

Transparent Java access to mediated
database objects

Mattias Bendtsen & Mats Björknert

Thesis for the Degree of Master of Science Department of Information Science
Majoring in Computer Science, 10 credit points Computer Science Division
Spring 2001 Uppsala University

 P.O. Box 513
 S-751 20 UPPSALA
 Sweden

Abstract

At Uppsala Database Laboratory (UDBL), a main memory object-relational database
system, AMOS II, has been developed. AMOS II has common database facilities and a
powerful query language. In addition, the system is based on the mediator/wrapper
approach, which makes it possible to combine data from heterogeneous data sources.

Custom applications that handle AMOS II mediator data can be developed in several
programming languages. Today, call-level interfaces, comparable to JDBC, exist for C,
Lisp and Java. In the Java interface, classes exist for representing simple data types such
as strings and numbers. Complex data types, that describe real-world entities, are
represented with a generic class for object proxies. A consequence of this generalized
representation is that the structure of data and relationships between objects, e.g.
inheritance, is lost.

This report presents a prototype we developed, called Amos Class Exporter. It extends
the existing interface by translating information between an AMOS II database schema
and corresponding classes and methods in Java. It dynamically constructs an equivalent
data structure in Java with classes, inheritance, methods for creating objects and
methods for manipulation of attributes. Our solution generates Java source files that can
be used by an application programmer when developing AMOS II database
applications. The files are generated using meta-queries to the AMOS II type system.

Our solution offers a better way of writing AMOS II database applications in Java, as
developers can write Java programs to retrieve data from an AMOS II database as
semantically rich Java objects. These objects can be modified, which in turn modify the
database objects. Modifying persistent data is therefore as simple as modifying any
other Java data.

In our work we have addressed problems related to the extraction of necessary
information to build Java source files from an AMOS II database using meta-queries.
This has concluded in a new approach on how to handle and use custom object proxies
for dissimilar types defined in an AMOS II database. We have presented solutions for
different problems that we have identified as related to the investigation of this issue.

Table of contents

1. INTRODUCTION...1

2. BACKGROUND AND RELATED WORK...3

2.1 DATABASE SYSTEMS ...3
2.1.1 RDBMS...3
2.1.2 ODBMS...4
2.1.3 ORDBMS ..5
2.1.4 The wrapper/mediator approach ...6

2.2 AMOS II..7
2.2.1 Architecture ..7
2.2.2 AMOS II Data Model ..7
2.2.3 Types...8
2.2.4 Functions ..8
2.2.5 AMOSQL ..9

2.3 CALL-LEVEL INTERFACES FOR DATABASE CONNECTIVITY ...9
2.3.1 ODBC and JDBC..10
2.3.2 AMOS II Java interface...10

2.4 BINDING SOLUTIONS BETWEEN DATABASES AND JAVA ..11
2.4.1 ODMG Java Binding...11
2.4.2 Java Blend ..12
2.4.3 Java Data Objects...13

3 THE AMOS CLASS EXPORTER PROJECT...15

3.1 PURPOSE...16
3.2 REQUIREMENTS..16
3.3 ARCHITECTURE ..18
3.4 IMPLEMENTATION..19
3.5 HOW ACE WORKS ..20

3.5.1 Receiving phase ..22
3.5.2 Information-gathering phase ...22
3.5.3 Write phase ...25

3.6 USAGE OF GENERATED FILES ..29

4 INTERFACES COMPARED TO ACE..31

4.1 DIFFERENCES BETWEEN THE AMOS II JAVA INTERFACE AND ACE ...31
4.2 COMPARISON OF ACE TO JAVA BINDING SOLUTIONS ..32

5 CONCLUSION AND FUTURE WORK ..35

REFERENCES.. 38

 1 (39)

1. Introduction

Utilization of heterogeneous data sources, such as the Internet, is common today when it
comes to collecting important information. With the increased use of Internet and other
communication networks, computing environments turn out to be more and more
distributed. This brings along a growing need for combining appropriate data from
several and potentially different data sources. The integration of data from distributed
and heterogeneous data sources presents a number of technical difficulties. One method
used to handle these difficulties is the use of mediator technology [26].

AMOS II is the name of a main memory object-relational database system developed at
Uppsala Database Laboratory (UDBL). AMOS II is a mediator system, which integrates
multiple potentially different and distributed data sources [26]. With a query language
called AMOSQL, users can execute object-oriented queries over these heterogeneous
data sources [20].

Handling and further processing of mediator data is often accomplished using different
custom applications. AMOS II provides several ways of interfacing an AMOS II
database system with applications written in different programming languages [17].
One of the existing interfaces is the AMOS II Java interface [8]. The interface consists of
two main parts, the callin interface and the callout interface. The callin interface allows
programmers to execute AMOSQL statements from the Java programming
environment, while the callout interface makes it possible to define AMOS II functions
that calls Java methods [8]. These functions, called foreign functions, can then be used in
database queries from AMOS II.

With the existing interface between AMOS II and Java it is possible to manipulate
database objects by Java methods [8]. This interface is on a low level and therefore many
lines of code are required to accomplish easy tasks of database object manipulation. The
greatest shortcoming with the existing interface is that the objects retrieved from AMOS
II always are in a predefined set of interface classes. With the exception of classes
representing numbers and strings, the generic class Oid represents most objects
retrieved. The Oid class is a generic depiction of all surrogate objects, i.e. objects that
cannot be described using literals only. As a consequence of the current representation,
structure of data and relationships between objects, e.g. inheritance, is lost.

The aim of our project is to build a higher-level interface that translates types and
functions retrieved from AMOS II to the corresponding classes and methods in Java.
That is, dynamically construct an equivalent data structure in Java with classes,
inheritance, methods for creating objects and methods for manipulation of attributes.
The interface will be built on top of the existing interface and the generated classes will
facilitate user-friendly transparent access to the objects in the database. Hence, the
database objects will appear as instances of an imported class library. From a
programmers point of view this leads to simplification and ease of maintenance, since
manipulation of database objects is handled by Java methods. The need for writing code
for database communication is also eliminated.

 2 (39)

The aim of our report is to describe our project and give an overview of underlying
theory. Results of our work and differences between similar solutions are discussed.

There are issues that have not been addressed in this project. This solution does not
handle problems related to concurrency and transaction control. Multiple inheritance is
not supported in Java and therefore generated classes in our solution only inherit from
one supertype.

Our method used in this project has been to implement a prototype based on an existing
requirements specification. During this process, several technical problems were
identified. These technical problems have been carefully discussed, solved and then the
solutions have been applied to the prototype. The main problems addressed by our
work are extraction of data for Java class definitions using meta-queries and handling of
custom object proxies for specific types. Among the more specific issues are the need for
a down-casting mechanism to a more specific type, easy access to the first value in a
result set, management of multi-valued functions using scan objects, handling of scan
objects for a specific type, handling of methods (functions) that cannot be derived to a
specific type and management of null values in the result of a query. As a complement
to the practical work, we have conducted a study of existing literature, research and
solutions in this field. This material is used as a theoretical foundation in this report
when our work is discussed.

Several techniques have been developed to manage database objects from Java. The
approach of the Amos Class Exporter (ACE) interface differs in several ways from
solutions presented in the theoretical section of this report. ACE is not an interface on
the same level as a call-level interface. A call-level interface is used on a lower level
compared to this solution. This solution provides generation of source code, which uses
the AMOS II Java call-level interface. Therefore, it can be seen as an intermediate layer
built on top of the existing interface between an AMOS II database and a Java
application. Complete data structures from the database are translated into data
structures for the Java language that provide transparent access to the database. ACE
provides database object querying and manipulation capabilities through standard Java
methods. This is achieved with the meta-data querying capabilities of AMOS II. The
interfaces generated are completely built upon the data retrieved using meta-queries to
the type system, which is an important aspect of how ACE is different from other
solutions.

Our report is divided in two main sections. The first part provides the underlying
theory on which the discussion of our work is based. In this part, a short overview of
different database systems and their evolution is given. This is followed by an overview
of the AMOS II system. Other issues discussed in this part are ways of database
connectivity from a programming language, both call-level interfaces and binding
solutions for the Java language. This includes a summary of the AMOS II Java interface.
In the second part of the report, our work is presented in detail. The architecture of ACE
is explained, benefits of this solution are presented and a comprehensive example of
how it works is given. The report is concluded with our findings of this work.

 3 (39)

2. Background and related work

This chapter gives an overview of the evolution of different database systems, the
mediator system AMOS II and different technologies used for database access from a
programming environment with emphasis on Java.

2.1 Database systems

Database systems have evolved rapidly during the last decades. This section provides a
short overview of different types of database systems, differences in how they store data
and their main advantages and disadvantages. New requirements such as the ability to
handle complex objects and to integrate heterogeneous data are presented. One solution
to the new requirements is the mediator/wrapper architecture, which concludes this
section.

2.1.1 RDBMS

Most of today's database market consists of relational databases based on the principles
described by E. F. Codd in the late 1960s and early 1970s. E. F. Codd, a member of the
IBM Research Laboratory in San Jose, California, laid out the basics of relational
database systems in a now famous paper [5]. In the early 1970's several experimental
database management systems, based on the relational technology, were developed.
Commercial products became available in the late 1970's. [4] Widely used products in
large multi-user environments today are Oracle and DB/2 [13].

In a relational database system (RDBMS) the database is thought of as a set of relations,
which are physically represented as two-dimensional tables (see figure 1). Each relation
contains a set of distinct rows, called tuples, which in turn contains a number of fields.
Each field has a data type, e.g. character, string, time, date, number etc. Any attribute
(field) of a tuple can store only a single value from a predefined domain. A domain is
the set of allowable values for an attribute. The tuples of a relation must be composed of
the same attributes. [9]

Customers Orders
Customer_ID Customer_

Name
… Order_Number Customer_ID Product_ID Quantity …

C001
Andersons
Inc.

… 55254 C002 GT5 100 …

C002 Elon Corp. …

55255 C001 PF6 500 …

The relational model is based on a set of mathematical operations that can be applied to
the relations in the database. This mathematical basis, called relational algebra, offers
data independence and is used for specifying different requests on the database. [3]
Relational algebra is also important for query processing and optimization, but there are
few commercial RDBMSs today, which are based directly on the relational algebra.
Most RDBMSs provide a high-level declarative language interface, e.g. SQL. With a

Figure 1: A simple example of two relations, customers and orders

 4 (39)

query language like SQL users can specify the results desired rather than how to obtain
the results, hence leaving the actual optimization and decisions on how to execute the
query to the DBMS. [9]

Relational modeling focuses on the information in the system and not on the behaviour
of the data. The strengths of a RDBMS are primary its simplicity, its strong theoretical
foundation and its support for data independence. But relational systems also have
weaknesses and are inadequate for certain types of applications, e.g. high-speed web
applications. When developing such applications using a RDBMS, the data models in
the database and the application are incompatible. This requires a conversion of data
from relational to object every time the application accesses data, which results in poor
performance. [6]

There is an ongoing trend in the database technology towards extended support for
complex data types, e.g. images, audio, video or any large unstructured object, which
are not directly supported in a RDBMS. Many RDBMSs handle complex data types
simply via a reference to a file, or stored as binary large objects (BLOBS). These
solutions lack much of the functionality and many of the protection mechanisms
naturally offered by a RDBMS. [6]

2.1.2 ODBMS

An object database management system (ODBMS) constitutes of database capabilities,
as concurrency control and data recovery integrated with an object-oriented
programming language. This is different from databases using SQL, which is a separate
language that defines, retrieves and manipulates data. SQL databases are two-level
stores, separating memory from persistent storage, while ODBMSs overcomes this
impedance mismatch. In an ODBMS memory and persistent storage are the same thing,
which provide better performance and versatility. The first ODBMS prototypes were
developed in the early 1990’s. [6] Popular ODBMSs today are Jasmine, Gemstone, O2
and Object Store. [13]

In an object-oriented database the information is stored as objects. Each object is
uniquely identifiable in the database by an object identifier (OID). An object can be
described as a real-world entity that contains information about its current state
(attributes) together with the actions that can be taken on the object (methods). An
advantage with this approach is that the external aspects of an object are separated from
its internal details. The internal details are hidden from the outside world and can be
changed without affecting the application programs that use it. This solution with
information hiding is referred to as encapsulation and consequently provides data
independence. [6]

ODBMSs emerged in response to the increasing complexity of database application. The
concept of objects allows the real world to be modeled more naturally. It is appropriate
for managing complex data types and relationships, and provides better maintainability
and reusability of code. An object-oriented architecture leads to a high level of
congruence between the data models for the applications and the database. With an

 5 (39)

object-oriented language programmers can write complete database applications with a
great deal of simplicity. [13]

A disadvantage with ODBMS is that the systems are more complex and more difficult to
use in comparison to RDBMSs. The biggest drawback though, has been the lack of
standards concerning a data model and an object-oriented query language. [6] The SQL
standard is one of the reasons for the success of commercial RDBMS. However, the
object database management group (ODMG), a consortium of ODBMS vendors, has
specified de facto standards for an object model, an object query language (OQL), and
the bindings to object-oriented programming languages. [9] The ODMGs latest object
database standard, version 3.0, was published in January 2000 [16]. In the future more
ODBMSs are likely to add querying capabilities similar to those of RDBMSs. [9]

2.1.3 ORDBMS

Relational supporters claim that complex applications can be handled by extensions to
the relational model and that the relational functionality is a necessary part of a DBMS.
[6] Object-relational database management systems (ORDBMS) have evolved from
relational database technology, and supports some of the object extensions needed to
deal with complex data. [9]

Informix is the market leader in object-relational databases. Other products in the
ORDBMS market are Oracle 8.x, Universal Database (DB/2 Extenders) and UniSQL/X
[13]. Many of the products work as RDBMSs with enhanced object-oriented
functionality, while others like UniSQL/X were developed from the beginning as an
ORDBMS product. [9]

Many of today’s relational database products are beginning to, or will eventually,
deliver object-oriented extensions to their products. SQL-99, also known as SQL3, is
considered an important step towards a future standardization of object-relational
databases. SQL-99 provides object-oriented features such as abstract data types (ADTs)
and inheritance. ADTs allow users to define new structures for user-defined types and
support the object-oriented concepts of encapsulation. Inheritance is the ability to create
new objects (new ADTs) based on existing ones. [9]

Information in an ORDBMS is like in a RDBMS stored in tables of rows and columns,
but tabular entries can with the support for ADTs contain richer data structures. With
ADTs, operations and functions associated with new data types can be used to index,
store, and retrieve records based on the content of the data type. Since the information is
stored in tabular form, many of the advantages and disadvantages of a RDBMS also
apply to a ORDBMS. For example, from a programmer’s point of view, translation
between objects and tables is still necessary. [13]

 6 (39)

2.1.4 The wrapper/mediator approach

With the increased use of communication networks, such as the Internet, computing
environments turn out to be more and more distributed. There is a growing need for
combining appropriate data from several and possibly different data sources. The
integration of data from distributed and heterogeneous data sources presents a number
of technical difficulties. One way of overcoming these difficulties is the use of the
mediator/wrapper approach [26]. In the wrapper/mediator architecture, functionality
can logically be divided into two different parts, a mediator and a wrapper [20]. The
wrapper part offers access to data from different sources with possibly different formats
and the mediator has functionality to process and combine the data retrieved. A
wrapper concept was introduced in a recent paper [14] as a new part of SQL, called
SQL/Management of External Data. SQL/MED contains language constructs for
retrieving data from a foreign server using a foreign-data wrapper [14].

An interface between a workstation and a database server that merely defines
communication protocols and formats of database elements is not sufficient to manage
representation problems in existing data sources. In order to handle similar problems,
the interfaces should be active. Wiederhold [26] describes the process of the active
interfaces as mediation. This includes the processing needed for the interfaces to work,
the transformation of data to information and needed storage. In order to provide
mediation, Wiederhold proposes a specific category of software that mediate between
an application and data resources making the application independent of these
resources [26]. According to Wiederhold, mediators are defined as “software modules
that exploits encoded knowledge about some sets or subsets of data to create
information for a higher layer of applications”. Three layers can be identified in a
conceptual view of the mediator architecture:

In a mediator/wrapper architecture, a wrapper is a software component that translates
data from a specific data resource, e.g. a website. The translated data can then be used
in the mediator system and applications using the mediator. A common practice today
when developing wrappers for different data sources is the use of a wrapper generator
toolkit. An example of a wrapper generator is the World Wide Web Wrapper Factory
(W4F). With this toolkit, the user specifies extraction rules for how the desired data
should be extracted and W4F then generates Java class files for use in the applications.
[1]

Figure 2: Mediator architecture [26].

 7 (39)

2.2 AMOS II

AMOS II is a second-generation object database with a complete query language, i.e. an
object-relational database system. The main difference compared to an ODBMS, where
an integrated object-oriented language is used to define, retrieve and manipulate data,
is the use of a declarative query language with syntax similar to SQL. AMOS II is a
system based on the mediator/wrapper approach [21]. The purpose of the AMOS II
research project is to develop a mediator architecture to make it possible to combine and
analyze data from several different data sources [18]. Several other systems with
functionality related to AMOS II exist, such as DISCO, Garlic and Multibase [12].

2.2.1 Architecture

AMOS II is a distributed system consisting of several mediator servers communicating
with a TCP/IP based protocol. Other protocols are used for communication with non-
AMOS II systems, e.g. data sources that communicate using ODBC or HTTP. Every
AMOS II server is an object-oriented, lightweight and extensible DBMS with common
DBMS functions built in. The DBMS part of an AMOS II server consists of a storage
manager, a recovery manager, a transaction manager, a disk backup manager and a
query processor for the query language of AMOS II, AMOSQL. [20]

AMOS II is designed as a main-memory DBMS for optimal performance [22]. It can be
used as a single-user database as well as a multi-user server to applications and to other
AMOS II systems [20]. AMOS II runs under Windows NT, consisting of about 1500 KB
meta-data and 350 KB of code [21]. The architecture of AMOS II is illustrated below.

2.2.2 AMOS II Data Model

Everything in an AMOS II database is represented as objects, both user-defined and
system objects. Two categories of objects exist, literal objects and surrogate objects. All
surrogate objects are assigned OIDs, which are managed by the system. Examples of

Figure 2: AMOS II Architecture [20].

 8 (39)

literal objects include objects that represent strings and numbers. The more complex
surrogate objects usually represent something from the real world, such as a car, a
person or a soccer game. Meta-objects, e.g. types and functions, are also represented as
surrogates. This gives the user the possibility to query the system objects in AMOS II,
with the opportunity to obtain for example the structure of a type defined in the system.
The feature of meta-object querying allows a user to query the entire structure of a
complete mediator server. [20]

2.2.3 Types

An object is always an instance of at least one type. The term type is similar to class in
object-oriented programming. The types are arranged in a supertype/subtype
hierarchy. This means that if an object is an instance of a type, it is also an instance of all
its supertypes. AMOS II also supports multiple inheritance. Four categories of types
exist in AMOS II: stored types, derived types, proxy types and integration union types.
[21]

The stored types are the ordinary types with the definition stored in the mediator
server. Instances of a stored type are managed by the user of the system. Types are
created using special AMOSQL statements. The general syntax of such a statement is:
[20]

create type <typename>

If a type inherits characteristics from a previously defined type, the general syntax looks
like:

create type <typename> under <previously defined type>

2.2.4 Functions

In AMOS II, queries on objects, attributes of objects, methods of objects and
relationships between objects are represented by functions [21]. Basic functions can be
organized into five categories: stored functions, derived functions, foreign functions,
proxy functions and database procedures [20].

A stored function represents characteristics of an object in the database. For example,
common properties of an object of type person are name and age. A call to the stored
function name on such an object returns the current value of the attribute name. The
general syntax for creating stored functions is written as: [20]

create function <functionname(type)> -> <return type> as stored

It is possible to update the value of a stored function. The query language AMOSQL
supports this functionality. The general syntax for updating a stored function is: [20]

set <function name(object instance)> = <value>

 9 (39)

Derived functions are functions defined with the use of other previously defined
AMOSQL functions. It is not mandatory for a function in AMOS II to have arguments
and there is no upper limit on the number of arguments that a function can have. [20]

Foreign functions are functions called from AMOS II that are defined in a programming
language. Currently, interfaces exist for the languages Java, C and Lisp [8][17]. A
foreign function is similar to a method in an object-oriented database. A foreign
function written in Java is defined in AMOS II as:

create function generate_interfaces(vector t, vector f) -> integer as foreign
“JAVA:AmosClassExporter/aceMain”;

In this example, the function generate_interfaces calls the method aceMain in the Java
class AmosClassExporter. It takes two vectors as parameters and returns an integer. In
order for such functions to work, the AMOS II kernel has an interface to the Java Virtual
Machine implemented using the Java Native Interface [20], which makes it possible to
call non-Java code from Java [7]. The foreign function feature provides enhanced
functionality to the AMOS II system and it is possible to write large programs in Java
linked to AMOS II.

2.2.5 AMOSQL

The declarative multi-database query language AMOSQL is an extended subset of the
OO parts of SQL-99 [20]. AMOSQL is based on OSQL and DAPLEX with functionality
added for mediation, multi-directional foreign functions, late binding and active rules
[20]. The syntax of AMOSQL is similar to the syntax used in SQL. A general example of
a query statement follows:

select <result> from <declarations of local variables> where <condition>

In a number of steps taken by the query optimizer, queries are carefully optimized
before execution. [21]

AMOSQL can be used to issue queries on the meta-objects that constitute a database.
Several functions are built in to the AMOS II system for this particular purpose. For
example, attributes of a type can be obtained with a single function call. Furthermore,
entire structures of inheritance and relationships between objects in the hierarchy can be
extracted using a combination of such queries. Details on the name of a function, the
number of parameters and results, data types of parameters and results are also possible
to access using similar techniques. [10]

2.3 Call-level interfaces for database connectivity

In this section related ways of database connectivity through call-level interfaces (CLI)
are presented. An overview is given of ODBC and JDBC [2] followed by a presentation
of the AMOS II Java interface.

 10 (39)

2.3.1 ODBC and JDBC

The ODBC and JDBC APIs have similarities in their architecture and will therefore be
jointly outlined in this section. Both are call-level interfaces based on the X/Open SQL
CLI specification that stipulates how client-server interaction is to be implemented in
databases [2]. JDBC and ODBC are CLIs for relational databases.

ODBC is more or less considered to be the standard CLI for many database engines. It
exists on several platforms, including Windows, UNIX and the Macintosh platform.
ODBC was designed for maximum interoperability, which makes it possible for a single
application to access different DBMSs with the same source code. The database
applications call functions in the ODBC interface, which are implemented in database-
specific drivers. Drivers are handled by the driver manager, which is an intermediate
layer between the application and the driver in use. The use of a driver layer isolates
applications from database-specific calls. The ODBC architecture has four layers:

The architecture of JDBC, which is the Java community’s contribution to a standardized
CLI, has an architecture identical to the one used by ODBC. Their common architecture
is a result of the underlying specification. Just like ODBC, JDBC uses a separate layer
between the application and the database driver, called the JDBC driver manager. [25]

2.3.2 AMOS II Java interface

The AMOS II system provides an interface between AMOS II databases and the
programming language Java. Essentially, there are two ways to communicate between
AMOS II and Java:

q Calls are made to AMOS II from Java with the callin interface.
q Foreign functions are defined in AMOS II that calls Java methods with the callout

interface. [8]

It is possible to use a combination of these two interfaces [8]. When combining the
features of the callout interface with the functionality offered by callin, a developer can

Figure 3: ODBC Architecture [15].

 11 (39)

write programs, which are started from AMOS II and then use the callin interface to
communicate with AMOS II.

Communication through the callin interface can be accomplished in two different ways.
With the embedded query interface, AMOSQL query strings are passed to AMOS II and
Java methods are used for accessing the results. With the fast-path interface, functions
predefined in AMOS II are called using standard Java methods. The fast-path interface
is, as its name implies, much faster than the relatively slow embedded query interface.
[8]

In the AMOS II Java interface there are several useful methods available to the
programmer. Methods exist for accessing literal elements, executing queries, traversing
through rows in a record set, creating/deleting objects and updating AMOS II functions
[8]. In the AMOS II Java API the following classes constitute the core:

q Connection. Represents a connection to an AMOS II database.
q Scan. A result set of Tuples (rows) returned from the database.
q Tuple. Corresponds to a single row in a Scan.
q Oid. Object proxy for surrogate objects.

When a query is executed through the Java callin interface database objects are returned
in a Scan. The Scan consists of several Tuples, each of them containing one or more
objects, literal or surrogates. When retrieving surrogate objects they are always
represented using the class Oid. This is currently a deficiency in the AMOS II Java
interface. Object proxies are Java objects corresponding to objects in an AMOS II
database. In the AMOS II Java interface, object proxies are represented by the class Oid
[8]. Object proxies can correspond to any kind of data stored in an AMOS II database.

2.4 Binding solutions between databases and Java

There are several different approaches of transparently mapping database data to
objects in programming environments. This section focuses on technologies related to
the mapping between databases and the programming language Java.

2.4.1 ODMG Java Binding

The Object Data Management Group (ODMG) is a non-profit standards consortium
with both members from the industry and academic members. ODMG addresses
problems related to object storage. In the Internet-driven development environment of
today, there is a need for Java developers to store objects, i.e. to give them persistence
[2]. The ODMG Java Binding is a standard that adds persistence capabilities to the Java
programming language.

The standard provides native Java object storage and application portability between
different storage products. It is an extension to the Java language consisting of database
programming features that makes it possible for developers to write database

 12 (39)

applications entirely from within Java. The ODMG Java Binding specifies a tight
integration between the application and the database, united in a single data model. For
developers, it gives the possibility to store objects in relational, object-relational or object
databases with no worries for the actual storage mechanisms involved. This requires of
course that the underlying storage is ODMG-compliant. [2]

Database transparency was the fundamental principle in the design of the ODMG Java
Binding. This means that the application developers’ persistent classes and the database
schema are one and the same. An ODMG-compliant database manages an object cache
where Java objects are stored when retrieved from the database. Objects that have
changed in the object cache are automatically written to the database. [2]

Two languages are included in the ODMG Java Binding. One of them is the Java Object
Manipulation Language (OML), a set of classes with support for collections, transactions
and databases. Also included is the Object Query Language (OQL), which provides
object querying in Java and returns Java objects as a result. OQL does not handle data
definition and data manipulation, which is handled by OML.

Compared to a JDBC-based solution, where a developer has to maintain equivalent data
structures in both the database and Java, an ODMG compliant solution has major
advantages. The most important advantage with such a solution is that the developer
does not have to be fluent in both the database language, e.g. SQL, and the
programming language used. [2]

2.4.2 Java Blend

Java Blend is a software product from Sun Microsystems co-operatively developed with
Baan that provides translation between Java objects and relational databases. It
implements the ODMG Java Binding on relational databases [2]. The product is
available on the Sun Solaris and Microsoft Windows NT platforms and consists of a tool
and runtime environment. Java Blend is intended to be used for overcoming the
impedance mismatch between the relational data model and object-oriented data
models. This is accomplished using an object-oriented view of relational data. [23]

With Java Blend, it is possible for developers to write programs entirely with Java
objects. Mapping is a technique used when translating between different data models,
e.g. the relational data model and the object-oriented data model. Java Blend
automatically maps database records to Java objects, or Java objects to databases, so
developers can avoid translating programming language data structures to database
tables. [24]

Since Java Blend is an implementation of the ODMG Java Binding, advantages that
apply to ODMG-compliant solutions also apply to Java Blend. An advantage of Java
Blend is that developers do not need to be proficient in SQL or have a detailed
understanding of database schemas. Java Blend makes it possible to write entire
database applications using Java objects only. Before Java Blend was available,
developers had to be acquainted with both SQL and the programming language.

 13 (39)

Furthermore, they had to have extensive knowledge of how application data was
represented, including the database schema and the data structures in the programming
language. The developer also had to write commands to translate the SQL
representation of data into the programming language representation. This is an
example of the impedance mismatch between the relational database and the object-
oriented programming language. With Java Blend, data retrieval is accomplished using
Java classes and modification of data in the underlying database is carried out in a way
analogous to modification of other Java objects. [24]

Another advantage with Java Blend is object querying. Queries can be written using the
Object Query Language (OQL), which has syntax similar to SQL-92 and the Java
programming language. OQL queries understand the relationships between classes
which make it possible to execute queries in a more natural language compared to SQL.
When a query is executed on a specific class, the query returns all matching objects as a
set of records. From the programmer’s point of view, it is possible to iterate through this
collection of objects and eventually carry out operations on particular objects. [24]

Java Blend software is built on top of the JDBC API, which is used for its database
connectivity [24]. The main reason for using JDBC technology as a foundation for the
product is that JDBC provides a level of database independence. With the use of JDBC,
and technologies based on this approach such as Java Blend, it is easy to switch between
different underlying database systems [23].

Software products similar to Java Blend that are worth mentioning in this context exist.
Products with related functionality are CocoBase, ROF and Top Link. A shared
capability of all these products is that they allow Java programmers to work with Java
objects and let a translator use the JDBC interface to store and retrieve data in a
relational database.

2.4.3 Java Data Objects

ODMGs Java Binding is a basis for the Java Data Objects (JDO) specification. The main
objective of JDO is to provide support for transparent persistence of Java objects. JDO is
important because prior to this standard there was no Java platform specification with
an architecture for storing Java objects in a transactional data store, i.e. in a database.
[11]

Applications using JDO will be independent of the underlying data store used by a
specific implementation. Among data stores for which an implementation is planned are
different file systems, hierarchical databases, relational databases and object-oriented
databases. [11]

JDO allows for almost any class to become persistent. Included in the list of classes that
cannot be made persistent are classes implemented using the Java Native Interface or
subclasses of Java system classes. Every persistent instance of a specific class is
identified using a unique identifier provided by JDO. The normal definition of two
equal objects in Java is that the references refer to the same object in memory. This is not

 14 (39)

a sufficient definition for use in JDO since several Java Virtual Machines in different
transactions may reference the same database object. JDO provides a class enhancer
mechanism that processes existing class files and outputs an enhanced version of the
class that is persistence capable. To be more specific, the processed classes implement
the interface PersistenceCapable and methods contained within this interface. [11]

 15 (39)

3 The Amos Class Exporter project

Amos Class Exporter (ACE), is an extension to the mediator system AMOS II and
provides a high degree of transparency when manipulating AMOS II database objects
using the AMOS II Java interface. ACE provides automatic generation of Java classes.
This makes it possible to represent objects retrieved from an AMOS II database as
objects more semantically rich than objects represented using the generic class Oid. In
this chapter the requirements, the architecture, and noteworthy design and
implementation details are described. The chapter is concluded by an example on how
generated source files can be used.

Several techniques, outlined in the previous chapter, have been developed to manage
database objects from the Java programming environment. The approach of ACE differs
in various ways from the technologies presented above, but similarities can be
recognized. It cannot be directly compared to a call-level interface, since complete data
structures in a database are translated into data structures for a programming language
that provide transparent access to the database. A call-level interface is used on a lower
level compared to this solution. This approach has similarities with Java Blend,
although Java Blend handles database objects in a different way. ACE provides
database object querying and manipulation capabilities through standard Java methods.
This is achieved with the meta-data querying capabilities of AMOS II. The database
schema in an AMOS II database can be queried as any other database objects. The
interfaces generated are completely built upon the data retrieved using meta-queries to
the type system.

ACE is an example of a program that uses a combination of the callin and the callout
interface. The program is started using standard AMOSQL query syntax, supplying the
necessary parameters. With extensive use of the callin interface, essential information is
extracted from the database using meta-object querying. ACE utilizes a feature of the
AMOS II Java Interface called the tight connection where AMOS II works as an
embedded database. This provides the fastest possible connection between ACE and
AMOS II since they both run in the same address space. When the program is called via
the callout interface, the address space is always shared between the application and the
AMOS II server. [8]

The AMOS II Java interface is well suited for minor extensions to AMOS II. This is
supported by the following:

q One issue always raised in discussions about Java is the performance of the Java

language [7]. Performance is always important in applications programming but the
tasks carried out by ACE are not time critical. If this were the case, a programming
language such as C would be more appropriate.

q A primary goal of the Java language is safety [7]. It is safer to use the AMOS II Java

interface than for example the C interface, since errors in the Java programs are not
fatal to AMOS II. In the C language, common programming errors are related to
direct access to system memory through the pointer mechanism, functionality not
available in Java [7].

 16 (39)

q Several libraries for common functions are available to Java programmers, which

eases the implementation of an application [7].

We have identified the following benefits of extending AMOS II with Amos Class
Exporter:

q Objects are retrieved from the database as semantically rich objects.
q Simplified access to AMOS II database objects from Java.
q Modifying persistent data is as simple as modifying any other Java data.
q Improved reuse and maintainability.
q Homogenous implementation of generated classes.
q Time used for developing AMOS II database applications in Java can be reduced.

3.1 Purpose

The aim in the ACE project is to build a higher lever interface that translates types and
functions retrieved from AMOS II to the corresponding classes and methods in Java.
The query-driven interface will dynamically construct an equivalent structure in Java
with classes, inheritance, methods for object creation and deletion and methods for
manipulation of attributes.

The interface will be built on top of the existing interface and the generated classes will
facilitate user-friendly transparent access to the objects in the database. Objects retrieved
from the database will appear as instances of an imported class library. From a
programmers point of view this leads to simplification and ease of maintenance.

3.2 Requirements

The existing AMOS II Java interface offers some functionality for manipulation of
database objects by Java methods. Each time a programmer writes a Java program that
will manipulate objects in an AMOS II database these difficulties exist:

q The existing interface is fairly complex and the Java programmer is required to have

extensive knowledge about AMOSQL in order to be able to manipulate objects in the
database.

q Surrogate objects retrieved from AMOS II are always represented using the generic

class Oid. This representation of AMOS II data structures has the consequence that
the structure of objects and relationships between objects are lost.

q It takes many lines of code for a programmer to accomplish easy tasks.

In order to solve the problems presented we developed some key requirements for our
solution. It is important that the interface is easy to use and requires a minimum of
AMOSQL knowledge. Objects retrieved from an AMOS II database should be

 17 (39)

represented by semantically rich Java objects that in detail describe the properties of the
object as it is specified in the database. The results of an AMOS II database query,
executed through a Java method, should be handled in a homogeneous manner
disregarding the type of the objects retrieved. To create new database objects, a
standard Java constructor method should be used. Manipulation of attributes should be
available using standardized object-oriented practice with get and set methods. It
should be possible to add and remove values from multi-valued AMOS II functions and
to delete a database object.

With the intention of fulfilling the requirements presented, problems arose during our
discussions of the solution. The main issues addressed by our work are extraction of
data for Java class definitions using meta-queries and handling of custom object proxies
for specific types. These two issues can be managed with solutions to the following
problems:

q Down-casting mechanism.
When retrieving existing objects from an AMOS II database, the objects are
always represented with the class Oid in the Java interface. For types more
specific than Oid, e.g. Person, it is necessary to extend the functionality provided
by Oid in order to take advantage of the existing features. All object proxies, also
more specific ones, need the behaviour offered by the implementation in the
AMOS II Java API. Therefore, objects retrieved from the database need a down-
casting mechanism for translation of the Oids to a more specific type.

q Scan objects for a specific type.

All data retrieved from AMOS II is in the Java API put together in a collection
called a scan object. Scan objects can contain various kinds of data: e.g. strings,
numbers and surrogate objects. Java programmers writing AMOS II applications
are used to this practice and it would be desirable if a similar structure could be
used. However, in order to retrieve semantically rich Java objects that in detail
describe the properties of the object as it is specified in the database, a more
specialized type of scan objects is needed.

q Easy access to the first value in a result set.

The result of an AMOS II query often consists of a single data object. Therefore, a
mechanism to easily extract the first element in the collection of results is
desirable. Perhaps the most natural approach to this issue would be to return just
one object of the current data type, e.g. a string (String in Java) or a number (int
or double in Java). However, in order to maintain a consistent programming
practice and treat all return values in the same way, even single-valued functions
should be returned in a collection with a method for accessing the first element.

q Management of multi-valued functions using scan objects.

If the result of an AMOS II function returns more than one value, it may be
needed to access other values than the first value in the current result set as
described above. The scan object has a method for advancing to the next position
in the scan and a procedure for determining the end-of-scan state. This
functionality is also needed in scan objects for a specific type.

 18 (39)

q Handling of methods that cannot be derived to a specific type.

A function can be defined in AMOS II to have more than one argument and more
than one return type. In addition, AMOS II functions can be defined with no
arguments. Functions with less or more than one argument cannot be naturally
connected to any specific type and thus, a solution for managing those methods is
needed.

q Management of null values in the result of a query. A possible result of an AMOS
II query could be that no objects are returned. In these situations the result set
cannot be accessed since there are no results to obtain. Some kind of
programming construct is needed to handle null results.

3.3 Architecture

Amos Class Exporter is built on top of the existing AMOS II Java interface. It translates
types and functions retrieved from AMOS II to a corresponding structure in Java. The
Java files generated acts as a user-friendly interface to an AMOS II database, supposed
to be used by programmers when building database applications. Figure 4 illustrates
this functionality.

ACE is implemented as an AMOS II foreign function and is called by a user from AMOS
II using a statement on the AMOSQL prompt. The types and functions a user wants to
generate are supplied as parameters in the function call. If a foreign function called
generate_interfaces has been previously defined, a call to ACE can be made with:

generate_interfaces({t1, t2}, {f1, f2, f3});

The arguments to the function must be of the AMOS II data type vector. In the above
example a vector of the types t1 and t2 and a vector of the functions f1, f2 and f3 are
supplied. The order of the arguments is important. ACE assumes that the first

 AMOS II

callout
interface

callin
interface

Main
method

Data
structures

File writer

callin
interface

Java file

Amos Class Exporter

Java file

Java file
Java
application

Figure 4: Amos Class Exporter Architecture

 19 (39)

parameter is the type vector and the second parameter is the function vector. Arguments
sent to ACE can be constructed using AMOSQL query statements, making it possible to
easily process all types and functions in an AMOS II database.

The program issues queries about the supplied types and functions in order to translate
the database structure to a corresponding Java class structure. Queries are sent to the
database using the AMOS II Java callin interface. Required data to build the Java
structure for types is type name, associated functions and information about inheritance.
Necessary information for construction of the functions is the function name, its
parameters, return values and if it is possible to update the function in AMOS II.

Java source files are written to a file when all data structures have been created and
populated with the information described above. Generated classes can be used when
developing AMOS II database applications in Java. The source files includes methods
for retrieving and manipulating persistent data. New database objects can be created
using a constructor and a method is provided for deletion of objects.

3.4 Implementation

Amos Class Exporter extends the architecture of AMOS II. It is implemented using the
AMOS II foreign function mechanism and is built on top of the existing AMOS II Java
interface. ACE is completely built in Java and AMOSQL using Borland JBuilder 4
Professional Edition. JBuilder 4 is based on SUNs JDK 1.3. ACE is implemented with
four classes as shown in figure 5.

Figure 5: Class diagram of ACE

 20 (39)

AmosClassExporter is the main class and contains the entry method, which is linked to
AMOS II through the callout interface. This class retrieves the parameters sent from the
database, creates data structures and populates them with data using meta-queries sent
to AMOS II through the callin interface. Data about types and functions is stored in the
classes AmosType and AmosFunction respectively. When all types and functions have
been processed, SourceFileWriter generates Java source files for each type.

A call to a foreign function is always handled in the same manner by AMOS II
independent of its implementation. For a foreign function written in Java, the method
called has the following signature:

public void method_name(CallContext cxt, Tuple tpl)

AMOS II uses the CallContext object internally for managing the foreign function call
and the parameter tpl is a Tuple object, which contains the arguments passed. The last
position of this Tuple represents a possible return value. Thus, if a foreign function has
two arguments and one return value the Tuple object has three positions, indexed from
zero to two. [8]

ACE stores the vectors supplied as parameters in internal variables for further
processing. This process is discussed in the next section.

3.5 How ACE works

This section illustrates with a step-by-step example how ACE works followed by a brief
presentation on how the generated files are supposed to be used. The example is based
on a database managing information about World Cup tournaments in soccer, taken
from the AMOS II tutorial [19].

The schema is made up by seven types (entities): Person, Referee, Player, Match, Team,
Tournament and Country. The entity-relationship schema of the database, pictured in
figure 6, can be overviewed as follows. A country is host for a tournament a certain
year. In each tournament there is a number of matches played, each between two teams
participating in the specific tournament. A team represents a particular country and
consists of a selected group of players from the team for each match. In a match, a team
can make a number of goals. Players can make a number of goals in a tournament as
well as a number of own goals in a certain match. Each match is refereed by some
referee and has a number of spectators watching it. Referees and players inherit the
properties from the abstract supertype person. All relations and attributes in the AMOS
II database are represented as functions. How attributes and relations are defined for
each type in this example is shown in table 1. [19]

 21 (39)

Types Functions

TOURNAMENT YEAR(TOURNAMENT) -> INTEGER

 HOST(TOURNAMENT) -> COUNTRY

 PARTICIPATING_TEAMS(TOURNAMENT) ->
TEAMS

COUNTRY NAME(COUNTRY) -> CHARSTRING

PERSON NAME(PERSON) -> CHARSTRING

REFEREE (SUBTYPE OF
PERSON)

PLAYER (SUBTYPE OF PERSON) GOALS(PLAYER, MATCH) -> INTEGER

 OWN_GOALS(PLAYER, MATCH) -> INTEGER

TEAM REPRESENTS(TEAM) -> COUNTRY

 PLAYERS(TEAM) -> PLAYER

 GOALS(TEAM, MATCH) -> INTEGER

MATCH REFEREED_BY(MATCH) -> REFEREE

 PLAYED_IN(MATCH) -> TOURNAMENT

 SPECTATORS(MATCH) ->INTEGER

 PLAYER_PARTICIPATIONS(MATCH) ->
<PLAYER, INTEGER GOALS, INTEGER
OWN_GOALS>

Figure 6: Extended entity-relationship schema, Soccer World Cup tournaments [19]

 22 (39)

 PARTICIPATING_PLAYERS(MATCH) ->
PLAYER

 TEAM_PARTICIPATIONS(MATCH) -> <TEAM,
INTEGER GOALS>

 PARTICIPATING_TEAMS(MATCH M) -> TEAM

 GOALS(MATCH) -> INTEGER

 MATCHINFO(MATCH) -> <CHARSTRING C1,
INTEGER G1, CHARSTRING C2, INTEGER G2,
INTEGER Y>

Table 1: Definition of types and functions in the World Cup example [19]

The following sections provide a detailed description of the process when all types and
functions in this example are sent to ACE. We have divided the processing made by the
program into three logical phases: the receiving phase, the information-gathering phase
and the write phase.

3.5.1 Receiving phase

ACE is, as mentioned previously, implemented as a foreign function written in Java. In
order to call the program, the main method of ACE must be defined in the database.
This procedure is referred to as creating a resolvent for a foreign function [8]. We
assume that there is a function linked to ACE called generate_interfaces defined as
below:

create function generate_interfaces(vector t, vector f) -> integer as foreign
“JAVA:AmosClassExporter/classExporterMain”;

In the call to ACE we supply all types and functions from the World Cup tournaments
in soccer database. The call should be constructed as:

generate_interfaces({type person, type player…}, {function 1, function 2…});

The vectors supplied as parameters are retrieved by the classExporterMain method in a
Tuple object. ACE checks if the arguments are valid, and copies the arguments into two
internal variables, containing OIDs for types and functions respectively.

3.5.2 Information-gathering phase

The type and function vectors are now stored in internal variables and the information
gathering concerning the data structures in the database can begin. This is done through
issuing AMOSQL queries on meta-data, i.e. querying the schema by calling system
functions in the AMOS II database. The first thing to be constructed by ACE is the
functions sent from AMOS II. The program iterates through the function OIDs and
issues database queries about each functions name, if the function can be updated, the
number of arguments, return values and their respective data types. Gathered
information for each function is stored as an instance of the class AmosFunction, an ACE
data structure holding all necessary information of an AMOS II function. These data are

 23 (39)

later used to build the Java structure. The code example below shows how ACE collects
information about the data types for arguments and returns values of an AMOS II
function.

Scan argResTypes; //Results of the 'argrestypes' query.
Oid functionOid; //Oid used temporarily when processing functions.
AmosFunction af = new AmosFunction(); //New instance of the class AmosFunction
...
01 argResTypes = theConnection.callFunction("FUNCTION.ARGRESTYPES->
02 INTEGER.TYPE.INTEGER", functionOid);
03 while(!argResTypes.eos()){
04 if(argResTypes.getRow().getIntElem(2) == 0){
05 af.setArgumentType(convertType(argResTypes.getRow().getOidElem(1).
06 getName()));
07 }
08 else{
09 af.setReturnType(convertType(argResTypes.getRow().getOidElem(1).
10 getName()));
11 }
12 argResTypes.nextRow();
13 }

On the two first rows the actual database query is executed. All database queries in ACE
are issued using the callFunction method in the fast-path interface (see section 2.3.2). The
first argument in this example is the function to be called in AMOS II, while the second
argument represents the argument to be passed to the AMOS II function. In this case the
system function AGRESTYPES is used on a function OID to get the corresponding data
types. The result of the call on the first two rows is a Scan object, which in turn contains
one or several Tuple objects, each representing a data type string of an argument or a
return value. In order to iterate through all the records a while loop is used. If the value
of the number in position 2 in the current row (tuple) is zero, the tuple holds a data type
of an argument, and if the number is one, it holds a data type of a result value. A
method for converting AMOS II data types to Java data types has been implemented.
The convertType method is used for this purpose. It provides conversion between the
following data types:

AMOS II data type Java data type
CHARSTRING String
INTEGER int
REAL double
BOOLEAN boolean
SURROGATE_OBJECTS (e.g. PERSON) Surrogate_objects (e.g. Person)

After data type conversion has been made, the data types of the argument and the
return type are added to the current instance of the AmosFunction class respectively. This
is implemented using the setArgumentType and setReturnType method calls.

When the information needed to describe a function has been collected, the instance of
the class AmosFunction is added to a list for subsequent matching between the function
and the type it belongs to.

The next step in the information-gathering phase is processing the types sent to ACE.
ACE iterates through all the types, creates an AmosType object for each type and collects

 24 (39)

the information needed from the data structures in the database. AmosType is an ACE
data structure holding necessary information of an AMOS II type used to build the Java
class structure. Information stored for each type in AMOS II is the name of the class
(type in AMOS II), the type OID, the name of the superclass, if the class has a subclass or
not and the functions that belong to this class. An instance of the AmosType class with the
name Common is created for the purpose of holding information about AMOS II functions
that could not be derived to any specific type.

When a new instance of the AmosType class has been created, the previously populated
list of objects from the AmosFunction class is iterated through. If a function has exactly
one argument and the argument name is equivalent to the class name of the AmosType
instance, the function is connected to that object. Functions with less or more than one
argument are added to the instance with the class name Common. For example, the AMOS
II function NAME(PERSON) -> CHARSTRING is linked to the AmosType instance with the class
name Person, while the function GOALS(PLAYER, MATCH) -> INTEGER is linked to Common.
An excerpt of the code for the actual connection of a function to an AmosType object is
presented below.

at = new AmosType();
…
at.setAmosFunction(currentFunction);

public class AmosType {

 private ArrayList functions = new ArrayList(); //Functions of this class.

 public void setAmosFunction(AmosFunction af){
 functions.add(af);
 }

When a function has been connected to an AmosType object, the function is removed from
the list of functions. The remaining functions, i.e. functions still in the list when all types
have been iterated through, are linked to the Common instance. This approach also helps
to improve performance since the number of iterations is reduced.

In order to handle inheritance and build the corresponding class hierarchy in Java, it is
necessary to get the name of the nearest supertype for each type. It is also required to
identify if the type has a subtype or not. This is implemented using a call to the AMOS
II system function SUBTYPES with a type OID as parameter. If the Scan returned from this
call is null, there is no subclass for that type:

if(theConnection.callFunction("TYPE.SUBTYPES->TYPE", at.getID()).eos()){
 at.setSubclass(false);
}

The code for obtaining the nearest supertype of a type is a somewhat more complicated
algorithm, since it is not the nearest supertype in the database we ask for, rather, it is the
nearest supertype in the collection of parameters sent to ACE. To get the correct
supertype the AMOS II system function ALLSUPERTYPES is called on each type. This
function returns a Scan object containing all the types above a type (i.e. all its
supertypes), with the nearest supertype in the first Tuple. The result set is iterated

 25 (39)

through and compared to the list of types sent to ACE. If no corresponding supertype is
found in the list, the type is set to inherit from Oid. Functionality offered by the class
Oid is necessary for all object proxies. Therefore, all generated classes inherit directly or
indirectly from the class Oid. In the soccer tournament example, all types have Oid as
their direct supertype, except Player and Referee, which inherit properties from the
supertype Person. Another exception is the Common class, which has no inheritance.

3.5.3 Write phase

The last phase in the process is the creation of the Java source files for all the classes. The
source files are written one by one to disk by the SourceFileWriter class. For each type
supplied to ACE, one source file is created. By default, source files are written to the
working directory of the current database. The generated Java source files contain
import statements, constructors, get methods, set methods, a method for deleting objects
and sometimes additional methods for add and remove operations. This varies
according to how the type was specified in the database. Under the following headings
a more detailed description of the source files is given.

Import statements and connection object
Import statements for the AMOS II callin interface and a static instance variable for the
Connection object are inserted into all source files. All generated classes need to import
the callin package, which is used in all methods for handling database calls. A
Connection object in each class must be initialized when a new instance of that class is
created.

Constructors
In order to manage inheritance, several different types and implementations of
constructors exist. The class Common differs from all the other classes, as it does not
inherit any properties from the class Oid. The Common class has only one constructor,
which takes a Connection object as a parameter, which is used to initialize the instance,
variable in this class. Each class except Common implements an empty constructor, used
when retrieving existing objects from the database. Other kinds of constructors are
illustrated below. Examples are taken from the soccer tournament database.

Class directly extending Oid:

public Person(Connection c) throws AmosException{
 super(c.getType("Person"));
 con = c;
}

The method call to getType retrieves an object proxy for the specified type, which is sent
to the constructor of the Oid class in the AMOS II Java interface. With this construct, an
object of the specified type is created in the current database.

Class with nearest superclass other than Oid:

public Player(Connection c) throws AmosException{
 super(c, c.getType("Player"));

 26 (39)

 con = c;
}

Class with subclass and with Oid as the nearest superclass:

public Person(Connection c, Oid o) throws AmosException{
/* Constructor called from a subclass */
 super(o);
 con = c;
}

Class with subclass and with class other than Oid as the nearest superclass:

public Person(Connection c, Oid o) throws AmosException{
/* Constructor called from a subclass */
 super(c, o);
 con = c;
}

Retrieving database objects.
Each class implements a method for retrieving existing database objects, which takes an
integer (the OID of the requested object) and a connection object as parameters. This
method is implemented using a method in the AMOS II Java interface called CopyProps.
This method clones the database object retrieved using the callin execute method and
can be described as down-casting to a more specific type than the OID retrieved. All the
necessary properties of the current object proxy are copied to the more specific object.
The following lines of code illustrates an example:

public static Person getPersonElem(int i, Connection c) throws AmosException{
 Person retType = new Person();
 con = c;

Oid o = con.execute("select #[OID " + i + "];").getRow().getOidElem(0);
 retType.CopyProps(o);
 return retType;
}

A class with a subclass, i.e. a superclass, also implements a method called
downCastConnect (see below). This method is called from the subclass in order to
initialize the Connection object in the superclass, which is the case when an existing
subclass object is retrieved from the database. If the Connection object is not initialized,
inherited methods in the subclass containing database calls will fail.

public static void downCastConnect(Connection c){
 con = c;
}

Thus, in a subclass to Person, e.g. Player, the following line is included in the
getPlayerElem method:

Person.downCastConnect(c);

Methods for manipulation of database objects
For each AMOS II function, a maximum of four different methods are implemented in
the Java class. For functions not defined as stored in the database, e.g. derived functions,

 27 (39)

only a get method is written. The following methods are implemented for the stored
AMOS II function PLAYERS(TEAM) -> PLAYER in type Team:

public PlayerScan getPlayers_() throws AmosException{
 return new PlayerScan(con.callFunction("TEAM.PLAYERS->PLAYER", this),

con);}

Get methods are generated for all AMOS II functions. In this example, the get method
retrieves the players of a Team object. The get methods can be viewed as a more natural
way of querying an AMOS II system. A call to a get method on a specific instance of a
class retrieves the same information as the corresponding AMOSQL query. The object
returned from this operation, described by a result class called PlayerScan, is explained
and further discussed in a section ahead.

public void setPlayers(Player a0) throws AmosException{

 Tuple arg = new Tuple(1);
 Tuple res = new Tuple(1);

 arg.setElem(0,this);
 res.setElem(0,a0);
 con.setFunction("Players",arg,res);
}

Set methods are generated for AMOS II functions that can be updated in the database.
That is, functions defined as stored functions in the database schema. A set method can
have a various number of arguments depending on the implementation of the AMOS II
function. Arguments are named in a sequence, beginning with the name a0 and with a
greater number for each following argument. A set function is used for changing set-
valued attributes of a type or updating relations between types.

public void addPlayers(Player a0) throws AmosException{

 Tuple arg = new Tuple(1);
 Tuple res = new Tuple(1);

 arg.setElem(0,this);
 res.setElem(0,a0);
 con.addFunction("Players",arg,res);
}

Methods with an add prefix in their name are used for add operations on a specific
database object. A function in AMOS II can be defined to hold more than one value.
Data are added to such functions with the generated add methods. For all functions
defined as stored in the database an add method is generated. The method in the above
example adds a player to a team. A team can have more than one player.

public void removePlayers(Player a0) throws AmosException{

 Tuple arg = new Tuple(1);
 Tuple res = new Tuple(1);

 arg.setElem(0,this);
 res.setElem(0,a0);
 con.remFunction("Players",arg,res);
}

 28 (39)

The remove methods are the opposite of the add methods and they are used for
removing values from a multi-valued function. Remove methods are generated for
stored functions.

public void delete() throws AmosException{
 con.deleteObject(this);
}

For each class, except for the class Common, a delete method is generated. The Common
class has no delete method since there is no representation of this object stored in the
database schema. The delete method is implemented in the same way in all classes. It
uses a method called deleteObject that deletes the object from the database.

Result classes
The get methods return different objects from the database depending on how they
were defined. For each type of object returned a corresponding result class is
implemented. This approach is taken in order to handle multiple results. A function
returning a CHARSTRING in AMOS II could possibly return more than one value. In that
case, a StringScan object is returned in Java. The StringScan result class is presented
below:

import callin.*;

public class StringScan{

 private Scan theScan;
 private Connection con;

 public StringScan(Scan s, Connection c){

 theScan = s;
 con = c;
 }

 public String current() throws AmosException{

 if(!theScan.eos()){
 return theScan.getRow().getStringElem(0);
 }
 return null;
 }

 public void nextRow() throws AmosException{

 theScan.nextRow();
 }

 public boolean eos(){

 if(theScan.eos()){
 return true;
 }
 return false;
 }
}

 29 (39)

A result class implementation has two instance variables. A Scan is used for managing
the data retrieved from the database and a Connection object handles the current
connection to the database where the queried objects exist.

Result classes can be viewed as a more specific implementation of the Scan object in the
AMOS II Java interface. The underlying idea in the design of these result classes was to
provide a unified way of accessing AMOS II data, irrespective of the actual data type
returned. There is no difference in accessing string elements, soccer player elements or
integers. The first element returned is always accessible using the current method.

A possible result of an AMOS II query is that no objects are returned. In this case, the
Scan object internal to the result class, is empty. If the result set is empty, null is
returned.

The specialized scan objects implement methods similar to the methods in the AMOS II
Java API. If more than one value is returned from the database, the result scan contains
multiple values. Values following the first value can be accessed with the nextRow
method to advance one position forward in the scan followed by a call to current.

3.6 Usage of generated files

The following code examples gives a short illustration of how the generated classes can
be used. Tournament, Player and Person are Java classes generated by ACE.

q Retrieval of existing database objects

The code below picks up existing objects from a saved database and operations are
carried out on the objects.

Tournament t = Tournament.getTournamentElem(636, con);

TeamScan ts = t.getParticipating_teams_();
while(!ts.eos()){

System.out.println("Test of getName on Player returned " +
ts.current().getPlayers_().current().getName_().current());
ts.nextRow();

}

q Creation of new database objects

Create a new Player object and set the name:

Player p1 = new Player(con);
p1.setName("Johan");
System.out.println("Name of p1 was set to " + p1.getName_().current());

100 persons are created and names are assigned:

Person pa[] = new Person[100];
String s = new String();

 30 (39)

for (int i = 0;i < 100 ;i++) {
pa[i] = new Person(con);

 pa[i].setName("Person" + (i + 1));
s = s + pa[i].getName_().current() + " ";

}
System.out.println(s);

 31 (39)

4 Interfaces compared to ACE

In this chapter, we compare our work with the existing AMOS II Java interface.
Furthermore, differences between ACE and other binding solutions for the Java
language, e.g. Java Blend, are discussed.

When comparing solutions for database programming interfaces one important aspect
to discuss is the difference between a dynamic and a static interface. Both types of
interfaces have advantages and disadvantages. A dynamic interface is more convenient
to the user, due to its ability to react to changes in the current environment. This may
have performance implications though, since a dynamic interface has to keep track of
changes in e.g. a database schema. In a static environment, or at least in an environment
where changes seldom are made, a static solution provides the same convenience to the
developer. Performance of such an approach is more likely to be higher than a dynamic
interface in a static environment. In environments that continually change, dynamic
interfaces are more appropriate. A static solution in an often-changing environment
means more work for the application programmer.

A dynamic interface adapts to the current situation with no intervention from the
developer. For example, if the database schema is changed in the current session, a
dynamic interface would adapt to the changes transparently, providing an interface to
the latest version of the schema definition in the database. With a static interface, on the
other hand, some kind of action needs to be taken by the programmer when changes
occur or when the interface is used. One kind of intervention could be compilation of
generated source files that constitute the interface. This approach is taken in our
solution. When developing a completely dynamical interface, further investigation of
different issues is needed. Due to time constraints, we chose not to investigate issues
related to dynamic interfaces.

4.1 Differences between the AMOS II Java interface and ACE

Necessary in this context is a comparison with the existing AMOS II Java interface and
ACE. In the underlying interface, upon which ACE is built, it is to some extent possible
to manipulate database objects by Java methods. The functionality provided by the
AMOS II Java interface is on a low level. Manipulation of database objects requires
knowledge of functions associated with the current type. The existing interface also
represents all surrogate objects as the generic class Oid, which leads to the loss of
structure of data and relationships between objects. Our solution generates a complete
set of source files for a type hierarchy in an AMOS II database, which can be used in the
development of AMOS II database applications.

For each AMOS II function, get, set, add and remove methods are created. Methods for
data modification, i.e. methods other than get methods, are generated only if necessary
conditions are met. This provides a natural way of modifying persistent object-relational
data through a simple and generic object-oriented interface. Relations between objects
and inheritance are transferred to an equivalent structure represented in the Java
language.

 32 (39)

In Java, methods can be applied to different objects in a long sequence. If a method
returns an object, a new operation (method) can be carried out on that object which in
turn returns another object etc. With ACE, this brings new possibilities in accessing and
modifying data in an AMOS II database. In fact, it provides a new approach of working
with persistent data.

Applying Java methods in a sequence as described above, is the same thing as querying,
or modifying, specific AMOS II database objects. The following example illustrates this
functionality. It shows how to obtain the name of the referee for a specific match. The
variable con is a Connection object, mOid and rOid are Oids for a match and a referee
respectively and m is a reference to a Match object (see the soccer example).

With the AMOS II Java interface:

rOid = con.callFunction("MATCH.REFEREED_BY->REFEREE",
mOid).getRow().getOidElem(0);

String s = con.callFunction("PERSON.NAME->CHARSTRING",
rOid).getRow().getStringElem(0);

or

String s = con.callFunction("PERSON.NAME->CHARSTRING",
con.callFunction("MATCH.REFEREED_BY->REFEREE",
mOid).getRow().getOidElem(0)).getRow().getStringElem(0);

With ACE:

String s = m.getRefereed_by_().current().getName_().current();

In the above example the simplicity of ACE is clearly illustrated. Of course there is the
intermediate step with creating the interface for the specific type but once this minor
process is finished programming tasks are simplified. With the AMOS II Java interface,
it is necessary for the user to keep track of the distinguished names of the AMOS II
functions. This is unnecessary with ACE since the database calls, queries etc, constitute
the implementation of methods in the generated class.

When creating new database objects from Java, ACE adds additional features not found
in the AMOS II Java interface. Creation of database objects for a specific type is as
simple as calling a standard Java constructor. With this construct, it is possible to create
a large amount of database objects easily.

4.2 Comparison of ACE to Java binding solutions

ACE is in some ways similar to products such as Java Blend when comparing
fundamental principles. For example, they both bridge the gap between a database
schema and a programming language, in this case Java. ACE also differs from the other
solutions in various ways. In this section, similarities and differences between related

 33 (39)

technologies and ACE are discussed. Since the ODMG Java Binding and JDO are
standards describing necessary properties for a system that handles object persistence,
Java Blend is used as the primary frame of reference in this comparison.

Java Blend is an implementation of the ODMG Java Binding, which is also used as
underlying principles of JDO. Java Blend is a development tool and a runtime intended
for programmers writing Java applications that need to access data stored in relational
databases. This is one of the most notable differences between ACE and Java Blend. Our
solution is designed for an AMOS II object-relational database and handles the mapping
needed between Java objects and objects in the database.

The perspective of the solution differs between products such as Java Blend and ACE. In
our approach, necessary data is extracted from an existing database schema for creation
of higher level Java interfaces using meta-data queries. Therefore, it is a prerequisite for
ACE to work that a schema already has been defined. In Java Blend, the perspective is
slightly different. With that product, it is also possible to create a database schema,
although relational, from an existing Java hierarchy. Thus, our solution has a database-
oriented perspective and solutions such as Java Blend are programming language-
oriented.

Both ACE and Java Blend are layered on top of a call-level interface. ACE utilizes the
AMOS II Java API and Java Blend relies on JDBC. Those lower level interfaces handle
the database connectivity in both solutions. ACE is closer to a call-level interface than
Java Blend. In ACE, methods of generated classes make direct calls to the underlying
AMOS II database.

Java Blend is perhaps a more complete solution, especially in dynamic environments. It
utilizes a caching mechanism as an intermediate layer between the Java application and
the database, which takes necessary measures when data changes either in the database
or in the Java application. Java Blend has support for concurrency, transaction control
and schema manipulation from Java, functionality which is not implemented in ACE.

Our solution can take advantage of all the features that exist in an AMOS II system.
With products based on relational technology, complex data structures are hard to
model in a natural fashion. In an AMOS II database, it is easier to model real world
entities more realistically. Combined with the mediator functionality in an AMOS II
system, this brings interesting advantages to an interface such as ACE. Complex
systems can be realized using the core features of object modeling and mediation in
AMOS II and then interfaces can be generated to easily access and process the data
retrieved by those applications.

The user interface of solutions similar to Java Blend is another point of view that can be
taken when comparing it to ACE. Most of the commercial products, Java Blend and
others previously mentioned, are based on a graphical user interface with which the
user interacts. In these interfaces, the user selects for what entities mapping should be
executed. At a glance, the user interface of ACE may seem simple, but a more thorough
investigation reveals the advantages of this solution. Its tight integration with AMOSQL
provides the user with the powerful language constructs available in this language. It is

 34 (39)

easy for a proficient user of AMOSQL to write nested query statements that generates
interfaces for selected types and functions. Seen from a performance perspective,
command line user interfaces are often more effective, although they can be hard to
understand at first.

 35 (39)

5 Conclusion and future work

ACE is layered on top of the existing AMOS II Java interface and provides transparent
integration of Java language classes with an AMOS II database. It handles mapping
between a database schema and Java classes.

Our solution offers an easier way of writing AMOS II database applications in Java, as
developers can write Java programs to retrieve data from an AMOS II database as
semantically rich Java objects. These objects can be modified, which in turn modify the
database objects. Modifying persistent data is therefore as simple as modifying any
other Java data.

In the generated files, query results are handled in an analogous way. Retrieval of
information on the database objects is accomplished using methods in the Java classes,
since the database queries are coded in the Java language as part of the class. The use of
methods in the generated Java classes can be viewed as a way of submitting queries to
the database. The programming productivity increases by eliminating most of the need
to write AMOSQL or understand the details of the database schema. It also reduces
development time by eliminating the need to write, test and debug AMOS II Java
interface code. An increased quality in future development of AMOS II database
applications is supplied, since common coding mistakes can be avoided using automatic
generation of Java source code. These improvements provide significant advantages
over previous database programming solutions with the AMOS II Java interface.

In our work we have addressed problems related to the extraction of necessary
information to build Java source files from an AMOS II database using meta-queries.
This has concluded in a new approach on how to handle and use custom object proxies
for dissimilar types defined in an AMOS II database. We have presented solutions for
different problems that we have identified as related to the investigation of this issue.
In this thesis, we have implied solutions for the following:

q Scan objects for a specific type. Previous to ACE, surrogate objects retrieved from an

AMOS II database were represented using the generic class Oid. With classes
generated by ACE, it is possible to represent these objects in a more natural way.
Our solution is assembled by specialized scan objects, with methods for retrieving a
materialization of objects as they were defined in the database.

q Mechanism for casting types to a more specific type. We identified the need for a

programming construct to cast a type to a more specific one, usually referred to as
down-casting. This method is used in the scan objects for a specific type and when
existing objects are retrieved from an AMOS II database. For this purpose, the
AMOS II Java interface was extended with a method called CopyProps, which clones
properties of object proxies.

q Efficient handling of multi-valued functions. In the AMOS II Java interface, which

ACE is built on top of, support for retrieving data in a collection object (scan) already
existed. Hence, we found in our exploration of this issue that a proper solution to
managing multi-valued functions would be to extend the functionality offered in

 36 (39)

AMOS II Java interface. We implemented functionality for handling multiple values
in each of the result classes for specific types. As in the scan objects, it is possible to
iterate through an entire collection of objects with the use of the methods in the
specialized scans.

q Easy access to the first element in a result set. Our solution to this topic was to

implement support for effortless retrieval of the first element in a set of results
gathered from an AMOS II database. To be more specific, we proposed a
standardized way of accessing this element through a Java method called current,
implemented in each of the result classes unique for each type generated by ACE.

q Management of methods that cannot be derived to a specific type. In the early stage

of our investigation, we discovered a need for handling of methods that could not be
derived to a type. We define methods that can be derived to a specific type as
methods with exactly one argument. A method with less or more than one argument
has to be placed in a class other than the files for the specific types. For that purpose,
a class called Common is implemented.

q Null values handling. In the result classes for a specific type, the current method

provides easy access to the first element. If no elements were returned from the
database, an error would occur when trying to access these elements. We identified a
simple solution to this problem. If the result of a query contains no objects, null is
returned.

Several opportunities in improving the AMOS II Java interface exist. Consequently, we
have identified some future directions in which our work could be continued. A major
area in where our solution needs completion is the issue of concurrency and transaction
control. In coming extensions to the AMOS II Java interface, possibly built with ACE as
a basis, generated Java classes need mechanisms for managing transactions and
concurrency problems.

The Java language does not support multiple inheritance, a characteristic supported by
AMOS II type hierarchies. ACE handles this issue by ignoring the problem; the first
supertype found in the hierarchy is used for inheritance. Further investigation of how
this question can be addressed in a more complete way is needed. We suggest an
analysis of how the interface construct in the Java language can be used to solve this
problem.

A more practical and probably simpler issue, is the addition of Java Archive (JAR)
features to ACE. When generating Java source files for extensive type hierarchies, a
great number of files are created. Except one file for each supplied type, several files are
generated for describing the result sets of the different types. Thus, an elegant solution
would be the option to bundle created files in a JAR package. This requires an analysis
of the order in which the generated files should be compiled. When the logical order has
been determined, an implementation of a JAR archiving function should be reasonably
simple.

 37 (39)

In AMOS II, there are currently no methods available for determining if a function is
defined as multi-valued or single-valued. For functions that can have only one value,
Java methods for adding and removing values from the function is generated by ACE,
even if this functionality is purposeless from a database perspective. We believe that this
issue is easiest to address with an AMOS II system function, which allows for a user to
decide if a function allows multiple values.

 38 (39)

References

[1] Azavant, F, Sahuguet, A: “World Wide Web Wrapper Factory (W4F) User Manual”,
University of Pennsylvania, USA, 2000

[2] Barry, D, Stanienda, T: “Solving the Java Object Storage Problem”, IEEE Computer,
Vol. 31, No. 11, November 1998

[3] Centre for Objekt Teknology (COT): “Database Management Systems: Relational,
Object-Relational, and Object-Oriented Data Models”, COT/4-02-V1.1, Denmark, 1998

[4] Committee on Innovations in Computing and Communications: “Funding a
revolution: Government support for computing research”, Lessons from History,
National Research Council, 1999

[5] Codd, E. F: “A Relational Model of Data for Large Shared Data Banks”,
Communications of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387

[6] Connolly, T, Begg, C, Strachan, A: “Database Systems: A Practical Approach to
Design, Implementation and Management”, Addison-Wesley, Great Britain, 1996

[7] Eckel, B: “Thinking in Java”, Prentice-Hall, USA, 2000

[8] Elin, D, Risch, T: “AMOS II Java Interfaces“ , UDBL, Uppsala University, Sweden,
August 2000

[9] Elmasri, R, Navathe, S.B: “Fundamentals of database systems”, Addison-Wesley,
USA, 1997

[10] Flodin, S, Josifovski, V, Katchaounov, T, Risch, T, Sköld, M, Werner, M: ”AMOS II
Users Manual”, UDBL, Uppsala University, Sweden, 2000

[11] Jordan, D: “An overview of Suns Java Data Objects specification”, Java Report, June
2000

[12] Josifovski, V, Risch, T: ”Comparison of AMOS II with Other Data Integration
Projects”, Technical Report, EDSLAB, Linköping University, 1999,
”http://www.ida.liu.se/~edslab/amosII_comp.pdf

[13] McClure, S: “Object Database vs. Object-Relational Databases”, IDC Bulletin
#14821E, 1997

[14] Melton, J, Michels, J, Josifovski, V, Kulkarni, K, Schwarz, P, Zeidenstein, K: “SQL
and Management of External Data”, SIGMOD Record, Vol. 30, No. 1, March 2001

[15] Microsoft: “ODBC Programmers Reference”,
http://msdn.microsoft.com/library/psdk/dasdk/odin8w4s.htm, 2001-04-29

 39 (39)

[16] ODMG: “The Object Data Standard: ODMG 3.0”, Morgan Kaufmann Publishers,
USA, 2000

[17] Risch, T: “AMOS II External Interfaces“ , UDBL, Uppsala University, Sweden,
February 2000

[18] Risch, T: ”AMOS II White Paper”,
http://www.dis.uu.se/~udbl/amos/amoswhite.html, 2001-01-10

[19] Risch, T, Fahl, G: “AMOS II Introduction”, UDBL, Uppsala University, Sweden,
October 1999

[20] Risch, T, Josifovski, V: ”Distributed Data integration by Object-Oriented Mediator
Servers”, To be published in “Concurrency – Practice and Experience”, J Wiley & Sons,
2001

[21] Risch, T, Josifovski, V: ”Distributed Mediation using a Light-Weight OODBMS” ,
UDBL, Uppsala University, Sweden, 1999

[22] Risch, T, Josifovski, V, Katchaounov, T: ”AMOS II Concepts”, UDBL, Uppsala
University, Sweden, 2000

[23] Sun Microsystems: ”Java Blend Overview”,
http://www.sun.com/software/javablend/overview.html, 2001-04-29

[24] Sun Microsystems: ”Java Blend White Paper”,
http://www.sun.com/software/javablend/whitepapers/index.html, 2001-03-20

[25] Sun Microsystems: “JDBC Datasheet”,
http://java.sun.com/products/jdbc/datasheet.html, 2001-04-22

[26] Wiederhold, G: “Mediators in the Architecture of Future Information Systems”,
Stanford University, USA, 1991

