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Abstract
Andrejev, A. 2016. Semantic Web Queries over Scientific Data. Uppsala Dissertations from
the Faculty of Science and Technology 121. 214 pp. Uppsala: Acta Universitatis Upsaliensis.
ISBN 978-91-554-9465-0.

Semantic Web and Linked Open Data provide a potential platform for interoperability of
scientific data, offering a flexible model for providing machine-readable and queryable
metadata. However, RDF and SPARQL gained limited adoption within the scientific
community, mainly due to the lack of support for managing massive numeric data, along
with certain other important features – such as extensibility with user-defined functions, query
modularity, and integration with existing environments and workflows.

We present the design, implementation and evaluation of Scientific SPARQL – a language for
querying data and metadata combined, represented using the RDF graph model extended with
numeric multidimensional arrays as node values – RDF with Arrays. The techniques used to
store RDF with Arrays in a scalable way and process Scientific SPARQL queries and updates
are implemented in our prototype software – Scientific SPARQL Database Manager, SSDM,
and its integrations with data storage systems and computational frameworks. This includes
scalable storage solutions for numeric multidimensional arrays and an efficient implementation
of array operations. The arrays can be physically stored in a variety of external storage systems,
including files, relational databases, and specialized array data stores, using our Array Storage
Extensibility Interface. Whenever possible SSDM accumulates array operations and accesses
array contents in a lazy fashion.

In scientific applications numeric computations are often used for filtering or post-processing
the retrieved data, which can be expressed in a functional way. Scientific SPARQL allows
expressing common query sub-tasks with functions defined as parameterized queries. This
becomes especially useful along with functional language abstractions such as lexical closures
and second-order functions, e.g. array mappers.

Existing computational libraries can be interfaced and invoked from Scientific SPARQL
queries as foreign functions. Cost estimates and alternative evaluation directions may be
specified, aiding the construction of better execution plans. Costly array processing, e.g.
filtering and aggregation, is thus preformed on the server, saving the amount of communication.
Furthermore, common supported operations are delegated to the array storage back-ends,
according to their capabilities. Both expressivity and performance of Scientific SPARQL are
evaluated on a real-world example, and further performance tests are run using our mini-
benchmark for array queries.
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1 Introduction 

The amount of scientific and engineering data has grown exponentially in 
recent decades [163], and this growth includes a rapid increase in the amount 
of data sources publicly available on the web [76, 165]. Complexity and 
diversity (structural, terminological, etc.) of this data is also expected to rise 
steadily in the coming decades, as novel data models emerge along with new 
and unforeseen applications. The efforts directed towards data integration 
and interoperability are becoming of vital importance [22, 67, 112].  

One promising direction of these efforts is the search for a lingua franca - 
a model general and flexible enough, so that the other, more specific data 
models can be mapped into it in a lossless way; and yet being meaningful 
and easy to understand and query. Semantic Web [23] and Linked Open 
Data [29] are conceived as a potential solution [79]: all kinds of data and 
metadata can be represented as a graph with nodes and (classes of) edges 
identified by globally unique URIs. The original aim of this data model was 
to describe the resources available on the web - hence the name: Resource 
Description Framework (RDF) [129]. 

For querying RDF datasets the graph-based pattern-matching query 
language SPARQL [155] was proposed and recommended by W3C. In its 
current state, SPARQL 1.1 allows queries that retrieve data from an RDF 
graph, filter the potential query solutions, and postprocess them before 
emitting the results. SPARQL bridges the gap between the traditionally 
separated data and metadata, the latter being the semantic, structural, 
statistical, and other kinds of descriptions of the former. A potential to fully 
combine data and metadata search and conditions in one query, thus 
simplifying the process and eliminating extra round-trips to the remote data 
sources, is contained within the Semantic Web paradigm but is not fully 
realized. 

The main problem is that although most kinds of other data models can be 
mapped to RDF (as shown in Section 2.3), the efficiency and usefulness of 
such mappings might become unsatisfactory. For example, numeric 
multidimensional arrays, a data abstraction that is central in all natural 
sciences and constitutes the main bulk of accumulated data, when mapped to 
RDF have to be transformed into graphs, thus making even the simplest 
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array operations (e.g. element access) unfeasible to perform or even express 
in a general case.  

So far RDF and SPARQL gained limited adoption within the scientific 
community, due to the lack of array support [102] and other important 
features – such as extensibility with user-defined functions, query 
modularity, integration with existing environments and workflows. Some 
users turn towards the 'more mature' relational database technology (e.g. 
[164], eventually extending it with missing array functionality [41, 49, 119, 
125], while others find the idea of relational schema design too restrictive, 
resorting to specialized file formats (e.g. NetCDF [111]) or hierarchical 
databases (e.g. ROOT [36]). In either case, array data is separated from 
metadata and the latter sometimes ends up encoded into eventually very 
complex file names, so that data retrieval and processing become a 
nontrivial task for a programmer. While many complications arise from the 
need of manual data/metadata re-integration, another challenging task is the 
adequate estimation of data quantities and distributions, in order to come up 
with an optimal order of data retrieval operations. 

Automating the task of programming the data retrieval and processing is 
the essence of query optimization. Relational database management systems 
(RDBMSs) were taking care of data statistics and evaluation cost models, in 
order to produce optimal execution plans since 1970s [148, 39]. The modern 
RDF stores [50, 65, 98, 112, 113, 168, 183] employ similar techniques based 
on indexing, query rewriting and materialized views in order to address the 
challenges of web-scale query processing [1, 66, 73, 88, 94, 126, 134, 144].  

Addressing different data and metadata sources in a single query is 
possible within a data integration framework where machine-readable 
descriptions of the structure and semantics of the available data are present. 
RDF is specifically designed for publishing such descriptions by creating 
and referring to vocabularies of globally-scoped terms, and by defining the 
logical relationships within and across such vocabularies, using the RDF 
Schema [33] and OWL [19] formalisms. 

The main research questions addressed in this Thesis are: 

1. How can RDF and SPARQL be extended to be suitable for scientific 
and engineering numeric data representation and analysis tasks, in 
particular, those which combine data and metadata?  

2. How can extended SPARQL query processing be implemented on the 
basis of a database management system? In particular: 

a. What extensions to the underlying query processing and algebra 
operators are needed for efficient processing of SPARQL queries?  
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b. How can existing state-of-art data persistence approaches 
(RDBMSs, specialized file formats, array databases) be utilized for 
scalable storage and querying of RDF data with arrays? 

c. How can query functionality of extended SPARQL be integrated 
into existing environments and workflows for scientific and 
engineering data analysis? 

d. How do we measure the impact of data storage decisions and 
retrieval strategies on the overall query performance? 

In few words, the aim of this work is providing a viable solution (both 
conceptual and technical) opening the benefits of the Semantic Web 
approach to scientific data management, and making scientific data available 
and interoperable on the Semantic Web. 

To answer Research Question 1, the RDF data model has been extended, 
so that numeric multidimensional arrays of arbitrary shape and 
dimensionality (including those exceeding the main memory limit) can be 
attached as values in subject-property-value RDF triples. We call this model 
RDF with Arrays, and it is backwards-compatible with the basic RDF 
model: arrays that are recognized within the imported RDF graphs are 
consolidated, i.e. their elements are co-located and the array shape is 
determined. Internal array storage facilities are used in that case, and such 
structured data becomes available to the queries using array-oriented 
features. In order to query RDF with Arrays collections, the W3C SPARQL 
language has been extended with array syntax and semantics, as well as 
other useful features, including user defined functions (UDFs), 
parameterized views, second-order functions, and lexical closures. We will 
refer to a SciSPARQL query containing array operations as an array query. 
Chapter 4 introduces the Scientific SPARQL (SciSPARQL) language and 
provides usage examples.  

To answer Research Questions 2 we developed the publicly available and 
ready-to-use Scientific SPARQL Database Manager, SSDM [6]. It is an 
extensible main-memory DBMS built to process the SciSPARQL queries. 
SSDM loads and stores RDF with Arrays datasets and processes 
SciSPARQL queries over the stored data. It utilizes object-relational query 
optimization techniques, extensibility, and inter-process communication of 
the underlying main-memory DBMS Amos II [136], and, being a major 
system extension, introduces some novel features at all levels, including: 

• physical representations of arrays and other RDF terms, together with 
their serializations, 

• new execution algebra operators, to reflect distinctive SPARQL 
semantics, 

• lazy data retrieval based on array proxy objects, 
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• a library of array-specific operations, and extensions to existing 
(scalar) arithmetic, designed to support array computations. 

Chapter 5 presents the SSDM architecture. Regardless of the architectural 
choices, SSDM can be utilized as a stand-alone system, a client-server 
system, or a cluster of processes based on peer-to-peer communication. 

To answer Research Question 2a, Chapter 5 describes the process of 
answering SciSPARQL queries including a complete definition of the 
translation of SciSPARQL queries into the domain calculus based query 
language of Amos, specialized query normalization and rewriting 
techniques, cost-based optimization, and extensions to the execution algebra 
with a library of array operators for executing SciSPARQL queries.  

To answer Research Question 2b, Chapter 6 presents two approaches for 
how SSDM can be extended to store and query metadata and massive 
numeric array data by utilizing external data managers: 

• utilizing back-end systems for the storage of array data loaded (e.g. 
binary file formats or SQL-compliant RDBMSs), by deploying an 
SSDM-managed relational storage schema or other external storage 
management - the back-end scenario, or 

• linking arrays that are already stored in external storage systems into 
user-specified RDF graphs managed by SSDM – the mediator 
scenario. 

To answer Research Question 2c, Chapter 7 presents a client-server 
integration of a SciSPARQL client into the scientific computing 
environment Matlab, thus providing tight integration of SciSPARQL queries 
into scientific workflows [7]. It is shown how handy SciSPARQL queries 
can be for Matlab users, especially in a collaborative environment. 
Furthermore, Semantic Web styled metadata can be used for annotation and, 
eventually, search for the numeric computation results, while essentially 
preserving the traditional workflows.  

To answer Research Question 2d Section 6.3 presents a mini-benchmark 
featuring some typical array access patterns, including the best and worst 
cases for each storage choice. An extensive experimental evaluation of the 
array query performance of SSDM was performed, both benchmark-based 
and application-driven, [6]. The evaluation furthermore sets the context for 
our ongoing integration [8] with the Rasdaman array database [16]. 

The following papers were published in the course of this work: 
• Scientific SPARQL: Semantic Web Queries over Scientific Data  [5] 

introduces the query language, array data model, and in-memory 
implementation of array operations. 

• Scientific Analysis by Queries in Extended SPARQL over a Scalable 
e-Science Data Store  [6] puts SciSPARQL in the context of a real-
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world scientific computing application. In order to accommodate for 
massive numeric data involved, storage extensibility mechanisms and 
lazy array data retrieval are introduced. 

• Scientific Data as RDF with Arrays: Tight Integration of 
SciSPARQL Queries into Matlab  [7] presents the integration of 
SciSPARQL queries and updates, facilitating the Semantic Web way 
of handling metadata about scientific experiments into Matlab and 
typical computational workflows, demonstrating the benefits and the 
low cost of adoption of our approach. 

• Spatio-Temporal Gridded Data Processing on the Semantic Web  [8] 
positions Scientific SPARQL as a next unification step in handling 
geographic and other kinds of gridded coverage data on the web. As 
an example of a hybrid data store approach suggested, it features 
SSDM as a SciSPARQL front-end, and the Rasdaman  [16] system for 
scalable storage of massive gridded datasets. 

The author of this Thesis is the main contributing author in all research 
papers listed above. 

The outline of this Thesis is as follows: Chapter 2 gives an extensive 
overview of the background and related work, including Semantic Web, data 
integration approaches, other SPARQL extensions, and array databases. 
Chapter 3 introduces the SPARQL query language in detail, encompassing 
most of its features and can thus be regarded as an extended background, 
crucial for understanding Scientific SPARQL features and usage, which are 
described in Chapter 4. Chapter 5 describes the architecture and 
SciSPARQL query processing in general, and Chapter 6 focuses on 
providing the storage for array data, and presents performance evaluations. 
The integration of SciSPARQL queries into the Matlab environment is 
presented in Chapter 7.  Finally, Chapter 8 summarizes the contributions of 
this work, and points out directions for further development. 
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2 Background and Related Work 

2.1 Semantic Web 
The Semantic Web initiative, first proposed in 2001 [23], promotes utilizing 
a graph data model (Resource Description Framework - RDF) for describing 
all kinds of resources on the web. Graph-oriented query languages (e.g. 
SPARQL 1.1 [155]) were designed for querying RDF graphs. The main 
intention is to provide a structured, yet easily extensible way of expressing 
the complex metadata in the evolving application contexts. 

Universal Resource Identifiers (URI, or IRI if Unicode is used) are 
employed to identify classes, instances, and relationships in the RDF data 
model. The term 'universal' means that every publishing party is able to 
define their own manageable identifiers within their own namespace, which 
thus become globally unique. Generalizing the Universal Resource Locators 
(URL), which may look similar, URIs may or may not be dereferenceable on 
the web. Dereferenceable URIs point to RDF documents containing 
additional information about the identified resource. 

Higher-order specifications of object-oriented data models, including 
class hierarchies - ontologies [31, 81, 117] are typically expressed with RDF 
Schema [33] vocabulary, featuring standard terms for inheritance, domain, 
and range specifications. Interactive visual tools (e.g. Protégé [67]) help in 
the development and presentation of such models, with the resulting 
metadata becoming an extension of the RDF graph it describes. 

Further modeling, including disjointness, cardinality, and symmetry can 
be expressed with Web Ontology Language - OWL [19]. Knowledge 
inference and reasoning rules can be codified with RIF [92] / SWRL [78] on 
top of such data and metadata, opening way to classical symbolic AI 
approaches: making the human-oriented knowledge structured and available 
to computers for further processing. 

All this information, including resource description data, schemata, and 
inference rules is normally merged into an RDF graph. The graph query 
language (and communication protocol) SPARQL is designed to query  RDF 
graphs by formulating graph patterns and additional constraints as queries. 
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The result of a query is a set of bindings of query variables that reference 
values from the RDF graph in case of a SELECT query, or a new RDF 
graph in case of a CONSTRUCT query. Chapter 3 below provides an 
extensive introduction to SPARQL queries and updates. 

Semantic Web has gained a lot of traction in recent years, as efficient 
RDF Stores and SPARQL query processors became available [4, 34, 37, 55, 
112, 113, 115, 158, 183]. According to [68], already by 2013 more than four 
million Web domains contained RDF markup. Wide adoption of common 
vocabularies like DublinCore [51], FOAF [32], schema.org brings hope for 
automating data integration tasks (also reasoning, decision support, etc) at a 
new level. 

Within the Scientific SPARQL project, we follow the Semantic Web 
approach for storing and querying metadata as a most promising solution, 
already earning attention by different communities in science e.g. [10, 87, 
140, 150, 170] and engineering e.g. [30, 103], as well as in more 
interdisciplinary contexts e.g. [69]. We promote using the Semantic Web 
descriptions of experiments, parameter cases, data provenance etc. in order 
for the experimental data to become interoperable across different sources.  

2.2 RDF Repositories 
An RDF Repository is a DBMS capable of storing and querying RDF 
graphs. Querying is typically done with a graph query language. SPARQL is 
the most common option, though its predecessors (e.g. RQL [90], TRIPLE 
[152], Versa [174]) and alternatives native to a particular RDF Repository, 
e.g. SeRQL for Sesame [34] are supported by some systems. The diversity 
of RDF query languages in pre-SPARQL era led to emergence of layered 
mediation frameworks, e.g. Datalog-based EDUTELLA [110]. Certain graph 
databases are not officially RDF repositories, but allow SPARQL mappings 
along with a native graph language, e.g. Cypher [77] for Neo4J [173]. There 
is also an ongoing project to integrate the essential SPARQL-like syntax and 
semantics into a superset of SQL [157].  

A number of file formats, or serializations are defined to facilitate easy 
interchange and storage of RDF data outside the repositories. RDF/XML 
[130], Turtle [21] / Ntriples [20], and Notation3 [24] are the most widely 
used ones, along with embeddings of RDF information into the HTML 
documents, e.g. with RDFa [131]. Throughout this work we will use Turtle 
notation for our RDF examples. 
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2.2.1 SPARQL endpoints and Linked Data 
Most RDF Repositories offer a SPARQL Endpoint - a web service answering 
SPARQL queries using a SPARQL communication protocol to encode the 
queries and results being transmitted. Thus, SPARQL became lingua franca 
in the decentralized Linked Data [29] environment, where, basically, 
everyone is free to publish their part of the global RDF graph, and RDF 
terms represented by URIs are dereferenced to obtain additional information. 
Figure 1 shows a fragment of the Linked Data cloud diagram, listing some 
representative RDF datasets publicly available. One of the major 
connectivity hubs is DBpedia [11], the RDF-encoded fact tables from 
Wikipedia articles. 
 

 
Figure 1. Linked Data Cloud Diagram (fragment)1 

2.2.2 SPARQL extensions  
Application-specific extensions of SPARQL also exist, e.g. GeoSPARQL 
[15] for GIS applications was standardized by W3C. More general 
extensions include SPARQL Update [156], previously known as SPARUL, 
stream-processing C-SPARQL for continuous queries [14], A-SPARQL for 
archival [160], and many others. Presented in this Thesis Scientific 
SPARQL can be seen as another big extension, being a strict superset of 
W3C SPARQL 1.1 and adding substantial amount of new functionality, 
effectively extending the conceptual power of SPARQL beyond the 
traditional metadata queries. 

We will be referring to our RDF Repository implementing SciSPARQL 
queries as Scientific SPARQL Database Manager, or SSDM for short. 

                                                      
1 original at en.wikipedia.org/wiki/File:LOD_Cloud_Diagram_as_of_September_2011.png 
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Besides SciSPARQL, it is able to process the underlying systems native 
functional query language AmosQL [136]. A number of APIs, including C, 
Java, Python, and Lisp are available, making the system easy to extend or 
embed. Chapter 7 presents such an embedding of SciSPARQL into Matlab. 

2.2.3 Storing RDF graphs 
Storage-wise, RDF Repositories use one or more of the following 
approaches: in-memory, native RDF store / graph store, or built on top of 
either relational or NoSQL DBMSs.  

In-memory storage is perhaps the most viable solution for most RDF 
applications up to the present day, since RDF is typically used to represent 
metadata and/or formalized knowledge, and the sizes of RDF graphs are still 
small enough to fit in main memory, especially when normalized properly. 
Other main-memory databases, like Starcounter [157] and SAP HANA 
[141] offer graph models. A memory snapshot can typically be dumped to 
disk and loaded back to memory in order to survive the server restarts. 
SSDM uses this approach, when not connected to a back-end storage for 
RDF with Arays. 

Native RDF stores provide persistence mechanisms to store larger 
amounts of RDF triples on disk, including purposely-built indexing 
infrastructures. There is a wide spectrum of approaches presented: some 
systems (like RDF-3X [112]) store heavily-indexed normalized RDF triples, 
some (like Neo4J [173], though not officially an RDF store, but providing 
the RDF/SPARQL layer on top) store large graph structures with pointers. 
Many closed-source projects, including NitrosBase [115], AllegroGraph [4], 
and Stardog [158] also fall into this category.  

RDBMS-based storage of RDF, for example Jena [84], Virtuoso [54], 
Ultrawrap [154], Ontop [137] rely on an underlying Relational DBMS to 
locate the data being queried, and to perform all the joins. They utilize the 
indexing and execution plan optimization capabilities of the underlying 
RDBMS. The relational schema used to store RDF is subject to further 
classification [139]: (a) single table, (b) partitioning by value type (c) 
partitioning by predicate, (d) partitioning by correlating predicates, or (e) 
wrapping from any arbitrary relational schema (typically read-only). SSDM 
supports options (b) and (e), as described in Chapter 6, with the RDB-to-
RDF view definitions based on the SWARD [124] framework. 

A correct SPARQL-to-SQL translation plays a central role for RDBMS-
based RDF Repositories. There is an ongoing discussion [46, 121, 122, 40] 
within the Semantic Web community about the potential semantic 
mismatches between different approaches to translation in general. We 
revisit this problem in Section 5.4.2, even though we translate SciSPARQL 
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queries to our functional AmosQL language, where they can be further 
translated [182] to SQL queries or other API calls to different storage back-
end. 

NoSQL DBMS-based storage, utilizing the emerging 'not-only-SQL' 
databases (e.g. HBase [74] column store, Couchbase [43] document store), 
utilize data model flexibility of the underlying DBMS, while usually having 
to perform joins and other database operations externally. Cudré-Mauroux 
et. al. [45] offer a comprehensive overview of the current approaches, along 
with performance comparisons of RDF/SPARQL layers over these 
(generally, distributed) database systems. The conclusion is that column-
store based RDF stores may outperform native RDF stores on simple 
SPARQL queries, the functional minimalism of the underlying DBMS 
results in lesser freedom for SPARQL query optimization, thus loosing the 
race on more complex queries. Still, we expect that NoSQL database APIs 
will become richer in the future, and are looking forward to interfacing such 
NoSQL databases as storage back-ends for SSDM. Some preliminary 
integration and performance tests are already presented in [101]. 

2.3 Exposing Non-RDF Data as RDF 

2.3.1 Relational data to RDF 
Creating RDF views reflecting relational data (and schemata) was a research 
issue from the early days of RDF adoption [124, 159], since the relational 
databases are by far the most prevalent source of structured data. Relaxing 
this structure, and mapping application-scoped relational table semantics to 
globally-unique RDF terms (typically defined by standard 
vocabularies/ontologies) is obviously a step towards greater data integration 
and query interoperability across disparate data sources. 

Another reason why RDF models on top of relational storage have 
emerged so early was the substantial overhead in processing arbitrary RDF 
data in form of triples (before the native RDF Stores matured, and the 
computational power grew sufficient) due to the following reasons:  

• a typical SPARQL query, when viewed as referring to a single 
subject-property-value table, contains a lot more join operations than 
a similar query to an equivalent relational model;  

• cardinality of such a table of triples is also substantially bigger than 
the total cardinalities of tables in the corresponding relational schema, 
making the physical access paths longer; 

• statistical information about distributions of different properties and 
values needs to be maintained in a novel way (e.g. RDF-3X indexes 
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also act as histograms [112, 113]), making old relational-style query 
optimization approaches blind and inefficient.  

The Relational-to-RDF mapping approach offered a solution, since it is 
practically always possible to translate a SPARQL query back to SQL 
queries against the underlying relational databases. This way, the conceptual 
flexibility of RDF and SPARQL was combined with efficiency of the 
relational storage and query processing solutions, as long as the data 
originated from the relational databases anyway. This solution, however, is 
not simple [122], and there have been recent advances [182] on further 
optimizing the SQL query generation when translating SPARQL.  

Practically, there have been a number of mappings defined. The current 
W3C standard recommendations include Direct Mapping of Relational Data 
to RDF [9], which automatically generates URIs to define tables (as node 
classes) and rows (as instances), but does not allow specifying custom URIs 
and does not map schema information. The first shortcoming is addressed by 
RDB to RDF Mapping Language recommendation [127]. Schema mapping 
is proposed in the Semantic Archival of Relational Data project [160, 161], 
and constraint mapping, which is potentially helpful to native SPARQL 
query optimization, is proposed in [97] 

As a minimum, any Relational-to-RDF mapping is going to have the 
following components, for a given relational schema: 

• a mapping of table names to RDF classes 
• a mapping of attributes to RDF properties 
• a mapping of primary key values in each table to RDF node instances 
• for tables with no primary keys defined, a mapping of their rows to 

RDF blank nodes  
• a mapping of foreign keys to RDF properties 

Additional schema and constraints information can also be provided in the 
mapping. The software solutions implementing Relational-to-RDF mappings 
include D2RQ [47], SWARD [124], SARD [160], Virtuoso [55], Ultrawrap 
[149], Ontop [137] and others. SSDM is built on the same platform as 
SWARD / SARD, and thus can access mediated relational databases. 
However, this benefit concerns basic RDF models, and thus is orthogonal to 
the extentions introduced by SciSPARQL. 

2.3.2 Objects to RDF 
As a graph data model RDF supports object-oriented data modeling: 
relationships like class/instance, inheritance, declared properties, domain 
and range specifications, are available within RDFS and OWL frameworks. 
When viewed in terms of object-oriented programming, the model is 
multiple-inheritance, with static and dynamic properties, and extensible on-
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the-fly - this allows stricter models to easily fit in. Additionally and 
alternatively, RDF Literal values, being comprised of type URI and string-
serialized value, can also be seen as 'stringified' representations of arbitrary 
objects whose class is known. 

There are object-oriented DBMS around, designed to provide persistence 
to objects exactly as they are defined in the programming languages, 
including ObjectStore [95], and many others. Some DBMS provide object-
oriented APIs for the developers, along with other data models - e.g. 
Starcounter [157] and SAP HANA Open ODS Views [141].  

An Object-to-RDF mapping may also be provided for classes of objects in 
a programming language, like C++ or Java. In fact, it is so straightforward 
that with the RDFBeans framework [132] it takes just a simple annotation to 
the classes and properties, for example  

@RDFBean("http://xmlns.com/foaf/0.1/Person") 
public class Person  
{ ... 
 
  @RDF("http://xmlns.com/foaf/0.1/name")  
        public String getName()  
        { ... 
}} 

Results in all instances of Person class to be accessible as RDF via the 
provided RDF Store API. 

Another approach is when an Object (or Object-Relational) RDBMS 
exposes a SPARQL query interface for its objects, like Starcounter [157] 
does, effectively making it an RDF Store at the same time. In this case, 
details like RDF namespaces for classes and properties need to be provided 
to the DBMS. 

As SSDM is built on top of the Amos II mediator architecture [136], that 
supports objects natively and implements interfaces to object databases, 
including ROOT [89], it is relatively easy to expose these mediated object 
models as RDF - one just needs to provide RDF namespaces for classes and 
properties. 

2.3.3 XML to RDF 
Mapping semi-structured data (like XML documents) to RDF requires 
certain conventions, but is nonetheless important, given that XML is a 
widely adopted information interchange format across a wide spectrum of 
disparate applications. XML Schema plays an important role in the process 
of formulating the mapping rules. The overview [25] presents the state of art 
in the field, and suggests the SPARQL2XQuery framework, further 
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elaborated in [26, 27]. There is, however, no publicly available software 
implementation of the mapping technique. 

Another project, named XSPARQL [28, 176] extended by Ali et.al. [3] 
simply combines the essential parts SPARQL and XQuery syntax in one 
language, making it possible to natively query both RDF and XML. Both 
works are centered around translating SPARQL to XQuery expressions, 
including update functionality. Creation of metadata-rich, well-annotated 
XML documents available for semantic querying is certainly an important 
research direction for the Semantic Web adaptation, especially in business 
and industrial application. 

2.3.4 Spreadsheets to RDF 

While the general 'spreadsheet' paradigm assumes a 2D space of 
enumerated rows and columns (as traditionally seen in Lotus 1-2-3 and MS 
Excel), where each cell is an interactive model-view-controller element, it 
can also be treated as data alone, making no difference between the stored 
and derived values. Some specialized data stores can be easily adapted to 
this spreadsheet view, and some are built with this model in mind - for 
example the Chelonia [114, 166] data store developed for e-Science 
applications within the NorduGrid [116] project.  
 

var
k_1 k_a k_d k_4 realization result

1 32.159 79.279 782750669.857 53.286 1

2 19.151 39.044 300035857.676 73.445 1

var
k_1 k_a k_d k_4 realization result

1 32.159 79.279 782750669.857 53.286 1

2 19.151 39.044 300035857.676 73.445 1

task id

 
Figure 2. An example dataset (BISTAB experiment (see Section 6.4.4) stored in 
Chelonia, with cubes denoting numeric array data stored as values 

Chelonia organizes the dataset orthogonally into enumerated tasks and 
named variables, and stores instances of named variables, at most one per 
task (which might be regarded a row in an MS Excel workbook). An 
instance can hold a numeric value, a string, or a numeric array of arbitrary 
size, independently of other instances. Figure 2 shows an example of dataset 
stored in Chelonia. When expressed with an Entity-Relationship diagram 
(Figure 3) it turns out to be quite simple: an experiment can be seen as a 
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group of tasks, while tasks and variables comprise the 2D space of a 
(possibly sparse) spreadsheet. 

Experiment Task
Type &
Value

Variable
1 N N N

 

Figure 3. Chelonia storage schema 

Within the scope of the SSDM project we have experimented with 
integrations of e-Science tools into the SciSPARQL environment. Reflecting 
Chelonia data, including experiments, tasks, variables, types and values of 
their instances with an RDF view proved to be conceptually straightforward, 
as explained in [6]. In short, every instance was represented by a single RDF 
triple, with subject derived from task number, and property derived from 
variable name. Since both Chelonia and SciSPARQL support numeric arrays 
as values, this array data was mapped without changes. 

In general any spreadsheet data, for example MS Excel workbooks can be 
(with certain manual guidance) mapped to RDF in a similar way, with e.g. 
rows becoming subjects and columns becoming properties in RDF triples. 
More complex mappings, with a certain degree of programmability, are 
available in the RDF123 [71] and XLWrap [96] projects, This opens yet 
another horizon to the generality of the Semantic Web approach in querying 
disparate data in diverse models and formats. Additionally, spreadsheets are 
often used to contain numeric arrays, thus providing an extra motivation for 
using RDF with Arrays model, queriable with SciSPARQL. 

2.3.5 Multidimensional data in RDF 
There are several approaches to treating multidimensional data as RDF that 
have been adopted by the Semantic Web community. The simplest one is 
nested RDF collections. A more elaborate framework, designed for 
representing statistical data (e.g. OLAP Data Cubes [66]) is called RDF Data 
Cube [133]. 

2.3.5.1 Collections 
Ordered collections of RDF terms are normally incorporated into an RDF 
graph as linked lists using rdf:first and rdf:next as relationships and 
rdf:nil as a terminating node - similarly to linked lists in e.g. Lisp. Such 
ordered connections can be nested and used to represent, among other 
things, multidimensional arrays of numbers. 
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Figure 4. A graph with RDF collection representing a 2x2 matrix 

Since any array should be integrated into the RDF graph (otherwise there 
is no way to navigate to it), it will be stored as a value of at least one other 
RDF triple (:s :p _:a in our example). Some RDF serialization formats 
provide a condensed syntax for expressing RDF collections. For example, 
the dataset from Figure 4 can be expressed by a single Turtle statement: 

 

:s :p ((1 2) (3 4)) . 

This, however, does not decrease the complexity of the RDF graph - the 
same 13 triples would need to be generated and made available to SPARQL 
queries. In order to navigate to an array element, a SPARQL query needs to 
use chains of rdf:first and rdf:next properties. A query addressing element 
[2,1] in the above example (value 3), can be expressed in SPARQL as 

SELECT ?element21 
 WHERE { :s :p ?array . 
         ?array rdf:rest ?x . 
         ?x rdf:first ?slice2 . 
         ?slice2 rdf:first ?element21 } 

In general, a query addressing an element [x,y] in a 2D array will contain 
a property path of (x+y) triple patterns, and (x+y-1) additional variables. 

Apart from inefficiency arising from this 'too general' graph-based storage 
and processing of arrays, this representation also fails to give important 
guarantees about the data structure. For example, different leaf elements in 
the collections might be of different types, including numeric, string, and 
user-typed literals, URIs and blank nodes. The nested array slices might not 
match in their shape, and referring to array slices by the intermediate blank 
nodes (like _:b or _:e) between the queries is not officially allowed, since 
such blank nodes might change whenever two RDF datasets are combined. 
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As SciSPARQL extends the RDF data model with arrays, the graph 
representation of nested RDF collections becomes much more compact. 
While importing RDF into SSDM, such collections are recognized and 
stored internally as numeric arrays, as described in Section 5.3.2 

2.3.5.2 RDF Data Cube Vocabulary 
RDF Data Cube [133] was developed as a Semantic Web adaptation of 
SDMX (Statistical Data and Metadata eXchange) [147], the ISO standard for 
exchanging and sharing statistical data and metadata among organizations. 
RDF Data Cube builds upon a set of other vocabularies, including SKOS 
[154] for statistical concepts, VoiD [175] for data access specifications, and 
Dublin Core [51] for publication-related information. 

SSDM interprets the RDF Data Cube semantics, consolidating the 
numeric multidimensional array data and thus drastically reducing the graph 
size of a Data Cube dataset, while preserving all information therein, as 
described in Section 5.3.3. Another important benefit is speeding up pattern-
matching queries, as they have to deal with much smaller RDF graph. 

2.4 Array Models 
Since the emergence of APL [82], we have seen a wide spectrum of array 
data models, along with the algebras of array operators. Baumann & Holsten 
[18] give a comprehensive theoretical comparison of four representative 
models: including AQL [99], AML [104], Array Algebra [17], and RAM 
[12, 13, 42].  

The array model used in SciSPARQL is similar Array Algebra used in 
Rasdaman [16], though it is a bit more narrow by design. In Rasdaman each 
array dimension is defined with lok and hik integer bounds, and the range is 
defined as a record of named and typed fields. SciSPARQL presents a 
simple particular case of Rasdaman arrays, however, the numeric Rasdaman 
arrays can be mapped losslessly to the SciSPARQL array model by 
providing an additional vector of lok values. Arrays of records of numeric 
types can be represented by collections of aligned arrays in SciSPARQL.  

As for the more general array data models, i.e. ones with non-integer 
dimensions, or with non-numeric ranges, those can be modeled by creating 
dictionaries (one-dimensional vectors of arbitrary values) for each 
dimension/range.  This is exactly the approach used to represent Data Cube 
datasets with numeric multidimensional arrays in SSSDM, as described in 
Section 5.3.3. 
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Regarding the array operators, recent developments of SciSPARQL [8] 
introduce the second-order functions, central to Array Algebra [17], directly 
as SciSPARQL language primitives.  

2.5 Array Databases 
Historically, there have been three kinds of approaches to handle arrays in 
the database context. 

(1) Databases, normalizing arrays in terms of their main data model, 
representing each array element as one or several records. SciQL [91], along 
with its predecessor RAM [12, 13, 42] treat each array as a relational table, 
where columns are divided into dimension and non-dimension attributes, 
and SQL is extended to provide array operations in addition to the native 
relational operations, e.g. selection and join over arrays. Similar 
normalization technique is used under-the-hood in certain UDF-based array 
integrations into the relational DBMSs, including [119] and [41]. Data Cube 
Vocabulary [133] suggests a way to represent multidimensional statistical 
data in terms of an RDF graph, which can be handled by any RDF store.  

While allowing to keep the original set of semantic primitives in queries 
and updates, and making all existing DBMS features (query optimizer, 
access paths, consistency control, etc.) work for arrays as well, this approach 
has important downsides, both in storage and access overheads, and 
sometimes in flexibility: every array in SciQL needs to have a name (as a 
relational table), and a numbered set of arrays can only be modeled as an 
extra dimension. Otherwise, insertion of an array instance effectively 
involves schema modification, as noted by Misev & Baumann [107]. 
Furthermore, iteration across a set of arrays becomes obviously problematic. 

(2) Databases, incorporating arrays as a value type. This includes 
PostgreSQL [125], recent development of ASQL [108] on top of Rasdaman 
[16] system, and the extensions to MS SQL Server based on BLOBs and 
UDFs [49]. In the context of relational databases, this is regarded as the 
'array-as-attribute' approach following the classification in [107].  

There are also semi-declarative high-level dataflow programming 
languages centered around array processing, e.g. DSL [118], and Array-QL 
[64], both finding their origins in Single Assignment C [143] - a functional 
programming language supporting array operations. A similar functional 
approach was implemented earlier in Amos II system, specifying matrix 
expressions at a high level, while the implementations are automatically 
matched to the matrix subclasses [120]. 
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SciSPARQL follows the 'array-as-attribute' paradigm beyond the 
relational world, bringing numeric multidimensional arrays as values into 
the RDF data model. It integrates the Semantic Web [23] flexibility in 
metadata management (including ontologies, knowledge inference, adding 
new properties 'on-the-fly', and querying based on these 'optional' properties) 
with efficient array storage and processing, so that array data and metadata 
search can be combined in the same query. 

(3) Dedicated array-only databases, offering only specialized array 
query languages, (e.g. SciDB [35, 44] and the core Rasdaman system [16]). 
A number of earlier developments, including AQL [99], AML [104], RIOT 
[179, 180], and ArrayStore [154] also fall into this category. This would also 
include lightweight queryable database layers on top of popular array file 
formats, with SAGA [172] being the most recent example, inspired by 
NoDB  approach [2] that does not require a data loading step.  

The main problem with this approach is inherited from the underlying 
concept of array data formats: everything is arrays. For example, scientific 
users miss an infrastructure for storing and querying the descriptions of 
experiments, including parameters, terminology mappings, provenance 
records and other kinds of metadata. At best, this information is stored in a 
set of variables in the same files that contain large numeric arrays of 
experimental data, and thus is prone to duplication and is hard to update. 
Query (or dataflow programming) languages are designed as another 
abstraction layer on top of array file APIs, and thus are array-centered. In 
contrast, SciSPARQL is a superset of the standard W3C SPARQL 1.1 query 
language and its array semantics does not limit the underlying graph-based 
query semantics. 

Storing the arrays in files has its benefits for performance and eliminating 
the need for data ingestion, as shown by comparison of SAGA to SciDB [35, 
44].  SciSPARQL incorporates this option, as presented in the context of its 
tight integration into Matlab [7]. In that case, SSDM maintains a main-
memory RDF database, and the massive array data is stored in native .mat 
files. Both data and metadata are queriable, array proxies refer to files but 
otherwise work exactly as main-memory array descriptors described in 
Section 5.2. Chunking and caching, however, is done entirely by the OS / 
file system. Still, in the present technological context we believe that 
utilizing state-of-the-art relational DBMS to store massive array data 
promises better scalability, thanks to cluster and cloud deployment of these 
solutions, and mature partitioning and query parallelization techniques.  

In summary, SciSPARQL extends RDF with arrays as values, allows 
users to query and update the arrays together with RDF metadata (as shown 
on a real-world application in [6]), and stores the arrays either in specialized 
file formats, similarly to SAGA [172], or in BLOBs stored by RDBMS, 
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similarly to [49], but not relying on DBMS-side UDFs. SSDM is 
implemented based Amos II DBMS [136], making use of its flexible 
extensibility mechanisms. 

One important difference from e.g. Rasdaman [16] is that we use a 
simpler partitioning approach for arrays. Instead of specifying dimension-
aligned 'tiles', whose shape and overlap should be tuned for particular array 
processing tasks [60, 105], we split the arrays into one-dimensional chunks, 
so that the chunk size is the only parameter and its auto-tuning heuristics are 
simple. Instead of designing tiles to increase the chances of array access 
patterns becoming predictably regular, we instead discover that regularity at 
query runtime.  

As SAGA system evaluation [172] has shown, even in the absence of 
SQL-based back-end integration, the sequential access to chunks provides a 
substantial performance boost over random access. 

2.6 The Amos II System 
Amos II [136] is an functional main-memory DBMS, employing its own 
functional and declarative domain calculus query language, AmosQL. 
Stored functions in AmosQL correspond to tables in the relational data 
model, and derived functions serve as parameterized views, effectively 
making the query structure modular. The system is easily extensible with 
foreign functions, implemented in algorithmic programming languages 
(currently supported C, Java, Python, and Lisp), and such foreign functions 
can be invertible and specify a cost and cardinality estimates for the 
optimizer.  

Furthermore, AmosQL has aggregate functions, nested subqueries, 
disjunctive queries, quantifiers and second-order functions, and is 
relationally complete. The queries operate on atomic values, vectors, tuples, 
records, and bags (i.e. multisets), implementing the DAPLEX [151] 
semantics, which governs the evaluation of bag-valued functions. Inner (and 
other kinds of) joins, Cartesian products, and compositions of bag-valued 
functions are defined.  

Internally, Amos II uses an extension of Datalog [169], called ObjectLog 
[100], to represent the structure of a query as a logical expression of stored 
and foreign predicates. Predicate flattening, normalization, and rewrite rules 
are applied. The ObjectLog representation of a query is translated into object 
algebra [86] by the cost-based optimizer. The cost-based optimizer reorders 
the predicates in each conjunction, minimizing the total cost of execution, 
according to the cost model provided. This process is shown by example in 
5.1.2, where a SciSPARQL query is translated to AmosQL in the first step.  
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There are many features in Amos II making it an advanced object-
oriented DMBS and a research vehicle, including late binding [57], active 
rules [145], distributed data stream processing [178, 177], extensible 
indexing [167], complex query optimization [59], and more. One 
characteristic trait relevant to SciSPARQL usage is the mediator architecture 
[136] of Amos II.  

Federated queries are split into parts which can be delegated to the 
underlying data sources, taken account for their generic capabilities like 
joins, arithmetic operations, aggregates etc. The process is quite flexible, and 
any remaining predicates can always be executed by the mediator. This 
includes the process of query translation, and has allowed addressing e.g. 
both complete-functionality SQL [72], and limited-functionality SQL, 
offered by Google BigTable [181]. Also, the mediator architecture has 
enabled Amos II to wrap High Energy Physics datasets in the hierarchical 
ROOT [36] database format, and successfully optimize scientific queries 
searching for certain kinds of collision events [59] - the task which was 
traditionally solved by making ad-hoc algorithmic implementation of each 
query. 

The last example has demonstrated how beneficial it is to use declarative 
queries to specify the database search criteria in a form of mathematical 
expressions: equations and inequalities. The DBMS is generally well-
equipped to come up with a fairly optimal execution plan, making use of the 
available cost model and statistics. With SciSPARQL we make a step 
further, offering a superset of the standard and well-accepted query language 
SPARQL, already well-suited for data integration, and designed to operate 
in the context of Linked Open Data [29] - an internet-scale federation of 
RDF data sources. Another step further w.r.t. both AmosQL and SPARQL is 
the array functionality, addressing the needs of scientific and engineering 
data processing. 

As a matter of related work, Datalog-based predicate calculus has been 
widely used for decades, and still maintains a good reputation. As pointed by 
J.Hellerstein [75], the Datalog extensions have the potential and elegance in 
addressing such challenging tasks as parallelization and asynchronous 
communication, apart from being well-suited for expressing recursion (as we 
show in 5.4.5.3) and implementing query decomposition. Besides, Datalog 
has been the basis for AI approaches to knowledge inference in database - 
so-called deductive databases [128] - a concept similar to OWL entailment 
and RIF/SWRL reasoning in the Semantic Web. 
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3 SPARQL Language Overview 

Scientific SPARQL query language [5] is a superset of W3C SPARQL 1.1 
standard [155], and is designed to query RDF with Arrays datasets. The 
semantics of SciSPARQL is thus focused both on graph pattern matching, 
defined by the SPARQL standard, and on array processing introduced in our 
extension  

The purpose of this section is to introduce the essential features of 
SPARQL, as specified by the W3C Standard [155], including different kinds 
of graph patterns (basic, optional, alternative), property path expressions, 
filters, grouping and aggregation. This part should be regarded as an 
extended background, crucial for understanding the contributions of this 
work.  

The next chapter continues this overview by discussing the extensions 
introduced in SciSPARQL, including array expressions, parameterized 
views, lexical closures, and second-order functions [8], together make an 
noticeable shift towards a functional query language, albeit retaining the 
property of declarativeness. 

Neither part can be regarded as a substitute for the complete 
documentation on the query language. SciSPARQL User Manual is 
available on the project homepage [146], and W3C SPARQL 1.1 
Specification [155] can also be recommended as a tutorial for the standard 
language.  

3.1 Example Dataset 
An RDF graph consists of nodes and edges. Edges are always identified by 
URIs, while nodes can be either URIs (globally unique), blank nodes 
(unique within a graph or union of graphs to be queried), or literals: 
numbers, text strings, temporal or logical values.  

Figure 5 shows an example of an RDF graph using the FOAF [32] 
vocabulary. There is one class node for foaf:Person, four instance nodes for 
that class identified by blank nodes, and a foaf:name property for each of 
them. Additionally they participate in the foaf:knows relationships, which 
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happen to be symmetric - double-sided arrows indicate pairs of symmetric 
properties.  
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Figure 5. Example of RDF graph using FOAF vocabulary 

At the same time, an RDF graph is also a set of (subject, property, value)2 
triples. Subject and value of each triple correspond to nodes in the graph, 
while properties correspond to edges. 

3.1.1 Turtle Syntax 
There is a number of ways to serialize RDF graphs to text. The RDF graph 
in Figure 5 can be expressed as a set of triples, e.g. 

_:a a foaf:Person ; 
    foaf:name "Alice" ; 
    foaf:knows _:b , _:d . 
_:b foaf:knows _:a . 
... 

Throughout this Thesis we will use Turtle [21] - Terse RDF Triple 
Language to present the RDF datasets. The fully specified triples are 
separated by dot '.', while triples sharing the same subject are separated by 
semicolon ';', and triples sharing both subject and property are separated by 
comma ',', and we usually place them in the same line. So the above 
fragment contains five triples, with two unique subjects and four unique 
subject-property pairs. The same syntax is used for specifying triple patterns 
in SPARQL, as shown in Section 3.2.  

Generally, the dot sign separating the triples in RDF and SPARQL has the 
semantics of a conjunction (along with comma and semicolon). So what 
technically appears to be a set of triples, from the epistemological 
perspective is a conjunction of facts. 

Both Turtle and SPARQL use prefixes in order to abbreviate URIs. The 
Turtle file with the dataset on Figure 5 would contain a prefix definition 

                                                      
2 Another common way to refer to triple components is (subject, predicate, object). We prefer 
to avoid the confusion with ObjectLog predicates. 
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@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

It specifies that e.g. foaf:name property is a shorthand for the URI 
<http://xmlns.com/foaf/0.1/name>. The reserved property a stands for 
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>, otherwise commonly 
abbreviated as rdf:type. It indicates the relationship between instances and 
classes when both are represented by RDF nodes. 

Blank nodes, e.g. _:a are used whenever no URI is provided to identify 
the node, and different blank node labels specify different nodes. Blank 
nodes are typically used to represent instances identified by the values of 
their key properties (as foaf:Person intances are identified by foaf:name 
values in our example). Another common use case are linked lists, formed 
with rdf:first and rdf:rest properties. Turtle has a compact syntax to 
represent such lists, e.g the following Turtle construct:  

:s :p ((1 2) (3 4)) . 

It encodes the graph shown on Figure 4 in Section 2.3.5.1, with six new 
blank nodes generated by the Turtle reader, along with 12 additional triples. 

3.2 Graph Patterns 
At the core of all non-trivial SPARQL queries there is at least one graph 
pattern, for example  
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?person 
 WHERE { ?person foaf:name "Alice" } 

contains a graph pattern  

?person “Alice”
foaf:name

 

This graph pattern consists of a single triple pattern, with the variable 
?person used as a wildcard to match a graph node. The result of such a 
query would be the set of bindings for the projected variable ?person. If 
applied to the dataset on Figure 5, this would result in a single blank node 
_:a.  

A graph pattern may be more complex and include a conjunction of 
several triple patterns, connected with the '.' operator. Whenever the triple 
patterns have the same subject, '.' is substituted with ';' for a more compact 
syntax3: 

                                                      
3 ... and whenever the triple patterns have the same subject and property, comma sign ',' is 
used to connect them - similarly to the Turtle syntax explained in Section 3.1.1. 
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PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { ?person foaf:name "Alice" ; 
                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name } 

Here we need to distinguish between the query results, which contain the 
binding only for the projected variable ?friend_name, and the solutions, 
which contain the bindings for all variables in the WHERE block. Given the 
dataset on Figure 5, the solutions would consist of: 

?person ?friend ?friend_name 
_:a _:b "Bob" 
_:a _:d "Daniel" 

In cases when variables are used only once to connect the triple patterns, 
the common practice with SPARQL is to use the unlabelled blank nodes [] 
as a substitute. When a variable (like ?friend) is used to connect a value of 
one triple pattern to a subject of another triple pattern, the property and value 
of the latter can be put inside these square brackets. With both of these 
reductions applied, the last query would we written as: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { [] foaf:name "Alice" ; 
            foaf:knows [ foaf:name ?friend_name ] } 

Here blank nodes are substituting some of the variables in the graph pattern: 
 

“Alice”
foaf:name

foaf:name
?friend_name

foaf:knows

 

3.3 Combining the Graph Patterns 
SPARQL is designed to produce deterministic results in the cases of 
incomplete, redundant, and even conflicting data, which might be published 
by the independent parties, with little or no common guidelines besides the 
use of the RDF data model per se.  In order to address these challenges, a 
SPARQL query may include optional or alternative graph patterns, existence 
and non-existence quantifiers, and explicitly match different graph patterns 
to the particular sources. 
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3.3.1 Optional Graph Patterns 
Consider that the RDF graph in Figure 5 would feature additional 
foaf:mbox properties for some of the foaf:Person instances. The 
following query will return the emails of Alice friends, if they are available, 
and return their names in any case: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name ?friend_email 
 WHERE { ?person foaf:name "Alice" ; 
                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name . 
         OPTIONAL { ?friend foaf:mbox ?friend_email } } 

The nested OPTIONAL graph pattern is thus a source of unbound values in 
both query solutions and the results of the query: 

?friend_name ?friend_email 
"Bob" mailto:bob@example.org 
"Daniel"  

Being largely similar to the relational algebra left outer join  operator 
applied to the sets of solutions, the OPTIONAL keyword in SPARQL 
introduces certain issues with declarativeness, as discussed in Section 5.4.2. 
In short, there are cases where moving around two OPTIONAL graph patterns 
may result in a non-equivalent query.  

3.3.2 Matching Alternatives  
Assume some of the emails in the graph are listed using the FOAF standard 
foaf:mbox property, while others use a domain-specific property 
<http://example.org/email>. There are two ways to address this 
inconsistency. The general Semantic Web approach would use an OWL [19] 
equivalence statement owl:sameAs, so that all SPARQL queries, with OWL 
entailment enabled, would treat these two properties as equivalent. While 
establishing equivalence between the terms used in different datasets is one 
of the main tools for the data integration in the context of Semantic Web, the 
objectivity of the identity relation itself might be limited to some but not all 
possible contexts, leading to the so-called Identity Crisis [70].  

One might instead prefer to treat a set of properties as equivalent just for 
the purpose of a specific SPARQL query, without manipulating the datasets 
and affecting the results of other queries. This would be one of the use cases 
for the alternative graph patterns, combined with UNION, as in the query: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX ex: <http://example.org/> 
SELECT ?friend_name ?friend_email 
 WHERE { ?person foaf:name "Alice" ; 
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                 foaf:knows ?friend . 
         ?friend foaf:name ?friend_name . 
         { ?friend foaf:mbox ?friend_email } 
         UNION 
         { ?friend ex:email ?friend_email } } 

Arbitrary graph patterns can be used as alternatives. For the purpose of 
another example, consider that the foaf:knows relationship is not restricted 
to be symmetric in the dataset, so we would like to trace it in either 
direction. The following query returns the names of all people who know 
Alice and all people whom Alice knows: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { ?friend foaf:name ?friend_name . 
         ?alice foaf:name "Alice" . 
         { ?alice foaf:knows ?friend } 
         UNION 
         { ?friend foaf:knows ?alice } } 

This query will effectively express two alternative graph patterns: 

?alice “Alice”
foaf:name

?friend
foaf:name

?friend_name

foaf:knows

?friend

“Alice”

foaf:name

?alice
foaf:name

?friend_name

foaf:knows

 

However, if the foaf:knows relationship happens to be mutual in some 
case, the same bindings will be generated twice for ?friend and 
?friend_name. To avoid this, and return every person at most once, one 
would use DISTINCT option on the ?friend variable in the SELECT clause: 

SELECT DISTINCT ?friend ?friend_name 

Different branches of the same union might provide bindings for the 
different variables. For example, the following query might return a more 
informative result, while generating some unbound values as well: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name_Alice_knows ?name_knows_Alice 
 WHERE { ?alice foaf:name "Alice" . 
         { ?alice foaf:knows [ foaf:name ?friend_name] } 
         UNION 
         { [] foaf:knows ?alice ; 
              foaf:name ?friendOf_name } } 
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3.3.3 Existence Quantifiers and Other Filters 
The presence of at least a single solution to a graph pattern, or the absence of 
such, can be turned into a Boolean value using the existence quantifiers. For 
example, the following query checks for the persons who have 
foaf:homepage property but no foaf:mbox property: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name_Alice_knows ?name_knows_Alice 
 WHERE { ?p rdf:type foaf:Person . 
         FILTER ( EXISTS { ?p foaf:homepage [] } && 
                  NOT EXISTS { ?p foaf:mbox [] } ) } 

The FILTER conditions in SPARQL queries may appear in a conjunction 
with graph patterns. They may contain any kind of logical expression, using 
the logical '&&' (conjunction), '||' (disjunction), and '!' (negation) operators. 
Besides the quantifiers used in these examples, a large variety of arithmetic 
and string expressions [155] can be used as terms in the filter conditions. If a 
filter expression evaluates to anything else than a Boolean value, the 
Effective Boolean Value of the expression is used. The values equivalent to 
true are non-zero numbers, non-empty strings and typed RDF literals, all 
possible date/time values and URIs. 

The general expression syntax of SPARQL is fairly standard, and hence is 
omitted in this introduction. However, the exhaustive list of all possible 
expression constructs in SciSPARQL is presented in Section 5.4.5.4, for the 
purpose of defining their translation to AmosQL and ObjectLog. 

3.3.4 Addressing Multiple Graphs 
The queries presented so far did not explicitly identify the dataset they 
address - in this case, they were accessing the default graph of the SPARQL 
endpoint they are sent to. In the Semantic Web context, a multitude of 
graphs is typically combined for the purpose of querying. An explicit set of 
graphs to be combined can thus be specified in the FROM clause of a 
SPARQL query. Another option is to treat these graphs separately, 
addressing the specific graph patterns to each of them. 

W3C Specifications [155] suggest the following example (presented here 
with minor simplifications): 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?who ?g ?mbox 
  FROM NAMED <http://example.org/alice> 
  FROM NAMED <http://example.org/bob> 
 WHERE { ?who foaf:made ?g 
         GRAPH ?g { ?x foaf:mbox ?mbox } } 
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This query retrieves the foaf:mbox information from either of the 
named source graphs, and returns it along with the source graph identifier 
and the publisher. Here, the graph pattern querying for the foaf:mbox 
property is matched against every available graph, which is listed in the 
default graph as a value in a foaf:made triple. 

3.4 Property Path Expressions 
A powerful feature introduced in the W3C SPARQL 1.1 standard are regular 
path expressions as another kind of graph patterns, making it easy to specify 
chains of properties, alternative and reversed properties. For example, the 
first two queries in Section 3.3.2 can be reformulated using patterns like 

?friend foaf:mbox|ex:email ?friend_email 

and 

?alice foaf:knows|^foaf:knows ?friend 

respectively, where the '|' operator denotes the alternatives and '^' specifies 
the reversed property. 

Still, the main power of the regular path expressions is the ability to query 
for graph nodes connected by chains of properties of arbitrary length but 
with certain repeating structure. For example, the following query would list 
the names of people who are listed as Alice's friend, friend-of-a-friend (that's 
what FOAF vocabulary name actually stands for), and so on: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?friend_name 
 WHERE { [] foaf:name "Alice" ; 
            foaf:knows+/foaf:name ?friend_name } 

Here the '+' operator denotes the transitive closure of the foaf:knows 
property, and '/' denotes the chaining of property paths. If the '*' operator 
were used instead of '+', the reflexive-transitive closure would include 
"Alice" among the results.  

The transitive and reflexive-transitive closures are implemented as graph 
traversal algorithms, which internally check for equivalence of the nodes, 
and terminate at the point where no new nodes can be reached.  
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3.4.1 Precedence of Path Operators 
Path operators can be freely combined in a path expression. According to 
W3C SPARQL 1.1 Specifications [155] the precedence order of the path 
operators4 is the following: 

• transitive '+', reflexive  '?', and reflexive-transitive closure '*' 
• reversal '^' 
• chaining '/' 
• alternative paths '|' 

Whenever a different precedence is desired, parentheses can be used to 
control associatively. For example, a graph pattern 

?x (ex:motherOf|ex:fatherOf)+/foaf:name "Alice" 

would bind ?x to all ancestors of a person named Alice. 

3.4.2 Algebraic Properties of Path Operators 
Even though the W3C Standard [155] does not list the properties of path 
operators explicitly, they are trivial to deduce, and are invaluable if one 
would like to transform the regular path expressions within their class of 
equivalence, for the purpose of simplification or normalization. The 
SPARQL users, formulating queries with path expressions, might also 
benefit from the structured summary presented in this section.  

In the following triangular table (Table 1) we summarize the equivalent 
expressions that arise when one or two path operators are combined. Given 
A, B, and C are path fragments, the identities listed in the table cells always 
hold. 

Table 1. Algebraic properties of path operators 
 + * ? ^ / | 

+ A++ = A+ 
(A+)* = A*
(A*)+ = A*

(A?)+ = A* ^A+ = (^A)+ - - 

*  A** = A* 
(A?)* = A*
(A*)? = A*

^A* = (^A)* - - 

?   A?? = A? ^A? = (^A)* - - 
^    ^^A = A ^(A/B) = ^B/^A ^(A|B) = ^A|^B 

/     
A/(B/C) = 
= (A/B)/C 

(A|B)/C = A/C|B/C 
A/(B|C) = A/B|A/C 

|      
A|B = B|A 

A|(B|C) = (A|B)|C 

 

                                                      
4 We do not include the negated property set operator in the current version of SciSPARQL, 
due to the problems with its standard definition, explored in [88]. Though not theoretically 
ambiguous, together with reversal it introduces certain counter-intuitive 'butterfly effect' in 
the set of query solutions. 
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In mathematical terms, Table 1 lists the following properties: 
• idempotence of closure operators '+', '*', and '?', 
• subsumption of transitive '+' and reflexive '?' closures into the 

reflexive-transitive closure '*' - the latter can also be constructed by 
applying transitive closure '+' on top of the reflexive closure '?' (but 
not the other way around), 

• involution property of the reversal operator '^', 
• commutative property of the alternative operator '|', 
• self-distributiveness and mutual distributiveness of chaining '/' and 

alternative '|' operators, 
• distributiveness of the reversal operator '^' with respect to closures 

and  the alternative '|' operator, and 
• reversal of the chains of path fragments with the reversal operator '^'. 

The more formal definition of the regular path expressions, together with 
their translation to AmosQL and eventually ObjectLog, are given in Section 
5.4.5.3. 

3.5 Aggregation and Grouping 
The SELECT part of a SPARQL query may contain a list of projected 
variables (as seen in all the queries presented so far), or named expressions. 
A variety of functions, including arithmetic and string manipulation, are 
available [155], and, in the case of SciSPARQL, easily extensible, as we 
show in Section 4.4. For example a query with the SELECT statement 

SELECT (round(?x) AS ?result) ... 

would return the rounded value for each ?x binding among the query 
solutions, i.e. the round() function will be applied independently every 
time the query is about to emit. 

There are, however, certain SPARQL functions which operate on bags 
(multisets) of bindings - the aggregate functions. Most of them, like SUM(), 
AVG() etc. operate only on numerical values, whereas COUNT() operates on 
all kinds of values. For example, the following query would return minimum 
and maximum age of persons listed in the graph: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT (MIN(?age) AS ?min_age) (MAX(?age) AS ?max_age) 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:age ?age } 

emitting a single result (or none if no persons or their age information is 
found). 
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If one would need to compute e.g. the average age of each persons 
friends, this would require grouping the query solutions by person, and 
applying the aggregate AVG() function within each group. This is achieved 
with the GROUP BY clause: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name (AVG(?friend_age) AS ?avg_friend_age)  
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:name ?name ; 
            foaf:knows ?friend . 
         ?friend foaf:age ?friend_age } 
 GROUP BY ?p ?name 

Note that we need to group by the variable ?p, bound to foaf:Person 
instance nodes, not by the person name (which might not be unique).  
Listing ?name as an additional grouping variable might seem redundant, as 
?name is fully functionally dependent on ?p, i.e. we do not expect different 
?name values for the same person. Unfortunately, SPARQL requires that 
every variable projected out from the aggregate query (or used for post-
filtering or ordering) should be also listed in GROUP BY clause. In 
SciSPARQL we lift this restriction, implicitly adding such variables to the 
effective GROUP BY clause. 

Additional post-filter conditions can make use of the aggregate values 
computed. For example, adding  

HAVING (?avg_friend_age <= 30 && COUNT(?friend) > 3) 

to the end of the last query would restrict the resulting groups of solutions by 
size and average age. Note that this adds another aggregate value to be 
computed for each group. 

3.6 Error Handling 
It is worth noting that in SPARQL every valid query is always evaluated 
without raising any exceptions. This is achieved by two separate 
mechanisms: 

I. The validity of the query can be determined at compile time - a process 
separate from actually executing the query on a given dataset. A SPARQL 
query processor emits a wide range of error conditions at different phases of 
validating the query. The lexical and syntactic errors, corresponding e.g. to 
an unmatched quotation mark or an unexpected keyword, indicate that the 
query cannot be reconstructed from a given textual representation. Next, a 
range of semantic checks is performed - a semantic error can be raised e.g. if 
aggregate function calls are nested. Finally, the query is transformed to an 
execution plan (Section 5.1.2 illustrates how this is done in our system), 



40 

making sure that every variable gets a finite multiset of potential bindings. If 
this is found impossible, the query will be reported as non-executable. 

II. A valid query may still produce errors, when applied to a certain 
dataset. Division by zero, or a non-numeric operand passed to an arithmetic 
operator (since SPARQL is dynamically typed) produce a special error 
value, which is passed further through the expressions. Query solutions 
containing an error value for a variable never produce a result. Hence, 
evaluating a FILTER expression to error is equivalent to evaluating it to 
false. A SELECT expression evaluating to error effectively discards the 
solution. This includes aggregate functions evaluating once per group.  

For example, if a group of solutions contains a non-numeric binding for a 
variable under SUM(), the aggregate function would return error, and the 
group will not be part of query result. In our system, returning error value 
from a function is in all ways equivalent to returning no values at all. Saying 
that a function does not return in a certain case should be understood as 
returning error value in the standard SPARQL terms. 

3.7 Ordering and Segmentation 
By default, the result of a SPARQL query is a multiset of bindings for the 
query output variables. It is, however, possible to return these bindings in a 
certain order, by using the ORDER BY clause.  

The following query would list the persons in the dataset sorted by age (in 
descending order) and, in the case of coevals, by name (alphabetically): 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?name ?age 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:name ?name 
            foaf:age ?age } 
 ORDER BY DESC(?age) ?name 

Once the order of the results is defined, it becomes possible to retrieve 
certain portions of results. For example, adding 

LIMIT 3 

to the end of the query would make it return the information about the three 
oldest people (thus probably saving considerably on communication), and 
adding instead 

OFFSET 500 LIMIT 100 

would be typical for a query retrieving the portions of results on demand. 
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Since the SPARQL standard specifies that the comparison '<' and '>' 
operators are defined only on the values of the same type, the order of results 
where an ordering variable is bound to values of the different (incomparable) 
types is not defined, and hence the segmentation cannot be used in the 
reliable way. SciSPARQL addresses this problem by defining a certain order 
among the values of all possible types in RDF with Arrays, including URIs, 
blank nodes, all kinds of literals and arrays. 

3.8 Constructing New RDF Graphs 
As mentioned before, the result of a SELECT query in SPARQL is a list of 
mappings of its output variables to values (which might include unbound 
values). Sometimes, it is instead desirable to produce a set of triples, which 
can be regarded as a derived RDF graph. For this purpose, CONSTRUCT 
queries are available in the language5. 

The following query would construct a derived graph, listing 
ex:mutualFriend properties for all pairs of persons connected with 
foaf:knows relationship both ways: 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
PREFIX ex: <http://example.org/> 
CONSTRUCT { ?x ex:mutualFriend ?y } 
 WHERE { ?x rdf:type foaf:Person ; 
            foaf:knows ?y ; 
         ?y rdf:type foaf:Person ; 
            foaf:knows ?x } 

The CONSTRUCT clause contains a graph construction pattern. For every 
solution of the WHERE block, the corresponding triples will be constructed 
and emitted. Note that since the graph pattern in the WHERE clause is 
symmetric there will be two solutions for each matching pair of persons. 

The solutions with unbound variables will not produce triples in those 
construction patterns where these variables are used. We show how the 
CONSTRUCT statements are handled by the SciSPARQL query processor, by 
defining their translation in Section 5.4.5.11. 

                                                      
5 The W3C SPARQL standard [155] also specifies ASK queries, wich are the shorthand of 
using EXISTS quantifier, and mentions DESCRIBE queries, not actually defined in the 
standard. 
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3.9 Updating the Datasets 
The separate W3C Standard Recommendation [156] governs the SPARQL 
Update language.  

The Data Definition Language is limited to creating (with the CREATE 
statement) and dropping (with the DROP statement) the named RDF graphs, 
since, in contrast to the relational data model, there are no schemas to be 
defined separately from the data. 

The Data Manipulation Language is mainly represented by the 
DELETE/INSERT statement. For example, instead of deriving a new RDF 
graph (as in Section 3.8), one could insert the new triples into the same 
graph, by simply changing the CONSTUCT keyword to INSERT.  

Deleting triples is as simple - the following statement would delete all 
personal emails from the graph:  

PREFIX ex: <http://example.org/> 
DELETE { ?p foaf:mbox ?email } 
 WHERE { ?p rdf:type foaf:Person ; 
            foaf:mbox ?email ; 

For every solution of the WHERE block (i.e. for every combination of ?p 
and corresponding ?email values), this statement will delete all triples 
according to the deletion triple pattern. In principle, this would be possible 
to do with some of the pattern variables free, but SPARQL (and the current 
implementation of SciSPARQL) requires that all delete pattern variables 
should be bound. It is part of the future work on SciSPARQL to lift this 
unnecessary restriction.  

The DELETE and INSERT clauses can be combined in a single statement, 
sharing the WHERE block (e.g. for replacing certain properties according to a 
pattern). Deletion and insertion patterns may include a named GRAPH 
specifier, similarly to the syntax shown in Section 3.3.4, or a named graph 
addressed by the whole statement can be specified using the WITH keyword. 
A different graph can be used in the WHERE block, introduced with the 
USING keyword instead. Section 5.4.5.12 details the translation of 
DELETE/INSERT statements to procedural AmosQL statements, containing 
declarative translation of the WHERE block. 

A different mechanism is used for evaluating simple INSERT DATA and 
DELETE DATA statements: they do not contain a WHERE block, hence their 
patterns are free from variables and are purely constant. Their purpose is the 
massive insertion or deletion of RDF triples in a streamed fashion. They are 
evaluated at parse time, and thus can be arbitrarily long. 
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4 Scientific SPARQL 

The main purpose of Scientific SPARQL is to enable data processing tasks 
common in science and engineering to be expressed as queries in extended 
SPARQL. These tasks are generally characterized by extensive 
computations, and also by large amounts of numeric data, typically ordered 
along a number of orthogonal axes [102]. Such data can be represented as 
numeric multidimensional arrays, which become a class of RDF terms in 
our extended RDF with Arrays data model. 

Computations are used either for filtering or post-processing the retrieved 
data, and may typically be expressed in a functional way. Existing 
computational libraries (many of which became de-facto standards in 
scientific computing, and are often referred for reproducibility of results) can 
be interfaced and invoked from the query language as foreign functions. 
Cost estimates and alternative directions of evaluation can be additionally 
specified (see Section 4.4), in order to aid the construction of better 
execution plans - the process illustrated in the beginning of Chapter 5. 

Though real-life scientific computing tasks, as we have shown in [6], find 
much more compact formulations in SciSPARQL than in high-level 
algorithmic languages like Matlab (mainly thanks to declarativeness and 
more natural metadata management), we expect complex tasks to be 
formulated as complex queries. Good query modularity becomes as 
important for scalability as good data design and annotation. In this respect, 
SciSPARQL allows expressing common query sub-tasks as functional views, 
i.e. SciSPARQL functions defined as parameterized queries.  

Such flexibility in defining functions and using them in queries is further 
strengthened by functional language abstractions such as lexical closures 
and second-order functions. When it comes to the array processing tasks, 
besides a library of the most common functions, SciSPARQL offers array 
constructors, mappers and condensers as second-order functions. These 
constitute a highly flexible mechanism of expressing custom array 
operations, demonstrated on the example of Geo-Science applications in [8]. 

This chapter summarizes the contributions presented in Scientific 
SPARQL as a language extension in terms of syntax and semantics. 
Implementation details are reserved for the next chapter, however, certain 
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notes on potential scalability opportunities are given, in order to encourage 
the formulation of expressive and straightforward SciSPARQL queries that 
our system (SSDM) is well-optimized for.  

4.1 Array Queries 
We define an array as a mapping function A from a finite domain to an 
infinite range, which is stored explicitly: 

RDA →:  

The domain of arrays in SciSPARQL is always a Cartesian product of the 
sets of integers ranging from 1 to dimk: 

{ } { }nD dim...1...dim...1 1 ××=  
Here n is the number of dimensions in the array, kdim  is the array size in 
the dimension k and the ndim,...dim1  vector is called the array shape. 
We call arrays of the same shape aligned arrays. The range of an array can 
either be a set of Integer, Real or Complex numbers, or Boolean values. 

The RDF with Arrays data model, underlying SciSPARQL queries, 
incorporates arrays into RDF graphs as another kind of nodes, along with 
other literal types. Array values may only appear in the value position of 
RDF triples. However, due to compatibility concerns with pure RDF and 
SPARQL, the predicates rdf:first and rdf:rest commonly used with RDF 
collections are polymorphic in SciSPARQL and may be matched with arrays 
appearing on the subject position in queries (examples in Section 5.5) This 
makes arrays into a particular case of RDF collections - Section 5.3.2 
explains the relationship between arrays and collections in greater detail. 

A typical RDF with Arrays dataset contains numeric multidimensional 
data - in form of arrays, and the associated metadata - in form of an RDF 
graph. Figure 6 shows a simple example, which will be further extended in 
the next chapter (where also a serialization in extended Turtle format is 
presented). It features an RDF with Arrays description of an experiment 
(given in a generic way, it might be a stochastic simulation of a partial 
differential equations system, for example) denoted as an instance of 
ex:OurExperiment, and consisting of a number of realizations, connected 
using the ex:inExperiment property. Both experiment and realization 
instances have literal-valued properties representing associated data and 
metadata at the respective levels of detail. The properties ex:initialState 
and ex:result are array valued, and represent the numeric part of RDF with 
arrays dataset. 
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Figure 6. An example RDF with Arrays dataset (fragment) 

We will refer to the queries aimed at retrieving arrays from RDF with 
Arrays datasets, and containing array-specific operations as array queries.  

A trivial (but important) case is retrieving an array based on the 
associated metadata. For example, one might be interested in the ex:result 
arrays together with the corresponding realization ids, based on the 
experiment properties and realization parameters: 

SELECT ?id, ?A 
 WHERE  
    { ?e a ex:OurExperiment 
         ex:simulationMethod ex:OurSimulationAlgorithm . 
      ?r ex:inExperiment ?e ; 
         ex:parameter_A 0.3 ; 
         ex:parameter_B ?b ; 
         ex:id ?id ; 
         ex:result ?A . 
      FILTER ( ?b > 0.8 ) } 

The rest of this section introduces the key features of array queries. In the 
examples we deliberately omit the PREFIX part of the queries, since 
SciSPARQL allows the prefix declarations to be specified once per session - 
with a separate statement: 

PREFIX ex: <http://udbl.uu.se/ex#> 

4.1.1 Array Dereference Syntax 
SciSPARQL allows array subscripts in square brackets, where subscripts for 
the respective dimensions are separated with commas. 
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For each dimension either single subscripts or range selections can be 
specified. By default, range selections are specified with a colon as lo:hi, 
and selections with a stride as lo:stride:hi, where both lo and hi address the 
elements that are included in the selection, and the elements are counted 
from 1. This design was chosen to make Matlab users feel at home6. 

Either or both lo and hi values can be omitted, with default for lo being 1 
and default for hi always being the array size in the respective dimension. 
Thus the expressions ?A[:] and ?A[:1:] are always equivalent to ?a. 

If valid single subscripts for all array dimensions are specified, the array 
is dereferenced to a single element. Otherwise, complete ranges are assumed 
for the remaining dimensions. SciSPARQL thus makes a difference between 
three kinds of array dereferences: 

• single element dereference, for example ?A[2,1] for a 2D array ?a, 
where single subscripts are provided for all dimensions. The result is 
always a number, or error if a subscript falls out of range. 

• projection dereference, for example ?A[:,1] or ?A[2] or 
?A[1:3,2] or ?A[2,:5:] for a 2D array ?A, where single 
subscripts are provided for some dimensions, and range selections 
(explicit or implicit) for the others. The result is a smaller array with 
fewer number of dimensions (only those of the original dimensions 
for which ranges were provided), or error if a single subscript falls 
out of range or the range selection results in an empty selection. 

• range selection dereference, for example ?A[1:5,2:3], ?A[1:5], 
?A[:5,:2:], where range selections (explicit or implicit) are 
provided for all array dimensions. The result is a smaller array with 
the same number of dimensions as the original one, or error if the 
range selection results in an empty selection. 

The latter two are also collectively called array slicing operations. Each 
array slicing is resulting in an array subset Figure 7 shows the elements 
selected from a 2D array using projection on the first (rows) dimension, and 
range  selection on the second (columns) dimension.  

If a range selection effectively specifies a single element, it is still treated 
as a range selection with respect to the dimensionality reduction. Thus, 

                                                      
6 However, with the _sq_python_ranges_ flag a user may opt for a different dialect of 
SciSCPARQL, which supports Python notation for ranges. In this case, elements are counted 
from 0, hi element is never part of the selection, and optional strides are specified as 
lo:hi:stride. No other differences are introduced. This switch only takes effect at the stage 
when a SciSPARQL query, update, or function definition is passed to the interpreter. The 
definitions of SciSPARQL functions and parameterized updates are stored internally in a way 
that is invariant to these syntactic differences, so it is safe to switch back and forth between 
the two dialects in a session. In the rest of this work, the default (Matlab) notation is used. 
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(unlike Matlab) SciSPARQL makes a difference between arrays that have 
different number of "single-element" trailing dimensions, and between 
singleton arrays and numbers, so that ?A[2,3:3] is not equal to ?A[2,3]. 
For a 2D array ?A where these subscripts are valid, the former expression 
would return a 1D-projection with a single element in it, whereas the latter 
expression would dereference directly to that element. 

p
ro

je
ct

io
n

i

lo hi
stride

range selection  
Figure 7. A projection and range selection ?A[4,3:2:7], applied to a 2D array 

Since SciSPARQL is designed to handle very large arrays, any 
dereference operation that returns a derived array does not allocate any 
memory to store the new array's elements - internally, it just allocates a new 
descriptor object pointing to the same storage space. Thus, creating sets of 
projections and slices of arrays is very cheap (further explained in Section 
5.2), and is encouraged as a simple way to formulate many data-reduction 
operations. This principle extends to arrays stored externally (and retrieved 
lazily), as we discuss in Chapter 6. 

4.1.2 Variables Bound to Array Subscripts 
One important feature of SciSPARQL as a declarative query language is the 
possibility to automatically bind a query variable to its valid range of values. 
Just as a triple pattern  

?x foaf:name "Alice" . 

binds variable ?x to every node that has a property foaf:name with value 
"Alice", an array dereference expression 

?A[?i] 

with the otherwise unbound variable ?i becomes an array access pattern: 
the variable ?i will assume all valid subscript values, that is, integers from 1 
and up to the size of array ?A in its first dimension.  

Unless otherwise restricted, such binding will form a Cartesian product 
with bindings for other variables in the query solution. So, for example, 

SELECT ?i, ?j (?A[?i,?j] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A } 
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will return every element of the 2D array ?A (or respective projections if ?A 
is array of grater dimensionality, or nothing otherwise), together with 
subscript values. Similarly, 

SELECT ?i, ?j (?A[?i,?j] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A . 
         FILTER ( ?i >= ?j ) } 

will return bottom-left triangle of ?A, and  

SELECT ?i (?A[?i,?i] AS ?value) 
 WHERE { [] ex:id 1 ; ex:result ?A } 

will return the diagonal elements. We will study the performance of such 
patterns in Chapter 6. 

4.1.3 Built-in Array Functions 
A number of basic functions are defined in SciSPARQL in order to access 
the array shape and element type, construct arrays and perform operations 
not covered by the array dereference syntax: 

• adims(?a) - return the shape of an array as a 1D integer array 
containing sizes of a in each dimension. To obtain the number of 
dimensions, use adims(adims(?a))[1]. 

• elttype(?a) - return element type of array, with 0 for Integer, 1 for 
Double, 2 for Complex. 

• A(?e1, ?e2, ?e3, ...) - construct a 1D array of the given numeric 
elements. 

• find(?a, ?e) - return the indexes of elemets in ?a equal to ?e, as 
1D integer arrays. 

• permute(?a, ?d1, ?d2, ...) - change the shape of array by 
rearranging its dimensions (generalized transposition). The integer 
values ?d1, ?d2, ... denote the new order for the array dimensions. 
The effect the is same as with Matlab permute() function7. 

• transpose(?a) - simple 2D matrix transposition, equivalent to 
permute(?a, 2, 1). 

Rearranging array dimensions, similarly to an array slicing operation, 
involves no copying of array elements, and thus produces a derived array. 

4.1.4 Array Arithmetic 
The standard binary operators operating on numbers in SPARQL are 
extended to operate element-wise on arrays in SciSPARQL. This includes 
addition '+', subtraction '-', multiplication '*', and division '/' operators. For 

                                                      
7 Officially documented in  http://mathworks.com/help/matlab/ref/permute.html 
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example, an expression ?a + ?b will be evaluated in four cases, as shown 
in the Table 2. 

Table 2. Polymorphism of an arithmetic operator in SciSPARQL (example) 

?a binding ?b binding value of ?a + ?b 
number number number 
number array array, where ?a is added to each element of ?b 
array number array, where ?b is added to each element of ?a 
array array array of sums of corresponding ?a and ?b 

elements, if ?a and ?b have the same shape 

However, in order to let the SciSPARQL query optimizer distinguish 
between scalar and array-valued operations (the latter are expected to be 
sufficiently more expensive, both in terms of computation and memory), 
SciSPARQL users are encouraged to use the special array-oriented dot-
prefixed operators, for example '.+' in cases where array values are 
expected. 

The expression ?a .+ ?b is semantically equivalent to ?a + ?b as 
described by Table 2, e.g. it produces a number if both operands are 
numbers. However, it hints the query optimizer that an array value is 
expected here, so it will try to schedule this operation at the point where 
fewer intermediate results (i.e. candidate bindings for ?a and ?b) are 
anticipated. 

This is different for the comparison operators '<', '<=', '>', '>=', which, 
when applied to an array (or two arrays of the same shape) will produce a 
deterministic albeit not a meaningful result, used only for ordering. Equality 
of arrays, however, is well defined below in Section 4.1.6. In the same cases, 
dot-prefixed comparison operators will produce a new array of type 
Boolean, containing the results of element-wise comparison. 

Numeric aggregate functions, like SUM(), MIN(), MAX(), AVG(), etc. are 
also extended to handle bags of array values. They return only if all arrays in 
the bag have the same shape, and construct a new array value. No optimizer 
hints are available, since the evaluation of aggregate functions separates the 
inner and outer contexts of a query (more technicalities in Sections 5.4.1.2 
and 5.4.3.4), and there is typically little freedom to move the predicates 
around it (see, e.g. [38]).  

Another possibility is that due to the modular structure of SciSPARQL 
queries (as described in Section 5.2.2), there might be two parameterized 
aggregate subqueries invoked as functions from a third query on the same 
level - then the optimization might benefit from knowing which aggregation 
involves arrays and which one does not. We leave these optimization 
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opportunities, based on a more accurate cost estimate for the aggregate 
functions as a matter of the future work.  

4.1.5 Intra-array Computations 
Arrays, apart from bags, form another conceptual layer of collections in 
SciSPARQL. While it is possible to combine all elements of a bag of 
numbers (or arrays) with the aggregate function SUM(), it should also be 
possible to apply an aggregate function to all (or certain) elements of a given 
array. There are actually three ways to do this in SciSPARQL: 

I. Shorthand functions as array_sum(), array_avg(), array_min(), 
and array_max() are available in SciSPARQL for the basic computation 
tasks, and should be preferred as the most efficient ones. They operate on all 
elements of a given array, and ignore the logical dimensionality. 

II. It is always possible to "open" an array into a bag of its elements, as 
shown in Section 4.1.2, and then apply a traditional aggregate function. This 
allows arbitrary conditions on the element places and values to be expressed 
in a query. For example, the following query would sum up only positive 
elements on even positions in the main diagonal of ?A: 

SELECT (SUM(?A[?i,?i]) AS ?sum_diag_even_positive) 
 WHERE { [] ex:id 1 ; ex:result ?A . 
         FILTER ( ?A[?i,?i] > 0 ) && mod(?i, 2) = 0 } 

Here, the free variable ?i binds to all valid values for the row and column 
subscripts of ?A, and then is checked for an even value. Only in those cases, 
array elements are considered eligible to be summed up. As the example 
shows, this way is highly general, but might clutter the FILTER expression 
(which is typically used for metadata conditions) and also forces bag-based 
aggregation where it could have been avoided. 

III. In order to alleviate for the said shortcomings, SciSPARQL borrows 
Array Algebra [17] primitives used in Rasdaman [16], as a matter of 
ongoing integration. The second-order functions MAP(), CONDENSE(), and 
ARRAY()are supported in our system, making use of the powerful lexical 
closure mechanism, explained in Section 4.3. 

4.1.6 Array Equality 
The only cases where dot-prefixed operators differ from the original ones is 
the comparison of arrays with '=' and '!=', which results in a single Boolean 
value, and the comparison of array elements with '.=' and '.!=', which 
results in array of Boolean. While the second case is trivial, the equality of 
arrays needs a definition. 
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Two arrays are equal iff all of the following conditions are satisfied: 
• they have the same number of dimensions,  
• they have the same size in each respective dimension, 
• their respective elements are numerically equal. 

Note that the same element type is not a requirement - an integer array 
might be equal to an array of real numbers. However, whenever the floating-
point arithmetic is involved, it is always a good idea to round the array 
elements down to a certain precision before comparing, in order to avoid 
precision-induced artifacts. For this purpose the round() function is 
extended to handle arrays, taking the desired precision as a second argument. 

SciSPARQL does not trim the trailing dimensions of size 1 as e.g. Matlab 
does, which might lead to the loss of structural metadata, important in our 
setting. Hence e.g. a 1-dimensional array of size 3 can never be equal to a 2-
dimensional 3x1 array, even though they both might represent the same 
mathematical object - a column vector. Similarly, SciSPARQL does not treat 
simple numeric values as equivalent to singleton arrays: a number 5 is not 
equal to an array with a single element of 5. 

4.2 Parameterized Queries - Functional Views 
The good modularity of potentially complex SciSPARQL queries is 
achieved by isolating common parts as parameterized queries, also known 
as functional views. We use these two terms interchangeably, since by 
stressing different aspects of the same mechanism, together they convey the 
desired dualistic notion of the subject. 

There is DEFINE FUNCTION statement in SciSPARQL. As shown below 
in Section 4.4, its use extends far beyond the functional views and 
SciSPARQL per se; however, for the purpose of this section its use is quite 
simple. The following example defines a function resultById() retrieving 
the value of ex:result property of a realization of the ex:OurExperiment 
experiment class, given the realization id: 

DEFINE FUNCTION resultById(?id) AS  
SELECT ?A 
 WHERE { ?r ex:inExperiment [ a ex:OurExperiment ] ; 
            ex:id ?id ; 
            ex:result ?A } 

Naturally, a call to this function can be used as a part of an expression. 
This has the potential of formulating short queries without a proper WHERE 
clause at all. For example, the following query returns the third row of the 
ex:result matrix of a realization with id = 1: 

SELECT (resultById(1)[3] AS ?row3) 
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A function definition is parsed and validated (but not optimized) at the 
moment it is submitted as a SciSPARQL statement. This implies, in 
particular, that the prefixes used in a function definition (unless supplied 
directly before the DEFINE FUNCTION clause) should be already defined for 
a session. Similarly, any other functions called inside the definition should 
already be defined. This way SciSPARQL forbids mutual- and self-
recursion, and imposes an acyclic dependency graph among the function 
definitions it maintains.  

This principle does not extend to accessing the named RDF graphs. A 
graph specified in a FROM, FROM NAMED, or GRAPH clause inside a function 
definition does not need to be present among the available graphs at the time 
of function definition - thus the library of functional views can be loaded into 
a SciSPARQL session (using SOURCE directive) independently of loading or 
creating the named RDF graphs. 

Apart from query modularity benefits, with functional views it is possible 
to express some otherwise inexpressible computations in a single query. In 
particular, it is possible to nest aggregate operations - for example 
computing the sum of positive diagonal elements of ex:result for each 
array, and then finding the average value across all realizations in the given 
experiment instance: 

DEFINE FUNCTION sum_diag_positive(?r) AS  
SELECT (SUM(?A[?i,?i]) AS ?res) 
 WHERE  { ?r ex:result ?A . 
          FILTER ( ?A[?i, ?i] > 0 ) } 
 
SELECT (MAX(sum_diag_positive(?r)) AS ?max) 
 WHERE { ?r ex:inExperiment ex:experiment1 } 

In the next section (4.3), we show how functions similar to 
sum_diag_positive(), returning numeric values, can be used with 
second-order functions like ARGMIN() and ARGMAX(). 

Another important benefit of functional views is the ability to express  
top-k selections for a non-fixed parameter k. For example, the following 
function will find the given number of highest values on the ex:result 
diagonal: 

DEFINE FUNCTION k_top_diag(?r ?k) AS 
SELECT (?A[?i,?i] AS ?e) 
 WHERE { ?r ex:result ?A } 
 ORDER BY DESC(?e) LIMIT ?k 

While the SPARQL Standard requires that LIMIT and OFFSET values 
should be constants, in SciSPARQL they can be expressions not depending 
on the variables inside the query. A parameter in a parameterized query thus 
may be used.  
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4.3 Lexical Closures and Second-Order Functions 
SciSPARQL offers second-order functions that allow expressing common 
computational tasks easily, as demonstrated in [6, 8].  

For example, optimizing a function over a finite domain is the in the 
general case done by evaluating it for every valid set of arguments and 
comparing the results. In order to express this declaratively, SciSPARQL 
features the ARGMIN() and ARGMAX() second-order functions. For 
example8, finding a realization having the greatest sum of positive diagonal 
elements in ex:result matrix is expressed as 

SELECT (ARGMAX(sum_diag_positive(*)) AS ?r_max) 

or, since SciSPARQL allows function calls as separate statements, simply: 

ARGMAX(sum_diag_positive(*)) 

The free parameter denoted by the asterisk will sweep across all nodes in the 
RDF graph, matched as subjects by the triple patterin inside the function  
sum_diag_positive(), as it is defined in the previous section. 

Another feature inspired by Array Algebra [17] are the generic array 
constructor, mapper and condenser, represented by the ARRAY(), MAP(), 
and CONDENSE() second-order functions in SciSPARQL, explained below 
in Section 4.3.1. 

All of these take a functional argument - a lexical closure, consisting of a 
function name and values provided for some (or none) of its parameters, 
with other parameters marked by asterisk '*' placeholder. Inside a second-
order function, a lexical closure is evaluated exactly like a normal function 
with a number of arguments equal to the number of asterisks. For example, 
ARGMIN() and ARGMAX() require unary functions - the lexical closures will 
always contain one asterisk. The rest of the arguments are bound to values 
provided at the point of closure formation.  

For example, Minkowski distance is a function of three arguments - two 
vectors and one scalar exponent: 
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In SciSPARQL, this example would look like 

DEFINE FUNCTION Dminkowski(?X ?Y ?p) AS 
SELECT (power(SUM(power(abs(?X[?i] - ?Y[?i]), ?p)), 
              1/?p) AS ?distance) 

                                                      
8 Section 5.4.5.10 has the translation of this example to AmosQL. 
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In many practical cases, however, the exponent p is provided upfront, 
whereas the two vectors are the "real" arguments that the function typically 
maps over. For example, Euclidean distance can be defined as a function of 
two arguments 

( ) ( )2,,, yxdyxd Minkowski

Def

Euclid =  

Lexical closures eliminate the need of defining and naming single-use 
functions. So, instead of separately defining, and then providing dEuclid as a 
functional argument, one could directly use Dminkowski(*, *, 2) as an 
equivalent binary function.  

4.3.1 Array Algebra Second-order Functions 
An array constructor returns an array of given type and shape. It expects a 
unary function (or closure) that takes a vector of logical subscripts as a 
single argument, and computes the array elements: 

ARRAY(type, shape, mapper) 

An array mapper maps over a collection of 1≥n  aligned arrays. It 
returns a new array of given type aligned to that collection. It expects an n-
ary function (or closure) that is mapped over the respective elements of the 
given arrays: 

MAP(type, mapper, v1, ..., vn) 

An array condenser computes an intra-array aggregate value applying a 
given aggregate operation to all array elements. No particular order is 
guaranteed; hence the aggregate operation (represented by a binary function 
or closure) is required to be commutative and have identical domain and 
range.  

CONDENSE(op, v) 

An additional unary filter function, if provided, will be applied first, in 
order to select elements based on their value: 

CONDENSE(op, v, filter) 

Intra-array aggregate functions like array_sum(), array_avg(), etc. 
are equivalent to particular condenser calls.  

The usage examples of these second-order functions are given in [8], in 
the context of a geo-informatics application. 
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4.4 Foreign Functions 
As mentioned above, a typical scientific or engineering data processing task 
involves both data retrieval and extensive computations. While the querying 
capabilities of SciSPARQL address the data retrieval task in a more general 
and expressive way than generally seen in manually written programs, 
calling various computational routines should stay similar to the way it is 
normally done in C, Python, or Matlab. At the same time, the query 
optimizer should retain the freedom to call the filtering and post-procesing 
tasks in the optimal order, based on the cost and cardinality estimates, as 
explained below. 

For this purpose, SciSPARQL offers a mechanism for extensibility with 
foreign functions. While being implemented in algorithmic languages 
(currently C/C++, Java, Lisp, Python, or Matlab), these functions are used 
directly in a query: the SELECT clause typically contains the post-processing 
expressions, and FILTER/HAVING clauses contain the expressions that filter 
the potential query solutions. In the same way as functional views, foreign 
functions can be used to form lexical closures and be passed to second-order 
functions, as explained in Section 4.3. 

The process of introducing a foreign function to SciSPARQL typically 
involves three steps: 

• providing a function implementation or a wrapper for a library 
function, with the signature (header) compatible to SciSPARQL, 

• linking the implementation to SSDM (mechanisms for different 
languages vary), and 

• defining the new SciSPARQL function using the DEFINE FUNCTION 
statement, optionally providing cost and cardinality estimates. 

For example, the following function implemented in Java would return 
real square roots (if any) of its real or integer argument: 

public class MyLib { 
  public void sqroot(CallContext cxt, Tuple tpl) throws AmosException 
  { 
    double x; 
    if (tpl.isDouble(0)) x = tpl.getDoubleElem(0); 
    else if (tpl.isInteger(0)) x = tpl.getIntElem(0);  
    else return; 
 
    if (x >= 0.0) { 
      double r = Math.sqrt(x); 
      tpl.setElem(1, r); 
      cxt.emit(tpl); 
      if (x > 0.0) { 
        tpl.setElem(1, -r); 
        cxt.emit(tpl); 
      } 
    } 
  } 
} 
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Such a Java implementation of a SciSPARQL foreign function is 
effectively static, and returns the results by calling cxt.emit(). Each call to a 
foreign function may thus yield zero or more results. The arguments and 
results are passed using a single Tuple instance, where the first 
tpl.getArity()-1 positions are filled with arguments, and the function has to 
fill the last one with its result before emitting. In all these respects, C/C++ 
and Lisp interfaces are similar and offer the same degree of flexibility, while 
Python and Matlab interfaces offer a direct mapping of SciSPARQL 
function arguments to those of the implementing function. 

Since SciSPARQL is a dynamically typed language, in all cases a runtime 
type check is necessary. By convention, as explained in Section 3.6, a 
runtime error is not an exception, but instead the absense of any emitted 
result. An invalid value passed to a filter or postprocessing function is 
equivalent, e.g., to an unmatched triple pattern, simply resulting in a 
discarded solution. Hence, AmosException is reserved only for so-called 
internal errors, and cannot be thrown because of the wrong input.  

Linking of such a Java implementation is achieved by including the 
bytecode for MyLib into Java's CLASSPATH when running SSDM under JVM. 
In case of Python, the source code needs to be placed in PYTHONPATH.  In case 
of C/C++, linking involves compiling a separate dynamic-link library, and 
dynamically loading it into SSDM process, by issuing 
LOAD_EXTENSION('mylib'), referring to mylib.dll in Windows path or 
libmylib.so in Linux library path. Lisp source files are loaded in a similar 
way using SOURCE_LISP(). Matlab foreign functions require no additional 
linking, since they are available as callbacks from the SSDM process 
embedded into Matlab. 

Finally, the SciSPARQL definition of sqroot() would look like:  

DEFINE FUNCTION sqroot(?x)  
  AS JAVA 'MyLib/sqroot' COST 4 FANOUT 1 

Here the optional COST and FANOUT parts specify the cost and cardinality 
estimates. Even very rough estimates would help the optimizer much better 
than the absence of any. By convention, the unit cost corresponds to a simple 
arithmetic operation like + or * over scalar operands. FANOUT specifies the 
average amount of results emitted per function call - in our case it averages 
to one (i.e. zero for negative arguments and two for positive). 

Whenever possible, the users are encouraged to provide foreign functions 
as multidirectional [58] so that the optimizer might choose to compute the 
function arguments if the result happens to be bound eariler. Such 
definitions are made by specifying the alternative binding patterns as strings 
composed of 'b' for bound and 'f' for free (or, respectively, '-' and '+'), and 
providing an implementation for each. For example, if a similar 
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implementation square() is defined9 in MyLib Java class, the multidirectional 
definition would be: 

DEFINE FUNCTION sqroot(?x) AS 
  FOR 'bf' JAVA 'MyLib/sqroot' COST 4 FANOUT 1 
  FOR 'fb' JAVA 'MyLib/square' COST 1 FANOUT 1 

In this example we have shown a function dealing with simple types, like 
Double and Integer, wich are mapped to Java's (or other languages') native 
type system. Since the RDF with Arrays data model introduces RDF-specific 
types, like langage- and locale-annotated strings, typed literals, URIs, and 
most notably, Numeric Multidimensional Arrays; each language interface 
provides the additional classes for each of these. For example, a Java 
implementation would use UString, TypedRDF, URI, and NMA (array) wrapper 
classes defined in ssdm package. Each of them provides constructors and 
field accessors to facilitate the native data processing.  

The complete extensibility interface documentation for each language is a 
part of the SciSPARQL User Manual [146]. 

4.5 Calling SciSPARQL from Algorithmic Languages 
SciSPARQL queries can easily be incorporated into traditional algorithmic 
programs - this appoach would be somewhat opposite to the one descibed in 
the previous section. However, both approaches are typically combined in 
sufficiently complex real-life applications. Declarative SciSPARQL queries 
may thus be embedded in traditional data processing routines, which might 
include data acquisition, logging, visualisation, user interactions, or 
feedback loops in a control system.  

The process of calling SciSPARQL queries (or SciSPARQL functions as 
parameterized queries - see Section 4.2) relies on the concepts of connection 
and scan (result set), and involves the following steps: 

• establishing a connection to SSDM server, 
• passing a query string (or a function name and actual arguments) to 

the server, and retrieving a scan, 
• iterating through the scan, effectively running the query execution 

plan just enough to retrieve yet another result, 
• closing the scan, 
• closing the connection. 

                                                      
9 The implementation of square() should be aware of the binding pattern it is called 

with, as it has to retrieve its de-facto argument from position 1 and write its result into 
position 0. For this reason, sqroot_fb() might be a better  name for such implementation. 
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An important scalability feature is the lazy evaulation of SciSPARQL 
queries. A query does not have to be executed in its entirety in order to 
obtain a scan. Instead, it is the scan object that calls back SSDM in order to 
advance the query execution on demand. After retrieving each result, the 
application program is free close the scan, thus terminating the query - a 
feature more powerful than LIMIT clause inside a query, as any application 
logic can be involved. However, providing the LIMIT clause is still a good 
practice when the number of results to retrieve is fixed - this provides more 
freedom to the optimizer. 

Chapter 7 describes the usage of embedded SciSPARQL queries in 
greater detail, in the context of Matlab integration. Java, C/C++, and Python 
programs may use the respective APIs, implementing the Connection and 
Scan classes.  

Both this API and the Foreign Functions interface described in the 
previous section are the essential parts of the underlying Amos II [136] 
database management system. SSDM extends both of these in order to 
handle its type system - RDF types and arrays, and provides its own 
documentaion and usage examples. The API documentian is part of  the 
SciSPARQL User Manual [146], libraries, header files, and code examples 
are part of SSDM. 
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5 Scientific SPARQL Database Manager 

Scientific SPARQL was developed along with its implementation - a 
software system called Scientific SPARQL Database Manager, or SSDM for 
short.  

This chapter describes the internal architecture of SSDM's kernel, while 
the back-end and storage manager interfaces are explained in Chapter 6. 
Section 5.1 first presents an architectural overview including the query 
processing steps, illustrated by an example. Next, in Section 5.2 in-memory 
implementations of arrays and array operations in SSDM are explained in 
detail. Section 5.3 introduces data loaders from RDF serialization formats, 
including the array apprehension mechanisms, and external links that may 
be followed in a lazy fashion, resulting in array proxies.  

Section 5.4. describes the process of translating SciSPARQL queries to 
AmosQL. It begins with the formal defintion of the SciSPARQL statement 
structure in Section 5.4.1, followed by the necessary refinement of the 
standard SPARQL semantics in Section 5.4.2. Certain restrictions are lifted, 
and a clear operational semantics is defined for all valid SciSPARQL 
queries. Next, the target language query structure and semantics is described 
in detail in Section 5.4.3, along with the extensions made to it in order to 
implement SciSPARQL (Section 5.4.4). Finally, Section 5.4.5 gives a formal 
definiton of the translation algorithm - we reccommend this section mainly 
for those who are going to do their own implementation of SPARQL or a 
similar language, and are facing related challenges. Translations of 
aggregate functions, grouping, array access, functional views, second-order 
functions and path queries are explained in separate sub-sections. 

Section 5.5 completes the discussion by raising interesting issues with the 
rdf:first and rdf:rest properties, which become polymorphic in 
SciSPARQL, due to the backwards-compatibility requirement. Solutions are 
presented, along with illustrative examples. 
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5.1 Architecture overview 
Structurally, SSDM is comprised of a core (central box in Figure 8) capable 
of answering SciSPARQL queries, loading RDF with Arrays data for storage, 
executing external functions and implementing an open set of 
wrapper/mediator and storage back-end interfaces.  
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Figure 8. The SSDM Architecture, including interfaces and extensions 

Technically, SSDM is a major extension to the Amos II main-meory 
DBMS, utilizing its query processing facilities including AmosQL and 
ObjectLog query representations, query optimizer, cost model, execution 
algebra, extensibility mechanisms, inter-process communications, and other 
facilities that proved quite useful both in research prototyping and 
production scenarios. 

SSDM uses the in-memory database of Amos II to store/cache RDF 
graphs, so that the graph pattern matching is performed using its main-
memory based indexing mechanisms. Array data can also be stored and 
procesessed in main memory - we will refer to this case as the main-memory 
scenario in Chapter 6. Since SSDM is built to accommodate large amounts 
of numeric data, the generic storage back-end/wrapper mechanism 
(described in Section 6.1) is used to retrieve data from (or store the data in) 
an open set of storage systems, and to delegate array processing to these 
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systems whenever possible. Sections 6.2 - 6.3 describe the Relational back-
end API and the specific optimization techniques. A setting where arrays are 
stored directly in binary files is described in Chapter 7. 

RDF with Arrays graphs are defined either with a custom-built wrapper 
over a non-RDF data model, (as described in Section 2.3), produced 
internally using SPARQL Update syntax (Section 3.9), or imported from 
RDF files using the RDF importer (Section 5.3), where the numeric array 
data is either consolidated from an RDF-based notation (Sections 5.3.2 - 
5.3.3) or loaded lazily from binary files using file links (Section 5.3.1) - a 
specific type of URIs. 

SciSPARQL queries are extensible with foreign functions, which can be 
defined in one of the supported algorithmic languages. For this purpose, 
SSDM features a functional extensibility interface (Section 4.4). These 
foreign functions can be used in queries for filtering or post-processing the 
results, and the query optimizer can be provided the necessary information 
for optimizing such external calls (ibid). 

An SSDM process can run either as a server, accepting connections from 
SSDM clients, as a client, or stand-alone. The communication is done low-
level via TCP sockets, with all data objects being marshalled using 
serialization methods provided for their classes. The server instances can 
easily be clustered using centralized (star-shaped) or decentralized (peer-to-
peer) network configurations. 

For the query part, SSDM currently offers 
• a text based-interpreter console for direct user interaction, in case of a 

stand-alone/client process, 
• C and Java APIs allowing to send SciSPARQL queries and updates, 

and access the query results in terms of the host language data 
structures (explained in Section 4.5), and 

• MATLAB front-end, allowing seamless integration of SciSPARQL 
queries into typical scientific and engineering workflows (described 
in Chapter 7). 

The SSDM architecture is best illustrated by a scenario, which includes 
loading an RDF with Arrays dataset and answering a SciSPARQL query. 

5.1.1 Example Dataset 

As a running example, we are going to extend the RDF dataset from the 
previous chapter, illustrated in Figure 6. It features an experiment instance of 
a class ex:OurExperiment, with attached realization instances of another class 
ex:OurExperimentRealization. Both have a number of properties, including 
array-valued properties ex:initialState and ex:result. 
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Let's first consider the following Turtle file being loaded into SSDM: 
 
@prefix ex: <http://udbl.uu.se/ex#> . 
 
ex:experiment1 a ex:OurExperiment ; 
               ex:simulationMethod ex:OurSimulationAlgorithm . 
 
_:r1 a ex:OurExperimentRealization ; 
     ex:inExperiment ex:experiment1 ; 
     ex:id 1 ; 
     ex:initialState (0 0.5 1 1 1 1 0.5 0) ; 
     ex:iterations 1000 ; 
     ex:parameter_A 0.3 ; 
     ex:parameter_B 0.85 ; 
     ex:result <file://realization_1.mat#Res> . 

Essentially, this file combines data and metadata describing one instance 
of the ex:OurExperiment class, and one instance of the 
ex:OurExperimentRealization class. The schema of this RDF dataset is 
implicit, and can be illustrated by the ER-diagram in Figure 9, with array-
valued properties shown as 3D rectangles.  
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Figure 9. Implicit ER model, inferred from the first part of the G1 example dataset 

Two syntactic options are used to supply arrays in a Turtle file:  
• RDF Collections syntax for the ex:initialState property, utilizing 

array apprehension syntax described in Section 5.3.2, and 
• file links for the ex:result property, described in Section 5.3.1.  

As this Turtle file is imported into SSDM, ten RDF triples become stored 
as a default graph in SSDM's in-memory database. Two triples are array-
valued: one corresponding to ex:initialState stores a memory-resident 
array as its value, which is consolidated from an RDF collection of 
numbers. The value of the ex:result triple is read from a linked file, using 
the additional information (a variable name) provided after the '#' sign.  As 
we show in Section 6.1, it is not necessary to load the array content into 
memory as SSDM allows for lazy array data retrieval. Still, the array shape 
and element type information need to be read from a linked file at the 
loading stage, so the linked files are required to be available on the server 
file system at this point.  
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One of the benefits of using RDF for metadata, compared with the 
relational data model, is that adding new properties is easy, and does not 
require redesign of the whole database. For example, at some later point one 
might decide to store an additional parameter C, and move the 
ex:simulationMethod property down to the ex:OurExpermientRealization 
class:  

_:r314 a ex:OurExperimentRealization ; 
       ex:inExperiment ex:experiment1 ; 
       ex:id 314 ; 
       ex:simulationMethod ex:OurSimulationAlgorithm_v2; 
       ex:initialState (0 0 0 0.5 0.5 0 0 0) ; 
       ex:iterations 2000 ; 
       ex:parameter_A 0.3 ; 
       ex:parameter_B 0.9 ; 
       ex:parameter_C 3.14 ; 
       ex:result <file://realization_314.mat#Res> . 

Such a realization instance still belongs to the same class, and is 
connected to the same experiment instance as the realization above. As for 
the ex:simulationMethod property that can now be attached to instances of 
different classes, SPARQL makes it easy to query using UNION and 
OPTIONAL constructs, , as shown in Section 3.3.2. 

We will refer to this example dataset, including all the triples attached to 
_:r1 and _:r314, as graph G1 throughout this chapter. 

5.1.2 Example Query 
A typical SciSPARQL query contains a graph pattern, filtering and post-
processing expressions.  

Q1: Select the average of the simulation result values at the last iteration, 
together with realization id, for those realizations that have parameter 
A ≥ 0.25 and the initial state values limited by 0.75 (assuming the 
ex:result arrays are 2-dimensional, and the second dimension is the 
iteration number): 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id (array_avg(?R[:, ?iterations]) AS ?res) 
 WHERE { ?realization a ex:OurExperimentRealization ; 
                      ex:id ?id ; 
                      ex:result ?R ; 
                      ex:iterations ?iterations ; 
                      ex:parameter_A ?a ; 
                      ex:initialState ?initialState . 
         FILTER ( array_max(?initialState) < 0.75 
                  && ?a >= 0.25 ) } 

This query has a single block of conditions, and, conceptually, the process 
of its evaluation consists of three different steps, as illustrated in Figure 10: 
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• applying a graph pattern, 
• filtering the solutions, and 
• postprocessing the results. 
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Match pattern:

Filter solutions:
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Figure 10. Conceptual stages of answering query Q1 

By the solution of a graph pattern we will denote the set of bindings, one 
for each variable in a graph pattern, which belong to the underlying RDF 
graph and do not contradict that pattern. For example, the complete list of 
solutions for the single graph pattern in Q1, given the RDF graph G1 in 
Section 5.1.1, can be represented as a table: 

?realization ?id ?R ?iterations ?a ?initialState 
_:r1 1 <array 

proxy> 

1000 0.3 (0 0.5 ... 

_:r314 314 <array 
proxy> 

2000 0.3 (0 0 ... 

At the filtering stage, the first solution is filtered out by the first conjunct, 
so only the second solution contributes to the result. However a more 
detailed look at the conditions in Q1 might suggest that we do not really 
need to retrieve the complete solutions in order to evaluate the filters - by 
binding only the ?a and ?initialState variables first, we might skip 
retrieving the other data from the RDF graph in some cases.  

In the next subsections we show how SSDM solves this typical query 
optimization task, and comes up with an efficient execution plan. 



 65 

5.1.2.1 Query translation 
The first step is translating SciSPARQL to AmosQL: 

select id, rdf:array_avg(aref(R,1,rdf:minus(iterations,1))) 
  from Literal realization, Literal a, Literal initialState,  
       Literal iterations, Literal R, Literal id 
 where (realization,  
        URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
        URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
       in GRAPH(0) 
   and (realization, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0) 
   and (realization, URI('http://udbl.uu.se/ex#result'), R)  
       in GRAPH(0) 
   and (realization,  
        URI('http://udbl.uu.se/ex#iterations'), iterations)  
       in GRAPH(0) 
   and (realization, URI('http://udbl.uu.se/ex#parameter_A'), a)  
       in GRAPH(0) 
   and (realization,  
        URI('http://udbl.uu.se/ex#initialState'), initialState)  
       in GRAPH(0) 
   and rdf:array_max(initialState)<0.75 and a>=0.25; 

Here we can see that all RDF triples are accessed via the GRAPH() 
function, whose argument denotes a specific graph, with 0 denoting the 
default graph. A triple pattern is matched using the '(s p o) in' syntax for 
locating tuples in AmosQL. All SciSPARQL query variables are mapped to 
AmosQL query variables, and functions array_avg() and array_max() 
are translated to their corresponding AmosQL implementations. Prefixed 
URIs are expanded into string arguments to the URI() constructor function.  

Since SciSPARQL is dynamically typed, while AmosQL is statically 
typed, a common supertype Literal for all RDF terms is used in variable 
declarations. Additionally while e.g. comparison operators are defined 
across any type of arguments, some other arithmetic operators like '-' have 
to be translated to calls to a generalized function like rdf:minus(), which 
does the dynamic type checking. That call is needed to translate 1-based 
array indexing in the current SciSPARQL dialect to the 0-based array index, 
as required by the AmosQL function aref(), introduced in SSDM. The 
aref() function extracts an array subset given the array value of variable R, 
along the second dimension (argument 1) with supplied index iterations-1.  

5.1.2.2 ObjectLog representation: predicates and binding patterns 
The AmosQL query is then further translated into a logical expression of 
ObjectLog predicates. Extra variables are introduced to flatten out the nested 
functional-style expressions: 

(*SELECT* ID+ _V29+) <- 
(AND (GRAPH 0 REALIZATION  
            #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]  
            #[URI "http://udbl.uu.se/ex#OurExperimentRealization"]) 
     (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#id"] ID) 
     (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#result"] R) 
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     (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#iterations"]   
            ITERATIONS) 
     (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#parameter_A"] A) 
     (GRAPH 0 REALIZATION #[URI "http://udbl.uu.se/ex#initialState"]  
            INITIALSTATE) 
     (RDF:ARRAY_MAX INITIALSTATE _V26) 
     (< _V26 0.75) 
     (>= A 0.25) 
     (RDF:MINUS ITERATIONS 1 _V27) 
     (AREF R 1 _V27 _V28) 
     (RDF:ARRAY_AVG _V28 _V29)) 

Here, URI() constructor calls with constant arguments are evaluated at 
compile time, which is a practical way to reduce the size of the optimization 
problem. Any other AmosQL function (whether stored or foreign) with a 
signature f(x1, ... xn) -> (y1, ..., ym) is matched with an ObjectLog predicate (F 
X1 ... Xn Y1 ... Ym). Any derived AmosQL functions would have been 
expanded and flattened at this step, and any logical expressions would be 
normalized to Disjunctive Normal Form.  

Every ObjectLog predicate has a number of allowed binding patterns, and 
a cost and fanout (i.e. cardinality multiplier) estimate associated with each of 
them. Predicates representing stored functions can be evaluated with all, any, 
or none of their arguments bound: the fanout estimates depend on the 
storage statistics and cardinality constraints provided, while the cost to 
return each result depends on the available access paths.  

Foreign functions (whether built-in or user-defined) are different. For 
example, a comparison operator '<' can only be evaluated when both of its 
arguments are bound, whereas the rdf:minus() arithmetic function  is 
represented by a ternary ObjectLog predicate (RDF:MINUS A B X), which can 
be evaluated in either of three directions: each of the variables can be 
computed while the other two are bound. We will denote such binding 
patterns as --+, -+-, +--, where '-' corresponds to the incoming bound 
variable and '+' corresponds to the variable that gets its binding as the result 
of predicate execution. 

Another example is (AREF A DIM IDX X), which can either compute a 
single slice X when the original array A, dimension DIM and slice index IDX 
are bound (pattern ---+), or compute all possible slices of array A in the 
dimension DIM, together with the corresponding slice indexes IDX (pattern  
--++). The fanout estimates are largely different, while the cost of 
generating each result is the same for both binding patterns. 

5.1.2.3 Execution plan 
The task of the query optimizer is to find an optimal execution plan, by 
selecting the right (i.e. correct and most suitable) order of the predicates, and 
thus determining their binding patterns and the transition of information 
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through the variables. In this case, the Nested Loop Join operator is used to 
implement the conjunction.10  

The stored GRAPH predicate can be regarded as a relational table with four 
columns that is repeatedly joined with itself, in order to retrieve the 
realization instances and the values of their properties. The first appearance 
of GRAPH in the execution plan will bind the realization variable, while the 
subsequent ones will use the discovered bindings for that variable. 

The query optimizer (and SSDM in general) has no way of knowing the 
implicit RDF schema shown in Figure 9, so it is prepared to encounter, for 
example, multiple ex:parameter_A values for a single realization instance, 
and multiple ex:result values independently. Hence, the Nested Loop Join 
approach takes care of the possible multiplicity of properties, producing a 
result for each discovered combination. 

(*SELECT* ID+ _V29+) <- 
(NESTED-LOOP-JOIN  
   (HASH-INDEX-SCAN GRAPH-+--  
      0 REALIZATION+  
      #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]  
      #[URI "http://udbl.uu.se/ex#OurExperimentRealization"]) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 REALIZATION- #[URI "http://udbl.uu.se/ex#parameter_A"] A+) 
   (CALL GE-- A- 0.25) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 REALIZATION- #[URI "http://udbl.uu.se/ex#initialState"]  
      INITIALSTATE+) 
   (CALL NMA-AGGREGATE--+ INITIALSTATE- 4 _V26+) 
   (CALL LT-- _V26- 0.75)   
   (HASH-INDEX-SCAN GRAPH---+  
      0 REALIZATION- #[URI "http://udbl.uu.se/ex#id"] ID+) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 REALIZATION- #[URI "http://udbl.uu.se/ex#result"] R+) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 REALIZATION- #[URI "http://udbl.uu.se/ex#iterations"] 
      ITERATIONS+) 
   (CALL PLUS-+- 1 _V27+ ITERATIONS-) 
   (CALL NMA-PROJECT---+ R- 1 _V27- _V28+) 
   (CALL NMA-AGGREGATE--+ _V28- 2 _V29+))) 

The same execution plan is represented graphically in Figure 11. The 
vertical order of predicate boxes corresponds to their order in the nested 
loop, the 'output' or free variables are underlined, and the arrows show the 
data dependencies among the predicates. The stored predicate GRAPH appears 
with the hash-index-scan access method, and the foreign predicates are 
accessed by calling their implementations, corresponding to the binding 
patterns chosen. 

 

                                                      
10 In general, the Amos II optimizer may choose to implement the conjunction of predicates 
differently, e.g. with a Merge Join operator, 
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hash-index-scan GRAPH-+--
(0, Realization, rdf:type, ex:ourExperimentRealization)

hash-index-scan GRAPH---+ 
(0, Realization, ex:parameter_A, A)

call GE-- (A, 0.25)

hash-index-scan GRAPH---+ 
(0, Realization, ex:initialState, initialState)

call LE-- (V26, 0.75)

call NMA-AGGREGATE--+
(initialState, 4, V26)

hash-index-scan GRAPH---+ 
(0, Realization, ex:id, id)

hash-index-scan GRAPH---+ 
(0, Realization, ex:Result, R)

hash-index-scan GRAPH---+ 
(0, Realization, ex:iterations, iterations)

call PLUS-+- (1, V27, iterations)

call NMA-PROJECT---+
(R, 1, V27, V28)

call NMA-AGGREGATE--+
(V28, 2, V29)

SELECT

hash-index-scan GRAPH-+--
(0, Realization, rdf:type, ex:ourExperimentRealization)

hash-index-scan GRAPH---+ 
(0, Realization, ex:parameter_A, A)

call GE-- (A, 0.25)

hash-index-scan GRAPH---+ 
(0, Realization, ex:initialState, initialState)

call LE-- (V26, 0.75)

call NMA-AGGREGATE--+
(initialState, 4, V26)

hash-index-scan GRAPH---+ 
(0, Realization, ex:id, id)

hash-index-scan GRAPH---+ 
(0, Realization, ex:Result, R)

hash-index-scan GRAPH---+ 
(0, Realization, ex:iterations, iterations)

call PLUS-+- (1, V27, iterations)

call NMA-PROJECT---+
(R, 1, V27, V28)

call NMA-AGGREGATE--+
(V28, 2, V29)

SELECT  
Figure 11. The graphical representation of Q1 execution plan 

The query optimizer wisely chooses to find the ex:realization instances 
using the predicate with a single unbound variable - a type predicate. Next, 
parameter A value is extracted, so that the simple inequality filter can be 
applied as early as possible. Next, the array value of the ex:initialState 
property is extracted from the RDF graph, and an intra-array aggregate 
function is evaluated - for another filter to take place. Given both filters are 
satisfied, the remaining properties are extracted and post-processing is 
performed. 

5.1.2.4 Array operations 
The execution plan above contains three array operations - two calls to the  
generic external function NMA-AGGREGATE, implementing built-in array 
condensers like array_max() and array_avg(), and one call to NMA-
PROJECT. The principal difference between these two functions is that NMA-
AGGREGATE actually needs the array contents in order to compute the result, 
while NMA-PROJECT does not. 

  As explained in Section 5.2, a memory-resident array consists of two 
objects - an array descriptor and an array storage object. A new array 
descriptor object is created whenever an operation like NMA-PROJECT, or 
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any other operation selecting a subset of an array, or altering its shape in 
some other way is applied. The new descriptor will be pointing to the same 
array storage object, so that the massive numeric data making up the array 
contents is not copied or even accessed.  

Furthermore, when an array is stored externally, it is represented by an 
array proxy object in SSDM, which is very much similar to an array 
descriptor, except that it contains the information necessary to identify the 
external storage system (a back-end, or a wrapped database, or a linked file) 
and to locate a particular array instance within it. Whenever an operation 
like NMA-PROJECT is applied to an array proxy, a new array proxy object is 
created, and this storage-relevant information is copied. 

Hence, the actual array data retrieval from a linked file may be done just 
before the call to NMA-AGGREGATE in case of externally stored ex:result 
arrays. This data retrieval is implemented by the array-proxy-resolve, 
APR() function, which materializes the specified subset of an external array, 
based on the information in an array proxy, into a memory-resident array. 
The general approach to implement APR() for arbitrary array storage 
systems is described in Section 6.1. 

One benefit of this lazy data retrieval is that typically only a small subset 
of an array happens to be needed for the actual computation. In our example, 
we only retrieve the last iteration's result from each simulation. Another 
reason is that an execution plan might contain additional filter conditions 
between generating array proxies and materializing them. Section 6.2 
discusses further optimizations of this process by aggregating these resolve 
operations into pipelined streams in case of SQL-based storage back-ends. 

5.2 Numeric Multidimensional Arrays 
The formal definition of the Numeric Multidimensional Array (or array for 
short) is given in the beginning of Section 4.1, followed by the definitions of 
array operations. This section explains implementation details of arrays and 
array operations in SSDM  

5.2.1 Storage of Resident Arrays 
In SSDM's native main-memory data storage, arrays are represented as 
descriptor objects referring to storage objects, as shown in Figure 12. A 
storage object compactly stores array elements in continuous memory, while 
descriptor objects provide very space efficient representations of derived 
arrays. This allows us to compute derived arrays without copying or 
otherwise accessing the array contents. 
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A storage object represents a one-dimensional array of Integer, Double, or 
Complex numbers. It contains a small header storing the element type. A 
descriptor object stores a pointer to a storage object,  the number of 
dimensions dims of the array, the index offset of the first element in the 
storage object referenced in a derived array, and a sequence of dimension 
access descriptors (DADs), each describing one dimension of a derived 
array enumerated from 0 and up. 

A given storage object can have many descriptors corresponding to 
different derived arrays. When a new array is created, both the descriptor 
and storage objects are allocated in main memory. When a derived array is 
produced, a new descriptor object is created directly pointing to the storage 
object of the original array. Descriptor objects are automatically freed by the 
garbage collector whenever no variable or object refers to it. The garbage 
collector frees the storage object when the last descriptor object referring to 
it is freed. 
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Figure 12 In-memory array representation 

For each array, its dimension sizes are stored in corresponding dim fields 
of its DADs. The storage order (so) values enumerate the dimensions from 
outmost to inmost dimension. The lower bounds (lo) are initialized to 0, and 
the iteration strides (stride) are initialized to 1. In this simple case, the 
access function a(i1,...,in) that maps the array subscripts to the storage index 
takes the form: 

( ) ( ) ∏
>

− ⋅−=
k

soso

m
mkn

km

iiia dim1,..., 10  

This expression is simplified by pre-computing the access multipliers 
(am), representing invariant parts of the above formula per array dimension: 
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In the example in Figure 12, am0=5 and am1=1, so that element A[2,3] 

would be dereferenced to storage index a(2,3) = 7, containing the element 8. 

In the most general case, array access involves a physical offset, some 
iteration strides, and some lower bounds of each logical index. The complete 
form of an access function aA for accessing one element (i1,…,in) of the array 
A is: 

( ) ( ) k
k

k
A
knA amipoffsetiia  ⋅+=,...,1  (1) 

where 

( ) ( ) kkkk
A
k strideiloip ⋅−+= 1  

The function ( )k
A
k ip  projects a logical subscript ik of the derived array A 

to a (0-based) logical subscript of the basic array. 

For example, the element D[3] of the subarray e presented in Figure 13d 
below would be addressed as aD(3)=7, which corresponds to the same 
element 8. 

5.2.2 Array Transformations  
Below we describe the three central array operations capable of producing 
new descriptor objects (or, similarly, new array proxies). These array 
transformations do not access the array content, whether it resides in a main-
memory storage object or is externally stored. The fourth operation - array 
element access, is also delayed in case of external arrays. 

1) Permutation of dimensions is a multidimensional generalization of the 
matrix transposition operation. Given an n-dimensional numeric array A, the 
order of logical subscripts used to access its elements can be changed 
without affecting the physical order. This involves swapping the DADs, 
while retaining their access multipliers (am) intact, as illustrated in Figure 
13b. 
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Figure 13. Array transformations in terms of descriptor objects 

The operation Permute(A, h0,…,hn-1) takes an array A  and a vector of 
distinct permutation indices h0,…,hn-1, 0≤hk<n and returns a derived array B 
such that the access functions map to the same elements as those pointed to 
by the permuted subscripts: 

( ) ( )
10

,...,,..., 10 −
=− nhhBnA iiaiia

 
Permute is a SciSPARQL function that can be used in a SELECT clause or 

FILTER expression. Matrix transposition is defined by the functional view: 

DEFINE FUNCTION Transpose(?matrix) 
   AS SELECT Permute(?matrix,1,0); 

2) Slicing is an operation that can be applied to each array dimension 
independently, resulting in an array subset specified by subscripts and a 
stride, as shown in Figure 13c. Given an n-dimensional numeric array A, the 
operation Subk(A,lok,hik,stridek) results in an derived array B of the same 
dimensionality, where the first element is defined by lok: 

( ) ( )0,...,00,...,,...,0 BkA aloa =  

Effectively, the lo value in the k-th DAD of the resulting array B is: 

( )k
A
k

B
k loplo = , 
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Analogously, the iteration stride of B is multiplied by the stridek 
argument: 

k
A
k

B
k stridestridestride ⋅=  

The dimensions of B are defined as: 

( )
1

1
dim +




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 −−=
B
k

B
kk

B
kB

k stride

lohip
 

When applied to the different dimensions, slicing operations are 
completely orthogonal and commutative: 

( )( )
( )( )lllkkkkl

kkkllllk

stridehilostridehiloASubSub

stridehilostridehiloASubSub

,,,,,,

,,,,,,

=
=

 

for any dimension indices lk ≠  and the valid lo, hi and stride values. 

3) Projection involves reducing the dimensionality of an array by 
selecting one subscript value in a specified dimension - either row (Figure 
13d) or column (Figure 13e) of a matrix, slice of a cube, etc. Projection 
removes one of the DADs, while retaining the access multipliers for the 
other dimensions untouched. The operation Prk(A,ik) results in a derived 
array  B where the offset references the first element of B: 

( )0,...,,...,0 kAB iaoffset =  

Similarly to slicing, the projection operations across different dimensions 
can also be arbitrarily superimposed. However, since the number of logical 
dimensions changes, the dimension enumeration has to be adjusted: 

( )( ) ( )( )
( )( )


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Projecting a 1-dimensional array results in an atomic value (in case of 
memory-resident arrays) or a 0-dimensional array proxy (see Section 6.1) 
pointing to such an element in an externally stored array. 

4) Element access can be regarded as an ultimate superposition of array 
projections (and as such, a particular case of array projections). An element 
of array A identified by a vector of logical subscripts nii ,...,1  can be 
defined as  

[ ] ( )( )111 ...,,Pr...Pr,..., iiAiiA nnn =  

Technically, however, the multidimensional storage function 
( )10 ,..., −nA iia  defined in the previous section is used to compute the 
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particular storage address in a memory-resident array, or the offset in a new 
0-dimensional array proxy object used to represent single elements of 
externally stored arrays. 

5.3 Data Loaders 
There are two basic ways to load RDF with Arrays data into SSDM: 

• using W3C SPARQL 1.1 INSERT and INSERT DATA update 
statements, or 

• loading RDF data from Turtle or NTriples text-based formats. 

In the latter case, array data is either 
• linked using Turtle file links (introduced by SSDM), or 
• consolidated from one of the standard RDF representations of the 

multidimensional numeric data, including RDF collections and RDF 
Data Cube datasets. 

The Turtle file reader in SSDM also supports NTriples [20] as a subset of 
Turtle. Local files and files available on the Web via HTTP can be loaded 
into a default or named RDF graph in the database using the LOAD() 
directive. The parsing is performed in a streamed way, (which is also the 
case with INSERT DATA statements), so arbitrarily large Turtle files are 
supported.  

5.3.1 File Links 
According to the W3C RDF standard, a value in a subject-property-value 
RDF triple can either be a URI, a blank node, or an RDF Literal. A construct 
like  

<file://realization_1.mat#Res> 

is formally a URI, and hence would raise no error if loaded into another 
RDF Store. SSDM tries to interpret it as an array value in the respective 
triple. 

First, the Turtle reader extracts the file extension and checks whether an 
array reader plug-in is registered to handle that kind of files. SSDM is 
extensible with array readers for different file formats, and any such array 
reader is free either to immediately load the array into memory or  produce 
an array proxy, based e.g. on the array size or other properties. In the latter 
case, the corresponding array-proxy-resolve routine also needs to be 
registered for this particular kind of array proxies - this option is described 
in Section 6.1. 
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SSDM checks that the file is available (in this case, the file 
realization_1.mat in the SSDM server's file system), and calls the array 
reader, passing the part of the file link after '#' as a parameter. In the 
example scenario described in 4.1, the .mat file reader accesses the file to 
check whether the variable Res exists, extracts the type and shape of the 
array, and returns an array proxy containing the file and variable names, 
besides the usual array descriptor information. These proxies may be 
resolved later or immediately. 

In case of no array reader registered, or the file being not available, or 
file links are disabled altogether when the _sq_resolve_file_links_ 
flag is false, the URI from the Turtle file will be stored as a value of the 
RDF triple, treating it in the same way as any standard RDF store. 

5.3.2 RDF Collections 
RDF collections are described in Section 2.3.5.1 and might be used to 
explicitly represent multidimensional array data in a Turtle file. The main 
problem is that they are merely 'syntactic sugar' introduced by the Turtle 
format to compactly represent such collections with large numbers of the 
underlying RDF triples.  

For example a Turtle triple 

:s :p ((1 2) (3 4)) . 

masks 12 additional RDF triples and 6 introduced blank nodes, as shown in 
Figure 4. All this underlying information can be consolidated into a 2x2 
array of integers, and SSDM does that. 

An RDF collection would be identified as an array if the following 
conditions about it hold: 

• each element is either a number or another collection; 
• all numbers appearing in collections are nested on the same level, and 

only numbers do appear at that level; 
• a uniform number of elements in collections are nested on each level. 

The widest numeric type among the values found in the collection will be 
used as the array element type.  

For example, the value of the Turtle triple  

:x :a ((1 2.25 3) (4 5 6)) .  

will be represented with 2x3 array of real numbers in SSDM.  

As another example, the value of the Turtle triple  

:y :a ( 1 (2 3) 4) .  
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cannot be represented as an array, since it is not rectangular. Therefore it is 
stored as a regular RDF sequence where the 2nd element is represented as a 
one-dimensional array of two elements. This still saves the storage of four 
triples and two blank nodes. 

This physical compression adds new array-based semantics to collections, 
while retaining the original linked-list semantics. The standard rdf:first 
and rdf:next predicates are redefined over arrays, virtually connecting them 
with their respective subsets. Such polymophism leads to an interesting 
optimization problem, discussed in Section 5.5, together with current 
solutions. 

5.3.3 Data Cube Vocabulary 
As the Semantic Web mainly concentrates on providing a framework for 
publishing metadata, the RDF Data Cube [133], introduced in Section 
2.3.5.2 provides a rich vocabulary for: 

• defining the data structures - using the classes 
qb:DataStructureDefinition, qb:ComponentSpecification; 

• defining flat and hierarchical enumerations, a.k.a. code lists - using 
the classes skos:ConceptScheme, skos:Concept; 

• identifying the instances of Data Cube datasets (with an open set of 
metadata attached) - using the class qb:DataSet; 

• storing the observations (array elements) in terms of dimensions, 
measures and attributes - using the class qb:Observation; 

• defining standard slices, e.g. time series, snapshots, or otherwise 
grouping the observations - using the classes qb:SliceKey, qb:Slice, 
qb:ObservationGroup. 

The RDF Data Cube encodes the array data results in much bigger RDF 
graphs, compared to RDF collections. It suggests no particular nesting order, 
and might be better suited for sparse array data. For example, the 2x2 matrix 
shown on Figure 4 would take 5 RDF triples per cell: 

ex:o4 a qb:Observation ; 
      qb:dataSet ex:dataset1 ; 
      ex:i 2 ; ex:j 2 ; ex:value 4 . 

with the additional structural metadata in place: 

ex:dataset1 a qb:DataSet ; 
            rdfs:Label "My 2x2 matrix example" ; 
            qb:structure ex:dsd1 . 
 
ex:dsd1 a qb:DataStructureDefinition; 
        qb:component 
           [ qb:dimension ex:i ; order 1 ], 
           [ qb:dimension ex:j ; order 2 ], 
           [ qb:measure ex:value ] . 
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A qb:DataStructureDefinition instance defines the components of a data 
cube - i.e. its dimensions, measures, and attributes. Attributes may be 
attached to the dataset as a whole or to particular slices. For example, a unit 
of measure is semantically an attribute of each measurement, while it can be 
stored once for a given dataset, to avoid redundancy. Dimension values may 
also be attached to particular slices. Hence, an RDF Data Cube can be 
expessed as a graph in equivalent normalized and abbreviated forms. The 
concept of 'normalization' is defined as somewhat opposite to the 
normalization in relational databases: dimensions, whose values are only 
given once per slice (or attributes whose values are only defined once per 
dataset), are said to form an abbreviated Data Cube. The equivalent 
normalized cube will replicate these values for each individual 
measurement. 

SSDM consolidates RDF Data Cube datasets, drastically reducing the 
graph size, while preserving all information therein. New array properties, 
containing the numeric data extracted from the observations, will be attached 
to the corresponding qb:DataSet instance. The property names would be the 
same as the component names used in the original observations (ex:value in 
our example). The distinct dimension values will be sorted and attached as 
collections to the same qb:DataSet instance. For numeric dimensions these 
lists will automatically be represented as 1D arrays. However, if for a 
particular dimension all values are positive integers, their set is contiguous 
and includes 1 (as for ex:i and ex:j dimensions in our example), no 
mapping is needed, and those values can be used directly as array subscripts. 

The conversion is done in two phases: first, the distinct dimension values 
are collected, and then the allocated arrays are filled with observation data. 
No qb:Observation nodes need to be stored anymore, however, they may still 
be inferred (in other words, virtually reconstructed) when processing basic 
SPARQL queries. 

A realistic example is given in [133], both in abbreviated (with slices) and 
normalized forms. The dataset represents 24 numeric observations (life 
expectancy per region, per time period, per gender), along with the structural 
and publication-related metadata, in accordance with the SDMX [147] 
practices for the statistical data modelling. The abbreviated form consists of 
206 triples. Once read into SSDM, 150 of these triples are consolidated into 
a single array-valued triple, and three RDF collections for dimension values 
enumeration (total 9 ordered values)11.  

                                                      
11 Currently, SSDM uses RDF collections to store the ordered sets of non-numeric values, 
though a generalized array type might help further reducing the graph size in this example - 
the current approach adds 18 triples to store RDF collections as linked lists. 



78 

Figure 14 below shows this Data Cube example the way it is represented 
in SSDM (most rdf:label, rdf:comment, and dct:description properties are 
omitted). The central node is eg:dataset-le3, representing the dataset 
instance. The top-left part of the figure is occupied by the publication-related 
metadata, which is crucial to finding this dataset among the others on the 
web. The bottom half of the picture shows the definition of the dataset's 
structure - as an instance of qb:DataStructureDefinition, with its 
qb:component properties: dimensions, measures, and attributes. Some of these 
are borrowed directly from the SDMX vocabulary, while some others are 
mapped to the corresponding statistical concepts via the qb:concept 
properties. 
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Figure 14. The RDF with Arrays consolidation of the RDF Data Cube example 
dataset from [133] 

The top-right part of Figure 14 shows the parts of the graph (with dashed 
arrows) added by SSDM, consolidating the data from the 150 original 
triples. This includes the array-valued property eg:lifeExpectancy, storing 
the measure, and three collection-valued properties, storing the dimension 
values. Notice that RDF node URIs shown in bold font, associated with the 
qb:DataStructureDefinition instance via blank nodes, are also used as 
property URIs for the corresponding qb:DataSet instance - this is the 
standard RDF Data Cube way of defining and using custom properties. 

Effectively, as a result of consolidation, all Data Cube components 
become attached to the qb:DataSet instance - whereas some remain single-
valued (the sdmx-attribute:unitMeasure attribute), some become ordered 



 79 

sets (the dimensions), and some become multidimensional numeric arrays 
(the eg:lifeExpectancy measure in this example). Slices are no longer used 
for abbreviation - instead, the array representation of the multidimensional 
data allows extracting slices on demand, e.g. for the purpose of aggregation.  

Consolidating RDF Data Cube datasets helps to drastically reduce the 
graph size, providing physical-level separation of data and metadata. Under 
certain SSDM configurations, the resulting arrays might be stored in a 
specialized back-end, while metadata is retained in memory. Another 
important benefit is speeding up pattern-matching queries, by letting them 
deal with much smaller RDF graphs. 

5.4 Scientific SPARQL Query Processor 
As illustrated by the example in Section 5.1.2, processing a SciSPARQL 
query involves a number of steps: 

1. Translation to AmosQL 

2. Parsing to ObjectLog representation 

3. Flattening and applying rewrites 

4. Cost-based optimization 

5. Execution runtime 

This section mainly explains steps 1 and 5, which are largely 
interconnected, and most of the work on implementing a SciSPARQL query 
interpreter was concentrated there.  

As for the intermediate steps 2 - 4, SSDM largely relies on the underlying 
Amos II functionality. In this section we show that it is possible to 
implement the complete SPARQL semantics (as defined by the W3C 
standards [155, 156]) using the general Datalog-based query processing 
architecture. Some interesting semantic mismatches were encountered, and 
some of the solutions involved extensions to AmosQL, the predicate 
calculus representation, and the query optimizer. 

The translation process is based on the internal representation of the query 
structure. The process includes:  

• parsing the string representation of a SciSPARQL query, using an 
SLR(1) ascending parser, resulting in a data structure Q; 

• performing a number of transformations on Q, collecting lists of 
variables, applying expression rewrites; 

• generating the string representation tr(Q) of the generated AmosQL 
query, using a recursive tree-to-text writer. 
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This section describes the SciSPARQL query structure in a formal way, 
discusses the algebraic interpretations of SciSPARQL along with the related 
concept of well-designed queries, and explains the structure of AmosQL 
queries used for the translation and the extensions made to AmosQL. It 
concludes with a formal definition of the translation function tr(Q). More 
examples are introduced to illustrate important concepts as well as the 
translation cases. 

5.4.1 SciSPARQL Query Structure 
Following is a formalized description of the W3C SPARQL 1.1 query 
structure, which completely describes the SciSPARQL query structure as 
well. The extensions introduced by SciSPARQL are the new kinds of 
expressions (e.g. array expressions), and the new kinds statements (e.g. the 
DEFINE FUNCTION statement). Also, any SciSPARQL function call with 
arguments explicitly bound is also a valid SciSPARQL statement - e.g. 
directives like LOAD(), SOURCE(), etc. are, syntactically, top-level function 
calls. 

According to the W3C SPARQL specifications, there are four basic types 
of queries, differing in the kind of output they produce: 

• ASK queries, returning a Boolean value; 
• CONSTRUCT and DESCRIBE queries, returning sets of triples (i.e. 

resulting RDF graphs); 
• SELECT queries, returning sets of bindings for the output variables. 

In SPARQL the result of a SELECT query always includes names of 
variables, hence the SELECT list may contain either query variables, or 
named expressions, where the result of an expression is bound to a new 
variable. Example Q1 contains a named expression, bound to variable ?res. 

For the purpose of translating SciSPARQL queries, the query structure 
needs to be represented as a data structure, including named fields, sets, 
sequences etc.  This section describes the structure of SciSPARQL queries 
on such conceptual level. The query outline, conditions and expressions 
have their corresponding logical representations inside SSDM query 
translator.  

5.4.1.1 Basic query structure 
An internal representation of a SciSPARQL query Q, on the most basic 
level, includes the following components: 

• Q.type: either SELECT, CONSTRUCT, DESCRIBE or ASK query; 
• Q.what: a list of returned variables or named expressions for a 

SELECT query, a list of result-generating triple patterns for a 
CONSTRUCT query, or a single RDF term for a DESCRIBE query. 
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In case of SELECT queries, we will further refer to this list of 
expressions as a select list. 

• Q.from: a list of RDF graph names identified by URIs. These graph 
names are translated to AmosQL function names and arguments as a 
part of the triple pattern translation. For example, GRAPH(2) for a 
certain named graph, GRAPHS({2,4,5}) for a set of merged graphs, and 
GRAPH(URI2GraphId(URI('http://udbl.uu.se/example'))) for a triple 
pattern inside a SciSPARQL user-defined function (the RDF graph 
does not have to be in the dictionary at the time of function 
definition). 

• Q.where: a list of conditions, typically represented by single 
condition block, or a list of condition blocks, as explained below. 

• Q.distinct: whether the DISTINCT option is specified for the query in 
general. It controls whether only distinct results will be emitted from 
the query. 

• Q.orderby: a list of variables on which to perform sorting of the query 
results, where each variable supplemented with a direction flag. The 
sorting is done by default in ascending order, and if multiple variables 
are specified, each following variable is only used for comparison if 
all previous variables have equal values across the two result rows 
being compared.  

• Q.offset and Q.limit expressions, defining the desired partitioning of 
the query results. These must evaluate to Integer values, and can not 
depend on variables bound inside the query (i.e. they must be constant 
in SELECT queries, and may depend on function parameters in 
SciSPARQL function views). 

5.4.1.2 Aggregate query structure 
Built-in SciSPARQL functions are categorized into aggregates, e.g. SUM() 
or MAX(), which operate on bags of argument values,  and non-aggregate 
functions, e.g. round(), mod(), which normally return results for separate 
argument bindings. Similarly, functional views and foreign functions in 
SciSPARQL (see Chapter 4)  are defined using either DEFINE FUNCTION 
or DEFINE AGGREGATE syntax, hence SSDM is able to recognize the 
aggregate functions used in queries. 

Based on this, there are two kinds of SELECT queries, differing in 
semantics and translation approach used: basic queries and aggregate 
queries. The latter, by definition, have at least one aggregate function call 
used in the SELECT or HAVING clause. Q1 above is an example of a basic 
SELECT query, while Q2  below is an example of an aggregate query: 

Q2 (standard W3C SPARQL 1.1): Select the number of realizations and 
the total number of iterations for each distinct value of parameter A with 
multiple realizations stored: 
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PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?a (COUNT(?r) AS ?realizations) 
       (SUM(?iterations) AS ?total_iterations)  
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:iterations ?iterations ; 
            ex:parameter_A ?a } 
 GROUP BY ?a 
 HAVING ?realizations >= 2 
 ORDER BY ?a DESC(?total_iterations) 

Aggregate queries have inner and outer layers, each having their own lists 
of variables, conditions, select expression lists and distinct flag. Graph 
pattern matching is only performed in the inner layer, while result ordering 
and partitioning are only done in the outer layer.  

Q2 contains two aggregate function calls in named expressions in the 
select list, and both variables defined by these named expressions are 
additionally used in the outer layer - one in the HAVING and one in the 
ORDER BY clause. The only variable used on both levels is the ?a variable, 
listed in the GROUP BY clause. Other inner variables cannot be used in 
SELECT, HAVING or ORDER BY, except in argument expressions to the 
aggregate functions. 

A special case of an aggregate query is a so-called total aggregate query, 
with no GROUP BY or HAVING clauses provided, so that the results always 
get assembled into at most one group. If the underlying group of solutions is 
non-empty, such queries always return a single result. Q3 below illustrates 
the concept: 

Q3 (standard W3C SPARQL 1.1): Compute the number of distinct values 
for parameter A: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT (COUNT(DISTINCT ?a) AS ?result)  
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:parameter_A ?a } 

Another peculiar feature of Q3 (defined in the SPARQL 1.1 standard) is 
the use of the keyword DISTINCT before the argument to the aggregate 
function COUNT(). This enforces the application of the DISTINCT option to 
the results of the inner query, so its SELECT clause might look like  

SELECT DISTINCT ?a 

while the outer query simply applies the COUNT() on the resulting bag of 
solutions. 

Formally, aggregate queries have the following additional structural 
components: 
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• Q.groupby: a list of inner variables to perform grouping on. The order 
of variables is not important, as a single solution for the outer level of 
the query will assembled for each group of solutions of the inner 
level, where values of the listed groupby variables remain the same; 

• Q.inner-distinct: whether a DISTINCT option was used under any 
aggregate function, as illustrated by Q3  above; 

• Q.having: a filter condition applied on the solutions of the outer 
query. Any kind of expression is allowed and the Effective Boolean 
Value is used (see Section 3.3.3). 

There are more fields introduced while rewriting Q, as explained in the 
following sections. This includes Q.agg list of aggregate expressions, and 
Q.select-extra to accommodate for ordering on variables/expressions that do 
not appear in Q.select. 

5.4.1.3 Condition block structure and sets of variables 
Most non-trivial queries have a WHERE clause, effectively containing a 
conjunction (although the order sometimes matters, see Section 5.4.2) of: 

• triple and path patterns,  
• FILTER conditions,  
• explicit bindings with BIND and VALUES constructs, 
• OPTIONAL blocks,  
• disjunctive blocks introduced with UNION, 
• nested blocks with the GRAPH specifier (nested blocks without this 

specifier can be flattened and merged in the parent block), 
• subqueries projecting variables into the basic query. 

These conditions are syntactically grouped into non-empty blocks, and 
each block may be annotated by a GRAPH specifier. According to the W3C 
SPARQL 1.1 standard, there is always one parent block in the WHERE clause, 
provided without any GRAPH specifier. 

These blocks as concepts are represented directly in the SciSPARQL 
translator. The where part of a query, if non-empty, always contains a single 
top-level block structure. The block serves as a container for the sequence of 
conditions, together with the sets of variables important for the translation, 
including bound, partially bound and referenced variables, which are 
defined here. The definitions are recursive, as they rely on the same 
properties of the nested blocks, and a tree-traversal algorithm is used to build 
these sets. 

A variable v is bound in block B if and only if at least one of the 
following conditions is satisfied: 

• it participates in a triple (or path) pattern inside B, 
• it is bound in a nested sub-block with a GRAPH specifier, 
• it is returned to B from a subquery, 
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• it is bound in all of the branches of a UNION condition inside B, 
• it is explicitly assigned a value (or a set of values) by VALUES 

condition inside B, or 
• it is assigned a result of an expression depending only on bound 

variables with a BIND condition inside B. 

An important superset of bound variables is the set Partial(B) of partially 
bound variables. A variable v is partially bound in block B if and only if at 
least one of the following conditions is satisfied: 

• it is bound in block B, 
• it is partially bound in an OPTIONAL sub-block of block B, 
• it is partially bound in any of the branches of a UNION condition in 

block B, or 
• it is assigned a result of an expression depending only on partially 

bound variables with a BIND condition inside B. 

Note that despite its name (and due to the lack of a better word), in any 
block b the set partially bound variables includes the set of bound variables. 
We call the set difference as a set of semibound variables: 

Semibound(B) = Partial(B) \ Bound(B) 

Semibound variables are exactly those which might be bound or not 
bound in solutions for block B. 

Finally, we define the set Ref(B) of referenced variables inside block B, 
as those variables participating in conditions of any kind inside the block, 
including FILTER expressions, OPTIONAL and UNION sub-blocks. This, 
however, does not include the 'internal' variables of subqueries - only the 
variables selected from a subquery inside B are referenced and bound in the 
B. The set of referenced variables for any block B subsumes the other three 
sets.  

Besides the sets of bound, partially bound, and referenced variables, a 
block also lists B.blanks - the set of variables introduced to represent blank 
nodes in a SPARQL query. 

All the above sets are defined for the inner layer of a query, since the 
outer layer of aggregate queries does not feature any blocks per se. In the 
above examples Q1 - Q3, all variables referenced in the WHERE clause are 
also bound there, and there are no semibound or free variables. An example 
featuring semibound variables must include an OPTIONAL or UNION 
construct, like Q4 and Q5 below: 

Q4 (Standard W3C SPARQL): Select all realization ids and parameters A 
and C, if the latter is applicable: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id ?a ?c  
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 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a . 
         OPTIONAL { ?r ex:parameter_C ?c } } 

Two blocks constitute the WHERE clause of this query. In the nested 
OPTIONAL block variables ?r and ?c are referenced and bound, and in the 
parent block all query variables are referenced, while ?r, ?id, and ?a are 
bound, and ?c is semibound. 

The result of this query may contain absent bindings for certain variables. 
For the example dataset G1 in Section 5.1.1, this query will produce the 
following two partial mappings for its select variables: 

?id ?a ?c 

1 0.3  
314 0.3 0.9 

Q5 (Standard W3C SPARQL): Select ids of all realizations with B or C 
parameters values applicable, together with their parameter values: 
 
PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id ?b ?c 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id . 
         { ?r ex:parameter_B ?b } 
         UNION 
         { ?r ex:parameter_C ?c } } 

Q5 contains three blocks, one basic block with ?r and ?id variables 
bound, and two UNION branches, additionally binding variables ?b and ?c, 
respectively. According to [122], this query is equivalent to a union of two 
queries, each containing one of the union branches. Their respective 
solutions would be: 

?r ?id ?b ?r ?id ?c 
_:r1 1 0.85   _:r314 314 3.14 
_:r314 314 0.9     

A union of multisets of query variable mappings is different from the 
relational union operator: it does not require the same sets of variables being 
mapped in the operand multisets - i.e. it does not rely on the concept of 
relational compatibility. It simply appends the multisets, as if the queries 
were evaluated independently, hence the result of Q5 being: 

?id ?b ?c 

1 0.85  
314 09  
314  3.14 



86 

Note that the sets of variables defined in this section are defined for the 
whole blocks, and do not depend on the particular place inside a block where 
the translation takes place. This assumes a declarative nature of 
SciSPARQL, which is not always the case, since SciSPARQL completely 
incorporates the semantics of the W3C SPARQL 1.1 standard. There are 
certain cases where the order of the conditions (in the standard language) 
does matter, as we discuss in the next section. 

5.4.2 Compositional vs. Operational SPARQL Semantics 
Let us introduce some notation first. We will denote query blocks by letters 
A, B, C, ... . A simple graph pattern is a SciSPARQL query block which 
does not contain nested OPTIONAL or UNION sub-blocks. It consists of a 
conjunction of triple patterns.  

Without loss of generality, we can include GRAPH-annotated sub-blocks as 
additional sets of triple patterns, if we define a triple pattern as a quad <G, 
s, p, v> where s, p, and v are either RDF terms or variables, and G is either a 
finite non-empty set of (default and/or named) RDF graphs, or a variable 
whose potential solutions are the graphs listed as FROM NAMED in from part 
of the query. 

 There are operators defined on such blocks, reflecting the OPTIONAL and 
UNION relationships. For example, the where part of Q4 can be described as 
A OPT B where  

bound(A) = {?realization, ?id, ?a}, 

bound(B) = {?realization, ?c} 

Since the OPT operator implies nesting of blocks, it is right-associative, 
i.e.  

A OPT B OPT C = A OPT (B OPT C) 

is a double nesting of an OPTIONAL block, whereas 

(A OPT B) OPT C 

describes a basic block with conditions from A and two OPTIONAL sub-
blocks B and C, not nested into each other. 

By A AND B we denote a simple conjunction of conditions from A and B, 
i.e. effectively merged block. We will also use the notation  

A AND (B U C) 

for a basic block with conditions from A and a UNION with branches B and 
C. According to [122], a query can always be normalized to DNF, with all 
unions pushed to the top level, using the properties 
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A AND (B U C) = (A AND B) U (A AND C) 

(A U B) OPT C = (A OPT C) U (B OPT C) 

A OPT (B U C) = (A OPT B) U (A OPT C) 

Finally, there are two (in most cases identical) sets of solutions for a 
SPARQL query block A  

• a compositional solution, defined by the W3C SPARQL standard 
[155], here denoted as [[A]], and explained in Section 5.4.2.2 

• an operational solution, here denoted as eval(A) and explained in 
Section 5.4.2.3. 

5.4.2.1 Example 
The following example is borrowed from [40] and is a basic RDF graph with 
four isolated star-shaped components. We will refer to it as graph G2 and, 
for uniformity, present it here in Turtle notation: 

@prefix : <http://udbl.uu.se/ex2> 
 
_:b1 :name "Paul" ; 
     :phone "111 - 1111" . 
_:b2 :name "John" ; 
     :email "john@john.edu . 
_:b3 :name "George" ; 
     :web <www.george.edu> . 
_:b4 :name "Ringo" ; 
     :email "ringo@ringo.edu" ; 
     :web <www.starr.edu> ; 
     :phone "444 - 4444" ; 
     :cell "444 - 4444" . 

G2 is supposed to represent information about different persons; however, 
the information is structurally non-uniform, incomplete, and redundant. This 
would be a problem with a relational or object-oriented DBMS, but the 
Semantic Web / Linked Data solutions, by design, should handle these 
aspects in a graceful manner.  

We begin by analyzing the following query, also borrowed from [40]. It 
might seem a bit contrived, but illustrates the potential problem. Its English 
formulation is not simple either, and is given later in Section 5.4.2.3. 

Q6 (Standard W3C SPARQL): 

PREFIX : <http://udbl.uu.se/ex2#>  
SELECT ?x ?y ?z  
 WHERE { ?x :name "Paul" .  
         OPTIONAL { ?y :name "George" .  
                    OPTIONAL { ?x :email ?z } } } 

Using the above-introduced block notation, the query structure can be 
reflected as A OPT (B OPT C) where  
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bound(A) = {?x} 
bound(B) = {?y} 
bound(C) = {?x, ?z} 

5.4.2.2 Compositional semantics 
A SPARQL query A OPT (B OPT C), where A, B, and C are simple graph 
patterns according to the W3C SPARQL 1.1 specifications should be 
evaluated as the following SPARQL Algebra expression 

[[A OPT (B OPT C)]] = [[A]]  ([[B]]  [[C]]) 

where  is the relational left outer join operator defined on bags of 
solutions. 

This evaluation process should consist of: 
1) finding the sets [[B]] and [[C]] of mappings that satisfy B and C,  
2) left-outer-joining them, resulting in [[B]]  [[C]], 
3) finding the set [[A]] of mappings that satisfy A, and 
4) left-outer-joining it with the result of (2).  

This process is illustrated in Figure 15a for query Q6 and graph G2. 
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Figure 15. Compositional (a) and operational (b) evaluation order of query Q6 over 
graph G2 

However, on large datasets this approach is generally inefficient. Even if 
we avoid storing intermediate results of [[B]] and [[C]], we will probably 
need storing [[B OPT C]] anyway (unless we are able to retrieve the results 



 89 

in some known order for a merge-join algorithm to help). This is the known 
problem of bushy execution plan trees vs. left-deep trees [80]. 

5.4.2.3 Operational semantics 
A traditional way to evaluate a query like Q6, adopted by present-day 
DBMSs, including SSDM, would include the steps to:  

1) find the set of mappings that satisfy A, resulting in eval(A) = [[A]]; 
2) for each result in eval(A) try to extend it with mappings of 

variables bound(B) \ bound(A), while the mappings of variables 
bound(B) bound(A) are retained, thus ensuring that the mappings 
are compatible and providing a more informative binding pattern 
for evaluating B. This results in eval(A OPT B); 

3) for each result in eval(A OPT B) that was extended on the previous 
step12, try to extend it with mappings of variables bound(C) \ 
(bound(A) bound(B)), similarly to the previous step. The 
mappings of variables bound(C) (bound(A) bound(B)) are 
retained, ensuring compatibility of solutions and providing an even 
more informative binding pattern for evaluating C. 

Effectively, by re-using the mappings of variables found on the left-hand 
 operand while evaluating the right-hand  operand, this approach results 

in an additional natural join on the right-hand side of , as shown in [117]. 
Consequently, 

eval(A OPT B) = [[A]]  ([[A]]  [[B]]) 

eval(A OPT (B OPT C)) = 
=  [[A]]  (([[A]]  [[B]])  ([[A]]  [[B]]  [[C]])) 

The addition of extra inner joins, compared to compositional semantics, 
might look more restrictive, however, there are important classes of graph 
patterns where the latter operational approach exec(Q) actually results in 
false positives w.r.t. the standard compositional semantics of [[Q]]. Q6 is 
one such example, as illustrated in Figure 15b. The mappings retrieved while 
resolving the outer patterns are used to restrict the search space while 
resolving the inner patterns, which helps to greatly reduce the amount of 
information retrieved, better utilize indices, and avoid storing intermediate 
results. The flow of this useful information is shown by the gray arrows. 

We can see that the extra binding for ?y arises from one of these extra 
joins: [[A]]  [[B]], which becomes a Cartesian product since the graph 
patterns A and B do not share any variables.  

                                                      
12 By this extra condition we ensure that we are evaluating A OPT (B OPT  C), which is not 
equivalent to (A OPT B) OPT C. The optional pattern C is nested into another optional 
pattern, and mappings of C-specific variables may only appear together with non-NULL 
mappings of B-specific variables.  
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The query Q6 looks a bit strange indeed, and its English formulation 
would be: 'Find Paul node, on success find George node and, if both are 
found, return Paul's email if available', which also sounds inherently 
'0operational', and is correctly answered by exec(Q6), not by [[Q6]]. The 
reader is welcome to experiment with alternative, perhaps more 
'compositional' English formulations of the same query. 

5.4.2.4 Well-designed queries 
Pérez et.al. [122] formulate the condition for well-designed queries, and 
prove that the two semantics are equivalent if the query is well-designed.  

According to [122]: 

"A graph pattern P is well-designed if for every occurrence of a sub-
pattern P' = (P1 OPT P2) in P and for every variable ?x occurring in P, the 
following condition holds: if ?x occurs both inside P2 and outside P', then it 
also occurs in P1." 

In other words, it requires that no variable that can be either bound or 
unbound as result to OPT can be used outside  P'. Formally, this condition 
serves to avoid the Cartesian products, introduced by the operational 
semantics, during the evaluation of any sub-pattern P' that has an optional 
part. 

Sub-patterns that have AND instead of OPT are provably not problematic. 
In the same example in Figure 15, if the 'inner' left join   would be 
substituted with a simple natural join : the compositional evaluation tree 
(Figure 15a) is not affected, and in the operational evaluation tree (Figure 
15b) the result of the changed operation would be the empty set, eventually 
leading to a query result equivalent to the compositional one. 

Researchers who have studied this problem [122, 40] agree that it is 
extremely hard to make a realistic example of a query where compositional 
and operational semantics do not coincide. However, the class of not well-
designed queries is much wider than that, and in the next sections we will 
study classes of useful queries that are not well-designed. 

5.4.2.5 An important class of not well-designed queries 
One interesting case where compositional and operational semantics agree, 
but the fact that the query is not well-designed finds its implication in the 
loss of declarativeness of the query. Pérez et.al. state that for well-designed 
queries the following property holds: 

((A OPT B) OPT C) = ((A OPT C) OPT B) 

Indeed, the left-join operator  is generally sensitive to the order of its 
application. For the relations R1, R2 and R3, the property 
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R1  R2  R3 = R1  R3  R2 

can only be guaranteed if R2 and R3 extend R1 with non-overlapping sets of 
attributes. With a set of relation R attributes denoted as att(R), this condition 
can be written as 

att(R2)\att(R1)  att(R3)\att(R1) = ∅  

In the case of both compositional and operational interpretations of the 
above queries, this condition means that  

bound(B)\bound(A)  bound(C)\bound(A) = ∅  

so that in operational semantics the evaluations of patterns B and C can be 
done independently, and no variable mapped in [[B]] can influence 
evaluation of C and vice versa.  

However, sometimes it might be useful to express several 'tries' to bind 
the same variable, so that the order of these tries becomes important. The 
expression of such queries in relational calculus will require a coalesce 
operator (suggested by Chebotko et. al. [40]). Here's an example: 

Q7 (Standard W3C SPARQL): Select names of persons, together with 
landline or cellphone numbers if available: 

PREFIX : <http://udbl.uu.se/ex2#>  
SELECT ?name ?phone 
 WHERE { ?x :name ?name . 
         OPTIONAL { ?x :phone ?phone } . 
         OPTIONAL { ?x :cell ?phone  } } 

This query will prioritize the :phone property, and, if the two OPTIONAL 
sub-blocks were reordered, the :cell property would be prioritized instead. 
This example shows how the order of where conditions in the query 
influences the result, meaning that the query is not completely declarative. 

5.4.2.6 Coalesced expressions 
To make query Q7 well-designed, and thus preserve the declarativeness, it is 
sufficient to bind the :phone and :cell properties to different variables, 
thus making the OPTIONAL sub-blocks independent of each other: 

PREFIX : <http://udbl.uu.se/ex2#>  
SELECT ?name ?phone ?cell 
 WHERE { ?x :name ?name . 
         OPTIONAL { ?x :phone ?phone } . 
         OPTIONAL { ?x :cell ?cell } } 

However, this solution might not be suitable in certain cases, where 
different properties, or chains of properties, lead to semantically equivalent 
values. In our example graph G1, given in Section 5.1.1 the 
ex:simulationMethod property was originally attached to 
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ex:OurExperiment instances, but at some point (thanks to the flexibility 
of the RDF model) ex:OurExperimentRealization instances started to 
store the same properties, in order to refer to the newer versions of the 
simulation algorithm used. The following query retrieves these property 
values, prioritizing the Realization-bound ones: 

Q8 (Standard W3C SPARQL): Select all Realization ids, together with 
simulation method information if available: 

PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id ?method 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id . 
         OPTIONAL { ?r ex:simulationMethod ?method } . 
         OPTIONAL { ?r ex:inExperiment ?e . 
                    ?e ex:simulationMethod ?method } } 

In Q8 it would be unnatural to project out different variables for the same 
simulation method information retrieved in two different ways. Fortunately, 
W3C SPARQL 1.1 provides the COALESCE macro that returns the result of 
the first listed expression which is neither unbound nor error. With 
COALESCE, the query Q8 can be made well-designed while preserving 
exactly the same semantics and result width: 

Q8a (W3C SPARQL 1.1): 

PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id (COALESCE(?m1, ?m2) AS ?method) 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id . 
         OPTIONAL { ?r ex:simulationMethod ?m1 } . 
         OPTIONAL { ?r ex:inExperiment ?e . 
                    ?e ex:simulationMethod ?m2 } } 

The application of COALSECE then maps directly to the relational calculus 
coalesce operator, making both formulations of Q8 structurally equivalent 
with regard to the SPARQL to relational algebra translation proposed in 
[40]. 

The possibility of query re-formulation, as shown with Q8, does not 
eliminate the need to handle important classes of not well-designed queries 
in a deterministic and uniform way. SciSPARQL query processor recognizes 
the cases where the order of Q.where conditions is important, and preserves 
that order under the operational semantics.  
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5.4.2.7 Binding by filters 
Consider another query, which is not well-designed - Q9 (Standard W3C 
SPARQL):  

PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id ?a ?c 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a .        
         OPTIONAL { ?r ex:parameter_C ?c } . 
         FILTER ( 2 * ?c = ?a ) } 

Since, according to the W3C SPARQL standard definition [155], any 
expression depending on an unbound value, except expressions under the 
bound() function, will evaluate to unbound (an unbound FILTER is 
equivalent to false) the English formulation of Q9 should sound like: "Select 
those Realization ids where parameter C is stored and is equal to half of the 
value ofparameter A".  

Q9 is not well-designed, since the variable ?c is referenced in the basic 
block, whereas it is not bound there. One way to make it well-designed 
would be to remove the OPTIONAL keyword altogether, merging the 
corresponding pattern into the basic block.  

Still Q9 is a valid query in SPARQL and SciSPARQL, but, due to its loss 
of declarativeness, the OPTIONAL and FILTER conditions cannot be 
reordered. Figure 16 shows the compositional execution tree for Q9a: 

PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id ?a ?c 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a .        
         FILTER ( 2 * ?c = ?a ) . 
         OPTIONAL { ?r ex:parameter_C ?c } }  

In Figure 16 the filter condition is denoted by f, and the solutions of the 
basic block with filter conditions applied - as [[A AND f]].  

The typical way to apply equality filters in databases is finding the 
optimal binding patterns, as shown by example in Section 5.1.2.2. Even 
though the filter expression depends on both ?a and ?c, during the query 
evaluation we are only interested in cases where the filter evaluates to true. 
Consequently, the same filter expression can be used to compute the 
satisfying value of ?c when ?a is already known. Technically, for a 
predicate (TIMES 2 C A) the query optimizer will choose the binding pattern 
'-+-', instead of '---', as in the original Q9. 
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Figure 16. Compositional evaluation tree of Query Q9a over graph G1 

With this way of evaluating queries, a transition from a solution set [[A]] 
to [[A AND f]] involves adding the variables 'bound' by the filter, and their 
respective bindings, as shown in Figure 16. In the next step, extending this 
solution set with values from the database includes a natural join of two 
solution sets, resulting in an empty set. (Note that [[B]] does not even need 
to be evaluated separately). Finally, due to the nature of the left join operator 

, the left set of solutions is retained and projected to the query result. 

5.4.2.8 Relaxing the procedural semantics of BIND 
The W3C SPARQL 1.1 standard [155, section 10.1] dictates the following 
restriction on the use of the BIND condition:  

"The variable introduced by the BIND clause must not have been used in 
the group graph pattern up to the point of use in BIND."  

This implies that the order of triple pattern and BIND conditions is 
important in all kinds of queries, including well-designed ones, and those 
without any semibound variables. For example, while the following query is 
valid: 

Q10 (W3C SPARQL 1.1): Select the Realization ids where parameter B is 
three times greater than parameter A: 
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PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id ?a ?c 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a .        
         BIND ( 3 * ?a AS ?b)  
         ?r ex:parameter_B ?b } 

an alternative formulation Q10a is not allowed: 

PREFIX ex: <http://udbl.uu.se/ex#>  
SELECT ?id ?a ?c 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a ; 
            ex:parameter_B ?b .        
         BIND ( 3 * ?a AS ?b) } 

In both cases it is obvious that BIND conditions are used as filters, and an 
equivalent FILTER condition would have been allowed at any point in the 
WHERE clause. It is also beneficial to evaluate the BIND/FILTER before the 
remaining triple pattern (as in Q10), since it narrows down the graph search 
and helps to better utilize database indexes. 

SciSPARQL removes the restrictions concerning the position of BIND 
conditions in the where block, and effectively makes no difference between 
BIND and FILTER, making BIND potentially multi-directional. This feature 
has two benefits: (i) it widens up the set of valid and correct queries, 
allowing users to express different intentions with BIND and FILTER 
interchangeably, and (ii) it further encourages the users to state the expected 
correspondences among the values retrieved from an RDF graph, thus 
opening more opportunities for the query optimizer. 

Apart from this, SciSPARQL defines the clear operational semantics for 
the queries which are not well-designed according to [122]. This includes the 
ability to express coalesced expressions with a sequence of OPTIONAL 
patterns, and careful evaluation of FILTER and BIND expressions when the 
variables used in these expressions might not always be bound. 

5.4.3 AmosQL Query Structure 
As a first step of query processing, SciSPARQL queries are translated to 
AmosQL queries. This includes the translation from graph to functional data 
model, and from queries returning bags of mappings (a.k.a. solutions) to the 
queries returning relations (bags of tuples).  

The result of an AmosQL query may include NIL values representing 
unbound values in SPARQL. Those are introduced by OPTIONAL and 
UNION conditions, as shown by examples Q4 and Q5 in Section 5.4.1.3. 
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This section describes the structure of an AmosQL query both on the 
conceptual level, and by example translations from SciSPARQL. Though 
AmosQL is certainly a background for the presented work, in this section we 
focus on features useful for the translation. 

5.4.3.1 Basic AmosQL query structure 
A simple AmosQL query includes the following components 

• select - a list of projected variables or expressions. The result of a 
query does not include variable names (hence the distinction between 
mappings and tuples). The length of this list is the width of a query; 

• distinct - whether the query results will be filtered to exclude the 
duplicate tuples. For tuples containing NIL values in the same 
positions, those values are treated as equal for this purpose. 

• from - a set of all variables in the query, except the parameters for the 
derived function definitions. The latter are used to translate 
SciSPARQL functional views, as described in Section 5.4.5.8; 

• where - a logical expression, combining the query conditions by the 
means of and and or operators. 

For example, in the translation of Q1 given in Section 5.1.2.1, the query 
width is 2, the select list includes the variable id and an expression involving 
array operations, the from list contains all AmosQL counterparts of 
SciSPARQL query variables, and where is a conjunction of eight simple 
conditions, six being lookups into the default graph, and the other two being 
inequalities. 

5.4.3.2 Cross-referenced named expressions 
One important issue the translator needs to take care of is cross-referenced 
named expressions. SciSPARQL has no restrictions on how a variable 
defined by a named expression can be used in a query. For example, if the 
query contains 

SELECT (?length * ?width AS ?area)  ... 

the ?area variable can be used in any other place in the query, including 
other SELECT expressions, triple patterns, or filters. The problem is that 
normally the translation does not contain the names of SELECT expressions. 
Additional BIND conditions need to be introduced for this purpose.  

It is easy to identify such cases, by first computing the set ref(B) of 
variables referenced in the basic block B (as described in Section 5.4.1.3), 
and then checking whether the expression name name(ne) from the SELECT 
list appears in ref(B). If so, a new condition name(ne) = expr(ne) is added to 
the basic block. Q11 below provides a complete example: 
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Q11 (SciSPARQL): Select realization ids where 'factor Y' is less than  
10-3, together with the values of 'factor Y', as well as and 'factor X' used in 
its computations: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id (?a * ?b AS ?factorX)  
       (?factorX / ?iterations AS ?factorY) 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:iterations ?iterations ; 
            ex:parameter_A ?a ; 
            ex:parameter_B ?b . 
         FILTER (?factorY < 0.001) } 

The translation of Q11 contains the translations of the ?factorX and 
?factorY variables (both of them are detected as being cross-referenced), 
and the extra equality conditions that bind them: 

select id, factorx, factory 
  from Literal r, Literal factory, Literal iterations,  
       Literal factorx, Literal b, Literal a, Literal id 
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
        URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
       in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)  
       in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#parameter_B'), b) in GRAPH(0) 
   and factorx = rdf:times(a, b) 
   and factory = rdf:div(factorx, iterations)  
   and factory < 0.001; 

The task of identifying and rewriting cross-referenced expressions is 
orthogonal and independent of the tasks of identifying Q.select-extra 
expressions for ordering or collecting aggregate function calls in aggregate 
queries, as shown in the next two sections. 

5.4.3.3 Ordering and segmentation 
In general, a result of an AmosQL query is a bag (i.e. multiset) of tuples, 
which is, by definition, unordered. However, different scan interfaces (as 
discussed in Section 4.5) to Amos II and SSDM retrieve the results one by 
one or in sequential batches, and their application might benefit if a certain 
order would be enforced among the resulting tuples.  

SciSPARQL, along with SPARQL 1.1, allow this by including an ORDER 
BY clause in SELECT queries. Translations of queries with ORDER BY 
involve a call to sortbagby() AmosQL function, and an outer query to 
transform the resulting sequence of vectors to a sequence of tuples. The 
translation is illustrated by Q12 below. The function sortbagby() takes three 
arguments: (i) arbitrary bag of tuples, (ii) a vector containing positions 
inside tuples to perform the sorting on, and (iii) a vector of the same length 
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containing sorting direction flags - either 'inc' or 'dec' strings. The function 
returns a sequence (i.e. vector) of vectors, containing the argument tuples 
ordered in the specified way. 

Some applications might also specify the maximum number of resulting 
solutions they would like a SciSPARQL query to retrieve - by introducing 
LIMIT clause. If used together with ORDER BY, this results in top-k 
selections, for example: 

Q12 (Basic W3C SPARQL): Select top 5 realizations having the longest 
simulation (in the number of iterations), returning the realization ids: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id  
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:iterations ?iterations } 
 ORDER BY DESC(?iterations) LIMIT 5 

Similarly to LIMIT, it is also possible to specify OFFSET for a 
SciSPARQL query in order to retrieve a specific section of the query results. 
This allows splitting a single query with a long result section to a sequence 
of queries with a limited number or results. Though Scan interfaces in 
SSDM handle this problem on an interface level, so the query execution 
does not proceed until the next result is requested, segmentation with LIMIT 
and OFFSET is part of SPARQL, and is supported in our translation. 

Q12 is translated using sortbagby() and bsection1() Amos functions: 

bsection1((select o:v[0] from Vector of Literal o:v 
            where o:v in sortbagby(( 
select id, iterations 
  from Literal r, Literal iterations, Literal id 
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
           URI('http://udbl.uu.se/ex#OurExperimentRealization')) 
       in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)  
       in GRAPH(0)), {2}, {'dec'})), 0, 5); 

As shown, the {2} and {'dec'} arguments specify the sorting order, and 
then the outer query 'select o:v[0] ...' transforms vectors to tuples. The 
resulting ordered bag is passed to bsection1(), specifying zero (default) 
offset and limit of 5 results. The bsection1(b, start, stop) function iterates 
through the bag  b of inputs, and begins emitting when an element counter is 
at value start, and stops when the counter reaches the stop value. 

5.4.3.4 Grouping and aggregation 
An aggregate function in Amos is a function that takes a bag argument and 
returns an atomic result. The useful class of aggregate functions for SSDM, 
which can be used together with grouping, are those which accept a Bag of 
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Literal as a single argument. This includes count(), which accepts all kinds 
of bags. 

The Amos aggregate functions with numeric semantics, like sum(), avg(), 
min(), max() and some others have been extended to handle bags of scalar 
numbers and bags of aligned arrays. According to the SPARQL 1.1 
standard, in case of incompatible values in the input bag, such aggregate 
functions return error value, which in SciSPARQL and AmosQL terms is 
equivalent to terminating silently without emitting a result. Such extended 
versions of aggregate Amos functions are named with rdf: prefix, e.g. 
rdf:sum(). 

We have defined SciSPARQL aggregate queries in Section 5.4.1.2. An 
aggregate query having width of 1 simply applies an aggregate function to 
the bag of the inner query solutions, like the Q3 example. The AmosQL 
translation of Q3 is as follows: 

count((select distinct a 
         from Literal r, Literal a 
        where (r,  
               URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'),          
               URI('http://udbl.uu.se/ex#OurExperimentRealization')) 
              in GRAPH(0) 
          and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) 
              in GRAPH(0))); 

This translation also shows that the Q.inner-distinct property of an 
aggregate SciSPARQL query is translated to distinct option in the inner 
query in AmosQL. 

An aggregate query of greater width might include several aggregate 
operations across different variables in the inner query solutions, or 
expressions involving those variables. Additionally, it might include 
grouping on certain variables or expressions. Q2 is one such example, being 
translated as follows: 

select o:v[0], o:v[1], o:v[2] from Vector of Literal o:v 
 where o:v in sortbagby(( 
  select a, realizations, total_iterations 
    from Literal total_iterations, Literal realizations, Literal a 
   where (a, realizations, total_iterations) in groupby(( 
    select a, r, iterations 
     from Literal r, Literal a, Literal iterations 
    where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
           URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
          in GRAPH(0) 
      and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)  
          in GRAPH(0) 
      and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
        ), {#'count', #'rdf:sum'}) 
    and realizations>=2), {1,3}, {'inc','dec'}); 

The translation shows a straightforward mapping of conceptual inner and 
outer query structures in SciSPARQL to the pair of nested queries in 
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AmosQL (starting at lines 3 and 6). The inner query contains a graph 
pattern, and declares all variables used in that pattern, projecting out three of 
them.  

The outer query declares variables corresponding to the outer context of 
Q2, including the grouping variable ?a and the names of aggregate 
expressions. The main where condition is a call to the groupby() function, 
binding all these variables, and specifying the aggregate functions count and 
rdf:sum as functional arguments. The additional condition translates the one 
found in the HAVING clause of Q2.  

We will refer to the part of the translation that appears to be the first 
argument to sortbagby() as the core translation, and the translation applying 
sortbagby() and/or bsection1() as the finalized translation. In the absence of 
ORDER BY, LIMIT and OFFSET clauses these translations are the same. 

Notice that sorting with sortbagby(), as described in the previous sub-
section, makes use of the variables in the outer query - including the results 
of grouped aggregate operations. If, for example, some of the ORDER BY 
variables (or named expressions) were not included in the SELECT clause in 
SciSPARQL, their translations would still appear in the select list of the 
outer AmosQL query, but the respective vector elements would not be 
selected into the result after sorting. We will refer to such additional 
expressions as Q.select-extra.  

This principle complements the process of discovering cross-referenced 
named expressions, explained in Section 5.4.3.2, and the process of 
collecting aggregate subexpressions, more formally described in Section 
5.4.5.7 below. The HAVING and ORDER BY clauses in a SciSPARQL query 
might include additional unique aggregate expressions, not found in the 
SELECT clause. In the absence of names, surrogate names for such 
expressions will be created, and some of these might be added to Q.select-
extra.  

Consider the query Q2a, differing from Q2 only in the SELECT clause, 
and the fact that the corresponding aggregate expressions are instead 
incorporated into Q.orderby and Q.having lists, which do not require 
expressions to be named: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?a  
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:iterations ?iterations ; 
            ex:parameter_A ?a } 
 GROUP BY ?a 
 HAVING COUNT(?r) >= 2 
 ORDER BY ?a DESC(SUM(?iterations)) 
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The translation of Q2a would be the same as for Q2 as shown above, 
except for the shorter vector-to-tuple projection on the first line, and the fact 
that the former total_iterations and realizations variables are now re-
introduced by the translator with surrogate names agg:1 and agg:2:  

select o:v[0] from Vector of Literal o:v 
 where o:v in sortbagby(( 
  select a, agg:2 
    from Literal agg:2, Literal agg:1, Literal a 
   where (a, agg:1, agg:2) in groupby(( 
    select a, r, iterations 
     from Literal r, Literal a, Literal iterations 
    where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
           URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
          in GRAPH(0) 
      and (r, URI('http://udbl.uu.se/ex#iterations'), iterations)  
          in GRAPH(0) 
      and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
        ), {#'count', #'rdf:sum'}) 
    and agg:1>=2), {1,3}, {'inc','dec'}); 

The named expressions corresponding to agg:1 and agg:2 comprise the 
Q.agg list, and agg:2 is needed for ordering is in Q.select-extra list. By 
means of these rewrites, the SciSPARQL translator handles uniformly all the 
aggregate expressions found anywhere in the outer level of a query. 

5.4.4 Extensions to ObjectLog and Physical Algebra 
Some of the SPARQL standard behavior have proven to be quite challenging 
to implement using the original definitions of AmosQL and the underlying 
ObjectLog [100]. These challenges include: 

• generating unique values inside the query: blank nodes for 
CONSTRUCT queries, random numbers and GUIDs 

• lazy evaluation of IN lists  
• IF and COALESCE operators 
• OPTIONAL operator 

While the first challenge conflicts with the idea of side-effect-free 
queries, the remaining three contradict the declarative nature of AmosQL 
and ObjectLog, where the query conditions constitute a logical expression 
that can be transformed e.g. to Disjunctive Normal Form. Predicates are the 
atomic terms in such expressions, each having a set binding patterns for the 
optimizer to choose from.  

The predicate calculus is, in a certain sense, a more restrictive model than 
the relational algebra. Whereas the latter can easily be extended with e.g. 
coalesce operator, as shown by Chebotko et.al. [40], the predicate calculus 
can not - since coalesce is neither an atomic predicate, nor a logical 
expression of any atomic predicates.  
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This difficulty is akin to the conceptual distinction between functions and 
macros in Lisp: whereas a function is evaluated only after all its arguments 
are computed, and thus can be mapped to collections of its argument 
bindings, the macro decides the evaluation order of its arguments, and might 
even choose not to evaluate some of them. In Lisp, logical AND and OR 
operators are naturally defined as macros, thus implementing lazy 
evaluation, and n-ary OR, while not restricted to logical operands, being also 
the equivalent for coalesce.  

In AmosQL a disjunction is by definition equivalent to the relational 
UNION ALL, always evaluating every branch. However, the conjunction of 
predicates assumes a kind of lazy evaluation: if a predicate does not return a 
value, the nested-loop execution (as shown by example in Section 5.1.2.3) 
skips the subsequent predicates, backtracking instead. However, the user 
normally has no control of how the predicates in a conjunction will be 
ordered in the nested loop so that, for example, a condition f(x) and g(x) is 
totally equivalent to g(x) and f(x). 

 The only feature of an AmosQL query that restricts the order of 
evaluation is the dependency relationships among the variables. One way to 
make sure that g(x) is only evaluated if f(x) returns, would be to make f(x) 
return x (instead of a Boolean value) and make sure it has only "forward" 
binding pattern '-+'. Then the condition y = f(x) and g(y) would guarantee 
the desired order. 

The AmosQL implementations of OPTIONAL, IF, COALESCE, and "lazy" 
IN operators all require macro-like behavior at the execution time, and the 
specialized representations at the intermediate steps, including ObjectLog. 
The rest of this section elaborates on the extension of both physical algebra 
and ObjectLog with OPTIONAL operator, as the most essential feature 
needed for SciSPARQL, with the rest remaining a near-future work. 

5.4.4.1 OPTIONAL operator 
As mentioned above, if a predicate placed in the nested-loop-join does not 
return, the current solution is discarded, and the execution backtracks to the 
previous predicates to generate a new solution. For example, let us consider 
a query Q4a, differing from Q4 only so that the OPTIONAL graph pattern is 
merged into the basic one: 

PREFIX ex: <http://udbl.uu.se/ex#> 
SELECT ?id ?a ?c  
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:id ?id ; 
            ex:parameter_A ?a ; 
            ex:parameter_C ?c } 
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The optimizer is potentially free to reorder the four stored predicate 
instances that this query translates to - based on selectivity statistics or any 
other considerations (Amos is extensible in its optimization strategies too!) 
The stored predicates have a nice property of offering the full combinatorial 
set of binding patterns.  One of the possible execution plans would be: 

(*SELECT* ID+ A+ C+) <- 
(NESTED-LOOP-JOIN  
   (HASH-INDEX-SCAN GRAPH-+-- 
      0 R+ #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]  
      #[URI "http://udbl.uu.se/ex#OurExperimentRealization"]) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 R- #[URI "http://udbl.uu.se/ex#id"] ID+) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 R- #[URI "http://udbl.uu.se/ex#parameter_C"] C+) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 R- #[URI "http://udbl.uu.se/ex#parameter_A"] A+)) 

While being evaluated on the G1 dataset, the first partial solution (with 
realization _:r1) would be discarded at the point when the predicate on 
ex:parameter_C fails to return, and the predicate on ex:parameter_A, 
placed further down the loop, is not executed. Since the predicate on ex:id 
returns only a single result given the realization _:r1, the execution 
backtracks to the first predicate, returning another realization _:r314, 
which, after applying the rest of the predicates, becomes an emitted solution.  

If we would like to implement Q4 instead, the main requirement is that 
the partial solution with realization _:r1 is not discarded even if the 
ex:parameter_C tuple is not found in the graph. The inbound value for the 
variable C will need to be propagated through the remaining predicates, and 
emitted as part of the solution. 

This is achieved by adding the OPTIONAL operator into the execution 
plan, which does exactly this: introduces unbound values into the current 
solution, instead of discarding it: 

(*SELECT* ID+ A+ C+) <- 
(NESTED-LOOP-JOIN  
   (HASH-INDEX-SCAN GRAPH-+-- 
      0 R+ #[URI "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"]  
      #[URI "http://udbl.uu.se/ex#OurExperimentRealization"]) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 R- #[URI "http://udbl.uu.se/ex#id"] ID+) 
   (OPTIONAL (HASH-INDEX-SCAN GRAPH---+  
                0 R- #[URI "http://udbl.uu.se/ex#parameter_C"] C+)) 
   (HASH-INDEX-SCAN GRAPH---+  
      0 R- #[URI "http://udbl.uu.se/ex#parameter_A"] A+)) 

The OPTIONAL operator is not limited to containing a single predicate - 
arbitrary conjunctions and disjunctions of predicates can be put under 
OPTIONAL, the same way as in SPARQL. The use of OPTIONAL extends all 
the way up to ObjectLog representation, and the AmosQL syntax has been 
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extended with the optional() construct (not really a function), so that the 
AmosQL translation of Q4 is as follows: 
select id, a, c 
  from Literal r, Literal c, Literal a, Literal id 
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
        URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
       in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
   and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)  
                in GRAPH(0)) 

Extending AmosQL, ObjectLog and the physical algebra with a new 
operator provided the most simple and straightforward implementation of 
SPARQL semantics inside the functional DBMS framework.  

5.4.4.2 Query optimization restrictions 
The query optimizer was made to be aware of the new OPTIONAL operator 
in ObjectLog, treating it as a container and propagating it to the physical 
algebra. However, in some cases this handling is not sufficient. As has been 
discussed in Section 5.4.2, there are important classes of not well-designed 
queries, i.e. queries which are not completely declarative, where reordering 
of certain conditions might affect the result. 

For example, in queries Q7 and Q8 reordering of the two OPTIONAL 
conditions entails a potentially different result. Also, as shown by Q9 and 
Q9a, swapping an OPTIONAL condition with a FILTER condition depending 
on variables bound in OPTIONAL also affects the results.   

A simple to implement solution currently used in Amos is the restriction 
for the query optimizer to move any conjunctive predicates across the 
OPTIONAL block. The addition of an OPTIONAL condition to a query might 
split the flattened list of predicates into three parts, optimized separately: 
conjunctive predicates listed before and after OPTIONAL, and the predicates 
inside the OPTIONAL block. 

Even though simple and easy to understand, this restriction can be largely 
relaxed. It is enough to make sure that only the predicates that depend on 
variables bound inside an OPTIONAL block, and not bound outside it (i.e. on 
semibound variables), may not be moved across the optional block. This is 
never the case in well-designed queries, which remain purely declarative.  

The relaxed restrictions have yet to be implemented in the future versions 
of SciSPARQL Database Manager. Since semibound variables are detected 
at the translation stage, it should be made possible to communicate their set 
to the optimizer. Another option would be to delegate the detection of 
semibound variables to the optimizer itself. 
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5.4.5 The Translation Algorithm 
As described in the previous sections, an internal representation Q of a 
SciSPARQL query is a data structure with named fields, lists, and nested 
data structures. Of course, the translation is not limited only to queries. A 
more general term is a SciSPARQL statement, with the internal 
representation of S. Such a statement can either be 

• a query,  
• a function definition, containing S.name, S.params and S.body fields, 

with S.body being a SELECT query, 
• a stand-alone expression, considered to be a degenerate form of 

SELECT query. (Certain functions with side effects, like LOAD() and 
SOURCE() can only be called this way), 

• an update statement, containing with, insert, delete, using, and where 
fields (this does not include INSERT DATA and DELETE DATA, as 
these statements are executed directly at parse time), or  

• a session-scoped prefix declaration.   

This section formally defines the translation function tr(S), generating 
AmosQL textual translation of a SciSPARQL query parsed into S. The 
function tr(S) is recursive, and is mainly applied depth-first in leaf-to-root 
order. For example, the translation of a simple SELECT query begins with 
translating the leaf elements of Q.what expressions, and produces the 
translation of the whole query in the last step by combining the translations 
of its constituent parts. 

There are, however, exceptions to this principle. For example, when a 
SciSPARQL query declares a set of named graphs addressed, or a set of 
prefixes used - these should be accessible when translating the triple 
patterns. Also, translation of certain expressions (like ARGMAX() explained 
below) involves adding new conditions at certain levels and introducing 
additional query variables. In order to accommodate for this flexibility, a 
translation context data structure is introduced. 

5.4.5.1 Translation context 
The translation context TC data structure is created at the beginning of 
translating a statement S. Below are the fields and their initial values: 

• TC.prefixes - the set of statement-scoped prefix declarations. 
Together with the set session-prefixes of session-scoped prefix 
declarations, introduced with PREFIX statements, it is used to 
translate prefixed URIs to URI constructor calls in AmosQL. 

• TC.source - the set of named graphs given in a FROM clauses of a 
query or a USING clauses of an update statement being translated; the 
particular content of this field is explained in the next subsection. 
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• TC.namedsources - the set of the alternative bindings for otherwise 
unbound graph variables, given in FROM NAMED or USING NAMED 
clauses. 

• TC.newconds - the translated representations of the additional 
conjunctive conditions that need to be added to the current block, 
initialized to the empty set. 

• TC.newvars - the list of additional variables introduced during the 
translation of the current query, initialized to the empty set. 

• TC.bound - the list of variables bound outside the current query (e.g. 
in a host query when translating a subquery), initialized with 
S.params for function definitions and to the empty set for standalone 
queries. 

All the listed fields serve for the root-to-leaf or horizontal propagation of 
the data important for the translation. However, not all this data is 
propagated all the way down to the leaf translations; there are particular 
thresholds where the translation context is cloned partially: 

• When translating a subquery, TC.newconds and TC.newvars are left 
on the outer level; moreover if the subquery contains FROM and/or 
FROM NAMED clause, the TC.source or TC.namedsources fields will 
be overridden. 

• Similarly for subqueries introduced by translations of ARGMIN() and 
ARGMAX(). 

• When translating an aggregate query, outer and inner contexts are 
created, with TC.newvars and TC.newconds independently 
accumulated on these separate layers. 

5.4.5.2 Source graphs and triple patterns 
Following the W3C SPARQL standard, SciSPARQL allows specifying a set 
of source graphs in a query with a FROM clause and with a USING clause for 
updates. In the absence of such a specification, the default graph is used.  

The translation of a triple pattern condition tp, containing RDF Terms or 
variables tp.s, tp.p and tp.o, corresponding to subject, property and object of 
the pattern, in general has the form 

tr(tp) = (tr(tp.s), tr(tp.p), tr(tp.o)) in trSource(g) 

where g is the innermost GRAPH specification (either a URI or a variable), or, 
in the absence of such, using the pre-computed translation of the source 
graph or graphs: 

tr(tp) = (tr(tp.s), tr(tp.p), tr(tp.o)) in TC.source 

Since a query might specify more than one graph URI in its FROM clauses, 
either GRAPH() or GRAPHS() function is used for the translation, the latter 
accepting a vector of graph ids, and implementing RDF Merge of these 
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graphs, as defined by the W3C Standard [155]. Such a merge operation is a 
simple union of the graphs, since all blank nodes stored in different graphs 
are unique in the scope of the given SSDM database. 

SSDM maintains a dictionary NGDict() mapping URIs identifying named 
graphs to the internal graph ids, with the default graph always having id of 
0. When translating queries, and the graph's URI is known, this dictionary is 
looked up at translation time, and tr(Q.from) might look like GRAPH(4) for a 
single graph or GRAPHS({5,7}) for a set of graphs. When translating function 
definitions, the source graph is not required to exist at the definition time; 
hence delayed lookup is put into a translation, making it, for example:  

GRAPH(NGDict(URI('http://udbl.uu.se/g2.ttl'))) 

Either of such translations is put into TC.source at the beginning of the 
translation process. When a variable is given after the GRAPH keyword, 
similar lookup is utilized:  

GRAPH(NGDict(g))  

for a SciSPARQL variable ?g.  

Alternative named graphs specified with FROM NAMED or USING NAMED 
clauses, as W3C Specifications suggest, are only useful to provide a finite 
set of bindings for a graph variable. Since SSDM operates within a closed 
world assumption, there is always a finite number of named graphs 
accessible to a query, i.e. a finite number of entries in the NGDict() 
dictionary. Hence, an otherwise unbound graph variable ?g, used in a graph 
pattern 

GRAPH ?g { ... } 

will effectively match this pattern against all named graphs stored in 
SSDM's database. The only reason to use FROM NAMED and USING NAMED 
syntax is to restrict the set of possible source graphs, as if the 

VALUES ?g { ... }  

condition were added to the basic block. This idea is used for the translation 
of TC.namedsources, effectively resulting in an extra condition put into 
TC.newconds for any such variable - such conditions are similar to 
translations of VALUES conditions. 

5.4.5.3 Translating path expressions 
SPARQL is a graph language, dealing with the concepts of nodes, edges, 
and by induction, paths in a graph. As of the W3C SPARQL 1.1 Standard 
[155], regular path expressions are allowed as part of graph patterns, as a 
general case of triple patterns. These expressions can be either recursive or 
non-recursive, the former effectively employing a transitive closure on a 
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certain property or a combination of properties. The non-recursive kinds of 
expressions include chaining, reversal, alternatives, and reflexive closure.  

We do not include the negated property set operator in the current version 
of SciSPARQL, due to the problems with its standard definition, explored in 
[93]. Though not theoretically ambiguous, together with reversal it 
introduces a certain counter-intuitive 'butterfly effect' in the set of query 
solutions.  

Below with a set of rules R1 - R7 we define a translation function tr(C) 
for a path expression condition C, the latter consisting of subject C.s, object 
C.o, and a path expression C.p. We list the translation function for each type 
of expression listed. Formally, at certain points we translate the new 
(constituent or equivalent) path expressions, introduced with pe(s, p, o) 
constructor function. 

R1. If C.p is an RDF term or a variable, C is translated to a triple pattern, 
according to the definitions in the previous section (Section 5.4.5.2). 

R2. If C.p is a chain P/Q of two path expressions P and Q, an 
intermediate variable seq = newvar(TC) is introduced, and C is translated a 
conjunction of two path expressions: 

tr(C) = tr(pe(C.s, P, seq) ∧  pe(seq, Q, C.o)) 

R3. If C.p is ^P, denoting the reversed expression P, it is translated by 
direct reversal of subject and object in the condition: 

tr(C)  = tr(pe(C.o, P, C.s)) 

R4. If C is an alternative P|Q of two path expressions P and Q, it is 
translated as a disjunction of the conditions: 

tr(C) = tr(pe(C.s, P, C.o) ∨  pe(C.s, Q, C.o)) 

R5. If C is a reflexive closure P? of the path P, it is translated as a 
disjunction of the original path expression condition, and the equality of 
subject with object: 

tr(C) = tr(pe(C.s, P, C.o) ∨  (C.s = C.o)) 

The recursive path expressions are translated using a transitive closure 
function defined in AmosQL. There is a tclosen() function for the non-
reflexive case, and tclose() for the reflexive-transitive closure. These 
correspond to Q+ and Q* syntax respectively. The first argument to either of 
these is a bag-valued function f(x) with the same domain and range, and the 
second argument is a starting point x. The transitive closure tclosen(f, x) 
function returns all distinct values acquired by computing f(x), f(f(x)), 
f(f(f(x))), and so on. The finite amount of such results for each x is assumed. 
A reflexive-transitive closure tclose(f, x) additionally includes x in the result. 
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A reverse application is also an option: given y ∈  tclose(f, x) expression, 
it is possible to determine the set of all possible x values if y value is already 
bound. The function f(x) should be reversible - if it were a foreign function, 
the corresponding predicate (F X Y) would have both '-+' and '+-' binding 
patterns. All stored functions are fully multidirectional, and derived 
functions are 'flattened' by Amos II query processor to the logical expression 
of their constituent predicates. If a derived function consists only of stored 
predicates, it is multidirectional by induction13.  

A non-recursive path expression P can be regarded as a derived function 
p(x) = y, connecting all possible pairs (x, y) of nodes, connected by paths 
satisfying P. Such p(x) is fully multidirectional - since it ultimately calls the 
same stored predicate (GRAPH GID S P O). In particular, p(x) can be used 
to find all possible bindings for y given a binding for x, and all possible 
binding for x given a binding for y. In AmosQL this can be expressed as a 
function with surrogate name pathfn = newfnname(TC), and where block 
formed by the translation of condition pe(x, P, y): 

TRW = tr(pe(x, P, y), TC) 

trfn(P) = create function pathfn(Literal x) -> Bag of Literal y as 
select y from trD(TC.newvars) where TRW 

and if P contains no chain operators, no new variables were created during 
the translation process, and thus the from clause is omitted. The function 
trD() given a set of variables, constructs a comma-separated list, prefixing 
each name by Literal type specifier. 

R6. If C.p is a transitive closure P+ of a path expression P, an internal 
function pathfn is defined as trfn(P), and the condition C is translated as: 

tr(C) = tr(C.o) in tclosen(pathfn, tr(C.s)) 

R7. If C.p is a reflexive-transitive closure P*, similarly: 

tr(C) = tr(C.o) in tclose(pathfn, tr(C.s)) 

Note that such translations of recursive path expressions are also fully 
multidirectional, as functions connecting pairs (x, y) of nodes: they call only 
the stored predicate GRAPH and the foreign predicates TCLOSE or TCLOSEN. 
Either of the latter has both '--+' and '-+-' binding patterns, and their first 
argument is always bound to the function named pathfn. Hence, a path 
expression P, used under the transitive closures P+ or P* does not need to 

                                                      
13 A condition for a derived function f(x) being multidirectional is actually much weaker: it 
requires there should be a predicate binding x in every disjunctive branch, with no restriction 
on any other predicates in branches. Having only multidirectional (e.g. stored) predicates is 
just a simple particular case. 
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be non-recursive for multidirectionality of the closure expression. Nested 
recursion is generally supported. 

The following example illustrates the translation rules defined in this 
section: 

Q13 (W3C SPARQL 1.1): Select names of all ancestors of Alice: 

PREFIX : <http://example.org/> 
SELECT ?n  
 WHERE { ?x (:fatherOf|:motherOf)+/:name "Alice" ; 
            :name ?n } 

This is translated by recursively applying R2, R6, R3, and R1 in the 
terminal cases, resulting in: 

select n 
  from Literal x, Literal n, Literal seq:1 
 where seq:1 in tclosen(#'path:1', x) 
   and (seq:1, URI('http://example.org/name'), USTR('Alice'))  
       in GRAPH(0) 
   and (x, URI('http://example.org/name'), n) in GRAPH(0); 

where function path:1() is defined on-the-fly as: 

create function path:1(Literal x) -> Bag of Literal y as  
  select x 
   where (x, URI('http://example.org/fatherOf'), y) in GRAPH(0) 
      or (x, URI('http://example.org/motherOf'), y) in GRAPH(0); 

5.4.5.4 Translating expressions 
Currently, SciSPARQL supports the following kinds of expressions, listed 
here with their translation rules and examples: 

• a variable, e.g. ?x - translated to an AmosQL variable, e.g. x 
• a full URI, e.g. <http://udbl.uu.se/g1> - translated to a URI 

constructor call in AmosQL, e.g. URI('http://udbl.uu.se/g1') 
• an abbreviated URI, e.g. udbl:g1 - translated similarly, using the 

prefix lookup first in TC.prefixes and then in session-prefixes, in 
order to get the full URI form 

• a numeric or logical literal, e.g. 3.14 or true - translated to the 
same numeric literal in AmosQL (textual representations fully 
comply) 

• a string literal, e.g. "Cat" or "Katz"@de - translated to a Unicode 
string constructor call in AmosQL, e.g. USTR('Cat') or 
USTR('Katz','de') 

• a typed literal, e.g. "Katt"^^udbl:Djur - translated to a typed 
literal constructor call in AmosQL, e.g. TypedRDF('Katt', 

URI('http://udbl.uu.se/Djur')) - this translation excludes the 
standard XMLS types for numbers, Boolean values and text strings 
date literals, where one of the above translations is used instead.  
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• a user-specified blank node, e.g. _:r1 - translated to an AmosQL 
variable, e.g. b:r1 

• a parser-generated blank node resulting from square brackets syntax 
(containing a unique id supplied by the parser) - translated to an 
AmosQL variable, e.g. g:324 

• a unary or binary arithmetic operation, e.g. x + y, where x and y are 
expressions - translated to a call to the corresponding function, 
accepting the arguments of generic type Literal - e.g. rdf:plus(tr(x), 
tr(y)) 

• a binary dot-prefixed arithmetic operation, e.g. x .+ y, where x and y 
are expressions - translated to a call to a specialized Amos function - 
e.g. rdf:aplus(tr(x), tr(y)), where rdf:aplus() has the same general 
implementation as rdf:plus(), but a higher cost estimate 

• a comparison operation, e.g. x >= y - translated to the corresponding 
comparison expression in AmosQL (since the comparison operators 
in AmosQL accept arguments of any type), e.g. tr(x) >= tr(y). In order 
to enforce the strict adherence to the SPARQL standard, (as 
controlled by _sq_strict_ flag) additional condition 
comparable(tr(x), tr(y)) will be added to TC.newconds - this ensures 
that comparing e.g. a number to a string never returns true 

• a dot-prefixed comparison operation, e.g. x .>= y - translated to the 
specialized Amos function, performing the element-wise comparison 
and producing a Boolean array (unless both operands happen to be 
scalar) - e.g. rdf:agte(tr(x), tr(y)). Specialized operations on 
Boolean arrays are also supported: x .& y and x .| y for the element-
wise logic 

• a logical conjunction or disjunction operation, e.g. x && y - translated 
to the corresponding logical operator in AmosQL, e.g. tr(x) and tr(y) 

• a logical negation operation !x - the translation depends on the kind 
of the immediate subexpression x: if it is found in the pairs of 
opposite expressions (e.g. != and = comparisons, or false and true 
literals, bound() and notbound() functions), then the opposite 
expression is translated instead, otherwise, the rdf:not(EBV(x)) 
translation is used, where EBV() implements the Effective Boolean 
Value, as explained in Section 3.3.3, and rdf:not() negates the logical 
value 

• a block with an EXISTS or NOT EXITS quantifier, e.g. EXISTS B - 
translated to an AmosQL subquery inside some() or notany() 
quantifier respectively, e.g. some(select true from trD(declare(B)) 
where tr(B)), where declare(B) builds a list of variables to be declared 
for the translation of block B, as specified in Section 5.4.5.6 below. 

• a typecasting expression, e.g. xsd:integer("314") - translated to 
the corresponding built-in typecasting function call, e.g. 
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rdf:toInteger('314') for the numeric, Boolean, and string types, 
otherwise to a typed literal constructor call, as shown above 

• a call to a built-in function with variable number of arguments, e.g. 
1D array construct A(x, y) - translated to a call to the implementing 
Amos function, with translated arguments packed into a vector, e.g. 
a({tr(x), tr(y)}) 

• a call to ARGMIN() or ARGMAX() built-in second-order function - 
translation is explained in Section 5.4.5.9 

• a call to any other non-aggregate function (either built-in or user-
defined), e.g. round(x) - translated to a call to an Amos function 
with the same name prefixed with rdf:, e.g. rdf:round(x) 

• a call to an aggregate function, e.g. SUM(x) - not translated as part of 
the expression, such aggregate function calls are collected into Q.agg 
during the preprocessing phase, as explained in Section 5.4.5.7, and 
are replaced with expressions under the call to an aggregate function, 
to be translated as part of the select list of the inner query 

• a call to any non-aggregate first-order function with some of the 
arguments replaced by asterisk, e.g. power(*, 2) - translated to a 
pair of consecutive arguments to a second-order function, together 
imlementing a lexical closure - a function name and a partial tuple 
constructor call - e.g. #'power', make_partial_tuple({2},{0}), with 
the first vector containing all non-asterisk arguments, and the second 
vector containing the positions of asterisks. Such lexical closures are 
only used as arguments to built-in second-order functions, like the 
ARRAY() constructor or the MAP() array mapper, and represent 
function calls with some arguments bound, while other arguments are 
free. 

• an array dereference operation, e.g. x[1,4:2:8] - translated to a 
superposition of calls to aref() and asub() for each referred 
dimension: aref() implements projections and asub() implements 
range selections - both functions take a dimension index, e.g. 
asub(aref(tr(x),1,1),1,4,2,8) - note that the dimension index for the 
second dimension becomes decremented after applying the 
projection. 

5.4.5.5 Translating blocks of conditions 
The WHERE block of a query or update statement lists a sequence of 
conditions, appearing in conjunction (though not strictly a conjunction with 
commutative property in the case of not well-formed queries). Such blocks 
are translated to AmosQL conjunctions of translations of the respective 
conditions, the order being preserved, together with any additional 
conditions introduced by the translation of expressions. Such conjunctions 
are fully commutative in the absence of the optional() operator, which, if 
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present, divides their sequence into sections that cannot be reordered, as 
explained in Section 5.4.4. 

Section 5.4.5.2 above has already introduced the translation of triple 
patterns, within and without GRAPH blocks. The following table summarizes 
the translation used for all kinds of conditions. The original conditions are 
shown in SciSPARQL's syntax for simplicity, even though the translator 
operates on the internal data structure representations of conditions and their 
components - nested blocks, expressions, etc. 

Table 3. Translation of conditions in WHERE block 

Type of 
condition 

Condition C 
(SciSPARQL syntax) 

Symbols Translation tr(C, TC) 
(AmosQL syntax) 

Triple pattern 
outside 
GRAPH block 

s p o RDF terms (tr(s), tr(p), tr(o))  
in TC.source 

Triple pattern 
inside GRAPH 
block 

GRAPH g { s p o } RDF terms (tr(s), tr(p), tr(o))  
in trSource(g) 

Path patterns s P o 
GRAPH g {s P o} 

g, s, o - RDF terms, 
P - path expression 

explained in Section 
5.4.5.3 

Filter FILTER e e - expression tr(e) 
BIND (e AS v) e - expression, 

v - variable 
tr(v) = tr(e) Explicit 

binding 
VALUES v {e1, e2, ...} v - variable 

e1, e2, ... - 
expressions 

tr(v) = tr(e1) or tr(v) = 
tr(e2) or ... 

Optional block OPTIONAL B B - block optional(tr(B)) 
Union B1 UNION B2  

UNION B3 ... 
blocks (tr(B1) or tr(B2)  

or tr(B3)) ... 
Subquery Q Q - query (tr(var(Q.what)))  

in (tr(Q)) 

The translation tr(B) of a whole condition block is done by putting the 
translations of the individual conditions B.conds into a conjunction: 

tr(B) = andify(tr(B.conds)) 

where andify() combines the given translated conditions into a single 
conjunction, effectively interleaving them with the and keyword. When 
translating the basic block of a query, as shown next in Section 5.4.5.6, 
additional translated conditions from TC.newconds are added into the 
conjunction. 

A note on the translation of subqueries: the function var(Q.what) returns 
the list of variables projected from a SELECT query Q - this includes 
variables appearing in the Q.what list and names of the named expressions 
appearing there. All variables in var(Q.what) become bound and referenced 
in the host query, according to the definitions given in Section 5.4.1.3 
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An aggregate subquery is translated in two layers, however, its outer layer 
is effectively merged into the host query, with e.g. Q.having conditions 
added to TC.newconds. No ordering or segmentation is allowed in 
subqueries, however, some additional variables on the outer layer might 
arise from cross-referencing of expressions, as explained in Section 5.4.5.7. 

5.4.5.6 Translating basic SELECT queries 
Here and below, the term basic query is used as shorthand for a non-
aggregate SELECT query (and justifies the 'B' enumeration for the 
translation steps listed below). This can also be a subquery or a host query 
containing subqueries as conditions. 

Given the above definitions for translations tr(e) of an expression e, and 
tr(B) of a condition block B, the translation tr(Q) of a basic query Q 
becomes straightforward, as described by steps B1 - B9 below. These steps 
are given for illustrative purpose only, since determining whether Q is an 
aggregate query or not is done after the second step, as shown in the next 
section. 

B1. The Q.where block and all its nested blocks are preprocessed in order 
to compute bound, semibound, referenced, and blanks sets of variables for 
each block. 

B2. The translation context TC is created, with fields initialized as 
described in Section 5.4.5.1. If Q is a subquery, the host query translation 
context is cloned to TC instead, with newconds and newvars fields emptied, 
and TC.bound set including all variables bound in the parent query.  

B3. A check for cross-referenced named expressions is performed, as 
described in Section 5.4.3.1, any such expressions are rewritten to their 
names, and additional BIND conditions are added as AmosQL translations to 
TC.newconds. If Q is a subquery, all named expressions in Q.what are 
considered to be cross-referenced. 

B4. The translation TRS of the Q.what list of a query is computed, with 
TC possibly updated. This also includes any additional variables used for 
ordering: 

TRS = tr(Q.what + Q.select-extra, TC) 

B5. The translation TRW of the Q.where block is computed, with TC 
possibly updated. This translation includes any extra conditions added to 
TC.newconds along the way. 

TRW = tr(Q.where, TC) 

B6. The declare(B) set of variables is computed for the basic block B as 
follows (with definitions of Ref(B) and B.blanks in Section 5.4.3.1): 
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declare(B, TC) = (Ref(B) ∪  B.blanks ∪  TC.newvars) \ TC.bound  

B7. The core translation trC(Q) of the query is constructed as  

trC(Q) = select TRS from trD(declare(B, TC)) where TRW 

or with distinct option added after select if Q.distinct flag is set. (The trD() 
function is defined in Section 5.4.5.3) 

B8. If Q.orderby list is empty the translation trO(Q) is left unchanged 

trO(Q) = trC(Q)   iff   Q.orderby = ∅  

otherwise, a facility to order the query results is added to the translation. For 
this purpose, the (possibly rewritten) expressions in Q.orderby are looked up 
in the extended select list.  

Formally, each entry in Q.orderby contains an expression, and a direction 
specifier, to be translated to either 'inc' or 'dec' representation in AmosQL. 
Function expr(Q.orderby) returns the list of such expressions, and 
dir(Q.orderby) returns the aligned list of directions. Also, the function 
lookup(e, list) returns a 0-based position of expression e in the list. When 
applied to a list of expressions (in the first argument), it returns a list of such 
positions. 

trO(Q) = sortbagby(trC(Q), {lookup(expr(Q.orderby), Q.what + Q.select-
extra)}, {tr(dir(Q.orderby))}) 

B9. The final translation is constructed, by applying the segmentation 
facility. If both Q.offset and Q.limit are empty, the translation is unchanged, 
tr(Q) = trO(Q) otherwise the bsection1() function call is wrapped around the 
previously constructed translation 

tr(Q) = bsection1(trO, tr(Q.offset), tr(Q.limit)) 

where the translations of Q.offset and Q.limit default to 0, in order to 
indicate the absence of such bounds to the bsection1() function, as 
explained in Section 5.4.3.3. 

Note that while ORDER BY is meaningless in subqueries, OFFSET and 
especially LIMIT clauses can prove quite useful (e.g. in formulating a top-k 
selection). The expressions in Q.offset and Q.limit are typically constant, but 
might as well depend on variables external to the query Q - i.e. those in the 
TC.bound set. 

5.4.5.7 Translating aggregate queries 
Substantially more preprocessing is required for aggregate queries, with the 
first step being taken to determine if Q is an aggregate query.  

A1 - A2. Same as B1 - B2 in the previous section. 
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A3. The expressions in Q.what, Q.orderby and Q.having are scanned for 
aggregate functions (not necessarily at the top level). The presence of 
Q.groupby or Q.having per se does not make Q an aggregate query - instead, 
these fields are only allowed in aggregate queries. Named aggregate 
expressions are put into Q.agg together with their names. Other (not top-
level) calls to aggregate functions are assigned surrogate names, like agg:1, 
agg:2 etc., and are also placed into Q.agg, with new variables added to 
TC.newvars. The places where aggregate function calls were found are 
rewritten with their mentioned names (as variables).  

Only unique aggregate function calls are added to Q.agg - if an 
expression is already found there, its name from Q.agg is used for rewriting. 
Currently, equality of expressions is done by comparing the parse trees, 
which is simple but certain equivalent expressions might not be detected. 
For example max(?a + ?b) and max(?b + ?a) would be treated as 
different expressions. A more thorough comparison, e.g. one based on 
rewriting such expressions to a canonic form and sorting the commutative 
operands, awaits its implementation in the future versions of SSDM. 

If Q.agg remains empty then Q is not an aggregate query, and Steps B3 - 
B7 for the simple query translation are performed. 

A4. The translation context TC will be used for the outer query, and the 
new TCINNER context is cloned for the inner query, with newvars and 
newconds fields emptied.  

If Q is an aggregate subquery, the already-cloned TC will be used as 
TCINNER for the inner query and the original translation context of the host 
query will be used as TC for the outer query. 

A5. The check for cross-referenced named expressions is performed, 
similarly to Step B3. However, named expressions already collected into 
Q.agg are already rewritten to their names in place, and do not require extra 
BIND conditions to be translated into TC.newconds.  

A6. Each named expression e in Q.agg, contains an aggregate function 
call at the top level, with a single argument. We denote the argument 
expression to the top-level function as arg(e), that function name as fn(e), 
and the naming variable as var(e). The same functions applied to the Q.agg 
list denote the lists of the respective objects. First we are going to compute 
the translations of the arguments to the aggregate functions, possibly 
updating the inner context: 

TRA = tr(arg(Q.agg), TCINNER) 

A7. Similarly to B5, we translate the where block of the inner query, 
possibly updating TCINNER and including TCINNER.newconds into the 
conjunction: 
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TRW = tr(Q.where, TCINNER) 

A8. The select list of the inner AmosQL query is constructed of two parts: 
(i) variables listed in Q.groupby, packed into a vector (unless grouping on a 
single variable) and (ii) the translations TRA of arguments to the aggregate 
functions computed at step A6. The translation of the inner block is: 

TRINNER= select {tr(Q.groupby, TCINNER)}, TRA from trD(declare(B, 
TCINNER)) where TRW 

Additionally, if Q.groupby is empty, a short version of the inner query 
translation is made, which may be used in next step A9, and also for the 
purpose of translating function bodies: 

TRs
INNER= select TRA from trD(declare(B, TCINNER)) where TRW 

The distinct option will be added into both translations after select if 
Q.inner-distinct flag is set, i.e. if the DISTINCT keyword was encountered 
under at least one aggregate function. The set declare(B, TCINNER) is 
computed in the same way as in B6, except with a different translation 
context - having more variables in TC.bound. 

Note that the general-case translation TRINNER is viable even if there was 
no GROUP BY clause in Q - the first element in select then becomes an 
empty vector, and the groupby() call introduced in step A10 is used to 
invoke the single-pass evaluation of multiple aggregate functions, effectively 
grouping on a constant empty group {}. 

A9. In case of a single aggregate expression in Q.agg, empty Q.groupby 
set, absence of Q.having, empty TC.newconds list, and a single expression in 
Q.what being rewritten to the only variable defined in Q.agg: 

|Q.agg| = 1 ∧  Q.groupby = ∅  ∧  Q.having = nil ∧  TC.newconds = ∅  
∧  Q.what = var(Q.agg) 

the outer query can be translated directly as a call to that aggregate function. 
This results in the following core translation, (possibly followed by 
applying a segmentation facility at step A15): 

trC(Q) = tr(fn(Q.agg))( TRs
INNER) 

Otherwise, steps A10-A13 are preformed to construct a general-case core 
translation of aggregate query Q. 

A10. The central condition of the outer query is the one calling groupby(). 
This condition is formed as: 

TRG = ({tr(Q.groupby, TC)}, tr(var(Q.agg), TC)) in groupby(TRINNER, 

{tr#(fn(Q.agg))}) 
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The function tr#() annotates the translated function names with syntactic 
features used for the functional arguments in AmosQL, e.g. #'rdf:sum' for 
the sum() aggregate function. 

A11. If Q is a subquery, TRG and tr(Q.having, TC) conditions are simply 
added to TC.newconds in the host query (sharing the translation context TC). 
The variables in Q.groupby and var(Q.agg), if not already referenced in the 
host query block, are added to TC.newvars.  

If Q is not a subquery, the remaining steps proceed. 

A12. The expressions in Q.what (where certain subexpressions have been 
rewritten to variables at steps A3 and A5), are translated to a select list, 
possibly updating the translation context, and including any extra variables 
used for ordering: 

TRS = tr(Q.what ∪  Q.select-extra, TC) 

A13. The core translation of the outer query is now constructed as: 

trC(Q) = select TRS from trD((Q.groupby ∪  var(Q.agg) ∪  TC.newvars) 
\ TC.bound) where andify(TRG, tr(Q.having, TC), TC.newconds) 

or with distinct option added after select if Q.distinct flag is set.  

A14 - A15 The final translation tr(Q) is constructed in the same way as 
for a basic query, following the steps B8 - B9.  

5.4.5.8 Translating function definitions 
The translation of a function definition statement S to its AmosQL 
equivalent tr(S) depends on whether S.body is a basic or an aggregate query.  

For the top-level-aggregate (TLA) functions (i.e. ones containing 
aggregate queries in Q.body) it is important to separate inner and outer 
function definitions, which are similar to the concepts of inner and outer 
queries. This is required to correctly translate ARGMIN() and ARGMAX() to 
subqueries, as shown in the next section. However, not all kinds of functions 
can be passed as arguments to these second-order functions, leading us to the 
definition of an argmax-compatible function.  

An argmax-compatible function has result width of 1, and is known to 
return a single result solution. The latter is not an enforced requirement, but 
a simple criterion used to disqualify certain classes of SciSPARQL functions 
from the need of being translated in the argmax-compatible way. For 
example, functions with a GROUP BY clause are not argmax-compatible, 
neither are the functions which require ordering or segmentation. The 
HAVING clause, designed for filtering the resulting solutions, also assumes 
their multiplicity, hence showing the lack of argmax-compatibility. For 
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simplicity, we will use the following criterion to identify argmax-compatible 
functions: 

|S.body.what| = 1 ∧  S.body.groupby = ∅  ∧  S.body.having = nil ∧  
S.body.orderby = ∅  ∧  S.body.offset = nil ∧  S.body.limit =nil 

Note that the class of argmax-compatible functions might include both 
basic (i.e. non-aggregate) functions, and functions with any number of 
aggregate expressions collected into Q.agg. The groupby() function might be 
used in their translations, albeit then performing no actual grouping - only 
expressing single-pass computation of multiple aggregate expressions. 

In the case of a TLA function, this criterion rules out any extra conditions 
that can be added to the TC.newconds when translating the outer query. Such 
an outer query includes a single expression in Q.what, depending on a 
number of aggregate function calls collected into Q.agg. In AmosQL this 
will be translated either to a query with single condition in where clause, 
calling groupby() on a constant group {}, or a direct call to the aggregate 
function, as shown in A9. 

The following steps outline the process of obtaining the translation tr(S) 
of the function definition S. 

F1. First, the translation tr(S.body) of the function body (always being a 
SELECT query) is constructed following the steps A1 - A15 described 
above. At step A2 (same as B2) the TC.bound set of the newly created 
translation context TC will contain S.params. 

F2. If S.body is a basic query, i.e. S.body.agg = ∅ , or if S is not argmax-
compatible function,  a single function definition in AmosQL translates S: 

tr(S) = create function tr(S.name)(trD(S.params)) -> Bag of Literal as 
tr(S.body) 

Otherwise, the remaining steps are performed to translate an aggmax-
compatible TLA function in two separate parts: an inner function translation 
trINNER(S) and an outer function translation trOUTER(S). 

F3. The inner function is based on the short translation TRs
INNER of the 

inner query, as defined in step A8. The inner function is defined as: 

trINNER(S) = create function tr(S.name):inner(trD(S.params)) -> Bag of 
(rptq('Literal', |Q.body.agg|)) as TRs

INNER 

The function rptq() makes a comma-delimited list of repeated code 
fragments, given a number or repetitions in the second argument. 

F4. The translated body TROUTER of the outer function may be constructed 
in the simplified form: 

TROUTER = tr(fn(Q.agg))(select tr(S.name):inner(tr(S.params))) 
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if the conditions from A9 hold: 

|S.body.agg| = 1 ∧  TC.newconds = ∅  ∧  S.body.what = var(Q.agg) 

Otherwise a general-case translation, similar to the one defined in steps 
A10, A12, A13, under certain simplifications arising from argmax-
compatibility criterion stated above: 

TRG = ({}, tr(var(S.body.agg), TC)) in groupby(select {}, 
tr(S.name):inner(tr(S.params)), {tr#(fn(S.body.agg))}) 

TRS = tr(S.body.what, TC) 

TROUTER = select TRS from trD((var(S.body.agg) ∪  TC.newvars) \ 
Q.params) where andify(TRG, TC.newconds) 

F5. The outer function translation trOUTER(S) extends the translated body 
by supplying a header: 

trOUTER(S) = create function tr(S.name)(trD(S.params)) -> Bag of 
Literal as TROUTER 

F6. The overall result of translating an argmax-compatible aggregate 
function is a pair of function definitions 

tr(S) = trINNER(S); trOUTER(S) 

The rewritten SELECT expression S.body.what and the list of collected 
aggregate functions S.body.agg are saved is SSDM in the TLA hash table, 
with S.name serving as a key: 

agg(S.name) = S.body.agg 

expr(S.name) = S.body.what 

This information is needed for the ARGMIN() and ARGMAX() translations 
introduced in the next section. 

5.4.5.9 Translating ARGMIN and ARGMAX 
A call to ARGMIN() or ARGMAX() is a kind of expression, as listed in 
Section 5.4.5.4. The only argument is a function of a single parameter (or a 
lexical closure with a single free argument), which is argmax-compatible, as 
defined in the previous section, and returns a single value for each binding 
of its parameter. Another fundamental requirement (beyond the scope of the 
translator) is that the function needs to have a finite domain, i.e. it can be 
evaluated without externally binding its argument. 

SSDM defines the rdf:argmin() and rdf:argmax() aggregate functions in 
AmosQL with identical signatures: both of them take a bag of (arg, res) 
tuples, and return the encountered arg values where res was found at its 
minimum or maximum. A simple derived Amos function is internally 
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flattened after its translation to ObjectLog, so that the chain of predicates 
connecting its argument and finiteness conditions (e.g. a graph pattern) can 
be reversed by the optimizer towards the set of all possible argument values. 
The same is, unfortunately, not technically possible with functions involving 
top-level aggregate operations, which confine their finiteness conditions in a 
separate 'inner' calculus expression, and consequently, a separate execution 
plan, so that any external arguments can only be passed inwards, but not 
outwards. 

Though this can be regarded as purely architectural restriction with 
ObjectLog; there is an interesting workaround, which relies on directly 
addressing the 'inner' part of such a function in order to iterate over all 
possible argument values. The subqueries translating ARGMIN() and 
ARGMAX() calls are constructed based on this idea, described in the 
following steps. 

Without any loss of generality, let e be an expression calling a second-
order function e.fn with a single argument a = e.args. This argument is a 
closure, consisting of a function name a.fn and list of its arguments a.args 
containing exactly one asterisk. Though SciSPARQL allows omitting the 
lexical closure syntax when passing a unary function to ARGMIN() or 
ARGMAX(), at the parsing phase such a lexical closure is constructed, with 
a.args consisting of a single asterisk. 

M1. First, the information on a.fn is looked up in the TLA hash table in 
SSDM - whether it was a TLA function translated to the inner and outer 
function definitions on steps F3 - F6, with additional information agg(a.fn) 
and expr(a.fn) available, or as a basic function on step F2, in which case 
agg(a.fn) is empty. 

M2. The closure a is translated to a function call, with asterisk substituted 
to a newly-generated variable arg = newvar(TC). For this purpose, an 
alternative translation function trI(e) is defined, differing from the expression 
translation specified in Section 5.4.5.4 in two ways: (i) asterisk is translated 
to arg, postfixed with :i, in order to avoid possible collision with the outer 
level of the query, and (ii) the closure function a.fn is translated to its inner 
name, unless a.fn is a basic function: 

trI(asterisk) = arg:i 

trI(a.fn) = tr(a.fn):inner   iff   agg(a.fn) ∅≠  

M3. Even if the groupby() operator was not used in the translation of the 
TLA function a.fn, evaluating our second-order function involves grouping: 
for each possible argument value a number of inner function solutions is 
generated and passed to the aggregate function(s) used in a.fn.  

TRG = groupby((TRU), {tr#(fn(agg(a.fn)))})   iff   agg(a.fn) ∅≠  
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where TRU is a subquery returning tuples of a.fn argument and the under-
aggregate values to be grouped: 

 TRU = select arg:i, trI(a) from Literal arg:i 

For the basic functions, TRU needs neither grouping nor aggregation, and 
comes as a direct argument to e.g. rdf:argmax(). 

M4. If the outer function a.fn was translated in the simplified form, i.e. 
the SELECT expression expr(a.fn) is just a name var(agg(a.fn)) of the only 
aggregate function call, then  

tr(e) = tr(e.fn)(TRG) 

The same works for the basic functions, formally achieved by TRG = TRU. 
In all other cases, the next step concludes the process. 

M5. Since the outer function consists of a single expression and groupby() 
condition, reproducing it is a simple task. The expression expr(a.fn) is 
translated exactly in the same way as it was in the outer function definition, 
and bag of (arg, res) pairs is fed to e.g. rdf:argmax(): 

tr(e) = tr(e.fn)(select arg, tr(expr(a.fn)) from Literal arg, 
trD(var(agg(a.fn))) where (arg, tr(var(agg(a.fn))) in TRG)) 

5.4.5.10 Examples 
The translations defined in the four previous sections are illustrated by the 
following examples of aggmax-compatible functions. For simplicity, all the 
following definitions use a common prefix declaration: 

PREFIX : <http://example.org/data/#> 

A basic function f0 selecting value of property :x from a given graph 
node 

DEFINE FUNCTION f0(?a) AS 
SELECT ?x 
 WHERE { ?a :x ?x } 

is translated as   

create function rdf:f0(Literal a) -> Bag of Literal 
  as select x 
       from Literal x 
      where (a, URI('http://example.org/data/#x'), x) in GRAPH(0); 

and ARGMAX(f0(*)) in SciSPARQL translates to:  

rdf:argmax(select arg:1:i, rdf:f0(arg:1:i) from Literal arg:1:i); 
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Function f1, computing the sum of all such :x values 

DEFINE FUNCTION f1(?a) AS 
SELECT (sum(?x) AS ?res) 
 WHERE { ?a :x ?x } 

is translated to the pair of definitions 

create function rdf:f1:inner(Literal a) -> Bag of Literal 
  as select x 
       from Literal x 
      where (a, URI('http://example.org/data/#x'), x) in GRAPH(0); 

 
create function rdf:f1(Literal a) -> Bag of Literal  
  as rdf:sum((select rdf:f1:inner(a))); 

and ARGMAX(f1(*)) also uses a simplified translation: 

select rdf:argmax(groupby((select arg:1:i, rdf:f1:inner(arg:1:i)  
                             from Literal arg:1:i), #'rdf:sum')); 

The translation of the example ARGMAX() call from Section 4.3 is similar 
to this case: 

select rdf:argmax(groupby((select arg:1i,  
                                  rdf:sum_diag_positive:inner(arg:1i)  
                             from Literal arg:1i), #'rdf:sum')); 

where the sum_diag_positive() function, defined in Section 4.2, is 
translated to the outer and inner parts: 

create function rdf:sum_diag_positive:inner(Literal r)  
-> Bag of Literal 
  as select aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1)) 
       from Literal i, Literal a 
      where (r, URI('http://example.org/data/result'), a) in GRAPH(0) 
        and aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1))>0; 
 
create function rdf:sum_diag_positive(Literal r) -> Bag of Literal  
  as rdf:sum((select rdf:sum_diag_positive:inner(r))); 

Function f2, computing a numeric range of :x properties for the given 
node 

DEFINE FUNCTION f2(?a) AS 
SELECT (max(?x) - min(?x) AS ?range) 
 WHERE { ?a :x ?x } 

is translated as follows: 

create function rdf:f2:inner(Literal a) -> Bag of (Literal, Literal) 
  as select x, x 
       from Literal x 
      where (a, URI('http://example.org/data/#x'), x) in GRAPH(0); 

 
create function rdf:f2(Literal a) -> Bag of Literal  
  as select rdf:minus(agg:1, agg:2) 
       from Literal agg:1, Literal agg:2 
      where ({}, agg:2, agg:1)  
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            in groupby((select {}, rdf:f2:inner(a)),  
                       {#'rdf:min', #'rdf:max'}); 

and ARGMAX(f2(*)) reproduces the expression in the outer function: 

select rdf:argmax(select arg:1, rdf:minus(agg:1, agg:2) 
                    from Literal agg:1, Literal agg:2, Literal arg:1 
                   where (arg:1, agg:2, agg:1) in  
 groupby((select arg:1:i, rdf:f2:inner(arg:1:i) from Literal arg:1:i),  
         {#'rdf:min', #'rdf:max'})); 

5.4.5.11  Translating CONSTRUCT queries 
A CONSTRUCT query returns a new RDF graph in form of triples. For each 
solution of a query, exactly the same number of RDF triples is created, as 
there are triple templates in Q.what. The triple templates are quite similar to 
triple patterns, except that they are used for constructing, not for matching. 

The translation is an AmosQL query of width 3, effectively returning a 
union of results specified by each triple template for each solution 
corresponding to the WHERE block of the CONSTRUCT query. Since no 
unbound values are allowed in the result graph, the rdf:bound() check needs 
to be passed using a triple template with a semibound variable. The 
following example illustrates this approach: 

Q14 (W3C Standard SPARQL): Extract all realizations of all experiments 
into a new graph as nodes of type ex:OldRealization and the properties 
ex:a and ex:c containing these two parameters 

PREFIX ex: <http://udbl.uu.se/ex#> 
CONSTRUCT { ?r a ex:OldRealization ; ex:a ?a ; ex:c ?c } 
    WHERE { ?r a ex:OurExperimentRealization ; 
               ex:parameter_A ?a . 
            OPTIONAL { ?r ex:parameter_C ?c } } 

The translation constructs each triple template as an alternative solution, 
and performs additional check on the semibound variable ?c:  

select c:s, c:p, c:o 
  from Literal r, Literal c, Literal a,  
       Literal c:s, Literal c:p, Literal c:o 
 where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
        URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
       in GRAPH(0) 
   and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
   and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)  
                in GRAPH(0) 
   and ((c:s = r and  
         c:p = URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type')  
         and c:o = URI('http://udbl.uu.se/ex#OldRealization'))| 
     or (c:s = r and c:p = URI('http://udbl.uu.se/ex#a') and c:o = a) 
     or (c:s = r and c:p = URI('http://udbl.uu.se/ex#c') and c:o = c 
         and rdf:bound(c))); 

Formally, the translation process can be defined as tr(Q), where Q.what is 
a set of triple templates tt, each having tt.s, tt.p and tt.o fields. The query 
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always uses the same variables for selection, binding them alternatively, 
according to each triple template. 

C1. A new translation context TC is created. 

C2. The translation TRW of the Q.where block is computed, with TC 
possibly updated. This translation includes any extra conditions added to 
TC.newconds along the way: 

TRW = tr(Q.where, TC) 

C3. The basic translation trB(tt) of triple template tt is defined as 

trB(tt) = c:s = tr(tt.s) and c:p = tr(tt.p) and c:o = tr(tt.o)  

and the additional binding checks are added for all semibound variables 
var(tt), used in the given triple template: 

tr(tt) = andify(trB(tt), trbound(var(tt) ∩ Q.semibound)) 

where  

trbound(v) = rdf:bound(v) 

C4. The final translation tr(Q) is constructed: 

tr(Q) = select c:s, c:p, c:o from trD(declare(Q, TC)), Literal c:s, 
c:p, c:o where TRW and orify(tr(Q.what.conds)) 

where orify() function builds disjunction of a given list of translated 
conditions. 

5.4.5.12 Translating SPARQL updates 
In all the above translations, the Amos function GRAPH() was ultimately 
addressed for matching the triple patterns. Though in most recommended 
settings, as discussed in the following chapters, the triples reside in the main 
memory in the SSDM server, its extensible architecture allows any external 
API, to be invoked for the purpose of querying GRAPH(), including 
formulation of foreign queries to the external storage systems. The query-
only access to GRAPH() assumes that different mechanisms are required for 
inserting and removing the triples. 

For this purpose SSDM defines the rdf:insert() and rdf:remove() 
functions, which are generic and encapsulate the extensibility mechanisms, 
similarly to GRAPH(). Since these functions contain side effects, they cannot 
be called from an AmosQL query. Fortunately, Amos II allows hybrid 
semantics, combining a query and a procedure: for each solution of a given 
query, a number of operations are performed (update operations in our case). 
In order to avoid inserting unbound values, the procedural if syntax can be 
used. The following example illustrates this approach: 
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Update1 (W3C standard): rename ex:parameter_A and 
ex:parameter_C properties to ex:a and ex:c respectively. 

PREFIX ex: <http://udbl.uu.se/ex#> 
DELETE { ?r ex:parameter_A ?a ; ex:parameter_C ?c } 
INSERT { ?r ex:a ?a ; ex:c ?c } 
 WHERE { ?r a ex:OurExperimentRealization ; 
            ex:parameter_A ?a . 
        OPTIONAL { ?r ex:parameter_C ?c } } 

The translation is rather straightforward, providing a remove or insert 
operation for each triple pattern in DELETE and INSERT clause respectively, 
with additional binding check, needed only for insert operation. 

for each Literal r, Literal c, Literal a 
  where (r, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), 
         URI('http://udbl.uu.se/ex#OurExperimentRealization'))  
        in GRAPH(0) 
    and (r, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
    and optional((r, URI('http://udbl.uu.se/ex#parameter_C'), c)  
                 in GRAPH(0)) 
begin 
  rdf:remove(0, r, URI('http://udbl.uu.se/ex#parameter_A'), a); 
  rdf:remove(0, r, URI('http://udbl.uu.se/ex#parameter_C'), c); 
  rdf:insert(0, r, URI('http://udbl.uu.se/ex#a'), a); 
  if rdf:bound(c) then  
    rdf:insert(0, r, URI('http://udbl.uu.se/ex#c'), c); 
end; 

Formally, an update statement S contains an S.where block, S.delete and 
S.insert lists of patterns, and S.with URI for the graph to perform the updates 
on. The latter is translated to integer id by GDict(S.with), defaulting to 0. 
Additionally, as with queries S.from might contain the list of graphs listed in 
the USING clause and addressed in the WHERE clause. 

U1. A new translation context TC is created. If S.from is omitted but 
S.with is present, TC.source stores the translation GRAPH(GDict(S.from)). 

U2. Similarly to C2 and A7, the translation TRW of the Q.where block is 
computed, with TC possibly updated. This translation includes any extra 
conditions added to TC.newconds along the way. 

TRW = tr(Q.where, TC) 

U3. The delete and insert patterns are translated in a similar way: 

trdel(tp) = rdf:remove(GDict(S.with), tr(tp.s), tr(tp.p), tr(tp.o)); 

trins0(tp) = rdf:insert(GDict(S.with), tr(tp.s), tr(tp.p), tr(tp.o)); 

However, the insert calls should be skipped if not all used variables are 
bound, so the final translation of an insert pattern includes an if condition: 

trins(tp) = if andify(trbound(var(tp) ∩ Q.semibound)) then trins0(tp)   
 iff   var(tp) ∩ Q.semibound ∅≠  
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If there are no semibound variables in the insert pattern then trins(tp) = 
trins0(tp) 

U4. The final translation tr(S) of the update statement S is constructed: 

tr(S) = for each trD(declare(S, TC)) where TRW begin 
concat(trdel(S.delete), trins(S.insert)) end 

Note that the INSERT DATA and DELETE DATA statements are handled 
differently, in accordance with W3C Recommendations [156]: the 
corresponding rdf:insert() and rdf:remove() calls are made as the syntactic 
parsing stage, so that the triple patterns (where no variables are allowed) are 
not accumulated in the parse tree. This approach allows processing 
arbitrarily long statements for bulk updates of RDF with Arrays datasets. 

5.5 Polymorphic Properties Problem 
In Section 5.3 we state that SSDM supports backwards-compatibility when 
handling collections of numbers as arrays. This assumes that along with the 
new way to address e.g. the first element ?A[1] of a collection ?A, the old 
way, using a triple pattern is also supported: 

?A rdf:first ?x 

In the current version of SSDM, this is guaranteed by translating triple 
patterns with rdf:first and rdf:rest as disjunctions, e.g.  

(rdf:first(A) = x  
    or (A, URI('http://www.w3.org/1999/02/22-rdf-syntax-ns#first'), x)   
       in GRAPH(0)) 

where the Amos function rdf:first() makes a run-time type checking, and 
if the argument is an array, returns the first element, which, in the case of  a 
multidimensional array will be the first (n-1)-dimensional slice  

Effectively, the OR branches are mutually exclusive: if A is not an array, 
rdf:first() yields no result, but a triple pattern might have some bindings 
for x. If A is an array, the RDF triple pattern will never bind, since array 
value can never be a subject in a triple - only an object.  

5.5.1 Directionality Problem 
As illustrated by dataset on Figure 4 in Section 2.3.5.1, a triple pattern  

?x rdf:first 2 

can easily be matched, putting the blank node _:c into the solution. Even 
though the graph representing an array can be quite big, dedicated RDF 
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stores with powerful indexing techniques, such as RDF-3X [112], will find 
the match in logarithmic time - equivalent to matching e.g.  

_:c rdf:first ?y 

In our case the graph in Figure 4 is stored as a numeric array. So there is 
actually no blank node _:c, and a 1D array consisting of single element 2 
can be regarded as an equivalent replacement of _:c. Such an array value 
can easily be created on demand as a derived array, without copying any 
array data. Similarly, the whole array is a replacement for the _:a node.  

However, while finding the first element of a given array is simple and 
takes constant time, finding an array (or any 1D subarray) with a given first 
element would involve a linear scan through every array in the graph, 
resulting in a linear complexity w.r.t. the total volume of array data stored. 
 

Solution: Currently, rdf:first() and rdf:rest() functions are 
implemented as uni-directional, effectively forbidding queries with triple 
patterns like the first one in this section, unless ?x can be bound otherwise. 
This results in a certain limitation of the backwards-compatibility feature, 
motivated by the intended use of SSDM - storing and querying massive 
array data as part of RDF with Arrays datasets. 

5.5.2 Normalization Problem 
The typical use of rdf:first and rdf:rest predicates is chaining. For 
example, in order to address ?A[2,2], in standard SPARQL one would use 
a graph pattern 

?A rdf:rest [ rdf:first [ rdf:rest [ rdf:first ?x ]]] 

or, in SPARQL 1.1 one might prefer the path expression syntax 

?A rdf:rest/rdf:first/rdf:rest/rdf:first ?x 

both of which effectively translate to four triple patterns. Since in our case, 
each such triple pattern is translated to a disjunction of two alternatives in 
AmosQL, further query transformations always involve normalization to 
disjunctive normal form (DNF). A conjunction of n binary alternatives (of 
unique expressions, as in our case) is transformed to a disjunction of 2n 
branches, each containing a conjunction of n terms, thus resulting in a 
combinatorial explosion of the execution plan w.r.t. the number of 
rdf:first and rdf:rest patterns in the query. 
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Solution: In our case, we effectively get a union of 16 branches - 
however, only 5 of them are theoretically capable of yielding any solutions. 
This is due to the fact that rdf:first() and rdf:rest() functions may only 
return arrays, scalar values, or rdf:nil, and neither of these values, 
according to the RDF standard, can be a subject in an RDF triple. Hence, 
any union branch containing a chain of predicates where the result of such a 
function is used as a subject in a triple pattern can be safely ruled out. The 
remaining 5 alternatives contain chains of triple patterns followed by a chain 
of function calls, either chain consisting of 0 to 4 elements. This set is 
illustrated by the following diagram, where tp stands for a triple pattern with 
an rdf:first or rdf:rest predicate, and fn() stands for a corresponding 
rdf:first() or rdf:rest() function call: 

?A →  tp →  tp →  tp →  tp →  ?x ∪  
?A →  tp →  tp →  tp →  fn() →  ?x ∪  
?A →  tp →  tp →  fn() →  fn() →  ?x ∪  
?A →  tp →  fn() →  fn() →  fn() →  ?x ∪  
?A →  fn() →  fn() →  fn() →  fn() →  ?x 

With the number of viable branches being n+1, such reduced 
normalization would rearrange 2n original terms to n(n+1) terms in the 
normalized expression, resulting in only a linear complexity increase. 

We implement this reduction as a customized behavior of the ObjectLog 
normalization algorithm for predicated expressions. The normalizer will rule 
out any resulting union branches, where the same variable appears both in 
the place where only a URI is allowed (which is: subject and property of a 
translated triple pattern) and in a place where only non-URI values (or 
rdf:nil) may appear - e.g. the result of unidirectional functions rdf:first() 
and rdf:rest(). Other unidirectional functions, known to never return any 
URIs, such as adim(), aref(), asub() implementing array functionality, or 
standard SPARQL functions operating only on string or numerical values, 
such as concat() or round(), also contribute to this list.  

A union branch e, if it is a conjunction of predicates, is viable iff: 

uriOnlyVars(e) ∩  nonUriVars(e) = ∅  

where the set uriOnlyVars() contains variables used on subject and property 
positions in graph patterns inside the conjunction, and the nonUriVars() set 
contains the variables used on the respective places in the functions 
mentioned above. 

This solution completely solves the task of preventing combinatorial 
explosion of the execution plans due to normalization of graph patterns, 
containing chains of rdf:first and rdf:rest, and is generally useful 
reducing the sets of possible alternatives when executing disjunctive queries. 



130 

 

6 External Storage of RDF with Arrays 

Scientific SPARQL is designed to help scientists and engineers in the tasks 
of storing, annotating, and querying large amounts of numeric data. Storage 
and query scalability is of a major concern, and is addressed by a wide range 
of storage alternatives for RDF with Arrays data. 

As Figure 8 in the beginning of the previous chapter shows, SSDM 
includes a generic storage back-end/wrapper interface. This interface is 
used for partially translating SciSPARQL queries (in the form of ObjectLog 
predicates) to the API calls of the respective storage system. This might be 
file access, client-server communication (with systems like Chelonia [114, 
166] or Rasdaman [16]), or SQL queries sent over JDBC to any relational 
DBMS. 

There are two classes of application configurations where this mechanism 
is utilized: 

Wrapper configuration - the data is already stored in a certain form in 
some storage system, which might be an RDBMS, an array store, or just a 
collection of files. We support mappings of this native data model to RDF 
with Arrays. This might be a fully standard mapping, like RDB-to-RDF 
[127], or a highly ad-hoc mapping, e.g. one involving extraction of the 
metadata from file names, and converting it to RDF (as we did in [6]). 
Section 2.3 above presents an overview of the general data mappings 
available. As a result, we are able to query the data with SciSPARQL, 
bypassing any bulk-loading steps. 

Back-end configuration - we use SSDM as a primary service to store the 
data, in the form of RDF with Arrays. Internally, SSDM delegates the 
storage (either entirely, or arrays-only) to a back-end storage. This might 
either be a dedicated array store (like Rasdaman), a collection of files on the 
server, or any RDBMS. The translation of SciSPARQL queries to the back-
end API calls is then governed by the chosen storage schema or convention. 
The key difference from the wrapper scenario is that SSDM controls how 
the imported data is going to be stored in the back-end system, instead of 
just mapping the data which is already stored in a certain way to the RDF 
with Arrays model. 
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When it comes to array processing, the generic back-end/wrapper 
interface makes no difference between the scenarios. Exactly the same 
techniques are used to accumulate array operations, and then to retrieve the 
array data in a lazy fashion - Section 6.1 describes these techniques in a way 
independent of the particular storage system. We call this part array storage 
extensibility interface (ASEI). 

For each interfaced storage system there might be a variety of choices 
regarding how exactly ObjectLog predicates should be translated to the API 
calls (e.g. JDBC calls), and how the array subsets should be retrieved from 
the external storage. Different strategies need to be compared, so that the 
optimal ones could be chosen in each particular case. Section 6.2 presents 
the alternatives of storing arrays in a conventional RDBMS and of 
processing array queries in such a configuration. Experimental comparison 
is presented using a mini-benchmark for array queries in Section 6.3, and on 
the real-life application in Section 6.4, where we compare the performance 
of SSDM with different RDBMS back-ends to the original manual 
implementations of the same computational tasks in Matlab. 

Even though some storage systems (like RDBMSs, as we show in Section 
6.2) are well-suited to store RDF with Arrays, and SSDM is capable to 
translate whole SciSPARQL queries to SQL [182], here we mainly 
concentrate on the optimizations for array data retrieval. The reason is 
simple: SSDM includes the highly efficient main-memory database engine 
of Amos II [136], and can certainly handle the classical RDF processing 
using its native main-memory data structures. Deployed as a server process, 
SSDM can be instructed to cache the RDF part of the dataset completely, 
leaving only the arrays for on-demand access.  In our target applications, it is 
the array data that offers a scalability challenge, while the metadata in the 
form of RDF graph fits into main memory. Again, this is not a requirement 
or limitation, just the prospective usage scenario we build our evaluations 
upon. 

6.1 Array Storage Extensibility Interface 
We will refer to arrays stored in files, array stores or DBMS back-ends as 
externally-stored arrays, in contrast to resident arrays stored in the main 
memory of SSDM. Externally-stored arrays are represented in an RDF with 
Arrays graph with array proxy objects. For the query user, array proxies are 
indistinguishable from the resident arrays, as SSDM takes care of resolving 
the array proxies to resident arrays on demand. 

In the beginning of Chapter 5 we presented a main-memory scenario, 
where file links like <file://realization_1.mat#Res> were converted to 
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memory-resident arrays at the data loading stage. In order to save memory 
and data loading time, it is possible to read the same extended Turtle file also 
in the wrapper scenario, so that the GRAPH() function would internally store 
array proxies, each containing a file name, e.g. realization_1.mat and a 
label (i.e. Matlab variable name), e.g. Res, as a way to identify an array in 
the specific storage system. 

Another important piece of information is the kind of array proxy, 
identifying the external storage system itself. The same RDF graph might 
refer to arrays stored in files and different databases or array stores SSDM is 
connected to. Since most array operations work exactly in the same way on 
memory-resident arrays and externally stored ones, the main-memory array 
descriptor is considered a particular case of array proxy, with a reserved 
kind value, telling that SSDM's own in-memory storage is used for storing 
the array. 

The Array Storage Extensibility Interface (ASEI) thus consists of three 
custom methods that need to be registered with SSDM for each kind of array 
storage: 

• A custom array loader for loading a memory-resident array into the 
external array storage. It returns a new array proxy representing the 
loaded array. For example, if SSDM is configured to store the arrays 
.mat files, the array proxy will refer to the name of the file and a label 
inside it indentifying the array.  

• A custom URI decoder method that constructs the array proxy for a 
given URI (file link). If a URI does not have all the information about 
the array shape and element type (as in the example in the Section 
5.1.1), the decoder will have to access the storage system in order to 
retrieve this necessary information.  

• A custom proxy resolver, which creates a memory-resident arrays from 
a proxy object by accessing the storage system corresponding to the 
proxy kind. The resolver is called by APR(), when it needs to 
materialize an array proxy. 

Registering these three methods with ASEI generates a new array proxy 
kind, which is then used as an identifier for the intefaced array storage 
system.  

Additionally, the _sq_resolve_file_links_ flag governs whether 
array proxies should be eagerly resolved after creation from file links, at the 
stage of data import (the main-memory scenario presented in Section 5.1), or 
retained for possible later retrieval on-demand (the rapper scenario in 
Chapter 7). In a pure back-end scenario, file links are eagerly resolved, and 
the array loader is immediately called to transfer the array to the configured 
back-end array storage system, resulting in array proxies of the 
corresponding kind (as we did in Section 6.4). 
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Embeddings of SciSPARQL into algorithmic languages open a way to 
explicitly create array proxies, before inserting them into an RDF with 
Arrays graph using the SPARQL Update syntax (explained in Section 3.9). 
For example, in the Matlab integration described in Chapter 7, the Matlab 
function store() is used to store the array in a new .mat file on the server 
file system, and obtain an array proxy for subsequent insertion and access. 

The array proxy lifecycle during the query execution can be described in 
few words as follows:, original array proxies are retrieved from an RDF with 
Arrays graph, just like any other nodes, at the stage of graph pattern 
matching. Derived array proxies might be produced when applying 
operations such as array range selection or projection, in the same way as 
derived memory-resident arrays are produced (Section 5.2.2). Finally, when 
the actual array data is required for computation, array proxies are resolved 
to memory-resident arrays, by calls to the APR() function.  

The next two sub-sections describe the changes to translated queries 
introduced by the need to resolve the possible proxies, and the internal 
structure of APR()function. A discussion of the approach follows. 

6.1.1 Placing APR Calls into the Translation 
Array proxies are in most respects identical to array descriptor objects, and 
thus serve to accumulate array operations without actually accessing the 
underlying array data, thus implementing a lazy approach to array data 
loading. Except for the generalized transposition, all array operations 
described in Section 5.2.2 produce derived arrays that are smaller than the 
original ones, so that a lazy approach typically results in lesser amounts of 
data read into main memory.  

A single-element access to an externally stored array, also results in a 
derived 0-dimensional array proxy, pointing to that element. We will refer to 
these as single-element proxies, in contrast to (sub)array proxies referring to 
either original arrays or array subsets, and use the term array proxy as a 
union of those. 

In case of any external array proxy kind registered (and thus ASEI is 
considered to be active), the SciSPARQL translator will insert calls to the 
APR() function in the AmosQL query translations. For this purpose, the 
translator traverses the expressions leaf-to-root during the translation 
(described in Section 5.4.5.4), guided by the following rules: 

• a query variable, participating only in value position in triple patterns 
may be bound to a (sub)array proxy; 

• a parameter to a functional view may be bound to an array proxy; 
• the result of array range selection or transposition may be a 

(sub)array proxy, if the operand may be an array proxy; 
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• result of array projection may be an array proxy, if the operand may 
be an array proxy; 

• if an expression whose value may be an array proxy is used as an 
argument to any internal function accepting arrays (including 
aggregate functions like SUM() and the overloaded arithmetic 
operations like '+'), an  APR() call should be inserted to wrap it; 

• if an expression whose value may be a single-element proxy is used 
as an argument to an internal function expecting a number (or used in 
an array dereference expression), an APR() call should be inserted to 
wrap it; 

• if an expression whose value may be an array proxy is used as an 
argument to a user-defined foreign function, an APR() call should be 
inserted to wrap it; 

• if the _sq_resolve_results_ flag is set, and a top-level SELECT 
expression in a query may be an array proxy, an APR() call should 
be inserted to wrap it. 

Additionally, SSDM keeps track of functions defined as parameterized 
SciSPARQL queries, which may return a proxy. 

For example, query Q15, retrieving an average value of the second 
column of ex:result matrix, corresponding to the realization with id = 1 
of ex:Experiment1 (from the dataset G1), here given in a reduced form: 

SELECT (array_avg(?A[:,2]) AS ?col2_avg) 
 WHERE { [] ex:id 1 ; ex:result ?A } 

will be translated to the following AmosQL query: 

select rdf:array_avg(APR(aref(a,1,1))) 
  from Literal a, Literal g:0 
 where (g:0, URI('http://udbl.uu.se/ex#id'), 1) in GRAPH(0) 
   and (g:0, URI('http://udbl.uu.se/ex#result'), a) in GRAPH(0); 

so that the array proxy resulting from projection of matrix ?a to the second 
column gets resolved before applying the array_avg() computation. 

As a not-so-trivial example of how the above rules are applied, consider a 
query: 

SELECT (transpose(?A)[?B] + round(f(?C)) AS ?result) 
 WHERE { _:x :a ?A ; :b ?B ; :c ?C } 

Here, SSDM has to track the SELECT expression leaf-to-root, considering 
whether each intermediate result mey be a proxy, and what type of proxy. 
Figure 17 illustrates the process: expressions whose values may be proxies 
(either type of) are shown in gray color - same with the arrows showing the 
dependencies.  
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transpose(?A)[?B] + round(f(?C))
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Figure 17. Placement of APR() calls into an expression tree 

All three variables are only bound by their appearance on the value 
positions in triple patterns - hence each of them may be a sub(array) proxy, 
though not a single-element proxy14. If they are, the APR() function will 
return an array of one or more dimensions. However, variable ?B is used in a 
way only a scalar Integer value may be used. If ?B happens to be a proxy, 
the expression 'transpose(?A)[?B]' will not return due to the invalid 
subscript type (array). Hereby, SSDM assumes that in all valid query 
solutions ?B is not an array proxy (neither it is array or any other non-integer 
value), so there is no need to insert APR() call around it.  

In this example we also assume that f() is a function defined as a 
parameterized SciSPARQL query, and is listed among those which may 
return a proxy. If it were not, we would not need an APR() call around its 
result. The round() function is applicable is applicable both to scalar 
values and arrays, and hence needs its argument to be materialized. 

Overall, as Figure 17 shows, SSDM prefers to keep the possibility of 
proxies as far towards the root of an expression as possible, since there is 
always a chance that the amount of relevant array data will be reduced to a 
subset, or the retrieval will be skipped altogether due to filtering. 

6.1.2 APR Implementations 
Since SciSPARQL is a purely dynamic-typed language, whatever is passed 
to the APR() function may be an array proxy, or may be any other RDF 
term, or a memory-resident array. For this reason, APR() performs a type 
check first, and then a check for array proxy kind. The argument is returned 
without changes unless it is an external array proxy that needs resolving.  

                                                      
14 We do not store scalar values as proxies in an RDF with Arrays graph. If a whole graph is 
stored in a back-end (as in Section 6.2), the scalar values are retrieved/cached in the process 
of graph pattern matchning or caching, so the lazy retrieval does not apply to RDF Literals. 
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In the latter case, APR() looks up the respective proxy resolver, registered 
for the given array proxy kind, and calls it, passing the array proxy object as 
argument. Besides the information about the accumulated selection and 
projection operations (as explained in Section 5.2.2 for array descriptors), 
an array proxy holds the information sufficient to identify the original array 
in the specific storage system, and to retrieve its relevant subset.  

For example, the .mat file proxy resolver would invoke the HDF/Matlab 
API to access the particular part of the array specified, and read the array 
elements into to a newly allocated memory-resident array. The flexible 
nesting order of dimensions, supported by SSDM, allows optimizing this 
process, by matching the order to the one exposed by the storage system's 
API, and thus allowing to transfer the array content in large fragments. We 
describe the process of discovering such fragments below in Section 6.2.4.2, 
where it is critical for identifying the array chunks to retrieve.  

Currently, SSDM has extensions to address or store arrays in: 
• binary files - .mat format (wrapper and back-end) 
• Chelonia [114, 166, 6]] distributed data store (wrapper only) 
• Rasdaman [16] array database (wrapper and back-end) 
• relational databases supporting SQL - see Section 6.2 (back-end only) 

In all cases, the array proxy kinds corresponding to the storage systems 
are registered with SSDM, and APR implementations are provided to 
retrieve the specified array subsets. Different APIs or communication 
techniques are used in each case. A wrapper-only interface effectively 
means that the access is restricted to read-only. A back-end only interface 
means that we do not map native array representations to SSDM, due to the 
absence of the former - only arrays originating from SSDM are stored. 

6.1.3 Problems and Solutions 
The described approach of calling APR() whenever an array proxy is 
possible and its resolving might be needed, effectively introduces certain 
aspects of lazy evaluation for the purpose of materializing external arrays. 
The entire implementation is contained within the query translation layer, as 
opposed to a perhaps more obvious direction of incorporating the logic of 
lazy evaluation into the query execution runtime. Our translator-based 
implementation has proven to be sufficiently simple and robust, but still has 
a couple of technical shortcomings that need to be addressed. 

6.1.3.1 Reduced directionality problem 
The array-proxy-resolve function is defined as uni-directional: it is not 
generally possible to reconstruct an array proxy based on a memory-resident 
array. However, in those cases where APR() returns its argument without 
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changes, certain optimization opportunities are lost. This effect of reduced 
directionality might limit the freedom of SSDM query optimizer at 
reordering ObjectLog predicates for an optimal execution plan, compared to 
the freedom of evaluating SciSPARQL query translations without APR() 
calls. 

Consider the following query Q16, selecting those realization ids where 
parameters A and B are numerically equal: 

SELECT ?id 
 WHERE { [] ex:id ?id ;  
            ex:parameter_A ?a ; 
            ex:parameter_B ?b .  
         FILTER (?a = ?b) } 

When evaluated with an external array storage system connected, the 
AmosQL translation would look like: 

select id 
  from Literal id, Literal a, Literal b, Literal g:0 
 where (g:0, URI('http://udbl.uu.se/ex#id'), id) in GRAPH(0) 
   and (g:0, URI('http://udbl.uu.se/ex#parameter_A'), a) in GRAPH(0) 
   and (g:0, URI('http://udbl.uu.se/ex#parameter_B'), b) in GRAPH(0) 
   and APR(a) = APR(b); 

Since SSDM does not know that ?a and ?b are scalar parameters in the 
dataset (because it does not have any kind of schema that might contain such 
type information), it assumes that they may be array proxies, and thus 
prefers to resolve them before checking for equality (which is defined for 
arrays in Section 4.1.6).  Without these APR() calls, SSDM query optimizer 
could potentially use the equality filter to e.g. infer the value of ?b based on 
the known value of ?a, and then simply check for its existence in the RDF 
graph (which is sometimes faster than looking up a value).   

This missed optimization would of course be invalid if ?a and ?b were 
bound to array proxies: equality of the arrays per se does not entail equality 
of array proxies that point to them. So, the problem is in the lack of type 
inference mechanisms in the current implementation of SSDM. One option 
is using RDF Schema documents, which will provide specification of type 
constraints. This will allow to infer the types of variables. However, this will 
only work when RDF Schemas are provided. 

In a wrapper scenario, e.g. when mapping from a relational data model, 
there might be no cost at all, as the RDF Schema is mandatory due to the 
RDF view definition, and its specification comes for free as part of RDB-to-
RDF mapping [127, 51, 123], as suggested in [97]. 

6.1.3.2 Delegating more array operations 
Specialized array stores like Rasdaman [16] are capable of performing most 
array computations on their own. In query Q15, for example, if G1 arrays 
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were stored in Rasdaman, it would be possible to delegate the 
array_avg() computation to the back-end. In fact, most general array 
computations, as those supported by second-order functions like MAP() and 
CONDENSE() were introduced into SciSPARQL for compatibility with 
Rasdaman, and for the purpose of easy delegation of computations. 

However, array proxies only accumulate array selection, projection and 
transposition operations, so without additional optimizations, array_avg() 
function in Q15 would still be performed in SSDM, after the required array 
subset is transferred from Rasdaman over TCP connection.  

The solution at hand is using Amos query mediator capabilities, available 
to SSDM. The ObjectLog predicates corresponding to the creation of a 
derived proxy would be grouped together with the predicates performing 
computations on such derived proxies. For example, the whole expression 
array_avg(?A[:,2]) would correspond to a single Rasdaman API call, 
based on two ObjectLog predicates grouped together, and given there is an 
array proxy binding for ?A.  

The capabilities of any connected array storage system can thus be taken 
into account. Some storage systems accept a greater range of delegated 
operations than others: e.g. with Rasdaman it would be typically possible to 
delegate entire array expressions (free of foreign UDFs). In contrast, with 
.mat files only the access to array subsets would be delegated. 

6.2 Relational Back-end 
One of the configurations of SSDM relies on a relational back-end DBMS 
for persistent storage of RDF with Arrays datasets. Any relational database 
supporting SQL queries, JDBC interface, and storage of large binary objects 
(BLOBs) may be utilized for this purpose. 

The relational schema for storing RDF with Arrays in an RDBMS and the 
query mapping process are explained in the following sub-section. Since the 
array proxies are resolved by means of sending SQL queries to retrieve the 
relevant array chunks, it becomes important to avoid sending too many 
queries, in order to save on the amount of round-trips to the RDBMS. 
Retrieving as little irrelevant data as possible is another optimization goal. 

For this purpose the Aggregate APR function is defined in Section 6.2.4, 
which groups array proxies, buffers the data transfer operations, and 
generates SQL queries that are capable to serve the aggregated retrieval of 
array data under complex access patterns. Different strategies for 
formulating such SQL queries are introduced. Experimental comparison 
follows in Section 6.3. 
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6.2.1 Storage Schema 
For the purpose of simplicity and good normalization, we have chosen to 
partition the set of RDF with Arrays triples into three subsets, based on the 
value type: 

• URIs, 
• RDF literals, including numbers, strings, any custom-typed values, 
• arrays. 

Figure 18 below shows the ER-diagram modelling the storage schema we 
use with the relational back-end databases. All URI values are normalized to 
the URI table, serving as a dictionary. The three 'triples' tables additionally 
store a g property - a URI identifier of a named graph the particular triple 
belongs to, or a reserved value for the default graph. The common s, p, and v 
attributes correspond to the subject, property, and value of an RDF triple.  

While in URITriple table the value of a triple refers to the URI dictionary, 
in LiteraTriple it is the type of an RDF literal which is identified by the 
URI, and v attribute stores the string representation, with an optional 
language and locale tag in the lang_loc attribute. Upon creation, the URI 
dictionary is initialized with the standard types for common RDF literals, 
including strings, numbers, temporal and logical values. A limited space is 
allocated for an RDF literal by default, as we expect most of them to contain 
numbers or other short values. However, in order to provide space e.g. for 
larger pieces of text, a special LongString table is introduced, to 
accommodate string values without size limit. 
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Figure 18. Relational storage schema for RDF with Arrays, shown as ER-diagram 
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Each array-valued triple is stored in the ArrayTriple table, and receives a 
unique id for its array value. The element type and the number of 
dimensions are stored in type and ndims attributes, and the information about 
each dimension is normalized out to the ArrayDim table. Since the logical 
and physical (nesting) order of dimensions are independent, the 
corresponding sequential numbers are stored in attribute n for the logical 
order, and so for the storage order. The size of array in the given dimension 
is stored in the dim attribute. 

There are two basic ways to partition a multidimensional array into the 
limited-size chunks: either splitting its logical multidimensional form into 
chunks of the same dimensionality, or splitting its linearized 1-dimenional 
form into linear chunks. We will refer to the first kind of partitions as 
multidimensional chunks, or tiles and to the second kind of partitions as 
linear chunks. Figure 19 in Section 6.2.2 shows the same array-valued triple 
with different partitionings of its array value.  

Partitioning to linear chunks can be fully defined by a single scalar value - 
the chunk size limit, stored in chunksize attribute. If linear chunking is not 
used, this attribute is set to 0. In contrast, multidimensional partitioning is 
defined by a tile size limit in each dimension. If the array is stored in tiles, 
the tile attributes in ArrayDim table store the tile size in the corresponding 
dimension. Note that the actual chunk or tile sizes might be less for the 
remainder instances. 

The array chunks are stored in table ArrayChunk, having three attributes: 
arrayid, chunkid, and a BLOB value representing the chunk contents. This 
table is the only one queried by APR(), and this process benefits from the 
optimizations explained in Sections 6.2.3 - 6.2.5 and evaluated in Sections 
6.3 and 6.4. A clustered index is defined for (arrayid, chunkid), since 
arrayid is always known when resolving an array, and chunk ids might 
either be scanned starting from a known chunk id, or retrieved using index 
lookups when chunk ids are listed in the query. In both cases, the physical 
locality is important, i.e. records with contiguos chunk ids are physically 
stored close. 

6.2.1.1 SQL access to the triples 
In order to address the complete set of triples in a specific graph, an SQL 
view employing the relational UNION operator is defined across the three 
triple tables. GeneralView(g, s, p, vtype, value) exposes five attributes,  first 
three of which are taken directly from the corresponding tables of triples.. 
For the URITriple and ArrayTriple tables the reserved URI ids, identifying 
URI type and the introduced Array type respectively, are returned for vtype, 
while LiteralTriple table strores vtype explicitly. Technically, g, s, p, and 
vtype are integer URI ids, referring to the URI dictionary 
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The fifth attribute returned by GeneralView is a string representation of 
triple's value. It is taken directly from LiteralTriple or URITriple (as a 
stringified integer). In case of array-valued triples, this value attribute 
encodes a glued-together textual representation of the ArrayTriple row and 
the group of connected ArrayDim rows, ordered by n. We use a common 
group concatenation operator to pack this information about an arbitrary 
number of dimensions into a single string value. This representation is 
sufficient to construct an array proxy in SSDM, as described below in 
Section 6.2.1.2. 

The GeneralView can be employed as an imported table [85] under Amos 
II federated query framework utilized by SSDM. For instance, mediated by 
some simple conversions and URI cache lookups, a call to GRAPH predicate 
with '+---' binding pattern would translate to an SQL query:  

SELECT s, p, vtype, v FROM GeneralView WHERE g = ? 

Amos II mediator facilities are quite adept at translating the predicate 
calls to SQL queries under the different binding patterns, so this is certainly 
a viable solution, should the amount of RDF data (not counting the arrays) 
exceed the main memory limit. Self-joins, filters and arithmetic operations 
would be delegated as well into an SQL query. 

However, since in our targeted scientific and engineering applications the 
majority of data is contained in arrays, the RDF triples proper contribute 
only to a small fraction of the total dataset size. Hence, e.g. the pure 
SPARQL queries can be processed entirely in main memory, without the 
need of addressing the persistent storage past the initial caching phase. In 
our back-end scenario with RDBMS, we cache all RDF triples (and create 
all original array proxies) in main memory when the SSDM server is started. 
Any consequent updates are applied to the cache and the storage back-end 
within the same transaction. 

6.2.1.2 Specifics of the relational array proxies 
While the database-unique array id value is sufficient to address an array in 
our relational back-end, resolving an array proxy would first require the 
chunk size or tile size information in order to compute the relevant chunk ids 
for the specified array subset. In order to avoid this extra round-trip to the 
back-end RDBMS, we choose to cache this partitioning information on the 
proxy object, created from the string returned by GeneralView as a value of 
an array-valued triple. 

As shown in Figure 13 (d) and (e) in Section 5.2.2, a projection operation 
over an array descriptor produces the derived array descriptor, with a 
reduced number of dimension components (DADs). Since we are going to 
need the original array shape (i.e. the dimension sizes across all original 



142 

dimensions) and the complete tile size, in order to compute the relevant tile 
ids, we cannot afford to drop this information when producing derived array 
proxies. Hence the information about the original array dimensions and tile 
sizes is not stored in DADs, but is contained in a proxy-specific part, 
together with array id, and is passed along to the derived proxies without 
changes. 

In summary, the storage-specific information of an array proxy 
corresponding to the relational back-end consists of array id, chunk size (if 
defined), and a list of original array dimensions and the corresponding tile 
sizes (if defined). 

6.2.2 The Problem of Retrieving Array Content 
Along with desingning a relational back-end storage for RDF with Arrays, 
we are going to focus on the problem of efficient retrieval of array content 
by resolving the array proxies. We illustrate the context and the task with the 
following example: let us consider the following SciSPARQL query Q17. 
The query selects equally spaced elements from a single column of a matrix, 
which is found as a value of the :result property of  the :Experiment1 
node. 
 
SELECT (?A[2:2:, 5] AS ?result) 
 WHERE { :Experiment1 :result ?A } 
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Figure 19. An example RDF with Arrays dataset using (a) linear partitioning and (b) 
multidimensional partitioning 
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We assume our example dataset G3 includes the following RDF with 
Arrays triple, containing a 10x10 matrix as its value, as shown in Figure 19 
(a), with the subset retrieved by Q17 is shown hatched. 

In our relational back-end the matrix is stored in 20 linear chunks, 
containing 5 elements each (chunk ids shown on the picture). Figure 19b 
shows a variant of the same dataset, where the array is stored in 25 2x2 non-
overlapping square tiles. The example (a) is used through the rest of this 
section, and we compare the two storage approaches in Section 6.3.  

In this toy example, our back-end relational database would be populated 
by an entry in ArrayTriple, two entries in ArrayDim, with the array data 
residing in ArrayChunk. In general, while querying the big ArrayChunk 
table, we would like to: 

• minimize the number of SQL queries to ArrayChunk, and 
• minimize the amount of irrelevant data returned. 

There is a number of steps to be performed before the back-end will be 
queried for the real array data: 

• Identifying the set of array elements that are going to be accessed 
while processing a SciSPARQL query. Such sets of elements are 
described, in general, with bags of array proxy objects. 

• The array proxies accumulate array subsetting operations. Enumerable 
set of array proxies can be generated using free index variables, as 
shown in example queries Q18 and Q18a below. 

• Identifying fragments of this subset, that are contiguous in the 
linearized representation of the original array in order to save on the 
number of data-transfer operations. This step is explained in Section 
6.2.4.2. 

• Identifying array chunks needed to be retrieved and formulating data 
transfer operations for each chunk, as explained in Section 6.2.4.3. 
Buffering these chunk ids and operations, as explained in Section 
6.2.4.1. 

• Formulating SQL queries to the back-end RDBMS, as explained next 
in Section 6.2.3. 

• If the query was prediction-based, switching between the phases of (I) 
simulation and buffering, (II) performing the buffered operations, and 
(III) performing the further (unbuffered) operations, as long as the 
prediction-based query yields the relevant chunks. This includes 
taking care of false-positives and false-negatives, as explained in 
Sections 6.2.4.4 - 6.2.4.6. 

The example in Section 6.2.4.8 illustrates the complete process. 
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6.2.3 Strategies for Formulating SQL Queries during APR 
There is a number of possible strategies to translate sets of chunk ids in the 
buffer to SQL queries retrieving the relevant chunks: 
 

• NAIVE: send a single SQL query for each chunk id. This proves to be 
unacceptably slow in realistic data volumes, due to interface and query 
processing overheads.  

 
• IN (single): combine all the required chunk ids in a single IN list, 

sending a query like 

SQL: 
SELECT chunkid, chunk FROM ArrayChunk  
 WHERE arrayid = 1  
   AND chunkid IN (2,6,10,14,18)  
 ORDER BY chunkid 

This would work well until the SQL query size limit is reached. 
 

• IN (buffered): an obvious workaround is to buffer the chunk ids (and 
the description of associated data copying to be performed, as 
described in Section 6.2.4), and send a series of queries containing 
limited-size IN lists. 

 
• SPD (Sequence Pattern Detection) : sending a query like  

SQL: 
SELECT chunkid, chunk FROM ArrayChunk 
 WHERE arrayid = 1 AND chunkid >= 2  
   AND mod(chunkid - 2, 4) = 0  
 ORDER BY chunkid 

Here the condition expresses a certain cyclic pattern. Such a pattern is 
described by origin (2 in the example above), divisor (4 in the 
example above), storing the total periodicity of repetitions, and the 
modulus list (consisting of single 0 in the example above), containing 
the repeated offsets. The size or complexity of a pattern is the length of 
its modulus list. Section 6.2.5 describes our algorithm for detecting 
such patterns.  

In most cases the SPD strategy will allow to send a single query 
retrieving all desired chunks. If the pattern was too complex to be inferred 
from the buffer (e.g. there was no cyclic pattern at all), some extra chunks 
might also be retrieved. 

Still, there are two problems with a straightforward application of SPD: 
(1) in cases when there actually is a cyclic pattern it is unnecessary to 
identify all the relevant chunk ids first - a small sample list of chunk ids is 
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enough; and (2) in case of an acyclic (random) access, like query QT6 
defined in Section 6.3, the detected pattern might be as long as the list of 
chunk ids, thus making it a similar problem as for IN (single).  
 

• SPD (buffered): solving the two above problems by computing a 
small sample sequence of the needed chunk ids, and then formulating 
and sending an SQL query with the detected pattern. If the pattern 
covers all the chunks to be retrieved, the single SQL query does all the 
work. Otherwise (on the first false-negative, or when the false-
positives limit is reached), the SQL query is stopped and the buffering 
process is restarted. In the worst case (when there is no cyclic pattern), 
it will work similarly to IN (buffered), otherwise, fewer queries will 
be needed to return the same set of chunks. 

 
• SPD-IN (buffered): the difference between IN and SPD-generated 

SQL queries is that in IN, the chunkid values are explicitly bound to 
a list, which allows most RDBMSs to utilize the (arrayid, 
chunkid) composite index directly. As we have discovered in our 
experiments, neither MS SQL Server nor MySQL are utilizing an 
index when processing a query with mod condition.   

However, by comparing a pattern size (i.e. length of the modulus list) to 
the number of distinct chunk ids in the buffer, we can easily identify if a 
realistic pattern was really discovered, or should we generate an IN query 
instead. We currently use the following rules to switch between IN and SPD 
buffer-to-SQL query translations: 
 

(A) If the pattern size is less than half the number of distinct chunk ids, 
then the cycle is not completely repeated, and is probably not detected 
at all. 

(B) If the sample size is less than the buffer limit - then we have buffered 
the last chunk ids for the query, so there is no advantage of using SPD 
either.  

6.2.4 Resolving Bags of Array Proxies 
The array proxies are limited to expressing the subsets of arrays which can 
be formulated as a superposition of array operations supported by 
SciSPARQL syntax. Thus, the execution of Q17 above will include 
resolving a single proxy defining the array subset. Other interesting kinds of 
subsets cannot be defined by a single proxy, so a query returning a  
(multi-)set of elements can be formulated instead. For example Q18 selects 
the elements of the main diagonal: 
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SELECT ?i (?A[?i, ?i] AS ?e) 
 WHERE { :Experiment1 :result ?A } 

One unique feature of SciSPARQL is that whenever an (otherwise 
unbound) variable used as array subscript, it assumes all valid values for that 
subscript (Section 4.1.2). So, the first appearance of ?i binds it to all valid 
row indices, and the query generates an array proxy for each such binding. 
For the dataset in Figure 19 this query will generate and resolve 10 array 
proxies, each pointing to a single element, i.e. 10 result tuples will be 
returned.  

Our framework is capable to resolve such bags of proxies, as well as 
proxies referring to multiple elements. In general, bags of proxies can be 
filtered before resolving, and post-processed after resolving. Query Q18a 
contains these additional steps: it retrieves every second diagonal element, 
and returns the sum: 
 
SELECT (SUM(?A[?i, ?i]) AS ?result) 
 WHERE { :Experiment1 :result ?A . 
         FILTER (mod(?i, 2) = 0) } 

Figure 20 shows a fragment of the execution plan for Q18a, containing 
proxy generation, filtering, aggregated resolving (AAPR), and post-
processing (SUM). Parallel arrows indicate the relative cardinalities of the 
intermediate results, i.e. the amounts of iterations in the corresponding 
nested loops. 
 

?A[?i,?i]
FILTER 

(mod(?i,2)=0)
AAPR(?V1) SUM(?V2)

?A (proxy) ?result?i, ?V1 (proxy) ?V1 (proxy) ?V2 (number)

... ... ...

?A[?i,?i]
FILTER 

(mod(?i,2)=0)
AAPR(?V1) SUM(?V2)

?A (proxy) ?result?i, ?V1 (proxy) ?V1 (proxy) ?V2 (number)

... ... ...

 
Figure 20. A fragment of Q18a execution plan 

For the query Q18a (and the dataset in Figure 19) ten (proxy and ?i 
value) pairs will be generated first, 5 of these intermediate results will be 
filtered out, 5 remaining proxies will be resolved together as a bag, and the 
corresponding array elements will be aggregated by the SUM() function into 
a single result. 

In order to invoke the aggregated resolving of a bag of array proxies, the 
AAPR() function call is inserted instead of APR() call immediately under an 
aggregate function call, like SUM() in the translation of Q18a: 

rdf:sum(aapr(select aref(aref(a,0,rdf:minus(i,1)),0,rdf:minus(i,1)) 
               from Literal i, Literal a 
              where (URI('http://udbl.uu.se/ex#Experiment1'),       
                     URI('http://udbl.uu.se/ex#result'), a)  
                    in GRAPH(0) 
                and rdf:mod(i, 2) = 0)); 
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 Technically, AAPR() is a combiner type function in AmosQL terms, i.e. 
it iterates over a bag of inputs, and emits a bag of results, maintaining an 
internal state during the whole process. This state consists of a buffer of 
pending data transfer operations, pre-allocated results, and a running SQL 
query to the back-end. 

As a general approach, for each array proxy being resolved, a set of 
required chunk ids is computed, and for each chunk the set of data transfer 
operations is determined. If the proxy refers to a single element, the single 
reading operation results in a number, otherwise, a memory-resident array is 
allocated first, and a write position is associated with each such operation. 
The following subsections describe this process in detail, with Figure 22 
summarizing the flow of inforation. 

6.2.4.1 Buffer 
The buffer is designed to store the description of work to be done when the 
respective chunks will be retrieved. It is organized as a hash table, with 
chunk id serving as a key, and the value being a list of data transfer 
operations described with the following fields: 

• reading position in the chunk, 
• the number of bytes to read, 
• a reference to the allocated memory-resident array 

(none if single-element proxy), and 
• a writing position in that array. 

The buffer is primarily limited by the number of distinct chunk ids (i.e. 
hash table records) - the _sq_buffer_size_ parameter. For the purpose of 
SQL query generation, only the set of distinct chunk ids is extracted from 
the buffer. For the queries with non-overlapping proxies, the number of 
buffered operations is thus limited by the amount of possible fragments per 
chunk times the number of distinct chunks to be retrieved. However, in case 
of e.g. random access queries like QT6 in Section 6.3, this upper bound does 
not hold. Another 'technical' limit on the number of data transfer operations 
in the buffer is included as part of the SSDM settings. 

6.2.4.2 Fragment mapper 
Since we also minimize the number of data transfer operations, we first 
identify the largest possible contiguous fragments in the stored array (the 
algorithm is presented in Section 6.2.4.7) and the intersections of such 
fragments and the chunks become these operations. Besides this purpose, 
fragments are generally useful for e.g. copying as many elements as possible 
with a single memory operation, and offer a potential of parallelized (SIMD) 
array processing. 
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Figure 21 shows the number of fragments for different selections from a 
2D array stored row-by-row. The discovery of the fragments involves the 
discovery if innermost broken dimension and fragment size. The dimensions 
are analysed in their storage (nesting) order, starting from the innermost 
one.  

The innermost dimension is broken iff (i) its access multiplier amk is not 
equal to 1 (when the proxy resulted from a projection from an array of 
higher dimensionality and the original inner dimension was projected out) or 
(ii) its stride is not equal to 1. In Figure 21 the innermost (column) 
dimension is unbroken in all three examples. If the innermost dimension is 
broken, the fragment size is 1, otherwise the incremental fragment size  
fsizek is equal to the derived array size in that dimension e.g. 6, 4, and 2 in 
the Figure 21 examples. 

Provided the dimension k (in storage order) is unbroken, dimension k-1 is 
broken iff (i) its access multiplier amk-1  is not equal to fsizek (when some 
intermediate dimensions of the original array were projected out), or (ii) its 
stride is not equal to 1. If the dimension k-1 is unbroken, the incremental 
fragment size is multiplied by the derived array size in that dimension. In 
example (a) in Figure 21 the outer (row) dimension remains unbroken, and 
since am1 = 6 in all cases, the condition (i) holds for examples (b) and (c). 

(a)
1 fragment of 12

(b)
2 fragments of 4

(c)
6 fragments of 2

1,1 1,1
2,1

1,1
2,1
3,1
4,1
5,1
6,1

 
Figure 21. Derived array fragments discovery and iteration 

The fragments' starting points are then defined by a nested iteration of 
logical subscripts (for the derived array) up to the innermost broken 
dimension, while padding the subscripts for unbroken dimensions with 1. 
Figure 21 shows these logical subscripts for each fragment, with no iteration 
happening in case (a). These starting points are translated into storage 
indices as described in the next section. 

6.2.4.3 Identifying the relevant chunks 
First, for any logical subscript (i1,...,in) in the derived array (denoting a 
fragment start) a storage index a(i1,...,in) in the original array is computed 
using the equation (1) in Section 5.2.1.  
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Under the linear partitioning approach (Figure 19a), the first chink id and 
the corresponding read position are given as the quotient and the remainder 
of the division of storage index by the chunk size. If the fragment size is 
greater than (chunksize - read_pos) subsequent chunks are also included 
with read_pos = 0, until the fragment size is exhausted. 

Under the multidimensional partitioning approach (Figure 19b), the 
logical subscripts j1,...,jN in the basic array need to be reconstructed from the 
storage index a first. Let k(x) return the dimension k such that storage order 
sok = x. The original array subscript (0-based) in the outmost dimension jk(0) 
and in the nested dimensions jk(x+1) are found as  
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Here ax is the remainder of the division while computing jk(x).  

The multidimensional indexes tk of the fragment's first tile are computed 
by dividing every component jk by the tiles sizes sk in the respective 
dimensions, and intra-tile logical indexes ik as remainders of that division: 
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The linear chunk index (i.e. chunk id in this case) Ti and the linear chunk 
position pos are computed similarly to equation (1), using the number of 
tiles per dimension, and the actual tile size sk(Ti) as the dimensions, and N 
being the dimensionality of the original array: 
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The second product depends on a particular tile, as the last tiles in each 
dimension might have different sizes in that dimension. 

When the multidimensional chunking is used, no generated fragment can 
go beyond the array range in the original array's innermost dimension - in 
Figure 21 example (a) would have two row-sized fragments. Once the first 
tile and chunk position of a fragment are determined, the remaining tiles are 
found by iterating the chunk index tk(N) along the innermost dimension, and 
resetting intra-tile index ik(N) in that dimension to 0. 

6.2.4.4 Switching between the phases 
The general case of resolving a bag of proxies includes switching between 
three phases: (I) buffering -> (II) processing the buffer -> (III) continuing 
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beyond the buffer, The formulation of an SQL query is done at the 
beginning of phase II, and its termination is done at the end of phase III. 
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sequence of operations:
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Figure 22. Three phases of the AAPR algorithm 

Figure 22 shows an overview of the process of resolving a bag of proxies 
to a bag of memory-resident arrays or numbers. Broad grey arrows show the 
transitions between the three phases. Thin black arrows show the data flow, 
as annotated. The process starts at phase I, which ends when the buffer is 
full, or there are no more operations to be performed for the same stored 
array. A proxy referring to a different array effectively restarts the process. 
Phase II empties the buffer and proceeds to phase III.  

If the SQL query was formulated according to the IN strategy, phase III is 
limited to processing any remaining operations for the last chunk retrieved. 
Once the next chunk id is required, the query is stopped, and the new 
buffering phase is started. Under the SPD strategy, if the detected pattern 
covers all the chunk retrieval needed for the query, phase III does the rest of 
the work in a completely streamed fashion. Section 6.2.4.7 presents a more 
formal description of the AAPR algorithm. 

6.2.4.5 Emitting 
For each result, a counter of pending data transfer operations is incremented 
at phase I and decremented at phase II, where the result is emitted if there 
are no more operations to be performed (and if it's not the result where the 
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buffering process has stopped). Numbers resulting from single-element 
proxies always involve a single data transfer operation, so they are emitted 
immediately after that operation is performed. At phase III, the current result 
is emitted when the operations for the next allocated result start arriving.  

6.2.4.6 Chunk cache 
The chunk cache is not shown in Figure 22 for simplicity. In fact, every new 
chunk id in phases I and III is first looked up in the cache. If present, the 
relevant data transfer operations are performed immediately, and no 
buffering or advancing of the SQL query scan is needed.  

This cache is mainly designed for inter-query speedup, and in the 
experiments described in Section 6.3 the cache is reset before each query, to 
ensure independent statistics. However, the chunk cache is also helpful 
inside a single query when chunk ids do not come sorted, like e.g. for the 
random multi-proxy query QT6 in Section 6.3. 

6.2.4.7 AAPR algorithm pseudocode 
Below is the formal description of AAPR algorigthm which is illustrated in 
Figure 22. Phases I and III are implemented with the aapr() function, 
which accepts a bag of array proxies and returns a bag of memory-resident 
arrays.  

Phases  I and III. The below pseudocode outlines aapr(). The details 
like caching the chunks, freeing the resources, and error handling are 
omitted for brevity. Note that aapr() is a single-pass function, and involves 
no lookahead in its input bag. Instead, it uses a limited-size buffer to serve 
its needs.  

function AAPR(Bag of Literal bx) -> Bag of Literal 
{   
  buffer = (); 
  arrayid = nil; 
  For each x in bx 
  {   
    if (x is not a proxy) emit(x); 
    if (x.amd.arrayid != arrayid)  
    { 
      if (buffer is not empty)  
        resetBuffer(); //resume phase II for previous array 
      scan = closed; //start in phase I 
      arrayid = x.amd.arrayid; 
    } 
    chunkid = invalid; 
    if (x is a single-element proxy) result = nil; 
    else result = allocateNewArray(x.amd);  
                  //to accommodate elements referred in x 
 
    For each f in fragments(x) 
    { 
      TransferData  
       (chunkid, readpos, writepos, length) td; 
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      For each td in computeTransferData(f, x.amd) 
      { 
        if (scan is open) //processing in phase III 
        { //advance scan to the desired chunk 
          advanceScan(scan, td.chunkid);                     
          if (scan.chunkid != td.chunkid)  
             //SQL query is no longer useful 
             scan.close(); //switch back to phase I     
          else           
            writeFragment(td, scan.chunk, result);   
        if (scan is closed) //processing in phase I 
        { 
          buffer.pushSorted(td, result);  
          result.pendingOps++;  
             // will be ready to emit when this counter is back at 0 
          if (buffer is full)  
             scan = resetBuffer(buffer, amd, result);  
             // resume phase II, then switch to phase III          
        } 
      } //of TransferData cycle 
    } //of fragment cycle 
    if (result.pendingOps == 0) emit(result); 
  } //of input cycle 
  
  if (buffer is not empty)  
     resetBuffer(); // resume phase II 
  if (scan is open) scan = closed; 
} 

There are three nested cycles in this function, and the code inside the 
innermost cycle runs along either phase I (buffering) or phase III (emitting 
beyond the buffer) branches, or both when switching from phase III to phase 
I, depending on the state of the scan. 

If input x is a proxy, then all the information about the array is stored on 
its ArrayMetadata x.amd property. Except for the arrayid field, ArrayMetadata 
is used inside the allocateNewArray() and computeTransferData() functions. 
The function  

computeTransferData(Fragment f, ArrayMetadata amd)  

                 -> Bag of TransferData 

returns a bag of transfer operation descritions for the given fragment and 
array metadata. Each transfer operation description consists of chunk id and 
read position (computed as specified in Section 6.2.4.3), write position, 
selected sequentially in the allocated result, and data length - the fragment 
size adjusted to the chunk size. 

Phase  II. The following function is called when the buffer is full, or 
when the work (on a particular stored array) is done. It resumes the pending 
data transfer operations, emits the result and clears the buffer: 
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function resetBuffer(buffer, amd, result) -> scan 
{ 
  //generate SQL query here 
  query = bufferToSQLQuery(buffer, amd.arrayid);     
  scan = openScan(query);  
 
  //perform the buffered operations and emit results when ready 
  For each (td, result) in buffer 
  { 
    advanceScan(scan, td.chunkid); //always successful 
    writeFragment(td, scan.chunk, result);   
    result.pendingOps--; 
    if (result.pendingOps == 0  
                  and result is not the one where Phase I stopped)  
      emit(result); //emitting from aapr() 
  } 
  buffer = (); //empty the buffer, leave the scan open 
  return scan; 
} 

Note the difference on how advanceScan() function is called: in phase II 
we know that any bufferToSQLQuery() translation will construct a query 
guaranteeing that at least for all chunk ids in the buffer the chunks will be 
returned. However, in phase III we are always checking that the required 
chunk was returned by the query, and if not - we close the scan and start 
buffering again, in order to make a new SQL query. 

It is also worth noting though aapr() returns exactly one result per input, 
in general, the order of results might not be the same, due to the buffering, 
and sorting the buffer contents by chunk id. However, in many simple cases 
(like the diagonal access with Q18 elaborated below) the bag of proxies is 
generated using a variable ranging over the valid array subscripts, so the 
sequence of relevant chunk ids is naturally ordered.  

6.2.4.8 AAPR example: diagonal access 
Q18 (diagonal access) provides a nontrivial case, under the SPD translation 
strategy. With the dataset from Figure 19a and the buffer size limited to 3 
distinct chunk ids, the first pattern detected will result in the SQL query: 
 
SQL: 
SELECT chunkid, chunk FROM ArrayChunk 
 WHERE arrayid = 1  
   AND mod(chunkid, 2) = 0  
 ORDER BY chunkid 

The first 3 elements will be emitted in phase II, and the next 2 elements 
(from chunks 6 and 8) in phase III. However, the next required chunk would 
be 11, and the SQL query will continue returning chunks 10 and 12. The 
switching to phase II will be performed on the first false negative, that is, 
when chunk 12 is retrieved. Thus two "false positive" chunks will be 
retrieved before the query is stopped, and the new buffering process begins. 
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The next iteration of the buffer will contain chunk ids 11, 13, 15, and the 
new SQL query 

SQL: 
SELECT chunkid, chunk FROM ArrayChunk 
 WHERE arrayid = 1 AND chunkid >= 11  
   AND mod(chunkid - 11, 2) = 0  
 ORDER BY chunkid 

will retrieve the remaining 5 chunks, which will allow returning the last 5 
results. Figure 23 illustrates the process: 
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Figure 23. Q18 chunk retrieval with SPD, buffer size 3 

6.2.5 Sequence Pattern Detector (SPD) Algorithm 
Once the buffer is filled at the end of phase I of the AAPR algorithm, an 
SQL query needs to be generated based on the buffer contents. An IN query 
is simple to generate, and the list of chunk ids does not even need to be 
sorted (as we have discovered, the RDBMS performs this sorting if using a 
clustered index). In order to generate an SPD query, we first extract and sort 
the list of distinct chunk ids from the buffer. 

The following algorithm operates on an increasing sequence of numbers - 
in our case - sorted chunk ids. Since we are detecting a cyclic pattern, we are 
not interested in the absolute values of the numbers in the sequence, we will 
only store the first number as the point of origin, and the input values to the 
algorithm are the positive differences between the subsequent chunk ids. 

Each input is processed as a separate step, as shown in Figure 24. The 
state of the algorithm is stored with the history and pattern lists, 
(initialized empty), and the next pointer into the pattern list (initialized to an 
invalid pointer which will fail any comparison operation).  

The general idea is that each input either conforms to the existing 
pattern or not. In the latter case the second guess for the pattern is the 
history of all inputs. The input either conforms to that new pattern, or 
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the new pattern (which is now equal to history) is extended with the new 
input. In either case, input is appended to history, and count is 
incremented. 

input

input == next

cyclically advance next
through pattern

pattern := history
next := First(pattern)

input == First(pattern)

next := Second(pattern)
append input to pattern
next := First(pattern)

append input to history
count++

true false

true false

input

input == next

cyclically advance next
through pattern

pattern := history
next := First(pattern)

input == First(pattern)

next := Second(pattern)
append input to pattern
next := First(pattern)

append input to history
count++

true false

true false

 
Figure 24. A step in the SPD algorithm 

The resulting pattern will have the form: 

( ) { }1100 ,...,,0,mod −∈−∧≥ nmmdxxxx  

where x is the chunk id value to retrieve, x0 is the first chunk id value 
generated (i.e. "reference point"), d is the divisor, and m1,...,mn-1  is the 
modulus list. The generated pattern is the sequence of offsets P={p1,...,pn}. 
We will compute the divisor as the total offset in the pattern: 


=

=
n

i
ipd

1

 

Each element in the modulus list is the partial sum of offsets:  

1,...,1,
1

−==
=

nkpm
k

i
ik  

In the next section we compare this strategy of formulating an SQL query 
with the more straightforward approach of sending IN lists that was 
presented in Section 6.2.3. 
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6.3 Comparing the Storage and Retrieval Strategies 
For evaluation of the different storage approaches and query processing 
strategies we first use synthetic data and query templates for the different 
access patterns where parameters (or additional data in the RDF graph) 
control the selectivity. Since our concern here is minimizing data accesses, 
the performance is independent of the array element values. Thus the 
synthetic arrays are populated with random values.  

For simplicity and ease of validation, we use two-dimensional square 
arrays throughout our experiments. More complex access patterns may arise 
when answering similar queries to arrays of larger dimensionality. Still, as s 
below, the two-dimensional case already provides a wide spectrum of access 
patterns, sufficient to evaluate and compare our array storage alternatives 
and query processing strategies. The parameterized SciSPARQL queries 
(listed in Table 5) we use for our experiments involve typical access 
patterns, such as: accessing elements from one or several rows, one or 
several columns, in diagonal bands, randomly, or in random clusters.  

The efficiency of query processing thus can be evaluated as a function of 
parameters from four different categories: data properties, data storage 
options, query properties, and query processing options, as summarized in 
Table 4. A plus sign indicates that multiple choices were compared during 
an experiment, and a dot sign corresponds to a fixed choice. 

Table 4. Summary of performance evaluation axes 

Experiment Axis 
1 2 3 

Data properties 
• array shape and element type · · · 
Data storage options 
• partitioning: linear / multidimensional + · + 
• chunk size · · + 
• nesting order of dimensions · · · 
Array query properties 
• logical access pattern + · · 
• intra-array selectivity + · · 
• logical locality + · · 
Query processing options 
• strategy: SPD / IN / hybrid + · · 
• buffer size + + · 

The structure of the data remains the same throughout the experiments. 
Namely, it is the dataset shown on Figure 19 (Section 6.2.2), containing a 
single 100 000 x 100 000 array of integer (4-byte) elements, with total size 
~40Gb. The logical nesting order is also the same (row-major), as changing 
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it would effectively swap row query QT1 and column query QT2 while 
having no impact on the other query types from Table 5. The rest of the axes 
are explored during our experiments, as Table 4 indicates. 

Experiment 1 compares the performance of different query processing 
strategies (including different buffer sizes), as introduced in Section 6.2.3, 
for different kinds of queries. For each kind of query, cases of different 
selectivity are compared under either data partitioning approach. 

Experiment 2 explores the influence of buffer size on the total query 
response time, using the IN strategy for a simple single-column query and a 
tiled partitioning of the array. This combination of data storage access 
pattern is chosen because it is evenly balanced between best- and worst-case.  

Experiment 3 explores the influence of chunk size on the query 
performance. There is obviously a trade-off between retrieving too much 
irrelevant data (when the chunks are big) and forcing the back-end to 
perform too many lookups in a chunk table (when the chunks are small). 

For all experiments, the selectivity is shown both as the number of array 
elements accessed and the number of the relevant chunks retrieved. We 
expect the latter quantity to have higher impact on overall query response 
time, in other words, more time is going to be spent on the communication 
with RDBMS back-end. These expectations are confirmed in Section 6.3.2. 

Table 5. Query patterns  

Query type SciSPARQL query Parameters
Access 

diagram
Asymptotic 
selectivity 

QT1: single 
row 
 

SELECT (?A[a, c:d:] AS ?res) 
 WHERE {  
  :Experiment1 :result ?A } 2dn

cn −  

QT2: single 
column 

SELECT (?A[a:b:, c] AS ?res) 
 WHERE {  
  :Experiment1 :result ?A } 2bn

an −  

QT3: regular 
grid 
(generalization 
of QT1- QT2) 

SELECT (?A[a:b:, c:d:]  
        AS ?res) 
 WHERE {  
  :Experiment1 :result ?A } 

a - first (or 
single) row 
b - row 
stride 
c - first (or 
single) 
column 
d - column 
stride 

( )( )
2bdn

cnan −−  

QT4: diagonal 
band (main 
diagonal) 

SELECT ?i ?j  
       (?A[?i, ?j] AS ?e) 
 WHERE {  
  :Experiment1 :result ?A . 
  FILTER (mod(?i - 1, b) = 0 
       && abs(?i - ?j) <= w) }

b - row and 
column 
stride 
w - diagonal 
band width 

bn

w21+  

QT5: uniform 
random 

QT6: clustered 
random 

SELECT ?i ?j  
       (?A[?i, ?j] AS ?e) 
 WHERE {  
  :Experiment1 :result ?A . 
  ?e a :ElementIndices ; 
     :i ?i ; 
     :j ?j } LIMIT ?s 

s - amount 
of random 
elements to 
return 2n

s  



158 

All experiments were run with SSDM and the back-end MS SQL Server 
2008 R2 deployed on the same HP Compaq 8100 workstation with Intel 
Core i5 CPU @ 2.80 GHz, 8Gb RAM and running Windows Server 2008 
R2 Standard SP1. The communication was done via MS SQL JDBC Driver 
version 4.1 available from Microsoft. 

6.3.1 Query Generator 
Similarly to the examples above, in each query template we identify an 
array-valued triple directly by its subject and property, thus including a 
single SPARQL triple pattern:  

:Experiment1 :result ?A . 

Each time we retrieve a certain subset of an array and return it either as a 
single small array (QT1 - QT3) or the single elements accompanied by their 
subscript values (other queries). The templates listed in Table 5 differ only 
in the array access involved, including extra conditions on variables used as 
array subscripts. 

For the random access patterns, the main parameters are the random array 
subscripts. Nodes of type :ElementIndices with :i and ?j properties are 
added into the RDF dataset, with the following parameterized update: 

DEFINE PROCEDURE AddCoordinates(?b ?i ?j) AS 
  INSERT { ?b rdf:type :ElementIndices . 
           ?b :i ?i . 
           ?b :j ?j } 

where ?b is a unique blank node generated for each random coordinate pair.  

6.3.2 Experiment 1: Comparing the Retrieval Strategies 
We compare the different query processing strategies and the impact of 
buffer sizes for each query presented in Table 5, with different parameter 
cases resulting in the varying selectivity (and, in case of QT3, logical 
locality). We are interested to see how well the different buffer-to-query 
translation strategies fit to these use cases in terms of number of SQL 
queries generated and the total measured response time. 

Each query and parameter case is run against two stored instances of the 
dataset, differing in array partitioning method: 

• linear chunks: the array is stored in row-major order, in chunks of 40 
000 bytes (10 chunks per row, 10 000 elements per chunk, 1 000 000 
chunks total) using linear partitioning 
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• square tiles: the array is stored in 100x100 chunks, occupying 40 000 
bytes each (10 000 elements per tile, 1 000 000 tiles total - same as 
above) using multidimensional partitioning (2-dimensional in our 
case). 

We pick the strategies among SPD, IN, SPD-IN (as described in Section 
6.2.3), buffered variants. The buffer size is also varied for the IN strategy, 
with values picked among 16, 256, and 4096 distinct chunk ids. The SPD 
strategy is not affected by the buffer size in our cases - it either discovers the 
cyclic pattern with the buffer size of 16 or does not.  

The query parameters are chosen manually, to ensure different selectivity 
(for all query patterns) and absence of data overlap between the parameter 
cases (for QT1-QT3). Each query is repeated 5 times, and the average time 
among the last 4 repetitions is shown on the diagrams below. 

6.3.2.1 Query QT1 
Accessing a single row in a matrix stored in row-major order is obviously an 
example of best-case workload, since max 10 linear chunks are involved. 
Hence, all IN strategies issue the same SQL query, listing the 10 chunk ids, 
regardless of buffer size. Since the buffer is never filled completely, SPD-IN 
always chooses the IN strategy following rule (B) specified in Section 6.2.3  
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Figure 25. QT1 run time (s) for linear chunks 

Six parameter cases were used, first one iterating across 3 elements in 3 
different chunks, others accessing all 10 chunks in the row, with different 
number of row elements copied into the resulting memory-resident array. 
Figure 25 shows that the amount of data copied from chunks to memory has 
clear impact on the response time only when going from 40 kB to 400 kB 
resulting array size. On smaller results the query time is dominatied by the 
execution of a single query to the back-end, and the fluctuations may only 
result from OS/DBMS cache states and background activity. The difference 
between first and second case for the IN strategy, though smaller than 
fluctuation range, might still correspond to the cost of transferring different 
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number of chunks from the back-end to SSDM. However, queries QT2-QT6, 
retrieving greater amounts of chunks, certainly provide a better clue. 

Another important result one can already notice: processing a single SPD 
query is apparently more expensive than processing a single IN query, with 
the total amount of chunks retrieved staying small and the same. 

In the case of multidimensional partitioning, the maximum is 1000 square 
tiles being retrieved, and Figure 26 shows that the difference in element 
copying operations is playing little role compared to retrieving the chunks: 
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QT1 Parameters time, s 

a c d IN(16) SPD SPD-IN IN(256) IN(4096) 
1 50001 20000 0.019 0.068 0.025 0.020 0.018 

101 1 10000 0.032 0.074 0.030 0.031 0.030 
201 1 1000 0.234 0.104 0.114 0.117 0.102 
301 1 100 1.945 0.780 0.803 1.058 0.916 
401 1 10 1.909 0.776 0.812 1.024 0.886 
501 1 1 2.007 0.769 0.825 0.979 0.904 

Figure 26. QT1 run time (s) for square tiles 

While the first case retrieves only three chunks - with ids 500, 700, and 
900, the second and third case retrieve every 100th and every 10th chunk 
among the first thousand. The response time rises slower than proportional, 
implying there is a constant cost of sending an SQL query, and a per chunk 
cost of transferring the results back. 

In the last three cases, in order to retrieve 1000 chunks, the IN(16) 
strategy sends 63 SQL queries to the back-end. The different number of SQL 
queries sent determines the clearly seen low performance of IN(16), 
compared to IN(256) and IN(4096) in these cases. 

The set of retrieved chunks, with ids 0, 1, ... 999 in the last three cases, 
have the best possible physical locality, i.e. they are stored in a contiguos 
range of clustered index values in the ArrayChunks table. Because of this, a 
single SQL query sent under the SPD strategy performs better than a single 
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SQL query under IN(4096), the latter containing an IN list of 1000 items. As 
the execution plans reported by MS SQL Server show, answering an SPD 
query inside the DBMS involves a scan through a range of rows, while IN 
queries invoke index lookups.  

The conclusion drawn from experiments with QT1 is that the SPD 
strategy becomes slightly better than IN(4096) in a situation of extremely 
good physical locality (retrieving every chunk among the first 0.1% of the 
chunks in the database). Under more sparse access, IN with a big enough 
buffer, also sending a single SQL query, is preferable. 

6.3.2.2 Query QT2 
This query represents worst case workload for the linear partitioning, given 
the row-major nesting order. Each element accessed belongs to a different 
chunk, and accessing 100 000 chunks with IN queries listing 16 chunk ids 
each, takes 680 s on avarage, with 6250 SQL queries generated with IN(16) 
strategy. 
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QT2 Parameters time, s 

a b c IN(16) SPD SPD-IN IN(256) IN(4096) 
50001 20000 1 0.016 0.241 0.016 0.029 0.029 

1 10000 10001 0.029 0.177 0.020 0.035 0.034 
1 1000 20001 0.188 0.200 0.277 0.123 0.120 
1 100 30001 2.298 1.054 1.049 0.992 0.925 
1 10 40001 20.770 6.777 7.323 10.376 9.043 
1 1 50001 680.570 87.782 90.976 105.116 91.089 

Figure 27. QT2 run time (s) for linear chunks 

The SPD strategy provides an order-of-magnitude speedup (for the same 
buffer size of 16) by sending a single query. However, sending 25 IN 
queries listing up to 4096 chunks each proves only slightly slower. Figure 27 
shows the expected linear rise, and the serious disadvantage of sending too 
many SQL queries. 
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One unexpected phenomenon is the superlinear rise in response time - 
mainly for IN(16) strategy, when retrieving 100 000 chunks. We discuss this 
for QT4, where it appears to be even more prominent. 

As expected, the performance is roughly the same as for QT1 in the case 
of multidimensional partitioning, with the same maximum of 1000 square 
tiles being retrieved (this time, making up for one column of tiles). Figure 28 
shows the performance figures, similar to those on Figure 26 in most 
aspects. This includes the different performance of IN strategies,   
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QT2 Parameters time, s 

a b c IN(16) SPD SPD-IN IN(256) IN(4096) 
50001 20000 1 0.021 0.116 0.019 0.021 0.023 

1 10000 10001 0.037 0.177 0.020 0.021 0.019 
1 1000 20001 0.221 0.256 0.269 0.093 0.123 
1 100 30001 2.324 1.040 0.727 0.927 0.939 
1 10 40001 2.227 1.096 1.110 1.054 0.874 
1 1 50001 2.307 1.144 1.081 1.089 1.064 

Figure 26. QT2 run time (s) for square tiles 

The SPD strategy performes differently for QT2, as clearly seen in the 
last three cases: the IN strategies are sending 63 SQL queries this time, with 
worse physical locality retrieving e.g. chunks 3, 1003, ... 999003, instead of 
0, 1, ... 999 when processing QT1. The comparison of these results to QT1 
shows the slight slowdown introduced by this effect, and the SPD strategy is 
no longer the best one.  

The long and sparse range of rows, given by QT2 access pattern, thus 
incurs slower-than-index SPD performance (e.g. slower than the index 
lookups used by IN strategies). In contrast a short condensed range (as for 
QT1) is faster-than-index - as a non-selective scan is generally faster than 
index lookups. 
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6.3.2.3 Query QT3 
The 'regular grid' query generates more complex access patterns, and with 
considerable sparsity touches a relatively small amount of chunks. Linear 
chunk partitioning, both row-major and column-major, works equally well 
for 'isotropic' grids, (i.e. if grid density is the same in different dimensions). 

Table 6. Parameter cases used for QT3 

QT3 parameters case 
a b c d 

grid 
coverage

A 1 20000 1 20000 100%
B 2 10000 1 10000 100%
C 90001 100 90001 100 1%
D 4 1000 1 1000 100%

 

Table 6. shows the parameter cases used. Cases A, B, and D cover the 
whole array, retrieving elements at certain intervals (strides), as specified by 
the parameters b and d - i.e. 5x5, 10x10 and 100x100 elements in total. The 
100x100 elements retrieved in case C are co-located in one corner of the 
array, taking up to the last 1/10 of the array in each dimension. Although 
logically this corresponds to 1% of the array 'area', the first accessed linear 
chunk or square tile marks the beginning of the last ~10% range of the 
chunks stored (sequentially) for the array, a fact that determines the actual 
physical distribution of the chunks, as the figure next to the Table 6 shows. 
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time, s case elements 

accessed 
chunks 

accessed IN(16) SPD SPD-IN IN(256) IN(4096) 
A 25 25 0.052 0.554 0.553 0.022 0.018 
B 100 100 0.224 0.918 0.681 0.101 0.078 
C 10000 100 0.236 0.132 0.137 0.113 0.121 
D 10000 1000 1.738 2.252 3.963 0.955 0.902 

Figure 29. QT3 run time (s) for linear chunks 

Figure 29 shows that SPD does not perform well in cases A, B, and D, 
where the relevant chunks are distributed across the whole array. Ten times 
better physical locality in case C already puts SPD on par with IN strategies, 

physical locality: ~10%

logical locality: 1%

case C



164 

which also send a single SQL query when the buffer size allows to collect all 
100 chunk ids first. These chunks are then selected among the last 10%, i.e. 
100 000 chunks stored. This supports our earlier observation that SPD 
favors short and condensed ranges. 

Another clearly visible problem is poor peformance of SPD-IN. In case A it 
clearly chooses SPD, which is not optimal. In case D chunks  40...49, 
1040...1049, ... are retrieved, so that pattern of size 10 is detected under SPD 
with buffer size 16, but pruned under SPD-IN, since it is not repeated within 
this small buffer As a result, SPD-IN sends mainly IN queries, but in certain 
cases (e.g. when the buffer contains chunk ids 3042..3049, 4040..4047) an 
incorrect cyclic pattern (in this case 'retrieve 8 - skip 990') is detected, so an 
SPD query is occasionally sent, having a false negative right after switching 
to phase III (chunk id 4048), thus providing no benefits over IN(16) query, 
but performing much slower (as explained in 6.3.21).  

A similar misdetection happens for SPD-IN in case B, however, with 
smaller amount of retrieved chunks, the benefit of sending at least some 
IN(16), outweighs the pure SPD apprach.   

In order to show that a bigger buffer for SPD-IN would solve this 
problem, we also run it with buffer sizes 256 and 4096 for QT3 and linear 
chunks. Under buffer size 256 SPD-IN chooses to run a single SPD query to 
retrieve 1000 chunks, while under buffer size 4096 a single IN list is always 
sufficient (SPD-IN with these buffer sizes is not shown, since it is 
equivalent to SPD and IN respectively). 
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time, s case elements 

accessed 
chunks 

accessed IN(16) SPD(256) SPD-IN IN(256) IN(4096) 
A 25 25 0.052 0.549 0.633 0.022 0.023 
B 100 100 0.205 0.890 0.758 0.080 0.100 
C 10000 10000 19.858 15.023 11.832 10.608 8.421 
D 10000 10000 22.229 14.428 11.224 9.98275 9.093 

Figure 30. QT3 run time (s) for square tiles 
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In the case of multidimensional array partitioning and under certain grid 
densities, this query is becoming a worst case workload - retrieving a single 
element from every tile. In cases C and D the query has to retrieve one tile 
per element, effectively, 10000 square tiles (compared to 1000 linear 
chunks). While in case C these tiles are selected from the last 10% of the 
chunk range, in case D the query retrieves an element from every 10th tile 
vertically and every 10th tile horizontally: 

In cases A, B, and C for linear chunks (Figure 29), the difference in 
buffer size above 100 does not matter, as the strategies IN(256) and 
IN(4096) send identical SQL queries - the differences in response times 
allow us to assess the accuracy of our measurements, which depend on the 
state of the whole software stack involved. Figures 29 and 30 show that the 
IN strategy with a large buffer is the best choice in all cases, regardless of 
the partitioning scheme.  

6.3.2.4 Query QT4 
Similarly to query QT2, this one is the worst case workload for linear chunk 
partitioning, and, as shown in Section 6.2.4.8, the chunk access pattern, as 
detected by SPD changes along the diagonal, initiating re-buffering and 
cyclic phase switching in the AAPR framework. We experiment with 
diagonal width of 1 and different strides. Every element accessed belongs to 
a different linear chunk. 
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QT4 Parameters time, s 

b w IN(16) SPD SPD-IN IN(256) IN(4096) 
1000 1 0.265 0.979 0.758 0.102 0.087 

100 1 1.825 2.484 1.419 1.006 0.846 
10 1 17.768 7.190 11.000 7.986 8.097 
1 1 2043.404 1107.296 470.062 99.467 86.335 

Figure 31. QT4 run time (s) for linear chunks 

Here IN strategies show superlinear rise in response time which is most 
severe for the small buffer cases. Retrieving 10 times more chunks (and thus 
sending 10 times more SQL queries) entails 115 times longer response time 
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(when sending 6250 SQL queries as in the last case), however, this is 
alleviated down to the factor of 10.6 in the case of long SQL queries. We 
attribute this to a critical performance bottleneck inside the back-end DBMS, 
which has to be investigated by the DBMS engineers. This loss of 
throughput is similar to the one presented for QT2 (Figure 27), but is 
measured to be more significant in the diagonal access pattern tested here.  

The SPD strategy sends only 10 SQL queries (or a single query in case of 
b=1000, where it captures the complexity of the whole pattern with a single 
access pattern), and SPD-IN always chooses SPD. However, the variance in 
query response times measured throughout the test is greater than factor of 
10, which suggests unstable or nondeterministic (border case?) query 
execution by the DBMS, in addition to the superlinear cost (w.r.t. to 
selectivity) when executing such queries.  

Such a drastic slowdown is typically associated with a wrong choice of 
execution plan for certain expected cardinalities, as noted e.g. in [83]. Our 
investigation has shown that the actual execution plans reported by MS SQL 
Server are identical for the different parameter cases. For SPD queries they 
all include index seek for the beginning of the chunk id range, and then a 
filter based on the MOD condition for every chunk id in that range. For IN 
queries they include index seek for each chunk id provided in the list. We 
have to conclude that the observed border case behaviour does not arise at 
the stage of query optimization. 

The tiled partitioning is much better for this access pattern, grouping each 
100 of diagonal elements within one tile, thus resulting in the retrieval of 
maximum 1000 tiles for "thin" diagonal queries, and just a few more tiles if 
we were testing wider diagonal bands: 
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QT4 Parameters time, s 
b w IN(16) SPD SPD-IN IN(256) IN(4096) 
1000 1 0.233 0.318 0.329 0.179 0.177 

100 1 1.767 1.140 1.239 1.032 0.983 
10 1 1.826 1.192 1.263 1.214 1.023 
1 1 2.747 1.624 1.819 1.566 1.556 

Figure 32 QT4 run time (s) for square tiles 
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The conclusion so far is that IN queries with long lists are better handled 
by the DBMS, in cases when the access pattern presents a worst case for the 
given array partitioning, and the relevant chunks are not stored close to each 
other. On the other hand, multidimensional partitioning helps to avoid worst 
cases for diagonal queries, helping to speed up the execution by factor of 
55.4 (for the unselective queries) 

6.3.2.5 Query QT5 
The :ElementIndices nodes are inserted into the database, containing 
independent uniformly distributed :i and :j integer values within NxN 
matrix domain. The selectivity is varied by using LIMIT clause of 
SciSPARQL query. 

Though some elements happen to be in the same chunk, it takes a big 
buffer to discover this fact and save on communication. The SSDM-side 
chunk cache also solves the problem of the repeating chunks.  

The number of chunks accessed is shown on Figures 33-34 below for the 
buffer size of 4096. As expected, it takes the selectivity of 0.01% for the 
different random array elements to be found in the same chunks, thus 
decreasing the overall number of chunks retrieved. 
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QT5 Parameter time, s 

s IN(16) SPD SPD-IN IN(256) IN(4096) 
10 0.025 0.787 0.021 0.023 0.030 

100 0.334 7.613 0.297 0.193 0.181 
1000 2.564 75.312 2.597 1.413 1.565 

10000 28.015 753.215 36.956 15.594 14.312 

Figure 33. QT5 run time (s) for linear chunks 

Another important observation is that SPD obviously detects wrong 
patterns (since there are no patterns to detect), leading to a serious 
slowdown. However, SPD-IN is able to discard most (but not all) of these 
patters as unlikely, almost restoring the default IN performance. And, by the 
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way, SPD is sending the same amount of 625 SQL queries as IN strategy 
does (for the buffer size of 16). 

Since the distribution is uniform, there is practically no difference 
between chunked (Figure 33) and tiled (Figure 34) partitioning, because of 
the same estimate in the number of elements per chunk and hence roughly 
the same number of distinct chunks accessed. 
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QT5 Parameter time, s 

s IN(16) SPD SPD-IN IN(256) IN(4096) 
10 0.054 0.820 0.020 0.017 0.028 

100 0.262 7.733 0.156 0.122 0.146 
1000 1.992 74.961 2.337 1.419 1.383 

10000 25.871 755.269 33.782 14.675 14.132 

Figure 34. QT5 run time (s)  for square tiles 

This part of the experiment shows that SPD is certainly not suited for 
random access patterns, and SPD-IN rules help (though not completely) to 
avoid misdetected patterns (leaving a small amount of false positives). As 
for the IN strategies, extensive pre-buffering of chunk ids, and caching of 
the retrieved chunks on the SSDM side helps to avoid repeated retrievals. 

6.3.2.6 Query QT6 
This time the matrix coordinates are generated in clusters. For the test 
purposes we generate 3 clusters, with centroids uniformly distributed inside 
the matrix space. The probability of a sample being assigned to the cluster is 
uniform. Samples are normally distributed around the centroids with 
variance 0.01*N - 0.03*N (randomly picked for each cluster once). We 
deliberately use such highly dispersed clusters, as the effects of logical 
locality already become visible at certain selectivity threshold. Samples 
produced outside the NxN rectangle are discarded, thus effectively 
decreasing the weight of clusters with centroids close to the border. 

Similarly to QT5, in Figures 35-36 we show the minimal number of 
chunks accessed (i.e. given the biggest buffer).  
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QT6 Parameter time, s 

s IN(16) SPD SPD-IN IN(256) IN(4096) 
10 0.077 0.646 0.047 0.044 0.048 

100 0.432 6.092 0.347 0.168 0.170 
1000 3.849 59.816 4.201 1.732 1.520 

10000 44.068 619.773 50.710 16.426 13.493 

Figure 35. QT6 run time (s) for linear chunks 

We see that the effect of logical locality starts to play a role already when 
selecting 0.001% of the array elements. At the selectivity of 0.01% the 
number of chunk to access is just 78% to the number of elements in the case 
of linear chunks, and 69% in case of square tiles. We see that the square tiles 
better preserve the logical query locality, especially for the unselective 
queries. We expect this effect to be even greater for more compact clusters 
w.r.t. the tile size, and Experiment 3 below (where we vary the chunk size) 
supports this idea. 
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QT6 Parameter time, s 

s IN(16) SPD SPD-IN IN(256) IN(4096) 
10 0.071 0.637 0.043 0.043 0.048 

100 0.494 6.194 0.399 0.202 0.158 
1000 4.427 60.679 3.845 1.709 1.555 

10000 49.145 625.696 52.054 16.715 13.632 

Figure 35. QT6 run time (s) for square tiles 
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One important conclusion here is that we are able to achieve sub-linear 
increase of query response w.r.t. the amount of array data retrieved - using 
extensive chunk id pre-buffering and SSDM-side caching of the retrieved 
chunks. We are able to show this effect on rather low overall densities. We 
save on the amount of retrieved chunks thanks to the cluster characteristic of 
the access pattern. 

6.3.2.7 Comparing linear chunks vs. square tiles 
In this experiment, we have gathered empirical proof to a common intuition  
[41, 60, 105, 142, 172] that for every data partitioning scheme there is a 
possible worst-case workload. Furthermore, our theoretical expectations 
regarding best and worst case access patterns for each array partitioning 
found full support. These can be summarized by the following table, listing 
QT1 - QT4 as representative access patterns: 

Table 7. Partitioning/workload best and worst cases 

linear partitioning access 
pattern row-major column-major 

multidimensional 
partitioning 

QT1 best worst  
QT2 worst best  
QT3   worst* 
QT4 worst worst  

The multidimensional partitioning has its only worst case (when a 
separate chunk needs to be retrieved for each element) on sparse enough 
regular grids, Also, as shown by QT6, the multidimensional partitioning is 
still more advantageous for random access patterns, with even a small 
degree of clustering. Overall, it can be regarded as more robust, though 
having fewer best-case matches. Compact enough clusters that can be 
spanned by a small number of tiles would obviously be a near-best-case 
access pattern. 

6.3.2.8 Comparing SPD vs. IN strategies 
The SPD approach in most cases allows packing the sequence of all relevant 
chunk ids into a single SQL query, and thus skipping all the subsequent 
buffering. However, we have discovered that the SPD queries are generally 
do not perform so well in the back-end DBMS, as queries with IN lists. The 
last two cases show very clearly that in the case where there is no pattern, so 
that we have to send the same amount of SPD and IN queries (for the same 
buffer size), the difference in query response time is greater than order of 
magnitude. 

The obvious explanation to this is the index utilization. A query with an 
IN list involves index lookups for each chunk id in the list, while a query 
with mod condition, as generated with SPD strategy, is processed 
straightforwardly as a scan through the whole ArrayChunk table. 
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We believe it could be highly advantageous to implement a simple rewrite 
on a mod() function. A condition like 'X mod Y = Z' with Z and Y known, 
and X being an attribute in a table (and thus having a finite set of possible 
bindings), could be easily rewritten to generate a sequence of possible X 
values on the fly (thus making mod() effectively a multidirectional function  
[58]). 

This, however, would require a facility to generate sequences of values 
during the execution plan. In Amos II [136] generators are used for all bag-
valued functions. We have run additional experiments with other RDBMSs, 
including PostgreSQL [125], MySQL, Mimer [106], and found that even 
though some of these support table-valued UDF, only the recent versions 
(tested 9.4.4) of PostgreSQL are capable of avoiding the generation of 
complete sequences before use. We see this as an important improvement in 
the present-day RDBMS architecture. 

6.3.3 Experiment 2: Varying the Buffer Size 
In this experiment we explore the impact of the buffer size on the query 
response time with the IN strategy. We use the same dataset as in 
Experiment 1, and query QT2 as a model query because it is the simplest 
query retrieving a large amount of chunks. We retrieve 10 000 linear chunks 
each time (QT2 parameters result in accessing an element from a single 
column and every 10th row). Chunk sizes are varied with finer resolution 
than in the respective case of Experiment 1.  
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Figure 37. QT2 run time (s) for linear chunks, IN strategy, with buffer size varied 

The results shown on Figure 37 confirm our hypothesis that extremely 
small buffers, producing lots of chunk retrieval queries under the IN 
strategy, result in unnecessary query processing overhead. However, after a 
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certain threshold the amount of SQL queries sent is low enough (1-10 
queries), so this overhead is not significant anymore. 

6.3.4 Experiment 3: Varying the Chunk Size 
In this experiment we evaluate the trade-off between the need to retrieve 
many small chunks in one extreme case, and few big chunks (with mostly 
irrelevant data) in the other extreme case. We chose QT6 as a query with 
certain degree of spatial locality. The effect of this locality is greater for the 
square tiles, which are aligned to the logical dimensions, than for the linear 
chunks. 

We also study how well our back-end DBMS handles the requests for 
numerous small or big binary values, thus using the IN strategy with buffer 
size set to 4096 distinct chunks. In each case, were retrieve 10000 array 
elements, arranged into three clusters, with variance chosen in range 0.01*N 
... 0.03*N.  
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size accessed response time, s accessed response time, s 
1k 9894 10.923 9886 10.945 

6.4k 9415 10.897 9393 10.846 
40k 9961 18.396 6916 13.022 
4M 1159 612.269 206 101.333 

Figure 38. QT6 run time (s) for linear chunks, IN strategy, with chunk size varied 

Figure 38 shows the results for both partitioning cases: even though big 
chunk size (around 4 megabytes) results in a much smaller amount of 
chunks retrieved (only 1 SQL query is sent), the overall query time rises 
superlinearly to 612 s. Besides that, smaller chunks result in slightly better 
performance in this case, since the amount of "small" chunks retrieved stays 
approximately the same for the same sparse random access. 

Using square tiles helps to leverage the access locality even better. 
However, big tiles do not seem to pay off at this level of sparsity: retrieving 
206 4-megabyte tiles results in a factor of 81.4 larger binary data retrieval 
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than 9886 1-kilobyte tiles, and contributes to a factor of 9.26 longer query 
time (101 s). 

This experiment shows that for the given access selectivity (10-6 of the 
total number of array elements selected randomly in clusters), small chunks 
perform better than big chunks, and the choice between linear chunks or 
square tiles is not important for small chunk/tile sizes. However, there is a 
significant overhead in retrieving separate chunks, as a factor of 81.4 gross 
data transfer increase contributes to only a factor of 9.26 query time 
increase. 

Analytically, we would model the query response time as a function T(s) 
of chunk size s: 

( ) ( )sNsPsT =)(  

where P(s) is the cost of transferring one chunk (given a fixed total number 
of SQL calls), and N(s) is the amount of relevant chunks to be retrieved. 
Figure 39 shows our qualitative expectations of P(s) and N(s). It illustrates 
that P(s) is basically linear after some 'efficient chunk size' threshold, while 
N(s) should experience a steep fall, corresponding to the logical locality of 
the query, which is saturated at some point. 
 

P(s)

s

N(s)

s
 

Figure 39. Query response time factors shown qualitatively as functions of chunk 
size 

While the quantitative properties of P(s) depend largely on the underlying 
DBMS, the middleware, and the operating system used (along with 
hardware configurations), N(s) is purely statistical, and can be easily 
computed by simulation, as presented below.  

6.3.4.1 Amount of distinct chunks as a function of chunk size 
Figures 40 and 41 below show the simulation results of QT6 retrieving 10 
000 random elements, with clusters of element coordinates having average 
variance of 0.2*N (very dispersed) to 0.0002*N (very condensed). Figure 40 
presents N(s), given the linear chunks of varying size, and Figure 41 presents 
N(s) for square tiles. 
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Figure 40. Amount of distinct linear chunks as a function of chunk size, results of 
simulating QT6 retrieving 10 000 elements clustered with different density. 
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Figure 41. Amount of distinct square tiles as a function of tile size, results of 
simulating QT6 retrieving 10 000 elements clustered with different density. 

As we can see, the linear chunk case clearly exhibits a top 'plateau' for 
most of our cases, and thus confirms our expectations above.  This feature is 
not visible for the square tiles case (Figure 41), as the square tiles utilize the 
query locality much better. In order to see the plateau, we have to re-run the 
simulation with a greater sparsity (so that there is a greater probabilty of 
having single selected element per tile retrieved). Figure 42 shows the result 
of such simulation, with QT6 retrieving this time only 1000 random 
eleements. 
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Figure 42. Amount of distinct square tiles as a function of tile size, results of 
simulating QT6 retrieving 1000 elements clustered with different density. 

Another interesting feature on Figures 40 and 42 is a 'middle plateau' for 
the (not very) dispersed access patterens.  The beginning of such plateau 
should be considered as one of the sweet spots when choosing the 
partitioning granularity, where chunk/tile size is adequate to the distribution 
of access densities. Of course, assuming the statistical properties of the 
workload are known before the array data is partitioned. 

Similarly, the earlier observations (Figure 38) suggest that there is always 
a threshold in access density after which the bigger chunks become more 
favorable. For example, we expect 4 MB square chunks to be on par with 1 
kB chunks, when the gross data transfers for each case relate as ~8:1. In 
other words, it still pays off to transfer 8 times more gross data from a back-
end, if it results in retrieving correspondingly lesser amount of chunks. 

6.3.5 Summary of the Comparison Experiments 
We have compared two pure and one hybrid strategy for generating SQL 
queries based on the buffered set of chunk ids to be retrieved. One is putting 
a long IN list into the query, and the other is creating an expression for a 
cyclic chunk access pattern discovered. It turned out that even though the 
second approach allows accessing an entire array with a single SQL query, 
and skipping further buffering in most cases; it only pays off for very 
unselective queries, retrieving a large percentage of array's chunks. 
Apparently, modern RDBMS optimization algorithms do not rewrite the 
kind of conditional expressions we were using in order to utilize existing 
indexes. Hence, the general advice is to use long IN lists for best 
performance of a contemporary RDBMS as a back-end. 
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We have also investigated two distinct partitioning schemes - linear and 
multidimensional - used to store large numeric arrays as binary objects in a 
relational database back-end. Our mini-benchmark consists of six distinct 
parameterized query patterns, and it becomes clear that for each partitioning 
scheme one can easily define best-case and worst-case queries. For example, 
a diagonal access pattern works much better with square tiles than with any 
linear chunking, where linear chunks in an array stored row-by-row are 
perfect for single-row queries and worst for single-column queries. As for 
the chunk size, we have empirically found a proportion when the overhead 
of transferring more gross data balances out the overhead of retrieving more 
chunks. 

The conclusion is that choosing the right partitioning scheme and chunk 
size is crucial for array query response time, and the choices made should be 
workload-aware whenever possible. Though it might not be possible to 
know the expected workload for long-term storage of scientific data, such 
knowledge can certainly be inferred for materializations of intermediate 
results in cascading array computation tasks. As one direction of a future 
work, a query optimizer that makes choices on materializing intermediate 
results (e.g. common array subexpressions) should be enabled to choose the 
storage options based on the downstream operations. 

Buffering array access operations and formulating aggregated queries to 
the back-end has proved to be essential for performance. We put the 
relational back-end scenario to a real-life test in the next section, comparing 
the performance with purely manual Matlab implementations of the same 
scientific computing tasks. 

6.4 Real-Life Query Performance Evaluations  
The previous section explored the SSDM performance using synthetic 
(ultimately simplified) data and queries implementing a variety of typical 
access patterns. Though we have used SciSPARQL to formulate 
parameterized array queries, the presented results are largely language-
independent, and can be extrapolated to any setting involving a chunked 
array access. It is only a real-life application that can put a wide range of 
SciSPARQL features and SSDM architectural decisions to a realistically 
integrated test. 

In this section we demonstrate the expressivity of the SciSPARQL 
language for an application-representative set of queries and present 
response times with different relational storage back-ends. We show that our 
approach results in comparable performance to hand-written Matlab scripts 
reading files directly from disk, which is the data processing approach 
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previously employed by the users of the BISTAB application. BISTAB is a 
stochastic simulation in the field of computational biology we use for 
evaluation of SciSPARQL and SSDM.  

In Section 6.4.1 we first define the BISTAB application, together with 
some scientific computing background. This part of the work is the outcome 
from a collaboration with A.Hellander and B.Drawert at the University of 
California Santa Barbara. The results were published in [6] and Section 6.4.1 
is based on the part of the paper describing the BISTAB experiment written 
by A.Hellander. The computational and data management problems are put 
in focus, and the typical data post-processing tasks are formulated. The 
BISTAB application has motivated our following steps to move the 
computation towards the data, so the results presented here are an important 
reference point. 

Next, in Section 6.4.2 we define the RDF with Arrays schema, capturing 
BISTAB data and metadata together. Since the metatadata (parameter cases, 
grid properties, etc.) were stored separately - partially in arrays in separate 
Matlab files, partially encoded into file names - we had to do a pre-loading 
step. In order to build an RDF with Arrays dataset to be queried, certain ad-
hoc parsing and other data retrieval operations were performed, which is not 
covered here. Instead, in Chapter 7 we demonstrate a more general and 
simple way for application users to provide metadata annotations for their 
numeric results. 

The prepared Turtle files (with file links for the computaton results) were 
loaded into SSDM with a relational back-end configured to store the arrays, 
as reported in Section 6.4.3. Section 6.4.4 presents the BISTAB queries 
formulated in SciSPARQL. The queries are answered using different 
relational back-ends and under different cache states. In Section 6.4.5 the 
performance is compared to running the equivalent scripts in Matlab. 

As expected, employing SSDM with a relational database back-end for 
storage of large array data results in comparable performance to using 
Matlab natively, however, at a cost of the initial data-loading phase. As 
presented in Chapter 7 we can avoid paying this cost altogether, by 
introducing a tight integration of SciSPARQL queries into a Matlab-based 
scientific computing workflow, and retrieving the array data on demand 
directly from .mat files.    

6.4.1 BISTAB: an Application from Computational Biology 
In a discrete stochastic setting, the most common modeling framework is 
continuous-time discrete-space Markov processes. Statistically correct 
realizations of the process can be generated using kinetic Monte Carlo 
(kMC) methodology, such as the Stochastic Simulation Algorithm (SSA) 
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[63]. To introduce spatial heterogeneity in the models, the computational 
domain is discretized into non-overlapping mesh cells, and diffusion is 
modeled as discrete jump events along the edges of the mesh. Recent 
computational studies have highlighted scenarios where both spatial and 
stochastic effects are essential to explain the behavior of the system [56, 52]. 

Analysis of the behavior of a spatial stochastic model for different input 
parameters would benefit from a systematic, observationally driven 
approach in which statistical approaches from e.g. machine learning and 
bioinformatics would be applied to the simulated data in order to discover 
input combinations where the model displays interesting behavior. In its 
simplest form, such an analysis could consist of aggregation of the full time 
series data to a set of biologically significant scalar or vector quantities, 
followed by the application of clustering algorithms to find groups of input 
cases displaying similar behavior. Such an approach is currently limited by 
the existing infrastructure, and would benefit greatly from integration with 
database solutions that simultaneously support knowledge discovery in 
databases and online selection and post-processing through queries, in our 
case SciSPARQL queries. 

6.4.1.1 The URDME framework  
BISTAB is implemented using the URDME framework for stochastic 
simulation of reaction-diffusion processes on unstructured meshes [48, 53]. 
It relies on the scientific computing environment Matlab as a front-end, 
while the core simulation routines are implemented as stand-alone C 
programs. Another third-party software, Comsol Multiphysics, is used to 
provide a modeling environment for the geometry and to provide 
unstructured mesh generation. If used interactively, URDME behaves much 
as a Matlab toolbox. It is designed to provide flexibility for the applied users 
in terms of (biochemical) model design, execution and post-processing via 
e.g. customized Matlab scripts. Given a description of the chemical reactions 
(in the form of C code) and of the geometry (in the form of a Comsol .mph 
file), the URDME Matlab layer creates all necessary data structures and 
serializes the model to an input file in .mat format. URDME then compiles 
an executable specific to the model under consideration, launches the 
simulation, and then imports the output data back into the Matlab interface. 

The raw output from a simulation with URDME is a time series, or 
trajectory, with the number of molecules of each species recorded in every 
cell in the mesh for each output time point. It thus resembles the output of 
most partial differential equation (PDE) solvers, such as those based on the 
finite element method. An important difference from most standard PDE 
applications is that, since each run provides only one out of many possible 
realizations of the stochastic process, it is typically necessary to gather many 
independent trajectories into ensembles to form a basis for statistical 
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analysis. Frequently, some model parameters such as the kinetic rate 
constants or diffusion constants are undetermined by biological experiments 
or known with low precision. It is therefore necessary to conduct 'parameter 
sweeps' in order to tune model parameters to an experimentally observed 
behavior, or to study the robustness of the model to changes in the input. A 
computational experiment may thus require the generation of tens or 
hundreds of thousands trajectories. The computational cost to generate the 
ensembles is large, but each realization can be simulated independently of 
the others. 

6.4.1.2 Post-processing 
The large amount of output data generated by URDME for a typical 
computational experiment poses a big challenge, both in terms of storage 
requirements and in terms of infrastructure for post-processing. While output 
data could be aggregated to e.g. mean values at the time of simulation, a 
computational experiment will likely require many different post-processing 
queries, and many of them will not be known in detail at the time of 
generation of the data. It is hence desirable that raw simulation output be 
persistent at least for the duration of a modeling project. The earlier 
solutions were based on either storing simulation output files locally on the 
user workstation, or transferring them to a central URDME server when they 
need to be accessed in the computation [184]. In the first case, hardware will 
likely limit high-throughput analysis of the model, and in the second case, 
the performance of the system will be limited by the data transfer cost. A 
more general approach with lazy access to a data repository through queries, 
as one described in the previous sections, is desired. 

6.4.1.3 Model problem 
The BISTAB dataset is a model of a bistable system [52], and was one of the 
first models used to demonstrate the use of spatial stochastic simulation in 
computational systems biology. For some parameter combinations, the 
system will be globally bistable, and for other combinations the proteins will 
self-organize in local areas of higher concentrations, leading to loss of global 
bistability. The BISTAB dataset consists a parameter sweep of 1900 
realizations, where each realization is a file containing the result of a 
simulation with randomly chosen parameters. Processing this dataset and 
analyzing the biochemical model’s behavior for the different parameter 
combinations requires both compute intensive post-processing of the time 
series data and the ability to manage and filter the post-processing results 
based on metadata such as parameter values.   

6.4.1.4 Example queries  
To demonstrate the utility of the proposed system we have applied it to run a 
number of different queries that are representative of the kind of array 
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slicing and aggregate functions that are frequently needed as primitives in 
more complex post-processing routines. These queries often constitute the 
data-intensive part of the post-processing workflow, where the complete 
dataset is mapped to derived quantities of biological interest in a lower 
dimension. The queries we consider in here are: 

• BQ1: Compute the number of molecules over the whole spatial domain 
of a certain species as a function of time. 

• BQ2: Compute the number of certain species at a certain time point for 
all the realizations that have kinetic rate constants in a certain range. 

• BQ3: Retrieve the identifier of the trajectory that resulted in the maximal 
result for BQ2. 

The operation in BQ1 is typical for visualization of the realizations and is 
for example needed to produce the time series plots in [52, 56]. While 
simple array slicing and aggregate functions like that done on a single matrix 
in BQ1 can be expressed easily and efficiently in a scripting language such 
as Matlab, already simple queries such as BQ2 and BQ3 will place the 
responsibility for managing all the many different files and their properties 
on the user of the URDME application, while SSDM uniformly manages all 
data and metadata. With the traditional approach the management and 
analysis of e.g. large parameter sweeps quickly becomes tedious when 
metadata is stored separately and may be a bottleneck that limits the 
productivity of the user. We show how the system efficiently combines the 
utility of a database to select subsets of the data based on the metadata 
describing the experiments in terms of a high-level declarative language 
capable of expressing array operations. 

6.4.2 BISTAB Data Model as RDF with Arrays 
We have developed a database schema for the BISTAB dataset, as described 
by the ER-diagram shown on Figure 43. It is used for generating an RDF 
with Arrays dataset to be stored in SSDM with a relational database back-
end. The dataset is loaded as the default graph in SSDM. In the BISTAB 
schema..To test SQL-based storage, we use a sample of 100 Task instances. 

All BISTAB data and metadata are contained in the properties of 
Experiment and Task instances The time series being the result of an 
URDME simulation are stored in the matrix U, containing a row per mesh 
cell per species type, and a column per time point, as shown on the Figure 
44a. The elements of U matrix are the populations of given species in a 
given mesh cell at a given time point.  
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Figure 43. Entity-relationship diagram of the BISTAB dataset 

The number of cells (Ncells), species (Mspecies), and the time values for 
every time point (tspan vector) are part of Experiment metadata. The types 
of species A, B, E_A E_B and four others are modeled as properties of the 
:Experiment instance. Their values are the row offsets used to access rows 
corresponding to these species types within a row range of a given cell.  
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Figure 44. Simulation results stored in U matrix 

A more natural representation of U would be a 3D array, as shown on 
Figure 44b, with the cells and species dimensions logically unnested (though 
physically all dimension are always nested, both for chunk-based and main-
memory storage). However, the BISTAB stochastic simulation outputs the 
results as 2D arrays, and though it would be simple to re-shape these arrays, 
we prefer to keep the array expressions in our queries similar to those in the 
original Matlab scripts we compare our approach to. With the flexibility of 
SciSPARQL we do not really need to restructure the data before querying. 
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Together with each U matrix, a set of simulation parameters k_1, k_a, 
k_d, and k_4 are stored. Since the simulation is stochastic, several different 
results per parameter set can be generated, and the realization number is 
used to distinguish between them. 

6.4.3 Experiment Setup and Data Loading 
We have deployed both SSDM and the back-end DBMSs on a single HP 
Compaq 8100 workstation with Intel Core i5 CPU @ 2.80 GHz, 8 GB RAM 
and running Windows Server 2008 R2 Standard SP1. 

The parameters (metadata) of the BISTAB experiment and each 
simulation were collected into a Turtle file, together with file links to the 
binary (.mat) data files containing the experimental results (U matrices). We 
used a dataset containing 100 :Task instances, each representing a 
realization of the U matrix, containing an integer element for each of (11107 
cells × 8 specie types ×  201 time points). This amounts to about 71.5 MB 
per matrix, and the total of ~7.15 GB array data in our sample dataset. 

As for the, SQL back-end we experimented with two different DBMSs 
accessed via JDBC: MySQL 5.6.10 and Microsoft SQL Server 2008 R2. The 
back-ends are configured to use linear chunks of 1608 bytes each, so that a 
chunk contains two successive rows of a U matrix, stored row-by-row. This 
amounts to 44 428 chunks per matrix, and 4 442 801 array chunks in total 
(one chunk stores tspan). 

The choice of the partitionining scheme was deliberately made data-
aware, but not workload-aware, in order to test both natural and worst-case 
workloads. For example, each chunk contains the complete time series per 
mesh cell for two types of species, whereas BQ1 and BQ2 are only intrested 
in one certain kind of species (while BQ3 may benefit from chunk caching). 
At the same time, all queries summarize the populations across all mesh 
cells, so storing the matrix U column-by-column would benefit BQ2 and 
BQ3, which are currently the worst-case workloads, retrieving only 1 or 2 
elements per chunk. Below in Section 6.4.4 we formulate BQ1 in a way that 
it retrieves the time series per mesh cell first, and then applies a vector sum, 
thus becoming a near-best case (50% relevant data per chunk). Automatic 
query rewriting based on the partitioning scheme remains a challenging 
direction of the future work. 

6.4.3.1 Bulk-loading performance  
To evaluate different data loading methods, we compared the performance 
of naive one-by-one insertion of each chunk with loading the complete 
dataset at once using the bulk-loading facility of the DBMS. The results are 
shown in Table 8. In case of bulk loading, the system first has to prepare a 
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set of bulk-load input files to be sent to the bulk-loader. Here the data to be 
loaded into each table in our general relational storage schema for RDF 
(Figure 43) needs one or several prepared input files. If the data to be bulk-
loaded into a table is larger than allowed by the OS (8 GB in our setting), the 
system splits the bulk-load input into several files. 

Table 8. Data loading times for 100 matrices 

task MySQL MS SQL Server 

Preparing files for bulk-loader 980 s 82 s 

Bulk loading 1 543 s 1 275 s 

Total 2 523 s 1 357 s  

Naïve one-by-one insertion 7 577 s 7 827 s 

The bulk-loading into MySQL is slower since its bulk-loader requires 
text-based input. Here the array chunks are represented in hexadecimal form 
and the preparation work includes converting the binary data into 
hexadecimal representation. The gain is still a factor three compared with 
inserting the chunks one a time, mainly because incremental updates of 
internal DBMS structures in the latter case. 

MS SQL Server allows bulk-loading binary files. Preparing these files 
becomes simply moving binary data from memory. The bulk-loader does not 
have to do any parsing. This is therefore the fastest option.  

6.4.4 BISTAB Application Queries 
In this section we define the queries BQ1-BQ3 outlined in Section 6.4.1.4 as 
SciSPARQL queries, using a number of distinctive features of the query 
language, introduced in Chapter 4. 

BQ1: Compute the sum of all species A over all mesh cells in the 
experiment as a function of time for the trajectory matrix U of task :Task1. 
BQ1 always selects one matrix, associated with :Task1, and aggregates the 
information on species of type A, effectively accessing 12.5% of the matrix 
elements in the database. This query is representative of a frequently 
occurring use case; to reduce the data of an individual sample point to e.g. 
plot the 3D spatial data as a 1D aggregated time series.   

First, we define a function  

total_species(U, species, mspecies)  

that sums up the given species type in U, applying a vector sum to the 
corresponding rows. Every simulation cell occupies Mspecies rows in U 
matrix: 
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DEFINE FUNCTION total_species(?U ?species ?mspecies) AS  
 SELECT (SUM(?U[?i]) AS ?res) 
  WHERE { FILTER (mod(?i, ?mspecies) = ?species-1) }; 

The variable ?i will be bound to all possible subscripts in ?U constrained 
by the filter expression. Every ?mspecies row is retrieved, and a (scalar) 
sum is computed over the elements of respective columns, as shown on 
Figure 44a. If we think about the same data as a 3D array, with the species 
and the cells dimensions unnested, each summed-up subset can be 
represented as a slice, shown on Figure 44b. 

Query BQ1 can now be formulated as 

SELECT (?tspan[?j] AS ?t) 
       (total_species(?U,?a,?mspecies)[?j] AS ?sum_A) 
 WHERE { :Task1 :U ?U ; 
                :inExperiment ?experiment . 
         ?experiment :A ?a ; 
                     :Mspecies ?mspecies ; 
                     :tspan ?tspan }; 

The variable ?j joins the possible subscript values for elements of the 
?tspan vector with those of a vector returned by total_species(). The 
WHERE clause specifies triple patterns used to extract (i) the U matrix 
associated with the experiment task instance named :Task1, (ii) the 
corresponding experiment instance (property :inExperiment), and (iii) 
other metadata associated with the experiment. The query returns pairs of 
(timepoint, sum) values that can be directly used for plotting the wanted 
function of time. 

BQ2: Select the sum of all species A for time point 10s for all trajectory 
matrices U with parameters k_a and k_d in given ranges. BQ2 selects just 
one column of the U matrix, at the column index ?j which is looked up in 
the tspan vector for the time point of interest. There can be many tasks 
falling into the specified parameter range.  

SELECT (array_sum(?U[?a-1::?mspecies,?j]) AS ?res) 
 WHERE { ?task :U ?U ; 
               :k_a ?k_a ; 
               :k_d ?k_d ; 
               :inExperiment ?experiment . 
         ?experiment :A ?a ; 
                     :Mspecies ?mspecies ; 
                     :tspan ?tspan . 
         FILTER (?tspan[?j] = 10 && 
                 1.0E8 <= ?k_d && ?k_d <= 1.0E9 && 
                 50 <= ?k_a && ?k_a <= 90 ) }; 

This query sums up only one column with index ?j expressed by the 
constraint ?tspan[?j] = 10.  The SELECT expression sums up elements 
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in one column and every mspecies row (grey in Figure 44a). Since we are 
interested in only one time point of the trajectory, here we do not use a 
vector sum as we do in function total_species(). 

BQ3: Find the task that has the maximal total population of species A or B 
for any time point. BQ3 is an example of typical batch processing job. It 
makes a complete (unselective) sweep across all U matrices in the dataset, 
computes aggregated statistics for each matrix, and identifies the task that 
has received the maximum score.  

We will need a helper function max_AB_sum(task), aggregating the 
vectors returned by different calls to total_species(): 

DEFINE FUNCTION max_AB_sum(?task) AS 
 SELECT (max(array_max(total_species(?U,?a,?mspecies)), 
             array_max(total_species(?U,?b,?mspecies)))  
         AS ?res) 
  WHERE { ?task :U ?U ; 
                :inExperiment ?experiment . 
          ?experiment :A ?a ; 
                      :B ?b ; 
                      :Mspecies ?mspecies }; 

For each matrix U two vectors are computed: summed up populations of 
species A and B, and their maximum element is returned. The function is 
similar to BQ1 and BQ2 in the triple patterns involved, but the ?task 
instance is now the function’s argument. This allows us to apply the second-
order function ARGMAX() to express the query BQ3: 

SELECT (ARGMAX(max_AB_sum(*)) AS ?maxtask); 

This query applies max_AB_sum() to all possible bindings of variable 
?task to task instances - computed by the triple patterns inside 
max_AB_sum(). The argument corresponding to the maximal function 
result is returned, and can be further queried for properties, e.g. parameters 
of the trajectory. 

During the query execution A and B rows are accessed and summed up 
separately, and referenced by separate array proxies. Since the chunks 
contain two rows each, the chunk-level caching (introduced in Section 
6.2.4.6) prevents double retrieval of the same chunks. A very small cache, 
capable of storing 25% chunks of a matrix (less than 18 MB), completely 
eliminates this problem. The matrices are accessed one at a time, so that the 
chunk cache is automatically refreshed (according to the least-recently-used 
(LRU) replacement strategy) when function max_AB_sum() proceeds to the 
next matrix. 
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6.4.5 Query Performance 
Once the data was loaded into SSDM configured with the relational back-
end storage, we ran the queries BQ1-BQ3 and measured the execution time 
and the number of resulting tuples emitted. We used the SPD strategy for 
retrieving the chunks (since all our patterns are fairly regular) with the buffer 
size of 16 distinct chunks. With the results from Section 6.3 in mind, all 
three queries are a suitable case for the SPD strategy, since the chunk access 
pattern is fairly dense (in fact, all queries retrieve every 4th chunk in a 
matrix).  

As a comparison, we also made Matlab scripts to perform the equivalent 
computations on a set of binary .mat files. Since Matlab stores the matrix 
elements as floating-point numbers, the size of data it is reading from disk is 
in the best case twice bigger than the data we retrieve from a relational 
database, which explains why Matlab is sometimes slower. 

Table 9 shows 'cold cache' run times where all data reside on disk before 
the query is executed: 

Table 9 Query execution time (in seconds) with cold cache 

task U matrices results MySQL MS SQL Server MATLAB 

BQ1 1 201 1.748 2.15 1.826 

BQ2 36 36 80.703 44.512 30.042 

BQ3 100 1 187.073 192.365 133.279 

We can see that on smaller amounts of data our system slightly 
outperforms Matlab with .mat files. All results fall within same order of 
magnitude, which proves that the benefits provided by our solution combine 
with quite competitive performance. 

Table 10 shows 'warm cache' results, obtained by repeated runs of the 
same query. There are three cache levels involved: OS-level file cache, 
DBMS-level query cache, and SSDM-level chunk cache. Due to massive 
amounts of data processed, BQ3 does not benefit from any of these in 
repeated runs (though intra-query caching is still essential), and the results 
are the same as in Table 9. In contrast, for BQ1 there is an interesting case 
possible when all array data processed fit entirely into the SSDM chunk 
cache, so the DBMS is not accessed at all; it only runs in the background, 
consuming some system resources. This particular case is shown as BQ1*. 

Table 10. Query execution time (in seconds) with warm OS/DBMS level cache 

task U matrices results MySQL MS SQL Server MATLAB 

BQ1 1 201 0.434 0.526 0.157 

BQ1*   1 201 0.138 0.152 N/A 
BQ2 36 36 63.542 13.378 1.203 
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Here we can see that the SSDM cache is faster than the OS-level cache 
utilized by Matlab. However, BQ2 reads just a single column from every 
matrix, but has to retrieve the same amount of chunks from the back-end. 
This makes it significantly slower than a system with any other partitioning 
scheme than row-wise linear chunking, used in this experiment. Single-
column access can be regarded as particular worst case for row-based array 
storage, as the useful data load is relatively small during the array retrieval 
operations. 
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7 Integration of SciSPARQL into Matlab 

In many branches of science and engineering, researchers accumulate large 
amounts of experimental data [162, 154] and use widely recognized libraries 
of algorithms to analyze and refine that data. Tools such as Matlab or similar 
serve as integrated environments that provide basic file management, 
extensibility with algorithmic libraries, visualization and debugging tools, 
and are generally oriented towards single-user scenario. 

What is typically missing is the infrastructure for storing the descriptions 
of experiments, including parameters, terminology mappings, provenance 
records and other kinds of metadata. At best, this information is stored in a 
set of variables in the same files that contain large numeric arrays of 
experimental data, and thus is prone to duplication and hard to update. 

 RDF with Arrays and SciSPARQL provide an infrastructure where both 
metadata and data are represented in a database using the RDF data model 
accessible from the Matlab environment.  

7.1 Usage Scenario 
The SSDM configuration presented in this chapter assumes a multi-user 
client-server environment. Users interact with Matlab clients and the SSDM 
server acts as a central repository for all kinds of data and metadata that 
needs to be stored between the sessions or shared among the users.  

The main challenge, as expected, is interoperability - Matlab has only 
arrays as a data model. We address this by allowing users to provide 
metadata annotations for the array data they generate, within the Semantic 
Web paradigm, so that the Matlab arrays become part of an RDF with 
Arrays graph on the server, which is queriable and updatable with 
SciSPARQL. SSDM as an RDF with Arrays store participates in two kinds 
of interactions with a Matlab client, which we refer to as phases: 

• Phase 1: generate & store - populating an RDF with Arrays graph on 
the SSDM server with data and metadata generated on the client. 

• Phase 2: query & postprocess - searching an RDF with Arrays graph 
based both on metadata and data properties, shipping the results back 
to the Matlab client to perform any Matlab-specific postprocessing. 
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The first phase is exemplified in Figure 45. First, a Matlab array A is 
created on the client. A call to the Matlab function store()ships the array 
to the server and returns an array proxy object. This array proxy object is 
used in RDF triples later sent to SSDM when populating the RDF with 
Arrays graph describing the experiment.  

 

SSDM Server

RDF
Store

File system

Server side

Client side: MATLAB

Af(x) store()

.mat 
file

Array
Proxy

SciSPARQL
Update

makeURI()
 

Figure 45. Storing client-generated data and metadata on SSDM server 

At the query phase (Figure 46), a subset of A, now stored on the server in 
a .mat file is selected, processed (e.g. fed to an aggregate function), and the 
result (e.g. a single number) is shipped back to the Matlab client for post-
processing and visualization. 
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Figure 46. Querying data and metadata on SSDM server from MATLAB client 
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In the next section we demonstrate both of these phases using the example 
BISTAB experiment introduced in Section 6.4. 

7.2 A Workflow Example 
As an example15 of a typical workflow, we first create the RDF with Arrays 
dataset for the BISTAB experiment using a remote Matlab client. As soon as 
both RDF data and arrays are stored in the SSDM server, we are able to 
query them with SciSPARQL, receive the results using the Scan 
functionality, and perform visualization in Matlab. 

First, we load the SSDM client library into Matlab, initialize it, and 
establish a connection to the server: 

addpath('./embeddings/MATLAB/M'); 

sparqlInit('mat'); 

c = newConnection('udbl64.uu.se'); 

The 'mat' option to the initializer indicates that we are going to use .mat 
files for storing the arrays on the server, so that the corresponding MCR 
libraries are loaded at that point. 

We use the prefix <http://udbl.uu.se/bistab#> for the URIs we construct 
for our RDF with Arrays dataset, both on the client and the server: 

c.usePrefix('', 'http://udbl.uu.se/bistab#'); 

Phase 1. For simplicity, we begin the construction from an empty graph, 
and first insert the :Experiment1 instance with constant parameters (see 
Figure 45): 

c.sparqlDo('CLEAR()'); 

c.sparqlDo('INSERT { :Experiment1 :Mspecies 2; :Ncells 8; :A 1; ' ... 
                                 ':B 2; :E_A 3; :E_B 4; :tlen 5 }'); 

The Matlab concatenation operator '...' is used to pass multi-line textual 
representations of SciSPARQL queries and updates. 

In order to insert an array, we use the Matlab-native array value for the 
:tspan property. The URIs representing the subject and property of the 
inserted triple are also created in Matlab.  

uriExperiment = c.makeURI('', 'Experiment1'); 

c.insert(uriExperiment, c.makeURI('', 'tspan'), [0 0.5 1 1.5 2]); 

                                                      
15 In the Matlab code below we show the integration-related functions in bold italic, with 
keywords (both Matlab and SciSPARQL) in bold. 
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Now we populate the BISTAB realizations data. We have these data in 
variables in a set of .mat files, so we load the file with BISTAB parameter 
cases first: 

load('input.mat'); 

This file contains the parameters variable, with rows corresponding to 
the different realization parameters, and the columns corresponding to the 
parameter cases. By contrast, in Section 6.4 we read a pre-generated Turtle 
file with these values, while here we populate an RDF with Arrays graph 
online. For each parameter case we create a :TaskN node, Since we are 
building a graph, first we record that our new :TaskN node belongs to 
:Experiment1. The rows in the parameters array are now assigned 
meaningful names, like :k_1 or :k_d, serving as part of metadata 
annotation: 
for i = 1:size(parameters,2) 
    uriTask = c.makeURI('', ['Task', int2str(i)]); 
    c.insert(uriTask, c.makeURI('', 'inExperiment'), uriExperiment); 
    c.insert(uriTask, c.makeURI('', 'k_1'), parameters(1,i)); 
    c.insert(uriTask, c.makeURI('', 'k_a'), parameters(2,i)); 
    c.insert(uriTask, c.makeURI('', 'k_d'), parameters(3,i)); 
    c.insert(uriTask, c.makeURI('', 'k_4'), parameters(4,i)); 
    load(['realization_',int2str(i),'_1toy.mat']);     
    c.insert(uriTask, c.makeURI('', 'U'), c.store(U)); 
end 

As the last step, for each parameter case we populate the server database 
with the massive numeric data, produced as a result of a computer 
simulation. We could have run the simulation itself at this point, but it was 
run before and the results were stored as in a set of .mat files on the client 
machine, with parameter case and realization numbers encoded into the 
filename (a very common practice in the absence of databases!). Now we 
integrate our massive arrays into the RDF graph by shipping them to the 
server and connecting them as :U properties of our :TaskN nodes. 

This is all data migration efforts needed to convert the .mat files on the 
client into an RDF with Arrays database on the server. We can now save the 
database on the server: 

c.save(); 

Phase 2. The array data stored on the SSDM server is now available for 
querying from Matlab clients. For example, we can select row 15 from the 
:U matrix corresponding to :Task1 and send it back to the client: 

s = c.sparql('SELECT (?U[15] AS ?res) WHERE { :Task1 :U ?U }'); 

s.getElement(1) 

In the process we created a Scan object containing a single row with a single 
value in it, which is available in Matlab as a 1D array.  
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We can now execute BQ1 defined in Section 6.4.4, by first defining its 
reusable part as a total_species() function: 

 
c.sparqlDo(['DEFINE FUNCTION total_species(?U ?species ?Mspecies)' ... 
            ' AS SELECT (SUM(?U[?i]) AS ?res) ' ... 
            '     WHERE { FILTER (mod(?i, ?Mspecies)=?species-1) }']); 

This function will be stored on the SSDM server, together with the dataset - 
similarly to SQL stored procedures. 

Executing BQ1 will return a Scan containing a time value and the sum of 
A species in each row: 

s = c.sparql([ 
     'SELECT (?tspan[?j] AS ?t)' ... 
     '       (total_species(?U, ?A, ?Mspecies)[?j] AS ?sum_A)' ... 
     ' WHERE { :Task1 :U ?U ;' ... 
     '                :inExperiment ?experiment .' ... 
     '         ?experiment :A ?A ;' ... 
     '                     :Mspecies ?Mspecies ;' ... 
     '                     :tspan ?tspan }']) 

For the purpose of plotting, we need to collect the results from the Scan 
into a 2-column array. This is done by the following Matlab code: 

i = 1; 
while not(s.endOf()) 
  for j=1:s.width() 
      res(i,j) = s.getElement(j); 
  end 
  i = i + 1; 
  s.nextRow(); 
end 

Here the nextRow() method to advances through the Scan, and endof() 
checks if there are any more results to retrieve. The number of elements in 
the row is available via width() and getElement() returns the row 
element with the specified index as a Matlab value. 

Finally, the Matlab plotting functionality is invoked in order to visualize 
BQ1 results: 

figure;plot(res(:,1),res(:,2)) 

The complete demo, also featuring BQ2 and BQ3 queries is available on 
SciSPARQL homepage [146]. 

7.3 Matlab Interface to SSDM 
The interface to Matlab includes two main Matlab classes: Connection and 
Scan. In addition there are a number of classes used to represent RDF types, 
e.g. URIs and typed literals. Matlab constructors, and field accessors are 
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defined for these classes. A special class MatProxy is used on the client-side 
to represent an array stored in a .mat file in the SSDM server. 

 The Matlab class Connection encapsulates a connection to an SSDM 
server, including methods for: 

• executing SciSPARQL queries and obtaining a result as a Scan – 
method sparql();  

• executing non-query SciSPARQL statements, e.g. updates and 
function definitions – method sparqlDo(), separate triples may 
also be inserted into an RDF with Arrays graph with  the insert() 
method; 

• defining URI prefixes to be used both on client and server side – 
method makeURI(); 

• shipping Matlab arrays from client to server for bulk loading – 
method store(); 

• managing data persistence on the server – method save(). 

The Matlab class Scan encapsulates the result set of a query. The data is 
not physically retrieved, stored or shipped anywhere before it is explicitly 
accessed as a row in the scan. Scan includes methods nextRow() etc. for 
iterating through the result sets of SciSPARQL queries: the arrays and scalar 
numbers become represented by native Matlab arrays and numbers while 
other RDF values get represented by objects defined in the Matlab client.  

In the above workflow example the SSDM server is configured to store 
RDF triples in main memory, while array data in a stored in a file directory 
of native .mat files. Reading and writing .mat files on the server side is 
done via freely distributed MCR libraries, so this configuration requrires no 
additional Matlab installation.  

The SSDM server processes SciSPARQL queries and updates. As part of 
an update, the store() function can be called from the client. A numeric 
multidimensional array value in the Matlab client will be shipped to the 
server as a binary .mat file and saved under a server-managed name in the 
server’s file system. The Array Proxy object pointing to the value in that 
.mat file will be returned to the client, and may be used as a replacement for 
the actual array, e.g. as a parameter to SciSPARQL queries and updates. 
Once stored in the database, the Array Proxy object serves as a link from the 
metadata RDF graph to the numeric data stored in a .mat file on the server. 

If the file is already on the server, and its name is known, an alternative 
link() function can be used to obtain an equivalent Array Proxy object 
persisted on the server side. 
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7.4 Discussion 
The use of standard query languages for bringing remotely stored data into 
computational environments is becoming increasingly popular as the data 
become more distributed. One obvious benefit is simplicity and reusability 
of data retrieval operations. For example, Matlab already has a facility to 
execute SQL. Similarly, the R statistical environment recently gained a 
simple SPARQL package [138]. We take the next step, by extending the 
standard query techniques (with arrays, functional views and other 
SciSPARQL features), aiming to make the database connections even more 
useful and efficient. 

The approach with linking matricies to the data on the server instead of 
downloading and storing them locally is beneficial. There is a number of 
efficient binary storage formats around, and our approach can be easily 
extended to any of them, as long as it is possible to address stored data in 
terms of string or symbolic identifiers, and read specified parts of the arrays. 
Even when data are generated locally, it's still better to upload it once to the 
server, rather than distributing the massive datasets across the workstations 
on a regular basis.  

The main benefit, however, is integrating the Semantic Web metadata 
management approach (RDF and SPARQL) into an environment that misses 
it so obviously (i.e. currently using arrays for everything). We show that the 
creation of an RDF with Arrays graph to represent both metadata and data on 
the server is simple, and may serve as a good annotation of experimental 
data. The Matlab users can now take advantage of remote and centralized 
repositories for both massive numeric data and metadata, send queries that 
combine them both, retrieve exactly as much data as required for the task, 
and do any further processing the way they already do. 

A similar integration of SciSPARQL into Numeric Python [172] is 
underway. We believe that introducing SciSPARQL queries into the 
traditionally procedural scientific computing workflows enables a 
convenient and minimum-effort annotation of numeric datasets in science 
and engineering, using the Semantic Web approach. This, in turn, opens a 
way to greater interoperability and fosters wider collaboration among the 
users and interlinking of the open scientific data. 
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8 Summary and Future Work 

In this Thesis we presented the design, implementation and evaluation of 
Scientific SPARQL - a language for querying data and metadata represented 
using the RDF graph model extended with numeric multidimensional arrays 
as node values - RDF with Arrays. The techniques used to store RDF with 
Arrays in a scalable way and process Scientific SPARQL queries and 
updates are implemented in our prototype software - Scientific SPARQL 
Database Manager, SSDM, and its integrations with back-end data storage 
systems and computational frameworks.  

In RDF with Arrays, arrays are used to model massive numeric data, 
typically ordered along a number of orthogonal axes. The rest of the RDF 
graph serves to represent different kinds of metadata, for example, a 
formalized description of an experiment, tools and methods used, parameter 
cases, provenance, etc. Scientific SPARQL allows combining metadata and 
numeric data conditions in one query, making it expressive and self-
contained, eliminating the need for extra round trips to the server, and giving 
more freedom to the optimizer in order to build better execution plans. 

The ability to process Scientific SPARQL queries involves suitable main 
memory representations for numeric multidimensional arrays, and efficient 
implementation of operations over such arrays (e.g. selecting array subsets). 
Whenever possible the SciSPARQL query processor accumulates such array 
operations and accesses the array content in a lazy fashion.  

For scalability, arrays can be physically stored in a variety of external 
storage systems, including files, relational databases, and specialized array 
data stores - SSDM offers a simple and flexible Array Storage Extensibility 
Interface. The array data is retrieved from these storage systems only on 
demand, and only in relevant subsets, thus minimizing both network usage 
and memory footprint.  

One option is storing RDF with Arrays in a relational DBMS supporting 
SQL and JDBC. We studied the different optimization strategies for the 
retrieval of array content under a variety of partitioning approaches and 
access patterns - the performance evaluation we present is based on our 
mini-benchmark for array queries. The conclusions suggest a preferred way 
to formulating SQL queries to the back-end, and also carry certain advice for 
choosing a partitioning approach, if the expected workload is known. 
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In scientific applications, numeric computations are often used for 
filtering or post-processing the retrieved data, and may typically be 
expressed in a functional way. Existing computational libraries (many of 
which became de-facto standards in scientific computing and are often 
referred for reproducibility of results) can be interfaced and invoked from 
the query language as foreign functions. Cost estimates and alternative 
directions of evaluation can be additionally specified, in order to aid the 
construction of better execution plans. 

As we expect complex tasks to be formulated as complex queries, good 
query modularity becomes as important for scalability as good data design 
and annotation. SciSPARQL allows expressing common query sub-tasks as 
functional views, i.e. SciSPARQL functions defined as parameterized 
queries. This flexibility is further strengthened by functional language 
abstractions such as second-order functions and lexical closures. When it 
comes to array processing tasks, SciSPARQL offers array constructors, 
mappers, and condensers as second-order functions. 

An integral real-life evaluation is presented, where SciSPARQL queries 
accessing array data stored in an RDBMS back-end are compared to the 
equivalent manually written scripts run in pure Matlab - resulting in 
comparable performance in the general cases. Besides, the unification of 
array data and Semantic Web styled metadata makes the queries shorter and 
much easier to write than the equivalent procedural scripts. 

SciSPARQL queries are easy to integrate into the common 'sequential' 
scientific and engineering workflows, involving generation, storage, 
retrieval, and post-processing of the numeric data, typically based on 
programs in Java, Python, or C, or scientific computing environments like 
Matlab. One important benefit is the communication saved, by pushing to 
the server all the costly processing that can be expressed in a query, e.g. 
filtering and aggregation. We also demonstrate how such integration helps to 
supply and use the descriptive metadata, opening a way to interoperability 
and collaboration, while in all other aspects the users may keep doing their 
work the way they already do.  

SciSPARQL is a proper superset of the W3C SPARQL 1.1 standard, and 
its query processor is implemented on the basis of Amos II - a functional 
object-oriented DBMS. The successful implementation of SPARQL 
constitutes an important part of this work, and proves the viability of such an 
approach in general, along with certain semantic mismatches discovered and 
extensions made. The SSDM system is tested, documented, and available on 
the project homepage [146]. 
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There is a number of directions for future work, aimed at further 
improving the performance and usability of Scientific SPARQL.  

When it comes to the query processing, for example, a greater freedom 
for the query optimizer may be achieved by conveying the bound/semibound 
status of query variables to the optimization stage (Section 5.4.4.2). A 
deeper comparison of expressions, e.g. by using the canonic forms may lead 
to a saved amount of computations in very complex aggregate queries 
(Section 5.4.5.7). Also implementing polymorphic predicates at the algebra 
level may further reduce the need for the disjunctive execution plans 
(Section 5.5). 

Mastering the RDF Schema information for the purpose of type inference 
offers a totally new direction of SciSPARQL development. As RDF 
Schemas may come as a by-product of RDF views over stricter data models 
[97], an originally RDBMS-based scientific or engineering application 
ported to use SciSPARQL may initiate this line of research. 

A completely separate direction of query optimization arises when 
building execution plans for computing array expressions. At the high data 
scales, careful tile-by-tile pipelining is essential e.g. for common matrix 
operations. The storage choices for the materialized intermediate results can 
be made automatically with the results from our array query benchmark in 
mind. The need for automating the physical design (or co-optimizing queries 
and storage) is manifested in [41], and correlates to the dataflow 
programming with array data structures [64, 118]. This would complement 
the automatic choice of array function implementations presented in [120], 
the work which is based on the same DBMS infrastructure. 

The ongoing research, however, is focused on the techniques necessary to 
delegate larger parts of array expressions, including second-order function 
calls, to array databases like Rasdaman, offering rich array processing APIs. 
The potential benefit of delegating the computation of an aggregate function 
to the back-end is the transfer cost for a scalar number compared to a 
transfer cost for a (potentially huge) array. 

Deploying SSDM as a (Scientific) SPARQL endpoint on the Web, deep 
integration with other scientific computing environments, cloud-based 
distribution and other technical improvements are also on our wish list, and 
await their motivating applications. 
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Summary in Swedish 

 
Mängden vetenskapliga och tekniska data har ökat explosionsartat under de 
senaste årtiondena. Även antalet sätt att representera denna information har 
ökat avsevärt. Detta inkluderar hur data beskrivs och representeras såsom 
vilka begrepp som används, vilken detaljnivå som valts, och hur data lagras 
fysiskt. Denna tillväxt förväntas fortsätta då nya sätt att producera och 
använda data utvecklas hela tiden. Detta medför att det blir alltmer kritiskt 
att utveckla metoder för att integrera och kombinera olika sorters 
information. Semantiska Webben (Semantic Web) och Länkad Data (Linked 
Open Data) är lovande ansatser för att generellt beskriva och representera 
olika sorters information på ett lättbegripligt sätt i form av grafer av noder 
sammankopplade med länkar. För att representera dessa grafer används en 
samling tekniker utvecklade av WWW-konsortiet som kallas RDF (Resource 
Description Framework). Dessa tekniker omfattar bland annat frågespråket 
SPARQL med vilket man kan söka efter information i RDF-grafer. 

Denna avhandling utreder hur RDF och SPARQL kan användas för att 
representera, söka och bearbeta olika sorters vetenskapliga och tekniska data. 
RDFs styrka är att grafer är mycket naturliga för att beskriva information i 
form av egenskaper hos olika objekt som personer, företag, webbsidor, etc., 
och hur de relaterar till varandra. Emellertid har RDF haft begränsad 
användning för att lagra och hantera vetenskapliga och tekniska data 
beroende på att det är onaturligt och ineffektivt att använda RDF för att 
representera numeriska data i form av vektorer, matriser, tensorer, dvs. 
multidimensionella arrayer.  Vetenskapliga och tekniska tillämpningar 
kräver ofta att mätvärden lagras och bearbetas i form av arrayer och 
avsaknaden av arrayer i RDF och SPARQL har varit en begränsning. Vidare 
har det saknats möjlighet att definiera egna funktioner i SPARQL och att 
integrera RDF frågor med existerande beräkningssystem.  

I avhandlingen presenteras design, implementering och utvärdering av 
Scientific SPARQL (SciSPARQL), ett språk för att söka bland både data och 
beskrivningar av data (metadata) representerade som RDF-grafer utvidgade 
med numeriska multidimensionella arrayer, benämnt RDF with Arrays. 
Tekniker för att skalbart lagra RDF with Arrays och att därefter bearbeta 
SciSPARQL frågor över lagrade data har utvecklats och implementerats i 
SSDM-systemet (Scientific SPARQL Database Manager). SSDM är ett 
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öppet system som har integrerats med olika sorters databas- och 
beräkningssystem för att åstadkomma skalbara system för lagring av 
multidimensionella arrayer och operationer på dessa. Ett generellt gränssnitt 
gör det möjligt att fysiskt lagra arrayer i många olika datalagringssystem, 
inklusive primärminne, filer, relationsdatabaser, och speciella array-
orienterade databassystem. 

Beräkningar som används i vetenskapliga och tekniska tillämpningar kan 
formuleras med funktioner. I SciSPARQL-frågor kan man använda dessa 
funktioner för både filtrering och efterbearbetning. Dessa funktioner kan 
defineras i form av parametriserade frågor. Existerande beräkningsbibliotek 
kan transparent anropas från SciSPARQL med hjälp av så kallade 
främmande funktioner implementerade i olika lämpliga 
programmeringsspråk. Kostnadsuppskattning och alternativa sökalgoritmer 
kan specificeras för att göra det möjligt för SSDM att generera effektiva 
sökstrategier för en given fråga i SciSPARQL. Dyrbara operationer över 
arrayer, såsom filtrering, aggregering och vanliga matristransformationer, 
utförs på SSDM-servern där arrayerna är lagrade, vilket minimerar 
kommunikationskostnaden mellan tillämpningsprogram och SSDM. SSDMs 
prestanda och kraftfullhet har utvärderats för en praktisk vetenskaplig 
tillämpning och där jämförts med den traditionella lösningen att göra all 
bearbetning i ett beräkningssystem som Matlab. Vidare har SSDMs 
skalbarhet utvärderats med hjälp av en uppsättning syntetiska data.    

Följande forskningsfrågor besvaras delvis av avhandlingen: 

1. Hur kan RDF och SPARQL utvidgas för att vara lämpliga att 
representera, söka och analysera kombinationer av data och metadata? 

2. Hur kan frågebearbetning för SciSPARQL implementeras med hjälp av 
existerande databassystem? I synnerhet: 

a. Vilka utvidgningar behövs av den bearbetning som utförs och 
algebra som används för att representera och transformera frågor i 
ett databassystem för skalbart besvararande av SciSPARQL frågor? 

b.  Hur kan olika existerade system för permanent lagring av data 
(filsystem, relationsdatabaser, arraydatabaser, etc.) utnyttjas för 
skalbar representation av RDF with Arrays? 

c. Hur kan SciSPARQL-frågor integreras i existerande omgivningar 
och arbetsflöden för vetenskaplig och teknisk dataanalys? 

d. Hur mäter vi effekten av olika designbeslut när det gäller hur RDF 
with Arrays data skall lagras effektivt och hur frågor i SciSPARQL 
över lagrade data skall besvaras så snabbt som möjligt? 
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Glossary 

array - same as NMA 

array descriptor - a data structure that allows to address the certain subset of 
array elements, as a result of slicing, projection and generalized 
transposition operations. Operations involving different dimensions can be 
applied in independent order. One or more descriptors may refer to the same 
storage object. Different descriptors identify different arrays. A descriptor is 
also part of any array proxy 

array fragment - a tuple of storage index and size that can be used to access 
certain physically contiguous sequence of array elements in a storage object, 
or used to address certain chunks representing that storage object. 

array proxy - an object that allows to address a (subset of) array stored in a 
particular storage system. Contains kind, associated with certain storage 
system and access routines, storage-specific array identifier (e.g. file and 
variable names for .mat file proxies), element type and array descriptor 
data. Can additionally contain information about array partitioning. 

array subscript - see logical index 

back-end - see storage system 

binding pattern - a certain way to evaluate a predicate in the execution plan, 
with certain variable bound, and possibly certain variables free. The 
evaluation will result in zero or more results, with values provided for the 
free variables.  

chunk - a binary object representing a part of the storage object of an array. 
Chunks of the same array have sequential chunkid identifiers. See also 
partitioning scheme. 

derived array - an array resulting from slicing, projection, or generalized 
transposition operation of another array. Derived arrays are typically 
represented by non-original descriptor object and a storage object that is also 
referred to by other descriptor(s). However, that might not always be the 
case, as other descriptors might already be garbage-collected. Also e.g. two 
mutually reversing transposition operations on an original descriptor will 
result in the same descriptor. 
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descriptor, descriptor object - same as array descriptor 

execution plan - a final stage of query optimization, specifying the exact 
operations to be performed in order to answer a query. Consists of predicates 
with binding patterns assigned, combined with join, union, and other 
specialized operators. 

extended Turtle (file) - a file in Turtle format containing URIs that are 
interpreted as file links by SSDM, and as normal URIs by the standard Turtle 
readers. 

file link - a URI in a turtle file that is interpreted by SSDM data loader as an 
array value. An array proxy is created based on information contained in file 
link (and the information from linked file it refers to), which can be resolved 
immediately, or later on demand. 

generalized transposition - an operation that results in a derived array of 
same size and number of dimensions but of different shape. Involves 
specifying the new logical order of dimensions. A simple matrix 
transposition involves swapping the two dimensions, so that their new order 
is always (1, 0). 

linked file - see file link 

logical index - a vector of integer array subscripts, on for each array 
dimension, that identifies an element in an array. Given array descriptor, a 
logical index can be translated into a storage index (Section 5.2.1). Array 
subscripts are 1-based by default, but an alternative SciSPARQL dialect that 
supports Python notation for array operations uses 0-based array subscripts. 

memory-resident array - see resident array 

NMA - Numeric Multidimensional Array, one of the extensions introduced 
in this work to the basic RDF model. NMAs can contain arbitrary number of 
dimensions, and always have rectangular shapes. The supported element 
types are: Boolean, Integer, Double, and Complex. 

ObjectLog - a dialect of Datalog used in SSDM to internally represent 
SciSPARQL queries 

original descriptor / proxy - an array descriptor or array proxy that refers to 
the complete array in the corresponding storage object so that a single array 
fragment can be used to access the entire storage object. An original 
descriptor object is always created with a new storage object. The array 
proxies are created with original descriptor data. 

partitioning scheme (of array, either linear or multidimensional) - a way to 
split the array contents into chunks: either linear chunks or multidimensional 
tiles, defined by the corresponding chunk or tile size. 
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predicate (in Datalog / ObjectLog) - a constituent part of a query or 
expression, can be put into the execution plan and evaluated with a certain 
binding pattern. Predicates can be stored (corresponding to tables in-
memory or mapped), or foreign (corresponding to a certain compuatable 
function, possibly multidirectional - i.e. one with different binding patterns). 

projection (of array) - an operation that produces a derived array with lesser 
number of dimensions. Involves specifying a single subscript for a certain 
dimension(s). 

range selection (of array) - an operation that produces a smaller derived 
array with the same dimensionality. Involves specifying explicit or implicit 
ranges for all array dimensions. 

RDF view - a mapping defined from non-RDF data model to RDF, allowing 
to query (and, possibly, update) the underlying data with SPARQL. 

RDF with Arrays - a data model combining RDF graph and numeric 
multidimensional arrays as possible values. 

resident array - an array with conents stored in main memory 

storage index - an integer value addressing a particular element (or 
beginning of array fragment) in a storage object, either existing in memory 
or represented by chunks. Storage indexes are always 0-based. 

storage object - a main-memory object that physically contains the elements 
of a resident array. Can be serialized to binary chunks. The element type is 
also stored here with storage object, to avoid redundancy. 

storage system - a software system interfaced with SSDM that provides 
persistent storage for RDF with Arrays data - either completely (like 
relational database back-ends) or partially (arrays-only) (as .mat files on the 
server file system). 

(sub)array proxy - an array proxy pointing to an array of one or more 
dimensions, in contrast to a single-element proxy, pointing to a particular 
element in an externally stored array. 

subscript - see logical index 

tile - a multidimensional array chunk, specified by its size in the logical 
dimensions of the corresponding array, see also partitioning scheme. 

triple (of RDF graph) - a (subject, property, value) tuple, constituent part of 
an RDF graph. 
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