storage back-end/wrapper mechanism
(described in Section 6.1) is used to retrieve data from (or store the data in)
an open set of storage systems, and to delegate array processing to these

 61

systems whenever possible. Sections 6.2 - 6.3 describe the Relational back-
end API and the specific optimization techniques. A setting where arrays are
stored directly in binary files is described in Chapter 7.

RDF with Arrays graphs are defined either with a custom-built wrapper
over a non-RDF data model, (as described in Section 2.3), produced
internally using SPARQL Update syntax (Section 3.9), or imported from
RDF files using the RDF importer (Section 5.3), where the numeric array
data is either consolidated from an RDF-based notation (Sections 5.3.2 -
5.3.3) or loaded lazily from binary files using file links (Section 5.3.1) - a
specific type of URIs.

SciSPARQL queries are extensible with foreign functions, which can be
defined in one of the supported algorithmic languages. For this purpose,
SSDM features a functional extensibility interface (Section 4.4). These
foreign functions can be used in queries for filtering or post-processing the
results, and the query optimizer can be provided the necessary information
for optimizing such external calls (ibid).

An SSDM process can run either as a server, accepting connections from
SSDM clients, as a client, or stand-alone. The communication is done low-
level via TCP sockets, with all data objects being marshalled using
serialization methods provided for their classes. The server instances can
easily be clustered using centralized (star-shaped) or decentralized (peer-to-
peer) network configurations.

For the query part, SSDM currently offers
• a text based-interpreter console for direct user interaction, in case of a

stand-alone/client process,
• C and Java APIs allowing to send SciSPARQL queries and updates,

and access the query results in terms of the host language data
structures (explained in Section 4.5), and

• MATLAB front-end, allowing seamless integration of SciSPARQL
queries into typical scientific and engineering workflows (described
in Chapter 7).

The SSDM architecture is best illustrated by a scenario, which includes
loading an RDF with Arrays dataset and answering a SciSPARQL query.

5.1.1 Example Dataset

As a running example, we are going to extend the RDF dataset from the
previous chapter, illustrated in Figure 6. It features an experiment instance of
a class ex:OurExperiment, with attached realization instances of another class
ex:OurExperimentRealization. Both have a number of properties, including
array-valued properties ex:initialState and ex:result.

62

Let's first consider the following Turtle file being loaded into SSDM:

@prefix ex: <http://udbl.uu.se/ex#> .

ex:experiment1 a ex:OurExperiment ;
 ex:simulationMethod ex:OurSimulationAlgorithm .

_:r1 a ex:OurExperimentRealization ;
 ex:inExperiment ex:experiment1 ;
 ex:id 1 ;
 ex:initialState (0 0.5 1 1 1 1 0.5 0) ;
 ex:iterations 1000 ;
 ex:parameter_A 0.3 ;
 ex:parameter_B 0.85 ;
 ex:result <file://realization_1.mat#Res> .

Essentially, this file combines data and metadata describing one instance
of the ex:OurExperiment class, and one instance of the
ex:OurExperimentRealization class. The schema of this RDF dataset is
implicit, and can be illustrated by the ER-diagram in Figure 9, with array-
valued properties shown as 3D rectangles.

OurExperiement

OurExperiementRealization

inExperiment

simulationMethod

1

N

iterations

parameter_A

parameter_B

initialState result

id

OurExperiement

OurExperiementRealization

inExperiment

simulationMethod

1

N

iterations

parameter_A

parameter_B

initialState result

id

Figure 9. Implicit ER model, inferred from the first part of the G1 example dataset

Two syntactic options are used to supply arrays in a Turtle file:
• RDF Collections syntax for the ex:initialState property, utilizing

array apprehension syntax described in Section 5.3.2, and
• file links for the ex:result property, described in Section 5.3.1.

As this Turtle file is imported into SSDM, ten RDF triples become stored
as a default graph in SSDM's in-memory database. Two triples are array-
valued: one corresponding to ex:initialState stores a memory-resident
array as its value, which is consolidated from an RDF collection of
numbers. The value of the ex:result triple is read from a linked file, using
the additional information (a variable name) provided after the '#' sign. As
we show in Section 6.1, it is not necessary to load the array content into
memory as SSDM allows for lazy array data retrieval. Still, the array shape
and element type information need to be read from a linked file at the
loading stage, so the linked files are required to be available on the server
file system at this point.

 63

One of the benefits of using RDF for metadata, compared with the
relational data model, is that adding new properties is easy, and does not
require redesign of the whole database. For example, at some later point one
might decide to store an additional parameter C, and move the
ex:simulationMethod property down to the ex:OurExpermientRealization
class:

_:r314 a ex:OurExperimentRealization ;
 ex:inExperiment ex:experiment1 ;
 ex:id 314 ;
 ex:simulationMethod ex:OurSimulationAlgorithm_v2;
 ex:initialState (0 0 0 0.5 0.5 0 0 0) ;
 ex:iterations 2000 ;
 ex:parameter_A 0.3 ;
 ex:parameter_B 0.9 ;
 ex:parameter_C 3.14 ;
 ex:result <file://realization_314.mat#Res> .

Such a realization instance still belongs to the same class, and is
connected to the same experiment instance as the realization above. As for
the ex:simulationMethod property that can now be attached to instances of
different classes, SPARQL makes it easy to query using UNION and
OPTIONAL constructs, , as shown in Section 3.3.2.

We will refer to this example dataset, including all the triples attached to
_:r1 and _:r314, as graph G1 throughout this chapter.

5.1.2 Example Query
A typical SciSPARQL query contains a graph pattern, filtering and post-
processing expressions.

Q1: Select the average of the simulation result values at the last iteration,
together with realization id, for those realizations that have parameter
A ≥ 0.25 and the initial state values limited by 0.75 (assuming the
ex:result arrays are 2-dimensional, and the second dimension is the
iteration number):

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id (array_avg(?R[:, ?iterations]) AS ?res)
 WHERE { ?realization a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:result ?R ;
 ex:iterations ?iterations ;
 ex:parameter_A ?a ;
 ex:initialState ?initialState .
 FILTER (array_max(?initialState) < 0.75
 && ?a >= 0.25) }

This query has a single block of conditions, and, conceptually, the process
of its evaluation consists of three different steps, as illustrated in Figure 10:

64

• applying a graph pattern,
• filtering the solutions, and
• postprocessing the results.

?realization

?id

?iterations

ex:id

ex:iterations

?R

ex:result

?initialState

ex:initialState

?a

ex:parameter_A

ex:OurExperimentRealization

a

array_max(?InitialState) < 0.75 && ?a ≥ 0.25

array_avg(?R[:, ?iterations])

Match pattern:

Filter solutions:

Postprocess:
Figure 10. Conceptual stages of answering query Q1

By the solution of a graph pattern we will denote the set of bindings, one
for each variable in a graph pattern, which belong to the underlying RDF
graph and do not contradict that pattern. For example, the complete list of
solutions for the single graph pattern in Q1, given the RDF graph G1 in
Section 5.1.1, can be represented as a table:

?realization ?id ?R ?iterations ?a ?initialState
_:r1 1 <array

proxy>

1000 0.3 (0 0.5 ...

_:r314 314 <array
proxy>

2000 0.3 (0 0 ...

At the filtering stage, the first solution is filtered out by the first conjunct,
so only the second solution contributes to the result. However a more
detailed look at the conditions in Q1 might suggest that we do not really
need to retrieve the complete solutions in order to evaluate the filters - by
binding only the ?a and ?initialState variables first, we might skip
retrieving the other data from the RDF graph in some cases.

In the next subsections we show how SSDM solves this typical query
optimization task, and comes up with an efficient execution plan.

 65

5.1.2.1 Query translation
The first step is translating SciSPARQL to AmosQL:

select id, rdf:array_avg(aref(R,1,rdf:minus(iterations,1)))
 from Literal realization, Literal a, Literal initialState,
 Literal iterations, Literal R, Literal id
 where (realization,
 URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (realization, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0)
 and (realization, URI('http://udbl.uu.se/ex#result'), R)
 in GRAPH(0)
 and (realization,
 URI('http://udbl.uu.se/ex#iterations'), iterations)
 in GRAPH(0)
 and (realization, URI('http://udbl.uu.se/ex#parameter_A'), a)
 in GRAPH(0)
 and (realization,
 URI('http://udbl.uu.se/ex#initialState'), initialState)
 in GRAPH(0)
 and rdf:array_max(initialState)<0.75 and a>=0.25;

Here we can see that all RDF triples are accessed via the GRAPH()
function, whose argument denotes a specific graph, with 0 denoting the
default graph. A triple pattern is matched using the '(s p o) in' syntax for
locating tuples in AmosQL. All SciSPARQL query variables are mapped to
AmosQL query variables, and functions array_avg() and array_max()
are translated to their corresponding AmosQL implementations. Prefixed
URIs are expanded into string arguments to the URI() constructor function.

Since SciSPARQL is dynamically typed, while AmosQL is statically
typed, a common supertype Literal for all RDF terms is used in variable
declarations. Additionally while e.g. comparison operators are defined
across any type of arguments, some other arithmetic operators like '-' have
to be translated to calls to a generalized function like rdf:minus(), which
does the dynamic type checking. That call is needed to translate 1-based
array indexing in the current SciSPARQL dialect to the 0-based array index,
as required by the AmosQL function aref(), introduced in SSDM. The
aref() function extracts an array subset given the array value of variable R,
along the second dimension (argument 1) with supplied index iterations-1.

5.1.2.2 ObjectLog representation: predicates and binding patterns
The AmosQL query is then further translated into a logical expression of
ObjectLog predicates. Extra variables are introduced to flatten out the nested
functional-style expressions:

(*SELECT* ID+ _V29+) <-
(AND (GRAPH 0 REALIZATION
 #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]
 #[URI "http://udbl.uu.se/ex#OurExperimentRealization"])
 (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#id"] ID)
 (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#result"] R)

66

 (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#iterations"]
 ITERATIONS)
 (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#parameter_A"] A)
 (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#initialState"]
 INITIALSTATE)
 (RDF:ARRAY_MAX INITIALSTATE _V26)
 (< _V26 0.75)
 (>= A 0.25)
 (RDF:MINUS ITERATIONS 1 _V27)
 (AREF R 1 _V27 _V28)
 (RDF:ARRAY_AVG _V28 _V29))

Here, URI() constructor calls with constant arguments are evaluated at
compile time, which is a practical way to reduce the size of the optimization
problem. Any other AmosQL function (whether stored or foreign) with a
signature f(x1, ... xn) -> (y1, ..., ym) is matched with an ObjectLog predicate (F
X1 ... Xn Y1 ... Ym). Any derived AmosQL functions would have been
expanded and flattened at this step, and any logical expressions would be
normalized to Disjunctive Normal Form.

Every ObjectLog predicate has a number of allowed binding patterns, and
a cost and fanout (i.e. cardinality multiplier) estimate associated with each of
them. Predicates representing stored functions can be evaluated with all, any,
or none of their arguments bound: the fanout estimates depend on the
storage statistics and cardinality constraints provided, while the cost to
return each result depends on the available access paths.

Foreign functions (whether built-in or user-defined) are different. For
example, a comparison operator '<' can only be evaluated when both of its
arguments are bound, whereas the rdf:minus() arithmetic function is
represented by a ternary ObjectLog predicate (RDF:MINUS A B X), which can
be evaluated in either of three directions: each of the variables can be
computed while the other two are bound. We will denote such binding
patterns as --+, -+-, +--, where '-' corresponds to the incoming bound
variable and '+' corresponds to the variable that gets its binding as the result
of predicate execution.

Another example is (AREF A DIM IDX X), which can either compute a
single slice X when the original array A, dimension DIM and slice index IDX
are bound (pattern ---+), or compute all possible slices of array A in the
dimension DIM, together with the corresponding slice indexes IDX (pattern
--++). The fanout estimates are largely different, while the cost of
generating each result is the same for both binding patterns.

5.1.2.3 Execution plan
The task of the query optimizer is to find an optimal execution plan, by
selecting the right (i.e. correct and most suitable) order of the predicates, and
thus determining their binding patterns and the transition of information

 67

through the variables. In this case, the Nested Loop Join operator is used to
implement the conjunction.10

The stored GRAPH predicate can be regarded as a relational table with four
columns that is repeatedly joined with itself, in order to retrieve the
realization instances and the values of their properties. The first appearance
of GRAPH in the execution plan will bind the realization variable, while the
subsequent ones will use the discovered bindings for that variable.

The query optimizer (and SSDM in general) has no way of knowing the
implicit RDF schema shown in Figure 9, so it is prepared to encounter, for
example, multiple ex:parameter_A values for a single realization instance,
and multiple ex:result values independently. Hence, the Nested Loop Join
approach takes care of the possible multiplicity of properties, producing a
result for each discovered combination.

(*SELECT* ID+ _V29+) <-
(NESTED-LOOP-JOIN
 (HASH-INDEX-SCAN GRAPH-+--
 0 REALIZATION+
 #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]
 #[URI "http://udbl.uu.se/ex#OurExperimentRealization"])
 (HASH-INDEX-SCAN GRAPH---+
 0 REALIZATION- #[URI "http://udbl.uu.se/ex#parameter_A"] A+)
 (CALL GE-- A- 0.25)
 (HASH-INDEX-SCAN GRAPH---+
 0 REALIZATION- #[URI "http://udbl.uu.se/ex#initialState"]
 INITIALSTATE+)
 (CALL NMA-AGGREGATE--+ INITIALSTATE- 4 _V26+)
 (CALL LT-- _V26- 0.75)
 (HASH-INDEX-SCAN GRAPH---+
 0 REALIZATION- #[URI "http://udbl.uu.se/ex#id"] ID+)
 (HASH-INDEX-SCAN GRAPH---+
 0 REALIZATION- #[URI "http://udbl.uu.se/ex#result"] R+)
 (HASH-INDEX-SCAN GRAPH---+
 0 REALIZATION- #[URI "http://udbl.uu.se/ex#iterations"]
 ITERATIONS+)
 (CALL PLUS-+- 1 _V27+ ITERATIONS-)
 (CALL NMA-PROJECT---+ R- 1 _V27- _V28+)
 (CALL NMA-AGGREGATE--+ _V28- 2 _V29+)))

The same execution plan is represented graphically in Figure 11. The
vertical order of predicate boxes corresponds to their order in the nested
loop, the 'output' or free variables are underlined, and the arrows show the
data dependencies among the predicates. The stored predicate GRAPH appears
with the hash-index-scan access method, and the foreign predicates are
accessed by calling their implementations, corresponding to the binding
patterns chosen.

10 In general, the Amos II optimizer may choose to implement the conjunction of predicates
differently, e.g. with a Merge Join operator,

68

hash-index-scan GRAPH-+--
(0, Realization, rdf:type, ex:ourExperimentRealization)

hash-index-scan GRAPH---+
(0, Realization, ex:parameter_A, A)

call GE-- (A, 0.25)

hash-index-scan GRAPH---+
(0, Realization, ex:initialState, initialState)

call LE-- (V26, 0.75)

call NMA-AGGREGATE--+
(initialState, 4, V26)

hash-index-scan GRAPH---+
(0, Realization, ex:id, id)

hash-index-scan GRAPH---+
(0, Realization, ex:Result, R)

hash-index-scan GRAPH---+
(0, Realization, ex:iterations, iterations)

call PLUS-+- (1, V27, iterations)

call NMA-PROJECT---+
(R, 1, V27, V28)

call NMA-AGGREGATE--+
(V28, 2, V29)

SELECT

hash-index-scan GRAPH-+--
(0, Realization, rdf:type, ex:ourExperimentRealization)

hash-index-scan GRAPH---+
(0, Realization, ex:parameter_A, A)

call GE-- (A, 0.25)

hash-index-scan GRAPH---+
(0, Realization, ex:initialState, initialState)

call LE-- (V26, 0.75)

call NMA-AGGREGATE--+
(initialState, 4, V26)

hash-index-scan GRAPH---+
(0, Realization, ex:id, id)

hash-index-scan GRAPH---+
(0, Realization, ex:Result, R)

hash-index-scan GRAPH---+
(0, Realization, ex:iterations, iterations)

call PLUS-+- (1, V27, iterations)

call NMA-PROJECT---+
(R, 1, V27, V28)

call NMA-AGGREGATE--+
(V28, 2, V29)

SELECT
Figure 11. The graphical representation of Q1 execution plan

The query optimizer wisely chooses to find the ex:realization instances
using the predicate with a single unbound variable - a type predicate. Next,
parameter A value is extracted, so that the simple inequality filter can be
applied as early as possible. Next, the array value of the ex:initialState
property is extracted from the RDF graph, and an intra-array aggregate
function is evaluated - for another filter to take place. Given both filters are
satisfied, the remaining properties are extracted and post-processing is
performed.

5.1.2.4 Array operations
The execution plan above contains three array operations - two calls to the
generic external function NMA-AGGREGATE, implementing built-in array
condensers like array_max() and array_avg(), and one call to NMA-
PROJECT. The principal difference between these two functions is that NMA-
AGGREGATE actually needs the array contents in order to compute the result,
while NMA-PROJECT does not.

 As explained in Section 5.2, a memory-resident array consists of two
objects - an array descriptor and an array storage object. A new array
descriptor object is created whenever an operation like NMA-PROJECT, or

 69

any other operation selecting a subset of an array, or altering its shape in
some other way is applied. The new descriptor will be pointing to the same
array storage object, so that the massive numeric data making up the array
contents is not copied or even accessed.

Furthermore, when an array is stored externally, it is represented by an
array proxy object in SSDM, which is very much similar to an array
descriptor, except that it contains the information necessary to identify the
external storage system (a back-end, or a wrapped database, or a linked file)
and to locate a particular array instance within it. Whenever an operation
like NMA-PROJECT is applied to an array proxy, a new array proxy object is
created, and this storage-relevant information is copied.

Hence, the actual array data retrieval from a linked file may be done just
before the call to NMA-AGGREGATE in case of externally stored ex:result
arrays. This data retrieval is implemented by the array-proxy-resolve,
APR() function, which materializes the specified subset of an external array,
based on the information in an array proxy, into a memory-resident array.
The general approach to implement APR() for arbitrary array storage
systems is described in Section 6.1.

One benefit of this lazy data retrieval is that typically only a small subset
of an array happens to be needed for the actual computation. In our example,
we only retrieve the last iteration's result from each simulation. Another
reason is that an execution plan might contain additional filter conditions
between generating array proxies and materializing them. Section 6.2
discusses further optimizations of this process by aggregating these resolve
operations into pipelined streams in case of SQL-based storage back-ends.

5.2 Numeric Multidimensional Arrays
The formal definition of the Numeric Multidimensional Array (or array for
short) is given in the beginning of Section 4.1, followed by the definitions of
array operations. This section explains implementation details of arrays and
array operations in SSDM

5.2.1 Storage of Resident Arrays
In SSDM's native main-memory data storage, arrays are represented as
descriptor objects referring to storage objects, as shown in Figure 12. A
storage object compactly stores array elements in continuous memory, while
descriptor objects provide very space efficient representations of derived
arrays. This allows us to compute derived arrays without copying or
otherwise accessing the array contents.

70

A storage object represents a one-dimensional array of Integer, Double, or
Complex numbers. It contains a small header storing the element type. A
descriptor object stores a pointer to a storage object, the number of
dimensions dims of the array, the index offset of the first element in the
storage object referenced in a derived array, and a sequence of dimension
access descriptors (DADs), each describing one dimension of a derived
array enumerated from 0 and up.

A given storage object can have many descriptors corresponding to
different derived arrays. When a new array is created, both the descriptor
and storage objects are allocated in main memory. When a derived array is
produced, a new descriptor object is created directly pointing to the storage
object of the original array. Descriptor objects are automatically freed by the
garbage collector whenever no variable or object refers to it. The garbage
collector frees the storage object when the last descriptor object referring to
it is freed.

0 1

dim 3 5

so 0 1

lo 0 0

stride 1 1

am 5 1

dims 2

offset 0

storage

0 1

dim 3 5

so 0 1

lo 0 0

stride 1 1

am 5 1

dims 2

offset 0

storage

=

1514131211

109876

54321

A

type size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

integer 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

type size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

integer 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dimension access descriptors (DAD)

descriptor object

storage object

Figure 12 In-memory array representation

For each array, its dimension sizes are stored in corresponding dim fields
of its DADs. The storage order (so) values enumerate the dimensions from
outmost to inmost dimension. The lower bounds (lo) are initialized to 0, and
the iteration strides (stride) are initialized to 1. In this simple case, the
access function a(i1,...,in) that maps the array subscripts to the storage index
takes the form:

() () ∏
>

− ⋅−=
k

soso

m
mkn

km

iiia dim1,..., 10

This expression is simplified by pre-computing the access multipliers
(am), representing invariant parts of the above formula per array dimension:

 71

∏
>

=

km soso

m
mkam dim

In the example in Figure 12, am0=5 and am1=1, so that element A[2,3]

would be dereferenced to storage index a(2,3) = 7, containing the element 8.

In the most general case, array access involves a physical offset, some
iteration strides, and some lower bounds of each logical index. The complete
form of an access function aA for accessing one element (i1,…,in) of the array
A is:

() () k
k

k
A
knA amipoffsetiia ⋅+=,...,1 (1)

where

() () kkkk
A
k strideiloip ⋅−+= 1

The function ()k
A
k ip projects a logical subscript ik of the derived array A

to a (0-based) logical subscript of the basic array.

For example, the element D[3] of the subarray e presented in Figure 13d
below would be addressed as aD(3)=7, which corresponds to the same
element 8.

5.2.2 Array Transformations
Below we describe the three central array operations capable of producing
new descriptor objects (or, similarly, new array proxies). These array
transformations do not access the array content, whether it resides in a main-
memory storage object or is externally stored. The fourth operation - array
element access, is also delayed in case of external arrays.

1) Permutation of dimensions is a multidimensional generalization of the
matrix transposition operation. Given an n-dimensional numeric array A, the
order of logical subscripts used to access its elements can be changed
without affecting the physical order. This involves swapping the DADs,
while retaining their access multipliers (am) intact, as illustrated in Figure
13b.

72

0 1

dim 3 5

so 0 1

lo 0 0

stride 1 1

am 5 1

dims 2

offset 0

storage

0 1

dim 3 5

so 0 1

lo 0 0

stride 1 1

am 5 1

dims 2

offset 0

storage

=

1514131211

109876

54321

A

0 1

dim 5 3

so 1 0

lo 0 0

stride 1 1

am 1 5

dims 2

offset 0

storage

0 1

dim 5 3

so 1 0

lo 0 0

stride 1 1

am 1 5

dims 2

offset 0

storage

=

15105

1494

1383

1272

1161

TA

0

dim 3

so 0

lo 0

stride 1

am 5

dims 1

offset 2

storage

0

dim 3

so 0

lo 0

stride 1

am 5

dims 1

offset 2

storage

151311

1086

type size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

integer 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

type size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

integer 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

dim 2 3

so 0 1

lo 1 0

stride 1 2

am 5 1

dims 2

offset 0

storage

0 1

dim 2 3

so 0 1

lo 1 0

stride 1 2

am 5 1

dims 2

offset 0

storage

?a[1:3,0:5:2]=

13

8

3

?a[:,2]=
0

dim 5

so 1

lo 0

stride 1

am 1

dims 1

offset 5

storage

0

dim 5

so 1

lo 0

stride 1

am 1

dims 1

offset 5

storage

?a[1,:]=

(a) (b)

(c) (d) (e)

10

9

8

7

6

Figure 13. Array transformations in terms of descriptor objects

The operation Permute(A, h0,…,hn-1) takes an array A and a vector of
distinct permutation indices h0,…,hn-1, 0≤hk<n and returns a derived array B
such that the access functions map to the same elements as those pointed to
by the permuted subscripts:

() ()
10

,...,,..., 10 −
=− nhhBnA iiaiia

Permute is a SciSPARQL function that can be used in a SELECT clause or

FILTER expression. Matrix transposition is defined by the functional view:

DEFINE FUNCTION Transpose(?matrix)
 AS SELECT Permute(?matrix,1,0);

2) Slicing is an operation that can be applied to each array dimension
independently, resulting in an array subset specified by subscripts and a
stride, as shown in Figure 13c. Given an n-dimensional numeric array A, the
operation Subk(A,lok,hik,stridek) results in an derived array B of the same
dimensionality, where the first element is defined by lok:

() ()0,...,00,...,,...,0 BkA aloa =

Effectively, the lo value in the k-th DAD of the resulting array B is:

()k
A
k

B
k loplo = ,

 73

Analogously, the iteration stride of B is multiplied by the stridek
argument:

k
A
k

B
k stridestridestride ⋅=

The dimensions of B are defined as:

()
1

1
dim +

 −−=
B
k

B
kk

B
kB

k stride

lohip

When applied to the different dimensions, slicing operations are
completely orthogonal and commutative:

()()
()()lllkkkkl

kkkllllk

stridehilostridehiloASubSub

stridehilostridehiloASubSub

,,,,,,

,,,,,,

=
=

for any dimension indices lk ≠ and the valid lo, hi and stride values.

3) Projection involves reducing the dimensionality of an array by
selecting one subscript value in a specified dimension - either row (Figure
13d) or column (Figure 13e) of a matrix, slice of a cube, etc. Projection
removes one of the DADs, while retaining the access multipliers for the
other dimensions untouched. The operation Prk(A,ik) results in a derived
array B where the offset references the first element of B:

()0,...,,...,0 kAB iaoffset =

Similarly to slicing, the projection operations across different dimensions
can also be arbitrarily superimposed. However, since the number of logical
dimensions changes, the dimension enumeration has to be adjusted:

()() ()()
()()

<
≥

=
−

+

lkuvA

lkuvA
vuA

kl

kl
lk ,,,PrPr

,,,PrPr
,,PrPr

1

1

Projecting a 1-dimensional array results in an atomic value (in case of
memory-resident arrays) or a 0-dimensional array proxy (see Section 6.1)
pointing to such an element in an externally stored array.

4) Element access can be regarded as an ultimate superposition of array
projections (and as such, a particular case of array projections). An element
of array A identified by a vector of logical subscripts nii ,...,1 can be
defined as

[] ()()111 ...,,Pr...Pr,..., iiAiiA nnn =

Technically, however, the multidimensional storage function
()10 ,..., −nA iia defined in the previous section is used to compute the

74

particular storage address in a memory-resident array, or the offset in a new
0-dimensional array proxy object used to represent single elements of
externally stored arrays.

5.3 Data Loaders
There are two basic ways to load RDF with Arrays data into SSDM:

• using W3C SPARQL 1.1 INSERT and INSERT DATA update
statements, or

• loading RDF data from Turtle or NTriples text-based formats.

In the latter case, array data is either
• linked using Turtle file links (introduced by SSDM), or
• consolidated from one of the standard RDF representations of the

multidimensional numeric data, including RDF collections and RDF
Data Cube datasets.

The Turtle file reader in SSDM also supports NTriples [20] as a subset of
Turtle. Local files and files available on the Web via HTTP can be loaded
into a default or named RDF graph in the database using the LOAD()
directive. The parsing is performed in a streamed way, (which is also the
case with INSERT DATA statements), so arbitrarily large Turtle files are
supported.

5.3.1 File Links
According to the W3C RDF standard, a value in a subject-property-value
RDF triple can either be a URI, a blank node, or an RDF Literal. A construct
like

<file://realization_1.mat#Res>

is formally a URI, and hence would raise no error if loaded into another
RDF Store. SSDM tries to interpret it as an array value in the respective
triple.

First, the Turtle reader extracts the file extension and checks whether an
array reader plug-in is registered to handle that kind of files. SSDM is
extensible with array readers for different file formats, and any such array
reader is free either to immediately load the array into memory or produce
an array proxy, based e.g. on the array size or other properties. In the latter
case, the corresponding array-proxy-resolve routine also needs to be
registered for this particular kind of array proxies - this option is described
in Section 6.1.

 75

SSDM checks that the file is available (in this case, the file
realization_1.mat in the SSDM server's file system), and calls the array
reader, passing the part of the file link after '#' as a parameter. In the
example scenario described in 4.1, the .mat file reader accesses the file to
check whether the variable Res exists, extracts the type and shape of the
array, and returns an array proxy containing the file and variable names,
besides the usual array descriptor information. These proxies may be
resolved later or immediately.

In case of no array reader registered, or the file being not available, or
file links are disabled altogether when the _sq_resolve_file_links_
flag is false, the URI from the Turtle file will be stored as a value of the
RDF triple, treating it in the same way as any standard RDF store.

5.3.2 RDF Collections
RDF collections are described in Section 2.3.5.1 and might be used to
explicitly represent multidimensional array data in a Turtle file. The main
problem is that they are merely 'syntactic sugar' introduced by the Turtle
format to compactly represent such collections with large numbers of the
underlying RDF triples.

For example a Turtle triple

:s :p ((1 2) (3 4)) .

masks 12 additional RDF triples and 6 introduced blank nodes, as shown in
Figure 4. All this underlying information can be consolidated into a 2x2
array of integers, and SSDM does that.

An RDF collection would be identified as an array if the following
conditions about it hold:

• each element is either a number or another collection;
• all numbers appearing in collections are nested on the same level, and

only numbers do appear at that level;
• a uniform number of elements in collections are nested on each level.

The widest numeric type among the values found in the collection will be
used as the array element type.

For example, the value of the Turtle triple

:x :a ((1 2.25 3) (4 5 6)) .

will be represented with 2x3 array of real numbers in SSDM.

As another example, the value of the Turtle triple

:y :a (1 (2 3) 4) .

76

cannot be represented as an array, since it is not rectangular. Therefore it is
stored as a regular RDF sequence where the 2nd element is represented as a
one-dimensional array of two elements. This still saves the storage of four
triples and two blank nodes.

This physical compression adds new array-based semantics to collections,
while retaining the original linked-list semantics. The standard rdf:first
and rdf:next predicates are redefined over arrays, virtually connecting them
with their respective subsets. Such polymophism leads to an interesting
optimization problem, discussed in Section 5.5, together with current
solutions.

5.3.3 Data Cube Vocabulary
As the Semantic Web mainly concentrates on providing a framework for
publishing metadata, the RDF Data Cube [133], introduced in Section
2.3.5.2 provides a rich vocabulary for:

• defining the data structures - using the classes
qb:DataStructureDefinition, qb:ComponentSpecification;

• defining flat and hierarchical enumerations, a.k.a. code lists - using
the classes skos:ConceptScheme, skos:Concept;

• identifying the instances of Data Cube datasets (with an open set of
metadata attached) - using the class qb:DataSet;

• storing the observations (array elements) in terms of dimensions,
measures and attributes - using the class qb:Observation;

• defining standard slices, e.g. time series, snapshots, or otherwise
grouping the observations - using the classes qb:SliceKey, qb:Slice,
qb:ObservationGroup.

The RDF Data Cube encodes the array data results in much bigger RDF
graphs, compared to RDF collections. It suggests no particular nesting order,
and might be better suited for sparse array data. For example, the 2x2 matrix
shown on Figure 4 would take 5 RDF triples per cell:

ex:o4 a qb:Observation ;
 qb:dataSet ex:dataset1 ;
 ex:i 2 ; ex:j 2 ; ex:value 4 .

with the additional structural metadata in place:

ex:dataset1 a qb:DataSet ;
 rdfs:Label "My 2x2 matrix example" ;
 qb:structure ex:dsd1 .

ex:dsd1 a qb:DataStructureDefinition;
 qb:component
 [qb:dimension ex:i ; order 1],
 [qb:dimension ex:j ; order 2],
 [qb:measure ex:value] .

 77

A qb:DataStructureDefinition instance defines the components of a data
cube - i.e. its dimensions, measures, and attributes. Attributes may be
attached to the dataset as a whole or to particular slices. For example, a unit
of measure is semantically an attribute of each measurement, while it can be
stored once for a given dataset, to avoid redundancy. Dimension values may
also be attached to particular slices. Hence, an RDF Data Cube can be
expessed as a graph in equivalent normalized and abbreviated forms. The
concept of 'normalization' is defined as somewhat opposite to the
normalization in relational databases: dimensions, whose values are only
given once per slice (or attributes whose values are only defined once per
dataset), are said to form an abbreviated Data Cube. The equivalent
normalized cube will replicate these values for each individual
measurement.

SSDM consolidates RDF Data Cube datasets, drastically reducing the
graph size, while preserving all information therein. New array properties,
containing the numeric data extracted from the observations, will be attached
to the corresponding qb:DataSet instance. The property names would be the
same as the component names used in the original observations (ex:value in
our example). The distinct dimension values will be sorted and attached as
collections to the same qb:DataSet instance. For numeric dimensions these
lists will automatically be represented as 1D arrays. However, if for a
particular dimension all values are positive integers, their set is contiguous
and includes 1 (as for ex:i and ex:j dimensions in our example), no
mapping is needed, and those values can be used directly as array subscripts.

The conversion is done in two phases: first, the distinct dimension values
are collected, and then the allocated arrays are filled with observation data.
No qb:Observation nodes need to be stored anymore, however, they may still
be inferred (in other words, virtually reconstructed) when processing basic
SPARQL queries.

A realistic example is given in [133], both in abbreviated (with slices) and
normalized forms. The dataset represents 24 numeric observations (life
expectancy per region, per time period, per gender), along with the structural
and publication-related metadata, in accordance with the SDMX [147]
practices for the statistical data modelling. The abbreviated form consists of
206 triples. Once read into SSDM, 150 of these triples are consolidated into
a single array-valued triple, and three RDF collections for dimension values
enumeration (total 9 ordered values)11.

11 Currently, SSDM uses RDF collections to store the ordered sets of non-numeric values,
though a generalized array type might help further reducing the graph size in this example -
the current approach adds 18 triples to store RDF collections as linked lists.

78

Figure 14 below shows this Data Cube example the way it is represented
in SSDM (most rdf:label, rdf:comment, and dct:description properties are
omitted). The central node is eg:dataset-le3, representing the dataset
instance. The top-left part of the figure is occupied by the publication-related
metadata, which is crucial to finding this dataset among the others on the
web. The bottom half of the picture shows the definition of the dataset's
structure - as an instance of qb:DataStructureDefinition, with its
qb:component properties: dimensions, measures, and attributes. Some of these
are borrowed directly from the SDMX vocabulary, while some others are
mapped to the corresponding statistical concepts via the qb:concept
properties.

eg:dataset-le3

qb:DataSet

a

eg:dsd-le3

qb:DataStructureDefinition

a

qb:structure

<http://dbpedia.org/resource/Year>sdmx-attribute:unitMeasure

qb:component

qb:dimension
eg:refArea

1

qb:dimension
eg:refPeriod

qb:dimension
sdmx-dimension:sex

3

qb:componentAttachment qb:Slice

qb:measure
eg:lifeExpectancy

qb:dimension
sdmx-attribute:unitMeasure

qb:componentRequired true
qb:componentAttachment

a

sdmx-dimension:refPeriod

qb:DimensionProperty
rdf:Property

rdfs:subPropertyOf

admingeo:UnitaryAuthorityrdfs:range

sdmx-concept:refAreaqb:concept

sdmx-dimension:refArea

rdfs:subPropertyOf

interval:Intervalrdfs:range

sdmx-concept:refPeriodqb:concept

sdmx-measure:obsValuerdfs:subPropertyOf

xsd:decimalrdfs:range

qb:MeasureProperty
a

74.979.175.5
76.676.576.6
78.778.678.7
77.077.176.7

79.679.479.1
81.781.581.3
83.483.783.3
81.580.980.7

eg:lifeExpectancy
ex-geo:newport_00pr

ex-geo:monmouthshire_00pp
ex-geo:merthyr_tdfil_00ph

ex-geo:cardiff_00pt

<http://reference.data.gov.uk/id/gregorian-interval/2006-01-01T00:00:00/P3Y>
<http://reference.data.gov.uk/id/gregorian-interval/2005-01-01T00:00:00/P3Y>
<http://reference.data.gov.uk/id/gregorian-interval/2004-01-01T00:00:00/P3Y>

sdmx-code:sex-M
sdmx-code:sex-F

eg:refArea

eg:refPeriod

sdmx-dimension:sex

2

dc
t:

tit
le

Life Expectancy

dc
t:i

ss
u

ed

2010-08-10

ex-geo:wales

sdmx-subject:3.2

sdmx-subject:1.4

dc
t:s

ub
je

ct

eg:organization

d
ct

:p
ub

lis
he

r

org:Organizationfoaf:Agent

a Example orgrdfs:label

Figure 14. The RDF with Arrays consolidation of the RDF Data Cube example
dataset from [133]

The top-right part of Figure 14 shows the parts of the graph (with dashed
arrows) added by SSDM, consolidating the data from the 150 original
triples. This includes the array-valued property eg:lifeExpectancy, storing
the measure, and three collection-valued properties, storing the dimension
values. Notice that RDF node URIs shown in bold font, associated with the
qb:DataStructureDefinition instance via blank nodes, are also used as
property URIs for the corresponding qb:DataSet instance - this is the
standard RDF Data Cube way of defining and using custom properties.

Effectively, as a result of consolidation, all Data Cube components
become attached to the qb:DataSet instance - whereas some remain single-
valued (the sdmx-attribute:unitMeasure attribute), some become ordered

 79

sets (the dimensions), and some become multidimensional numeric arrays
(the eg:lifeExpectancy measure in this example). Slices are no longer used
for abbreviation - instead, the array representation of the multidimensional
data allows extracting slices on demand, e.g. for the purpose of aggregation.

Consolidating RDF Data Cube datasets helps to drastically reduce the
graph size, providing physical-level separation of data and metadata. Under
certain SSDM configurations, the resulting arrays might be stored in a
specialized back-end, while metadata is retained in memory. Another
important benefit is speeding up pattern-matching queries, by letting them
deal with much smaller RDF graphs.

5.4 Scientific SPARQL Query Processor
As illustrated by the example in Section 5.1.2, processing a SciSPARQL
query involves a number of steps:

1. Translation to AmosQL

2. Parsing to ObjectLog representation

3. Flattening and applying rewrites

4. Cost-based optimization

5. Execution runtime

This section mainly explains steps 1 and 5, which are largely
interconnected, and most of the work on implementing a SciSPARQL query
interpreter was concentrated there.

As for the intermediate steps 2 - 4, SSDM largely relies on the underlying
Amos II functionality. In this section we show that it is possible to
implement the complete SPARQL semantics (as defined by the W3C
standards [155, 156]) using the general Datalog-based query processing
architecture. Some interesting semantic mismatches were encountered, and
some of the solutions involved extensions to AmosQL, the predicate
calculus representation, and the query optimizer.

The translation process is based on the internal representation of the query
structure. The process includes:

• parsing the string representation of a SciSPARQL query, using an
SLR(1) ascending parser, resulting in a data structure Q;

• performing a number of transformations on Q, collecting lists of
variables, applying expression rewrites;

• generating the string representation tr(Q) of the generated AmosQL
query, using a recursive tree-to-text writer.

80

This section describes the SciSPARQL query structure in a formal way,
discusses the algebraic interpretations of SciSPARQL along with the related
concept of well-designed queries, and explains the structure of AmosQL
queries used for the translation and the extensions made to AmosQL. It
concludes with a formal definition of the translation function tr(Q). More
examples are introduced to illustrate important concepts as well as the
translation cases.

5.4.1 SciSPARQL Query Structure
Following is a formalized description of the W3C SPARQL 1.1 query
structure, which completely describes the SciSPARQL query structure as
well. The extensions introduced by SciSPARQL are the new kinds of
expressions (e.g. array expressions), and the new kinds statements (e.g. the
DEFINE FUNCTION statement). Also, any SciSPARQL function call with
arguments explicitly bound is also a valid SciSPARQL statement - e.g.
directives like LOAD(), SOURCE(), etc. are, syntactically, top-level function
calls.

According to the W3C SPARQL specifications, there are four basic types
of queries, differing in the kind of output they produce:

• ASK queries, returning a Boolean value;
• CONSTRUCT and DESCRIBE queries, returning sets of triples (i.e.

resulting RDF graphs);
• SELECT queries, returning sets of bindings for the output variables.

In SPARQL the result of a SELECT query always includes names of
variables, hence the SELECT list may contain either query variables, or
named expressions, where the result of an expression is bound to a new
variable. Example Q1 contains a named expression, bound to variable ?res.

For the purpose of translating SciSPARQL queries, the query structure
needs to be represented as a data structure, including named fields, sets,
sequences etc. This section describes the structure of SciSPARQL queries
on such conceptual level. The query outline, conditions and expressions
have their corresponding logical representations inside SSDM query
translator.

5.4.1.1 Basic query structure
An internal representation of a SciSPARQL query Q, on the most basic
level, includes the following components:

• Q.type: either SELECT, CONSTRUCT, DESCRIBE or ASK query;
• Q.what: a list of returned variables or named expressions for a

SELECT query, a list of result-generating triple patterns for a
CONSTRUCT query, or a single RDF term for a DESCRIBE query.

 81

In case of SELECT queries, we will further refer to this list of
expressions as a select list.

• Q.from: a list of RDF graph names identified by URIs. These graph
names are translated to AmosQL function names and arguments as a
part of the triple pattern translation. For example, GRAPH(2) for a
certain named graph, GRAPHS({2,4,5}) for a set of merged graphs, and
GRAPH(URI2GraphId(URI('http://udbl.uu.se/example'))) for a triple
pattern inside a SciSPARQL user-defined function (the RDF graph
does not have to be in the dictionary at the time of function
definition).

• Q.where: a list of conditions, typically represented by single
condition block, or a list of condition blocks, as explained below.

• Q.distinct: whether the DISTINCT option is specified for the query in
general. It controls whether only distinct results will be emitted from
the query.

• Q.orderby: a list of variables on which to perform sorting of the query
results, where each variable supplemented with a direction flag. The
sorting is done by default in ascending order, and if multiple variables
are specified, each following variable is only used for comparison if
all previous variables have equal values across the two result rows
being compared.

• Q.offset and Q.limit expressions, defining the desired partitioning of
the query results. These must evaluate to Integer values, and can not
depend on variables bound inside the query (i.e. they must be constant
in SELECT queries, and may depend on function parameters in
SciSPARQL function views).

5.4.1.2 Aggregate query structure
Built-in SciSPARQL functions are categorized into aggregates, e.g. SUM()
or MAX(), which operate on bags of argument values, and non-aggregate
functions, e.g. round(), mod(), which normally return results for separate
argument bindings. Similarly, functional views and foreign functions in
SciSPARQL (see Chapter 4) are defined using either DEFINE FUNCTION
or DEFINE AGGREGATE syntax, hence SSDM is able to recognize the
aggregate functions used in queries.

Based on this, there are two kinds of SELECT queries, differing in
semantics and translation approach used: basic queries and aggregate
queries. The latter, by definition, have at least one aggregate function call
used in the SELECT or HAVING clause. Q1 above is an example of a basic
SELECT query, while Q2 below is an example of an aggregate query:

Q2 (standard W3C SPARQL 1.1): Select the number of realizations and
the total number of iterations for each distinct value of parameter A with
multiple realizations stored:

82

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?a (COUNT(?r) AS ?realizations)
 (SUM(?iterations) AS ?total_iterations)
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:iterations ?iterations ;
 ex:parameter_A ?a }
 GROUP BY ?a
 HAVING ?realizations >= 2
 ORDER BY ?a DESC(?total_iterations)

Aggregate queries have inner and outer layers, each having their own lists
of variables, conditions, select expression lists and distinct flag. Graph
pattern matching is only performed in the inner layer, while result ordering
and partitioning are only done in the outer layer.

Q2 contains two aggregate function calls in named expressions in the
select list, and both variables defined by these named expressions are
additionally used in the outer layer - one in the HAVING and one in the
ORDER BY clause. The only variable used on both levels is the ?a variable,
listed in the GROUP BY clause. Other inner variables cannot be used in
SELECT, HAVING or ORDER BY, except in argument expressions to the
aggregate functions.

A special case of an aggregate query is a so-called total aggregate query,
with no GROUP BY or HAVING clauses provided, so that the results always
get assembled into at most one group. If the underlying group of solutions is
non-empty, such queries always return a single result. Q3 below illustrates
the concept:

Q3 (standard W3C SPARQL 1.1): Compute the number of distinct values
for parameter A:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT (COUNT(DISTINCT ?a) AS ?result)
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:parameter_A ?a }

Another peculiar feature of Q3 (defined in the SPARQL 1.1 standard) is
the use of the keyword DISTINCT before the argument to the aggregate
function COUNT(). This enforces the application of the DISTINCT option to
the results of the inner query, so its SELECT clause might look like

SELECT DISTINCT ?a

while the outer query simply applies the COUNT() on the resulting bag of
solutions.

Formally, aggregate queries have the following additional structural
components:

 83

• Q.groupby: a list of inner variables to perform grouping on. The order
of variables is not important, as a single solution for the outer level of
the query will assembled for each group of solutions of the inner
level, where values of the listed groupby variables remain the same;

• Q.inner-distinct: whether a DISTINCT option was used under any
aggregate function, as illustrated by Q3 above;

• Q.having: a filter condition applied on the solutions of the outer
query. Any kind of expression is allowed and the Effective Boolean
Value is used (see Section 3.3.3).

There are more fields introduced while rewriting Q, as explained in the
following sections. This includes Q.agg list of aggregate expressions, and
Q.select-extra to accommodate for ordering on variables/expressions that do
not appear in Q.select.

5.4.1.3 Condition block structure and sets of variables
Most non-trivial queries have a WHERE clause, effectively containing a
conjunction (although the order sometimes matters, see Section 5.4.2) of:

• triple and path patterns,
• FILTER conditions,
• explicit bindings with BIND and VALUES constructs,
• OPTIONAL blocks,
• disjunctive blocks introduced with UNION,
• nested blocks with the GRAPH specifier (nested blocks without this

specifier can be flattened and merged in the parent block),
• subqueries projecting variables into the basic query.

These conditions are syntactically grouped into non-empty blocks, and
each block may be annotated by a GRAPH specifier. According to the W3C
SPARQL 1.1 standard, there is always one parent block in the WHERE clause,
provided without any GRAPH specifier.

These blocks as concepts are represented directly in the SciSPARQL
translator. The where part of a query, if non-empty, always contains a single
top-level block structure. The block serves as a container for the sequence of
conditions, together with the sets of variables important for the translation,
including bound, partially bound and referenced variables, which are
defined here. The definitions are recursive, as they rely on the same
properties of the nested blocks, and a tree-traversal algorithm is used to build
these sets.

A variable v is bound in block B if and only if at least one of the
following conditions is satisfied:

• it participates in a triple (or path) pattern inside B,
• it is bound in a nested sub-block with a GRAPH specifier,
• it is returned to B from a subquery,

84

• it is bound in all of the branches of a UNION condition inside B,
• it is explicitly assigned a value (or a set of values) by VALUES

condition inside B, or
• it is assigned a result of an expression depending only on bound

variables with a BIND condition inside B.

An important superset of bound variables is the set Partial(B) of partially
bound variables. A variable v is partially bound in block B if and only if at
least one of the following conditions is satisfied:

• it is bound in block B,
• it is partially bound in an OPTIONAL sub-block of block B,
• it is partially bound in any of the branches of a UNION condition in

block B, or
• it is assigned a result of an expression depending only on partially

bound variables with a BIND condition inside B.

Note that despite its name (and due to the lack of a better word), in any
block b the set partially bound variables includes the set of bound variables.
We call the set difference as a set of semibound variables:

Semibound(B) = Partial(B) \ Bound(B)

Semibound variables are exactly those which might be bound or not
bound in solutions for block B.

Finally, we define the set Ref(B) of referenced variables inside block B,
as those variables participating in conditions of any kind inside the block,
including FILTER expressions, OPTIONAL and UNION sub-blocks. This,
however, does not include the 'internal' variables of subqueries - only the
variables selected from a subquery inside B are referenced and bound in the
B. The set of referenced variables for any block B subsumes the other three
sets.

Besides the sets of bound, partially bound, and referenced variables, a
block also lists B.blanks - the set of variables introduced to represent blank
nodes in a SPARQL query.

All the above sets are defined for the inner layer of a query, since the
outer layer of aggregate queries does not feature any blocks per se. In the
above examples Q1 - Q3, all variables referenced in the WHERE clause are
also bound there, and there are no semibound or free variables. An example
featuring semibound variables must include an OPTIONAL or UNION
construct, like Q4 and Q5 below:

Q4 (Standard W3C SPARQL): Select all realization ids and parameters A
and C, if the latter is applicable:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c

 85

 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a .
 OPTIONAL { ?r ex:parameter_C ?c } }

Two blocks constitute the WHERE clause of this query. In the nested
OPTIONAL block variables ?r and ?c are referenced and bound, and in the
parent block all query variables are referenced, while ?r, ?id, and ?a are
bound, and ?c is semibound.

The result of this query may contain absent bindings for certain variables.
For the example dataset G1 in Section 5.1.1, this query will produce the
following two partial mappings for its select variables:

?id ?a ?c

1 0.3
314 0.3 0.9

Q5 (Standard W3C SPARQL): Select ids of all realizations with B or C
parameters values applicable, together with their parameter values:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?b ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id .
 { ?r ex:parameter_B ?b }
 UNION
 { ?r ex:parameter_C ?c } }

Q5 contains three blocks, one basic block with ?r and ?id variables
bound, and two UNION branches, additionally binding variables ?b and ?c,
respectively. According to [122], this query is equivalent to a union of two
queries, each containing one of the union branches. Their respective
solutions would be:

?r ?id ?b ?r ?id ?c
_:r1 1 0.85 _:r314 314 3.14
_:r314 314 0.9

A union of multisets of query variable mappings is different from the
relational union operator: it does not require the same sets of variables being
mapped in the operand multisets - i.e. it does not rely on the concept of
relational compatibility. It simply appends the multisets, as if the queries
were evaluated independently, hence the result of Q5 being:

?id ?b ?c

1 0.85
314 09
314 3.14

86

Note that the sets of variables defined in this section are defined for the
whole blocks, and do not depend on the particular place inside a block where
the translation takes place. This assumes a declarative nature of
SciSPARQL, which is not always the case, since SciSPARQL completely
incorporates the semantics of the W3C SPARQL 1.1 standard. There are
certain cases where the order of the conditions (in the standard language)
does matter, as we discuss in the next section.

5.4.2 Compositional vs. Operational SPARQL Semantics
Let us introduce some notation first. We will denote query blocks by letters
A, B, C, A simple graph pattern is a SciSPARQL query block which
does not contain nested OPTIONAL or UNION sub-blocks. It consists of a
conjunction of triple patterns.

Without loss of generality, we can include GRAPH-annotated sub-blocks as
additional sets of triple patterns, if we define a triple pattern as a quad <G,
s, p, v> where s, p, and v are either RDF terms or variables, and G is either a
finite non-empty set of (default and/or named) RDF graphs, or a variable
whose potential solutions are the graphs listed as FROM NAMED in from part
of the query.

 There are operators defined on such blocks, reflecting the OPTIONAL and
UNION relationships. For example, the where part of Q4 can be described as
A OPT B where

bound(A) = {?realization, ?id, ?a},

bound(B) = {?realization, ?c}

Since the OPT operator implies nesting of blocks, it is right-associative,
i.e.

A OPT B OPT C = A OPT (B OPT C)

is a double nesting of an OPTIONAL block, whereas

(A OPT B) OPT C

describes a basic block with conditions from A and two OPTIONAL sub-
blocks B and C, not nested into each other.

By A AND B we denote a simple conjunction of conditions from A and B,
i.e. effectively merged block. We will also use the notation

A AND (B U C)

for a basic block with conditions from A and a UNION with branches B and
C. According to [122], a query can always be normalized to DNF, with all
unions pushed to the top level, using the properties

 87

A AND (B U C) = (A AND B) U (A AND C)

(A U B) OPT C = (A OPT C) U (B OPT C)

A OPT (B U C) = (A OPT B) U (A OPT C)

Finally, there are two (in most cases identical) sets of solutions for a
SPARQL query block A

• a compositional solution, defined by the W3C SPARQL standard
[155], here denoted as [[A]], and explained in Section 5.4.2.2

• an operational solution, here denoted as eval(A) and explained in
Section 5.4.2.3.

5.4.2.1 Example
The following example is borrowed from [40] and is a basic RDF graph with
four isolated star-shaped components. We will refer to it as graph G2 and,
for uniformity, present it here in Turtle notation:

@prefix : <http://udbl.uu.se/ex2>

_:b1 :name "Paul" ;
 :phone "111 - 1111" .
_:b2 :name "John" ;
 :email "john@john.edu .
_:b3 :name "George" ;
 :web <www.george.edu> .
_:b4 :name "Ringo" ;
 :email "ringo@ringo.edu" ;
 :web <www.starr.edu> ;
 :phone "444 - 4444" ;
 :cell "444 - 4444" .

G2 is supposed to represent information about different persons; however,
the information is structurally non-uniform, incomplete, and redundant. This
would be a problem with a relational or object-oriented DBMS, but the
Semantic Web / Linked Data solutions, by design, should handle these
aspects in a graceful manner.

We begin by analyzing the following query, also borrowed from [40]. It
might seem a bit contrived, but illustrates the potential problem. Its English
formulation is not simple either, and is given later in Section 5.4.2.3.

Q6 (Standard W3C SPARQL):

PREFIX : <http://udbl.uu.se/ex2#>
SELECT ?x ?y ?z
 WHERE { ?x :name "Paul" .
 OPTIONAL { ?y :name "George" .
 OPTIONAL { ?x :email ?z } } }

Using the above-introduced block notation, the query structure can be
reflected as A OPT (B OPT C) where

88

bound(A) = {?x}
bound(B) = {?y}
bound(C) = {?x, ?z}

5.4.2.2 Compositional semantics
A SPARQL query A OPT (B OPT C), where A, B, and C are simple graph
patterns according to the W3C SPARQL 1.1 specifications should be
evaluated as the following SPARQL Algebra expression

[[A OPT (B OPT C)]] = [[A]] ([[B]] [[C]])

where is the relational left outer join operator defined on bags of
solutions.

This evaluation process should consist of:
1) finding the sets [[B]] and [[C]] of mappings that satisfy B and C,
2) left-outer-joining them, resulting in [[B]] [[C]],
3) finding the set [[A]] of mappings that satisfy A, and
4) left-outer-joining it with the result of (2).

This process is illustrated in Figure 15a for query Q6 and graph G2.

[[A]]

_:b1

?x

_:b1

?x

[[B]]

_:b3

?y

_:b3

?y

[[C]]

"john@..._:b2

_:b4

?x

"ringo@...

?z

"john@..._:b2

_:b4

?x

"ringo@...

?z

_:b3

_:b3

?y

"john@..._:b2

_:b4

?x

"ringo@...

?z

_:b3

_:b3

?y

"john@..._:b2

_:b4

?x

"ringo@...

?z

_:b1

?x ?y ?z

_:b1

?x ?y ?z

[[A]]

_:b1

?x

_:b1

?x

[[B]]

_:b1

?x

_:b3

?y

_:b1

?x

_:b3

?y

_:b1

?x

_:b3

?y ?z

_:b1

?x

_:b3

?y ?z

[[A]] [[B]][[A]] [[C]]

?y ?x ?z?y ?x ?z

_:b1

?x

_:b3

?y ?z

_:b1

?x

_:b3

?y ?z

(a) (b)
Figure 15. Compositional (a) and operational (b) evaluation order of query Q6 over
graph G2

However, on large datasets this approach is generally inefficient. Even if
we avoid storing intermediate results of [[B]] and [[C]], we will probably
need storing [[B OPT C]] anyway (unless we are able to retrieve the results

 89

in some known order for a merge-join algorithm to help). This is the known
problem of bushy execution plan trees vs. left-deep trees [80].

5.4.2.3 Operational semantics
A traditional way to evaluate a query like Q6, adopted by present-day
DBMSs, including SSDM, would include the steps to:

1) find the set of mappings that satisfy A, resulting in eval(A) = [[A]];
2) for each result in eval(A) try to extend it with mappings of

variables bound(B) \ bound(A), while the mappings of variables
bound(B) bound(A) are retained, thus ensuring that the mappings
are compatible and providing a more informative binding pattern
for evaluating B. This results in eval(A OPT B);

3) for each result in eval(A OPT B) that was extended on the previous
step12, try to extend it with mappings of variables bound(C) \
(bound(A) bound(B)), similarly to the previous step. The
mappings of variables bound(C) (bound(A) bound(B)) are
retained, ensuring compatibility of solutions and providing an even
more informative binding pattern for evaluating C.

Effectively, by re-using the mappings of variables found on the left-hand
 operand while evaluating the right-hand operand, this approach results

in an additional natural join on the right-hand side of , as shown in [117].
Consequently,

eval(A OPT B) = [[A]] ([[A]] [[B]])

eval(A OPT (B OPT C)) =
= [[A]] (([[A]] [[B]]) ([[A]] [[B]] [[C]]))

The addition of extra inner joins, compared to compositional semantics,
might look more restrictive, however, there are important classes of graph
patterns where the latter operational approach exec(Q) actually results in
false positives w.r.t. the standard compositional semantics of [[Q]]. Q6 is
one such example, as illustrated in Figure 15b. The mappings retrieved while
resolving the outer patterns are used to restrict the search space while
resolving the inner patterns, which helps to greatly reduce the amount of
information retrieved, better utilize indices, and avoid storing intermediate
results. The flow of this useful information is shown by the gray arrows.

We can see that the extra binding for ?y arises from one of these extra
joins: [[A]] [[B]], which becomes a Cartesian product since the graph
patterns A and B do not share any variables.

12 By this extra condition we ensure that we are evaluating A OPT (B OPT C), which is not
equivalent to (A OPT B) OPT C. The optional pattern C is nested into another optional
pattern, and mappings of C-specific variables may only appear together with non-NULL
mappings of B-specific variables.

90

The query Q6 looks a bit strange indeed, and its English formulation
would be: 'Find Paul node, on success find George node and, if both are
found, return Paul's email if available', which also sounds inherently
'0operational', and is correctly answered by exec(Q6), not by [[Q6]]. The
reader is welcome to experiment with alternative, perhaps more
'compositional' English formulations of the same query.

5.4.2.4 Well-designed queries
Pérez et.al. [122] formulate the condition for well-designed queries, and
prove that the two semantics are equivalent if the query is well-designed.

According to [122]:

"A graph pattern P is well-designed if for every occurrence of a sub-
pattern P' = (P1 OPT P2) in P and for every variable ?x occurring in P, the
following condition holds: if ?x occurs both inside P2 and outside P', then it
also occurs in P1."

In other words, it requires that no variable that can be either bound or
unbound as result to OPT can be used outside P'. Formally, this condition
serves to avoid the Cartesian products, introduced by the operational
semantics, during the evaluation of any sub-pattern P' that has an optional
part.

Sub-patterns that have AND instead of OPT are provably not problematic.
In the same example in Figure 15, if the 'inner' left join would be
substituted with a simple natural join : the compositional evaluation tree
(Figure 15a) is not affected, and in the operational evaluation tree (Figure
15b) the result of the changed operation would be the empty set, eventually
leading to a query result equivalent to the compositional one.

Researchers who have studied this problem [122, 40] agree that it is
extremely hard to make a realistic example of a query where compositional
and operational semantics do not coincide. However, the class of not well-
designed queries is much wider than that, and in the next sections we will
study classes of useful queries that are not well-designed.

5.4.2.5 An important class of not well-designed queries
One interesting case where compositional and operational semantics agree,
but the fact that the query is not well-designed finds its implication in the
loss of declarativeness of the query. Pérez et.al. state that for well-designed
queries the following property holds:

((A OPT B) OPT C) = ((A OPT C) OPT B)

Indeed, the left-join operator is generally sensitive to the order of its
application. For the relations R1, R2 and R3, the property

 91

R1 R2 R3 = R1 R3 R2

can only be guaranteed if R2 and R3 extend R1 with non-overlapping sets of
attributes. With a set of relation R attributes denoted as att(R), this condition
can be written as

att(R2)\att(R1) att(R3)\att(R1) = ∅

In the case of both compositional and operational interpretations of the
above queries, this condition means that

bound(B)\bound(A) bound(C)\bound(A) = ∅

so that in operational semantics the evaluations of patterns B and C can be
done independently, and no variable mapped in [[B]] can influence
evaluation of C and vice versa.

However, sometimes it might be useful to express several 'tries' to bind
the same variable, so that the order of these tries becomes important. The
expression of such queries in relational calculus will require a coalesce
operator (suggested by Chebotko et. al. [40]). Here's an example:

Q7 (Standard W3C SPARQL): Select names of persons, together with
landline or cellphone numbers if available:

PREFIX : <http://udbl.uu.se/ex2#>
SELECT ?name ?phone
 WHERE { ?x :name ?name .
 OPTIONAL { ?x :phone ?phone } .
 OPTIONAL { ?x :cell ?phone } }

This query will prioritize the :phone property, and, if the two OPTIONAL
sub-blocks were reordered, the :cell property would be prioritized instead.
This example shows how the order of where conditions in the query
influences the result, meaning that the query is not completely declarative.

5.4.2.6 Coalesced expressions
To make query Q7 well-designed, and thus preserve the declarativeness, it is
sufficient to bind the :phone and :cell properties to different variables,
thus making the OPTIONAL sub-blocks independent of each other:

PREFIX : <http://udbl.uu.se/ex2#>
SELECT ?name ?phone ?cell
 WHERE { ?x :name ?name .
 OPTIONAL { ?x :phone ?phone } .
 OPTIONAL { ?x :cell ?cell } }

However, this solution might not be suitable in certain cases, where
different properties, or chains of properties, lead to semantically equivalent
values. In our example graph G1, given in Section 5.1.1 the
ex:simulationMethod property was originally attached to

92

ex:OurExperiment instances, but at some point (thanks to the flexibility
of the RDF model) ex:OurExperimentRealization instances started to
store the same properties, in order to refer to the newer versions of the
simulation algorithm used. The following query retrieves these property
values, prioritizing the Realization-bound ones:

Q8 (Standard W3C SPARQL): Select all Realization ids, together with
simulation method information if available:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?method
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id .
 OPTIONAL { ?r ex:simulationMethod ?method } .
 OPTIONAL { ?r ex:inExperiment ?e .
 ?e ex:simulationMethod ?method } }

In Q8 it would be unnatural to project out different variables for the same
simulation method information retrieved in two different ways. Fortunately,
W3C SPARQL 1.1 provides the COALESCE macro that returns the result of
the first listed expression which is neither unbound nor error. With
COALESCE, the query Q8 can be made well-designed while preserving
exactly the same semantics and result width:

Q8a (W3C SPARQL 1.1):

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id (COALESCE(?m1, ?m2) AS ?method)
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id .
 OPTIONAL { ?r ex:simulationMethod ?m1 } .
 OPTIONAL { ?r ex:inExperiment ?e .
 ?e ex:simulationMethod ?m2 } }

The application of COALSECE then maps directly to the relational calculus
coalesce operator, making both formulations of Q8 structurally equivalent
with regard to the SPARQL to relational algebra translation proposed in
[40].

The possibility of query re-formulation, as shown with Q8, does not
eliminate the need to handle important classes of not well-designed queries
in a deterministic and uniform way. SciSPARQL query processor recognizes
the cases where the order of Q.where conditions is important, and preserves
that order under the operational semantics.

 93

5.4.2.7 Binding by filters
Consider another query, which is not well-designed - Q9 (Standard W3C
SPARQL):

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a .
 OPTIONAL { ?r ex:parameter_C ?c } .
 FILTER (2 * ?c = ?a) }

Since, according to the W3C SPARQL standard definition [155], any
expression depending on an unbound value, except expressions under the
bound() function, will evaluate to unbound (an unbound FILTER is
equivalent to false) the English formulation of Q9 should sound like: "Select
those Realization ids where parameter C is stored and is equal to half of the
value ofparameter A".

Q9 is not well-designed, since the variable ?c is referenced in the basic
block, whereas it is not bound there. One way to make it well-designed
would be to remove the OPTIONAL keyword altogether, merging the
corresponding pattern into the basic block.

Still Q9 is a valid query in SPARQL and SciSPARQL, but, due to its loss
of declarativeness, the OPTIONAL and FILTER conditions cannot be
reordered. Figure 16 shows the compositional execution tree for Q9a:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a .
 FILTER (2 * ?c = ?a) .
 OPTIONAL { ?r ex:parameter_C ?c } }

In Figure 16 the filter condition is denoted by f, and the solutions of the
basic block with filter conditions applied - as [[A AND f]].

The typical way to apply equality filters in databases is finding the
optimal binding patterns, as shown by example in Section 5.1.2.2. Even
though the filter expression depends on both ?a and ?c, during the query
evaluation we are only interested in cases where the filter evaluates to true.
Consequently, the same filter expression can be used to compute the
satisfying value of ?c when ?a is already known. Technically, for a
predicate (TIMES 2 C A) the query optimizer will choose the binding pattern
'-+-', instead of '---', as in the original Q9.

94

[[A]]

_:b314

?r

3.14

?c

_:b314

?r

3.14

?c

[[B]]

_:b314

_:b1

?r

0.31

314

?id

0.3

?a

_:b314

_:b1

?r

0.31

314

?id

0.3

?a

[[A AND f]]

0.3

0.3

?a

0.15

0.15

?c

_:b314

_:b1

?r

1

314

?id

0.3

0.3

?a

0.15

0.15

?c

_:b314

_:b1

?r

1

314

?id

[[A AND f]]

?a ?c?r ?id ?a ?c?r ?id

[[B]]

0.3

0.3

?a

0.15

0.15

?c

_:b314

_:b1

?r

1

314

?id

0.3

0.3

?a

0.15

0.15

?c

_:b314

_:b1

?r

1

314

?id

Figure 16. Compositional evaluation tree of Query Q9a over graph G1

With this way of evaluating queries, a transition from a solution set [[A]]
to [[A AND f]] involves adding the variables 'bound' by the filter, and their
respective bindings, as shown in Figure 16. In the next step, extending this
solution set with values from the database includes a natural join of two
solution sets, resulting in an empty set. (Note that [[B]] does not even need
to be evaluated separately). Finally, due to the nature of the left join operator

, the left set of solutions is retained and projected to the query result.

5.4.2.8 Relaxing the procedural semantics of BIND
The W3C SPARQL 1.1 standard [155, section 10.1] dictates the following
restriction on the use of the BIND condition:

"The variable introduced by the BIND clause must not have been used in
the group graph pattern up to the point of use in BIND."

This implies that the order of triple pattern and BIND conditions is
important in all kinds of queries, including well-designed ones, and those
without any semibound variables. For example, while the following query is
valid:

Q10 (W3C SPARQL 1.1): Select the Realization ids where parameter B is
three times greater than parameter A:

 95

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a .
 BIND (3 * ?a AS ?b)
 ?r ex:parameter_B ?b }

an alternative formulation Q10a is not allowed:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a ;
 ex:parameter_B ?b .
 BIND (3 * ?a AS ?b) }

In both cases it is obvious that BIND conditions are used as filters, and an
equivalent FILTER condition would have been allowed at any point in the
WHERE clause. It is also beneficial to evaluate the BIND/FILTER before the
remaining triple pattern (as in Q10), since it narrows down the graph search
and helps to better utilize database indexes.

SciSPARQL removes the restrictions concerning the position of BIND
conditions in the where block, and effectively makes no difference between
BIND and FILTER, making BIND potentially multi-directional. This feature
has two benefits: (i) it widens up the set of valid and correct queries,
allowing users to express different intentions with BIND and FILTER
interchangeably, and (ii) it further encourages the users to state the expected
correspondences among the values retrieved from an RDF graph, thus
opening more opportunities for the query optimizer.

Apart from this, SciSPARQL defines the clear operational semantics for
the queries which are not well-designed according to [122]. This includes the
ability to express coalesced expressions with a sequence of OPTIONAL
patterns, and careful evaluation of FILTER and BIND expressions when the
variables used in these expressions might not always be bound.

5.4.3 AmosQL Query Structure
As a first step of query processing, SciSPARQL queries are translated to
AmosQL queries. This includes the translation from graph to functional data
model, and from queries returning bags of mappings (a.k.a. solutions) to the
queries returning relations (bags of tuples).

The result of an AmosQL query may include NIL values representing
unbound values in SPARQL. Those are introduced by OPTIONAL and
UNION conditions, as shown by examples Q4 and Q5 in Section 5.4.1.3.

96

This section describes the structure of an AmosQL query both on the
conceptual level, and by example translations from SciSPARQL. Though
AmosQL is certainly a background for the presented work, in this section we
focus on features useful for the translation.

5.4.3.1 Basic AmosQL query structure
A simple AmosQL query includes the following components

• select - a list of projected variables or expressions. The result of a
query does not include variable names (hence the distinction between
mappings and tuples). The length of this list is the width of a query;

• distinct - whether the query results will be filtered to exclude the
duplicate tuples. For tuples containing NIL values in the same
positions, those values are treated as equal for this purpose.

• from - a set of all variables in the query, except the parameters for the
derived function definitions. The latter are used to translate
SciSPARQL functional views, as described in Section 5.4.5.8;

• where - a logical expression, combining the query conditions by the
means of and and or operators.

For example, in the translation of Q1 given in Section 5.1.2.1, the query
width is 2, the select list includes the variable id and an expression involving
array operations, the from list contains all AmosQL counterparts of
SciSPARQL query variables, and where is a conjunction of eight simple
conditions, six being lookups into the default graph, and the other two being
inequalities.

5.4.3.2 Cross-referenced named expressions
One important issue the translator needs to take care of is cross-referenced
named expressions. SciSPARQL has no restrictions on how a variable
defined by a named expression can be used in a query. For example, if the
query contains

SELECT (?length * ?width AS ?area) ...

the ?area variable can be used in any other place in the query, including
other SELECT expressions, triple patterns, or filters. The problem is that
normally the translation does not contain the names of SELECT expressions.
Additional BIND conditions need to be introduced for this purpose.

It is easy to identify such cases, by first computing the set ref(B) of
variables referenced in the basic block B (as described in Section 5.4.1.3),
and then checking whether the expression name name(ne) from the SELECT
list appears in ref(B). If so, a new condition name(ne) = expr(ne) is added to
the basic block. Q11 below provides a complete example:

 97

Q11 (SciSPARQL): Select realization ids where 'factor Y' is less than
10-3, together with the values of 'factor Y', as well as and 'factor X' used in
its computations:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id (?a * ?b AS ?factorX)
 (?factorX / ?iterations AS ?factorY)
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:iterations ?iterations ;
 ex:parameter_A ?a ;
 ex:parameter_B ?b .
 FILTER (?factorY < 0.001) }

The translation of Q11 contains the translations of the ?factorX and
?factorY variables (both of them are detected as being cross-referenced),
and the extra equality conditions that bind them:

select id, factorx, factory
 from Literal r, Literal factory, Literal iterations,
 Literal factorx, Literal b, Literal a, Literal id
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_B'), b) in GRAPH(0)
 and factorx = rdf:times(a, b)
 and factory = rdf:div(factorx, iterations)
 and factory < 0.001;

The task of identifying and rewriting cross-referenced expressions is
orthogonal and independent of the tasks of identifying Q.select-extra
expressions for ordering or collecting aggregate function calls in aggregate
queries, as shown in the next two sections.

5.4.3.3 Ordering and segmentation
In general, a result of an AmosQL query is a bag (i.e. multiset) of tuples,
which is, by definition, unordered. However, different scan interfaces (as
discussed in Section 4.5) to Amos II and SSDM retrieve the results one by
one or in sequential batches, and their application might benefit if a certain
order would be enforced among the resulting tuples.

SciSPARQL, along with SPARQL 1.1, allow this by including an ORDER
BY clause in SELECT queries. Translations of queries with ORDER BY
involve a call to sortbagby() AmosQL function, and an outer query to
transform the resulting sequence of vectors to a sequence of tuples. The
translation is illustrated by Q12 below. The function sortbagby() takes three
arguments: (i) arbitrary bag of tuples, (ii) a vector containing positions
inside tuples to perform the sorting on, and (iii) a vector of the same length

98

containing sorting direction flags - either 'inc' or 'dec' strings. The function
returns a sequence (i.e. vector) of vectors, containing the argument tuples
ordered in the specified way.

Some applications might also specify the maximum number of resulting
solutions they would like a SciSPARQL query to retrieve - by introducing
LIMIT clause. If used together with ORDER BY, this results in top-k
selections, for example:

Q12 (Basic W3C SPARQL): Select top 5 realizations having the longest
simulation (in the number of iterations), returning the realization ids:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:iterations ?iterations }
 ORDER BY DESC(?iterations) LIMIT 5

Similarly to LIMIT, it is also possible to specify OFFSET for a
SciSPARQL query in order to retrieve a specific section of the query results.
This allows splitting a single query with a long result section to a sequence
of queries with a limited number or results. Though Scan interfaces in
SSDM handle this problem on an interface level, so the query execution
does not proceed until the next result is requested, segmentation with LIMIT
and OFFSET is part of SPARQL, and is supported in our translation.

Q12 is translated using sortbagby() and bsection1() Amos functions:

bsection1((select o:v[0] from Vector of Literal o:v
 where o:v in sortbagby((
select id, iterations
 from Literal r, Literal iterations, Literal id
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)
 in GRAPH(0)), {2}, {'dec'})), 0, 5);

As shown, the {2} and {'dec'} arguments specify the sorting order, and
then the outer query 'select o:v[0] ...' transforms vectors to tuples. The
resulting ordered bag is passed to bsection1(), specifying zero (default)
offset and limit of 5 results. The bsection1(b, start, stop) function iterates
through the bag b of inputs, and begins emitting when an element counter is
at value start, and stops when the counter reaches the stop value.

5.4.3.4 Grouping and aggregation
An aggregate function in Amos is a function that takes a bag argument and
returns an atomic result. The useful class of aggregate functions for SSDM,
which can be used together with grouping, are those which accept a Bag of

 99

Literal as a single argument. This includes count(), which accepts all kinds
of bags.

The Amos aggregate functions with numeric semantics, like sum(), avg(),
min(), max() and some others have been extended to handle bags of scalar
numbers and bags of aligned arrays. According to the SPARQL 1.1
standard, in case of incompatible values in the input bag, such aggregate
functions return error value, which in SciSPARQL and AmosQL terms is
equivalent to terminating silently without emitting a result. Such extended
versions of aggregate Amos functions are named with rdf: prefix, e.g.
rdf:sum().

We have defined SciSPARQL aggregate queries in Section 5.4.1.2. An
aggregate query having width of 1 simply applies an aggregate function to
the bag of the inner query solutions, like the Q3 example. The AmosQL
translation of Q3 is as follows:

count((select distinct a
 from Literal r, Literal a
 where (r,
 URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a)
 in GRAPH(0)));

This translation also shows that the Q.inner-distinct property of an
aggregate SciSPARQL query is translated to distinct option in the inner
query in AmosQL.

An aggregate query of greater width might include several aggregate
operations across different variables in the inner query solutions, or
expressions involving those variables. Additionally, it might include
grouping on certain variables or expressions. Q2 is one such example, being
translated as follows:

select o:v[0], o:v[1], o:v[2] from Vector of Literal o:v
 where o:v in sortbagby((
 select a, realizations, total_iterations
 from Literal total_iterations, Literal realizations, Literal a
 where (a, realizations, total_iterations) in groupby((
 select a, r, iterations
 from Literal r, Literal a, Literal iterations
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
), {#'count', #'rdf:sum'})
 and realizations>=2), {1,3}, {'inc','dec'});

The translation shows a straightforward mapping of conceptual inner and
outer query structures in SciSPARQL to the pair of nested queries in

100

AmosQL (starting at lines 3 and 6). The inner query contains a graph
pattern, and declares all variables used in that pattern, projecting out three of
them.

The outer query declares variables corresponding to the outer context of
Q2, including the grouping variable ?a and the names of aggregate
expressions. The main where condition is a call to the groupby() function,
binding all these variables, and specifying the aggregate functions count and
rdf:sum as functional arguments. The additional condition translates the one
found in the HAVING clause of Q2.

We will refer to the part of the translation that appears to be the first
argument to sortbagby() as the core translation, and the translation applying
sortbagby() and/or bsection1() as the finalized translation. In the absence of
ORDER BY, LIMIT and OFFSET clauses these translations are the same.

Notice that sorting with sortbagby(), as described in the previous sub-
section, makes use of the variables in the outer query - including the results
of grouped aggregate operations. If, for example, some of the ORDER BY
variables (or named expressions) were not included in the SELECT clause in
SciSPARQL, their translations would still appear in the select list of the
outer AmosQL query, but the respective vector elements would not be
selected into the result after sorting. We will refer to such additional
expressions as Q.select-extra.

This principle complements the process of discovering cross-referenced
named expressions, explained in Section 5.4.3.2, and the process of
collecting aggregate subexpressions, more formally described in Section
5.4.5.7 below. The HAVING and ORDER BY clauses in a SciSPARQL query
might include additional unique aggregate expressions, not found in the
SELECT clause. In the absence of names, surrogate names for such
expressions will be created, and some of these might be added to Q.select-
extra.

Consider the query Q2a, differing from Q2 only in the SELECT clause,
and the fact that the corresponding aggregate expressions are instead
incorporated into Q.orderby and Q.having lists, which do not require
expressions to be named:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?a
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:iterations ?iterations ;
 ex:parameter_A ?a }
 GROUP BY ?a
 HAVING COUNT(?r) >= 2
 ORDER BY ?a DESC(SUM(?iterations))

 101

The translation of Q2a would be the same as for Q2 as shown above,
except for the shorter vector-to-tuple projection on the first line, and the fact
that the former total_iterations and realizations variables are now re-
introduced by the translator with surrogate names agg:1 and agg:2:

select o:v[0] from Vector of Literal o:v
 where o:v in sortbagby((
 select a, agg:2
 from Literal agg:2, Literal agg:1, Literal a
 where (a, agg:1, agg:2) in groupby((
 select a, r, iterations
 from Literal r, Literal a, Literal iterations
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
), {#'count', #'rdf:sum'})
 and agg:1>=2), {1,3}, {'inc','dec'});

The named expressions corresponding to agg:1 and agg:2 comprise the
Q.agg list, and agg:2 is needed for ordering is in Q.select-extra list. By
means of these rewrites, the SciSPARQL translator handles uniformly all the
aggregate expressions found anywhere in the outer level of a query.

5.4.4 Extensions to ObjectLog and Physical Algebra
Some of the SPARQL standard behavior have proven to be quite challenging
to implement using the original definitions of AmosQL and the underlying
ObjectLog [100]. These challenges include:

• generating unique values inside the query: blank nodes for
CONSTRUCT queries, random numbers and GUIDs

• lazy evaluation of IN lists
• IF and COALESCE operators
• OPTIONAL operator

While the first challenge conflicts with the idea of side-effect-free
queries, the remaining three contradict the declarative nature of AmosQL
and ObjectLog, where the query conditions constitute a logical expression
that can be transformed e.g. to Disjunctive Normal Form. Predicates are the
atomic terms in such expressions, each having a set binding patterns for the
optimizer to choose from.

The predicate calculus is, in a certain sense, a more restrictive model than
the relational algebra. Whereas the latter can easily be extended with e.g.
coalesce operator, as shown by Chebotko et.al. [40], the predicate calculus
can not - since coalesce is neither an atomic predicate, nor a logical
expression of any atomic predicates.

102

This difficulty is akin to the conceptual distinction between functions and
macros in Lisp: whereas a function is evaluated only after all its arguments
are computed, and thus can be mapped to collections of its argument
bindings, the macro decides the evaluation order of its arguments, and might
even choose not to evaluate some of them. In Lisp, logical AND and OR
operators are naturally defined as macros, thus implementing lazy
evaluation, and n-ary OR, while not restricted to logical operands, being also
the equivalent for coalesce.

In AmosQL a disjunction is by definition equivalent to the relational
UNION ALL, always evaluating every branch. However, the conjunction of
predicates assumes a kind of lazy evaluation: if a predicate does not return a
value, the nested-loop execution (as shown by example in Section 5.1.2.3)
skips the subsequent predicates, backtracking instead. However, the user
normally has no control of how the predicates in a conjunction will be
ordered in the nested loop so that, for example, a condition f(x) and g(x) is
totally equivalent to g(x) and f(x).

 The only feature of an AmosQL query that restricts the order of
evaluation is the dependency relationships among the variables. One way to
make sure that g(x) is only evaluated if f(x) returns, would be to make f(x)
return x (instead of a Boolean value) and make sure it has only "forward"
binding pattern '-+'. Then the condition y = f(x) and g(y) would guarantee
the desired order.

The AmosQL implementations of OPTIONAL, IF, COALESCE, and "lazy"
IN operators all require macro-like behavior at the execution time, and the
specialized representations at the intermediate steps, including ObjectLog.
The rest of this section elaborates on the extension of both physical algebra
and ObjectLog with OPTIONAL operator, as the most essential feature
needed for SciSPARQL, with the rest remaining a near-future work.

5.4.4.1 OPTIONAL operator
As mentioned above, if a predicate placed in the nested-loop-join does not
return, the current solution is discarded, and the execution backtracks to the
previous predicates to generate a new solution. For example, let us consider
a query Q4a, differing from Q4 only so that the OPTIONAL graph pattern is
merged into the basic one:

PREFIX ex: <http://udbl.uu.se/ex#>
SELECT ?id ?a ?c
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:id ?id ;
 ex:parameter_A ?a ;
 ex:parameter_C ?c }

 103

The optimizer is potentially free to reorder the four stored predicate
instances that this query translates to - based on selectivity statistics or any
other considerations (Amos is extensible in its optimization strategies too!)
The stored predicates have a nice property of offering the full combinatorial
set of binding patterns. One of the possible execution plans would be:

(*SELECT* ID+ A+ C+) <-
(NESTED-LOOP-JOIN
 (HASH-INDEX-SCAN GRAPH-+--
 0 R+ #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]
 #[URI "http://udbl.uu.se/ex#OurExperimentRealization"])
 (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#id"] ID+)
 (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#parameter_C"] C+)
 (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#parameter_A"] A+))

While being evaluated on the G1 dataset, the first partial solution (with
realization _:r1) would be discarded at the point when the predicate on
ex:parameter_C fails to return, and the predicate on ex:parameter_A,
placed further down the loop, is not executed. Since the predicate on ex:id
returns only a single result given the realization _:r1, the execution
backtracks to the first predicate, returning another realization _:r314,
which, after applying the rest of the predicates, becomes an emitted solution.

If we would like to implement Q4 instead, the main requirement is that
the partial solution with realization _:r1 is not discarded even if the
ex:parameter_C tuple is not found in the graph. The inbound value for the
variable C will need to be propagated through the remaining predicates, and
emitted as part of the solution.

This is achieved by adding the OPTIONAL operator into the execution
plan, which does exactly this: introduces unbound values into the current
solution, instead of discarding it:

(*SELECT* ID+ A+ C+) <-
(NESTED-LOOP-JOIN
 (HASH-INDEX-SCAN GRAPH-+--
 0 R+ #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]
 #[URI "http://udbl.uu.se/ex#OurExperimentRealization"])
 (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#id"] ID+)
 (OPTIONAL (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#parameter_C"] C+))
 (HASH-INDEX-SCAN GRAPH---+
 0 R- #[URI "http://udbl.uu.se/ex#parameter_A"] A+))

The OPTIONAL operator is not limited to containing a single predicate -
arbitrary conjunctions and disjunctions of predicates can be put under
OPTIONAL, the same way as in SPARQL. The use of OPTIONAL extends all
the way up to ObjectLog representation, and the AmosQL syntax has been

104

extended with the optional() construct (not really a function), so that the
AmosQL translation of Q4 is as follows:
select id, a, c
 from Literal r, Literal c, Literal a, Literal id
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
 and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)
 in GRAPH(0))

Extending AmosQL, ObjectLog and the physical algebra with a new
operator provided the most simple and straightforward implementation of
SPARQL semantics inside the functional DBMS framework.

5.4.4.2 Query optimization restrictions
The query optimizer was made to be aware of the new OPTIONAL operator
in ObjectLog, treating it as a container and propagating it to the physical
algebra. However, in some cases this handling is not sufficient. As has been
discussed in Section 5.4.2, there are important classes of not well-designed
queries, i.e. queries which are not completely declarative, where reordering
of certain conditions might affect the result.

For example, in queries Q7 and Q8 reordering of the two OPTIONAL
conditions entails a potentially different result. Also, as shown by Q9 and
Q9a, swapping an OPTIONAL condition with a FILTER condition depending
on variables bound in OPTIONAL also affects the results.

A simple to implement solution currently used in Amos is the restriction
for the query optimizer to move any conjunctive predicates across the
OPTIONAL block. The addition of an OPTIONAL condition to a query might
split the flattened list of predicates into three parts, optimized separately:
conjunctive predicates listed before and after OPTIONAL, and the predicates
inside the OPTIONAL block.

Even though simple and easy to understand, this restriction can be largely
relaxed. It is enough to make sure that only the predicates that depend on
variables bound inside an OPTIONAL block, and not bound outside it (i.e. on
semibound variables), may not be moved across the optional block. This is
never the case in well-designed queries, which remain purely declarative.

The relaxed restrictions have yet to be implemented in the future versions
of SciSPARQL Database Manager. Since semibound variables are detected
at the translation stage, it should be made possible to communicate their set
to the optimizer. Another option would be to delegate the detection of
semibound variables to the optimizer itself.

 105

5.4.5 The Translation Algorithm
As described in the previous sections, an internal representation Q of a
SciSPARQL query is a data structure with named fields, lists, and nested
data structures. Of course, the translation is not limited only to queries. A
more general term is a SciSPARQL statement, with the internal
representation of S. Such a statement can either be

• a query,
• a function definition, containing S.name, S.params and S.body fields,

with S.body being a SELECT query,
• a stand-alone expression, considered to be a degenerate form of

SELECT query. (Certain functions with side effects, like LOAD() and
SOURCE() can only be called this way),

• an update statement, containing with, insert, delete, using, and where
fields (this does not include INSERT DATA and DELETE DATA, as
these statements are executed directly at parse time), or

• a session-scoped prefix declaration.

This section formally defines the translation function tr(S), generating
AmosQL textual translation of a SciSPARQL query parsed into S. The
function tr(S) is recursive, and is mainly applied depth-first in leaf-to-root
order. For example, the translation of a simple SELECT query begins with
translating the leaf elements of Q.what expressions, and produces the
translation of the whole query in the last step by combining the translations
of its constituent parts.

There are, however, exceptions to this principle. For example, when a
SciSPARQL query declares a set of named graphs addressed, or a set of
prefixes used - these should be accessible when translating the triple
patterns. Also, translation of certain expressions (like ARGMAX() explained
below) involves adding new conditions at certain levels and introducing
additional query variables. In order to accommodate for this flexibility, a
translation context data structure is introduced.

5.4.5.1 Translation context
The translation context TC data structure is created at the beginning of
translating a statement S. Below are the fields and their initial values:

• TC.prefixes - the set of statement-scoped prefix declarations.
Together with the set session-prefixes of session-scoped prefix
declarations, introduced with PREFIX statements, it is used to
translate prefixed URIs to URI constructor calls in AmosQL.

• TC.source - the set of named graphs given in a FROM clauses of a
query or a USING clauses of an update statement being translated; the
particular content of this field is explained in the next subsection.

106

• TC.namedsources - the set of the alternative bindings for otherwise
unbound graph variables, given in FROM NAMED or USING NAMED
clauses.

• TC.newconds - the translated representations of the additional
conjunctive conditions that need to be added to the current block,
initialized to the empty set.

• TC.newvars - the list of additional variables introduced during the
translation of the current query, initialized to the empty set.

• TC.bound - the list of variables bound outside the current query (e.g.
in a host query when translating a subquery), initialized with
S.params for function definitions and to the empty set for standalone
queries.

All the listed fields serve for the root-to-leaf or horizontal propagation of
the data important for the translation. However, not all this data is
propagated all the way down to the leaf translations; there are particular
thresholds where the translation context is cloned partially:

• When translating a subquery, TC.newconds and TC.newvars are left
on the outer level; moreover if the subquery contains FROM and/or
FROM NAMED clause, the TC.source or TC.namedsources fields will
be overridden.

• Similarly for subqueries introduced by translations of ARGMIN() and
ARGMAX().

• When translating an aggregate query, outer and inner contexts are
created, with TC.newvars and TC.newconds independently
accumulated on these separate layers.

5.4.5.2 Source graphs and triple patterns
Following the W3C SPARQL standard, SciSPARQL allows specifying a set
of source graphs in a query with a FROM clause and with a USING clause for
updates. In the absence of such a specification, the default graph is used.

The translation of a triple pattern condition tp, containing RDF Terms or
variables tp.s, tp.p and tp.o, corresponding to subject, property and object of
the pattern, in general has the form

tr(tp) = (tr(tp.s), tr(tp.p), tr(tp.o)) in trSource(g)

where g is the innermost GRAPH specification (either a URI or a variable), or,
in the absence of such, using the pre-computed translation of the source
graph or graphs:

tr(tp) = (tr(tp.s), tr(tp.p), tr(tp.o)) in TC.source

Since a query might specify more than one graph URI in its FROM clauses,
either GRAPH() or GRAPHS() function is used for the translation, the latter
accepting a vector of graph ids, and implementing RDF Merge of these

 107

graphs, as defined by the W3C Standard [155]. Such a merge operation is a
simple union of the graphs, since all blank nodes stored in different graphs
are unique in the scope of the given SSDM database.

SSDM maintains a dictionary NGDict() mapping URIs identifying named
graphs to the internal graph ids, with the default graph always having id of
0. When translating queries, and the graph's URI is known, this dictionary is
looked up at translation time, and tr(Q.from) might look like GRAPH(4) for a
single graph or GRAPHS({5,7}) for a set of graphs. When translating function
definitions, the source graph is not required to exist at the definition time;
hence delayed lookup is put into a translation, making it, for example:

GRAPH(NGDict(URI('http://udbl.uu.se/g2.ttl')))

Either of such translations is put into TC.source at the beginning of the
translation process. When a variable is given after the GRAPH keyword,
similar lookup is utilized:

GRAPH(NGDict(g))

for a SciSPARQL variable ?g.

Alternative named graphs specified with FROM NAMED or USING NAMED
clauses, as W3C Specifications suggest, are only useful to provide a finite
set of bindings for a graph variable. Since SSDM operates within a closed
world assumption, there is always a finite number of named graphs
accessible to a query, i.e. a finite number of entries in the NGDict()
dictionary. Hence, an otherwise unbound graph variable ?g, used in a graph
pattern

GRAPH ?g { ... }

will effectively match this pattern against all named graphs stored in
SSDM's database. The only reason to use FROM NAMED and USING NAMED
syntax is to restrict the set of possible source graphs, as if the

VALUES ?g { ... }

condition were added to the basic block. This idea is used for the translation
of TC.namedsources, effectively resulting in an extra condition put into
TC.newconds for any such variable - such conditions are similar to
translations of VALUES conditions.

5.4.5.3 Translating path expressions
SPARQL is a graph language, dealing with the concepts of nodes, edges,
and by induction, paths in a graph. As of the W3C SPARQL 1.1 Standard
[155], regular path expressions are allowed as part of graph patterns, as a
general case of triple patterns. These expressions can be either recursive or
non-recursive, the former effectively employing a transitive closure on a

108

certain property or a combination of properties. The non-recursive kinds of
expressions include chaining, reversal, alternatives, and reflexive closure.

We do not include the negated property set operator in the current version
of SciSPARQL, due to the problems with its standard definition, explored in
[93]. Though not theoretically ambiguous, together with reversal it
introduces a certain counter-intuitive 'butterfly effect' in the set of query
solutions.

Below with a set of rules R1 - R7 we define a translation function tr(C)
for a path expression condition C, the latter consisting of subject C.s, object
C.o, and a path expression C.p. We list the translation function for each type
of expression listed. Formally, at certain points we translate the new
(constituent or equivalent) path expressions, introduced with pe(s, p, o)
constructor function.

R1. If C.p is an RDF term or a variable, C is translated to a triple pattern,
according to the definitions in the previous section (Section 5.4.5.2).

R2. If C.p is a chain P/Q of two path expressions P and Q, an
intermediate variable seq = newvar(TC) is introduced, and C is translated a
conjunction of two path expressions:

tr(C) = tr(pe(C.s, P, seq) ∧ pe(seq, Q, C.o))

R3. If C.p is ^P, denoting the reversed expression P, it is translated by
direct reversal of subject and object in the condition:

tr(C) = tr(pe(C.o, P, C.s))

R4. If C is an alternative P|Q of two path expressions P and Q, it is
translated as a disjunction of the conditions:

tr(C) = tr(pe(C.s, P, C.o) ∨ pe(C.s, Q, C.o))

R5. If C is a reflexive closure P? of the path P, it is translated as a
disjunction of the original path expression condition, and the equality of
subject with object:

tr(C) = tr(pe(C.s, P, C.o) ∨ (C.s = C.o))

The recursive path expressions are translated using a transitive closure
function defined in AmosQL. There is a tclosen() function for the non-
reflexive case, and tclose() for the reflexive-transitive closure. These
correspond to Q+ and Q* syntax respectively. The first argument to either of
these is a bag-valued function f(x) with the same domain and range, and the
second argument is a starting point x. The transitive closure tclosen(f, x)
function returns all distinct values acquired by computing f(x), f(f(x)),
f(f(f(x))), and so on. The finite amount of such results for each x is assumed.
A reflexive-transitive closure tclose(f, x) additionally includes x in the result.

 109

A reverse application is also an option: given y ∈ tclose(f, x) expression,
it is possible to determine the set of all possible x values if y value is already
bound. The function f(x) should be reversible - if it were a foreign function,
the corresponding predicate (F X Y) would have both '-+' and '+-' binding
patterns. All stored functions are fully multidirectional, and derived
functions are 'flattened' by Amos II query processor to the logical expression
of their constituent predicates. If a derived function consists only of stored
predicates, it is multidirectional by induction13.

A non-recursive path expression P can be regarded as a derived function
p(x) = y, connecting all possible pairs (x, y) of nodes, connected by paths
satisfying P. Such p(x) is fully multidirectional - since it ultimately calls the
same stored predicate (GRAPH GID S P O). In particular, p(x) can be used
to find all possible bindings for y given a binding for x, and all possible
binding for x given a binding for y. In AmosQL this can be expressed as a
function with surrogate name pathfn = newfnname(TC), and where block
formed by the translation of condition pe(x, P, y):

TRW = tr(pe(x, P, y), TC)

trfn(P) = create function pathfn(Literal x) -> Bag of Literal y as
select y from trD(TC.newvars) where TRW

and if P contains no chain operators, no new variables were created during
the translation process, and thus the from clause is omitted. The function
trD() given a set of variables, constructs a comma-separated list, prefixing
each name by Literal type specifier.

R6. If C.p is a transitive closure P+ of a path expression P, an internal
function pathfn is defined as trfn(P), and the condition C is translated as:

tr(C) = tr(C.o) in tclosen(pathfn, tr(C.s))

R7. If C.p is a reflexive-transitive closure P*, similarly:

tr(C) = tr(C.o) in tclose(pathfn, tr(C.s))

Note that such translations of recursive path expressions are also fully
multidirectional, as functions connecting pairs (x, y) of nodes: they call only
the stored predicate GRAPH and the foreign predicates TCLOSE or TCLOSEN.
Either of the latter has both '--+' and '-+-' binding patterns, and their first
argument is always bound to the function named pathfn. Hence, a path
expression P, used under the transitive closures P+ or P* does not need to

13 A condition for a derived function f(x) being multidirectional is actually much weaker: it
requires there should be a predicate binding x in every disjunctive branch, with no restriction
on any other predicates in branches. Having only multidirectional (e.g. stored) predicates is
just a simple particular case.

110

be non-recursive for multidirectionality of the closure expression. Nested
recursion is generally supported.

The following example illustrates the translation rules defined in this
section:

Q13 (W3C SPARQL 1.1): Select names of all ancestors of Alice:

PREFIX : <http://example.org/>
SELECT ?n
 WHERE { ?x (:fatherOf|:motherOf)+/:name "Alice" ;
 :name ?n }

This is translated by recursively applying R2, R6, R3, and R1 in the
terminal cases, resulting in:

select n
 from Literal x, Literal n, Literal seq:1
 where seq:1 in tclosen(#'path:1', x)
 and (seq:1, URI('http://example.org/name'), USTR('Alice'))
 in GRAPH(0)
 and (x, URI('http://example.org/name'), n) in GRAPH(0);

where function path:1() is defined on-the-fly as:

create function path:1(Literal x) -> Bag of Literal y as
 select x
 where (x, URI('http://example.org/fatherOf'), y) in GRAPH(0)
 or (x, URI('http://example.org/motherOf'), y) in GRAPH(0);

5.4.5.4 Translating expressions
Currently, SciSPARQL supports the following kinds of expressions, listed
here with their translation rules and examples:

• a variable, e.g. ?x - translated to an AmosQL variable, e.g. x
• a full URI, e.g. <http://udbl.uu.se/g1> - translated to a URI

constructor call in AmosQL, e.g. URI('http://udbl.uu.se/g1')
• an abbreviated URI, e.g. udbl:g1 - translated similarly, using the

prefix lookup first in TC.prefixes and then in session-prefixes, in
order to get the full URI form

• a numeric or logical literal, e.g. 3.14 or true - translated to the
same numeric literal in AmosQL (textual representations fully
comply)

• a string literal, e.g. "Cat" or "Katz"@de - translated to a Unicode
string constructor call in AmosQL, e.g. USTR('Cat') or
USTR('Katz','de')

• a typed literal, e.g. "Katt"^^udbl:Djur - translated to a typed
literal constructor call in AmosQL, e.g. TypedRDF('Katt',

URI('http://udbl.uu.se/Djur')) - this translation excludes the
standard XMLS types for numbers, Boolean values and text strings
date literals, where one of the above translations is used instead.

 111

• a user-specified blank node, e.g. _:r1 - translated to an AmosQL
variable, e.g. b:r1

• a parser-generated blank node resulting from square brackets syntax
(containing a unique id supplied by the parser) - translated to an
AmosQL variable, e.g. g:324

• a unary or binary arithmetic operation, e.g. x + y, where x and y are
expressions - translated to a call to the corresponding function,
accepting the arguments of generic type Literal - e.g. rdf:plus(tr(x),
tr(y))

• a binary dot-prefixed arithmetic operation, e.g. x .+ y, where x and y
are expressions - translated to a call to a specialized Amos function -
e.g. rdf:aplus(tr(x), tr(y)), where rdf:aplus() has the same general
implementation as rdf:plus(), but a higher cost estimate

• a comparison operation, e.g. x >= y - translated to the corresponding
comparison expression in AmosQL (since the comparison operators
in AmosQL accept arguments of any type), e.g. tr(x) >= tr(y). In order
to enforce the strict adherence to the SPARQL standard, (as
controlled by _sq_strict_ flag) additional condition
comparable(tr(x), tr(y)) will be added to TC.newconds - this ensures
that comparing e.g. a number to a string never returns true

• a dot-prefixed comparison operation, e.g. x .>= y - translated to the
specialized Amos function, performing the element-wise comparison
and producing a Boolean array (unless both operands happen to be
scalar) - e.g. rdf:agte(tr(x), tr(y)). Specialized operations on
Boolean arrays are also supported: x .& y and x .| y for the element-
wise logic

• a logical conjunction or disjunction operation, e.g. x && y - translated
to the corresponding logical operator in AmosQL, e.g. tr(x) and tr(y)

• a logical negation operation !x - the translation depends on the kind
of the immediate subexpression x: if it is found in the pairs of
opposite expressions (e.g. != and = comparisons, or false and true
literals, bound() and notbound() functions), then the opposite
expression is translated instead, otherwise, the rdf:not(EBV(x))
translation is used, where EBV() implements the Effective Boolean
Value, as explained in Section 3.3.3, and rdf:not() negates the logical
value

• a block with an EXISTS or NOT EXITS quantifier, e.g. EXISTS B -
translated to an AmosQL subquery inside some() or notany()
quantifier respectively, e.g. some(select true from trD(declare(B))
where tr(B)), where declare(B) builds a list of variables to be declared
for the translation of block B, as specified in Section 5.4.5.6 below.

• a typecasting expression, e.g. xsd:integer("314") - translated to
the corresponding built-in typecasting function call, e.g.

112

rdf:toInteger('314') for the numeric, Boolean, and string types,
otherwise to a typed literal constructor call, as shown above

• a call to a built-in function with variable number of arguments, e.g.
1D array construct A(x, y) - translated to a call to the implementing
Amos function, with translated arguments packed into a vector, e.g.
a({tr(x), tr(y)})

• a call to ARGMIN() or ARGMAX() built-in second-order function -
translation is explained in Section 5.4.5.9

• a call to any other non-aggregate function (either built-in or user-
defined), e.g. round(x) - translated to a call to an Amos function
with the same name prefixed with rdf:, e.g. rdf:round(x)

• a call to an aggregate function, e.g. SUM(x) - not translated as part of
the expression, such aggregate function calls are collected into Q.agg
during the preprocessing phase, as explained in Section 5.4.5.7, and
are replaced with expressions under the call to an aggregate function,
to be translated as part of the select list of the inner query

• a call to any non-aggregate first-order function with some of the
arguments replaced by asterisk, e.g. power(*, 2) - translated to a
pair of consecutive arguments to a second-order function, together
imlementing a lexical closure - a function name and a partial tuple
constructor call - e.g. #'power', make_partial_tuple({2},{0}), with
the first vector containing all non-asterisk arguments, and the second
vector containing the positions of asterisks. Such lexical closures are
only used as arguments to built-in second-order functions, like the
ARRAY() constructor or the MAP() array mapper, and represent
function calls with some arguments bound, while other arguments are
free.

• an array dereference operation, e.g. x[1,4:2:8] - translated to a
superposition of calls to aref() and asub() for each referred
dimension: aref() implements projections and asub() implements
range selections - both functions take a dimension index, e.g.
asub(aref(tr(x),1,1),1,4,2,8) - note that the dimension index for the
second dimension becomes decremented after applying the
projection.

5.4.5.5 Translating blocks of conditions
The WHERE block of a query or update statement lists a sequence of
conditions, appearing in conjunction (though not strictly a conjunction with
commutative property in the case of not well-formed queries). Such blocks
are translated to AmosQL conjunctions of translations of the respective
conditions, the order being preserved, together with any additional
conditions introduced by the translation of expressions. Such conjunctions
are fully commutative in the absence of the optional() operator, which, if

 113

present, divides their sequence into sections that cannot be reordered, as
explained in Section 5.4.4.

Section 5.4.5.2 above has already introduced the translation of triple
patterns, within and without GRAPH blocks. The following table summarizes
the translation used for all kinds of conditions. The original conditions are
shown in SciSPARQL's syntax for simplicity, even though the translator
operates on the internal data structure representations of conditions and their
components - nested blocks, expressions, etc.

Table 3. Translation of conditions in WHERE block

Type of
condition

Condition C
(SciSPARQL syntax)

Symbols Translation tr(C, TC)
(AmosQL syntax)

Triple pattern
outside
GRAPH block

s p o RDF terms (tr(s), tr(p), tr(o))
in TC.source

Triple pattern
inside GRAPH
block

GRAPH g { s p o } RDF terms (tr(s), tr(p), tr(o))
in trSource(g)

Path patterns s P o
GRAPH g {s P o}

g, s, o - RDF terms,
P - path expression

explained in Section
5.4.5.3

Filter FILTER e e - expression tr(e)
BIND (e AS v) e - expression,

v - variable
tr(v) = tr(e) Explicit

binding
VALUES v {e1, e2, ...} v - variable

e1, e2, ... -
expressions

tr(v) = tr(e1) or tr(v) =
tr(e2) or ...

Optional block OPTIONAL B B - block optional(tr(B))
Union B1 UNION B2

UNION B3 ...
blocks (tr(B1) or tr(B2)

or tr(B3)) ...
Subquery Q Q - query (tr(var(Q.what)))

in (tr(Q))

The translation tr(B) of a whole condition block is done by putting the
translations of the individual conditions B.conds into a conjunction:

tr(B) = andify(tr(B.conds))

where andify() combines the given translated conditions into a single
conjunction, effectively interleaving them with the and keyword. When
translating the basic block of a query, as shown next in Section 5.4.5.6,
additional translated conditions from TC.newconds are added into the
conjunction.

A note on the translation of subqueries: the function var(Q.what) returns
the list of variables projected from a SELECT query Q - this includes
variables appearing in the Q.what list and names of the named expressions
appearing there. All variables in var(Q.what) become bound and referenced
in the host query, according to the definitions given in Section 5.4.1.3

114

An aggregate subquery is translated in two layers, however, its outer layer
is effectively merged into the host query, with e.g. Q.having conditions
added to TC.newconds. No ordering or segmentation is allowed in
subqueries, however, some additional variables on the outer layer might
arise from cross-referencing of expressions, as explained in Section 5.4.5.7.

5.4.5.6 Translating basic SELECT queries
Here and below, the term basic query is used as shorthand for a non-
aggregate SELECT query (and justifies the 'B' enumeration for the
translation steps listed below). This can also be a subquery or a host query
containing subqueries as conditions.

Given the above definitions for translations tr(e) of an expression e, and
tr(B) of a condition block B, the translation tr(Q) of a basic query Q
becomes straightforward, as described by steps B1 - B9 below. These steps
are given for illustrative purpose only, since determining whether Q is an
aggregate query or not is done after the second step, as shown in the next
section.

B1. The Q.where block and all its nested blocks are preprocessed in order
to compute bound, semibound, referenced, and blanks sets of variables for
each block.

B2. The translation context TC is created, with fields initialized as
described in Section 5.4.5.1. If Q is a subquery, the host query translation
context is cloned to TC instead, with newconds and newvars fields emptied,
and TC.bound set including all variables bound in the parent query.

B3. A check for cross-referenced named expressions is performed, as
described in Section 5.4.3.1, any such expressions are rewritten to their
names, and additional BIND conditions are added as AmosQL translations to
TC.newconds. If Q is a subquery, all named expressions in Q.what are
considered to be cross-referenced.

B4. The translation TRS of the Q.what list of a query is computed, with
TC possibly updated. This also includes any additional variables used for
ordering:

TRS = tr(Q.what + Q.select-extra, TC)

B5. The translation TRW of the Q.where block is computed, with TC
possibly updated. This translation includes any extra conditions added to
TC.newconds along the way.

TRW = tr(Q.where, TC)

B6. The declare(B) set of variables is computed for the basic block B as
follows (with definitions of Ref(B) and B.blanks in Section 5.4.3.1):

 115

declare(B, TC) = (Ref(B) ∪ B.blanks ∪ TC.newvars) \ TC.bound

B7. The core translation trC(Q) of the query is constructed as

trC(Q) = select TRS from trD(declare(B, TC)) where TRW

or with distinct option added after select if Q.distinct flag is set. (The trD()
function is defined in Section 5.4.5.3)

B8. If Q.orderby list is empty the translation trO(Q) is left unchanged

trO(Q) = trC(Q) iff Q.orderby = ∅

otherwise, a facility to order the query results is added to the translation. For
this purpose, the (possibly rewritten) expressions in Q.orderby are looked up
in the extended select list.

Formally, each entry in Q.orderby contains an expression, and a direction
specifier, to be translated to either 'inc' or 'dec' representation in AmosQL.
Function expr(Q.orderby) returns the list of such expressions, and
dir(Q.orderby) returns the aligned list of directions. Also, the function
lookup(e, list) returns a 0-based position of expression e in the list. When
applied to a list of expressions (in the first argument), it returns a list of such
positions.

trO(Q) = sortbagby(trC(Q), {lookup(expr(Q.orderby), Q.what + Q.select-
extra)}, {tr(dir(Q.orderby))})

B9. The final translation is constructed, by applying the segmentation
facility. If both Q.offset and Q.limit are empty, the translation is unchanged,
tr(Q) = trO(Q) otherwise the bsection1() function call is wrapped around the
previously constructed translation

tr(Q) = bsection1(trO, tr(Q.offset), tr(Q.limit))

where the translations of Q.offset and Q.limit default to 0, in order to
indicate the absence of such bounds to the bsection1() function, as
explained in Section 5.4.3.3.

Note that while ORDER BY is meaningless in subqueries, OFFSET and
especially LIMIT clauses can prove quite useful (e.g. in formulating a top-k
selection). The expressions in Q.offset and Q.limit are typically constant, but
might as well depend on variables external to the query Q - i.e. those in the
TC.bound set.

5.4.5.7 Translating aggregate queries
Substantially more preprocessing is required for aggregate queries, with the
first step being taken to determine if Q is an aggregate query.

A1 - A2. Same as B1 - B2 in the previous section.

116

A3. The expressions in Q.what, Q.orderby and Q.having are scanned for
aggregate functions (not necessarily at the top level). The presence of
Q.groupby or Q.having per se does not make Q an aggregate query - instead,
these fields are only allowed in aggregate queries. Named aggregate
expressions are put into Q.agg together with their names. Other (not top-
level) calls to aggregate functions are assigned surrogate names, like agg:1,
agg:2 etc., and are also placed into Q.agg, with new variables added to
TC.newvars. The places where aggregate function calls were found are
rewritten with their mentioned names (as variables).

Only unique aggregate function calls are added to Q.agg - if an
expression is already found there, its name from Q.agg is used for rewriting.
Currently, equality of expressions is done by comparing the parse trees,
which is simple but certain equivalent expressions might not be detected.
For example max(?a + ?b) and max(?b + ?a) would be treated as
different expressions. A more thorough comparison, e.g. one based on
rewriting such expressions to a canonic form and sorting the commutative
operands, awaits its implementation in the future versions of SSDM.

If Q.agg remains empty then Q is not an aggregate query, and Steps B3 -
B7 for the simple query translation are performed.

A4. The translation context TC will be used for the outer query, and the
new TCINNER context is cloned for the inner query, with newvars and
newconds fields emptied.

If Q is an aggregate subquery, the already-cloned TC will be used as
TCINNER for the inner query and the original translation context of the host
query will be used as TC for the outer query.

A5. The check for cross-referenced named expressions is performed,
similarly to Step B3. However, named expressions already collected into
Q.agg are already rewritten to their names in place, and do not require extra
BIND conditions to be translated into TC.newconds.

A6. Each named expression e in Q.agg, contains an aggregate function
call at the top level, with a single argument. We denote the argument
expression to the top-level function as arg(e), that function name as fn(e),
and the naming variable as var(e). The same functions applied to the Q.agg
list denote the lists of the respective objects. First we are going to compute
the translations of the arguments to the aggregate functions, possibly
updating the inner context:

TRA = tr(arg(Q.agg), TCINNER)

A7. Similarly to B5, we translate the where block of the inner query,
possibly updating TCINNER and including TCINNER.newconds into the
conjunction:

 117

TRW = tr(Q.where, TCINNER)

A8. The select list of the inner AmosQL query is constructed of two parts:
(i) variables listed in Q.groupby, packed into a vector (unless grouping on a
single variable) and (ii) the translations TRA of arguments to the aggregate
functions computed at step A6. The translation of the inner block is:

TRINNER= select {tr(Q.groupby, TCINNER)}, TRA from trD(declare(B,
TCINNER)) where TRW

Additionally, if Q.groupby is empty, a short version of the inner query
translation is made, which may be used in next step A9, and also for the
purpose of translating function bodies:

TRs
INNER= select TRA from trD(declare(B, TCINNER)) where TRW

The distinct option will be added into both translations after select if
Q.inner-distinct flag is set, i.e. if the DISTINCT keyword was encountered
under at least one aggregate function. The set declare(B, TCINNER) is
computed in the same way as in B6, except with a different translation
context - having more variables in TC.bound.

Note that the general-case translation TRINNER is viable even if there was
no GROUP BY clause in Q - the first element in select then becomes an
empty vector, and the groupby() call introduced in step A10 is used to
invoke the single-pass evaluation of multiple aggregate functions, effectively
grouping on a constant empty group {}.

A9. In case of a single aggregate expression in Q.agg, empty Q.groupby
set, absence of Q.having, empty TC.newconds list, and a single expression in
Q.what being rewritten to the only variable defined in Q.agg:

|Q.agg| = 1 ∧ Q.groupby = ∅ ∧ Q.having = nil ∧ TC.newconds = ∅
∧ Q.what = var(Q.agg)

the outer query can be translated directly as a call to that aggregate function.
This results in the following core translation, (possibly followed by
applying a segmentation facility at step A15):

trC(Q) = tr(fn(Q.agg))(TRs
INNER)

Otherwise, steps A10-A13 are preformed to construct a general-case core
translation of aggregate query Q.

A10. The central condition of the outer query is the one calling groupby().
This condition is formed as:

TRG = ({tr(Q.groupby, TC)}, tr(var(Q.agg), TC)) in groupby(TRINNER,

{tr#(fn(Q.agg))})

118

The function tr#() annotates the translated function names with syntactic
features used for the functional arguments in AmosQL, e.g. #'rdf:sum' for
the sum() aggregate function.

A11. If Q is a subquery, TRG and tr(Q.having, TC) conditions are simply
added to TC.newconds in the host query (sharing the translation context TC).
The variables in Q.groupby and var(Q.agg), if not already referenced in the
host query block, are added to TC.newvars.

If Q is not a subquery, the remaining steps proceed.

A12. The expressions in Q.what (where certain subexpressions have been
rewritten to variables at steps A3 and A5), are translated to a select list,
possibly updating the translation context, and including any extra variables
used for ordering:

TRS = tr(Q.what ∪ Q.select-extra, TC)

A13. The core translation of the outer query is now constructed as:

trC(Q) = select TRS from trD((Q.groupby ∪ var(Q.agg) ∪ TC.newvars)
\ TC.bound) where andify(TRG, tr(Q.having, TC), TC.newconds)

or with distinct option added after select if Q.distinct flag is set.

A14 - A15 The final translation tr(Q) is constructed in the same way as
for a basic query, following the steps B8 - B9.

5.4.5.8 Translating function definitions
The translation of a function definition statement S to its AmosQL
equivalent tr(S) depends on whether S.body is a basic or an aggregate query.

For the top-level-aggregate (TLA) functions (i.e. ones containing
aggregate queries in Q.body) it is important to separate inner and outer
function definitions, which are similar to the concepts of inner and outer
queries. This is required to correctly translate ARGMIN() and ARGMAX() to
subqueries, as shown in the next section. However, not all kinds of functions
can be passed as arguments to these second-order functions, leading us to the
definition of an argmax-compatible function.

An argmax-compatible function has result width of 1, and is known to
return a single result solution. The latter is not an enforced requirement, but
a simple criterion used to disqualify certain classes of SciSPARQL functions
from the need of being translated in the argmax-compatible way. For
example, functions with a GROUP BY clause are not argmax-compatible,
neither are the functions which require ordering or segmentation. The
HAVING clause, designed for filtering the resulting solutions, also assumes
their multiplicity, hence showing the lack of argmax-compatibility. For

 119

simplicity, we will use the following criterion to identify argmax-compatible
functions:

|S.body.what| = 1 ∧ S.body.groupby = ∅ ∧ S.body.having = nil ∧
S.body.orderby = ∅ ∧ S.body.offset = nil ∧ S.body.limit =nil

Note that the class of argmax-compatible functions might include both
basic (i.e. non-aggregate) functions, and functions with any number of
aggregate expressions collected into Q.agg. The groupby() function might be
used in their translations, albeit then performing no actual grouping - only
expressing single-pass computation of multiple aggregate expressions.

In the case of a TLA function, this criterion rules out any extra conditions
that can be added to the TC.newconds when translating the outer query. Such
an outer query includes a single expression in Q.what, depending on a
number of aggregate function calls collected into Q.agg. In AmosQL this
will be translated either to a query with single condition in where clause,
calling groupby() on a constant group {}, or a direct call to the aggregate
function, as shown in A9.

The following steps outline the process of obtaining the translation tr(S)
of the function definition S.

F1. First, the translation tr(S.body) of the function body (always being a
SELECT query) is constructed following the steps A1 - A15 described
above. At step A2 (same as B2) the TC.bound set of the newly created
translation context TC will contain S.params.

F2. If S.body is a basic query, i.e. S.body.agg = ∅ , or if S is not argmax-
compatible function, a single function definition in AmosQL translates S:

tr(S) = create function tr(S.name)(trD(S.params)) -> Bag of Literal as
tr(S.body)

Otherwise, the remaining steps are performed to translate an aggmax-
compatible TLA function in two separate parts: an inner function translation
trINNER(S) and an outer function translation trOUTER(S).

F3. The inner function is based on the short translation TRs
INNER of the

inner query, as defined in step A8. The inner function is defined as:

trINNER(S) = create function tr(S.name):inner(trD(S.params)) -> Bag of
(rptq('Literal', |Q.body.agg|)) as TRs

INNER

The function rptq() makes a comma-delimited list of repeated code
fragments, given a number or repetitions in the second argument.

F4. The translated body TROUTER of the outer function may be constructed
in the simplified form:

TROUTER = tr(fn(Q.agg))(select tr(S.name):inner(tr(S.params)))

120

if the conditions from A9 hold:

|S.body.agg| = 1 ∧ TC.newconds = ∅ ∧ S.body.what = var(Q.agg)

Otherwise a general-case translation, similar to the one defined in steps
A10, A12, A13, under certain simplifications arising from argmax-
compatibility criterion stated above:

TRG = ({}, tr(var(S.body.agg), TC)) in groupby(select {},
tr(S.name):inner(tr(S.params)), {tr#(fn(S.body.agg))})

TRS = tr(S.body.what, TC)

TROUTER = select TRS from trD((var(S.body.agg) ∪ TC.newvars) \
Q.params) where andify(TRG, TC.newconds)

F5. The outer function translation trOUTER(S) extends the translated body
by supplying a header:

trOUTER(S) = create function tr(S.name)(trD(S.params)) -> Bag of
Literal as TROUTER

F6. The overall result of translating an argmax-compatible aggregate
function is a pair of function definitions

tr(S) = trINNER(S); trOUTER(S)

The rewritten SELECT expression S.body.what and the list of collected
aggregate functions S.body.agg are saved is SSDM in the TLA hash table,
with S.name serving as a key:

agg(S.name) = S.body.agg

expr(S.name) = S.body.what

This information is needed for the ARGMIN() and ARGMAX() translations
introduced in the next section.

5.4.5.9 Translating ARGMIN and ARGMAX
A call to ARGMIN() or ARGMAX() is a kind of expression, as listed in
Section 5.4.5.4. The only argument is a function of a single parameter (or a
lexical closure with a single free argument), which is argmax-compatible, as
defined in the previous section, and returns a single value for each binding
of its parameter. Another fundamental requirement (beyond the scope of the
translator) is that the function needs to have a finite domain, i.e. it can be
evaluated without externally binding its argument.

SSDM defines the rdf:argmin() and rdf:argmax() aggregate functions in
AmosQL with identical signatures: both of them take a bag of (arg, res)
tuples, and return the encountered arg values where res was found at its
minimum or maximum. A simple derived Amos function is internally

 121

flattened after its translation to ObjectLog, so that the chain of predicates
connecting its argument and finiteness conditions (e.g. a graph pattern) can
be reversed by the optimizer towards the set of all possible argument values.
The same is, unfortunately, not technically possible with functions involving
top-level aggregate operations, which confine their finiteness conditions in a
separate 'inner' calculus expression, and consequently, a separate execution
plan, so that any external arguments can only be passed inwards, but not
outwards.

Though this can be regarded as purely architectural restriction with
ObjectLog; there is an interesting workaround, which relies on directly
addressing the 'inner' part of such a function in order to iterate over all
possible argument values. The subqueries translating ARGMIN() and
ARGMAX() calls are constructed based on this idea, described in the
following steps.

Without any loss of generality, let e be an expression calling a second-
order function e.fn with a single argument a = e.args. This argument is a
closure, consisting of a function name a.fn and list of its arguments a.args
containing exactly one asterisk. Though SciSPARQL allows omitting the
lexical closure syntax when passing a unary function to ARGMIN() or
ARGMAX(), at the parsing phase such a lexical closure is constructed, with
a.args consisting of a single asterisk.

M1. First, the information on a.fn is looked up in the TLA hash table in
SSDM - whether it was a TLA function translated to the inner and outer
function definitions on steps F3 - F6, with additional information agg(a.fn)
and expr(a.fn) available, or as a basic function on step F2, in which case
agg(a.fn) is empty.

M2. The closure a is translated to a function call, with asterisk substituted
to a newly-generated variable arg = newvar(TC). For this purpose, an
alternative translation function trI(e) is defined, differing from the expression
translation specified in Section 5.4.5.4 in two ways: (i) asterisk is translated
to arg, postfixed with :i, in order to avoid possible collision with the outer
level of the query, and (ii) the closure function a.fn is translated to its inner
name, unless a.fn is a basic function:

trI(asterisk) = arg:i

trI(a.fn) = tr(a.fn):inner iff agg(a.fn) ∅≠

M3. Even if the groupby() operator was not used in the translation of the
TLA function a.fn, evaluating our second-order function involves grouping:
for each possible argument value a number of inner function solutions is
generated and passed to the aggregate function(s) used in a.fn.

TRG = groupby((TRU), {tr#(fn(agg(a.fn)))}) iff agg(a.fn) ∅≠

122

where TRU is a subquery returning tuples of a.fn argument and the under-
aggregate values to be grouped:

 TRU = select arg:i, trI(a) from Literal arg:i

For the basic functions, TRU needs neither grouping nor aggregation, and
comes as a direct argument to e.g. rdf:argmax().

M4. If the outer function a.fn was translated in the simplified form, i.e.
the SELECT expression expr(a.fn) is just a name var(agg(a.fn)) of the only
aggregate function call, then

tr(e) = tr(e.fn)(TRG)

The same works for the basic functions, formally achieved by TRG = TRU.
In all other cases, the next step concludes the process.

M5. Since the outer function consists of a single expression and groupby()
condition, reproducing it is a simple task. The expression expr(a.fn) is
translated exactly in the same way as it was in the outer function definition,
and bag of (arg, res) pairs is fed to e.g. rdf:argmax():

tr(e) = tr(e.fn)(select arg, tr(expr(a.fn)) from Literal arg,
trD(var(agg(a.fn))) where (arg, tr(var(agg(a.fn))) in TRG))

5.4.5.10 Examples
The translations defined in the four previous sections are illustrated by the
following examples of aggmax-compatible functions. For simplicity, all the
following definitions use a common prefix declaration:

PREFIX : <http://example.org/data/#>

A basic function f0 selecting value of property :x from a given graph
node

DEFINE FUNCTION f0(?a) AS
SELECT ?x
 WHERE { ?a :x ?x }

is translated as

create function rdf:f0(Literal a) -> Bag of Literal
 as select x
 from Literal x
 where (a, URI('http://example.org/data/#x'), x) in GRAPH(0);

and ARGMAX(f0(*)) in SciSPARQL translates to:

rdf:argmax(select arg:1:i, rdf:f0(arg:1:i) from Literal arg:1:i);

 123

Function f1, computing the sum of all such :x values

DEFINE FUNCTION f1(?a) AS
SELECT (sum(?x) AS ?res)
 WHERE { ?a :x ?x }

is translated to the pair of definitions

create function rdf:f1:inner(Literal a) -> Bag of Literal
 as select x
 from Literal x
 where (a, URI('http://example.org/data/#x'), x) in GRAPH(0);

create function rdf:f1(Literal a) -> Bag of Literal
 as rdf:sum((select rdf:f1:inner(a)));

and ARGMAX(f1(*)) also uses a simplified translation:

select rdf:argmax(groupby((select arg:1:i, rdf:f1:inner(arg:1:i)
 from Literal arg:1:i), #'rdf:sum'));

The translation of the example ARGMAX() call from Section 4.3 is similar
to this case:

select rdf:argmax(groupby((select arg:1i,
 rdf:sum_diag_positive:inner(arg:1i)
 from Literal arg:1i), #'rdf:sum'));

where the sum_diag_positive() function, defined in Section 4.2, is
translated to the outer and inner parts:

create function rdf:sum_diag_positive:inner(Literal r)
-> Bag of Literal
 as select aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1))
 from Literal i, Literal a
 where (r, URI('http://example.org/data/result'), a) in GRAPH(0)
 and aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1))>0;

create function rdf:sum_diag_positive(Literal r) -> Bag of Literal
 as rdf:sum((select rdf:sum_diag_positive:inner(r)));

Function f2, computing a numeric range of :x properties for the given
node

DEFINE FUNCTION f2(?a) AS
SELECT (max(?x) - min(?x) AS ?range)
 WHERE { ?a :x ?x }

is translated as follows:

create function rdf:f2:inner(Literal a) -> Bag of (Literal, Literal)
 as select x, x
 from Literal x
 where (a, URI('http://example.org/data/#x'), x) in GRAPH(0);

create function rdf:f2(Literal a) -> Bag of Literal
 as select rdf:minus(agg:1, agg:2)
 from Literal agg:1, Literal agg:2
 where ({}, agg:2, agg:1)

124

 in groupby((select {}, rdf:f2:inner(a)),
 {#'rdf:min', #'rdf:max'});

and ARGMAX(f2(*)) reproduces the expression in the outer function:

select rdf:argmax(select arg:1, rdf:minus(agg:1, agg:2)
 from Literal agg:1, Literal agg:2, Literal arg:1
 where (arg:1, agg:2, agg:1) in
 groupby((select arg:1:i, rdf:f2:inner(arg:1:i) from Literal arg:1:i),
 {#'rdf:min', #'rdf:max'}));

5.4.5.11 Translating CONSTRUCT queries
A CONSTRUCT query returns a new RDF graph in form of triples. For each
solution of a query, exactly the same number of RDF triples is created, as
there are triple templates in Q.what. The triple templates are quite similar to
triple patterns, except that they are used for constructing, not for matching.

The translation is an AmosQL query of width 3, effectively returning a
union of results specified by each triple template for each solution
corresponding to the WHERE block of the CONSTRUCT query. Since no
unbound values are allowed in the result graph, the rdf:bound() check needs
to be passed using a triple template with a semibound variable. The
following example illustrates this approach:

Q14 (W3C Standard SPARQL): Extract all realizations of all experiments
into a new graph as nodes of type ex:OldRealization and the properties
ex:a and ex:c containing these two parameters

PREFIX ex: <http://udbl.uu.se/ex#>
CONSTRUCT { ?r a ex:OldRealization ; ex:a ?a ; ex:c ?c }
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:parameter_A ?a .
 OPTIONAL { ?r ex:parameter_C ?c } }

The translation constructs each triple template as an alternative solution,
and performs additional check on the semibound variable ?c:

select c:s, c:p, c:o
 from Literal r, Literal c, Literal a,
 Literal c:s, Literal c:p, Literal c:o
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
 and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)
 in GRAPH(0)
 and ((c:s = r and
 c:p = URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type')
 and c:o = URI('http://udbl.uu.se/ex#OldRealization'))|
 or (c:s = r and c:p = URI('http://udbl.uu.se/ex#a') and c:o = a)
 or (c:s = r and c:p = URI('http://udbl.uu.se/ex#c') and c:o = c
 and rdf:bound(c)));

Formally, the translation process can be defined as tr(Q), where Q.what is
a set of triple templates tt, each having tt.s, tt.p and tt.o fields. The query

 125

always uses the same variables for selection, binding them alternatively,
according to each triple template.

C1. A new translation context TC is created.

C2. The translation TRW of the Q.where block is computed, with TC
possibly updated. This translation includes any extra conditions added to
TC.newconds along the way:

TRW = tr(Q.where, TC)

C3. The basic translation trB(tt) of triple template tt is defined as

trB(tt) = c:s = tr(tt.s) and c:p = tr(tt.p) and c:o = tr(tt.o)

and the additional binding checks are added for all semibound variables
var(tt), used in the given triple template:

tr(tt) = andify(trB(tt), trbound(var(tt) ∩ Q.semibound))

where

trbound(v) = rdf:bound(v)

C4. The final translation tr(Q) is constructed:

tr(Q) = select c:s, c:p, c:o from trD(declare(Q, TC)), Literal c:s,
c:p, c:o where TRW and orify(tr(Q.what.conds))

where orify() function builds disjunction of a given list of translated
conditions.

5.4.5.12 Translating SPARQL updates
In all the above translations, the Amos function GRAPH() was ultimately
addressed for matching the triple patterns. Though in most recommended
settings, as discussed in the following chapters, the triples reside in the main
memory in the SSDM server, its extensible architecture allows any external
API, to be invoked for the purpose of querying GRAPH(), including
formulation of foreign queries to the external storage systems. The query-
only access to GRAPH() assumes that different mechanisms are required for
inserting and removing the triples.

For this purpose SSDM defines the rdf:insert() and rdf:remove()
functions, which are generic and encapsulate the extensibility mechanisms,
similarly to GRAPH(). Since these functions contain side effects, they cannot
be called from an AmosQL query. Fortunately, Amos II allows hybrid
semantics, combining a query and a procedure: for each solution of a given
query, a number of operations are performed (update operations in our case).
In order to avoid inserting unbound values, the procedural if syntax can be
used. The following example illustrates this approach:

126

Update1 (W3C standard): rename ex:parameter_A and
ex:parameter_C properties to ex:a and ex:c respectively.

PREFIX ex: <http://udbl.uu.se/ex#>
DELETE { ?r ex:parameter_A ?a ; ex:parameter_C ?c }
INSERT { ?r ex:a ?a ; ex:c ?c }
 WHERE { ?r a ex:OurExperimentRealization ;
 ex:parameter_A ?a .
 OPTIONAL { ?r ex:parameter_C ?c } }

The translation is rather straightforward, providing a remove or insert
operation for each triple pattern in DELETE and INSERT clause respectively,
with additional binding check, needed only for insert operation.

for each Literal r, Literal c, Literal a
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),
 URI('http://udbl.uu.se/ex#OurExperimentRealization'))
 in GRAPH(0)
 and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
 and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)
 in GRAPH(0))
begin
 rdf:remove(0, r, URI('http://udbl.uu.se/ex#parameter_A'), a);
 rdf:remove(0, r, URI('http://udbl.uu.se/ex#parameter_C'), c);
 rdf:insert(0, r, URI('http://udbl.uu.se/ex#a'), a);
 if rdf:bound(c) then
 rdf:insert(0, r, URI('http://udbl.uu.se/ex#c'), c);
end;

Formally, an update statement S contains an S.where block, S.delete and
S.insert lists of patterns, and S.with URI for the graph to perform the updates
on. The latter is translated to integer id by GDict(S.with), defaulting to 0.
Additionally, as with queries S.from might contain the list of graphs listed in
the USING clause and addressed in the WHERE clause.

U1. A new translation context TC is created. If S.from is omitted but
S.with is present, TC.source stores the translation GRAPH(GDict(S.from)).

U2. Similarly to C2 and A7, the translation TRW of the Q.where block is
computed, with TC possibly updated. This translation includes any extra
conditions added to TC.newconds along the way.

TRW = tr(Q.where, TC)

U3. The delete and insert patterns are translated in a similar way:

trdel(tp) = rdf:remove(GDict(S.with), tr(tp.s), tr(tp.p), tr(tp.o));

trins0(tp) = rdf:insert(GDict(S.with), tr(tp.s), tr(tp.p), tr(tp.o));

However, the insert calls should be skipped if not all used variables are
bound, so the final translation of an insert pattern includes an if condition:

trins(tp) = if andify(trbound(var(tp) ∩ Q.semibound)) then trins0(tp)
 iff var(tp) ∩ Q.semibound ∅≠

 127

If there are no semibound variables in the insert pattern then trins(tp) =
trins0(tp)

U4. The final translation tr(S) of the update statement S is constructed:

tr(S) = for each trD(declare(S, TC)) where TRW begin
concat(trdel(S.delete), trins(S.insert)) end

Note that the INSERT DATA and DELETE DATA statements are handled
differently, in accordance with W3C Recommendations [156]: the
corresponding rdf:insert() and rdf:remove() calls are made as the syntactic
parsing stage, so that the triple patterns (where no variables are allowed) are
not accumulated in the parse tree. This approach allows processing
arbitrarily long statements for bulk updates of RDF with Arrays datasets.

5.5 Polymorphic Properties Problem
In Section 5.3 we state that SSDM supports backwards-compatibility when
handling collections of numbers as arrays. This assumes that along with the
new way to address e.g. the first element ?A[1] of a collection ?A, the old
way, using a triple pattern is also supported:

?A rdf:first ?x

In the current version of SSDM, this is guaranteed by translating triple
patterns with rdf:first and rdf:rest as disjunctions, e.g.

(rdf:first(A) = x
 or (A, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#first'), x)
 in GRAPH(0))

where the Amos function rdf:first() makes a run-time type checking, and
if the argument is an array, returns the first element, which, in the case of a
multidimensional array will be the first (n-1)-dimensional slice

Effectively, the OR branches are mutually exclusive: if A is not an array,
rdf:first() yields no result, but a triple pattern might have some bindings
for x. If A is an array, the RDF triple pattern will never bind, since array
value can never be a subject in a triple - only an object.

5.5.1 Directionality Problem
As illustrated by dataset on Figure 4 in Section 2.3.5.1, a triple pattern

?x rdf:first 2

can easily be matched, putting the blank node _:c into the solution. Even
though the graph representing an array can be quite big, dedicated RDF

128

stores with powerful indexing techniques, such as RDF-3X [112], will find
the match in logarithmic time - equivalent to matching e.g.

_:c rdf:first ?y

In our case the graph in Figure 4 is stored as a numeric array. So there is
actually no blank node _:c, and a 1D array consisting of single element 2
can be regarded as an equivalent replacement of _:c. Such an array value
can easily be created on demand as a derived array, without copying any
array data. Similarly, the whole array is a replacement for the _:a node.

However, while finding the first element of a given array is simple and
takes constant time, finding an array (or any 1D subarray) with a given first
element would involve a linear scan through every array in the graph,
resulting in a linear complexity w.r.t. the total volume of array data stored.

Solution: Currently, rdf:first() and rdf:rest() functions are
implemented as uni-directional, effectively forbidding queries with triple
patterns like the first one in this section, unless ?x can be bound otherwise.
This results in a certain limitation of the backwards-compatibility feature,
motivated by the intended use of SSDM - storing and querying massive
array data as part of RDF with Arrays datasets.

5.5.2 Normalization Problem
The typical use of rdf:first and rdf:rest predicates is chaining. For
example, in order to address ?A[2,2], in standard SPARQL one would use
a graph pattern

?A rdf:rest [rdf:first [rdf:rest [rdf:first ?x]]]

or, in SPARQL 1.1 one might prefer the path expression syntax

?A rdf:rest/rdf:first/rdf:rest/rdf:first ?x

both of which effectively translate to four triple patterns. Since in our case,
each such triple pattern is translated to a disjunction of two alternatives in
AmosQL, further query transformations always involve normalization to
disjunctive normal form (DNF). A conjunction of n binary alternatives (of
unique expressions, as in our case) is transformed to a disjunction of 2n
branches, each containing a conjunction of n terms, thus resulting in a
combinatorial explosion of the execution plan w.r.t. the number of
rdf:first and rdf:rest patterns in the query.

 129

Solution: In our case, we effectively get a union of 16 branches -
however, only 5 of them are theoretically capable of yielding any solutions.
This is due to the fact that rdf:first() and rdf:rest() functions may only
return arrays, scalar values, or rdf:nil, and neither of these values,
according to the RDF standard, can be a subject in an RDF triple. Hence,
any union branch containing a chain of predicates where the result of such a
function is used as a subject in a triple pattern can be safely ruled out. The
remaining 5 alternatives contain chains of triple patterns followed by a chain
of function calls, either chain consisting of 0 to 4 elements. This set is
illustrated by the following diagram, where tp stands for a triple pattern with
an rdf:first or rdf:rest predicate, and fn() stands for a corresponding
rdf:first() or rdf:rest() function call:

?A → tp → tp → tp → tp → ?x ∪
?A → tp → tp → tp → fn() → ?x ∪
?A → tp → tp → fn() → fn() → ?x ∪
?A → tp → fn() → fn() → fn() → ?x ∪
?A → fn() → fn() → fn() → fn() → ?x

With the number of viable branches being n+1, such reduced
normalization would rearrange 2n original terms to n(n+1) terms in the
normalized expression, resulting in only a linear complexity increase.

We implement this reduction as a customized behavior of the ObjectLog
normalization algorithm for predicated expressions. The normalizer will rule
out any resulting union branches, where the same variable appears both in
the place where only a URI is allowed (which is: subject and property of a
translated triple pattern) and in a place where only non-URI values (or
rdf:nil) may appear - e.g. the result of unidirectional functions rdf:first()
and rdf:rest(). Other unidirectional functions, known to never return any
URIs, such as adim(), aref(), asub() implementing array functionality, or
standard SPARQL functions operating only on string or numerical values,
such as concat() or round(), also contribute to this list.

A union branch e, if it is a conjunction of predicates, is viable iff:

uriOnlyVars(e) ∩ nonUriVars(e) = ∅

where the set uriOnlyVars() contains variables used on subject and property
positions in graph patterns inside the conjunction, and the nonUriVars() set
contains the variables used on the respective places in the functions
mentioned above.

This solution completely solves the task of preventing combinatorial
explosion of the execution plans due to normalization of graph patterns,
containing chains of rdf:first and rdf:rest, and is generally useful
reducing the sets of possible alternatives when executing disjunctive queries.

130

6 External Storage of RDF with Arrays

Scientific SPARQL is designed to help scientists and engineers in the tasks
of storing, annotating, and querying large amounts of numeric data. Storage
and query scalability is of a major concern, and is addressed by a wide range
of storage alternatives for RDF with Arrays data.

As Figure 8 in the beginning of the previous chapter shows, SSDM
includes a generic storage back-end/wrapper interface. This interface is
used for partially translating SciSPARQL queries (in the form of ObjectLog
predicates) to the API calls of the respective storage system. This might be
file access, client-server communication (with systems like Chelonia [114,
166] or Rasdaman [16]), or SQL queries sent over JDBC to any relational
DBMS.

There are two classes of application configurations where this mechanism
is utilized:

Wrapper configuration - the data is already stored in a certain form in
some storage system, which might be an RDBMS, an array store, or just a
collection of files. We support mappings of this native data model to RDF
with Arrays. This might be a fully standard mapping, like RDB-to-RDF
[127], or a highly ad-hoc mapping, e.g. one involving extraction of the
metadata from file names, and converting it to RDF (as we did in [6]).
Section 2.3 above presents an overview of the general data mappings
available. As a result, we are able to query the data with SciSPARQL,
bypassing any bulk-loading steps.

Back-end configuration - we use SSDM as a primary service to store the
data, in the form of RDF with Arrays. Internally, SSDM delegates the
storage (either entirely, or arrays-only) to a back-end storage. This might
either be a dedicated array store (like Rasdaman), a collection of files on the
server, or any RDBMS. The translation of SciSPARQL queries to the back-
end API calls is then governed by the chosen storage schema or convention.
The key difference from the wrapper scenario is that SSDM controls how
the imported data is going to be stored in the back-end system, instead of
just mapping the data which is already stored in a certain way to the RDF
with Arrays model.

 131

When it comes to array processing, the generic back-end/wrapper
interface makes no difference between the scenarios. Exactly the same
techniques are used to accumulate array operations, and then to retrieve the
array data in a lazy fashion - Section 6.1 describes these techniques in a way
independent of the particular storage system. We call this part array storage
extensibility interface (ASEI).

For each interfaced storage system there might be a variety of choices
regarding how exactly ObjectLog predicates should be translated to the API
calls (e.g. JDBC calls), and how the array subsets should be retrieved from
the external storage. Different strategies need to be compared, so that the
optimal ones could be chosen in each particular case. Section 6.2 presents
the alternatives of storing arrays in a conventional RDBMS and of
processing array queries in such a configuration. Experimental comparison
is presented using a mini-benchmark for array queries in Section 6.3, and on
the real-life application in Section 6.4, where we compare the performance
of SSDM with different RDBMS back-ends to the original manual
implementations of the same computational tasks in Matlab.

Even though some storage systems (like RDBMSs, as we show in Section
6.2) are well-suited to store RDF with Arrays, and SSDM is capable to
translate whole SciSPARQL queries to SQL [182], here we mainly
concentrate on the optimizations for array data retrieval. The reason is
simple: SSDM includes the highly efficient main-memory database engine
of Amos II [136], and can certainly handle the classical RDF processing
using its native main-memory data structures. Deployed as a server process,
SSDM can be instructed to cache the RDF part of the dataset completely,
leaving only the arrays for on-demand access. In our target applications, it is
the array data that offers a scalability challenge, while the metadata in the
form of RDF graph fits into main memory. Again, this is not a requirement
or limitation, just the prospective usage scenario we build our evaluations
upon.

6.1 Array Storage Extensibility Interface
We will refer to arrays stored in files, array stores or DBMS back-ends as
externally-stored arrays, in contrast to resident arrays stored in the main
memory of SSDM. Externally-stored arrays are represented in an RDF with
Arrays graph with array proxy objects. For the query user, array proxies are
indistinguishable from the resident arrays, as SSDM takes care of resolving
the array proxies to resident arrays on demand.

In the beginning of Chapter 5 we presented a main-memory scenario,
where file links like <file://realization_1.mat#Res> were converted to

132

memory-resident arrays at the data loading stage. In order to save memory
and data loading time, it is possible to read the same extended Turtle file also
in the wrapper scenario, so that the GRAPH() function would internally store
array proxies, each containing a file name, e.g. realization_1.mat and a
label (i.e. Matlab variable name), e.g. Res, as a way to identify an array in
the specific storage system.

Another important piece of information is the kind of array proxy,
identifying the external storage system itself. The same RDF graph might
refer to arrays stored in files and different databases or array stores SSDM is
connected to. Since most array operations work exactly in the same way on
memory-resident arrays and externally stored ones, the main-memory array
descriptor is considered a particular case of array proxy, with a reserved
kind value, telling that SSDM's own in-memory storage is used for storing
the array.

The Array Storage Extensibility Interface (ASEI) thus consists of three
custom methods that need to be registered with SSDM for each kind of array
storage:

• A custom array loader for loading a memory-resident array into the
external array storage. It returns a new array proxy representing the
loaded array. For example, if SSDM is configured to store the arrays
.mat files, the array proxy will refer to the name of the file and a label
inside it indentifying the array.

• A custom URI decoder method that constructs the array proxy for a
given URI (file link). If a URI does not have all the information about
the array shape and element type (as in the example in the Section
5.1.1), the decoder will have to access the storage system in order to
retrieve this necessary information.

• A custom proxy resolver, which creates a memory-resident arrays from
a proxy object by accessing the storage system corresponding to the
proxy kind. The resolver is called by APR(), when it needs to
materialize an array proxy.

Registering these three methods with ASEI generates a new array proxy
kind, which is then used as an identifier for the intefaced array storage
system.

Additionally, the _sq_resolve_file_links_ flag governs whether
array proxies should be eagerly resolved after creation from file links, at the
stage of data import (the main-memory scenario presented in Section 5.1), or
retained for possible later retrieval on-demand (the rapper scenario in
Chapter 7). In a pure back-end scenario, file links are eagerly resolved, and
the array loader is immediately called to transfer the array to the configured
back-end array storage system, resulting in array proxies of the
corresponding kind (as we did in Section 6.4).

 133

Embeddings of SciSPARQL into algorithmic languages open a way to
explicitly create array proxies, before inserting them into an RDF with
Arrays graph using the SPARQL Update syntax (explained in Section 3.9).
For example, in the Matlab integration described in Chapter 7, the Matlab
function store() is used to store the array in a new .mat file on the server
file system, and obtain an array proxy for subsequent insertion and access.

The array proxy lifecycle during the query execution can be described in
few words as follows:, original array proxies are retrieved from an RDF with
Arrays graph, just like any other nodes, at the stage of graph pattern
matching. Derived array proxies might be produced when applying
operations such as array range selection or projection, in the same way as
derived memory-resident arrays are produced (Section 5.2.2). Finally, when
the actual array data is required for computation, array proxies are resolved
to memory-resident arrays, by calls to the APR() function.

The next two sub-sections describe the changes to translated queries
introduced by the need to resolve the possible proxies, and the internal
structure of APR()function. A discussion of the approach follows.

6.1.1 Placing APR Calls into the Translation
Array proxies are in most respects identical to array descriptor objects, and
thus serve to accumulate array operations without actually accessing the
underlying array data, thus implementing a lazy approach to array data
loading. Except for the generalized transposition, all array operations
described in Section 5.2.2 produce derived arrays that are smaller than the
original ones, so that a lazy approach typically results in lesser amounts of
data read into main memory.

A single-element access to an externally stored array, also results in a
derived 0-dimensional array proxy, pointing to that element. We will refer to
these as single-element proxies, in contrast to (sub)array proxies referring to
either original arrays or array subsets, and use the term array proxy as a
union of those.

In case of any external array proxy kind registered (and thus ASEI is
considered to be active), the SciSPARQL translator will insert calls to the
APR() function in the AmosQL query translations. For this purpose, the
translator traverses the expressions leaf-to-root during the translation
(described in Section 5.4.5.4), guided by the following rules:

• a query variable, participating only in value position in triple patterns
may be bound to a (sub)array proxy;

• a parameter to a functional view may be bound to an array proxy;
• the result of array range selection or transposition may be a

(sub)array proxy, if the operand may be an array proxy;

134

• result of array projection may be an array proxy, if the operand may
be an array proxy;

• if an expression whose value may be an array proxy is used as an
argument to any internal function accepting arrays (including
aggregate functions like SUM() and the overloaded arithmetic
operations like '+'), an APR() call should be inserted to wrap it;

• if an expression whose value may be a single-element proxy is used
as an argument to an internal function expecting a number (or used in
an array dereference expression), an APR() call should be inserted to
wrap it;

• if an expression whose value may be an array proxy is used as an
argument to a user-defined foreign function, an APR() call should be
inserted to wrap it;

• if the _sq_resolve_results_ flag is set, and a top-level SELECT
expression in a query may be an array proxy, an APR() call should
be inserted to wrap it.

Additionally, SSDM keeps track of functions defined as parameterized
SciSPARQL queries, which may return a proxy.

For example, query Q15, retrieving an average value of the second
column of ex:result matrix, corresponding to the realization with id = 1
of ex:Experiment1 (from the dataset G1), here given in a reduced form:

SELECT (array_avg(?A[:,2]) AS ?col2_avg)
 WHERE { [] ex:id 1 ; ex:result ?A }

will be translated to the following AmosQL query:

select rdf:array_avg(APR(aref(a,1,1)))
 from Literal a, Literal g:0
 where (g:0, URI('http://udbl.uu.se/ex#id'), 1) in GRAPH(0)
 and (g:0, URI('http://udbl.uu.se/ex#result'), a) in GRAPH(0);

so that the array proxy resulting from projection of matrix ?a to the second
column gets resolved before applying the array_avg() computation.

As a not-so-trivial example of how the above rules are applied, consider a
query:

SELECT (transpose(?A)[?B] + round(f(?C)) AS ?result)
 WHERE { _:x :a ?A ; :b ?B ; :c ?C }

Here, SSDM has to track the SELECT expression leaf-to-root, considering
whether each intermediate result mey be a proxy, and what type of proxy.
Figure 17 illustrates the process: expressions whose values may be proxies
(either type of) are shown in gray color - same with the arrows showing the
dependencies.

 135

transpose(?A)[?B] + round(f(?C))

transpose(?A)

round(f(?C))transpose(?A)[?B]

f(?C)

?A ?B ?C

APR

APR

Figure 17. Placement of APR() calls into an expression tree

All three variables are only bound by their appearance on the value
positions in triple patterns - hence each of them may be a sub(array) proxy,
though not a single-element proxy14. If they are, the APR() function will
return an array of one or more dimensions. However, variable ?B is used in a
way only a scalar Integer value may be used. If ?B happens to be a proxy,
the expression 'transpose(?A)[?B]' will not return due to the invalid
subscript type (array). Hereby, SSDM assumes that in all valid query
solutions ?B is not an array proxy (neither it is array or any other non-integer
value), so there is no need to insert APR() call around it.

In this example we also assume that f() is a function defined as a
parameterized SciSPARQL query, and is listed among those which may
return a proxy. If it were not, we would not need an APR() call around its
result. The round() function is applicable is applicable both to scalar
values and arrays, and hence needs its argument to be materialized.

Overall, as Figure 17 shows, SSDM prefers to keep the possibility of
proxies as far towards the root of an expression as possible, since there is
always a chance that the amount of relevant array data will be reduced to a
subset, or the retrieval will be skipped altogether due to filtering.

6.1.2 APR Implementations
Since SciSPARQL is a purely dynamic-typed language, whatever is passed
to the APR() function may be an array proxy, or may be any other RDF
term, or a memory-resident array. For this reason, APR() performs a type
check first, and then a check for array proxy kind. The argument is returned
without changes unless it is an external array proxy that needs resolving.

14 We do not store scalar values as proxies in an RDF with Arrays graph. If a whole graph is
stored in a back-end (as in Section 6.2), the scalar values are retrieved/cached in the process
of graph pattern matchning or caching, so the lazy retrieval does not apply to RDF Literals.

136

In the latter case, APR() looks up the respective proxy resolver, registered
for the given array proxy kind, and calls it, passing the array proxy object as
argument. Besides the information about the accumulated selection and
projection operations (as explained in Section 5.2.2 for array descriptors),
an array proxy holds the information sufficient to identify the original array
in the specific storage system, and to retrieve its relevant subset.

For example, the .mat file proxy resolver would invoke the HDF/Matlab
API to access the particular part of the array specified, and read the array
elements into to a newly allocated memory-resident array. The flexible
nesting order of dimensions, supported by SSDM, allows optimizing this
process, by matching the order to the one exposed by the storage system's
API, and thus allowing to transfer the array content in large fragments. We
describe the process of discovering such fragments below in Section 6.2.4.2,
where it is critical for identifying the array chunks to retrieve.

Currently, SSDM has extensions to address or store arrays in:
• binary files - .mat format (wrapper and back-end)
• Chelonia [114, 166, 6]] distributed data store (wrapper only)
• Rasdaman [16] array database (wrapper and back-end)
• relational databases supporting SQL - see Section 6.2 (back-end only)

In all cases, the array proxy kinds corresponding to the storage systems
are registered with SSDM, and APR implementations are provided to
retrieve the specified array subsets. Different APIs or communication
techniques are used in each case. A wrapper-only interface effectively
means that the access is restricted to read-only. A back-end only interface
means that we do not map native array representations to SSDM, due to the
absence of the former - only arrays originating from SSDM are stored.

6.1.3 Problems and Solutions
The described approach of calling APR() whenever an array proxy is
possible and its resolving might be needed, effectively introduces certain
aspects of lazy evaluation for the purpose of materializing external arrays.
The entire implementation is contained within the query translation layer, as
opposed to a perhaps more obvious direction of incorporating the logic of
lazy evaluation into the query execution runtime. Our translator-based
implementation has proven to be sufficiently simple and robust, but still has
a couple of technical shortcomings that need to be addressed.

6.1.3.1 Reduced directionality problem
The array-proxy-resolve function is defined as uni-directional: it is not
generally possible to reconstruct an array proxy based on a memory-resident
array. However, in those cases where APR() returns its argument without

 137

changes, certain optimization opportunities are lost. This effect of reduced
directionality might limit the freedom of SSDM query optimizer at
reordering ObjectLog predicates for an optimal execution plan, compared to
the freedom of evaluating SciSPARQL query translations without APR()
calls.

Consider the following query Q16, selecting those realization ids where
parameters A and B are numerically equal:

SELECT ?id
 WHERE { [] ex:id ?id ;
 ex:parameter_A ?a ;
 ex:parameter_B ?b .
 FILTER (?a = ?b) }

When evaluated with an external array storage system connected, the
AmosQL translation would look like:

select id
 from Literal id, Literal a, Literal b, Literal g:0
 where (g:0, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0)
 and (g:0, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0)
 and (g:0, URI('http://udbl.uu.se/ex#parameter_B'), b) in GRAPH(0)
 and APR(a) = APR(b);

Since SSDM does not know that ?a and ?b are scalar parameters in the
dataset (because it does not have any kind of schema that might contain such
type information), it assumes that they may be array proxies, and thus
prefers to resolve them before checking for equality (which is defined for
arrays in Section 4.1.6). Without these APR() calls, SSDM query optimizer
could potentially use the equality filter to e.g. infer the value of ?b based on
the known value of ?a, and then simply check for its existence in the RDF
graph (which is sometimes faster than looking up a value).

This missed optimization would of course be invalid if ?a and ?b were
bound to array proxies: equality of the arrays per se does not entail equality
of array proxies that point to them. So, the problem is in the lack of type
inference mechanisms in the current implementation of SSDM. One option
is using RDF Schema documents, which will provide specification of type
constraints. This will allow to infer the types of variables. However, this will
only work when RDF Schemas are provided.

In a wrapper scenario, e.g. when mapping from a relational data model,
there might be no cost at all, as the RDF Schema is mandatory due to the
RDF view definition, and its specification comes for free as part of RDB-to-
RDF mapping [127, 51, 123], as suggested in [97].

6.1.3.2 Delegating more array operations
Specialized array stores like Rasdaman [16] are capable of performing most
array computations on their own. In query Q15, for example, if G1 arrays

138

were stored in Rasdaman, it would be possible to delegate the
array_avg() computation to the back-end. In fact, most general array
computations, as those supported by second-order functions like MAP() and
CONDENSE() were introduced into SciSPARQL for compatibility with
Rasdaman, and for the purpose of easy delegation of computations.

However, array proxies only accumulate array selection, projection and
transposition operations, so without additional optimizations, array_avg()
function in Q15 would still be performed in SSDM, after the required array
subset is transferred from Rasdaman over TCP connection.

The solution at hand is using Amos query mediator capabilities, available
to SSDM. The ObjectLog predicates corresponding to the creation of a
derived proxy would be grouped together with the predicates performing
computations on such derived proxies. For example, the whole expression
array_avg(?A[:,2]) would correspond to a single Rasdaman API call,
based on two ObjectLog predicates grouped together, and given there is an
array proxy binding for ?A.

The capabilities of any connected array storage system can thus be taken
into account. Some storage systems accept a greater range of delegated
operations than others: e.g. with Rasdaman it would be typically possible to
delegate entire array expressions (free of foreign UDFs). In contrast, with
.mat files only the access to array subsets would be delegated.

6.2 Relational Back-end
One of the configurations of SSDM relies on a relational back-end DBMS
for persistent storage of RDF with Arrays datasets. Any relational database
supporting SQL queries, JDBC interface, and storage of large binary objects
(BLOBs) may be utilized for this purpose.

The relational schema for storing RDF with Arrays in an RDBMS and the
query mapping process are explained in the following sub-section. Since the
array proxies are resolved by means of sending SQL queries to retrieve the
relevant array chunks, it becomes important to avoid sending too many
queries, in order to save on the amount of round-trips to the RDBMS.
Retrieving as little irrelevant data as possible is another optimization goal.

For this purpose the Aggregate APR function is defined in Section 6.2.4,
which groups array proxies, buffers the data transfer operations, and
generates SQL queries that are capable to serve the aggregated retrieval of
array data under complex access patterns. Different strategies for
formulating such SQL queries are introduced. Experimental comparison
follows in Section 6.3.

 139

6.2.1 Storage Schema
For the purpose of simplicity and good normalization, we have chosen to
partition the set of RDF with Arrays triples into three subsets, based on the
value type:

• URIs,
• RDF literals, including numbers, strings, any custom-typed values,
• arrays.

Figure 18 below shows the ER-diagram modelling the storage schema we
use with the relational back-end databases. All URI values are normalized to
the URI table, serving as a dictionary. The three 'triples' tables additionally
store a g property - a URI identifier of a named graph the particular triple
belongs to, or a reserved value for the default graph. The common s, p, and v
attributes correspond to the subject, property, and value of an RDF triple.

While in URITriple table the value of a triple refers to the URI dictionary,
in LiteraTriple it is the type of an RDF literal which is identified by the
URI, and v attribute stores the string representation, with an optional
language and locale tag in the lang_loc attribute. Upon creation, the URI
dictionary is initialized with the standard types for common RDF literals,
including strings, numbers, temporal and logical values. A limited space is
allocated for an RDF literal by default, as we expect most of them to contain
numbers or other short values. However, in order to provide space e.g. for
larger pieces of text, a special LongString table is introduced, to
accommodate string values without size limit.

URI

URITriple
s
p
v

LiteralTriple
s
p

vtype

ArrayTriple
s
p

id
uri

v

longstr LongString str

ArrayChunk
chunkid

chunk
type ndims

:TEXT

:BLOB

N
N

N

N

1

1

11

id

g

g

g

ArrayDim
N1

lang_loc

dimn

tile

sochunksize

Figure 18. Relational storage schema for RDF with Arrays, shown as ER-diagram

140

Each array-valued triple is stored in the ArrayTriple table, and receives a
unique id for its array value. The element type and the number of
dimensions are stored in type and ndims attributes, and the information about
each dimension is normalized out to the ArrayDim table. Since the logical
and physical (nesting) order of dimensions are independent, the
corresponding sequential numbers are stored in attribute n for the logical
order, and so for the storage order. The size of array in the given dimension
is stored in the dim attribute.

There are two basic ways to partition a multidimensional array into the
limited-size chunks: either splitting its logical multidimensional form into
chunks of the same dimensionality, or splitting its linearized 1-dimenional
form into linear chunks. We will refer to the first kind of partitions as
multidimensional chunks, or tiles and to the second kind of partitions as
linear chunks. Figure 19 in Section 6.2.2 shows the same array-valued triple
with different partitionings of its array value.

Partitioning to linear chunks can be fully defined by a single scalar value -
the chunk size limit, stored in chunksize attribute. If linear chunking is not
used, this attribute is set to 0. In contrast, multidimensional partitioning is
defined by a tile size limit in each dimension. If the array is stored in tiles,
the tile attributes in ArrayDim table store the tile size in the corresponding
dimension. Note that the actual chunk or tile sizes might be less for the
remainder instances.

The array chunks are stored in table ArrayChunk, having three attributes:
arrayid, chunkid, and a BLOB value representing the chunk contents. This
table is the only one queried by APR(), and this process benefits from the
optimizations explained in Sections 6.2.3 - 6.2.5 and evaluated in Sections
6.3 and 6.4. A clustered index is defined for (arrayid, chunkid), since
arrayid is always known when resolving an array, and chunk ids might
either be scanned starting from a known chunk id, or retrieved using index
lookups when chunk ids are listed in the query. In both cases, the physical
locality is important, i.e. records with contiguos chunk ids are physically
stored close.

6.2.1.1 SQL access to the triples
In order to address the complete set of triples in a specific graph, an SQL
view employing the relational UNION operator is defined across the three
triple tables. GeneralView(g, s, p, vtype, value) exposes five attributes, first
three of which are taken directly from the corresponding tables of triples..
For the URITriple and ArrayTriple tables the reserved URI ids, identifying
URI type and the introduced Array type respectively, are returned for vtype,
while LiteralTriple table strores vtype explicitly. Technically, g, s, p, and
vtype are integer URI ids, referring to the URI dictionary

 141

The fifth attribute returned by GeneralView is a string representation of
triple's value. It is taken directly from LiteralTriple or URITriple (as a
stringified integer). In case of array-valued triples, this value attribute
encodes a glued-together textual representation of the ArrayTriple row and
the group of connected ArrayDim rows, ordered by n. We use a common
group concatenation operator to pack this information about an arbitrary
number of dimensions into a single string value. This representation is
sufficient to construct an array proxy in SSDM, as described below in
Section 6.2.1.2.

The GeneralView can be employed as an imported table [85] under Amos
II federated query framework utilized by SSDM. For instance, mediated by
some simple conversions and URI cache lookups, a call to GRAPH predicate
with '+---' binding pattern would translate to an SQL query:

SELECT s, p, vtype, v FROM GeneralView WHERE g = ?

Amos II mediator facilities are quite adept at translating the predicate
calls to SQL queries under the different binding patterns, so this is certainly
a viable solution, should the amount of RDF data (not counting the arrays)
exceed the main memory limit. Self-joins, filters and arithmetic operations
would be delegated as well into an SQL query.

However, since in our targeted scientific and engineering applications the
majority of data is contained in arrays, the RDF triples proper contribute
only to a small fraction of the total dataset size. Hence, e.g. the pure
SPARQL queries can be processed entirely in main memory, without the
need of addressing the persistent storage past the initial caching phase. In
our back-end scenario with RDBMS, we cache all RDF triples (and create
all original array proxies) in main memory when the SSDM server is started.
Any consequent updates are applied to the cache and the storage back-end
within the same transaction.

6.2.1.2 Specifics of the relational array proxies
While the database-unique array id value is sufficient to address an array in
our relational back-end, resolving an array proxy would first require the
chunk size or tile size information in order to compute the relevant chunk ids
for the specified array subset. In order to avoid this extra round-trip to the
back-end RDBMS, we choose to cache this partitioning information on the
proxy object, created from the string returned by GeneralView as a value of
an array-valued triple.

As shown in Figure 13 (d) and (e) in Section 5.2.2, a projection operation
over an array descriptor produces the derived array descriptor, with a
reduced number of dimension components (DADs). Since we are going to
need the original array shape (i.e. the dimension sizes across all original

142

dimensions) and the complete tile size, in order to compute the relevant tile
ids, we cannot afford to drop this information when producing derived array
proxies. Hence the information about the original array dimensions and tile
sizes is not stored in DADs, but is contained in a proxy-specific part,
together with array id, and is passed along to the derived proxies without
changes.

In summary, the storage-specific information of an array proxy
corresponding to the relational back-end consists of array id, chunk size (if
defined), and a list of original array dimensions and the corresponding tile
sizes (if defined).

6.2.2 The Problem of Retrieving Array Content
Along with desingning a relational back-end storage for RDF with Arrays,
we are going to focus on the problem of efficient retrieval of array content
by resolving the array proxies. We illustrate the context and the task with the
following example: let us consider the following SciSPARQL query Q17.
The query selects equally spaced elements from a single column of a matrix,
which is found as a value of the :result property of the :Experiment1
node.

SELECT (?A[2:2:, 5] AS ?result)
 WHERE { :Experiment1 :result ?A }

1918

1716

1514

1312

1110

98

76

54

32

10

1918

1716

1514

1312

1110

98

76

54

32

10

:Experiment1

:result

21

16

11

6

1

24232220

19181715

14131210

9875

4320

21

16

11

6

1

24232220

19181715

14131210

9875

4320

:Experiment1

:result

(a) (b)

Figure 19. An example RDF with Arrays dataset using (a) linear partitioning and (b)
multidimensional partitioning

 143

We assume our example dataset G3 includes the following RDF with
Arrays triple, containing a 10x10 matrix as its value, as shown in Figure 19
(a), with the subset retrieved by Q17 is shown hatched.

In our relational back-end the matrix is stored in 20 linear chunks,
containing 5 elements each (chunk ids shown on the picture). Figure 19b
shows a variant of the same dataset, where the array is stored in 25 2x2 non-
overlapping square tiles. The example (a) is used through the rest of this
section, and we compare the two storage approaches in Section 6.3.

In this toy example, our back-end relational database would be populated
by an entry in ArrayTriple, two entries in ArrayDim, with the array data
residing in ArrayChunk. In general, while querying the big ArrayChunk
table, we would like to:

• minimize the number of SQL queries to ArrayChunk, and
• minimize the amount of irrelevant data returned.

There is a number of steps to be performed before the back-end will be
queried for the real array data:

• Identifying the set of array elements that are going to be accessed
while processing a SciSPARQL query. Such sets of elements are
described, in general, with bags of array proxy objects.

• The array proxies accumulate array subsetting operations. Enumerable
set of array proxies can be generated using free index variables, as
shown in example queries Q18 and Q18a below.

• Identifying fragments of this subset, that are contiguous in the
linearized representation of the original array in order to save on the
number of data-transfer operations. This step is explained in Section
6.2.4.2.

• Identifying array chunks needed to be retrieved and formulating data
transfer operations for each chunk, as explained in Section 6.2.4.3.
Buffering these chunk ids and operations, as explained in Section
6.2.4.1.

• Formulating SQL queries to the back-end RDBMS, as explained next
in Section 6.2.3.

• If the query was prediction-based, switching between the phases of (I)
simulation and buffering, (II) performing the buffered operations, and
(III) performing the further (unbuffered) operations, as long as the
prediction-based query yields the relevant chunks. This includes
taking care of false-positives and false-negatives, as explained in
Sections 6.2.4.4 - 6.2.4.6.

The example in Section 6.2.4.8 illustrates the complete process.

144

6.2.3 Strategies for Formulating SQL Queries during APR
There is a number of possible strategies to translate sets of chunk ids in the
buffer to SQL queries retrieving the relevant chunks:

• NAIVE: send a single SQL query for each chunk id. This proves to be
unacceptably slow in realistic data volumes, due to interface and query
processing overheads.

• IN (single): combine all the required chunk ids in a single IN list,

sending a query like

SQL:
SELECT chunkid, chunk FROM ArrayChunk
 WHERE arrayid = 1
 AND chunkid IN (2,6,10,14,18)
 ORDER BY chunkid

This would work well until the SQL query size limit is reached.

• IN (buffered): an obvious workaround is to buffer the chunk ids (and
the description of associated data copying to be performed, as
described in Section 6.2.4), and send a series of queries containing
limited-size IN lists.

• SPD (Sequence Pattern Detection) : sending a query like

SQL:
SELECT chunkid, chunk FROM ArrayChunk
 WHERE arrayid = 1 AND chunkid >= 2
 AND mod(chunkid - 2, 4) = 0
 ORDER BY chunkid

Here the condition expresses a certain cyclic pattern. Such a pattern is
described by origin (2 in the example above), divisor (4 in the
example above), storing the total periodicity of repetitions, and the
modulus list (consisting of single 0 in the example above), containing
the repeated offsets. The size or complexity of a pattern is the length of
its modulus list. Section 6.2.5 describes our algorithm for detecting
such patterns.

In most cases the SPD strategy will allow to send a single query
retrieving all desired chunks. If the pattern was too complex to be inferred
from the buffer (e.g. there was no cyclic pattern at all), some extra chunks
might also be retrieved.

Still, there are two problems with a straightforward application of SPD:
(1) in cases when there actually is a cyclic pattern it is unnecessary to
identify all the relevant chunk ids first - a small sample list of chunk ids is

 145

enough; and (2) in case of an acyclic (random) access, like query QT6
defined in Section 6.3, the detected pattern might be as long as the list of
chunk ids, thus making it a similar problem as for IN (single).

• SPD (buffered): solving the two above problems by computing a
small sample sequence of the needed chunk ids, and then formulating
and sending an SQL query with the detected pattern. If the pattern
covers all the chunks to be retrieved, the single SQL query does all the
work. Otherwise (on the first false-negative, or when the false-
positives limit is reached), the SQL query is stopped and the buffering
process is restarted. In the worst case (when there is no cyclic pattern),
it will work similarly to IN (buffered), otherwise, fewer queries will
be needed to return the same set of chunks.

• SPD-IN (buffered): the difference between IN and SPD-generated

SQL queries is that in IN, the chunkid values are explicitly bound to
a list, which allows most RDBMSs to utilize the (arrayid,
chunkid) composite index directly. As we have discovered in our
experiments, neither MS SQL Server nor MySQL are utilizing an
index when processing a query with mod condition.

However, by comparing a pattern size (i.e. length of the modulus list) to
the number of distinct chunk ids in the buffer, we can easily identify if a
realistic pattern was really discovered, or should we generate an IN query
instead. We currently use the following rules to switch between IN and SPD
buffer-to-SQL query translations:

(A) If the pattern size is less than half the number of distinct chunk ids,
then the cycle is not completely repeated, and is probably not detected
at all.

(B) If the sample size is less than the buffer limit - then we have buffered
the last chunk ids for the query, so there is no advantage of using SPD
either.

6.2.4 Resolving Bags of Array Proxies
The array proxies are limited to expressing the subsets of arrays which can
be formulated as a superposition of array operations supported by
SciSPARQL syntax. Thus, the execution of Q17 above will include
resolving a single proxy defining the array subset. Other interesting kinds of
subsets cannot be defined by a single proxy, so a query returning a
(multi-)set of elements can be formulated instead. For example Q18 selects
the elements of the main diagonal:

146

SELECT ?i (?A[?i, ?i] AS ?e)
 WHERE { :Experiment1 :result ?A }

One unique feature of SciSPARQL is that whenever an (otherwise
unbound) variable used as array subscript, it assumes all valid values for that
subscript (Section 4.1.2). So, the first appearance of ?i binds it to all valid
row indices, and the query generates an array proxy for each such binding.
For the dataset in Figure 19 this query will generate and resolve 10 array
proxies, each pointing to a single element, i.e. 10 result tuples will be
returned.

Our framework is capable to resolve such bags of proxies, as well as
proxies referring to multiple elements. In general, bags of proxies can be
filtered before resolving, and post-processed after resolving. Query Q18a
contains these additional steps: it retrieves every second diagonal element,
and returns the sum:

SELECT (SUM(?A[?i, ?i]) AS ?result)
 WHERE { :Experiment1 :result ?A .
 FILTER (mod(?i, 2) = 0) }

Figure 20 shows a fragment of the execution plan for Q18a, containing
proxy generation, filtering, aggregated resolving (AAPR), and post-
processing (SUM). Parallel arrows indicate the relative cardinalities of the
intermediate results, i.e. the amounts of iterations in the corresponding
nested loops.

?A[?i,?i]
FILTER

(mod(?i,2)=0)
AAPR(?V1) SUM(?V2)

?A (proxy) ?result?i, ?V1 (proxy) ?V1 (proxy) ?V2 (number)

...

?A[?i,?i]
FILTER

(mod(?i,2)=0)
AAPR(?V1) SUM(?V2)

?A (proxy) ?result?i, ?V1 (proxy) ?V1 (proxy) ?V2 (number)

...

Figure 20. A fragment of Q18a execution plan

For the query Q18a (and the dataset in Figure 19) ten (proxy and ?i
value) pairs will be generated first, 5 of these intermediate results will be
filtered out, 5 remaining proxies will be resolved together as a bag, and the
corresponding array elements will be aggregated by the SUM() function into
a single result.

In order to invoke the aggregated resolving of a bag of array proxies, the
AAPR() function call is inserted instead of APR() call immediately under an
aggregate function call, like SUM() in the translation of Q18a:

rdf:sum(aapr(select aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1))
 from Literal i, Literal a
 where (URI('http://udbl.uu.se/ex#Experiment1'),
 URI('http://udbl.uu.se/ex#result'), a)
 in GRAPH(0)
 and rdf:mod(i, 2) = 0));

 147

 Technically, AAPR() is a combiner type function in AmosQL terms, i.e.
it iterates over a bag of inputs, and emits a bag of results, maintaining an
internal state during the whole process. This state consists of a buffer of
pending data transfer operations, pre-allocated results, and a running SQL
query to the back-end.

As a general approach, for each array proxy being resolved, a set of
required chunk ids is computed, and for each chunk the set of data transfer
operations is determined. If the proxy refers to a single element, the single
reading operation results in a number, otherwise, a memory-resident array is
allocated first, and a write position is associated with each such operation.
The following subsections describe this process in detail, with Figure 22
summarizing the flow of inforation.

6.2.4.1 Buffer
The buffer is designed to store the description of work to be done when the
respective chunks will be retrieved. It is organized as a hash table, with
chunk id serving as a key, and the value being a list of data transfer
operations described with the following fields:

• reading position in the chunk,
• the number of bytes to read,
• a reference to the allocated memory-resident array

(none if single-element proxy), and
• a writing position in that array.

The buffer is primarily limited by the number of distinct chunk ids (i.e.
hash table records) - the _sq_buffer_size_ parameter. For the purpose of
SQL query generation, only the set of distinct chunk ids is extracted from
the buffer. For the queries with non-overlapping proxies, the number of
buffered operations is thus limited by the amount of possible fragments per
chunk times the number of distinct chunks to be retrieved. However, in case
of e.g. random access queries like QT6 in Section 6.3, this upper bound does
not hold. Another 'technical' limit on the number of data transfer operations
in the buffer is included as part of the SSDM settings.

6.2.4.2 Fragment mapper
Since we also minimize the number of data transfer operations, we first
identify the largest possible contiguous fragments in the stored array (the
algorithm is presented in Section 6.2.4.7) and the intersections of such
fragments and the chunks become these operations. Besides this purpose,
fragments are generally useful for e.g. copying as many elements as possible
with a single memory operation, and offer a potential of parallelized (SIMD)
array processing.

148

Figure 21 shows the number of fragments for different selections from a
2D array stored row-by-row. The discovery of the fragments involves the
discovery if innermost broken dimension and fragment size. The dimensions
are analysed in their storage (nesting) order, starting from the innermost
one.

The innermost dimension is broken iff (i) its access multiplier amk is not
equal to 1 (when the proxy resulted from a projection from an array of
higher dimensionality and the original inner dimension was projected out) or
(ii) its stride is not equal to 1. In Figure 21 the innermost (column)
dimension is unbroken in all three examples. If the innermost dimension is
broken, the fragment size is 1, otherwise the incremental fragment size
fsizek is equal to the derived array size in that dimension e.g. 6, 4, and 2 in
the Figure 21 examples.

Provided the dimension k (in storage order) is unbroken, dimension k-1 is
broken iff (i) its access multiplier amk-1 is not equal to fsizek (when some
intermediate dimensions of the original array were projected out), or (ii) its
stride is not equal to 1. If the dimension k-1 is unbroken, the incremental
fragment size is multiplied by the derived array size in that dimension. In
example (a) in Figure 21 the outer (row) dimension remains unbroken, and
since am1 = 6 in all cases, the condition (i) holds for examples (b) and (c).

(a)
1 fragment of 12

(b)
2 fragments of 4

(c)
6 fragments of 2

1,1 1,1
2,1

1,1
2,1
3,1
4,1
5,1
6,1

Figure 21. Derived array fragments discovery and iteration

The fragments' starting points are then defined by a nested iteration of
logical subscripts (for the derived array) up to the innermost broken
dimension, while padding the subscripts for unbroken dimensions with 1.
Figure 21 shows these logical subscripts for each fragment, with no iteration
happening in case (a). These starting points are translated into storage
indices as described in the next section.

6.2.4.3 Identifying the relevant chunks
First, for any logical subscript (i1,...,in) in the derived array (denoting a
fragment start) a storage index a(i1,...,in) in the original array is computed
using the equation (1) in Section 5.2.1.

 149

Under the linear partitioning approach (Figure 19a), the first chink id and
the corresponding read position are given as the quotient and the remainder
of the division of storage index by the chunk size. If the fragment size is
greater than (chunksize - read_pos) subsequent chunks are also included
with read_pos = 0, until the fragment size is exhausted.

Under the multidimensional partitioning approach (Figure 19b), the
logical subscripts j1,...,jN in the basic array need to be reconstructed from the
storage index a first. Let k(x) return the dimension k such that storage order
sok = x. The original array subscript (0-based) in the outmost dimension jk(0)
and in the nested dimensions jk(x+1) are found as

()
()

()
()

=

=

+
+

1
1

0
0 ,

xk

x
xk

k
k am

a
j

am

a
j

Here ax is the remainder of the division while computing jk(x).

The multidimensional indexes tk of the fragment's first tile are computed
by dividing every component jk by the tiles sizes sk in the respective
dimensions, and intra-tile logical indexes ik as remainders of that division:

kkk
k

k
k sji

s

j
t mod, =

=

The linear chunk index (i.e. chunk id in this case) Ti and the linear chunk
position pos are computed similarly to equation (1), using the number of
tiles per dimension, and the actual tile size sk(Ti) as the dimensions, and N
being the dimensionality of the original array:

() ∏ ∏
=

>
==

>
=

=

=

N

k

N

soso
m

mk

N

k

N

soso
m m

m
k

kmkm

Tisipos
s

A
tTi

1 11 1

,
)(dim

The second product depends on a particular tile, as the last tiles in each
dimension might have different sizes in that dimension.

When the multidimensional chunking is used, no generated fragment can
go beyond the array range in the original array's innermost dimension - in
Figure 21 example (a) would have two row-sized fragments. Once the first
tile and chunk position of a fragment are determined, the remaining tiles are
found by iterating the chunk index tk(N) along the innermost dimension, and
resetting intra-tile index ik(N) in that dimension to 0.

6.2.4.4 Switching between the phases
The general case of resolving a bag of proxies includes switching between
three phases: (I) buffering -> (II) processing the buffer -> (III) continuing

150

beyond the buffer, The formulation of an SQL query is done at the
beginning of phase II, and its termination is done at the end of phase III.

bag of proxies

Fragment Mapper

sequence of operations:
(chunkid, read_pos, length)

Allocate results

(chunkid, read_pos, length, result, write_pos)

Bufferize Send an SQL query

Perform the
buffered operations

Use chunks from
SQL query to perform

the unbuffered operations

SQL result scan

AAPR
algorithm

III

I

II

memory-resident arrays or numbers

buffered
operations

bag of proxies

Fragment Mapper

sequence of operations:
(chunkid, read_pos, length)

Allocate results

(chunkid, read_pos, length, result, write_pos)

Bufferize Send an SQL query

Perform the
buffered operations

Use chunks from
SQL query to perform

the unbuffered operations

SQL result scan

AAPR
algorithm

III

I

II

memory-resident arrays or numbers

buffered
operations

Figure 22. Three phases of the AAPR algorithm

Figure 22 shows an overview of the process of resolving a bag of proxies
to a bag of memory-resident arrays or numbers. Broad grey arrows show the
transitions between the three phases. Thin black arrows show the data flow,
as annotated. The process starts at phase I, which ends when the buffer is
full, or there are no more operations to be performed for the same stored
array. A proxy referring to a different array effectively restarts the process.
Phase II empties the buffer and proceeds to phase III.

If the SQL query was formulated according to the IN strategy, phase III is
limited to processing any remaining operations for the last chunk retrieved.
Once the next chunk id is required, the query is stopped, and the new
buffering phase is started. Under the SPD strategy, if the detected pattern
covers all the chunk retrieval needed for the query, phase III does the rest of
the work in a completely streamed fashion. Section 6.2.4.7 presents a more
formal description of the AAPR algorithm.

6.2.4.5 Emitting
For each result, a counter of pending data transfer operations is incremented
at phase I and decremented at phase II, where the result is emitted if there
are no more operations to be performed (and if it's not the result where the

 151

buffering process has stopped). Numbers resulting from single-element
proxies always involve a single data transfer operation, so they are emitted
immediately after that operation is performed. At phase III, the current result
is emitted when the operations for the next allocated result start arriving.

6.2.4.6 Chunk cache
The chunk cache is not shown in Figure 22 for simplicity. In fact, every new
chunk id in phases I and III is first looked up in the cache. If present, the
relevant data transfer operations are performed immediately, and no
buffering or advancing of the SQL query scan is needed.

This cache is mainly designed for inter-query speedup, and in the
experiments described in Section 6.3 the cache is reset before each query, to
ensure independent statistics. However, the chunk cache is also helpful
inside a single query when chunk ids do not come sorted, like e.g. for the
random multi-proxy query QT6 in Section 6.3.

6.2.4.7 AAPR algorithm pseudocode
Below is the formal description of AAPR algorigthm which is illustrated in
Figure 22. Phases I and III are implemented with the aapr() function,
which accepts a bag of array proxies and returns a bag of memory-resident
arrays.

Phases I and III. The below pseudocode outlines aapr(). The details
like caching the chunks, freeing the resources, and error handling are
omitted for brevity. Note that aapr() is a single-pass function, and involves
no lookahead in its input bag. Instead, it uses a limited-size buffer to serve
its needs.

function AAPR(Bag of Literal bx) -> Bag of Literal
{
 buffer = ();
 arrayid = nil;
 For each x in bx
 {
 if (x is not a proxy) emit(x);
 if (x.amd.arrayid != arrayid)
 {
 if (buffer is not empty)
 resetBuffer(); //resume phase II for previous array
 scan = closed; //start in phase I
 arrayid = x.amd.arrayid;
 }
 chunkid = invalid;
 if (x is a single-element proxy) result = nil;
 else result = allocateNewArray(x.amd);
 //to accommodate elements referred in x

 For each f in fragments(x)
 {
 TransferData
 (chunkid, readpos, writepos, length) td;

152

 For each td in computeTransferData(f, x.amd)
 {
 if (scan is open) //processing in phase III
 { //advance scan to the desired chunk
 advanceScan(scan, td.chunkid);
 if (scan.chunkid != td.chunkid)
 //SQL query is no longer useful
 scan.close(); //switch back to phase I
 else
 writeFragment(td, scan.chunk, result);
 if (scan is closed) //processing in phase I
 {
 buffer.pushSorted(td, result);
 result.pendingOps++;
 // will be ready to emit when this counter is back at 0
 if (buffer is full)
 scan = resetBuffer(buffer, amd, result);
 // resume phase II, then switch to phase III
 }
 } //of TransferData cycle
 } //of fragment cycle
 if (result.pendingOps == 0) emit(result);
 } //of input cycle

 if (buffer is not empty)
 resetBuffer(); // resume phase II
 if (scan is open) scan = closed;
}

There are three nested cycles in this function, and the code inside the
innermost cycle runs along either phase I (buffering) or phase III (emitting
beyond the buffer) branches, or both when switching from phase III to phase
I, depending on the state of the scan.

If input x is a proxy, then all the information about the array is stored on
its ArrayMetadata x.amd property. Except for the arrayid field, ArrayMetadata
is used inside the allocateNewArray() and computeTransferData() functions.
The function

computeTransferData(Fragment f, ArrayMetadata amd)

 -> Bag of TransferData

returns a bag of transfer operation descritions for the given fragment and
array metadata. Each transfer operation description consists of chunk id and
read position (computed as specified in Section 6.2.4.3), write position,
selected sequentially in the allocated result, and data length - the fragment
size adjusted to the chunk size.

Phase II. The following function is called when the buffer is full, or
when the work (on a particular stored array) is done. It resumes the pending
data transfer operations, emits the result and clears the buffer:

 153

function resetBuffer(buffer, amd, result) -> scan
{
 //generate SQL query here
 query = bufferToSQLQuery(buffer, amd.arrayid);
 scan = openScan(query);

 //perform the buffered operations and emit results when ready
 For each (td, result) in buffer
 {
 advanceScan(scan, td.chunkid); //always successful
 writeFragment(td, scan.chunk, result);
 result.pendingOps--;
 if (result.pendingOps == 0
 and result is not the one where Phase I stopped)
 emit(result); //emitting from aapr()
 }
 buffer = (); //empty the buffer, leave the scan open
 return scan;
}

Note the difference on how advanceScan() function is called: in phase II
we know that any bufferToSQLQuery() translation will construct a query
guaranteeing that at least for all chunk ids in the buffer the chunks will be
returned. However, in phase III we are always checking that the required
chunk was returned by the query, and if not - we close the scan and start
buffering again, in order to make a new SQL query.

It is also worth noting though aapr() returns exactly one result per input,
in general, the order of results might not be the same, due to the buffering,
and sorting the buffer contents by chunk id. However, in many simple cases
(like the diagonal access with Q18 elaborated below) the bag of proxies is
generated using a variable ranging over the valid array subscripts, so the
sequence of relevant chunk ids is naturally ordered.

6.2.4.8 AAPR example: diagonal access
Q18 (diagonal access) provides a nontrivial case, under the SPD translation
strategy. With the dataset from Figure 19a and the buffer size limited to 3
distinct chunk ids, the first pattern detected will result in the SQL query:

SQL:
SELECT chunkid, chunk FROM ArrayChunk
 WHERE arrayid = 1
 AND mod(chunkid, 2) = 0
 ORDER BY chunkid

The first 3 elements will be emitted in phase II, and the next 2 elements
(from chunks 6 and 8) in phase III. However, the next required chunk would
be 11, and the SQL query will continue returning chunks 10 and 12. The
switching to phase II will be performed on the first false negative, that is,
when chunk 12 is retrieved. Thus two "false positive" chunks will be
retrieved before the query is stopped, and the new buffering process begins.

154

The next iteration of the buffer will contain chunk ids 11, 13, 15, and the
new SQL query

SQL:
SELECT chunkid, chunk FROM ArrayChunk
 WHERE arrayid = 1 AND chunkid >= 11
 AND mod(chunkid - 11, 2) = 0
 ORDER BY chunkid

will retrieve the remaining 5 chunks, which will allow returning the last 5
results. Figure 23 illustrates the process:

1918

1716

1514

1312

1110

98

76

54

32

10

1918

1716

1514

1312

1110

98

76

54

32

10

Q1 false-positives Q1 false-negative

Q1 phase II

Q1 phase III

Q2 phase II

Q2 phase III

Figure 23. Q18 chunk retrieval with SPD, buffer size 3

6.2.5 Sequence Pattern Detector (SPD) Algorithm
Once the buffer is filled at the end of phase I of the AAPR algorithm, an
SQL query needs to be generated based on the buffer contents. An IN query
is simple to generate, and the list of chunk ids does not even need to be
sorted (as we have discovered, the RDBMS performs this sorting if using a
clustered index). In order to generate an SPD query, we first extract and sort
the list of distinct chunk ids from the buffer.

The following algorithm operates on an increasing sequence of numbers -
in our case - sorted chunk ids. Since we are detecting a cyclic pattern, we are
not interested in the absolute values of the numbers in the sequence, we will
only store the first number as the point of origin, and the input values to the
algorithm are the positive differences between the subsequent chunk ids.

Each input is processed as a separate step, as shown in Figure 24. The
state of the algorithm is stored with the history and pattern lists,
(initialized empty), and the next pointer into the pattern list (initialized to an
invalid pointer which will fail any comparison operation).

The general idea is that each input either conforms to the existing
pattern or not. In the latter case the second guess for the pattern is the
history of all inputs. The input either conforms to that new pattern, or

 155

the new pattern (which is now equal to history) is extended with the new
input. In either case, input is appended to history, and count is
incremented.

input

input == next

cyclically advance next
through pattern

pattern := history
next := First(pattern)

input == First(pattern)

next := Second(pattern)
append input to pattern
next := First(pattern)

append input to history
count++

true false

true false

input

input == next

cyclically advance next
through pattern

pattern := history
next := First(pattern)

input == First(pattern)

next := Second(pattern)
append input to pattern
next := First(pattern)

append input to history
count++

true false

true false

Figure 24. A step in the SPD algorithm

The resulting pattern will have the form:

() { }1100 ,...,,0,mod −∈−∧≥ nmmdxxxx

where x is the chunk id value to retrieve, x0 is the first chunk id value
generated (i.e. "reference point"), d is the divisor, and m1,...,mn-1 is the
modulus list. The generated pattern is the sequence of offsets P={p1,...,pn}.
We will compute the divisor as the total offset in the pattern:

=

=
n

i
ipd

1

Each element in the modulus list is the partial sum of offsets:

1,...,1,
1

−==
=

nkpm
k

i
ik

In the next section we compare this strategy of formulating an SQL query
with the more straightforward approach of sending IN lists that was
presented in Section 6.2.3.

156

6.3 Comparing the Storage and Retrieval Strategies
For evaluation of the different storage approaches and query processing
strategies we first use synthetic data and query templates for the different
access patterns where parameters (or additional data in the RDF graph)
control the selectivity. Since our concern here is minimizing data accesses,
the performance is independent of the array element values. Thus the
synthetic arrays are populated with random values.

For simplicity and ease of validation, we use two-dimensional square
arrays throughout our experiments. More complex access patterns may arise
when answering similar queries to arrays of larger dimensionality. Still, as s
below, the two-dimensional case already provides a wide spectrum of access
patterns, sufficient to evaluate and compare our array storage alternatives
and query processing strategies. The parameterized SciSPARQL queries
(listed in Table 5) we use for our experiments involve typical access
patterns, such as: accessing elements from one or several rows, one or
several columns, in diagonal bands, randomly, or in random clusters.

The efficiency of query processing thus can be evaluated as a function of
parameters from four different categories: data properties, data storage
options, query properties, and query processing options, as summarized in
Table 4. A plus sign indicates that multiple choices were compared during
an experiment, and a dot sign corresponds to a fixed choice.

Table 4. Summary of performance evaluation axes

Experiment Axis
1 2 3

Data properties
• array shape and element type · · ·
Data storage options
• partitioning: linear / multidimensional + · +
• chunk size · · +
• nesting order of dimensions · · ·
Array query properties
• logical access pattern + · ·
• intra-array selectivity + · ·
• logical locality + · ·
Query processing options
• strategy: SPD / IN / hybrid + · ·
• buffer size + + ·

The structure of the data remains the same throughout the experiments.
Namely, it is the dataset shown on Figure 19 (Section 6.2.2), containing a
single 100 000 x 100 000 array of integer (4-byte) elements, with total size
~40Gb. The logical nesting order is also the same (row-major), as changing

 157

it would effectively swap row query QT1 and column query QT2 while
having no impact on the other query types from Table 5. The rest of the axes
are explored during our experiments, as Table 4 indicates.

Experiment 1 compares the performance of different query processing
strategies (including different buffer sizes), as introduced in Section 6.2.3,
for different kinds of queries. For each kind of query, cases of different
selectivity are compared under either data partitioning approach.

Experiment 2 explores the influence of buffer size on the total query
response time, using the IN strategy for a simple single-column query and a
tiled partitioning of the array. This combination of data storage access
pattern is chosen because it is evenly balanced between best- and worst-case.

Experiment 3 explores the influence of chunk size on the query
performance. There is obviously a trade-off between retrieving too much
irrelevant data (when the chunks are big) and forcing the back-end to
perform too many lookups in a chunk table (when the chunks are small).

For all experiments, the selectivity is shown both as the number of array
elements accessed and the number of the relevant chunks retrieved. We
expect the latter quantity to have higher impact on overall query response
time, in other words, more time is going to be spent on the communication
with RDBMS back-end. These expectations are confirmed in Section 6.3.2.

Table 5. Query patterns

Query type SciSPARQL query Parameters
Access

diagram
Asymptotic
selectivity

QT1: single
row

SELECT (?A[a, c:d:] AS ?res)
 WHERE {
 :Experiment1 :result ?A } 2dn

cn −

QT2: single
column

SELECT (?A[a:b:, c] AS ?res)
 WHERE {
 :Experiment1 :result ?A } 2bn

an −

QT3: regular
grid
(generalization
of QT1- QT2)

SELECT (?A[a:b:, c:d:]
 AS ?res)
 WHERE {
 :Experiment1 :result ?A }

a - first (or
single) row
b - row
stride
c - first (or
single)
column
d - column
stride

()()
2bdn

cnan −−

QT4: diagonal
band (main
diagonal)

SELECT ?i ?j
 (?A[?i, ?j] AS ?e)
 WHERE {
 :Experiment1 :result ?A .
 FILTER (mod(?i - 1, b) = 0
 && abs(?i - ?j) <= w) }

b - row and
column
stride
w - diagonal
band width

bn

w21+

QT5: uniform
random

QT6: clustered
random

SELECT ?i ?j
 (?A[?i, ?j] AS ?e)
 WHERE {
 :Experiment1 :result ?A .
 ?e a :ElementIndices ;
 :i ?i ;
 :j ?j } LIMIT ?s

s - amount
of random
elements to
return 2n

s

158

All experiments were run with SSDM and the back-end MS SQL Server
2008 R2 deployed on the same HP Compaq 8100 workstation with Intel
Core i5 CPU @ 2.80 GHz, 8Gb RAM and running Windows Server 2008
R2 Standard SP1. The communication was done via MS SQL JDBC Driver
version 4.1 available from Microsoft.

6.3.1 Query Generator
Similarly to the examples above, in each query template we identify an
array-valued triple directly by its subject and property, thus including a
single SPARQL triple pattern:

:Experiment1 :result ?A .

Each time we retrieve a certain subset of an array and return it either as a
single small array (QT1 - QT3) or the single elements accompanied by their
subscript values (other queries). The templates listed in Table 5 differ only
in the array access involved, including extra conditions on variables used as
array subscripts.

For the random access patterns, the main parameters are the random array
subscripts. Nodes of type :ElementIndices with :i and ?j properties are
added into the RDF dataset, with the following parameterized update:

DEFINE PROCEDURE AddCoordinates(?b ?i ?j) AS
 INSERT { ?b rdf:type :ElementIndices .
 ?b :i ?i .
 ?b :j ?j }

where ?b is a unique blank node generated for each random coordinate pair.

6.3.2 Experiment 1: Comparing the Retrieval Strategies
We compare the different query processing strategies and the impact of
buffer sizes for each query presented in Table 5, with different parameter
cases resulting in the varying selectivity (and, in case of QT3, logical
locality). We are interested to see how well the different buffer-to-query
translation strategies fit to these use cases in terms of number of SQL
queries generated and the total measured response time.

Each query and parameter case is run against two stored instances of the
dataset, differing in array partitioning method:

• linear chunks: the array is stored in row-major order, in chunks of 40
000 bytes (10 chunks per row, 10 000 elements per chunk, 1 000 000
chunks total) using linear partitioning

 159

• square tiles: the array is stored in 100x100 chunks, occupying 40 000
bytes each (10 000 elements per tile, 1 000 000 tiles total - same as
above) using multidimensional partitioning (2-dimensional in our
case).

We pick the strategies among SPD, IN, SPD-IN (as described in Section
6.2.3), buffered variants. The buffer size is also varied for the IN strategy,
with values picked among 16, 256, and 4096 distinct chunk ids. The SPD
strategy is not affected by the buffer size in our cases - it either discovers the
cyclic pattern with the buffer size of 16 or does not.

The query parameters are chosen manually, to ensure different selectivity
(for all query patterns) and absence of data overlap between the parameter
cases (for QT1-QT3). Each query is repeated 5 times, and the average time
among the last 4 repetitions is shown on the diagrams below.

6.3.2.1 Query QT1
Accessing a single row in a matrix stored in row-major order is obviously an
example of best-case workload, since max 10 linear chunks are involved.
Hence, all IN strategies issue the same SQL query, listing the 10 chunk ids,
regardless of buffer size. Since the buffer is never filled completely, SPD-IN
always chooses the IN strategy following rule (B) specified in Section 6.2.3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

3 : 3 10 : 10 100 : 10 1000 :
10

10000 :
10

100000
: 10

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN

SPD

SPD-IN

Figure 25. QT1 run time (s) for linear chunks

Six parameter cases were used, first one iterating across 3 elements in 3
different chunks, others accessing all 10 chunks in the row, with different
number of row elements copied into the resulting memory-resident array.
Figure 25 shows that the amount of data copied from chunks to memory has
clear impact on the response time only when going from 40 kB to 400 kB
resulting array size. On smaller results the query time is dominatied by the
execution of a single query to the back-end, and the fluctuations may only
result from OS/DBMS cache states and background activity. The difference
between first and second case for the IN strategy, though smaller than
fluctuation range, might still correspond to the cost of transferring different

160

number of chunks from the back-end to SSDM. However, queries QT2-QT6,
retrieving greater amounts of chunks, certainly provide a better clue.

Another important result one can already notice: processing a single SPD
query is apparently more expensive than processing a single IN query, with
the total amount of chunks retrieved staying small and the same.

In the case of multidimensional partitioning, the maximum is 1000 square
tiles being retrieved, and Figure 26 shows that the difference in element
copying operations is playing little role compared to retrieving the chunks:

0

0.5

1

1.5

2

2.5

3 : 3 10 : 10 100 :
100

1000 :
1000

10000 :
1000

100000
: 1000

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN

IN (256)

IN (4096)

QT1 Parameters time, s

a c d IN(16) SPD SPD-IN IN(256) IN(4096)
1 50001 20000 0.019 0.068 0.025 0.020 0.018

101 1 10000 0.032 0.074 0.030 0.031 0.030
201 1 1000 0.234 0.104 0.114 0.117 0.102
301 1 100 1.945 0.780 0.803 1.058 0.916
401 1 10 1.909 0.776 0.812 1.024 0.886
501 1 1 2.007 0.769 0.825 0.979 0.904

Figure 26. QT1 run time (s) for square tiles

While the first case retrieves only three chunks - with ids 500, 700, and
900, the second and third case retrieve every 100th and every 10th chunk
among the first thousand. The response time rises slower than proportional,
implying there is a constant cost of sending an SQL query, and a per chunk
cost of transferring the results back.

In the last three cases, in order to retrieve 1000 chunks, the IN(16)
strategy sends 63 SQL queries to the back-end. The different number of SQL
queries sent determines the clearly seen low performance of IN(16),
compared to IN(256) and IN(4096) in these cases.

The set of retrieved chunks, with ids 0, 1, ... 999 in the last three cases,
have the best possible physical locality, i.e. they are stored in a contiguos
range of clustered index values in the ArrayChunks table. Because of this, a
single SQL query sent under the SPD strategy performs better than a single

 161

SQL query under IN(4096), the latter containing an IN list of 1000 items. As
the execution plans reported by MS SQL Server show, answering an SPD
query inside the DBMS involves a scan through a range of rows, while IN
queries invoke index lookups.

The conclusion drawn from experiments with QT1 is that the SPD
strategy becomes slightly better than IN(4096) in a situation of extremely
good physical locality (retrieving every chunk among the first 0.1% of the
chunks in the database). Under more sparse access, IN with a big enough
buffer, also sending a single SQL query, is preferable.

6.3.2.2 Query QT2
This query represents worst case workload for the linear partitioning, given
the row-major nesting order. Each element accessed belongs to a different
chunk, and accessing 100 000 chunks with IN queries listing 16 chunk ids
each, takes 680 s on avarage, with 6250 SQL queries generated with IN(16)
strategy.

0
20
40
60
80

100
120

3 : 3 10 : 10 100 :
100

1000 :
1000

10000 :
10000

100000
:

100000

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN

IN (256)

IN (4096)

QT2 Parameters time, s

a b c IN(16) SPD SPD-IN IN(256) IN(4096)
50001 20000 1 0.016 0.241 0.016 0.029 0.029

1 10000 10001 0.029 0.177 0.020 0.035 0.034
1 1000 20001 0.188 0.200 0.277 0.123 0.120
1 100 30001 2.298 1.054 1.049 0.992 0.925
1 10 40001 20.770 6.777 7.323 10.376 9.043
1 1 50001 680.570 87.782 90.976 105.116 91.089

Figure 27. QT2 run time (s) for linear chunks

The SPD strategy provides an order-of-magnitude speedup (for the same
buffer size of 16) by sending a single query. However, sending 25 IN
queries listing up to 4096 chunks each proves only slightly slower. Figure 27
shows the expected linear rise, and the serious disadvantage of sending too
many SQL queries.

162

One unexpected phenomenon is the superlinear rise in response time -
mainly for IN(16) strategy, when retrieving 100 000 chunks. We discuss this
for QT4, where it appears to be even more prominent.

As expected, the performance is roughly the same as for QT1 in the case
of multidimensional partitioning, with the same maximum of 1000 square
tiles being retrieved (this time, making up for one column of tiles). Figure 28
shows the performance figures, similar to those on Figure 26 in most
aspects. This includes the different performance of IN strategies,

0

0.5

1

1.5

2

2.5

3 : 3 10 : 10 100 :
100

1000 :
1000

10000 :
1000

100000
: 1000

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN

IN (256)

IN (4096)

QT2 Parameters time, s

a b c IN(16) SPD SPD-IN IN(256) IN(4096)
50001 20000 1 0.021 0.116 0.019 0.021 0.023

1 10000 10001 0.037 0.177 0.020 0.021 0.019
1 1000 20001 0.221 0.256 0.269 0.093 0.123
1 100 30001 2.324 1.040 0.727 0.927 0.939
1 10 40001 2.227 1.096 1.110 1.054 0.874
1 1 50001 2.307 1.144 1.081 1.089 1.064

Figure 26. QT2 run time (s) for square tiles

The SPD strategy performes differently for QT2, as clearly seen in the
last three cases: the IN strategies are sending 63 SQL queries this time, with
worse physical locality retrieving e.g. chunks 3, 1003, ... 999003, instead of
0, 1, ... 999 when processing QT1. The comparison of these results to QT1
shows the slight slowdown introduced by this effect, and the SPD strategy is
no longer the best one.

The long and sparse range of rows, given by QT2 access pattern, thus
incurs slower-than-index SPD performance (e.g. slower than the index
lookups used by IN strategies). In contrast a short condensed range (as for
QT1) is faster-than-index - as a non-selective scan is generally faster than
index lookups.

 163

6.3.2.3 Query QT3
The 'regular grid' query generates more complex access patterns, and with
considerable sparsity touches a relatively small amount of chunks. Linear
chunk partitioning, both row-major and column-major, works equally well
for 'isotropic' grids, (i.e. if grid density is the same in different dimensions).

Table 6. Parameter cases used for QT3

QT3 parameters case
a b c d

grid
coverage

A 1 20000 1 20000 100%
B 2 10000 1 10000 100%
C 90001 100 90001 100 1%
D 4 1000 1 1000 100%

Table 6. shows the parameter cases used. Cases A, B, and D cover the
whole array, retrieving elements at certain intervals (strides), as specified by
the parameters b and d - i.e. 5x5, 10x10 and 100x100 elements in total. The
100x100 elements retrieved in case C are co-located in one corner of the
array, taking up to the last 1/10 of the array in each dimension. Although
logically this corresponds to 1% of the array 'area', the first accessed linear
chunk or square tile marks the beginning of the last ~10% range of the
chunks stored (sequentially) for the array, a fact that determines the actual
physical distribution of the chunks, as the figure next to the Table 6 shows.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

A B C D

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

time, s case elements

accessed
chunks

accessed IN(16) SPD SPD-IN IN(256) IN(4096)
A 25 25 0.052 0.554 0.553 0.022 0.018
B 100 100 0.224 0.918 0.681 0.101 0.078
C 10000 100 0.236 0.132 0.137 0.113 0.121
D 10000 1000 1.738 2.252 3.963 0.955 0.902

Figure 29. QT3 run time (s) for linear chunks

Figure 29 shows that SPD does not perform well in cases A, B, and D,
where the relevant chunks are distributed across the whole array. Ten times
better physical locality in case C already puts SPD on par with IN strategies,

physical locality: ~10%

logical locality: 1%

case C

164

which also send a single SQL query when the buffer size allows to collect all
100 chunk ids first. These chunks are then selected among the last 10%, i.e.
100 000 chunks stored. This supports our earlier observation that SPD
favors short and condensed ranges.

Another clearly visible problem is poor peformance of SPD-IN. In case A it
clearly chooses SPD, which is not optimal. In case D chunks 40...49,
1040...1049, ... are retrieved, so that pattern of size 10 is detected under SPD
with buffer size 16, but pruned under SPD-IN, since it is not repeated within
this small buffer As a result, SPD-IN sends mainly IN queries, but in certain
cases (e.g. when the buffer contains chunk ids 3042..3049, 4040..4047) an
incorrect cyclic pattern (in this case 'retrieve 8 - skip 990') is detected, so an
SPD query is occasionally sent, having a false negative right after switching
to phase III (chunk id 4048), thus providing no benefits over IN(16) query,
but performing much slower (as explained in 6.3.21).

A similar misdetection happens for SPD-IN in case B, however, with
smaller amount of retrieved chunks, the benefit of sending at least some
IN(16), outweighs the pure SPD apprach.

In order to show that a bigger buffer for SPD-IN would solve this
problem, we also run it with buffer sizes 256 and 4096 for QT3 and linear
chunks. Under buffer size 256 SPD-IN chooses to run a single SPD query to
retrieve 1000 chunks, while under buffer size 4096 a single IN list is always
sufficient (SPD-IN with these buffer sizes is not shown, since it is
equivalent to SPD and IN respectively).

0

5

10

15

20

25

A B C D

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

time, s case elements

accessed
chunks

accessed IN(16) SPD(256) SPD-IN IN(256) IN(4096)
A 25 25 0.052 0.549 0.633 0.022 0.023
B 100 100 0.205 0.890 0.758 0.080 0.100
C 10000 10000 19.858 15.023 11.832 10.608 8.421
D 10000 10000 22.229 14.428 11.224 9.98275 9.093

Figure 30. QT3 run time (s) for square tiles

 165

In the case of multidimensional array partitioning and under certain grid
densities, this query is becoming a worst case workload - retrieving a single
element from every tile. In cases C and D the query has to retrieve one tile
per element, effectively, 10000 square tiles (compared to 1000 linear
chunks). While in case C these tiles are selected from the last 10% of the
chunk range, in case D the query retrieves an element from every 10th tile
vertically and every 10th tile horizontally:

In cases A, B, and C for linear chunks (Figure 29), the difference in
buffer size above 100 does not matter, as the strategies IN(256) and
IN(4096) send identical SQL queries - the differences in response times
allow us to assess the accuracy of our measurements, which depend on the
state of the whole software stack involved. Figures 29 and 30 show that the
IN strategy with a large buffer is the best choice in all cases, regardless of
the partitioning scheme.

6.3.2.4 Query QT4
Similarly to query QT2, this one is the worst case workload for linear chunk
partitioning, and, as shown in Section 6.2.4.8, the chunk access pattern, as
detected by SPD changes along the diagonal, initiating re-buffering and
cyclic phase switching in the AAPR framework. We experiment with
diagonal width of 1 and different strides. Every element accessed belongs to
a different linear chunk.

0

500

1000

1500

2000

2500

100 : 100 1000 :
1000

10000 :
10000

100000 :
100000

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN

IN (256)

IN (4096)

QT4 Parameters time, s

b w IN(16) SPD SPD-IN IN(256) IN(4096)
1000 1 0.265 0.979 0.758 0.102 0.087

100 1 1.825 2.484 1.419 1.006 0.846
10 1 17.768 7.190 11.000 7.986 8.097
1 1 2043.404 1107.296 470.062 99.467 86.335

Figure 31. QT4 run time (s) for linear chunks

Here IN strategies show superlinear rise in response time which is most
severe for the small buffer cases. Retrieving 10 times more chunks (and thus
sending 10 times more SQL queries) entails 115 times longer response time

166

(when sending 6250 SQL queries as in the last case), however, this is
alleviated down to the factor of 10.6 in the case of long SQL queries. We
attribute this to a critical performance bottleneck inside the back-end DBMS,
which has to be investigated by the DBMS engineers. This loss of
throughput is similar to the one presented for QT2 (Figure 27), but is
measured to be more significant in the diagonal access pattern tested here.

The SPD strategy sends only 10 SQL queries (or a single query in case of
b=1000, where it captures the complexity of the whole pattern with a single
access pattern), and SPD-IN always chooses SPD. However, the variance in
query response times measured throughout the test is greater than factor of
10, which suggests unstable or nondeterministic (border case?) query
execution by the DBMS, in addition to the superlinear cost (w.r.t. to
selectivity) when executing such queries.

Such a drastic slowdown is typically associated with a wrong choice of
execution plan for certain expected cardinalities, as noted e.g. in [83]. Our
investigation has shown that the actual execution plans reported by MS SQL
Server are identical for the different parameter cases. For SPD queries they
all include index seek for the beginning of the chunk id range, and then a
filter based on the MOD condition for every chunk id in that range. For IN
queries they include index seek for each chunk id provided in the list. We
have to conclude that the observed border case behaviour does not arise at
the stage of query optimization.

The tiled partitioning is much better for this access pattern, grouping each
100 of diagonal elements within one tile, thus resulting in the retrieval of
maximum 1000 tiles for "thin" diagonal queries, and just a few more tiles if
we were testing wider diagonal bands:

0
0.5

1
1.5

2
2.5

3

100 : 100 1000 : 1000 10000 :
1000

100000 :
1000

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN

IN (256)

IN (4096)

QT4 Parameters time, s
b w IN(16) SPD SPD-IN IN(256) IN(4096)
1000 1 0.233 0.318 0.329 0.179 0.177

100 1 1.767 1.140 1.239 1.032 0.983
10 1 1.826 1.192 1.263 1.214 1.023
1 1 2.747 1.624 1.819 1.566 1.556

Figure 32 QT4 run time (s) for square tiles

 167

The conclusion so far is that IN queries with long lists are better handled
by the DBMS, in cases when the access pattern presents a worst case for the
given array partitioning, and the relevant chunks are not stored close to each
other. On the other hand, multidimensional partitioning helps to avoid worst
cases for diagonal queries, helping to speed up the execution by factor of
55.4 (for the unselective queries)

6.3.2.5 Query QT5
The :ElementIndices nodes are inserted into the database, containing
independent uniformly distributed :i and :j integer values within NxN
matrix domain. The selectivity is varied by using LIMIT clause of
SciSPARQL query.

Though some elements happen to be in the same chunk, it takes a big
buffer to discover this fact and save on communication. The SSDM-side
chunk cache also solves the problem of the repeating chunks.

The number of chunks accessed is shown on Figures 33-34 below for the
buffer size of 4096. As expected, it takes the selectivity of 0.01% for the
different random array elements to be found in the same chunks, thus
decreasing the overall number of chunks retrieved.

0
10
20
30
40
50
60
70
80

10 : 10 100 : 100 1000 : 1000 10000 :
9981

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

QT5 Parameter time, s

s IN(16) SPD SPD-IN IN(256) IN(4096)
10 0.025 0.787 0.021 0.023 0.030

100 0.334 7.613 0.297 0.193 0.181
1000 2.564 75.312 2.597 1.413 1.565

10000 28.015 753.215 36.956 15.594 14.312

Figure 33. QT5 run time (s) for linear chunks

Another important observation is that SPD obviously detects wrong
patterns (since there are no patterns to detect), leading to a serious
slowdown. However, SPD-IN is able to discard most (but not all) of these
patters as unlikely, almost restoring the default IN performance. And, by the

168

way, SPD is sending the same amount of 625 SQL queries as IN strategy
does (for the buffer size of 16).

Since the distribution is uniform, there is practically no difference
between chunked (Figure 33) and tiled (Figure 34) partitioning, because of
the same estimate in the number of elements per chunk and hence roughly
the same number of distinct chunks accessed.

0
10
20
30
40
50
60
70
80

10 : 10 100 : 100 1000 : 1000 10000 :
9961

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

QT5 Parameter time, s

s IN(16) SPD SPD-IN IN(256) IN(4096)
10 0.054 0.820 0.020 0.017 0.028

100 0.262 7.733 0.156 0.122 0.146
1000 1.992 74.961 2.337 1.419 1.383

10000 25.871 755.269 33.782 14.675 14.132

Figure 34. QT5 run time (s) for square tiles

This part of the experiment shows that SPD is certainly not suited for
random access patterns, and SPD-IN rules help (though not completely) to
avoid misdetected patterns (leaving a small amount of false positives). As
for the IN strategies, extensive pre-buffering of chunk ids, and caching of
the retrieved chunks on the SSDM side helps to avoid repeated retrievals.

6.3.2.6 Query QT6
This time the matrix coordinates are generated in clusters. For the test
purposes we generate 3 clusters, with centroids uniformly distributed inside
the matrix space. The probability of a sample being assigned to the cluster is
uniform. Samples are normally distributed around the centroids with
variance 0.01*N - 0.03*N (randomly picked for each cluster once). We
deliberately use such highly dispersed clusters, as the effects of logical
locality already become visible at certain selectivity threshold. Samples
produced outside the NxN rectangle are discarded, thus effectively
decreasing the weight of clusters with centroids close to the border.

Similarly to QT5, in Figures 35-36 we show the minimal number of
chunks accessed (i.e. given the biggest buffer).

 169

0
10
20
30
40
50
60
70

10 : 10 100 : 100 1000 : 951 10000 :
7758

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

QT6 Parameter time, s

s IN(16) SPD SPD-IN IN(256) IN(4096)
10 0.077 0.646 0.047 0.044 0.048

100 0.432 6.092 0.347 0.168 0.170
1000 3.849 59.816 4.201 1.732 1.520

10000 44.068 619.773 50.710 16.426 13.493

Figure 35. QT6 run time (s) for linear chunks

We see that the effect of logical locality starts to play a role already when
selecting 0.001% of the array elements. At the selectivity of 0.01% the
number of chunk to access is just 78% to the number of elements in the case
of linear chunks, and 69% in case of square tiles. We see that the square tiles
better preserve the logical query locality, especially for the unselective
queries. We expect this effect to be even greater for more compact clusters
w.r.t. the tile size, and Experiment 3 below (where we vary the chunk size)
supports this idea.

0
10
20
30
40
50
60
70

10 : 10 100 : 100 1000 : 908 10000 :
6916

elements : chunks accessed

q
u

er
y

ti
m

e,
 s

IN (16)

SPD

SPD-IN (16)

IN (256)

IN (4096)

QT6 Parameter time, s

s IN(16) SPD SPD-IN IN(256) IN(4096)
10 0.071 0.637 0.043 0.043 0.048

100 0.494 6.194 0.399 0.202 0.158
1000 4.427 60.679 3.845 1.709 1.555

10000 49.145 625.696 52.054 16.715 13.632

Figure 35. QT6 run time (s) for square tiles

170

One important conclusion here is that we are able to achieve sub-linear
increase of query response w.r.t. the amount of array data retrieved - using
extensive chunk id pre-buffering and SSDM-side caching of the retrieved
chunks. We are able to show this effect on rather low overall densities. We
save on the amount of retrieved chunks thanks to the cluster characteristic of
the access pattern.

6.3.2.7 Comparing linear chunks vs. square tiles
In this experiment, we have gathered empirical proof to a common intuition
[41, 60, 105, 142, 172] that for every data partitioning scheme there is a
possible worst-case workload. Furthermore, our theoretical expectations
regarding best and worst case access patterns for each array partitioning
found full support. These can be summarized by the following table, listing
QT1 - QT4 as representative access patterns:

Table 7. Partitioning/workload best and worst cases

linear partitioning access
pattern row-major column-major

multidimensional
partitioning

QT1 best worst
QT2 worst best
QT3 worst*
QT4 worst worst

The multidimensional partitioning has its only worst case (when a
separate chunk needs to be retrieved for each element) on sparse enough
regular grids, Also, as shown by QT6, the multidimensional partitioning is
still more advantageous for random access patterns, with even a small
degree of clustering. Overall, it can be regarded as more robust, though
having fewer best-case matches. Compact enough clusters that can be
spanned by a small number of tiles would obviously be a near-best-case
access pattern.

6.3.2.8 Comparing SPD vs. IN strategies
The SPD approach in most cases allows packing the sequence of all relevant
chunk ids into a single SQL query, and thus skipping all the subsequent
buffering. However, we have discovered that the SPD queries are generally
do not perform so well in the back-end DBMS, as queries with IN lists. The
last two cases show very clearly that in the case where there is no pattern, so
that we have to send the same amount of SPD and IN queries (for the same
buffer size), the difference in query response time is greater than order of
magnitude.

The obvious explanation to this is the index utilization. A query with an
IN list involves index lookups for each chunk id in the list, while a query
with mod condition, as generated with SPD strategy, is processed
straightforwardly as a scan through the whole ArrayChunk table.

 171

We believe it could be highly advantageous to implement a simple rewrite
on a mod() function. A condition like 'X mod Y = Z' with Z and Y known,
and X being an attribute in a table (and thus having a finite set of possible
bindings), could be easily rewritten to generate a sequence of possible X
values on the fly (thus making mod() effectively a multidirectional function
[58]).

This, however, would require a facility to generate sequences of values
during the execution plan. In Amos II [136] generators are used for all bag-
valued functions. We have run additional experiments with other RDBMSs,
including PostgreSQL [125], MySQL, Mimer [106], and found that even
though some of these support table-valued UDF, only the recent versions
(tested 9.4.4) of PostgreSQL are capable of avoiding the generation of
complete sequences before use. We see this as an important improvement in
the present-day RDBMS architecture.

6.3.3 Experiment 2: Varying the Buffer Size
In this experiment we explore the impact of the buffer size on the query
response time with the IN strategy. We use the same dataset as in
Experiment 1, and query QT2 as a model query because it is the simplest
query retrieving a large amount of chunks. We retrieve 10 000 linear chunks
each time (QT2 parameters result in accessing an element from a single
column and every 10th row). Chunk sizes are varied with finer resolution
than in the respective case of Experiment 1.

IN

0

5

10

15

20

25

16 256 512 1024 2048 4096 6144 8192 10240

buffer size (distinct chunk ids)

q
u

er
y

ti
m

e,
 s

Figure 37. QT2 run time (s) for linear chunks, IN strategy, with buffer size varied

The results shown on Figure 37 confirm our hypothesis that extremely
small buffers, producing lots of chunk retrieval queries under the IN
strategy, result in unnecessary query processing overhead. However, after a

172

certain threshold the amount of SQL queries sent is low enough (1-10
queries), so this overhead is not significant anymore.

6.3.4 Experiment 3: Varying the Chunk Size
In this experiment we evaluate the trade-off between the need to retrieve
many small chunks in one extreme case, and few big chunks (with mostly
irrelevant data) in the other extreme case. We chose QT6 as a query with
certain degree of spatial locality. The effect of this locality is greater for the
square tiles, which are aligned to the logical dimensions, than for the linear
chunks.

We also study how well our back-end DBMS handles the requests for
numerous small or big binary values, thus using the IN strategy with buffer
size set to 4096 distinct chunks. In each case, were retrieve 10000 array
elements, arranged into three clusters, with variance chosen in range 0.01*N
... 0.03*N.

0

5

10

15

20

1k : 9894 6.4k : 9415 40k : 9961 4M : 1159

linear chunk size : chunks accessed

q
u

er
y

ti
m

e,
 s

0

5

10

15

20

1k : 9886 6.4k : 9393 40k : 6916 4M : 206

square tile size : tiles accessed

q
u

er
y

ti
m

e,
 s

linear chunks square tiles chunk

size accessed response time, s accessed response time, s
1k 9894 10.923 9886 10.945

6.4k 9415 10.897 9393 10.846
40k 9961 18.396 6916 13.022
4M 1159 612.269 206 101.333

Figure 38. QT6 run time (s) for linear chunks, IN strategy, with chunk size varied

Figure 38 shows the results for both partitioning cases: even though big
chunk size (around 4 megabytes) results in a much smaller amount of
chunks retrieved (only 1 SQL query is sent), the overall query time rises
superlinearly to 612 s. Besides that, smaller chunks result in slightly better
performance in this case, since the amount of "small" chunks retrieved stays
approximately the same for the same sparse random access.

Using square tiles helps to leverage the access locality even better.
However, big tiles do not seem to pay off at this level of sparsity: retrieving
206 4-megabyte tiles results in a factor of 81.4 larger binary data retrieval

 173

than 9886 1-kilobyte tiles, and contributes to a factor of 9.26 longer query
time (101 s).

This experiment shows that for the given access selectivity (10-6 of the
total number of array elements selected randomly in clusters), small chunks
perform better than big chunks, and the choice between linear chunks or
square tiles is not important for small chunk/tile sizes. However, there is a
significant overhead in retrieving separate chunks, as a factor of 81.4 gross
data transfer increase contributes to only a factor of 9.26 query time
increase.

Analytically, we would model the query response time as a function T(s)
of chunk size s:

() ()sNsPsT =)(

where P(s) is the cost of transferring one chunk (given a fixed total number
of SQL calls), and N(s) is the amount of relevant chunks to be retrieved.
Figure 39 shows our qualitative expectations of P(s) and N(s). It illustrates
that P(s) is basically linear after some 'efficient chunk size' threshold, while
N(s) should experience a steep fall, corresponding to the logical locality of
the query, which is saturated at some point.

P(s)

s

N(s)

s

Figure 39. Query response time factors shown qualitatively as functions of chunk
size

While the quantitative properties of P(s) depend largely on the underlying
DBMS, the middleware, and the operating system used (along with
hardware configurations), N(s) is purely statistical, and can be easily
computed by simulation, as presented below.

6.3.4.1 Amount of distinct chunks as a function of chunk size
Figures 40 and 41 below show the simulation results of QT6 retrieving 10
000 random elements, with clusters of element coordinates having average
variance of 0.2*N (very dispersed) to 0.0002*N (very condensed). Figure 40
presents N(s), given the linear chunks of varying size, and Figure 41 presents
N(s) for square tiles.

174

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000 10000 100000 1000000 10000000 100000000

chunk size (elements)

n
u

m
b

er
 o

f
d

is
ti

n
ct

 c
h

u
n

ks

very dispersed dispersed condensed very condensed
Figure 40. Amount of distinct linear chunks as a function of chunk size, results of
simulating QT6 retrieving 10 000 elements clustered with different density.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10
0

10
00

0

40
00

0

90
00

0

16
00

00

25
00

00

36
00

00

49
00

00

64
00

00

81
00

00

10
00

00
0

40
00

00
0

90
00

00
0

16
00

00
00

25
00

00
00

36
00

00
00

49
00

00
00

64
00

00
00

81
00

00
00

1E
+0

8

tile size (elements)

n
u

m
b

er
 o

f
d

is
ti

n
ct

 t
il

es

very dispersed dispersed condensed very condensed
Figure 41. Amount of distinct square tiles as a function of tile size, results of
simulating QT6 retrieving 10 000 elements clustered with different density.

As we can see, the linear chunk case clearly exhibits a top 'plateau' for
most of our cases, and thus confirms our expectations above. This feature is
not visible for the square tiles case (Figure 41), as the square tiles utilize the
query locality much better. In order to see the plateau, we have to re-run the
simulation with a greater sparsity (so that there is a greater probabilty of
having single selected element per tile retrieved). Figure 42 shows the result
of such simulation, with QT6 retrieving this time only 1000 random
eleements.

 175

0

100

200

300

400

500

600

700

800

900

1000

10
0

10
00

0

40
00

0

90
00

0

16
00

00

25
00

00

36
00

00

49
00

00

64
00

00

81
00

00

10
00

00
0

40
00

00
0

90
00

00
0

16
00

00
00

25
00

00
00

36
00

00
00

49
00

00
00

64
00

00
00

81
00

00
00

1E
+0

8

tile size (elements)

n
u

m
b

er
 o

f
d

is
ti

n
ct

 t
il

es

very dispersed dispersed condensed very condensed
Figure 42. Amount of distinct square tiles as a function of tile size, results of
simulating QT6 retrieving 1000 elements clustered with different density.

Another interesting feature on Figures 40 and 42 is a 'middle plateau' for
the (not very) dispersed access patterens. The beginning of such plateau
should be considered as one of the sweet spots when choosing the
partitioning granularity, where chunk/tile size is adequate to the distribution
of access densities. Of course, assuming the statistical properties of the
workload are known before the array data is partitioned.

Similarly, the earlier observations (Figure 38) suggest that there is always
a threshold in access density after which the bigger chunks become more
favorable. For example, we expect 4 MB square chunks to be on par with 1
kB chunks, when the gross data transfers for each case relate as ~8:1. In
other words, it still pays off to transfer 8 times more gross data from a back-
end, if it results in retrieving correspondingly lesser amount of chunks.

6.3.5 Summary of the Comparison Experiments
We have compared two pure and one hybrid strategy for generating SQL
queries based on the buffered set of chunk ids to be retrieved. One is putting
a long IN list into the query, and the other is creating an expression for a
cyclic chunk access pattern discovered. It turned out that even though the
second approach allows accessing an entire array with a single SQL query,
and skipping further buffering in most cases; it only pays off for very
unselective queries, retrieving a large percentage of array's chunks.
Apparently, modern RDBMS optimization algorithms do not rewrite the
kind of conditional expressions we were using in order to utilize existing
indexes. Hence, the general advice is to use long IN lists for best
performance of a contemporary RDBMS as a back-end.

176

We have also investigated two distinct partitioning schemes - linear and
multidimensional - used to store large numeric arrays as binary objects in a
relational database back-end. Our mini-benchmark consists of six distinct
parameterized query patterns, and it becomes clear that for each partitioning
scheme one can easily define best-case and worst-case queries. For example,
a diagonal access pattern works much better with square tiles than with any
linear chunking, where linear chunks in an array stored row-by-row are
perfect for single-row queries and worst for single-column queries. As for
the chunk size, we have empirically found a proportion when the overhead
of transferring more gross data balances out the overhead of retrieving more
chunks.

The conclusion is that choosing the right partitioning scheme and chunk
size is crucial for array query response time, and the choices made should be
workload-aware whenever possible. Though it might not be possible to
know the expected workload for long-term storage of scientific data, such
knowledge can certainly be inferred for materializations of intermediate
results in cascading array computation tasks. As one direction of a future
work, a query optimizer that makes choices on materializing intermediate
results (e.g. common array subexpressions) should be enabled to choose the
storage options based on the downstream operations.

Buffering array access operations and formulating aggregated queries to
the back-end has proved to be essential for performance. We put the
relational back-end scenario to a real-life test in the next section, comparing
the performance with purely manual Matlab implementations of the same
scientific computing tasks.

6.4 Real-Life Query Performance Evaluations
The previous section explored the SSDM performance using synthetic
(ultimately simplified) data and queries implementing a variety of typical
access patterns. Though we have used SciSPARQL to formulate
parameterized array queries, the presented results are largely language-
independent, and can be extrapolated to any setting involving a chunked
array access. It is only a real-life application that can put a wide range of
SciSPARQL features and SSDM architectural decisions to a realistically
integrated test.

In this section we demonstrate the expressivity of the SciSPARQL
language for an application-representative set of queries and present
response times with different relational storage back-ends. We show that our
approach results in comparable performance to hand-written Matlab scripts
reading files directly from disk, which is the data processing approach

 177

previously employed by the users of the BISTAB application. BISTAB is a
stochastic simulation in the field of computational biology we use for
evaluation of SciSPARQL and SSDM.

In Section 6.4.1 we first define the BISTAB application, together with
some scientific computing background. This part of the work is the outcome
from a collaboration with A.Hellander and B.Drawert at the University of
California Santa Barbara. The results were published in [6] and Section 6.4.1
is based on the part of the paper describing the BISTAB experiment written
by A.Hellander. The computational and data management problems are put
in focus, and the typical data post-processing tasks are formulated. The
BISTAB application has motivated our following steps to move the
computation towards the data, so the results presented here are an important
reference point.

Next, in Section 6.4.2 we define the RDF with Arrays schema, capturing
BISTAB data and metadata together. Since the metatadata (parameter cases,
grid properties, etc.) were stored separately - partially in arrays in separate
Matlab files, partially encoded into file names - we had to do a pre-loading
step. In order to build an RDF with Arrays dataset to be queried, certain ad-
hoc parsing and other data retrieval operations were performed, which is not
covered here. Instead, in Chapter 7 we demonstrate a more general and
simple way for application users to provide metadata annotations for their
numeric results.

The prepared Turtle files (with file links for the computaton results) were
loaded into SSDM with a relational back-end configured to store the arrays,
as reported in Section 6.4.3. Section 6.4.4 presents the BISTAB queries
formulated in SciSPARQL. The queries are answered using different
relational back-ends and under different cache states. In Section 6.4.5 the
performance is compared to running the equivalent scripts in Matlab.

As expected, employing SSDM with a relational database back-end for
storage of large array data results in comparable performance to using
Matlab natively, however, at a cost of the initial data-loading phase. As
presented in Chapter 7 we can avoid paying this cost altogether, by
introducing a tight integration of SciSPARQL queries into a Matlab-based
scientific computing workflow, and retrieving the array data on demand
directly from .mat files.

6.4.1 BISTAB: an Application from Computational Biology
In a discrete stochastic setting, the most common modeling framework is
continuous-time discrete-space Markov processes. Statistically correct
realizations of the process can be generated using kinetic Monte Carlo
(kMC) methodology, such as the Stochastic Simulation Algorithm (SSA)

178

[63]. To introduce spatial heterogeneity in the models, the computational
domain is discretized into non-overlapping mesh cells, and diffusion is
modeled as discrete jump events along the edges of the mesh. Recent
computational studies have highlighted scenarios where both spatial and
stochastic effects are essential to explain the behavior of the system [56, 52].

Analysis of the behavior of a spatial stochastic model for different input
parameters would benefit from a systematic, observationally driven
approach in which statistical approaches from e.g. machine learning and
bioinformatics would be applied to the simulated data in order to discover
input combinations where the model displays interesting behavior. In its
simplest form, such an analysis could consist of aggregation of the full time
series data to a set of biologically significant scalar or vector quantities,
followed by the application of clustering algorithms to find groups of input
cases displaying similar behavior. Such an approach is currently limited by
the existing infrastructure, and would benefit greatly from integration with
database solutions that simultaneously support knowledge discovery in
databases and online selection and post-processing through queries, in our
case SciSPARQL queries.

6.4.1.1 The URDME framework
BISTAB is implemented using the URDME framework for stochastic
simulation of reaction-diffusion processes on unstructured meshes [48, 53].
It relies on the scientific computing environment Matlab as a front-end,
while the core simulation routines are implemented as stand-alone C
programs. Another third-party software, Comsol Multiphysics, is used to
provide a modeling environment for the geometry and to provide
unstructured mesh generation. If used interactively, URDME behaves much
as a Matlab toolbox. It is designed to provide flexibility for the applied users
in terms of (biochemical) model design, execution and post-processing via
e.g. customized Matlab scripts. Given a description of the chemical reactions
(in the form of C code) and of the geometry (in the form of a Comsol .mph
file), the URDME Matlab layer creates all necessary data structures and
serializes the model to an input file in .mat format. URDME then compiles
an executable specific to the model under consideration, launches the
simulation, and then imports the output data back into the Matlab interface.

The raw output from a simulation with URDME is a time series, or
trajectory, with the number of molecules of each species recorded in every
cell in the mesh for each output time point. It thus resembles the output of
most partial differential equation (PDE) solvers, such as those based on the
finite element method. An important difference from most standard PDE
applications is that, since each run provides only one out of many possible
realizations of the stochastic process, it is typically necessary to gather many
independent trajectories into ensembles to form a basis for statistical

 179

analysis. Frequently, some model parameters such as the kinetic rate
constants or diffusion constants are undetermined by biological experiments
or known with low precision. It is therefore necessary to conduct 'parameter
sweeps' in order to tune model parameters to an experimentally observed
behavior, or to study the robustness of the model to changes in the input. A
computational experiment may thus require the generation of tens or
hundreds of thousands trajectories. The computational cost to generate the
ensembles is large, but each realization can be simulated independently of
the others.

6.4.1.2 Post-processing
The large amount of output data generated by URDME for a typical
computational experiment poses a big challenge, both in terms of storage
requirements and in terms of infrastructure for post-processing. While output
data could be aggregated to e.g. mean values at the time of simulation, a
computational experiment will likely require many different post-processing
queries, and many of them will not be known in detail at the time of
generation of the data. It is hence desirable that raw simulation output be
persistent at least for the duration of a modeling project. The earlier
solutions were based on either storing simulation output files locally on the
user workstation, or transferring them to a central URDME server when they
need to be accessed in the computation [184]. In the first case, hardware will
likely limit high-throughput analysis of the model, and in the second case,
the performance of the system will be limited by the data transfer cost. A
more general approach with lazy access to a data repository through queries,
as one described in the previous sections, is desired.

6.4.1.3 Model problem
The BISTAB dataset is a model of a bistable system [52], and was one of the
first models used to demonstrate the use of spatial stochastic simulation in
computational systems biology. For some parameter combinations, the
system will be globally bistable, and for other combinations the proteins will
self-organize in local areas of higher concentrations, leading to loss of global
bistability. The BISTAB dataset consists a parameter sweep of 1900
realizations, where each realization is a file containing the result of a
simulation with randomly chosen parameters. Processing this dataset and
analyzing the biochemical model’s behavior for the different parameter
combinations requires both compute intensive post-processing of the time
series data and the ability to manage and filter the post-processing results
based on metadata such as parameter values.

6.4.1.4 Example queries
To demonstrate the utility of the proposed system we have applied it to run a
number of different queries that are representative of the kind of array

180

slicing and aggregate functions that are frequently needed as primitives in
more complex post-processing routines. These queries often constitute the
data-intensive part of the post-processing workflow, where the complete
dataset is mapped to derived quantities of biological interest in a lower
dimension. The queries we consider in here are:

• BQ1: Compute the number of molecules over the whole spatial domain
of a certain species as a function of time.

• BQ2: Compute the number of certain species at a certain time point for
all the realizations that have kinetic rate constants in a certain range.

• BQ3: Retrieve the identifier of the trajectory that resulted in the maximal
result for BQ2.

The operation in BQ1 is typical for visualization of the realizations and is
for example needed to produce the time series plots in [52, 56]. While
simple array slicing and aggregate functions like that done on a single matrix
in BQ1 can be expressed easily and efficiently in a scripting language such
as Matlab, already simple queries such as BQ2 and BQ3 will place the
responsibility for managing all the many different files and their properties
on the user of the URDME application, while SSDM uniformly manages all
data and metadata. With the traditional approach the management and
analysis of e.g. large parameter sweeps quickly becomes tedious when
metadata is stored separately and may be a bottleneck that limits the
productivity of the user. We show how the system efficiently combines the
utility of a database to select subsets of the data based on the metadata
describing the experiments in terms of a high-level declarative language
capable of expressing array operations.

6.4.2 BISTAB Data Model as RDF with Arrays
We have developed a database schema for the BISTAB dataset, as described
by the ER-diagram shown on Figure 43. It is used for generating an RDF
with Arrays dataset to be stored in SSDM with a relational database back-
end. The dataset is loaded as the default graph in SSDM. In the BISTAB
schema..To test SQL-based storage, we use a sample of 100 Task instances.

All BISTAB data and metadata are contained in the properties of
Experiment and Task instances The time series being the result of an
URDME simulation are stored in the matrix U, containing a row per mesh
cell per species type, and a column per time point, as shown on the Figure
44a. The elements of U matrix are the populations of given species in a
given mesh cell at a given time point.

 181

Task

solver
alias

k_a

k_d

k_4

k_1

realization

tspan

UMspecies

Ncells

A B
E_A

E_B

Experiment inExperiment1 N

Figure 43. Entity-relationship diagram of the BISTAB dataset

The number of cells (Ncells), species (Mspecies), and the time values for
every time point (tspan vector) are part of Experiment metadata. The types
of species A, B, E_A E_B and four others are modeled as properties of the
:Experiment instance. Their values are the row offsets used to access rows
corresponding to these species types within a row range of a given cell.

C
el

l 1
C

el
l 2

C
el

l 3

Specie A
Specie B
…

Specie A
Specie B
…

Specie A
Specie B
…

time

SUM

…

t i

species

cells

time

SUM

Specie A
slice

t i

(a) (b)

Figure 44. Simulation results stored in U matrix

A more natural representation of U would be a 3D array, as shown on
Figure 44b, with the cells and species dimensions logically unnested (though
physically all dimension are always nested, both for chunk-based and main-
memory storage). However, the BISTAB stochastic simulation outputs the
results as 2D arrays, and though it would be simple to re-shape these arrays,
we prefer to keep the array expressions in our queries similar to those in the
original Matlab scripts we compare our approach to. With the flexibility of
SciSPARQL we do not really need to restructure the data before querying.

182

Together with each U matrix, a set of simulation parameters k_1, k_a,
k_d, and k_4 are stored. Since the simulation is stochastic, several different
results per parameter set can be generated, and the realization number is
used to distinguish between them.

6.4.3 Experiment Setup and Data Loading
We have deployed both SSDM and the back-end DBMSs on a single HP
Compaq 8100 workstation with Intel Core i5 CPU @ 2.80 GHz, 8 GB RAM
and running Windows Server 2008 R2 Standard SP1.

The parameters (metadata) of the BISTAB experiment and each
simulation were collected into a Turtle file, together with file links to the
binary (.mat) data files containing the experimental results (U matrices). We
used a dataset containing 100 :Task instances, each representing a
realization of the U matrix, containing an integer element for each of (11107
cells × 8 specie types × 201 time points). This amounts to about 71.5 MB
per matrix, and the total of ~7.15 GB array data in our sample dataset.

As for the, SQL back-end we experimented with two different DBMSs
accessed via JDBC: MySQL 5.6.10 and Microsoft SQL Server 2008 R2. The
back-ends are configured to use linear chunks of 1608 bytes each, so that a
chunk contains two successive rows of a U matrix, stored row-by-row. This
amounts to 44 428 chunks per matrix, and 4 442 801 array chunks in total
(one chunk stores tspan).

The choice of the partitionining scheme was deliberately made data-
aware, but not workload-aware, in order to test both natural and worst-case
workloads. For example, each chunk contains the complete time series per
mesh cell for two types of species, whereas BQ1 and BQ2 are only intrested
in one certain kind of species (while BQ3 may benefit from chunk caching).
At the same time, all queries summarize the populations across all mesh
cells, so storing the matrix U column-by-column would benefit BQ2 and
BQ3, which are currently the worst-case workloads, retrieving only 1 or 2
elements per chunk. Below in Section 6.4.4 we formulate BQ1 in a way that
it retrieves the time series per mesh cell first, and then applies a vector sum,
thus becoming a near-best case (50% relevant data per chunk). Automatic
query rewriting based on the partitioning scheme remains a challenging
direction of the future work.

6.4.3.1 Bulk-loading performance
To evaluate different data loading methods, we compared the performance
of naive one-by-one insertion of each chunk with loading the complete
dataset at once using the bulk-loading facility of the DBMS. The results are
shown in Table 8. In case of bulk loading, the system first has to prepare a

 183

set of bulk-load input files to be sent to the bulk-loader. Here the data to be
loaded into each table in our general relational storage schema for RDF
(Figure 43) needs one or several prepared input files. If the data to be bulk-
loaded into a table is larger than allowed by the OS (8 GB in our setting), the
system splits the bulk-load input into several files.

Table 8. Data loading times for 100 matrices

task MySQL MS SQL Server

Preparing files for bulk-loader 980 s 82 s

Bulk loading 1 543 s 1 275 s

Total 2 523 s 1 357 s

Naïve one-by-one insertion 7 577 s 7 827 s

The bulk-loading into MySQL is slower since its bulk-loader requires
text-based input. Here the array chunks are represented in hexadecimal form
and the preparation work includes converting the binary data into
hexadecimal representation. The gain is still a factor three compared with
inserting the chunks one a time, mainly because incremental updates of
internal DBMS structures in the latter case.

MS SQL Server allows bulk-loading binary files. Preparing these files
becomes simply moving binary data from memory. The bulk-loader does not
have to do any parsing. This is therefore the fastest option.

6.4.4 BISTAB Application Queries
In this section we define the queries BQ1-BQ3 outlined in Section 6.4.1.4 as
SciSPARQL queries, using a number of distinctive features of the query
language, introduced in Chapter 4.

BQ1: Compute the sum of all species A over all mesh cells in the
experiment as a function of time for the trajectory matrix U of task :Task1.
BQ1 always selects one matrix, associated with :Task1, and aggregates the
information on species of type A, effectively accessing 12.5% of the matrix
elements in the database. This query is representative of a frequently
occurring use case; to reduce the data of an individual sample point to e.g.
plot the 3D spatial data as a 1D aggregated time series.

First, we define a function

total_species(U, species, mspecies)

that sums up the given species type in U, applying a vector sum to the
corresponding rows. Every simulation cell occupies Mspecies rows in U
matrix:

184

DEFINE FUNCTION total_species(?U ?species ?mspecies) AS
 SELECT (SUM(?U[?i]) AS ?res)
 WHERE { FILTER (mod(?i, ?mspecies) = ?species-1) };

The variable ?i will be bound to all possible subscripts in ?U constrained
by the filter expression. Every ?mspecies row is retrieved, and a (scalar)
sum is computed over the elements of respective columns, as shown on
Figure 44a. If we think about the same data as a 3D array, with the species
and the cells dimensions unnested, each summed-up subset can be
represented as a slice, shown on Figure 44b.

Query BQ1 can now be formulated as

SELECT (?tspan[?j] AS ?t)
 (total_species(?U,?a,?mspecies)[?j] AS ?sum_A)
 WHERE { :Task1 :U ?U ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :Mspecies ?mspecies ;
 :tspan ?tspan };

The variable ?j joins the possible subscript values for elements of the
?tspan vector with those of a vector returned by total_species(). The
WHERE clause specifies triple patterns used to extract (i) the U matrix
associated with the experiment task instance named :Task1, (ii) the
corresponding experiment instance (property :inExperiment), and (iii)
other metadata associated with the experiment. The query returns pairs of
(timepoint, sum) values that can be directly used for plotting the wanted
function of time.

BQ2: Select the sum of all species A for time point 10s for all trajectory
matrices U with parameters k_a and k_d in given ranges. BQ2 selects just
one column of the U matrix, at the column index ?j which is looked up in
the tspan vector for the time point of interest. There can be many tasks
falling into the specified parameter range.

SELECT (array_sum(?U[?a-1::?mspecies,?j]) AS ?res)
 WHERE { ?task :U ?U ;
 :k_a ?k_a ;
 :k_d ?k_d ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :Mspecies ?mspecies ;
 :tspan ?tspan .
 FILTER (?tspan[?j] = 10 &&
 1.0E8 <= ?k_d && ?k_d <= 1.0E9 &&
 50 <= ?k_a && ?k_a <= 90) };

This query sums up only one column with index ?j expressed by the
constraint ?tspan[?j] = 10. The SELECT expression sums up elements

 185

in one column and every mspecies row (grey in Figure 44a). Since we are
interested in only one time point of the trajectory, here we do not use a
vector sum as we do in function total_species().

BQ3: Find the task that has the maximal total population of species A or B
for any time point. BQ3 is an example of typical batch processing job. It
makes a complete (unselective) sweep across all U matrices in the dataset,
computes aggregated statistics for each matrix, and identifies the task that
has received the maximum score.

We will need a helper function max_AB_sum(task), aggregating the
vectors returned by different calls to total_species():

DEFINE FUNCTION max_AB_sum(?task) AS
 SELECT (max(array_max(total_species(?U,?a,?mspecies)),
 array_max(total_species(?U,?b,?mspecies)))
 AS ?res)
 WHERE { ?task :U ?U ;
 :inExperiment ?experiment .
 ?experiment :A ?a ;
 :B ?b ;
 :Mspecies ?mspecies };

For each matrix U two vectors are computed: summed up populations of
species A and B, and their maximum element is returned. The function is
similar to BQ1 and BQ2 in the triple patterns involved, but the ?task
instance is now the function’s argument. This allows us to apply the second-
order function ARGMAX() to express the query BQ3:

SELECT (ARGMAX(max_AB_sum(*)) AS ?maxtask);

This query applies max_AB_sum() to all possible bindings of variable
?task to task instances - computed by the triple patterns inside
max_AB_sum(). The argument corresponding to the maximal function
result is returned, and can be further queried for properties, e.g. parameters
of the trajectory.

During the query execution A and B rows are accessed and summed up
separately, and referenced by separate array proxies. Since the chunks
contain two rows each, the chunk-level caching (introduced in Section
6.2.4.6) prevents double retrieval of the same chunks. A very small cache,
capable of storing 25% chunks of a matrix (less than 18 MB), completely
eliminates this problem. The matrices are accessed one at a time, so that the
chunk cache is automatically refreshed (according to the least-recently-used
(LRU) replacement strategy) when function max_AB_sum() proceeds to the
next matrix.

186

6.4.5 Query Performance
Once the data was loaded into SSDM configured with the relational back-
end storage, we ran the queries BQ1-BQ3 and measured the execution time
and the number of resulting tuples emitted. We used the SPD strategy for
retrieving the chunks (since all our patterns are fairly regular) with the buffer
size of 16 distinct chunks. With the results from Section 6.3 in mind, all
three queries are a suitable case for the SPD strategy, since the chunk access
pattern is fairly dense (in fact, all queries retrieve every 4th chunk in a
matrix).

As a comparison, we also made Matlab scripts to perform the equivalent
computations on a set of binary .mat files. Since Matlab stores the matrix
elements as floating-point numbers, the size of data it is reading from disk is
in the best case twice bigger than the data we retrieve from a relational
database, which explains why Matlab is sometimes slower.

Table 9 shows 'cold cache' run times where all data reside on disk before
the query is executed:

Table 9 Query execution time (in seconds) with cold cache

task U matrices results MySQL MS SQL Server MATLAB

BQ1 1 201 1.748 2.15 1.826

BQ2 36 36 80.703 44.512 30.042

BQ3 100 1 187.073 192.365 133.279

We can see that on smaller amounts of data our system slightly
outperforms Matlab with .mat files. All results fall within same order of
magnitude, which proves that the benefits provided by our solution combine
with quite competitive performance.

Table 10 shows 'warm cache' results, obtained by repeated runs of the
same query. There are three cache levels involved: OS-level file cache,
DBMS-level query cache, and SSDM-level chunk cache. Due to massive
amounts of data processed, BQ3 does not benefit from any of these in
repeated runs (though intra-query caching is still essential), and the results
are the same as in Table 9. In contrast, for BQ1 there is an interesting case
possible when all array data processed fit entirely into the SSDM chunk
cache, so the DBMS is not accessed at all; it only runs in the background,
consuming some system resources. This particular case is shown as BQ1*.

Table 10. Query execution time (in seconds) with warm OS/DBMS level cache

task U matrices results MySQL MS SQL Server MATLAB

BQ1 1 201 0.434 0.526 0.157

BQ1* 1 201 0.138 0.152 N/A
BQ2 36 36 63.542 13.378 1.203

 187

Here we can see that the SSDM cache is faster than the OS-level cache
utilized by Matlab. However, BQ2 reads just a single column from every
matrix, but has to retrieve the same amount of chunks from the back-end.
This makes it significantly slower than a system with any other partitioning
scheme than row-wise linear chunking, used in this experiment. Single-
column access can be regarded as particular worst case for row-based array
storage, as the useful data load is relatively small during the array retrieval
operations.

188

7 Integration of SciSPARQL into Matlab

In many branches of science and engineering, researchers accumulate large
amounts of experimental data [162, 154] and use widely recognized libraries
of algorithms to analyze and refine that data. Tools such as Matlab or similar
serve as integrated environments that provide basic file management,
extensibility with algorithmic libraries, visualization and debugging tools,
and are generally oriented towards single-user scenario.

What is typically missing is the infrastructure for storing the descriptions
of experiments, including parameters, terminology mappings, provenance
records and other kinds of metadata. At best, this information is stored in a
set of variables in the same files that contain large numeric arrays of
experimental data, and thus is prone to duplication and hard to update.

 RDF with Arrays and SciSPARQL provide an infrastructure where both
metadata and data are represented in a database using the RDF data model
accessible from the Matlab environment.

7.1 Usage Scenario
The SSDM configuration presented in this chapter assumes a multi-user
client-server environment. Users interact with Matlab clients and the SSDM
server acts as a central repository for all kinds of data and metadata that
needs to be stored between the sessions or shared among the users.

The main challenge, as expected, is interoperability - Matlab has only
arrays as a data model. We address this by allowing users to provide
metadata annotations for the array data they generate, within the Semantic
Web paradigm, so that the Matlab arrays become part of an RDF with
Arrays graph on the server, which is queriable and updatable with
SciSPARQL. SSDM as an RDF with Arrays store participates in two kinds
of interactions with a Matlab client, which we refer to as phases:

• Phase 1: generate & store - populating an RDF with Arrays graph on
the SSDM server with data and metadata generated on the client.

• Phase 2: query & postprocess - searching an RDF with Arrays graph
based both on metadata and data properties, shipping the results back
to the Matlab client to perform any Matlab-specific postprocessing.

 189

The first phase is exemplified in Figure 45. First, a Matlab array A is
created on the client. A call to the Matlab function store()ships the array
to the server and returns an array proxy object. This array proxy object is
used in RDF triples later sent to SSDM when populating the RDF with
Arrays graph describing the experiment.

SSDM Server

RDF
Store

File system

Server side

Client side: MATLAB

Af(x) store()

.mat
file

Array
Proxy

SciSPARQL
Update

makeURI()

Figure 45. Storing client-generated data and metadata on SSDM server

At the query phase (Figure 46), a subset of A, now stored on the server in
a .mat file is selected, processed (e.g. fed to an aggregate function), and the
result (e.g. a single number) is shipped back to the Matlab client for post-
processing and visualization.

SSDM Server

RDF
Store

Server side

Client side: MATLAB

SciSPARQL
Query A

F(A)
Scan

File system

Figure 46. Querying data and metadata on SSDM server from MATLAB client

190

In the next section we demonstrate both of these phases using the example
BISTAB experiment introduced in Section 6.4.

7.2 A Workflow Example
As an example15 of a typical workflow, we first create the RDF with Arrays
dataset for the BISTAB experiment using a remote Matlab client. As soon as
both RDF data and arrays are stored in the SSDM server, we are able to
query them with SciSPARQL, receive the results using the Scan
functionality, and perform visualization in Matlab.

First, we load the SSDM client library into Matlab, initialize it, and
establish a connection to the server:

addpath('./embeddings/MATLAB/M');

sparqlInit('mat');

c = newConnection('udbl64.uu.se');

The 'mat' option to the initializer indicates that we are going to use .mat
files for storing the arrays on the server, so that the corresponding MCR
libraries are loaded at that point.

We use the prefix <http://udbl.uu.se/bistab#> for the URIs we construct
for our RDF with Arrays dataset, both on the client and the server:

c.usePrefix('', 'http://udbl.uu.se/bistab#');

Phase 1. For simplicity, we begin the construction from an empty graph,
and first insert the :Experiment1 instance with constant parameters (see
Figure 45):

c.sparqlDo('CLEAR()');

c.sparqlDo('INSERT { :Experiment1 :Mspecies 2; :Ncells 8; :A 1; ' ...
 ':B 2; :E_A 3; :E_B 4; :tlen 5 }');

The Matlab concatenation operator '...' is used to pass multi-line textual
representations of SciSPARQL queries and updates.

In order to insert an array, we use the Matlab-native array value for the
:tspan property. The URIs representing the subject and property of the
inserted triple are also created in Matlab.

uriExperiment = c.makeURI('', 'Experiment1');

c.insert(uriExperiment, c.makeURI('', 'tspan'), [0 0.5 1 1.5 2]);

15 In the Matlab code below we show the integration-related functions in bold italic, with
keywords (both Matlab and SciSPARQL) in bold.

 191

Now we populate the BISTAB realizations data. We have these data in
variables in a set of .mat files, so we load the file with BISTAB parameter
cases first:

load('input.mat');

This file contains the parameters variable, with rows corresponding to
the different realization parameters, and the columns corresponding to the
parameter cases. By contrast, in Section 6.4 we read a pre-generated Turtle
file with these values, while here we populate an RDF with Arrays graph
online. For each parameter case we create a :TaskN node, Since we are
building a graph, first we record that our new :TaskN node belongs to
:Experiment1. The rows in the parameters array are now assigned
meaningful names, like :k_1 or :k_d, serving as part of metadata
annotation:
for i = 1:size(parameters,2)
 uriTask = c.makeURI('', ['Task', int2str(i)]);
 c.insert(uriTask, c.makeURI('', 'inExperiment'), uriExperiment);
 c.insert(uriTask, c.makeURI('', 'k_1'), parameters(1,i));
 c.insert(uriTask, c.makeURI('', 'k_a'), parameters(2,i));
 c.insert(uriTask, c.makeURI('', 'k_d'), parameters(3,i));
 c.insert(uriTask, c.makeURI('', 'k_4'), parameters(4,i));
 load(['realization_',int2str(i),'_1toy.mat']);
 c.insert(uriTask, c.makeURI('', 'U'), c.store(U));
end

As the last step, for each parameter case we populate the server database
with the massive numeric data, produced as a result of a computer
simulation. We could have run the simulation itself at this point, but it was
run before and the results were stored as in a set of .mat files on the client
machine, with parameter case and realization numbers encoded into the
filename (a very common practice in the absence of databases!). Now we
integrate our massive arrays into the RDF graph by shipping them to the
server and connecting them as :U properties of our :TaskN nodes.

This is all data migration efforts needed to convert the .mat files on the
client into an RDF with Arrays database on the server. We can now save the
database on the server:

c.save();

Phase 2. The array data stored on the SSDM server is now available for
querying from Matlab clients. For example, we can select row 15 from the
:U matrix corresponding to :Task1 and send it back to the client:

s = c.sparql('SELECT (?U[15] AS ?res) WHERE { :Task1 :U ?U }');

s.getElement(1)

In the process we created a Scan object containing a single row with a single
value in it, which is available in Matlab as a 1D array.

192

We can now execute BQ1 defined in Section 6.4.4, by first defining its
reusable part as a total_species() function:

c.sparqlDo(['DEFINE FUNCTION total_species(?U ?species ?Mspecies)' ...
 ' AS SELECT (SUM(?U[?i]) AS ?res) ' ...
 ' WHERE { FILTER (mod(?i, ?Mspecies)=?species-1) }']);

This function will be stored on the SSDM server, together with the dataset -
similarly to SQL stored procedures.

Executing BQ1 will return a Scan containing a time value and the sum of
A species in each row:

s = c.sparql([
 'SELECT (?tspan[?j] AS ?t)' ...
 ' (total_species(?U, ?A, ?Mspecies)[?j] AS ?sum_A)' ...
 ' WHERE { :Task1 :U ?U ;' ...
 ' :inExperiment ?experiment .' ...
 ' ?experiment :A ?A ;' ...
 ' :Mspecies ?Mspecies ;' ...
 ' :tspan ?tspan }'])

For the purpose of plotting, we need to collect the results from the Scan
into a 2-column array. This is done by the following Matlab code:

i = 1;
while not(s.endOf())
 for j=1:s.width()
 res(i,j) = s.getElement(j);
 end
 i = i + 1;
 s.nextRow();
end

Here the nextRow() method to advances through the Scan, and endof()
checks if there are any more results to retrieve. The number of elements in
the row is available via width() and getElement() returns the row
element with the specified index as a Matlab value.

Finally, the Matlab plotting functionality is invoked in order to visualize
BQ1 results:

figure;plot(res(:,1),res(:,2))

The complete demo, also featuring BQ2 and BQ3 queries is available on
SciSPARQL homepage [146].

7.3 Matlab Interface to SSDM
The interface to Matlab includes two main Matlab classes: Connection and
Scan. In addition there are a number of classes used to represent RDF types,
e.g. URIs and typed literals. Matlab constructors, and field accessors are

 193

defined for these classes. A special class MatProxy is used on the client-side
to represent an array stored in a .mat file in the SSDM server.

 The Matlab class Connection encapsulates a connection to an SSDM
server, including methods for:

• executing SciSPARQL queries and obtaining a result as a Scan –
method sparql();

• executing non-query SciSPARQL statements, e.g. updates and
function definitions – method sparqlDo(), separate triples may
also be inserted into an RDF with Arrays graph with the insert()
method;

• defining URI prefixes to be used both on client and server side –
method makeURI();

• shipping Matlab arrays from client to server for bulk loading –
method store();

• managing data persistence on the server – method save().

The Matlab class Scan encapsulates the result set of a query. The data is
not physically retrieved, stored or shipped anywhere before it is explicitly
accessed as a row in the scan. Scan includes methods nextRow() etc. for
iterating through the result sets of SciSPARQL queries: the arrays and scalar
numbers become represented by native Matlab arrays and numbers while
other RDF values get represented by objects defined in the Matlab client.

In the above workflow example the SSDM server is configured to store
RDF triples in main memory, while array data in a stored in a file directory
of native .mat files. Reading and writing .mat files on the server side is
done via freely distributed MCR libraries, so this configuration requrires no
additional Matlab installation.

The SSDM server processes SciSPARQL queries and updates. As part of
an update, the store() function can be called from the client. A numeric
multidimensional array value in the Matlab client will be shipped to the
server as a binary .mat file and saved under a server-managed name in the
server’s file system. The Array Proxy object pointing to the value in that
.mat file will be returned to the client, and may be used as a replacement for
the actual array, e.g. as a parameter to SciSPARQL queries and updates.
Once stored in the database, the Array Proxy object serves as a link from the
metadata RDF graph to the numeric data stored in a .mat file on the server.

If the file is already on the server, and its name is known, an alternative
link() function can be used to obtain an equivalent Array Proxy object
persisted on the server side.

194

7.4 Discussion
The use of standard query languages for bringing remotely stored data into
computational environments is becoming increasingly popular as the data
become more distributed. One obvious benefit is simplicity and reusability
of data retrieval operations. For example, Matlab already has a facility to
execute SQL. Similarly, the R statistical environment recently gained a
simple SPARQL package [138]. We take the next step, by extending the
standard query techniques (with arrays, functional views and other
SciSPARQL features), aiming to make the database connections even more
useful and efficient.

The approach with linking matricies to the data on the server instead of
downloading and storing them locally is beneficial. There is a number of
efficient binary storage formats around, and our approach can be easily
extended to any of them, as long as it is possible to address stored data in
terms of string or symbolic identifiers, and read specified parts of the arrays.
Even when data are generated locally, it's still better to upload it once to the
server, rather than distributing the massive datasets across the workstations
on a regular basis.

The main benefit, however, is integrating the Semantic Web metadata
management approach (RDF and SPARQL) into an environment that misses
it so obviously (i.e. currently using arrays for everything). We show that the
creation of an RDF with Arrays graph to represent both metadata and data on
the server is simple, and may serve as a good annotation of experimental
data. The Matlab users can now take advantage of remote and centralized
repositories for both massive numeric data and metadata, send queries that
combine them both, retrieve exactly as much data as required for the task,
and do any further processing the way they already do.

A similar integration of SciSPARQL into Numeric Python [172] is
underway. We believe that introducing SciSPARQL queries into the
traditionally procedural scientific computing workflows enables a
convenient and minimum-effort annotation of numeric datasets in science
and engineering, using the Semantic Web approach. This, in turn, opens a
way to greater interoperability and fosters wider collaboration among the
users and interlinking of the open scientific data.

 195

8 Summary and Future Work

In this Thesis we presented the design, implementation and evaluation of
Scientific SPARQL - a language for querying data and metadata represented
using the RDF graph model extended with numeric multidimensional arrays
as node values - RDF with Arrays. The techniques used to store RDF with
Arrays in a scalable way and process Scientific SPARQL queries and
updates are implemented in our prototype software - Scientific SPARQL
Database Manager, SSDM, and its integrations with back-end data storage
systems and computational frameworks.

In RDF with Arrays, arrays are used to model massive numeric data,
typically ordered along a number of orthogonal axes. The rest of the RDF
graph serves to represent different kinds of metadata, for example, a
formalized description of an experiment, tools and methods used, parameter
cases, provenance, etc. Scientific SPARQL allows combining metadata and
numeric data conditions in one query, making it expressive and self-
contained, eliminating the need for extra round trips to the server, and giving
more freedom to the optimizer in order to build better execution plans.

The ability to process Scientific SPARQL queries involves suitable main
memory representations for numeric multidimensional arrays, and efficient
implementation of operations over such arrays (e.g. selecting array subsets).
Whenever possible the SciSPARQL query processor accumulates such array
operations and accesses the array content in a lazy fashion.

For scalability, arrays can be physically stored in a variety of external
storage systems, including files, relational databases, and specialized array
data stores - SSDM offers a simple and flexible Array Storage Extensibility
Interface. The array data is retrieved from these storage systems only on
demand, and only in relevant subsets, thus minimizing both network usage
and memory footprint.

One option is storing RDF with Arrays in a relational DBMS supporting
SQL and JDBC. We studied the different optimization strategies for the
retrieval of array content under a variety of partitioning approaches and
access patterns - the performance evaluation we present is based on our
mini-benchmark for array queries. The conclusions suggest a preferred way
to formulating SQL queries to the back-end, and also carry certain advice for
choosing a partitioning approach, if the expected workload is known.

196

In scientific applications, numeric computations are often used for
filtering or post-processing the retrieved data, and may typically be
expressed in a functional way. Existing computational libraries (many of
which became de-facto standards in scientific computing and are often
referred for reproducibility of results) can be interfaced and invoked from
the query language as foreign functions. Cost estimates and alternative
directions of evaluation can be additionally specified, in order to aid the
construction of better execution plans.

As we expect complex tasks to be formulated as complex queries, good
query modularity becomes as important for scalability as good data design
and annotation. SciSPARQL allows expressing common query sub-tasks as
functional views, i.e. SciSPARQL functions defined as parameterized
queries. This flexibility is further strengthened by functional language
abstractions such as second-order functions and lexical closures. When it
comes to array processing tasks, SciSPARQL offers array constructors,
mappers, and condensers as second-order functions.

An integral real-life evaluation is presented, where SciSPARQL queries
accessing array data stored in an RDBMS back-end are compared to the
equivalent manually written scripts run in pure Matlab - resulting in
comparable performance in the general cases. Besides, the unification of
array data and Semantic Web styled metadata makes the queries shorter and
much easier to write than the equivalent procedural scripts.

SciSPARQL queries are easy to integrate into the common 'sequential'
scientific and engineering workflows, involving generation, storage,
retrieval, and post-processing of the numeric data, typically based on
programs in Java, Python, or C, or scientific computing environments like
Matlab. One important benefit is the communication saved, by pushing to
the server all the costly processing that can be expressed in a query, e.g.
filtering and aggregation. We also demonstrate how such integration helps to
supply and use the descriptive metadata, opening a way to interoperability
and collaboration, while in all other aspects the users may keep doing their
work the way they already do.

SciSPARQL is a proper superset of the W3C SPARQL 1.1 standard, and
its query processor is implemented on the basis of Amos II - a functional
object-oriented DBMS. The successful implementation of SPARQL
constitutes an important part of this work, and proves the viability of such an
approach in general, along with certain semantic mismatches discovered and
extensions made. The SSDM system is tested, documented, and available on
the project homepage [146].

 197

There is a number of directions for future work, aimed at further
improving the performance and usability of Scientific SPARQL.

When it comes to the query processing, for example, a greater freedom
for the query optimizer may be achieved by conveying the bound/semibound
status of query variables to the optimization stage (Section 5.4.4.2). A
deeper comparison of expressions, e.g. by using the canonic forms may lead
to a saved amount of computations in very complex aggregate queries
(Section 5.4.5.7). Also implementing polymorphic predicates at the algebra
level may further reduce the need for the disjunctive execution plans
(Section 5.5).

Mastering the RDF Schema information for the purpose of type inference
offers a totally new direction of SciSPARQL development. As RDF
Schemas may come as a by-product of RDF views over stricter data models
[97], an originally RDBMS-based scientific or engineering application
ported to use SciSPARQL may initiate this line of research.

A completely separate direction of query optimization arises when
building execution plans for computing array expressions. At the high data
scales, careful tile-by-tile pipelining is essential e.g. for common matrix
operations. The storage choices for the materialized intermediate results can
be made automatically with the results from our array query benchmark in
mind. The need for automating the physical design (or co-optimizing queries
and storage) is manifested in [41], and correlates to the dataflow
programming with array data structures [64, 118]. This would complement
the automatic choice of array function implementations presented in [120],
the work which is based on the same DBMS infrastructure.

The ongoing research, however, is focused on the techniques necessary to
delegate larger parts of array expressions, including second-order function
calls, to array databases like Rasdaman, offering rich array processing APIs.
The potential benefit of delegating the computation of an aggregate function
to the back-end is the transfer cost for a scalar number compared to a
transfer cost for a (potentially huge) array.

Deploying SSDM as a (Scientific) SPARQL endpoint on the Web, deep
integration with other scientific computing environments, cloud-based
distribution and other technical improvements are also on our wish list, and
await their motivating applications.

198

Summary in Swedish

Mängden vetenskapliga och tekniska data har ökat explosionsartat under de
senaste årtiondena. Även antalet sätt att representera denna information har
ökat avsevärt. Detta inkluderar hur data beskrivs och representeras såsom
vilka begrepp som används, vilken detaljnivå som valts, och hur data lagras
fysiskt. Denna tillväxt förväntas fortsätta då nya sätt att producera och
använda data utvecklas hela tiden. Detta medför att det blir alltmer kritiskt
att utveckla metoder för att integrera och kombinera olika sorters
information. Semantiska Webben (Semantic Web) och Länkad Data (Linked
Open Data) är lovande ansatser för att generellt beskriva och representera
olika sorters information på ett lättbegripligt sätt i form av grafer av noder
sammankopplade med länkar. För att representera dessa grafer används en
samling tekniker utvecklade av WWW-konsortiet som kallas RDF (Resource
Description Framework). Dessa tekniker omfattar bland annat frågespråket
SPARQL med vilket man kan söka efter information i RDF-grafer.

Denna avhandling utreder hur RDF och SPARQL kan användas för att
representera, söka och bearbeta olika sorters vetenskapliga och tekniska data.
RDFs styrka är att grafer är mycket naturliga för att beskriva information i
form av egenskaper hos olika objekt som personer, företag, webbsidor, etc.,
och hur de relaterar till varandra. Emellertid har RDF haft begränsad
användning för att lagra och hantera vetenskapliga och tekniska data
beroende på att det är onaturligt och ineffektivt att använda RDF för att
representera numeriska data i form av vektorer, matriser, tensorer, dvs.
multidimensionella arrayer. Vetenskapliga och tekniska tillämpningar
kräver ofta att mätvärden lagras och bearbetas i form av arrayer och
avsaknaden av arrayer i RDF och SPARQL har varit en begränsning. Vidare
har det saknats möjlighet att definiera egna funktioner i SPARQL och att
integrera RDF frågor med existerande beräkningssystem.

I avhandlingen presenteras design, implementering och utvärdering av
Scientific SPARQL (SciSPARQL), ett språk för att söka bland både data och
beskrivningar av data (metadata) representerade som RDF-grafer utvidgade
med numeriska multidimensionella arrayer, benämnt RDF with Arrays.
Tekniker för att skalbart lagra RDF with Arrays och att därefter bearbeta
SciSPARQL frågor över lagrade data har utvecklats och implementerats i
SSDM-systemet (Scientific SPARQL Database Manager). SSDM är ett

 199

öppet system som har integrerats med olika sorters databas- och
beräkningssystem för att åstadkomma skalbara system för lagring av
multidimensionella arrayer och operationer på dessa. Ett generellt gränssnitt
gör det möjligt att fysiskt lagra arrayer i många olika datalagringssystem,
inklusive primärminne, filer, relationsdatabaser, och speciella array-
orienterade databassystem.

Beräkningar som används i vetenskapliga och tekniska tillämpningar kan
formuleras med funktioner. I SciSPARQL-frågor kan man använda dessa
funktioner för både filtrering och efterbearbetning. Dessa funktioner kan
defineras i form av parametriserade frågor. Existerande beräkningsbibliotek
kan transparent anropas från SciSPARQL med hjälp av så kallade
främmande funktioner implementerade i olika lämpliga
programmeringsspråk. Kostnadsuppskattning och alternativa sökalgoritmer
kan specificeras för att göra det möjligt för SSDM att generera effektiva
sökstrategier för en given fråga i SciSPARQL. Dyrbara operationer över
arrayer, såsom filtrering, aggregering och vanliga matristransformationer,
utförs på SSDM-servern där arrayerna är lagrade, vilket minimerar
kommunikationskostnaden mellan tillämpningsprogram och SSDM. SSDMs
prestanda och kraftfullhet har utvärderats för en praktisk vetenskaplig
tillämpning och där jämförts med den traditionella lösningen att göra all
bearbetning i ett beräkningssystem som Matlab. Vidare har SSDMs
skalbarhet utvärderats med hjälp av en uppsättning syntetiska data.

Följande forskningsfrågor besvaras delvis av avhandlingen:

1. Hur kan RDF och SPARQL utvidgas för att vara lämpliga att
representera, söka och analysera kombinationer av data och metadata?

2. Hur kan frågebearbetning för SciSPARQL implementeras med hjälp av
existerande databassystem? I synnerhet:

a. Vilka utvidgningar behövs av den bearbetning som utförs och
algebra som används för att representera och transformera frågor i
ett databassystem för skalbart besvararande av SciSPARQL frågor?

b. Hur kan olika existerade system för permanent lagring av data
(filsystem, relationsdatabaser, arraydatabaser, etc.) utnyttjas för
skalbar representation av RDF with Arrays?

c. Hur kan SciSPARQL-frågor integreras i existerande omgivningar
och arbetsflöden för vetenskaplig och teknisk dataanalys?

d. Hur mäter vi effekten av olika designbeslut när det gäller hur RDF
with Arrays data skall lagras effektivt och hur frågor i SciSPARQL
över lagrade data skall besvaras så snabbt som möjligt?

200

Acknowledgement

First and foremost I would like to thank my supervisor Tore Risch for
sharing his knowledge and enthusiasm, and my co-supervisors Kjell Orsborn
and Ruslan Fomkin for the fruitful discussions and the inspiration for
improvements.

I would also like to thank my former and current colleagues
Cheng, Erik, Lars, Khalid, Minpeng, Sabesan, Silvia, Sobhan, and Thanh for
their support, and our partners Peter Baumann and Dimitar Misev from
Jacobs University Bremen, Andreas Hellander and Brian Drawert from
University of California Santa Barbara, for the joyful collaboration and
shared achievements.

Finally, I would like to thank my friends and family for their great
patience and for always being there to support me.

This project is supported by eSSENCE and the Swedish Foundation for
Strategic Research, grant RIT08-0041.

 201

References

[1] M. Acosta, M-E. Vidal, T. Lamp, J. Castillo, and E. Rickhaus. ANAPSID: An
Adaptive Query Processing Engine for SPARQL Endpoints. Proc. 10th
International Semantic Web Conference (ISWC'11), Bonn, Germany, October
2011

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki: NoDB:
Efficient Query Execution on Raw Data Files. Proc. 2012 ACM
SIGMOD/PODS Conference, Scottsdale AZ, USA, June 2012

[3] M. I. Ali, N. Lopes, O. Friel, and A. Mileo: Update Semantics for
Interoperability among XML, RDF and RDB. Proc. 15th Asia-Pacific Web
Conference (APWeb 2011), Sydney, Australia, April 2013

[4] AllegroGraph. http://franz.com/agraph/allegrograph/
[5] A. Andrejev and T. Risch. Scientific SPARQL: Semantic web queries over

scientific data. Proc. Third International Workshop on Data Engineering
Meets the Semantic Web (DESWEB), Washington DC, USA, April 2012

[6] A. Andrejev, S. Toor, A. Hellander, S. Holmgren, and T. Risch. Scientific
Analysis by Queries in Extended SPARQL over a Scalable e-Science Data
Store. Proc 9th IEEE International Conference on e-Science, Beijing, China,
October 2013

[7] A. Andrejev, X. He, T. Risch. Scientific data as RDF with Arrays: Tight
integration of SciSPARQL queries into Matlab. Proc. 13th International
Semantic Web Conference (ISWC'14), Riva del Garda, Italy, October 2014

[8] A. Andrejev, D. Misev, P. Baumann, and T. Risch. Spatio-Temporal Gridded
Data Processing on the Semantic Web. Proc. IEEE International Conference
on Data Science and Data-Intensive Systems (DSDIS), Sydney, Australia,
December 2015

[9] M. Arenas, A. Bertails, E. Prud’hommeaux, J. Sequeda. A Direct Mapping of
Relational Data to RDF. 2012, http://www.w3.org/TR/rdb-direct-mapping/

[10] M.van Assem, A.Gangemi, and G.Schreiber. RDF/OWL Representation of
WordNet. W3C Working Draft 19 June 2006.
https://www.w3.org/TR/wordnet-rdf/

[11] S.Auer, C.Bizer, G.Kobilarov, J.Lehmann, R.Cyganiak, and Z.Ives. Dbpedia:
A nucleus for a web of open data. The Semantic Web, pp.722-735, Springer,
2007

[12] A. R. van Ballegooij. RAM: A Multidimensional Array DBMS. Proc. 9th
International Conference on Extending Database Technology, Heraklion,
Greece, March 2004

[13] A. van Ballegooij and R. Cornacchia. Distribution Rules for Array Database
Queries. Proc. 16th International Conference on Database and Expert
Systems Applications (DEXA), Copenhagen, Denmark, August, 2005

202

[14] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M.Grossniklaus. Querying
RDF Streams with C-SPARQL. Proc. 2010 ACM SIGMOD/PODS
Conference: Indianapolis IN, USA, June 2010

[15] R. Battle and D.Kolas. GeoSPARQL: Enabling a Geospatial Semantic Web.
Semantic Web Journal 3(4) pp. 355-370, 2011

[16] P. Baumann. On the Management of Multidimensional Discrete Data. VLDB
Journal 4 (3), Special Issue on Spatial Database Systems, pp. 401-444, 1994

[17] P. Baumann: A Database Array Algebra for Spation-Temporal Data and
Beyond. Proc. 4th International Workshop on Next Generation Information
Technologies and Systems, Zikhron-Yaakov, Israel, July 1999

[18] P. Baumann, S. Holsten: A Comparative Analysis of Array Models for
Databases. T.-h. Kim, H. Adeli, A. Cuzzocrea, T. Arslan, Y. Zhang, J. Ma, K.-i.
Chung, S. Mariyam, and X. Song (eds.): Database Theory and Application,
Bio-Science and Bio-Technology, volume 258 of Communications in
Computer and Information Science, pp. 80-89, 2011

[19] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P.
Patel-Schneider, and L. Stein. OWL Web Ontology Language Reference.
2004, http://www.w3.org/TR/owl-ref/

[20] D. Beckett. A line-based syntax for an RDF graph. https://www.w3.org/TR/n-
triples/

[21] D. Beckett, T. Berners-Lee, E. Prud'hommeaux, and G. Carothers. Terse RDF
Triple Language. https://www.w3.org/TR/turtle/

[22] G. Bell, T. Hey, and A. Szalay. Beyond the Data Deluge, Science, 323 pp.
1297-1298, March 2009

[23] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American, 284 (5) pp. 34-43, May 2001

[24] T. Berners-Lee and D. Connolly. Notation3 (N3): A readable RDF syntax.
https://www.w3.org/TeamSubmission/n3/

[25] N. Bikakis, C. Tsinaraki, N. Gioldasis, I. Stavrakantonakis, and S.
Christodoulakis. The XML and Semantic Web Worlds: Technologies,
Interoperability and Integration. A survey of the State of the Art. Semantic
Hyper/Multi-media Adaptation: Schemes and Applications, Springer, 2013

[26] N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, and S.
Christodoulakis. The SPARQL2XQuery Interoperability Framework. World
Wide Web Journal 18 (2) pp. 403-490, Springer, 2014

[27] N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, and S. Christodoulakis.
Supporting SPARQL Update Queries in RDF-XML Integration. Proc. 13th
International Semantic Web Conference (ISWC'14), Riva del Garda, Italy,
October 2014

[28] S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres. Mapping
between RDF and XML with XSPARQL. Journal on Data Semantics 1 (3) pp.
147-185, Springer-Verlag, 2012

[29] C. Bizer, T. Heath, T. Berners-Lee. Linked Data - The Story So Far.
International Journal on Semantic Web and Information Systems, 5 (3) pp. 1-
22, 2009

 203

[30] A. Björkelund., L. Edström, M. Haage, J. Malec, K. Nilsson, P. Nugues., S.
Gestegård Robertz, D. Störkle, A. Blomdell, R. Johansson, M. Linderoth, A.
Nilsson, A. Robertsson, A. Stolt, H. Bruyninckx. On the integration of skilled
robot motions for productivity in manufacturing, Proc. IEEE International
Symposium on Assembly and Manufacturing, Tampere, Finland, May 2011.

[31] E. Blomqvist. Ontology Patterns - Typology and Experiences from Design
Pattern Development. Proc. SAIS Workshop 2010, Uppsala, May 2010

[32] D.Brickley and L.Miller. FOAF Vocabulary Specification 0.99.
http://xmlns.com/foaf/spec/

[33] D. Brickley and R. V. Guha. RDF Schema. 2014, http://www.w3.org/TR/rdf-
schema/

[34] J. Broekstra and A. Kampman. SeRQL: A Second Generation RDF Query
Language. Proc. SWAD-Europe Workshop on Semantic Web Storage and
Retrieval, Amsterdam, Netherlands, November 2003

[35] P. G. Brown. Overview of SciDB: large scale array storage, processing and
analysis. Proc. 2010 ACM SIGMOD/PODS Conference, Indianapolis IN,
USA, June 2010

[36] R. Brun and F. Rademakers: ROOT – An object oriented data analysis
framework. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, 389 (1-2)
pp. 81–86, April 1997

[37] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K.
Wilkinson. Jena: Implementing the Semantic Web Recommendations. Proc.
13th International Conference on World Wide Web, New York NY, USA,
May 2004

[38] S. Chaudhuri and K. Shim: Optimizing Queries with Aggregate Views. Proc.
5th International Conference on Extending Database Technology (EDBT),
Avignon, France, March 1996

[39] S. Chaudhuri: An Overview of Query Optimization in Relational Systems.
Proc. 18th ACM SIGACT-SIGMOD-SIGART symposium on Principles of
Database Systems (PODS'98), Seattle WA, USA, June 1998

[40] A. Chebotko, S. Li, and F. Fotouhi. Semantics Preserving SPARQL-to-SQL
Translation. Data & Knowledge Engineering Journal, 68 (10) pp. 973-1000,
October 2009

[41] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Weltonl. MAD
skills: New analysis practices for big data. Proc. 35th International
Conference on Very Large Data Bases (VLDB'09), Lyon, France, August 2009

[42] R. Cornacchia, A. van Ballegooij, and A. P. de Vries. A Case Study on Array
Query Optimization. Proc. 1st International Workshop on Computer Vision
meets Databases (CVDB'04), Paris, France, June 2004

[43] CouchBase. http://www.couchbase.com/
[44] P. Cudré-Mauroux, H.Kimura, K.-T. Lim, J. Rogers, R. Simakov, E. Soroush,

P. Velikhov, D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D.
Maier, S. Madden, J. Patel, M. Stonebraker, and S. Zdonik. A demonstration
of SciDB: a science-oriented DBMS. Proc. VLDB Endowment 2 (2) pp. 1534-
1537, 2009

204

[45] P. Cudré-Mauroux, I. Enchev, S. Fundatureanu, P. Groth, A. Haque, A. Harth,
F. L. Keppmann, D. Miranker, J. Sequeda, and M. Wylot. NoSQL Databases
for RDF: An Empirical Evaluation. Proc. 12th International Semantic Web
Conference (ISWC'13), Sydney, Australia, October 2013

[46] R. Cyganiak. A Relational Algebra for SPARQL. Digital Media Systems
Laboratory HP Laboratories Bristol. HPL-2005-170, 2005

[47] R. Cyganiak, C. Bizer, J. Garbers, O. Maresch, C. Becker. The D2RQ
Mapping Language. 2012, http://www4.wiwiss.fu-berlin.de/bizer/d2rq/spec/

[48] B. Drawert, S. Engblom, and A. Hellander. URDME 1.1: User’s manual.
Technical Report 003, Department of Information Technology, Division of
Scientific Computing, Uppsala University, 2010

[49] L. Dobos, A. Szalay, J. Blakeley, T. Budavári, I. Csabai, D. Tomic, M.
Milovanovic, M. Tintor, and A.Jovanovic. Array Requirements for Scientific
Applications and an Implementation for Microsoft SQL Server. Proc.
EDBT/ICDT Workshop on Array Databases, Uppsala, Sweden, March 2011

[50] V. Dritsou, P. Constantopoulos, A. Deligiannakis, and Y. Kotidis. Optimizing
Query Shortcuts in RDF Databases. The Semanic Web: Research and
Applications Volume 6644 pp 77-92, Springer, 2011

[51] Dublin Core Metadata Initiative. http://dublincore.org/
[52] J. Elf and M. Ehrenberg. Spontaneous separation of bi-stable biochemical

systems into spatial domains of opposite phases. Systems Biology, 1 (2) pp.
230-236, IET, 2004

[53] S. Engblom, L. Ferm, A. Hellander, and P. Lotstedt. Simulation of stochastic
reaction-diffusion processes on unstructured meshes. SIAM Journal on
Scientific Computing 31 (3) pp. 1774-1797, 2009

[54] O. Erling. Declaring RDF views of SQL Data. Proc. W3C Workshop on RDF
Access to Relational Databases, Cambridge, MA, USA, October 2007

[55] O. Erling and I. Mikhailov: RDF Support in the Virtuoso DBMS. Studies in
Computational Intelligence, 221 pp. 7-24, Springer, 2009

[56] D. Fange and J. Elf. Noise induced Min phenotypes in E. coli. PLoS
Computational Biology, 2 (6) p. e80, 2006

[57] S. Flodin and T. Risch. Processing Object-Oriented Queries with Invertible
Late Bound Functions. Proc. 21st International Conference on Very Large
Data Bases (VLDB'95), Zurich, Switzerland, September 1995

[58] S. Flodin, K. Orsborn, and T. Risch: Using Queries with Multi-Directional
Functions for Numerical Database Applications. Proc. 2nd East-European
Symposium on Advances in Databases and Information Systems (ADBIS'98),
Poznan, Poland, September 1998

[59] R. Fomkin. Optimization and Execution of Complex Scientific Queries.
Uppsala Dissertations from the Faculty of Science and Technology, No. 80,
ISBN 978-91-554-7382-2 Acta Universitatis Upsaliensis, 2009

[60] P. Furtado and P. Baumann. Storage of Multidimensional Arrays Based on
Arbitrary Tiling. Proc. 15th IEEE International Conference on Data
Engineering (ICDE'99), Sydney, Australia, March 1999

[61] L. Galarraga, K. Hose, and R. Schenkel. Partout: A Distributed Engine of
Efficient RDF Processing. Proc. 23rd International Conference on World
Wide Web, Seoul, Korea, April 2014

 205

[62] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H.
Eriksson, N. F. Noy, and S. W. Tu. The evolution of Protégé: an environment
for nowledge-based systems development. Human-Computer Studies 58
(2003) pp. 89–123, 2003

[63] D. T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reacting systems. Journal of
computational physics, 22(4) pp. 403-434, Elsevier, 1976

[64] C. Glitia, P. Dumont, and P. Boulet. Array-OL with delays, a domain specific
specification language for multidimensional intensive signal processing.
Multidimensional Systems and Signal Processing. 21 (2) pp. 105-131,
Springer, June 2010

[65] F. Goasdoue, K. Karanasos, J. Leblay, and I. Manolescu. View Selection in
Semantic Web Databases. Proc. 38th International Conference on Very Large
Data Bases (VLDB'12), Istanbul, Turkey, August 2012

[66] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A Relational
Operator Generalizing Group-By, Cross-Tab and Sub-Totals. Proc. 12th IEEE
International Conference on Data Engineering (ICDE'96), New Orleans, LA,
February 1996

[67] J. Gray, D. T. Liu, M. A. Nieto-Santisteban, A. S. Szalay, G. Heber, and D.
DeWitt. Scientific Data Management in the Coming Decade. ACM SIGMOD
Record, 34 (4), 2005

[68] R. V. Guha: Light at the End of the Tunnel. ISWC 2013 Keynote. 12th
International Semantic Web Conference, Sydney, Australia, October 2013

[69] W. R. van Hage, M. van Erp, and V. Malaisé. Linked Open Piracy: A Story
about e-Science, Linked Data, and Statistics. Journal on Data Semantics, 1 (3)
pp 187-201, Springer, September 2012

[70] H. Halpin and P. J. Hayes. When owl: sameAs isn't the Same: An Analysis of
Identity Links on the Semantic Web. Proc Linked Data on the Web (LDOW),
Raleigh NC, USA, April 2010

[71] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. RDF123: from Spreadsheets
to RDF. Proc. 7th International Semantic Web Conference (ISWC'08),
Karlsruhe, Germany, October 2008

[72] M. Hansson. Wrapping External Data by Query Transformations. Uppsala
Master's Theses in Computing Science No. 243, ISSN 1100-1836, July 2003

[73] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K-U. Sattler, and J. Umbrich:
Data Summaries for On-Demand Queries over Linked Data. Proc. 19th
International Conference on World Wide Web, Raleigh NC, USA, April 2010

[74] Apache HBase. http://hbase.apache.org/
[75] J. M. Hellerstein. The Declarative Imperative: Experiences and Conjectures in

Distributed Logic. ACM SIGMOD Record 39 (1), March 2010
[76] T. Hey, S. Tansley, and K. Tolle (eds): The Fourth Paradigm: Data-Intensive

Scientific Discovery. ISBN 978-0-9825442-0-4, Microsoft Research, 2009
[77] F. Holzschuher an R. Peinl. Performance of graph query languages:

comparison of cypher, gremlin and native access in Neo4j. Proc. Joint
EDBT/ICDT Workshops, Genoa, Italy, 2013

[78] I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules
Language. Proc. 13th International Conference on World Wide Web, New
York NY, USA, May 2004

206

[79] B. Howe, K. Tanna, P. Turner, and D. Maier. Emergent Semantics: Towards
Self-Organizing Scientific Metadata. Proc. International Conference on
Semantics of a Networked World, Paris, France, June 2004

[80] Y. E. Ioannidis, and Y. C. Kang, Y. C. Left-deep vs. bushy trees: An analysis
of strategy spaces and its implications for query optimization. ACM SIGMOD
Record, 20 (2) pp. 168-177, 1991

[81] A. Isaac, S. Schenk, and A. Scherp: Semantic Web Languages. R. Troncy, B.
Huet, S. Schenk (eds.): Multimedia Semantics: Metadata, Analysis and
Interaction, Wiley, 2011

[82] K. E. Iverson. A programming language. Proc. AIEE-IRE '62 (Spring) pp.
345-351, 1962

[83] A. Jacobs. The Pathologies of Big Data. ACMQueue, 7 (6), July 2009
[84] Apache Jena. http://jena.apache.org/
[85] V. Josifovski. Design, Implementation and Evaluation of a Distributed

Mediator System for Data Integration. Linköping University Dissertation No
582, 1999

[86] V. Josifovski, T. Risch. Integrating Heterogeneous Overlapping Databases
through Object-Oriented Transformations. Proc. 25st International
Conference on Very Large Data Bases (VLDB'99), Edinburgh, UK, September
1999

[87] M. Kamdar, D. Zeginis, A. Hasnain, S. Decker, and H. Deus. ReVeaLD: A
User-Driven Domain-Specific Interactive Search Platform for Biomedical
Research. Journal of Biomedical Informatics 47 (1) pp. 112-130, Elsevie,r
2014

[88] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, and M. Magiridou,
A.Papadakis-Pesaresi. Atlas: Storing, Updating and Querying RDF(S) Data on
top of DHTs. Web Semantics: Science, Services and Agents on the World Wide
Web 8 (4) pp. 271-277, Elsevier, 2010

[89] V. Karuaskas and M. Sileikis. Wrapping Persistent ROOT Framework Objects
in an Object-Oriented Mediator System. Uppsala Master's Theses in
Computing Science 304, ISSN 1100-1836, 2006

[90] G. Karvounakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. Proc. 11th international
conference on World Wide Web, Honolulu HI, USA, May 2002

[91] M. Kersten, Y. Zhang, M. Ivanova, and N. Nes: SciQL, a query language for
science applications. Proc. EDBT/ICDT Workshop on Array Databases,
Uppsala, Sweden, March 2011

[92] M. Kifer. Rule Interchange Format: The Framework. Proc. Web Reasoning
and Rule Systems. Lecture Notes in Computer Science, Springer, 2008

[93] E. Kostylev, J. Reutter, M. Romero, and D. Vrgoč. SPARQL with Property
Paths. Proc. 14th International Semantic Web Conference (ISWC'15),
Bethlehem PA, USA, October 2015

[94] S. Kotoulas and J. Urbani. SPARQL Query Answering on a Shared-nothing
Architecture. Proc. VLDB Workshop on Semantic Data Management
(SemData), Singapore, September, 2010

[95] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore database
system. Communictions of the ACM 34 (10), pp. 50-63, October 1991

 207

[96] A. Langegger and W. Wöß. XLWrap - Querying and Integrating Arbitrary
Spreadsheets with SPARQL. Proc. 8th International Semantic Web
Conference (ISWC'09), Chantilly VA, USA, October 2009

[97] G. Lausen, M. Meier, and M. Schmidt. SPARQLing Constraints for RDF.
Proc. 11th International Conference on Extending Database Technology
(EDBT'08), Nantes, France, March 2008

[98] W. Le, A. Kementsietsidis, S. Duan, and F. Li. Scalable Multi-Query
Optimization for SPARQL. Proc. IEEE International Conference on Data
Engineering (ICDE'12), Arlington VA, USA, April 2012

[99] L. Libkin, R. Machlin, and L. Wong. A Query Language for Multidimensional
Arrays: Design, Implementation, and Optimization Techniques. Proc. 1996
ACM SIGMOD International Conference on Management of Data, Montreal,
Canada, June 1996

[100] W. Litwin, and T. Risch: Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates. IEEE Transactions on
Knowledge and Data Engineering, 4 (6) pp. 517-528, 1992

[101] K. Mahmood, T. Risch, and M. Zhu. Utilizing a NoSQL Data Store for
Scalable Log Analysis, Proc. 19th International Database Engineering &
Applications Symposium, Yokohama, Japan, July 2015

[102] D. Maier and B. Vance. A Call to Order. Proc. 12th ACM SIGACT-SIGMOD-
SIGART symposium on Principles of Database Systems (PODS'93),
Washington DC, USA, May 1993

[103] G. M. Manipon, B. D. Wilson, and H. Hua. Publishing NASA Metadata as
Linked Open Data for Semantic Mashups. Proc. American Geophysical
Union, Fall Meeting, San-Francisco CA, USA, December 2013

[104] A. Marathe and K. Salem. Query processing techniques for arrays. The
International Journal on Very Large Data Bases 11 (1) pp. 68-91, August
2002

[105] P. Marques, P. Furtado, and P. Baumann. An Efficient Strategy for Tiling
Multidimensional OLAP Data Cubes. Proc. Workshop on Data Mining and
Data Warehousing (Informatik’98), Magdeburg, Germany, September 1998

[106] Mimer SQL. http://www.mimer.com
[107] D. Misev and P. Baumann. Extending the SQL Array Concept to Support

Scientific Analytics. Proc. 26th International Conference on Scientific and
Statistical Database Management (SSDBM), Aalborg, Denmark, June 2014

[108] D. Misev and P. Baumann. Homogenizing Data and Metadata Retrieval in
Scientific Applications. Proc. 18th International Workshop On Data
Warehousing and OLAP. Melbourne, Australia, October 2015

[109] Community Cleverness Required. Nature, editorial, 455 (7209) p. 1, 2008
[110] W. Neidl, B. Wolf, C. Qu, S. Decker, M. Sinek, A. Naeve, M. Nilsson, M.

Palmér, and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based
on RDF. Proc. 11th international conference on World Wide Web, Honolulu
HI, USA, May 2002

[111] NetCDF. http://www.unidata.ucar.edu/software/netcdf/
[112] T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. Proc.

34th International Conference on Very Large Data Bases (VLDB'08),
Auckland, New Zealand, August 2008

208

[113] T. Neumann and G. Moerkotte. Characteristic Sets: Accurate Cardinality
Estimation for RDF Queries with Multiple Joins. Proc. IEEE International
Conference on Data Engineering (ICDE'11), Hannover, Germany, April 2011

[114] J. K. Nilsen, S. Toor, Zs. Nagy, and A. Read. Chelonia: A self-healing,
replicated storage system. Journal of Physics: Conference Series, 331 (6),
2011

[115] NitrosBase. http://nitrosbase.com/
[116] NorduGrid Collaboration. http://www.nordugrid.org/
[117] N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to

Creating Your First Ontology. Knowledge Systems Laboratory, March, 2001
[118] P. de Oliveira Castro, S. Louise, and D. Barthou. A Multidimensional Array

Slicing DSL for Stream Programming. Proc. 4th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS'10), Krakow,
Poland, February 2010

[119] C. Ordonez and J. Garcia-Garcia. Vector and matrix operations programmed
with UDFs in a relational DBMS. Proc. Conference on Information and
Knowledge Management (CIKM'06), Arlington, VA, USA, November 2006

[120] K. Orsborn, T. Risch, and S. Flodin: Representing Matrices Using Multi-
Directional Foreign Functions. P.Gray, L.Kerschberg, P.King, and
A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data, ISBN 3-540-00375-4
Springer, 2004

[121] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
Proc. 5th International Semantic Web Conference (ISWC'06), Athens, GA,
USA, November 2006

[122] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34 (3) pp. 16:1-16:45, 2009

[123] J. Petrini. Querying RDF Schema Views of Relational Databases, Uppsala
Dissertations from the Faculty of Science and Technology, No. 75, ISBN 978-
91-554-7202-3 Acta Universitatis Upsaliensis, 2008

[124] J. Petrini and T.Risch. Processing queries over RDF views of wrapped
relational databases. Proc. 1st International Workshop on Wrapper
Techniques for Legacy Systems (WRAP), Delft, Netherlands, November 2004

[125] PostgreSQL. http://www.postgresql.org/
[126] F. Prasser, A. Kemper, and K. A. Kuhn. Efficient Distributed Query

Processing for Autonomous RDF Databases. Proc. 15th International
Conference on Extending Database Technology (EDBT'12), Berlin, Germany,
March 2012

[127] R2RML: RDB to RDF Mapping Language. http://www.w3.org/TR/r2rml/
[128] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems.

The journal of logic programming 23 (2) pp. 125-149, Elsevier, 1995
[129] Resource Description Framework (RDF). https://www.w3.org/RDF/
[130] RDF 1.1 XML Syntax. https://www.w3.org/TR/rdf-syntax-grammar/
[131] RDFa Core 1.1 - Third Edition Syntax and processing rules for embedding

RDF through attributes. https://www.w3.org/TR/rdfa-syntax/
[132] RDFBeans Framework. http://rdfbeans.sourceforge.net/
[133] RDF Data Cube. http://www.w3.org/TR/vocab-data-cube/

 209

[134] B. R. K. Reddy and P. S. Kumar. Optimizing SPARQL queries over the Web
of Linked Data. Proc. VLDB Workshop on Semantic Data Management
(SemData), Singapore, September, 2010

[135] T. Risch and V. Josifovski. Distributed Data Integration by Object-Oriented
Mediator Servers. Concurrency and Computation: Practice and Experience,
13 (11), John Wiley & Sons, September 2001

[136] T. Risch, V. Josifovski, and T. Katchaounov: Functional Data Integration in a
Distributed Mediator System. P.Gray, L.Kerschberg, P.King, and
A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data, ISBN 3-540-00375-4
Springer, 2004.

[137] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys, T. Bagosi, and D.
Calvanese: Evaluating SPARQL-to-SQL Translation in Ontop, Proc. Owl
Reasoner Evaluation Workshop (ORE 2013), Vienna, Austria, July 2013

[138] R-SPARQL. http://cran.r-project.org/web/packages/SPARQL/index.html
[139] S.Sakr and G. Al-Nayat. Relational Processing of RDF Queries: A Survey.

Proc. ACM SIGMOD/PODS Conference, Providence RI, USA, June 2009
[140] M. Saleem, S. Padmanabhuni, A. Ngomo, J. Almeida, and S. Decker. Linked

Cancer Genome Atlas Database. Proc. 9th International Conference on
Semantic Systems, Graz, Austria, September 2013

[141] SAP HANA. http://hana.sap.com
[142] S. Sarawagi and M. Stonebraker. Efficient Organization of Large

Multidimensional Arrarys. Proc. 10th IEEE International Conference on Data
Engineering (ICDE'94), Houston TX, USA, February 1994

[143] S-B. Scholz. Single Assignment C - efficient support for high-level array
operations in a functional setting. Journal of Functional Programming 13 (6),
November 2003

[144] A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX:
Optimization Techniques for Federated Query Processing on Linked Data.
Proc. 10th International Semantic Web Conference (ISWC'11), Bonn,
Germany, October 2011

[145] M. Sköld and T. Risch. Using Partial Differencing for Efficient Monitoring of
Deferred Complex Rule Conditions. Proc. 12th IEEE International
Conference on Data Engineering (ICDE'96), New Orleans LA, USA,
February 1996

[146] Scientific SPARQL. http://www.it.uu.se/research/group/udbl/SciSPARQL/
[147] Statistical Data and Metadata eXchange. http://sdmx.org/
[148] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path

Selection in a Relational Database System. Readings in Database Systems.
Morgan Kaufman, 1979

[149] J. Sequeda and D. Miranker. Ultrawrap: SPARQL Execution on Relational
Data, Tech. Report, Univ. of Texas at Austin, 2013.
http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-2078.pdf

[150] M. Shaw, L. T. Detwiller, N. Noy, J. Brinkley, and D. Suciu. vSPARQL: A
View Definition Language for the Semantic Web. Journal of Biomedical
Informatics 44 (1) pp. 102-117, Elsevier, 2010

[151] D. Shipman. The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, 6 (1) pp. 140-173, 1981

210

[152] M. Sintek and S. Decker. TRIPLE - An RDF query, inference, and
transformation language. Proc. Deductive Databases and Knowledge
Management (DDLP'2001), Tokyo, Japan, October 2001

[153] SKOS Vocabulary. http://www.w3.org/2004/02/skos/
[154] E.Soroush, M.Balazinska, and D.L.Wang. Arraystore: a storage manager for

complex parallel array processing. Proc. ACM SIGMOD/PODS Conference.
Athens, Greece, June 2011

[155] SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-query/
[156] SPARQL 1.1 Update. https://www.w3.org/TR/sparql11-update/
[157] Starcounter. http://starcounter.com/
[158] Stardog. http://stardog.com/
[159] S. Stefanova, and T. Risch. Optimizing Unbound-property Queries to RDF

Views of Relational Databases. Proc. 7th International workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2011), Bonn, Germany,
October 2011

[160] S. Stefanova T. Risch: Scalable Recreation of RDF-Archived Relational
Databases, Proc. 5th International Workshop on Semantic Web Information
Management (SWIM 2013), New York NY, USA, June 2013

[161] S. Stefanova and T. Risch. Scalable Long-term Preservation of Relational
Data through SPARQL queries. Semantic Web Journal, 2015

[162] M. Stonebraker, J. Becla, D. J. DeWitt, K-T. Lim, D. Maier, O. Ratzesberger,
and S. B. Zdonik. Requirements for science data bases and SciDB. Proc.
Conference on Innovative Data Systems Research (CIDR'09), Pacific Grove
CA, USA, January 2009

[163] A. S. Szalay and J. Gray. 2020 Computing: Science in an Exponential World.
Nature, 440 (7083) pp. 413–414, 2006

[164] A. R. Thakar, A. S. Szalay, P. Z. Kunszt, and J. Gray. The Sloan Digital Sky
Survey Science Archive: Migrating a Multi-Terabyte Astronomical Archive
from Object to Relational DBMS. Computer Science and Engineering, 5 (5),
pp. 16–29, September 2003.

[165] A. R. Thakar. The Sloan digital sky survey: Drinking from the fire hose.
Computing in Science & Engineering 10 (1) pp. 9-12, 2008

[166] S. Toor, M. Sabesan, S. Holmgren, and T. Risch, A Scalable Architecture of
Distributed Storage by Employing Databases for e-Science Applications.
Proc. 12th International Semantic Web Conference (ISWC'13), Sydney,
Australia, October 2013

[167] T. Truong and T. Risch. Transparent inclusion, utilization, and validation of
main memory domain indexes. Proc. 27th International Conference on
Scientific and Statistical Database Management, San Diego CA, USA, June
2015

[168] P. Tsialiamanis, L. Sigirougros, I. Fundulaki, V. Christophides, and P. Boncz.
Heuristic-based Query Optimization for SPARQL. Proc. 15th International
Conference on Extending Database Technology (EDBT'12), Berlin, Germany,
March 2012

[169] J. D. Ullman. Principles of Database and Knowledge Base Systems, vol. I,II.
C.S. Press, 1989

[170] The Uniprot Consortium: Ongoing and future developments at the Universal
Protein Resource. Nucleic Acids Research, 39 (Database issue) pp.214-219,
2010

 211

[171] S. van der Walt, S. C. Colbert, and G. Vaouquaux. The NumPy Array: A
Structure for Efficient Numerical Computation. Computing in Science and
Engineering, 13 (2), March 2011

[172] Y. Wang, A. Nandi, and G. Agrawal. SAGA: Array Storage as a DB with
Support for Structural Aggregations. Proc. 26th International Conference on
Scientific and Statistical Database Management (SSDBM), Aalborg, Denmark,
June 2014

[173] J. Webber. A programmatic introduction to Neo4j. Proc. 13rd ACM
Conference on Systems, Programming, Languages and Applications: Software
for Humanity (SPLASH'12), Tucson AZ, USA, October 2012

[174] Versa. http://xml3k.org/Versa
[175] VoiD Vocabulary. http://www.w3.org/TR/void/
[176] XSPARQL Language Specification. http://www.w3.org/Submission/xsparql-

language-specification/
[177] C. Xu, D. Wedlund, M. Helgoson, and T.Risch. Model-based Validation of

Streaming Data. Proc. 7th ACM International Conference on Distributed
Event-Based Systems (DEBS), Arlington TX, USA, June 2013.

[178] E. Zeitler and T. Risch. Massive scale-out of expensive continuous queries,
Proc. VLDB Endowment, 4(11), pp. 1181-1188, 2011

[179] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O-Efficient Numerical
Computing without SQL. Proc. Conference on Innovative Data Systems
Research (CIDR'09), Pacific Grove CA, USA, January 2009

[180] Y. Zhang, K. Munagala, and J. Yang. Storing Matrices on Disk: Theory and
Practice Revisited. Proc. VLDB Endowment, 4 (11) pp. 1075-1086, 2011

[181] M. Zhu and T. Risch. Querying Combined Cloud-Based and Relational
Databases, Proc. 2011 International Workshop on Data Cloud (D-CLOUD),
Hong Kong, December 2011

[182] M. Zhu, S. Stefanova, T. Truong, and T. Risch. Scalable Numerical SPARQL
Queries over Relational Databases. Proc. 4th International Workshop on
Linked Web Data Danagement (LWDM), Athens, Greece, March 2014

[183] L. Zou, J. Mo, L. Chen, M. T. Öszu, and D. Zhao. gStore:.Answering
SPARQL Queries via Subgraph Matching. Proc. 37th International
Conference on Very Large Data Bases (VLDB'11), Seattle WA, USA, August
2011

[184] P-O Östberg, A. Hellander, B. Drawert, E. Elmroth, S. Holmgren, and L.
Petzold. Reducing Complexity in Management of eScience Computations.
Proc. 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), Ottawa, Canada, May 2012

212

Glossary

array - same as NMA

array descriptor - a data structure that allows to address the certain subset of
array elements, as a result of slicing, projection and generalized
transposition operations. Operations involving different dimensions can be
applied in independent order. One or more descriptors may refer to the same
storage object. Different descriptors identify different arrays. A descriptor is
also part of any array proxy

array fragment - a tuple of storage index and size that can be used to access
certain physically contiguous sequence of array elements in a storage object,
or used to address certain chunks representing that storage object.

array proxy - an object that allows to address a (subset of) array stored in a
particular storage system. Contains kind, associated with certain storage
system and access routines, storage-specific array identifier (e.g. file and
variable names for .mat file proxies), element type and array descriptor
data. Can additionally contain information about array partitioning.

array subscript - see logical index

back-end - see storage system

binding pattern - a certain way to evaluate a predicate in the execution plan,
with certain variable bound, and possibly certain variables free. The
evaluation will result in zero or more results, with values provided for the
free variables.

chunk - a binary object representing a part of the storage object of an array.
Chunks of the same array have sequential chunkid identifiers. See also
partitioning scheme.

derived array - an array resulting from slicing, projection, or generalized
transposition operation of another array. Derived arrays are typically
represented by non-original descriptor object and a storage object that is also
referred to by other descriptor(s). However, that might not always be the
case, as other descriptors might already be garbage-collected. Also e.g. two
mutually reversing transposition operations on an original descriptor will
result in the same descriptor.

 213

descriptor, descriptor object - same as array descriptor

execution plan - a final stage of query optimization, specifying the exact
operations to be performed in order to answer a query. Consists of predicates
with binding patterns assigned, combined with join, union, and other
specialized operators.

extended Turtle (file) - a file in Turtle format containing URIs that are
interpreted as file links by SSDM, and as normal URIs by the standard Turtle
readers.

file link - a URI in a turtle file that is interpreted by SSDM data loader as an
array value. An array proxy is created based on information contained in file
link (and the information from linked file it refers to), which can be resolved
immediately, or later on demand.

generalized transposition - an operation that results in a derived array of
same size and number of dimensions but of different shape. Involves
specifying the new logical order of dimensions. A simple matrix
transposition involves swapping the two dimensions, so that their new order
is always (1, 0).

linked file - see file link

logical index - a vector of integer array subscripts, on for each array
dimension, that identifies an element in an array. Given array descriptor, a
logical index can be translated into a storage index (Section 5.2.1). Array
subscripts are 1-based by default, but an alternative SciSPARQL dialect that
supports Python notation for array operations uses 0-based array subscripts.

memory-resident array - see resident array

NMA - Numeric Multidimensional Array, one of the extensions introduced
in this work to the basic RDF model. NMAs can contain arbitrary number of
dimensions, and always have rectangular shapes. The supported element
types are: Boolean, Integer, Double, and Complex.

ObjectLog - a dialect of Datalog used in SSDM to internally represent
SciSPARQL queries

original descriptor / proxy - an array descriptor or array proxy that refers to
the complete array in the corresponding storage object so that a single array
fragment can be used to access the entire storage object. An original
descriptor object is always created with a new storage object. The array
proxies are created with original descriptor data.

partitioning scheme (of array, either linear or multidimensional) - a way to
split the array contents into chunks: either linear chunks or multidimensional
tiles, defined by the corresponding chunk or tile size.

214

predicate (in Datalog / ObjectLog) - a constituent part of a query or
expression, can be put into the execution plan and evaluated with a certain
binding pattern. Predicates can be stored (corresponding to tables in-
memory or mapped), or foreign (corresponding to a certain compuatable
function, possibly multidirectional - i.e. one with different binding patterns).

projection (of array) - an operation that produces a derived array with lesser
number of dimensions. Involves specifying a single subscript for a certain
dimension(s).

range selection (of array) - an operation that produces a smaller derived
array with the same dimensionality. Involves specifying explicit or implicit
ranges for all array dimensions.

RDF view - a mapping defined from non-RDF data model to RDF, allowing
to query (and, possibly, update) the underlying data with SPARQL.

RDF with Arrays - a data model combining RDF graph and numeric
multidimensional arrays as possible values.

resident array - an array with conents stored in main memory

storage index - an integer value addressing a particular element (or
beginning of array fragment) in a storage object, either existing in memory
or represented by chunks. Storage indexes are always 0-based.

storage object - a main-memory object that physically contains the elements
of a resident array. Can be serialized to binary chunks. The element type is
also stored here with storage object, to avoid redundancy.

storage system - a software system interfaced with SSDM that provides
persistent storage for RDF with Arrays data - either completely (like
relational database back-ends) or partially (arrays-only) (as .mat files on the
server file system).

(sub)array proxy - an array proxy pointing to an array of one or more
dimensions, in contrast to a single-element proxy, pointing to a particular
element in an externally stored array.

subscript - see logical index

tile - a multidimensional array chunk, specified by its size in the logical
dimensions of the corresponding array, see also partitioning scheme.

triple (of RDF graph) - a (subject, property, value) tuple, constituent part of
an RDF graph.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science
Editor: The Dean of the Faculty of Science

1–11: 1970–1975
12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and

by thermography. 1975.
13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zey-

lanica Willd., and Chara haitensis Turpin. 1976.
14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolar-

ization Technique. 1976.
15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposi-

tion of Azoethane and Propionyl Peroxide. 1976.
16. Lennart Källströmer: The significance of biotin and certain monosaccharides

for the growth of Aspergillus niger on rhamnose medium at elevated tempera-
ture. 1977.

17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Ade-
nohypophysis. 1978.

18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash
Photolysis of L-tryptophan. 1978.

19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with
Special Reference to the Effect of Size and Shape of Solute and Solvent Mole-
cules. 1978.

20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization
of Some Aromatic Schiff Bases in Solution. 1979.

21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and
its Application in a Study of Conformational Changes in Bovine Serum Albu-
min. 1985.

22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering.

1988.
24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation.

Study of their decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications

with Case Studies in the South and East China Sea and Fennoscandia. 1989.
26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the

Fennolora Profile. 1989.
27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection.

1989.
29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experi-

mental Results on even Selenium Nuclei. 1989.
30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some

Aspects of Fracturing in the Crystalline Rock of the Siljan Ring Area, Central
Sweden. 1990.

31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model.
1990.

32. Kjell Janson: Experimental investigations of the proton and deuteron structure
functions. 1991.

33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight

Spherical Nuclei. 1991.
35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local

Optimisation Methods. 1992.
36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions.

1992.
37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield

with Time. 1993.

Prior to January 1994, the series was called Uppsala Dissertations from the Faculty of
Science.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science and Technology
Editor: The Dean of the Faculty of Science

1–14: 1994–1997. 15–21: 1998–1999. 22–35: 2000–2001. 36–51: 2002–2003.
52. Erik Larsson: Identification of Stochastic Continuous-time Systems. Algorithms,

Irregular Sampling and Cramér-Rao Bounds. 2004.
53. Per Åhgren: On System Identification and Acoustic Echo Cancellation. 2004.
54. Felix Wehrmann: On Modelling Nonlinear Variation in Discrete Appearances of

Objects. 2004.
55. Peter S. Hammerstein: Stochastic Resonance and Noise-Assisted Signal Transfer.

On Coupling-Effects of Stochastic Resonators and Spectral Optimization of Fluctu-
ations in Random Network Switches. 2004.

56. Esteban Damián Avendaño Soto: Electrochromism in Nickel-based Oxides. Color-
ation Mechanisms and Optimization of Sputter-deposited Thin Films. 2004.

57. Jenny Öhman Persson: The Obvious & The Essential. Interpreting Software Devel-
opment & Organizational Change. 2004.

58. Chariklia Rouki: Experimental Studies of the Synthesis and the Survival Probabili-
ty of Transactinides. 2004.

59. Emad Abd-Elrady: Nonlinear Approaches to Periodic Signal Modeling. 2005.
60. Marcus Nilsson: Regular Model Checking. 2005.
61. Pritha Mahata: Model Checking Parameterized Timed Systems. 2005.
62. Anders Berglund: Learning computer systems in a distributed project course: The

what, why, how and where. 2005.
63. Barbara Piechocinska: Physics from Wholeness. Dynamical Totality as a Concep-

tual Foundation for Physical Theories. 2005.
64. Pär Samuelsson: Control of Nitrogen Removal in Activated Sludge Processes.

2005.

65. Mats Ekman: Modeling and Control of Bilinear Systems. Application to the Acti-
vated Sludge Process. 2005.

66. Milena Ivanova: Scalable Scientific Stream Query Processing. 2005.
67. Zoran Radovic´: Software Techniques for Distributed Shared Memory. 2005.
68. Richard Abrahamsson: Estimation Problems in Array Signal Processing, System

Identification, and Radar Imagery. 2006.
69. Fredrik Robelius: Giant Oil Fields – The Highway to Oil. Giant Oil Fields and their

Importance for Future Oil Production. 2007.
70. Anna Davour: Search for low mass WIMPs with the AMANDA neutrino telescope.

2007.
71. Magnus Ågren: Set Constraints for Local Search. 2007.
72. Ahmed Rezine: Parameterized Systems: Generalizing and Simplifying Automatic

Verification. 2008.
73. Linda Brus: Nonlinear Identification and Control with Solar Energy Applications.

2008.
74. Peter Nauclér: Estimation and Control of Resonant Systems with Stochastic Distur-

bances. 2008.
75. Johan Petrini: Querying RDF Schema Views of Relational Databases. 2008.
76. Noomene Ben Henda: Infinite-state Stochastic and Parameterized Systems. 2008.
77. Samson Keleta: Double Pion Production in dd→αππ Reaction. 2008.
78. Mei Hong: Analysis of Some Methods for Identifying Dynamic Errors-invariables

Systems. 2008.
79. Robin Strand: Distance Functions and Image Processing on Point-Lattices With

Focus on the 3D Face-and Body-centered Cubic Grids. 2008.
80. Ruslan Fomkin: Optimization and Execution of Complex Scientific Queries. 2009.
81. John Airey: Science, Language and Literacy. Case Studies of Learning in Swedish

University Physics. 2009.
82. Arvid Pohl: Search for Subrelativistic Particles with the AMANDA Neutrino Tele-

scope. 2009.
83. Anna Danielsson: Doing Physics – Doing Gender. An Exploration of Physics Stu-

dents’ Identity Constitution in the Context of Laboratory Work. 2009.
84. Karin Schönning: Meson Production in pd Collisions. 2009.
85. Henrik Petrén: η Meson Production in Proton-Proton Collisions at Excess Energies

of 40 and 72 MeV. 2009.
86. Jan Henry Nyström: Analysing Fault Tolerance for ERLANG Applications. 2009.
87. John Håkansson: Design and Verification of Component Based Real-Time Sys-

tems. 2009.
88. Sophie Grape: Studies of PWO Crystals and Simulations of the ̄pp → Λ̄Λ, Λ̄Σ0 Re-

actions for the PANDA Experiment. 2009.
90. Agnes Rensfelt. Viscoelastic Materials. Identification and Experiment Design. 2010.
91. Erik Gudmundson. Signal Processing for Spectroscopic Applications. 2010.
92. Björn Halvarsson. Interaction Analysis in Multivariable Control Systems. Applica-

tions to Bioreactors for Nitrogen Removal. 2010.
93. Jesper Bengtson. Formalising process calculi. 2010.
94. Magnus Johansson. Psi-calculi: a Framework for Mobile Process Calculi. Cook

your own correct process calculus – just add data and logic. 2010.
95. Karin Rathsman. Modeling of Electron Cooling. Theory, Data and Applications.

2010.

96. Liselott Dominicus van den Bussche. Getting the Picture of University Physics.
2010.

97. Olle Engdegård. A Search for Dark Matter in the Sun with AMANDA and IceCube.
2011.

98. Matthias Hudl. Magnetic materials with tunable thermal, electrical, and dynamic
properties. An experimental study of magnetocaloric, multiferroic, and spin-glass
materials. 2012.

99. Marcio Costa. First-principles Studies of Local Structure Effects in Magnetic Mate-
rials. 2012.

100. Patrik Adlarson. Studies of the Decay η→π+π-π0 with WASA-at-COSY. 2012.
101. Erik Thomé. Multi-Strange and Charmed Antihyperon-Hyperon Physics for PAN-

DA. 2012.

