IT 10 019

Examensarbete 30 hp
Maj 2010

JavaScript based web service
access to a functional DBMS

Di Jin

Institutionen for informationsteknologi
Department of Information Technology

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

JavaScript based web service access to a functional
DBMS

Di Jin

A new way to access different kinds of services on the web is to develop web service
interfaces and call the web service operations directly from a JavaScript client. This
report describes a general such web service interface from JavaScript, called the
Functional web Service Client (FSC). FSC loads the WSDL document into DOM
object and parses its structure to build the web service request data. It provides a
public API that can be called directly from a JavaScript application. The communication
between the client and the web service operations uses the XML-based SOAP
protocol. FSC simplifies Ajax applications by making it very simple to call web service
operations as functions. It allows both synchronous and asynchronous function calls
to the web service operations. To illustrate the functionality of FSC, an existing web
application, the course manager, was re-implemented as a web service as an
alternative to the previous implementation as a conventional server side TomCat
application. The course manager uses the functional DBMS Amos Il to represent
information about courses, students taking courses, exercises, etc. Rather that
providing the functionality of the course manager as a web based user interface, the
new implementation provides a course manager web service along with a JavaScript
application implementing a user interface that calls the course manager web service
operations using FSC. The course manager web service is automatically generated by
the WSMOS system that, for given functions implemented in Amos Il, deploys web
service operations and generates a VWSDL document.

Handledare: Silvia Stefanova
Amnesgranskare: Tore Risch
Examinator: Anders Jansson

IT 10 019

Tryckt av: Reprocentralen ITC

Index

NI [A oo I¥ Tt o] o HO TP PSRUPRTOTROPRO 3
B - 1o <= o TU [Vo SRR 4
2.1 WED SEIVICES ..veieieieiiieeiee ettt ettt st ettt e s s e sbe e e smeeesareesneeeanes 5
2.0 XIMIL ettt h e h e bt bt sht e st e e b st e be e be e beenreen 5

20,2 WSDL ettt ettt b ettt sttt e et e b e be e be e beenree s 6

2.1.3 SOAP ettt ettt h et st he e et e bt e bt e be e be e beenbeenreens 8

R NV Yol g oY A=Y Ve [V - SR 9
2020 AJAX ettt ettt et e b e bt e s bt e bt e s bt ettt eeabe s be e be e beenbeenbaens 9

2.2.2 Synchronous call and Asynchronous call........ccccooocciiiieiiiriccciieeee e, 10

2.3 AMOS e e e e 11

2L WSIMOS ...ttt ettt e h e bbbt e s ht e sae e sat e sttt e e bt e be e be e sbe e she e eaee st e saeas 13

3. The Functional web Services CIent (FSC)cuouiiiiiiiee ettt ettt e 14
T A I Tl Y Ol o = Yol Y -{ TSR 14

3.2 EXaMPIE OF USING FSC ittt e e rrree e e e e e e re e e e e e e e e nnraaees 15

3.3 Implementation details topP-dOWN............uviiiiii i 17
3.3.1 Application INTEIrfACE ...uuevee e e 18

3.3.2 The ReqUEST MOAUIEcevieieeeeee ettt e e e 19

3.3.3 The ReSpPoNSE MOAUIEcccceeeeiiiieiee ettt e e arraa e e 26

I Y o Tl o =Y Ve | g TSR 30

3.5 TIMEOUL IN FSCinnniiiiiieiee et st e s s e e s s e e smre e e s smeeee s e 31

4. The course manager Web Service (CIMS)ooocuuiie ittt et et e e e e 32
4.1 Implementation Of CIMIS ...t e e e e e s e raeee e e e 32

4.2 Comparing JSP based course manager with CMSccoeeeeiiiicciiiieeee e, 34

D CONCIUSIONS ..ttt ettt ettt e b e e st e st esbe e e s ae e e sabeesbeeesbeeesnseesabeeeneeennneas 37
RETEIENCES ..ttt ettt ettt e s e e s bt e e sne e e sab e s b e e e bee e eareesabeeenee s 38
Appendix A: Source code of FSC applicationcccuviiiiiiii et 40

Appendix B: Source code of CMS

1. Introduction

The normal way to access different kinds of services on the Internet is using a web
portal where a web application is accessed from a web browser. The application runs
on a server and the client provides an HTML-based user interface. Alternatively the
user needs to download software from the Internet before using a web-based
service.

A new way to enable different kinds of web application is to provide application
programs as web services, which provide web based Application Programming
Interfaces (APIl)s that implement a set of services. The web service operations can be
called over the Internet from application programs. The API of each web service
operation is described using the Web Services Description Language (WSDL) [22] and
stored in a WSDL-file accessible from the Internet. One disadvantage with
conventional web service applications is that they usually call the web service API
from a conventional program, e.g. written in Java. This requires that the program has
to be downloaded before the application can be run.

The communication between web service client applications and web service
operations is usually based on the SOAP protocol [18]. SOAP is based on calling web
service operations from clients by passing XML messages between the client and the
server. Both synchronous and asynchronous operation calling is supported.

This thesis presents the Functional web Service Client (FSC), which allows web service
operations to be transparently called in a functional style directly from JavaScript
programs running in a web browser. The programmer can call a web service
operation as a function by simply giving an operation name along with the actual
parameter values list, without having to know anything about SOAP or XML. FSC
generates the SOAP request head and body automatically. As the response, the user
receives the result from the FSC call as a JavaScript object. Since the application is
written completely in JavaScript no software needs to be downloaded and installed
when using FSC-based applications. To make the application development simple,
FSC provides a functional web service APl in JavaScript that dynamically generates
web service requests. To be able to automatically form the messages, FSC needs to
read the WSDL document of the called web service operation and store it in a
JavaScript accessible variable. The WSDL document describes the interface of the
web service operations to be called in the application. Based on reading the WSDL
document, FSC generates the SOAP messages used for calling the web service
operations. FSC supports both synchronous and asynchronous client server
communication with web service operations.

To illustrate and test the functionality of FSP, an existing course manager system was
re-implemented using FSP. The system manages course assignments for students.
The previous implementation was based on Java Server Pages (JSP) [11] and
implemented with TomCat [1]. The course manager uses the functional Database
Management System (DBMS) Amos Il [8] as the database server to store information
about courses, students, assignments, etc. The server side code was implemented as
JSP documents that call Amos Il functions to search and update a course database.
The Amos Il system was thus embedded in TomCat and the Amos Il functions called
from JSP pages. The Java code in the JSP pages only managed the HTML-based user
interface. All application logic was provided as Amos Il functions and stored
procedures. To run the course manager the administrator had to install and deploy
the TomCat server, the Java runtime environment, and the Amos Il based course
database server.

The new course manager system is implemented in an alternative way by providing
the functions in the Amos |l course database as web service operations. It uses the
techniques from the WSMOS system [7] to automatically deploy web service
operations calling the Amos Il functions managing the course database. The
deployed web service operations are described in an automatically generated WSDL
document. Thus rather than providing the course manager as a web user interface a
course manager web service (CMS) is provided, and this course manager web service
is automatically deployed by WSMOS.

The web user interface of the new course manager is implemented in JavaScript
using FSC. The web page accessed by the client’s browser contains only JavaScript
and HTML code, so that no code needs to be downloaded by the users. The
JavaScript code utilizes both synchronous and asynchronous calls to CMS. This
illustrates how FSC can be used for implementing an application calling a web service
and that WSMOS can automatically generate the necessary server side code.

2. Background

This chapter introduces the background knowledge about the web services and
functional web service client. It covers the definition of web service and some
important related technologies, such as XML schema, WSDL, SOAP, JavaScript, Ajax
technologies, and the Amos Il DBMS. The last section overviews the WSMOS system
that automatically deploys the course manager web service.

2.1 Web Services

Nowadays, web services instead of classical client-server (CS) applications are
becoming a preferred architecture. It does not provide the user with a Graphical
User Interface (GUI) through a web browser. Instead it shares business logic, data,
and processes through a programmatic interface across a network [20]. W3C defined
a web service like this:

A web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the web service
in @ manner prescribed by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related
standards [21].

A web service is not depending on any platform or programming language. For
example, the programmer can write the client in PHP, call a web service operation
implemented in Java, or the client can run on a windows system calling a UNIX web
service operation. It incorporates with several standards, such as XML, WSDL, SOAP
and UDDI, to support interoperable machine-to-machine interaction over a network.

2.1.1 XML

XML (short for Extensible Markup Language) is the foundation of building web
services. It has some important aspects which satisfy most of the requirements of
building web services such as representing simple and complex data structures, open
standard, platform independence, and extensibility.

XML can describe data and semantics of data by using one or more elements
associating meaning with data. For example:

<student>
<fullname>Di Jin<fullname/>
<email>Di.Jin@student.uu.se<email/>
<pnumber Format="any ten digits’>8402151420<pnumber/>
<group Format="any natural number”>l<group/>
</student>

The XML code above not only represents data values but also defines the composing
of the sub-elements to group data into a complex object. The element student is
composed of four sub-elements: fullname, email, pnumber, and group. The element
fullname is a descriptive element tag, and Di Jin is the data value contained within

http://www.webopedia.com/TERM/W/GUI.html

the element. In the same way, the element student is the descriptive element tag,
and four sub-elements are the data value contained in student. Associated with the
element name, each element has one or more attributes which present as a name-
value pair.

Because the data structure is flexible in XML, it allows user to define arbitrary
elements. This may make it hard for different users and applications to understand
and interpret the data. Web services therefore uses XML schema [23] to describe a
required structure of elements. When exchanging XML data, the service provider and
the service requestor can understand and interpret the elements by sharing the
same XML schema. The benefit of using XML schema is that it describes meta-data
such as the names, types, structures and semantic meanings of the elements. For
example:

<xsd:element name="USERTYPE” type="xsd:string” />

The prefix xsd in the code above identifies the element as an XML schema element.
The name of the element is USERTYPE, and xsd:string means the data type of the
element is a schema simple type. The simple types can be any atomic data type, such
as string, integer, Boolean, double, date, and time. Furthermore, it can be XML
schema defined specific collection types, in our project, e.g. VectorofOID,
VectorofINTEGER , VectorofanyType, and so on.

XML is the foundation of specifying the description of the web services and building
the web service description language. It represents and formats the data and
messages used by the web services and transmitted over the Internet.

2.1.2 WSDL

WSDL (short for Web Services Description Language) [22] is a specification language
for creating, describing, and publishing web services. It specifies the data formats,
the communication protocols, and the public interfaces of web services in a standard
way which can be accessed by other underlying programs or software systems.

Typically, a WSDL document contains descriptions of data by using one or more XML
schema definitions, enabling web services providers and requestors to understand
the described data. The WSDL document also contains the details of the binding
protocol, the transport and parameter details of the operations, so the requestor
knows how to call the operations in a correct way. It also gives the result data types
of each operation, so the requestor can understand what they got from the provider.
Figure 1 shows the major elements in a WSDL document.

<definations>: Root WSDL Element

<types>: What data types will be transmitted?

<message>: What messages will be transmitted?

<portType>: What operations (functions) will be
supported?

<binding>: How will the messages be transmitted on the
wire? What SOAP-specific details are there?

<service>: Where is the service located?

Figure 1: The WSDL specification in a nutshell.[4]

Definitions: The definitions element is the root element of a WSDL document. It
contains name, targetNamespace of a web service and other namespaces that
are used throughout the document. These namespaces enable the WSDL
document to reference external specifications, including WSDL specification,
SOAP specification, and XML Schema specification [23].

Types: The types element describes all data types in a web service. WSDL
documents usually use W3C XML Schema specification as it default typing
system. If the service only uses the XML Schema simple data type, such as string,
integer, Boolean, double, data and time, the element types is not necessary.
Otherwise, the user must declare own data types with the element types.

Message: The message element describes the messages that are transmitted
over the network. It defines the message name and zero or more message parts.
The message part request specifies operation name and its parameters, and the
message part response message specifies the result values.

PortType: The portType element includes one or several operation elements as
sub-elements. Each operation element combines the input and output elements
referring to the request and response messages in the message element. It can
describe not only synchronous round-trip operations but also one-way
operations.

Binding: The binding element describes the concrete specification of how a web
service is communicates over the Internet and how external applications access
the web service. SOAP is the most common transport for the web service, which
is provided by specifying SOAP in the binding element. The sub-element
soap:binding specifies the SOAP transport protocol and the request style: RPC or
document.

® Service: The service element defines the address of the deployed web service.
The user can invoke the web service operations by sending request to the
specified URL specified by the address element.

WSDL provides the connection between the web services provider and the web
services requestor. In this project, FSC reads the WSDL document and analyses its
structure automatically so that the web services requestor does not need to know
anything about WSDL.

2.1.3 SOAP

SOAP (short for Simple Object Access Protocol) provides communication capabilities
for Web services to interact with applications over the Internet. The SOAP
specification is based on a messaging framework for exchanging XML format data
across the internet [5]. This messaging framework is independent of any operating
system or programming language. It provides a simple and extensible
communication approach.

The structure of a SOAP message is made up of several elements as shown in Figure
2:

SOAP envelope

Header

Body

Fault

Figure 2: Main elements of the SOAP envelope

The SOAP envelope element is the outermost element of a SOAP message. The SOAP
envelop encapsulates the header and body elements together to present the SOAP
message.

The header is the first immediate child of the SOAP envelop. The SOAP header
element provides optional features and functionalities of the SOAP message, such as
security, transactions, and other facilities. Since the header is not mandatory in SOAP
messages, most of the service requestor applications ignore it.

The body element is a mandatory element in all SOAP messages. It contains the
application data of a call to a web service operation. The SOAP body is transported to
the web services provider for processing. One example of a SOAP body is as follows:
<soap:Body>
<LISTSTUDENTS xmlIns="urn:WSAmos"'>

<COL xsi:type="xsd:int">3</COL>

<ORDER xsi:type="xsd:string">inc</ORDER>

<CNAME xsi:type="xsd:string*">DBT-HT2007</CNAME>

</LISTSTUDENTS>
</soap:Body>

In the code above, the immediate child of the SOAP body, the LISTSTUDENTS
element is the operation’s name. It has three sub-elements containing the name,
type and value of the operation’s parameters. The service provider can get the
request body according to the soap:Body element.

If the SOAP message cannot be processed by the web service, an error exception is
raised by the request. The SOAP Body then sends back a fault element including the
faultcode, faultstring, faultactor, and detail as sub-elements [22]. The faultcode is a
predefined code to identify a class of errors. The faultstring provides a human
readable explanation of the fault. The faultactor is a text string to indicate who
caused the fault. The detail element contains the application specific error
information related to the Body element. It MUST be present if the contents of the
Body element could not be successfully processed [6]. This SOAP error element is
very useful if the SOAP message passed through several nodes and the user need to
know which node caused the error.

In the project SOAP is used as the transport protocol connecting the web service and
the Functional web Service Client (FSC) JavaScript code running in the client. Since
SOAP is an independent and abstract communication protocol, it is easy to connect
FSC to services developed in different languages or deployed on different platforms.

2.2 JavaScript and Ajax

JavaScript [13] is an object-oriented scripting language. It primarily uses in the client
side of a web application and JavaScript programs run in a web browser. This enables
to implement dynamic web sites enhancing the appearance of the user interface.

2.2.1 Ajax

Ajax, short for Asynchronous JavaScript and XML [6], is a group of technologies
combined together to build interactive web applications. It is used to create dynamic
web pages which retrieve data from the server asynchronously in the background
without interfering with the display and behavior of the existing browser page [2].
The Ajax technology is incorporated with several Internet standards:

® XMLHttpRequest object is used to send a HTTP request to a web server. It can
exchange application data asynchronously with a server.

® DOM (short for Document Object Model) is a platform and language
independent data representation of XML documents.

@® (CSS (short for Cascading Style Sheets) is a style sheet language to describe the
format and the style of a web page.

® XML is often used for formatting and transferring data.

In Ajax, instead of sending the HTTP request to the server directly, the user script

first sends a message to the Ajax engine, which is an intermediary responsible for
both communicating with the server and rendering the interface to the user. By
introducing this intermediary, Ajax interacts between client and server asynchronous.
Moreover, displaying the user interfaces is independent of the communication with
servers making web applications dynamic.

Calling a web server from JavaScript is the fundamental of Ajax technology. FSC
sends the web services request by using the XMLHttpRequest object of Ajax.

2.2.2 Synchronous call and Asynchronous call

There are two ways that Ajax accesses a server from a client. With a synchronous call
the script running in the browser waits for response from the server before it
continues to execute the script. With an asynchronous call the browser is not waiting
for replies from the server but continues to process the script. The response is
handled when it arrives to the client. None of them require the browser to reload
the web page. The synchronous call must wait for the web content to be
downloaded before continuing. If the amount of data transported between client
and server is large, the reload time might be substantial. By contrast, the
asynchronous call can make the web page run faster by downloading data in the
background.

-10-

http://en.wikipedia.org/wiki/Web_server

Ajax web application model (asynchronous)

=
user activity e
3

.

client-side processing

server-side server-side server-side
processing procassing Processing Prooessing

Jesse James Garrett [adaptivepath.com

Figure 3: Asynchronous pattern of an Ajax application. [10]

In Figure 3, the Ajax engine acts as an intermediary between the client and server, it
runs in a browser making the interaction more efficient. The use of Ajax does not
need to install any plug-in application but requires your browser to support
JavaScript.

Each user’s action first generates an HTTP request object XMLHttpRequest, and
sends the requests to the server by using the OPEN and SEND methods. If the user
action does not require server manipulation, such as simple data validation, static
web content display, page navigation and data edit in the browser memory, it can be
handled by the Ajax engine. If the engine needs to get data from the server to satisfy
the user’s requirement, such as submitting data to the server for processing, loading
additional interface code, or retrieving new data, the Ajax engine calls the server to
complete those requests asynchronously.

Using the idle processing ability on the client-side to process some lightweight
request can reduce the burden on the server-side and bandwidth. The Ajax
asynchronous call does not effect on other scripts running on the page during the
execution so that it is not stalling the user's waiting time [10].

2.3 Amos I

-11-

Amos Il [17] is an extensible database system with a functional data model. It can
store data in a main-memory and query the stored data through a functional query
language, AmosQL. There are three primitive concepts in the data model of Amos Il:
types, objects, and functions.

Types in Amos Il are used for classifying objects. They correspond to the entity types
in an Entity-Relationship Diagram [15]. The create type statement creates a new
user type in the database. The syntax is as follow:

create type <type-name>;

Objects in Amos Il are instances some types. The syntax of creating new user objects
is:

create <type-name> iInstances <variable>;

For example:

create Student instances :jd, :linda, :joh;

:jd, :linda, and :joh are environment variables which bound to three new instances of
type Student. In the same transaction, other statement can refer to the object
through these variables.

Functions in Amos Il represent all properties of objects and the relationships
between objects. There are four kinds of functions:

@® Stored Functions explicitly store in the database the relationship between the
argument and the result, analogous to a table in a relational database [8]. The
“as stored” is the syntax to indicate the function type. In this project, the course
manager system uses stored functions to represent the properties of users,
courses, assignments, and other data. The syntax of defining a stored function is:

create function <function-name(type-name)> -> <result-type> as stored;

® Derived Functions are defined in terms of other functions as a query [8]. A
derived function uses the select statement of AmosQL to define the query. A
derived function is side-effect free and makes no changes to the stored data. In
this project, the CMS uses derived functions to represent relationships between
the students, the assignments and the courses. The syntax of defining a derived
functions is as follow:

create function <function-name(type-name)> -> <result-type>
as select [from-clause] [where-clause];

® [oreign Functions are Amos Il functions implemented in some external language
such as C or Java. This enables access from Amos Il to external databases, storage

-12 -

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html#type-name

managers, or computational libraries. In this project, WSMOS uses foreign
functions in Java to generate the WSDL document for the course manager.

@® Stored Procedures are defined as a sequence of AmosQL statements. A stored
procedure may have side-effects on the stored data, e.g. calling database update
statements. Procedures may return a stream of results by using a special result

statement. Each time result is called another result item is emitted from the

procedure. In the project course manager logic is often implemented as stored

procedures. These stored procedures are mapped to web service operations for

the course manager web service. An example of a stored procedure is:

create function registerstudentgroup(charstring studName,
charstring studPwd, charstring cname)
-> charstring registergroupResult

as begin

if (studentexist(studName, studPwd, cname))

then

result registergroupvalidate(studName, studPwd)

else
result "none”;
end;

2.4 WSMOS

The WSMOS system [7] can dynamically deploy any Amos Il function as a web service
operation. Figure 4 show the architecture of WSMOS. It includes two parts. One is

the WSMOS web server, the other one is the WSDL generator.

SOAP

@ WSMOS

Web server

Callin

Amosl|
Database server

Server side

Callout

Description

-

I::>

————>

WSDL generator

2

Figure 4: Architecture of WSMOS [7]

-13-

Call

Generate

Read

The WSMOS web server is a Java HTTP SOAP server receiving the SOAP requests and
calling different Amos Il functions based on the request. The WSDL generator is a
foreign function of Amos Il. WSMOS also contains a WSDL generator to automatically
generate the WSDL document describing the web service interface for the Amos Il
functions provided as web service operations.

3. The Functional web Services Client (FSC)

This chapter starts with a high level view of FSC to indicate the role of FSC in the
project. Then it gives an example of how to use FSC for making web service requests.
After that, the chapter describes the implementation details top-down including the
public APls, the request module and the response module. The last two sections are
about how FSC handles error and timeout error.

3.1 The FSC package

The Functional Web Services Client (FSC) enables web applications to call web
service operations directly from a web browser. Some implementations of FSC are
based on the JavaScript SOAP Client [14]. | made a lot of improvements so that it
makes functional-styled requests to the web service operations through SOAP. It can
also make request to any web service provider as long as a WSDL document is
available. Figure 5 shows the high level view of FSC.

-14 -

Web service
inerfaces

XML messages
< —>

FSC

Result

Back-End
systems
Figure 5: High level view of FSC

3.2 Example of using FSC

This is an example of using FSC to query the Amos Il database to list all the students
who registers to the course. An Amos Il function, called liststudents, is defined as a
derived function which is made available as a web service operation by WSMOS:

create function listStudents(Integer col, Charstring order, Charstring
chame)
->Vector Studentlnfo
as select sortbagby((select studentinfoPublic(s)
from Student s
where coursename(s) = cname),
col,
order);

This function selects the public student information given the course name and gives
the result as a vector of the student information called Studentinfo. There are three
arguments in the function, the first is an integer which the column number to order
the result by, the second is a string indicating the sort order (‘inc’ or ‘desc’), and the
third is the course name for which to list the students.

When deployed as a web services operation the WSMOS System generates a WSDL
document and defines the function as the web service operation LISTSTUDENTS. The
function parameters and the query result are the input and output messages. The
JavaScript function SOAPClient.invoke() is the public API to call a web service
operation, e.g. LISTSTUDENTS:

-15-

SOAPClient. invoke(“LISTSTUDENTS”, [3,”inc”,coursename],
true, listStudent_callBack, error_callBack);

The first argument is name of the web service operation to call, i.e, LISTSTUDENTS;
the second argument is a JavaScript array holding the arguments in the call. In the
example, 3 means that the result is ordered by the third column, “inc” means that
the result is ordered increasingly, coursename is a string variable holding the course
that students registered to. The next parameter true means that the request is called
asynchronous. The fourth argument, listStudent _callBack is a JavaScript function
called by FSC when the result from the request has arrived. If an error occurs, the
JavaScript function error_callBack is called.

When the result is arriving, FCS calls the function:

function listStudent_callBack(o, soapResponse){
var table = resultToTable(o,null);
document.getElementByld(*"listDiv').innerHTML = table;
}

O is the result object, a vector called Studentinfo. Each result in the Studentinfo
Vector includes three Charstring type data, e.g. <Charstring, Charstring, Charstring>.
According to the data type matching in FSC, vector is converted into array. The
<Charstring, Charstring, Charstring> is also converted into an array. So o in this
example is an array of an array, which is [[di jin, dijin@uu.se, none]]. SoapResponse is
the response SOAP envelope helping user to analysis the result if necessary. The
resultToTable() function is a utility function in the course manage web service, which
builds the result object into a HTML table. The listDiv is identity of the DIV element
that places the result table in the HTML page.

Table 1 shows how Amos Il data types match corresponding Java class, XML data
type, and JavaScript in FSC.

Amos Il data type Java class XML data type JavaScript
INTEGER Integer xsd:int number
REAL Double xsd:double number
BOOLEAN Boolean xsd:boolean Boolean
CHARSTRING String xsd:string string
Others types Vector tns:VectorofAnyType or | Array
other vector types
Others types Oid xsd:string with special string with

-16 -

mailto:dijin@uu.se

syntax

special syntax

Table 1: Data type matching in FSC

In JavaScript, there is only one numeric type, number, so the integer and the double
types are all mapped to the type number. The type VectorofAnyType or other vector
types is converted to JavaScript type Array, since JavaScript has no vector type. The
Java class Oid is a reference class for any Amos Il surrogate data type. The WSMOS
system [7] converts the Oid objects into a special proxy string: beginning with a
prefix, “[OID”, and ending by a postfix, “]”. Between the prefix and the postfix it is
the ID-number of the surrogate object, e.g., “[OID 1080]”. [7] FSC keeps the special
proxy string to represent the surrogate objects of the Amos Il database.

3.3 Implementation details top-down

Figure 6 shows the implementation details in FSC. It consists of three modules, the

public APls, the request module, and the response module.

User script
Request / Response
] \
y Public APIs \
SOAPCIient.invoke() callback()
set_timeout() Error_callback()
()
Request
Load WSDL
Build SOAP Reafrhibt
envelope
Send request
\ \\ J FSC

SOAP request OAP response
envelope envelope

Web Services

Figure 6: Architecture of FSC

-17 -

The public APIs contains four public functions which can be called from user scripts.
The left part is the request module consisting of three sub-modules. The Load WSDL
sub-module reads the WSDL into a JavaScript accessible variable which is a global
variable. To improve performance read WSDL objects are cached in a table in FSC so
that a given WSDL document is read only once in a FSC session. The Build SOAP
envelope sub-module parses the global variable and builds the SOAP request
envelope together with the user input data. The Send request sub-module sends the
SOAP message to the web service by using XMLHttpRequest object. The right part is
the response module which analyzes the response according to WSDL description
that saved in the global variable and extracts result objects from the SOAP envelope.

3.3.1 Application interface

In FSC, all of the code is running in a browser. There are two application interfaces in
FSC for users to call web service operations:

® The JavaScript function SOAPClient.invoke (method, parameters, asynchronous,
callback, error_ callback) is the main entry point of FSC to call a web service
operation. There are five parameters:

» method is the name as a string of the web service operation to call.

» parameters is an array containing actual parameter values. The values must
in the same order as in the WSDL document definition of the operation.

» asynchronous is a Boolean variable indicating whether the call is
asynchronous (true) or synchronous (false).

> callback is a callback function called when the call is successful and returns a
value

» error_ callback is a callback function called when the call fails.

® The JavaScript function SOAPClient.set_timeout(time) lets the user set a timeout
for each web service call. This function is not mandatory to call a web service, a
user can set her own timeout time through this function or use system default
timeout value.

The two call back functions have the following arguments:

® callback (o, xmIDoc) is called for successful results. o is the result from the web
service operation call. XmIDoc is the response xml document.

-18 -

® error_callback (e, errorCode) is called when there is an error during the request.
e is the error message from the web service operation errorCode is the error
number.

3.3.2 The Request Module

The request module builds and sends SOAP requests. The user only needs to provide
the operation name and parameter values since FSC loads and saves the WSDL
document and parses its structure to get the necessary request data.

Figure 7 illustrates the work flow of one request:

Start

\ 4
SOAPCIient.invoke()

v
SOAPClient._loadWsdl()

NO ' soapclient. readwsdi()

Yes

SOAPCIient._paramToXml() <«——

\ 4
SOAPCIlient._sendSoapRequest()

A 4

Done

Figure 7: Send one request

The blue parts are all implemented by FSC, users do not need to know anything
about these functions but simply calls the SOAPClient.invoke() function. There are
four main internal functions in the request module.

SOAPClient._loadWsdlI()

-19-

The SOAPClient.invoke() function first sends the request data to a
SOAPCIlient._loadWsdl() function which is designed to read the WSDL only once and
reuse it for all calls to the same web service in one page. Since the WSDL document
is normally larger than the SOAP messages, it first checks whether the WSDL
document with the user specific WSDL deployed URL has been saved in the browser
cache, which is an associative array (wsdl_url and WSDL DOM object pair) called:
wsdl_cache[wsdl_url]. If in the cache, the SOAPClient. loadWsdl() function sends the
request to the SOAPClient._paramToXml() function to build the SOAP parameter
body:
SOAPClient._wsdl = wsdl_cache[wsdl_url];
if(SOAPClient._wsdl + ""I= """ && SOAPClient._wsdl + ""1= "undefined™){
var ns = SOAPClient._wsdl.documentElement.attributes["'targetNamespace']..;

var paramBody = SOAPClient._paramToXml(..);
return SOAPClient._sendSoapRequest(..);

}
}

In the code above, the variable ns is the targetNamespace of the web service. The
targetNamespace is a convention of XML Schema that enables the WSDL document
to refer to itself [4]. This variable is sent to the SOAPClient._sendSoapRequest() to
build the SOAP request.

If the WSDL document is not in the cache, the SOAPClient._loadWsdl() will call the
SOAPClient._getXmlHttp() function to create an XMLHttpRequest object. Since the
XMLHttprequest is supported slightly differently in IE, Safari and Mozilla-based
browsers like Firefox, FSC considers this problem and uses code branching to support
different browsers with right code.
var xmlHttp = SOAPClient._getXmlHttp(async,errorcallback);
SOAPClient._xmlhttp = xmlHttp;

xmIHttp.open(""GET", wsdl_url, async);
xmlHttp.send(null);

The request will be created only if the WSDL document is not in the
wsdl_cache[wsdl_url] array. In the code above, the first parameter of the
xmlHttp.open() function initiates the request with the HTTP GET method. The second
parameter specifies the WSDL document deployed URL, the third parameter means
this is an asynchronous call. The xm/Http.send() function is responsible for
transmitting the request’s content. Since no data need to be sent to the wsdl_url,
the request content is set to null.

SOAPClient._readWsdl()

-20-

When the request is complete and successful, the SOAPClient._readWsdI() gets the
responseXML and saves it into both wsdl_cache[wsd! _url] and a global JavaScript
variable called SOAPClient._wsdl. At last, the SOAPClient._readWsdl() function calls
the SOAPClient._paramToXml() function to access nodes and build the request
envelope.

SOAPClient._readWsdl = function(url, method, parameters, async, callback,
errorcallback, req, wsdl_url){

if (httpstatus == 200 || httpstatus == 202) {
SOAPClient._wsdl = req-responsexML;
wsdl_cache[wsdl_url] = SOAPClient._wsdl;

var paramBody = SOAPClient._paramToXml(.);
return SOAPClient._sendSoapRequest(..);

}

SOAPClient._paramToXmil()

The SOAPClient._paramToXml(targetName, parameters, tagName, async,
errorcallback) function has five arguments, the targetName is the web service
operation name input by the user, the parameters is the parameter value list input
by the user, the tagName is the tag name of the specific element in a DOM object,
the async is the flag of asynchronous or synchronous calls and the errorcallback is
the callback function when an error occurs.

-21-

Start

\ 4
SOAPCIient._paramToXml()

A

Simple No
type?

Yes

SOAPCIient._paramToXmISimpleType()

\ 4

SOAPCIient._serializeParam()

4

Done

Figure 8: Build parameter SOAP body

As is shown in Figure 8, the SOAPClient._paramToXml() function combines a set of
FSC functions together to retrieve and manipulate the content in the
SOAPClient._wsdl variable. The entire process is handled by FSC.

It first calls a SOAPClient._getElementByDiffTagName () function to save the
elements in SOAPClient._wsdl with the same tagName into an array:

SOAPClient._getElementByDiffTagName = function(domObj, tagName){
var ell = domObj .getElementsByTagName(tagName);

return [ell,useNamedltem];

}

The ell in the result array is an array of DOM objects. The userNameditem is a
Boolean argument acting as a flag to make the code support different browsers.
After that, the SOAPClient._paramToXml() function searches the ell array to get the
element with the given targetName name, and sets this element as current XMLDoc
object, then calls SOAPClient._getElementByDiffTagName () function again to get its
subElems array with the same tagName. These subElems indicate the parameters of
the operation:

for (var i = 0; i < elements.length; i++) {
if (ell[i].attributes.getNamedltem(*'name") .nodeValue == targetName;){
var s = SOAPClient._getElementByDiffTagName(ell[i],tagName);

-22-

var subElems = s[0];

}
}

If the type attribute of the subElement][i] is a simple XML Schema type, the
SOAPClient._paramToXml() calls the SOAPClient._paramToXmlISimpleType() function
to get the name and type attributes from the current element and build the
parameter body of the SOAP request and adds it into a variable named xm:

subElems[i].attributes.getNamedltem(*'name’) .nodeValue;
subElems[i].attributes.getNamedltem(*"type') .nodeValue;

var paramNames
var paramTypes
var xml = “
xml += "<" + paramNames + " xsi:type=\"xsd:" + paramTypes + "">" +
SOAPClient._serializeParam (parameters[j]) + "</' + paramNames + ">";

If the type attribute of the subElems]i] is a complex type, the
SOAPClient._paramToXml() function gets all of the elements with the complex
tagName together into an array list and calls itself recursively until it gets down to a
simple XML Schema type in the element. The user does not have to do this special
for each web service operation call since the Build SOAP envelope module handles
both simple and complex XML Schema types.

Finally, the SOAPClient._paramToXmliSimpleType() will call the
SOAPClient._serializeParam() function to do the parameters serialization.

SOAPClient._serializeParam = function(o)

{
var s = "'";
switch(typeof(0))
{
case "'string":
s += o.replace(/&/g, "&").replace(/</g, "<").replace(/>/qg,
"> ') ;break;
case "number’:
case "boolean™:
s += o.toString();break;
case "object":
if(o.constructor._toString() - indexOf(""function Date()') > -1){
}

else if(o.constructor.toString().indexOf('function Array(Q)'™) > -1){
s = SOAPClient._serializeArray(0);

}

break;

return s;

}

}

-23-

From the code above we can see that FSC can handle most of the data types. When
the input parameter is an array, the SOAPClient._serializeParam() function calls a
SOAPClient._serializeArray() function to build the complex XML structure.

For example, Figure 9 is the DOM object representing a tree view of the XML
document. It is the WSDL document of WSMOS system and saved in the variable
SOAPClient._wsdl:

<wsdl :definitions ...>
<wsdl :types>
<xsd:schema ...>

<xsd:complexType name="LISTSTUDENTSReturn0">
<xsd:sequence>
<xsd:element maxOccurs="unbounded"™ minOccurs="0" name=""row">
<xsd:complexType>
<xsd:sequence>
<xsd:element name=""STUDENTS" type=""tns:VectorofanyType' />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
</wsdl :types>

<wsdl :message name="'LI1STSTUDENTSRequestMsg0">
<wsdl:part name="COL" type="xsd:int" />
<wsdl :part name="ORDER" type="xsd:string" />
<wsdl :part name="CNAME" type="'xsd:string" />
</wsdl :message>
<wsdl :message name="'L1STSTUDENTSResponseMsg0'>
<wsdl :part name="results" type="tns:LISTSTUDENTSReturn0O" />
</wsdl :message>

<wsdl :portType name="WebamosPortType'>
<wsdl :operation name="LISTSTUDENTS" parameterOrder=""COL ORDER CNAME'>
<wsdl : input name="LISTSTUDENTSRequestMsg0"
message=""tns:LISTSTUDENTSRequestMsg0" />
<wsdl :output name="LISTSTUDENTSResponseMsg0"
message=""tns:LISTSTUDENTSResponseMsg0" />
</wsdl :operation>
</wsdl :portType>

</wsdl :definitions>

Figure 9: SOAPClient._wsdl of WSMOS System

The root of the tree is the wsdl:definitions element. It has several elements
childNodes that represent branches of the tree. If the tagName is wsdl:message, the
ell[0] would look like this:

<wsdl :message name="'LISTSTUDENTSRequestMsg0O'>

<wsdl :part name=""COL"™ type="'xsd:int" />
<wsdl :part name=""ORDER" type="xsd:string" />

-24-

<wsdl :part name="CNAME" type="'xsd:string" />
</wsdl :message>

The targetName is the web service operation name + “RequestMsg0”, which is
LISTSTUDENTSRequestMsgO in Figure 9. The subElems[0] is:

<wsdl :part name="COL" type="xsd:int" />

The parameter element of the SOAP body is:

<COL xsi:type="xsd:int">3</COL>
<ORDER xsi:type="xsd:string">inc</ORDER>
<CNAME xsi :type="xsd:string">DBT-HT2007</CNAME>

SOAPClient._sendSoapRequest()

The SOAPClient._sendSoapRequest(url, method, paramBody, ns, async, callback,
errorcallback) function contains seven parameters. The url is the web service
deployed address, the method is the called operation name, the paramBody is the
parameter body composed by the SOAPClient._paramToXml() function, the ns is the
web service name space targetNamespac, the async, callback and errorcallback are
the same as the corresponding parameters in the SOAPClient.invoke() function. It
builds the SOAP request envelope as a XML sting by assembling all necessary
components:

var sr =
"<?xml version=\""1.0\" encoding=\"utf-8\"?>" +
"'<soap:Envelope " +
xmIns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\"™ " +
"xmIns:xsd=\"http://www.w3.0rg/2001/XMLSchema\" " +
"xmIns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\">" +
"'<soap:Body>" +
<" + method + " xmIns=\"" + ns + "\">" +
paramBody +
"</" + method + '"></soap:Body></soap:Envelope>";

This SOAP request envelope is sent by an XMLHttpRequest object:

var xmlHttp = SOAPClient._getXmlHttp(async,errorcallback);
SOAPClient._xmlhttp = xmlHttp;
xmIHttp.open(""POST", url, async);

It uses the HTTP POST method of the XMLHttpRequest.open () function to initialize
the request of sending a SOAP request message. Since the request can be either
asynchronous or synchronous; the XMLHttpRequest.send (sr) function sends the
request body in different ways.

if (async) {
xmIHttp.onreadystatechange = function(){

-25-

if(xmlHttp.readyState == 4){
SOAPClient._getSoapResponse(..);

}

}
xmIHttp.send(sr);

} else if (lasync){
xmIHttp.send(sr);
return SOAPClient._getSoapResponse(..);

}

When the request is set as asynchronous, before calling xmIHttp.send(), FSC specifies
an xmlHttp.onreadystatechange() function. In the code above the readyState is 4,
which means that the request is complete. The function calls the
SOAPClient._getSoapResponse() function immediately. When the request is set as
synchronous, FSC will call the SOAPClient._getSoapResponse() function after sending
the SOAP request.

The onreadystatechange() function acts as a time trigger, typically binding to a
JavaScript function called whenever the state of the request is changing, or the
readyState property value is changing. There are five readyState states describing
different statuses of the request shown in Table 2.

State Description

0 The request is not initialized
1 The request has been set up
2 The request has been sent
3 The request is in process

4 The request is complete

Table 2: Possible values for the readyState property [1]

Since FSC is a generic web service client package, it can communicate with different
web services providers, not only the WSMOS web server but also other web services
i.e., Terraservice, Yahoo web services.

3.3.3 The Response Module

Figure 10 illustrates the work flow of one response:

-26-

Start

\ 4

SOAPCIient._getSoapResponse()

SOAP Yes | Extract error
Error? "1 messages
No

SOAPCIient._soapresult2object()

\ 4

SOAPCIlient._generateCallback()

\ 4 \ 4

callback() error_callback()

\ 4

DoD:

Figure 10: Get one response

When the request is complete and successful, the response is sent to the
SOAPClient._gerSoapResponse() function. The function processes the result SOAP to
see if there is an error. If there is an error, the function will extract the error detail
and send it to the user through the error_callBack() function. If there is no error, the
function will pass the result to SOAPClient._soapresult2object() function to extract
the result object and sent it to the callBack() function. The blue blocks are all
implemented by FSC, and the user can get the extracted result object or error
messages directly.

SOAPClient._getSoapResponse()

A SOAP response structure is as following:

<SOAP-ENV:Envelope .."">
<SOAP-ENV:Body xmlIns:tns="urn:WSAmos'>
<tns:EX1STCOURSEReturn>
<tns:results>
<tns:row>

-27 -

<COURSENAMES>
<tns:member Xxsi:type="xsd:string">DBT-HT2006</tns:member>
<tns:member Xxsi:type="xsd:string">DBT-ST2006</tns:member>
</COURSENAMES>
</tns:row>
</tns:results>
</tns:EXISTCOURSEReturn>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAPClient._getSoapResponse() first gets the result element into the JavaScript
variable nd:

var nd = SOAPClient._getElementsByTagName(req.responseXML, tagName);

The req.responseXML holds the XML format response data. The tagName is the
result element tag name. It may be different depending on the response SOAP,
however, FSC can handle different result elements using code branching. In the code
above, the tagName is tns:results. If the length of nd is empty, an error has occurred
during in the web service. | will discuss the error handling in chapter 3.4. If nd is not
empty, the SOAPClient._getSoapResponse() calls the SOAPClient._soapresult2object()
function to extract the result.

SOAPClient._soapresult2object()

The SOAPClient._soapresult2object() shown in Figure 10 is the entry point of
extracting result objects. When getting the result element, it uses the
SOAPClient._getTypesFromWsdl() function to go through the variable
SOAPClient._wsdl again and save all result types in a variable called wsdIType. Then it
calls SOAPClient._node2object() to simplify the structure of the result element:
SOAPClient._soapresult2object = function(nhode){

var wsdITypes = SOAPClient._getTypesFromWsdl();
return SOAPClient._node2object(node, wsdlTypes);

}

After being processed by the SOAPClient._soapresult2object() function, the simplified
element only contains the elements holding the result data. For example, in the
above response SOAP, the simplified result element is:
<COURSENAMES>
<tns:member Xxsi:type="xsd:string">DBT-HT2006</tns:member>

<tns:member Xsi:type="xsd:string">DBT-ST2006</tns:member>
</COURSENAMES>

The SOAPClient._node2object() function handles different type of result elements.

SOAPClient._node2object = function(node, wsdlITypes){
if(node == null)

-28 -

return null;
if(node._nodeType == 3 || node.nodeType == 4)

return SOAPClient._extractValue(node, wsdlTypes);
var isarray =

SOAPClient._getTypeFromWsdl(..) .toLowerCase() . indexOf(*'arrayof") 1= -1;

if (isarray){

return SOAPClient._handlArray(node, wsdITypes);
}
it (node.hasChildNodes()){

it (node.childNodes[0].-hasChildNodes()){

return SOAPClient._handleVector(hode,wsdITypes);

}
else{

return SOAPClient._node2object(node.childNodes[0], wsdITypes);
}

}

else return null;

If the node is empty, the function will return a null to the result object. If the
nodeType of the node is 3 or 4, which indicates that it is a text node, the function will
call the SOAPClient._extractValue() to extract the node value. If the
SOAPClient._getTypeFromWsdl() function returns an array, the function will call the
SOAPCIlient._handlArray() function to handle the array element. If the result element
includes multiple childNodes, the function will call the SOAPClient._handleVector()
function to handle the vector element. Otherwise the function will call itself
recursively to get the object.

Finally, the SOAPClient._extractValue() function extracts the result object according
to the data type matching in Table 1 and give it back to the
SOAPClient._soapresult2object() function.

SOAPClient._extractValue = function(node, wsdITypes)

{
var value = node.nodeValue;
switch(SOAPClient._getTypeFromWsdl(..)
{
default:
case ''string":
return (value != null) ? value + "
case "boolean:
return value + """ == "true"';
case "int":
}
}

So the result of above SOAP response is the array [DBT-HT2006, DBT-ST2006].

SOAPClient._generateCallback()

-29-

The SOAPClient._generateCallback() function calls the callBack(o, xmIDoc) function in
the user script and gives the results in both object and XML format to the user.

3.4 Error Handling

FSC acts as a black box for the user, there are only four public APIs connecting to the
user. Since the interaction between the user script and the Web Service operation is
complicated, it needs a complete, reliable and understandable mechanism to catch
and throw exceptions. Fortunately, SOAP has such a comprehensive mechanism.

When an error occurs after sending the request, i.e, in the internal of the web
services, SOAP returns a fault element in the SOAP body to the FSC:

<SOAP-ENV:Envelope .>
<SOAP-ENV:Body>
<SOAP-ENV:Fault>
<faultcode>SOAP-ENV:Server</faultcode>
<faultstring>callin.AmosException</faultstring>
<detail>
<tns:FaultDetail xmlns:tns="urn:WSAmos”>
ERROR BAD_REQUEST.
Function,CHARSTRING.existcourse does not exist.
</tns:FaultDetail>
</detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

FSC extracts the faultcode, faultstring and detail to the error_callBack function so
that the user can get an intuitive error message from FSC. One extracted fault
message looks like this:

faultcode: SOAP-ENV:Server
faultstring: callin_AmosException
detail: ERROR BAD_REQUEST. Function, .existcourse does not exist.

This fault occurred on the server side, the explanation of the fault is the string
callin.AmosException and the fault detail is ERROR BAD_REQUEST.
Function,.existcourse does not exist. If an error occurs before or during the HTTP
request, FSC will call the XMLHttpRequest.abort () function to stop current request
and throw the exceptions by using try and catch statements.

Try {
var httpstatus = req.status;

var httpstatusText = req.statusText;
it (httpstatus == 200 || httpstatus == 202) {
SOAPClient._wsdl = req.responsexML;
}else{

-30-

throw new Error(httpstatus + " , " + httpstatusText + '"\n
description of the error');

}
}catch (e) {

return errorcal lback(e.message,httpstatus);

}

The code above shows how FSC catches an HTTP error. If the HTTP request status
code equals to 200 (OK) or 202 (Accepted), the request is successful and the client
gets the responseXML, otherwise the request has failed and the package returns an
httpstatus code, an httpstatusText and a description of the error to the user. Like in
Java programs, once the try statement throws an error, the catch statement catches
it and calls the errorcallback(e.message, httpstatus) function. The e.message is the
error message, httpstatus is the error code. If the error occurred during HTTP
transmission, the error code is the standard HTTP status code [9]. If the error
occurred in the FSC package, the error code is a self-defined FSC package error code
shown in Table 3:

Status-Code Description

600 Invoke argument error.

601 Invalid input parameters, the parameter is not correct.
602 Object could not be found.

603 Get Local Xml error.

604 Timeout error.

605 Browser does not support specified objects.

Table 3: Self define FSC package’s error code

3.5 Timeout in FSC

Timeout time is the time interval between sending request to the server and getting
response to the client. If the program does not limited the response time, the user
might wait for the response for an unlimited time after sending the request. It
reduces the efficiency of FSC. If there is no timer to count the request time and abort
the request, it might also affect the web service performance. Therefore setting
timeout in FSC is very important. When the request time exceeds the timeout time,
FSC will return an error message to the client and abort the current request to
release the occupied server resources. Set_timeout() is a public APl in FSC, and users

-31-

can use it define their own timeout time or use the system default timeout time,
5000 milliseconds, in FSC. The time parameter in this function is milliseconds.
SOAPClient._getTimeoutError = function (.){
if (xmlHttp '= null) {

xmlHttp.abort();
}

window.clearTimeout(SOAPClient._timeout);
SOAPClient.errorcallback("'Timeout error,the server did not response in
" + (SOAPClient._delay/1000) + ™ second.', 604);

}

The code above is the SOAPClient._getTimeoutError() function, it first aborts the
current request then clears the timeout time eventually calls the errorcallback
function to give timeout error to the user. The timeout error number is 604, the
error message is “Timeout error,the server did not response in
(SOAPClient._delay/1000) second”.

4. The course manager web service (CMS)

This chapter describes the course manager web services (CMS) which is a proof-of-
concept application of FSC. Then it compares the architectures of the old Tomcat
based implementation with the FSC based one and discusses how FSC made the
course manager implementation simpler. At the end, the chapter compares the code
of calling a web server operation to show how FSC made the code simple.

4.1 Implementation of CMS

-32-

End-User User

(eg.Student, Assistant, Teacher) Interact with CourseManager, (eg.Administrator)
export Amosl! functions,
Use the browser generate WSDL document,
to interact with deploy the web services

CourseManager design Ul of the web application

WSDL client

Web browser

L
I
I
I
I
I

0~
Course Manager web service
Course Manager web application

(eg. Web container)

Amosll database

Figure 11: User communication with the CMS system

In Figure 11, CMS is provided as a web service, rather than a server side TomCat
application [19]. The functions of CMS are provided as web service operations
described by a WSDL document. There are two kinds of users in the system. One is
the end-user, i.e, students, assistants, and teachers, who use CMS as a web
application. The other is the administrator, who exports Amos Il functions, generates
WSDL documents, deploys the web service operations, designs user interfaces of the
CMS web applications, and maintains the system.

The client side of CMS is a user script calling FSC. The user script presents the
graphical user interface, and FSC builds the SOAP envelope and sends the web
service request. The entire client side is defined as JavaScript and html code so that it
can run on a standard browser and does not require the user to download any
program. The server side of the system contains the WSMOS server and the Amos Il
database server, the WSMOS server helps the administrator to generate the
operations and the Amos Il database functions implements the CMS functionalities.

-33-

4.2 Comparing JSP based course manager with CMS

Comparing the architectures

The difference between the architectures of the JSP based course manager system

and CMS are shown in Figure 12.

Browser
Browser
i User script
request response i
SOAPCIient.invoke() callback()
set_timeout() J error_callback()
o 3 Communicate %
o i FSC
n g S with JSP page= E% I~ read
Application T = o 2
server ~Q S~ L
(TomCat) 4 WSDL
XMLHttpRequest XMLHttpRequest
document
Instantiate ™, -send() .responseXML()
bean obhect % (Model)
JavaBean WSMOS web server generate
Amos Il AAmos 1l
Communicate X
1 L function call results
wilrrvava vcarl v
Business Logic Amos |l stored procedure
Enterprise Server Dtabase Server
and data; sources and data sources
Amos |l Data store Amos Il Data store
Course Manager
JSP Course Manager -
9 Web Service

Figure 12: Comparison of JSP Course Manager and CMS

In the JSP Course Manager, when the user sends a request to the application server,
the servlet first communicates with the JSP page and collects the requested data and
instantiates Java Bean objects. Then the Java Bean object forwards the request to
the business Logic. After querying the database, the enterprise server and data
sources forms the result and composes the bean object that the JSP page needed
and sends the response to the browser.

In CMS, there are four public APIs to help the user interact with the web service
sending request and getting response. From the architectures of Figure 12, we can
get that:

-34-

® CMS has no Java code in the client, it only contains JavaScript and HTML code so

it runs in a browser.

® The FSC and WSMOS components are acting as two black boxes to the user. The

user calls the web service operations by using the functional style public APIs. No

internal technologies need to be known such as SOAP or XML. If the user wants

to make changes in a function she only needs to re-write the Amos Il stored

procedures and re-deploy the function as a web service operation.

® CMS defines the Amos Il stored procedures and exports them as Web Service
operations by using the WSMOS system. The WSMOS generator generates the

WSDL document automatically to help the user to get the information of the

operations.

Comparing the codes

When invoking a web service call with FSC, the user only needs to give the operation

name along with a parameter values list to the SOAPClient.invoke() function. The

user can get the result object directly without knowing anything about XML, SOAP,
WSDLE, etc. We take the code of LISTSTUDENTS function as an example to show how
FSC make CMS’s code simple and compact compared with a the JSP implementation

on the server.

JSP Course Manager

CMS

//Get Amos 11 connection

Connection con = amos.getConnection();
//Save arguments in Tuple

Tuple arg = new Tuple(2);
arg.setkElem(0, 3);

arg.setElem(l, "inc'™);

//Call Amos 11 function

Scan theScan =
con.callFunction("INTEGER.CHARSTRING.L
ISTSTUDENTS->VECTOR", arg);

//call web service
Function listStudent(){

SOAPClient. invoke(""LISTSTUDENTS",
[3,"inc',cname], true,
listStudent_callBack,error_callBack);

}

-35-

//Set result table header function listStudent_callBack(o,
xmIDoc){

String colHeader =
"<TR><TH>Name</TH><TH>e- //Set result table header
mai I</TH><TH>Group No.</TH><TR>";

//Format result into HTML table mai I</th><th>Group No.</th></tr>";

out.printIn(Jspamos.Utilities.resultTo | //Format result into HTML table

Table(theScan, "",colHeader));
var table =

resultToTable(o,null,tblHead);

}
//Catch error //Catch error
try{.}catch (Exception e) { function error_callBack(e,errorCode){
out_printin(e); var error="Error message: ' + error +
", Error code: " + errorCode;
e.printStackTrace();
}

Table 4: Comparison of the code in JSP Course Manager and CML

In Table 4, when making a request, the JSP Course Manager server side code first
creates an Amos Il Connection, con, sets creates an object of class Tuple holding the
request arguments, and then uses the method callFunction()to call an Amos Il
function from Java code. The classes Tuple and Connection are defined in the callin
interface. In contrast, the CMS user can make a call simply by calling
SOAPCIlient.invoke() function from JavaScript code in the client. When processing the
result, the JSP Course Manager returns a scan and uses a utility Java method,
resultToTable(), to convert it into a HTML table. CMS returns an object and uses the
utility JavaScript function, resultToTable(), to build HTML table. There are some
utility functions in CMS that use DOM objects and methods to convert different type
of result object into corresponding HTML components.

When catching errors, both implementations give the error messages. CMS puts the
error into an error_callBack() function associating with an error code. Through the
comparison in Table 4, we get that:

® FSC not only displays the User Interfaces but also builds the request to the web
service operation directly so that it transfers some server burden to the web
browser.

@® FSC users can use the same SOAPClient.invoke() function along with the
operation’s name and parameter value list to call any Amos Il function that is
deployed by WSMOS. The result is handled through the callback function.

-36-

var tblHead = "<tr><th>Name</th><th>e-

® CMS can make both synchronous and asynchronous call to the web services,
which the JSP Course Manager can not. Asynchronous calls increases the
interactivity of the user interface of CMS.

5. Conclusions

In conclusion, the project devises a different approach to query data through web
services by introducing FSC. Using FSC, users can make a web service request by
simply providing the web service operation’s name and parameter values list as
input data to a JavaScript function SOAPClient.invoke(). FSC builds the SOAP request
envelope automatically and sends the request SOAP either asynchronously or
synchronously. In the response, FSC extracts the result object from the SOAP
response envelope. Since FSC is a generic JavaScript package, users can use it for
calling standard web services through its public APIs. During this process users do
not need to know anything about WSDL, SOAP or XML but get the result converted
into JavaScript objects.

As a proof-of-concept application of FSC, the cource manager system (CMS) uses FSC
as its web service client which makes the system more flexible and extendible than a
corresponding implementation based on Java Server Pages. Asynchronous calls
increase the efficiency of loading web pages. The CMS client can run in most of the
standard web browsers because all code is written in JavaScript. Any Amos Il
function can be deployed as a web service operation by using the WSMOS system
and called by FSC. | also evaluated FSC with some other web services. Most of the
web service operations can be handled by FSC except those who need special SOAP
header or tag name to identify the request.

-37-

References

[1]. AJAX - The XMLHttpRequest Object,
http://www.w3schools.com/Ajax/ajax xmlhttprequest create.asp, last viewed
2010-02-18.

[2]. AJAX (Programming). http://en.wikipedia.org/wiki/AJAX, last viewed 2010-01-31.

[3]. Apache Tomcat, http://tomcat.apache.org/, last viewed 2010-04-01.

[4]. E.Cerami: Web Services Essentials Distributed Applications with XML-RPC, SOAP,
UDDI & WSDL, First Edition February 2002, O'Reilly, ISBN 10: 0-596-00224-6

[5]. E.Newcomer: Understanding Web Services: XML, WSDL, SOAP, and UDDI, 1
edition May 23, 2002, Addison-Wesley Professional, ISBN-10: 0201750813

[6]. Extensible Markup Language (XML), http://www.w3.org/XML/, last viewed
2010-05-25.

[7]. F.Luan: Automatic web services Generator for Data Access, UDBL Technical
Report, Dept. of Information Science, Uppsala University, Sweden, February 26,
2007, http://user.it.uu.se/~udbl/Theses/FenglLuanMSc.pdf, last viewed 2009-02-
18

[8]. G.Fahl and T.Risch: AMOS Il Tutorial, Uppsala Database Laboratory, August 20,
2008, http://user.it.uu.se/~udbl/amos/doc/tut.pdf, last viewed 2009-02-18

[9]. Hypertext Transfer Protocol -- HTTP/1.1,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html, last viewed 2010-02-
20.

[10]. J.J).Garrett (2005-02-18). Ajax: A New Approach to Web Applications.
AdaptivePath.com.
http://www.adaptivepath.com/ideas/essays/archives/000385.php, last viewed
2010-01-31.

[11]. Java Server Pages Technology, http://java.sun.com/products/jsp/, last viewed
2010-03-27.

[12]. JavaScript: Use a Web Proxy for Cross-Domain XMLHttpRequest Calls,
http://developer.yahoo.com/javascript/howto-proxy.html, last viewed 2010-02-
21

[13]. JavaScript, http://en.wikipedia.org/wiki/JavaScript, last viewed 2010-05-25.

-38-

http://www.w3schools.com/Ajax/ajax_xmlhttprequest_create.asp
http://en.wikipedia.org/wiki/AJAX
http://tomcat.apache.org/
http://www.w3.org/XML/
http://user.it.uu.se/%7Eudbl/Theses/FengLuanMSc.pdf
http://user.it.uu.se/%7Eudbl/amos/doc/tut.pdf
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://java.sun.com/products/jsp/
http://developer.yahoo.com/javascript/howto-proxy.html
http://en.wikipedia.org/wiki/JavaScript

[14]. M.Casati: JavaScript SOAP Client,
http://www.codeproject.com/kb/Ajax/JavaScriptSOAPClient.aspx, last viewed
2010-05-31.

[15]. M.Chapple: Entity-Relationship Diagram,
http://databases.about.com/cs/specificproducts/g/er.htm, last viewed 2010-05-
26.

[16]. R.Shannon, Ajax, http://www.yourhtmlsource.com/javascript/ajax.html, last
viewed 2010-05-28.

[17]. S.Flodin, M.Hansson, V.Josifovski, T.Katchaounov, T.Risch, M.Skéld, and
E.Zeitler: Amos Il Release 12 User's Manual , Uppsala DataBase Laboratory,
http://user.it.uu.se/~udbl/amos/doc/amos _users guide.html, last viewed 2010-
01-31.

[18]. Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000.
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/, last viewed 2010-02-20.

[19]. T.Risch: JavaScript based web services access to a functional DBMS, 2009-05-
07

[20]. Web services, http://www.webopedia.com/TERM/W/Web Services.html,
last viewed 2010-02-18.

[21]. Web services Architecture, W3C Working Group Note 11 February 2004,
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/, last viewed 2010-02-18.

[22]. Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/wsdl, Retrieved 2010-02-18.

[23]. XML Schema, The XML Schema Working Group,
http://www.w3.org/XML/Schema, last viewed 2010-5-26.

-39-

http://www.codeproject.com/kb/Ajax/JavaScriptSOAPClient.aspx
http://databases.about.com/cs/specificproducts/g/er.htm
http://www.yourhtmlsource.com/javascript/ajax.html
http://user.it.uu.se/%7Eudbl/amos/doc/amos_users_guide.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.webopedia.com/TERM/W/Web_Services.html
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema

Appendix A: Source code of FSC application

Some of the important functions in FSC application:

SOAPClient.invoke = function(method, parameters, async, callback,
errorcal lback)
{
iT(SOAPClient._delay == undefined){
SOAPClient._delay = 50000;
}
try{
if (arguments.length < 5 || arguments.length > 5)
{
throw new Error(Invalid input argument, SOAPClient.invoke
method requires 5 arguments, but " + arguments.length + (arguments.length ==

1? " was" : " were") + " specified.”);
¥
}
catch(e){
alert(e.name+" "+e.message);
return;
¥

SOAPClient.errorcallback = errorcallback;
var xmlDoc = SOAPClient._getURL(async,errorcallback);
try{
var wsdl_url = xmlDoc.getElementsByTagName(*'wsdl-
url')[0].childNodes[0] .nodeValue;
var url = xmlDoc.getElementsByTagName("'ws-
url™)[0].FfirstChild.nodeValue;
}
catch(e){
if(async)
errorcallback("Line 362" + e.name + "url in the web.xml file not
specified."”, 602);
else
return errorcallback(''Line 364" + e.name + "url in the web.xml
file not specified.”, 602);
b
if(wsdl_url!=null && url!=null){
if(async)
SOAPClient._loadWsdl (url, method, parameters, async, callback,
errorcallback, wsdl_url);
else
return SOAPClient._loadWsdl(url, method, parameters, async,
callback, errorcallback, wsdl_url);

}
}

SOAPClient._loadWsdl = function(url, method, parameters, async, callback,
errorcallback, wsdl_url)
{
SOAPClient._wsdl = wsdl_cache[wsdl_url];
iT(SOAPClient._wsdl + "' I= """ && SOAPClient._wsdl + ' I= "undefined"){
var ns = (SOAPClient._wsdl._documentElement._attributes[' targetNamespace']

- 40 -

+ """ == "undefined™) ?
SOAPClient._wsdl .documentElement._attributes.getNamedltem('"targetNamespace™).
nodeValue :
SOAPClient._wsdl .documentElement._attributes["targetNamespace'] .value;
var paramBody = SOAPClient._paramToXml(method, parameters, ns, async,
errorcal lback);
if (paramBody == null){
return;
}
return SOAPClient._sendSoapRequest(url, method, paramBody, ns, async,
callback, errorcallback);
}
else{
var xmlHttp = SOAPClient._getXmlHttp(async,errorcallback);
SOAPClient._xmlhttp = xmlHttp;
xmlHttp.open(""GET", wsdl_url, async);
if (SOAPClient._timeout == null) {
SOAPClient._timeout = window.setTimeout(SOAPClient._getTimeoutError,
SOAPClient._delay,wsdl_url);

¥
if (async) {
xmIHttp.onreadystatechange = function()
{
if(xmlHttp.readyState == 4){
SOAPClient._readWsdl(url, method, parameters, async,
callback, errorcallback, xmlHttp,wsdl_url);

}

}
xmlHttp.send(null);

} else if (lasync){
xmlHttp.send(null);
return SOAPClient._readWsdl(url, method, parameters, async, callback,
errorcallback, xmlHttp);
}
}
}

SOAPClient._readWsdl = function(url, method, parameters, async, callback,
errorcallback, req,wsdl_url)

{

try {
var httpstatus = req.status;

var httpstatusText = req.statusText;
ifT (httpstatus '= null){
window.clearTimeout(SOAPClient._timeout);
SOAPClient._timeout = null;
SOAPClient._xmlhttp = null;
}
ifT (httpstatus == 200 || httpstatus == 202) {
SOAPClient._wsdl = req.responsexML;
wsdl_cache[wsdl_url] = SOAPClient._wsdl;
var ns =
(SOAPClient._wsdl .documentElement.attributes['targetNamespace'™] + """ ==
"undefined™) ?
SOAPClient._wsdl.documentElement.attributes.getNamedltem(''targetNamespace') .
nodeValue :
SOAPClient._wsdl .documentElement._attributes[' targetNamespace'].value;

-41 -

var paramBody = SOAPClient._paramToXml(method, parameters, ns, async,
errorcal lback);
it (paramBody == null){
return;
¥
return SOAPClient._sendSoapRequest(url, method, paramBody, ns,
async, callback, errorcallback);
Yelse{
throw new Error(’Line 495: HTTP "™ + httpstatus + " , ' +
httpstatusText + '\n Server connection has failed.');
}
}catch (e) {
return errorcal lback(e.message,httpstatus);
}
}

SOAPClient._sendSoapRequest = function(url, method, paramBody, ns, async,
callback, errorcallback)
{
var sr =
"<?xml version=\"1.0\" encoding=\"utf-8\"?>" +
"'<soap:Envelope " +
"xmIns:xsi=\"http://www.w3.0rg/2001/XMLSchema-instance\" " +
"xmIns:xsd=\"http://www.w3.0rg/2001/XMLSchema\" " +
"xmlIns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\"">" +
"'<soap:Body>" +
"<" + method + " xmIns=\""" + ns + "\">" +
paramBody +
"</" + method + ""></soap:Body></soap:Envelope>";
var xmlHttp = SOAPClient._getXmlHttp(async,errorcallback);
SOAPClient._xmlhttp = xmlHttp;
xmIHttp.open(*'POST", url, async);
iT (SOAPClient._timeout == null) {
SOAPClient._timeout = window.setTimeout(SOAPClient._getTimeoutError,
SOAPClient._delay);
¥
var soapaction = ((ns.lastlndexOf("'/"") != ns_length - 1) ? ns + /" - ns)
+ method;
xmlHttp.setRequestHeader (""SOAPAction™, soapaction);
xmlHttp.setRequestHeader (*'Content-Type", "text/xml; charset=utf-8");
if (async) {
xmIHttp.onreadystatechange = function()
{
if(xmlHttp.readyState == 4){
SOAPClient._getSoapResponse(method, async, callback,
errorcallback, xmlHttp);
}

}
xmIHttp.send(sr);

} else if (lasync){
xmlHttp.send(sr);
return SOAPClient._getSoapResponse(method, async, callback,
errorcallback, xmlHttp);
}
¥

SOAPClient._getSoapResponse = function(method, async, callback,

-42 -

errorcallback, req)
{
var httpstatus = req.status;
var httpstatusText = req.statusText;
try {
if (httpstatus !'= null){
window.clearTimeout(SOAPClient._timeout);
SOAPClient._timeout = null;
SOAPClient._xmlhttp = null;
¥
if (httpstatus !'= 200 && httpstatus != 202 && httpstatus = 500) {
throw new Error(*'Line 570: HTTP " + httpstatus + " , ' +
httpstatusText + '\n Server connection has failed.');
}
}catch (e) {
if(async)
errorcal lback(e.message,httpstatus);
else
return errorcal lback(e.message,httpstatus);
return;

}

var o = null;
var nd = SOAPClient._getElementsByTagName(req.responsexXML, "tns:results",
async, errorcallback);
if (nd.length == 0){
nd = SOAPClient._getElementsByTagName(req.responseXML, method +
"Result", async, errorcallback);
}
if(nd.length == 0)
{
if(req.-responsexML.getElementsByTagName(""faultcode™).length > 0){
try{
var faultCode =
req.responsexXML.getElementsByTagName(*'faultcode')[0].childNodes[0] -nodeValue;
var faultString =
req.responsexML .getElementsByTagName(*faultstring')[0].childNodes[0] -nodeVal
ue;
iT(req.responsexML.getElementsByTagName(*'detail")[0] !=
nulD{
if
(req-responsexML.getElementsByTagName("'detail')[0] -hasChildNodes()){
var detail =
req.responseXML.getElementsByTagName(*'detail')[0] .childNodes[0]-.childNodes[0O
]-nodevalue;
}

s
throw new Error(500, "Line 595: faultcode: " + faultCode +
"\n"+ "faultstring: " + faultString+ '"\n"+ "detail: " + detail);

¥
catch (e) {
if(async)
errorcallback(e.message,500);
else
return errorcal lback(e.message,500);
}

- 43 -

Yelse{
0 = SOAPClient._soapresult2object(nd[0]);
}
if(async)
SOAPClient._generateCallback(o, req.responseXML, async, callback,
errorcal lback);
if(lasync)
return SOAPClient._generateCallback(o, req.responsexXML, async,
callback, errorcallback);

}

-44 -

Appendix B: Source code of CMS

There gives an example of the page which is listing all the students in the course in
CMS.

The database functions are:
create function listStudents(integer col, charstring order, charstring cname)
-> vector students
as select sortbagby((select studentinfoPublic(s)
from student s
where coursename(s) = cname)
,col ,order);

The client html page is:
<html>
<head>
<title>List of students</title>
<script type=""text/javascript'” src="scripts/utility.js'"></script>
<script type=""text/javascript’” src="scripts/SOAPClient.js"></script>
<script type=""text/javascript" language="javascript'>
var error;
var oMyObject = window.dialogArguments;
var cname = oMyObject.selectedCourse;

function listStudent(){

error = null;

SOAPClient. invoke(""LISTSTUDENTS",
[3,"inc",cname],
true,
listStudent_cal lBack,

error_callBack);

}

function listStudent_callBack(o, xmlDoc)
{
Var tblHead =
"'<tr style="background-
color:lightgrey”><th>Name</th><th>e-mail</th><th>Group No.</th></tr>";
var table = resultToTable(o,null,tblHead);
document.getElementByld(""listDiv").innerHTML = table;

}

function error_callBack(e, errorCode){
it (e = nul){
error = e;
document.getElementByld("listDiv'").style.display="none";
document.getElementByld(“'errorDiv'") . innerHTML="Error
callBack:
" + error + "

Error code:
" + errorCode;
¥
¥

function close_onclick(){
window.close();

- 45 -

}

</script>
</head>
<body onload="return listStudent();">
<h2>The students currently registered for the course are:</h2>
<div id="listDiv" style="display:block;"></div>
<div id="errorDiv''></div>
<div align="center'><input type="button” value="close"
align=""center' onclick="return close_onclick();"></div>
</body>
</html>

- 46 -

	1. Introduction
	2. Background
	2.1 Web Services
	2.1.1 XML
	2.1.2 WSDL
	2.1.3 SOAP

	2.2 JavaScript and Ajax
	2.2.1 Ajax
	2.2.2 Synchronous call and Asynchronous call

	2.3 Amos II
	2.4 WSMOS
	3. The Functional web Services Client (FSC)
	3.1 The FSC package
	3.2 Example of using FSC
	3.3 Implementation details top-down
	3.3.1 Application interface
	3.3.2 The Request Module
	3.3.3 The Response Module

	3.4 Error Handling
	3.5 Timeout in FSC

	4. The course manager web service (CMS)
	4.1 Implementation of CMS
	4.2 Comparing JSP based course manager with CMS

	5. Conclusions
	References
	Appendix A: Source code of FSC application
	Appendix B: Source code of CMS

