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Abstract
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Numerous applications in for example science, engineering, and financial analysis increasingly
require online analysis over streaming data. These data streams are often of such a high rate
that saving them to disk is not desirable or feasible. Therefore, search and analysis must be
performed directly over the data in motion. Such on-line search and analysis can be expressed as
continuous queries (CQs) that are defined over the streams. The result of a CQ is a stream itself,
which is continuously updated as new data appears in the queried stream(s). In many cases,
the applications require non-trivial analysis, leading to CQs involving expensive processing. To
provide scalability of such expensive CQs over high-volume streams, the execution of the CQs
must be parallelized.

In order to investigate different approaches to parallel execution of CQs, a parallel data
stream management system called SCSQ was implemented for this Thesis. Data and queries
from space physics and traffic management applications are used in the evaluations, as well as
synthetic data and the standard data stream benchmark; the Linear Road Benchmark. Declarative
parallelization functions are introduced into the query language of SCSQ, allowing the user
to specify customized parallelization. In particular, declarative stream splitting functions are
introduced, which split a stream into parallel sub-streams, over which expensive CQ operators
are continuously executed in parallel.

Naïvely implemented, stream splitting becomes a bottleneck if the input streams are of high
volume, if the CQ operators are massively parallelized, or if the stream splitting conditions are
expensive. To eliminate this bottleneck, different approaches are investigated to automatically
generate parallel execution plans for stream splitting functions. This Thesis shows that by
parallelizing the stream splitting itself, expensive CQs can be processed at stream rates close to
network speed. Furthermore, it is demonstrated how parallelized stream splitting allows orders
of magnitude higher stream rates than any previously published results for the Linear Road
Benchmark.
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Abbreviations and Symbols 

Amos Active Mediator Object System 
CPU Central Processing Unit 
DBMS Database Management System 
DSMS Data Stream Management System 
b Broadcast percentage 
bfn Broadcast function 
C (CPU) cost 
CQ Continuous query 
cc Consume cost (Paper IV) 
ce Emit cost (Paper IV) 
cm Merge cost (Paper V) 
cp (Paper IV) Process cost 
cp (Paper V) Poll cost 
cr Read cost (Paper V) 
cs Split cost (Paper IV) 
E Emit capacity (Paper IV) 
fl Fanout at tree level l (Paper IV) 
Φ Stream rate (Paper IV – V) 
ΦD Desired stream rate (Paper V) 
Φoi Rate of output stream i (Paper IV) 
Φo(l) Total output stream rate at tree level l (Paper IV) 
ΦPARASPLIT Maximum stream rate of parasplit (Paper V) 
ΦPQ Maximum stream rate of PQ (Paper V) 
ΦPR Maximum stream rate of PR (Paper V) 
ΦPS Maximum stream rate of PS (Paper V) 
ΦPS

(1) Maximum stream rate of PS with q = 1 (Paper V) 
Gbps Gigabit per second 
GPU Graphics Processing Unit 
η Efficiency (Paper V) 
l Splitstream tree level (Paper IV) 
λl Cumulative fanout at tree level l (Paper IV) 
L Number of expressways in the LRB 
LR() LRB stream function implementation (Paper IV) 
LRB Linear Road Benchmark 
Mbps Megabit per second 
MPI Message Passing Interface 



 

 

MRT maximum response time 
n Parallelism (Paper III, section 4) 
O(·) Complexity is order of · 
p PS parallelism (Paper V) 
PQ Query processor in parasplit (Paper V) 
PR Window router in parasplit (Paper V) 
PS Window splitter in parasplit (Paper V) 
pset Processing set (in BlueGene) 
q PQ parallelism (Paper V) 
r Routing percentage 
rl Routing percentage at tree level l (Paper IV) 
rfn Routing function 
RP Running Process (Paper I) 
Si Stream i (Paper IV) 
Soj Output stream j (Paper IV) 
So(l)

j Output stream j at tree level l (Paper IV) 
SCSQ Super Computer Stream Query processor 
SCSQL Super Computer Stream Query Language 
scsq-lr SCSQ LRB implementation (Paper IV – V) 
scsq-plr Parallelized SCSQ LRB implementation (Paper IV – V) 
SP Stream process 
TCP Transmission Control Protocol 
TG Trip Grouping algorithm (Paper III) 
u Number of input streams (Paper V) 
w Width of parallelization (Paper IV) 
W Physical window size (Paper V) 
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1 Introduction 

On-line decision-making over streaming data requires processing of con-
tinuous queries (CQs). CQs are used in applications such as science, engi-
neering, and financial analysis. Unlike conventional database queries that are 
defined over tables, CQs are defined over live streams of values. A conven-
tional database query executes once and returns a table of tuples reflecting 
the current state of the tables. Each row in a database table is called a tuple. 
Analogously, an item in a data stream is also called a tuple. Unlike a conven-
tional database query that results in a table, the result of a continuous query 
is a stream. This result stream is updated as new data appears in the input 
stream(s). The data streams are often of such a high rate that saving them to 
disk is not desirable or feasible. Furthermore, results of CQs have to be de-
livered as soon as possible, putting requirements on the response time. In 
many cases, the applications require non-trivial analysis, leading to CQs 
involving expensive processing. 

When new tuples arrive in the input stream, the CQ is executed over these 
tuples. If the CQ is expensive, result tuples will not be delivered immedi-
ately. Depending on the cost of the CQ, delays are incurred until result tuples 
are delivered. If the response time is larger than the rate of the input stream 
tuples, the delays accumulate, effectively preventing the system from keep-
ing up with the input stream rate. A classic method for keeping up with the 
input stream rate is load shedding, i.e. dropping the tuples of the input 
stream that cannot be processed in time [38]. However, if data loss is not 
tolerated, load shedding is not an option, and the execution of queries be-
comes a scalability problem. One approach to provide scalability of CQs 
with expensive operations over high-volume streams is to parallelize the 
execution of the CQs. Input streams must be split into parallel sub-streams, 
over which expensive query operators are continuously executed. 

The problem of parallelizing CQ execution with expensive operations is 
addressed in this Thesis, which consists of five papers. The following overall 
research questions are studied. These research questions are established from 
the originally formulated research questions stated in Paper I. 

1. How can scalability of continuous query execution involving expensive 
computations be ensured for large stream data volumes? 

2. How should user-defined computations, and models to distribute these, 
be included without compromising the scalability? 
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3. How does the hardware environment influence the system architecture 
and its algorithms? For example, how can the communication subsys-
tems be utilized optimally? 

To answer the above research questions, we implemented a parallel Data 
Stream Management System (DSMS) prototype, called SCSQ (Super Com-
puter Stream Query processor). A DSMS is a general software system that 
processes CQs over data streams. In SCSQ, CQs are specified in a query 
language that includes types and operators for streams and vectors. Vector 
processing operators enable queries to contain numerical computations over 
the input data streams. Composite types are allowed, which enables useful 
constructs such as vectors of streams. Furthermore, the query language is 
extended with stream processes (SPs) and parallelization functions, which 
allow the user to specify customized parallelization and distribution of que-
ries. SCSQ has been implemented to execute in a variety of hardware envi-
ronments, including desktop PCs, Linux clusters, and IBM BlueGene. 

SCSQ was evaluated using data and queries from the following applica-
tions:  

• Digital telescopes of the kind that has been developed in the LOFAR 
[31] and Lois projects [32] (Paper II and Paper VI). Thousands of re-
ceivers spread over vast land areas digitize radio waves from outer space 
into data streams. Scientists search and analyze physical phenomena in 
these streams using CQs. The challenge is to execute these CQs over 
streams of high volume from a large number of receivers. 

• Automatic online spatio-temporal trip grouping in metropolitan areas 
with the purpose to save transportation cost (Paper III). The challenge is 
to continuously discover trip groupings with high savings when the 
number of requests per second is high. 

• The Linear Road Benchmark (LRB) [4] (Paper IV – V). The LRB simu-
lates an expressway system with variable tolling, which depends on the 
current traffic conditions. The system must compute toll rates and dis-
cover accidents using continuous queries over position reports that are 
emitted from the vehicles travelling in the expressway system. All que-
ries must deliver results within the allowed Maximum Response Time 
(MRT). The challenge is to process as many expressways as possible. 

Developing and evaluating SCSQ for these applications also led to the fol-
lowing more specific research questions: 

4. If the input stream splitting requires both routing and broadcasting of 
tuples, how can the stream splitting scale with increasing stream rate? 

5. If the input stream splitting itself is expensive, how can the stream split-
ting be automatically parallelized, with additional resource consumption 
within reasonable bounds? 
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Questions 4 and 5 are specializations of questions 1 and 2.  
Table 1 shows the relationship between each research problem and the 

papers. The contributions of the papers are summarized briefly below the 
table. A more elaborate summary of the contributions can be found in Chap-
ter 3. 

Table 1. Relationship between research 
questions (1 – 5) and papers (I – V). 

 1 2 3 4 5 

I × × ×   

II   ×   

III × ×    

IV × ×  ×  

V × × × × × 

The main contribution of Paper I is the definition of the research questions 
one, two, and three, and the outline of the first prototype of SCSQ, which 
was implemented in LOFAR’s heterogeneous parallel computing environ-
ment featuring an IBM BlueGene super computer and a number of Linux 
clusters. 

Paper II enhances the SCSQ prototype in the heterogeneous parallel 
computing environment. Multiple hardware systems had to be utilized opti-
mally by SCSQ. We develop primitives for efficient stream communication 
and parallel stream processing. Scheduling of the parallel stream processes 
turned out to be important for high stream rate in such an environment. 
These results provide an answer to research question three. 

The work in Paper I – II forms the basis for Paper VI, which summarizes 
the architecture of SCSQ and further discusses how SCSQ utilizes the hard-
ware of a parallel computing environment. 

Our implementation of stream communication and query distribution in 
SCSQ enabled us to study various practical applications of parallel stream 
processing. In Paper III, a system for continuous automatic booking of 
large-scale car sharing was implemented in SCSQ (Trip Grouping algorithm; 
TG) in order to save travel costs in metropolitan areas. A parallelization 
study showed that naïve round-robin splitting of the input data stream de-
creases the travel cost savings. When splitting the input stream using spatial 
methods, the savings improved substantially compared to the naïve splitting. 
This shows that custom splitting of input data streams is important. To facili-
tate advanced stream splitting, SCSQL is extended with postfilters that allow 
very flexible specifications of whether each individual result tuple should be 
sent to zero, one or more other stream processes. Paper III provides answers 
to research questions one and two. 
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To propel the development of SCSQ, we made an implementation of the 
LRB, called scsq-lr [41]. In Paper IV, different methods are evaluated for 
parallelizing custom input stream splitting. The overall strategy was to gen-
erate a tree of stream processes, where the input stream arrives at the root of 
the tree, and the parallel sub-streams are available at the leaves. The expen-
sive query operators are continuously executed in parallel over the streams 
from the leaf nodes. We showed that such tree-shaped stream splitting scales 
significantly better than a naïve splitting performed in a single stream proc-
ess. Furthermore, our performance for the LRB (64 expressways) is en-
hanced by one order of magnitude in comparison to previously published 
results [17]. Paper IV provides answers to research questions one, two, and 
four. 

The fundamental limitation of tree-shaped data stream splitting is the fact 
that all tuples must pass the root, in which operators for the custom stream 
splitting are executed on each tuple in the stream. Furthermore, passing tu-
ples between the SPs in the tree is computationally expensive. The cost of 
stream splitting and communication turns the root into a bottleneck. To 
eliminate this bottleneck, we developed a fully parallelized stream splitting 
method in Paper V, where custom stream splitting is performed on parallel 
sub-streams. Furthermore, to cut the communication cost, we introduced 
physical windows, effectively amortizing the communication cost over all 
tuples in the window. We call this parallelized stream splitting approach 
parasplit. We showed that stream splitting – and hence parallel stream proc-
essing – could be performed at network bound speeds using parasplit. Fur-
thermore, we showed that the computational overhead incurred by executing 
all the processes in parasplit was moderate. Lastly, our performance for the 
LRB (512 expressways) is enhanced by an additional order of magnitude 
compared to the results in Paper IV. In summary, Paper V provides answers 
to all research questions. 

The next chapter gives an overview of the enabling technologies used to 
develop SCSQ, and summarizes related work. Chapter 3 elaborates the con-
tributions, and outlines the evolution of SCSQ. Lastly, Chapter 4 provides 
directions for future work. 

 



 

 15 

2 Background 

This chapter discusses Data Stream Management Systems (DSMSs) and 
technologies that are related to this Thesis, including distributed databases 
and parallel batch systems. In addition, the chapter introduces the Amos II 
system, which SCSQ extends. 

2.1 Data Stream Management Systems 
Figure 1 shows the important building blocks of a DSMS. 

Input data 
streams

Query result 
data stream

DSMS

Queries

user
or

programmer

meta-
data

Query processing 
software

Stream data 
access software

stored
data

 
Figure 1. A Data Stream Management System 

Like a Database Management System (DBMS), a DSMS compiles and opti-
mizes user queries into query plans. Unlike a DBMS, a DSMS has the capa-
bility to process not only data at rest in tables, but also data in motion, illus-
trated by the input data streams in the figure. Queries that involve streams 
are called Continuous Queries (CQs). Unlike one-time queries to regular 
databases, CQs keep delivering results continuously in an output stream, and 
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can continue to do so for an indefinite amount of time. A CQ is terminated 
either explicitly by the user or by a stop condition in the query. When opti-
mizing one-time queries, the query optimizer may use meta-data and statis-
tics on the tables. In the same fashion, a CQ optimizer may use meta-data 
and statistics on the data streams. An executing CQ plan continuously reads 
input data streams and may access stored data. A lot of research effort has 
been put into semantics and languages for CQs, as well as processing, opti-
mization, and execution of CQs [22]. Many of these research efforts are 
made by building and extending DSMS prototypes [1] [11] [14] [29] [33]. 

When executing an expensive CQ over streams of high rate, it is impor-
tant that the CQ keeps up with the rate of the input stream(s). One strategy to 
keep up with the stream rate in overload situations is load shedding [38] 
[15]. This is not an option if data loss is not tolerated. If the input stream is 
bursty, it may be feasible to balance the load over time by writing some tu-
ples to disk during overload, and process them later during quieter periods 
[30]. This strategy is called state spill. If the input stream rate is constantly 
high and if the application needs the DSMS to respond in time, state spill is 
not an option. In this case, parallelization of the execution is a way to keep 
up with the input stream rate. How this is done is explored in this Thesis. 

2.2 Parallel Data Stream Management 
Two main strategies for parallelization of continuous queries can be identi-
fied: Partitioning the query plan (operator parallelism), and partitioning the 
data (data parallelism). Plan partitioning involves assigning query operators 
to compute nodes [26]. In adaptive CQ plan partitioning, query plans are 
partitioned by dynamically migrating operators between processors [8]. A 
variant of adaptive query plan partitioning is called Eddies, which routes 
tuples to the operator that currently has the smallest load [5] [39]. However, 
a fundamental problem of CQ plan partitioning is the fact that heavyweight 
stream operators are bottlenecks. For example, the heaviest stream operator 
of a partitioned query proved to be a bottleneck in [26]. The goal of data-
partitioned parallelization is to eliminate bottlenecks associated with expen-
sive operators by parallelizing those operators and partitioning the data such 
that each operator processes a portion of the data. Partitioning a data stream 
requires the input stream to be split into parallel sub-streams over which CQ 
operators are executed in parallel. DSMS operators for splitting a stream 
have been discussed in [12], and have been implemented and evaluated in 
[3] and [9] for moderate numbers of parallel sub-streams. To partition a 
stream of high volume into a large number of parallel sub-streams, scalable 
splitstream functions are introduced in this Thesis. 

A naïve data-partitioning strategy is to route input stream tuples to the 
query processors in a round-robin fashion. This approach is often sub-opti-
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mal, as was shown in [27], where a query-aware input data stream partition-
ing was proposed and evaluated. However, in [27], the execution and scal-
ability of input stream splitting was not studied. A recent study identifies the 
problem of scaling up the number of parallel sub-streams when splitting an 
input stream into parallel sub-streams [3]. Recent work in distributed event 
based stream processing has also observed the scalability problem of parti-
tioning an event stream into a number of sub-streams using non-trivial 
stream splitting predicates [9]. This Thesis is set apart from previous work 
by proposing two approaches for parallelizing the stream splitting itself, 
namely tree-based parallelization (exptree and maxtree in Paper IV), and 
lattice-based parallelization (parasplit in Paper V). We show that parasplit 
enables stream processing at network bound rates by massive scale-out of 
customized routing and broadcasting. 

Although automatic parallelization of CQs was shown to be possible for a 
certain class of aggregation and join queries in [27], it is very difficult to 
automatically induce a data parallel strategy in general. This is especially 
difficult if the CQs are not declarative. Therefore, many DSMSs and DBMSs 
require the user to provide additional information to assist the parallelization 
of the queries. 

Both SPADE [3] and StreamInsight [28] have stream splitting operators 
that allow routing and broadcasting of streams, which are used when paral-
lelizing the stream processing. The stream programming language 
WaveScript [34] represents a program by a graph of stream operators that is 
partitioned into sub-graphs and executed in a distributed environment. 
GSDM [25] distributes stream computations by generating parallel execution 
plans with tree-shaped stream splitting, through parameterized code genera-
tors. These code generators are called distribution templates. The user se-
lects a parallelization strategy by choosing a distribution template. By con-
trast, SCSQ provides declarative parallelization functions in the query lan-
guage. Stream splitting is specified using routing and broadcast functions. 
As parallelization functions are declarative, they are optimizable and auto-
matically parallelizable. This fact is exploited when we parallelize the execu-
tion of splitstream into exptree, maxtree, and parasplit. 

When transferring stream tuples between compute nodes in a distributed 
DSMS, the marshalling cost is substantial. This tuple transfer cost is reduced 
by grouping tuples into windows (also known as signal segments, or 
SigSegs) [21]. Similarly, SCSQ utilizes physical windows, which was shown 
to be important for maintaining network bound stream rates in Paper V. 

2.3 Distributed Databases 
In distributed databases, fast and scalable data processing is facilitated by 
scaling out storage. Fragmentation and replication [35] are key technologies 
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for this scale-out. The purpose of fragmentation is to partition data over dis-
tributed storage nodes in a balanced way, whereas replication aims to pro-
vide fast access or high availability by storing each tuple in more than one 
node. The user provides fragmentation and replication conditions as meta-
data. Analogous to fragmentation and replication conditions of distributed 
databases, our splitstream functions provide customized routing and broad-
casting of stream tuples (Paper IV – V). Unlike distributed databases, the 
extreme stream rates for DSMSs require scaling out not only the CQs, but 
also the execution of routing and broadcast functions. 

2.4 Parallel Batch Systems 
A well-known example of an infrastructure for large-scale parallel data 
processing is MapReduce [16], which was implemented at Google to support 
parallel processing on large-scale computational clusters of large numbers of 
distributed data sets. MapReduce allows a programmer to map any function 
over each data item in a distributed file system, and to compute any reduce 
(aggregate) function over each data item resulting from the mapping. This 
can be seen as a form of parallelized group-by. By contrast, SCSQ has a 
general streaming query language, allowing streams to be both split, trans-
formed and queried in a scalable way. 

More recently developed systems allow more flexible parallelization 
schemes than does MapReduce. For example, Dryad [24] provides a proce-
dural language to construct graphs of processes and communication chan-
nels. In contrast to Dryad, SCSQ does not require the user to explicitly con-
struct process graphs, since the process graphs of SCSQ are automatically 
generated by the parallelization functions. 

Map-Reduce-Merge [45] provides an SQL-like query language on top of 
MapReduce, which significantly eases the programming burden on the user. 
Like Map-Reduce-Merge, SCOPE [10] provides a scripting language and 
execution environment for analysis of large data sets on large clusters. How-
ever, neither Map-Reduce-Merge nor SCOPE allows on-line stream process-
ing. 

MapReduce, SCOPE, and Dryad are all batch systems that do not process 
streams on-line. Also, the Computational Grid [18] is a basic infrastructure 
for batch processing on distributed clusters. The purpose of a batch system is 
to provide multiple users with the functionality to process entire data sets at 
rest within reasonable time, while maximizing total system throughput for all 
users. As all data files of a batch system are available all the time, a batch 
system has the freedom to access each data item more than once, while 
streams typically must be processed in one pass due to their infinite nature. 
Furthermore, batch computations produce files, while the result of a CQ is a 
stream. Thus, batch systems do not continuously produce output streams 
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while input data is processed, and the output is normally delayed until all 
processing is complete. The scheduling of computations in batch systems is 
also allowed to be delayed to improve total system throughput. By contrast, 
on-line stream processing using CQs requires the result stream tuples to be 
delivered just after new data has arrived on the input stream.  

Recently, Streaming MapReduce was introduced [13] with pipelining ex-
tensions that gave MapReduce the capability to process parallel data streams. 
Like conventional MapReduce, Streaming MapReduce is based on a proce-
dural programming model not using any general query language. Further-
more, the problem of scalable stream splitting is not handled by Streaming 
MapReduce. 

2.5 Amos II 
SCSQ is implemented using the Amos II kernel [36]. Amos II is a functional 
and extensible main memory DBMS, with a main-memory storage manager, 
query processor, and a type system. Queries are compiled and optimized 
using a cost-based optimizer, which translates the queries into procedural 
execution plans in ObjectLog, which is an object-oriented dialect of Datalog. 
Queries are optimized using statistical estimates of the cost of executing 
each generated query execution plan expressed in a query execution algebra. 
A query interpreter interprets the optimized algebra to produce the result. To 
minimize memory requirements during the interpretation of queries over 
large data sets, the execution plans are interpreted in an iterative tuple-by-
tuple style, materializing data only when favorable. This approach of mini-
mal materialization lends itself very well to execution of CQs, and is there-
fore utilized in SCSQ. 

SCSQ extends Amos II in the following ways: 

• Stream query coordinators start parallel processes dynamically (Paper 
I – II). 

• SPs provide mechanisms for iteration over streams in a distributed envi-
ronment (Paper I – III). 

• Primitives for network stream connections provide an infrastructure for 
communicating stream processes (Paper II). 

• Numerical vectors represented in binary form, and functions operating 
over these vectors, provide efficient processing of stream tuples (Paper 
II and Paper IV – V). 

• Postfilters extend stream processes by reducing and transforming their 
output streams (Paper III). 

• Query language parallelization functions provide declarative paralleliza-
tion of CQs (Paper IV – V). 
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• Physical windowing functions provide network bound data stream rates 
between stream processes (Paper V). 

• Performance tools allow profiling of parallelized query execution (all 
papers). 
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3 Overview of contributions 

The first SCSQ prototypes were made to execute in a high performance 
computing environment, containing an IBM BlueGene super computer, and 
a number of Linux clusters. In such a massively parallel environment, sev-
eral communication subsystems co-exist and need to be utilized optimally 
for parallel processing of streams of high rate. Therefore, efficient stream 
communication primitives are a crucial part of SCSQ. In Paper II, SCSQ 
itself was used to investigate the communication performance of a BlueGene 
cluster environment. To enable this investigation, the query language of 
SCSQ, called SCSQL, was extended with Stream Processes (SPs), allowing 
the user to specify parallelization of queries. Furthermore, query language 
functions were introduced that allowed the user to specify the location of 
processes in a heterogeneous and distributed environment. We showed how 
to use SPs and functions for process location to determine properties of the 
communication subsystems of a heterogeneous high performance computing 
environment. The scheduling of SPs was shown to have a significant impact 
on the communication performance. Thus, careful scheduling of SPs is im-
portant to achieve high stream rate in such an environment. These results 
provides answer to research question three. 

Using SCSQ, we carried out extensive studies of two applications of par-
allel stream processing: Trip grouping for large-scale collective transporta-
tion systems, and the Linear Road Benchmark (LRB). Both these applica-
tions featured expensive CQs, which were executed over input streams of 
high rate. To keep up with increasing input stream rates, the CQ execution 
had to be parallelized. In both applications, the input stream was split into a 
number of parallel sub-streams, each sub-stream having a lower rate than the 
input stream. CQ operators were executed over each sub-stream. The output 
streams of the parallel CQ operators were further processed or merged de-
pending on the application. 

In Paper III, a streamed Trip Grouping algorithm (TG) was devised that 
enables on-line ride-sharing in a metropolitan area. TG was implemented 
and executed using SCSQ, and its execution was parallelized. In the paral-
lelization experiments, it became evident that naïvely splitting the input 
stream in a round-robin fashion leads to sub-optimal trip grouping results. 
Instead, by splitting the input stream using spatial partitioning methods, the 
trip grouping quality improved. This demonstrates the usefulness of user-
defined splitting of data streams. 
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Parallel computations were defined as sets of parallel sub-queries, where 
each sub-query executed on one SP. The output of an SP is sent to one or 
more other SPs, which are called subscribers of that SP. To enable non-
trivial stream splitting, SCSQ’s stream process function SP() was extended 
with an optional functional argument, called a postfilter. The postfilter is 
expressed in SCSQL, and can be any function that operates on the output 
stream of its SP. For each output tuple from the SP, the postfilter function is 
called once per subscriber. Hence, the postfilter can transform and filter the 
output of an SP to determine whether a tuple should be sent to a subscriber. 
In the parallelization experiments, one SP was splitting the incoming stream 
of trip requests using a postfilter. 

Figure 2 shows how the SPs communicate when TG is parallelized. The 
input stream S is split by SPS into q parallel streams. Spatial partitioning 
methods were used in the postfilter function of SPS. Each stream S0 … Sq-1 is 
processed by an SP running TG. The result streams from all SP0 … SPq-1 are 
merged into the result stream R in SPU using a union-all. We showed ex-
perimentally that splitting the input stream according to spatial partitioning 
methods was superior to naïve round-robin stream splitting. The results of 
the parallelization experiments of Paper III provided insight into research 
questions one and two. 

SPS SPU

Sq-1

S1

S0

S R
...

SPq-1

SP1

SP0

 
Figure 2. Parallelization of TG using SPs. 

For Paper IV – V, we made an implementation of the LRB, called scsq-lr 
[41], and studied how to parallelize that implementation. LRB simulates a 
traffic system of expressways with variable tolling that depends on the utili-
zation of the roads and the presence of accidents. Vehicles undertake jour-
neys in an expressway system consisting of L expressways while emitting 
position reports. The input stream to the implementation contains such posi-
tion reports and parameterized queries, whereas the expected output stream 
of the implementation contains responses to a number of continuous and 
historical queries, which are specified in the benchmark. The implementation 
must respond correctly to these queries within the allowed maximum re-
sponse time (MRT). The number of expressways that an implementation is 
able to respond to within the MRT is called the L-rating of the implementa-
tion. 
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Most of the CPU time of scsq-lr was spent computing statistical aggre-
gates for toll calculation. These aggregates are local to each expressway. 
Thus, the key to efficient parallelization lies in partitioning the input stream 
into L parallel sub-streams, one for each expressway, and executing one 
instance of scsq-lr over each sub-stream. This strategy was employed in 
scsq-plr, as reported in Paper IV. When employing this parallelization strat-
egy, a small fraction (0.5%) of the tuples in the input stream requires an 
aggregate to be computed across all parallel scsq-lr nodes. As a conse-
quence, these tuples must be broadcasted to all parallel sub-streams. Each 
parallel scsq-lr emitted a partial result of this aggregate, so these L partial 
results must be aggregated. Thus, the input stream is split such that most 
tuples are routed to exactly one of the sub-streams, whereas a small fraction 
of the tuples is broadcasted to all sub-streams. 

The cost of splitting the input stream using the postfilter functions devel-
oped in Paper III is O(q), where q is the number of output streams. For the 
LRB, q=L. Thus, using postfilters for splitting a stream into L parallel 
streams is too expensive when scaling L. To improve the scalability for high 
parallelism, a new class of functions was introduced, called parallelization 
functions. Parallelization functions are declarative, and can be parallelized 
automatically. Figure 3 illustrates the three basic parallelization functions: 
splitstream, mapstream, and mergestream. The function splitstream distrib-
utes and replicates tuples of the input stream by executing a routing function 
rfn and a broadcast function bfn. The functions rfn and bfn are provided by 
the user. The function mapstream applies a CQ on each stream in a collec-
tion of streams, while mergestream merges or joins a collection of streams 
into a single output stream. As splitstream turned out to be a bottleneck, we 
focused on parallelizing the execution of splitstream in Paper IV. 

 
Figure 3. Splitstream, mapstreams, and mergestream. 

We made a naïve implementation of splitstream called fsplit, which executed 
in a single process. We devised a cost model for fsplit, showing that it be-
comes a bottleneck especially if a large percentage of the tuples are broad-
casted. This bottleneck was alleviated by parallelizing the execution of fsplit 
using tree-shaped parallel execution plans. A theoretically optimal execution 
strategy called maxtree was developed based on the cost model for fsplit. 
However, maxtree required knowledge of the routing and broadcast percent-
ages, as well as the costs of rfn and bfn. Therefore, another kind of parallel 
execution plan called exptree was implemented, which did not require 
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knowledge of any of these percentages or costs. Although not theoretically 
optimal, the performance of exptree was shown to be comparable to that of 
maxtree. Lastly, autosplit was introduced, which features a simple heuristic 
that generates an exptree or an fsplit depending on whether bfn is present in 
the call to splitstream. In a final experiment, autosplit was used as a split-
stream function in a parallel implementation of the LRB. An L-rating of 
L=64 was achieved, which was an order of magnitude higher than any previ-
ously published result. 

In summary, the implementation of parallelization functions in Paper IV 
provides answers to research questions one and two. Distributing the execu-
tion of splitstream provides answer to research question four. 

The fundamental limitation of the tree-shaped execution plans introduced 
in Paper IV is the fact the input stream must pass the root of the splitstream 
tree, where rfn and bfn are executed for each tuple. Therefore, the maximum 
stream rate of a splitstream tree is sensitive to the cost of executing rfn and 
bfn. In particular, it was shown in Paper IV that the maximum stream rate of 
a tree with the rfn and bfn used to parallelize the LRB input stream corre-
sponded to 65 expressways. The data rate of 65 expressways is 73 Mbps, 
which is much less than the bandwidth of a gigabit Ethernet interface. Thus, 
the CPU cost of executing rfn and bfn prohibited higher stream rates. 

In Paper V, we showed how to handle expensive rfn and bfn by introduc-
ing parasplit, which is a new way of parallelizing the execution of split-
stream. The execution plan generated by parasplit had the shape of a lattice 
instead of a tree. The maximum stream rate of parasplit was shown to be 
superior to that of all splitstream trees. The execution of rfn and bfn was 
parallelized into a number of parallel processes, effectively making parasplit 
insensitive to the cost of rfn and bfn, as well as to the broadcast percentage. 
When implementing parasplit, the cost of marshalling and de-marshalling 
tuples of the input stream dominated the cost, turning the communication 
cost into a bottleneck. We introduced physical windows, effectively amortiz-
ing the communication cost over all tuples in the window. By setting the 
window size large enough for the communication system used, the marshal-
ling bottleneck was eliminated. 

An execution plan of parasplit is shown in Figure 4. First, the window 
router PR reads physical windows containing tuples represented in binary 
form from the input stream S. Each physical window is randomly routed 
with equal probability to one of the p parallel sub-streams Si, i = 0…p – 1. 
Second, each window splitter PSi unpacks the tuples of the physical win-
dows of its sub-stream Si received from PR, and executes rfn and bfn on each 
tuple so that each tuple is distributed to zero, one or more continuous query 
processors PQj, j = 0…q – 1. Third, each query processor PQj merges all 
received streams Tij, i = 0…p – 1, into a local stream Uj. Expensive CQ op-
erators are then applied in the query processors on each local stream Uj. 
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Figure 4. Execution plan of parasplit, showing p=3 and q=8. 

The maximum stream rate of parasplit was not sensitive to the cost of rfn 
and bfn, as the execution of these functions was parallelized. The maximum 
stream rate of parasplit was shown to be network bound instead of CPU 
bound. Furthermore, we showed that the computational overhead incurred by 
executing all the processes in parasplit was moderate. Thus, Paper V pro-
vides answers to all research questions one, two, three, four, and five. 
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4 Future Work 

When we started to study scalable parallelization of expensive continuous 
queries over massive data streams, we focused on research questions one, 
two, and three. In the process of looking for answers to these questions, we 
found that the scalability of input data stream splitting was crucial, leading 
us to formulate the additional research questions four and five. Although 
this Thesis provides answers to these five research questions, there are sev-
eral new research questions to study, as outlined below. 

Parasplit splits streams at network bound rates, which was experimen-
tally evaluated in a cluster of up to 70 compute nodes with eight cores each, 
connected by a 1Gbps switched network. Future work includes investigating 
the behavior of parasplit for higher network bandwidths and larger number 
of compute nodes, to identify unforeseen scalability problems. 

The query plan of parasplit is optimized, parallelized, and scheduled 
when the CQ is started. Although this approach was shown to work well in 
our evaluations, it would be worthwhile to extend it with methods for adap-
tive parallelization and scheduling of execution over streams after the CQ 
has been started, as in [29] and [2]. 

For CQs involving selective predicates, it should be investigated how to 
push down some selection predicates into rfn, effectively saving communi-
cation cost by increasing omit percentage o in the window splitters of pa-
rasplit. 

Stream join processing has been extensively studied in previous research. 
However, none of the existing research has investigated stream join process-
ing for large numbers of input streams of high volume. For instance, the 
studies in [6] and [20] were limited to binary joins, and the experiments of 
[27] were restricted to eight-way joins (involving four compute nodes). Win-
dowed multi-way join operators were studied for up to six parallel input 
streams in [42], and in [43], distributed windowed stream join was studied 
for adaptively partitioned windows. The experimental results in [43] were 
shown for three-way joins. In sensor networks, merge and join of many 
streams of moderate rates have been studied [37]. It would be highly inter-
esting to investigate how to facilitate scalable stream join processing for 
hundreds or even thousands of streams of high volume. 

Moreover, we want to extend our energy efficiency studies of parallel 
stream processing. Paper V estimates the energy efficiency of parasplit by 
comparing the CPU time spent in executing stream splitting predicates to the 
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CPU time of the parallelized parasplit. This efficiency measure shows how 
much extra work is incurred by parallelizing the stream splitting predicates. 
The unit of this efficiency measure is a percentage, as CPU seconds are di-
vided by CPU seconds. Future work includes investigating whether GPUs 
[23] and other hardware acceleration [44] techniques can be utilized to im-
prove energy efficiency of general parallel stream processing. 

Various utility measurements that capture the user value versus the execu-
tion cost of the DSMS should also be investigated. In the case of the LRB, 
possible utility measures are expressways per CPU second, expressways per 
unit electric energy [40], or expressways per ownership and operations cost.  

High Availability [7] is another aspect of parallel execution of CQs that 
has not been studied in this Thesis. The current implementation of SCSQ 
cannot guarantee operational performance, as there are no mechanisms im-
plemented to compensate for hardware or software slowdowns or unavail-
ability. Hence, methods that provide high availability for highly parallel 
stream processing systems should be developed. Furthermore, the energy 
efficiency of such methods should be investigated. 

Lastly, the parallelization functions of SCSQ may well provide an execu-
tion environment for inference in near real-time, such as data stream mining 
[19] and event processing [9]. In data stream mining applications, combining 
high volumes of data at rest with high volumes of data in motion is an im-
portant capability. Therefore, future work includes investigating scalable 
approaches to integrating parallel databases with SCSQ. 
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5 Summary in Swedish 

Den här avhandlingen handlar om skalbar parallellisering av kostsamma 
stående frågor över massiva dataströmmar. För att förstå vad detta innebär 
behövs lite bakgrund. 

Tillämpningar inom bland annat naturvetenskap, teknik, finansiell analys 
och datavetenskap ställer ökande krav på att nya data ska analyseras genast 
så fort de blir tillgängliga. Mätvärden, nyhetsflöden, marknadsinformation 
och loggfiler innehåller data som ständigt uppdateras. Sådana datakällor 
kallas dataströmmar. När nya data anländer med hög hastighet är det i regel 
inte önskvärt eller möjligt att lagra dataströmmens innehåll på disk för sena-
re analys, som i vanliga databaser. Istället måste sökning och bearbetning 
utföras direkt på den levande dataströmmen. Under det senaste decenniet har 
databasforskningen utvecklat metoder för sökning och bearbetning av sådana 
dataströmmar. Ansatsen är att bearbetningen ska kunna uttryckas med så 
kallade stående frågor, som förklaras härnäst. 

5.1 Stående frågor över dataströmmar 
Traditionella databashanterare, såsom Oracle och MySQL, utgörs av mjuk-
vara som lagrar data, vanligen i form av tabeller. Varje rad i en sådan tabell 
kallas tupel (på engelska tuple). En databashanterare har ett frågegränssnitt 
där användaren formulerar frågor i ett frågespråk, vanligen SQL. Frågorna 
uttrycker sökningar och bearbetningar av innehållet i dessa tabeller. Svaret 
på en fråga – som i sig är en tabell – beror av de lagrade tabellernas innehåll. 
Databashanterarens mjukvara översätter användarens frågor till frågeplaner. 
En frågeplan är ett program som kör de operatorer som behövs för att besva-
ra frågan. Att översätta en fråga till en plan kan göras på ofattbart många 
olika sätt, och det är viktigt att databassystemet kan upprätta smarta planer så 
att svarstiderna blir korta – för alla vet hur jobbigt det är att vänta på en da-
tor. Det allmänna problemet att generera effektiva planer för många olika 
sorters frågor kallas frågeoptimeringsproblemet och har studerats under lång 
tid inom databasforskningen. Även om tabellerna innehåller mycket data, 
eller om mer data fylls på i tabellerna, är det viktigt att frågorna fortfarande 
besvaras inom rimlig tid. Effektiv bearbetning av datamängder, även när de 
ökar i storlek, är ett centralt problem inom datavetenskapen som kallas skal-
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barhetsproblemet. Frågeoptimering och skalbarhet är centralt även vid sök-
ning och bearbetning av dataströmmar. 

Till skillnad från konventionella databasfrågor som är definierade över 
tabeller, är en stående fråga (på engelska continuous query) definierad över 
strömmar av data som ständigt ändras. Ett värde i en dataström kallas tupel, 
analogt med en rad i en tabell. Medan konventionella databasfrågor returne-
rar ett resultat som beror av tabellernas innehåll vid tillfället när frågan ställ-
des, är resultatet av en stående fråga i sig en ström av tupler som uppdateras 
efterhand som nya tupler anländer i de sökta strömmarna (indataströmmar-
na). En stående fråga kan köra obegränsat länge. 

Många stående frågor innehåller avancerad sökning och bearbetning som 
kräver mycket datorkraft, d.v.s. är kostsam att utföra. Samtidigt kräver till-
lämpningarna korta svarstider. Därför är frågeoptimeringsproblemet centralt 
även för dataströmhantering: Målet är att generera en plan av operatorer som 
levererar resultatströmmen med kortast möjliga svarstid. Svarstiden för en 
stående fråga definieras som tiden från att data anländer i indataströmmarna 
tills de eftersökta data levererats i resultatströmmen. Skalbarhetsproblemet är 
också viktigt: Dataströmhanteraren måste leverera en resultatström med 
minimalt dröjsmål även om bearbetningen är kostsam och tidskrävande, eller 
om nya data anländer med hög hastighet i indataströmmen. Dataströmmar 
där nya data anländer med hög hastighet kallas massiva. 

5.2 Forskningsfrågor 
Ett sätt att snabba upp kostsam sökning och bearbetning av dataströmmar är 
att parallellisera databehandlingen, genom att utnyttja många datorers sam-
lade beräkningskraft samtidigt. I den här avhandlingen, som består av fem 
studier, har vi undersökt hur stående frågor kan bearbetas parallellt över 
dataströmmar med hög hastighet. Frågeställningarna för avhandlingen for-
mulerades ursprungligen i vår första studie, Paper I. Från denna inledande 
studie kan följande övergripande frågeställningar kristalliseras: 

1. Hur kan stående frågor med kostsamma bearbetningar utföras skalbart 
över snabba dataströmmar? 

2. Hur ska dataströmhanteraren hantera och parallellisera specialiserade 
databearbetningar på ett skalbart sätt? 

3. Hårdvarumiljön utgörs av datorerna som står till systemets förfogande. 
Hur påverkar hårdvarumiljön systemets uppbyggnad och dess algorit-
mer? Hur ska t.ex. kommunikationssystemet utnyttjas optimalt? 

För att studera forskningsfrågorna har vi utvecklat en prototyp för parallell 
dataströmhanterig som vi kallar SCSQ (Super Computer Stream Query pro-
cessor, uttalas 'siss-kju:). I dess frågespråk SCSQL (Super Computer Stream 
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Query Language) kan stående frågor uttryckas över dataströmmar. Typsy-
stemet i SCSQL innehåller bl.a. strömmar och vektorer samt funktioner över 
dessa. Funktioner för vektorbearbetning har använts för att utföra beräkning-
ar över strömmarnas innehåll. SCSQL tillåter även sammansatta datatyper, 
vilket är användbart för att konstruera t.ex. vektorer av strömmar i ett fråge-
språk som tillhandahåller funktioner över bl.a. strömmar och vektorer. Dess-
utom innehåller SCSQL strömprocesser (SP:er) och parallelliseringsfunk-
tioner, där användaren specificerar icke-procedurellt hur de stående frågorna 
ska parallelliseras, d.v.s. utan att behöva ange i detalj hur och var de ska 
köras. SCSQ fungerar i olika hårdvarumiljöer, t.ex. persondatorer, Linux-
kluster och superdatorer såsom IBM BlueGene. I våra studier har SCSQ 
utvärderats med hjälp av data och frågor från följande tillämpningar: 

• Digitala stjärnkikare av den typ som utvecklats i LOFAR- och Lois-
projekten (Paper II och Paper VI). Tusentals radiomottagare spridda 
över stora landområden fångar upp och digitaliserar radiovågor från yttre 
rymden och omvandlar dessa till dataströmmar. Forskare eftersöker och 
analyserar fysikaliska fenomen i dessa strömmar med hjälp av stående 
frågor. Utmaningen är att fortlöpande utföra kostsamma sökningar och 
bearbetningar av mycket stora datamängder från ett stort antal mottaga-
re. 

• Automatisk bokning av samåkningar i storstadsområden för att minska 
transportkostnader (Paper III). Utmaningen är att fortlöpande planera 
samåkningar när antalet samtidigt begärda resor är mycket stort. 

• Linear Road Benchmark (LRB) (Paper IV och Paper V). LRB är ett 
stresstest för dataströmhanteringssystem, som simulerar ett trafiksystem 
för motorvägar med ett dynamiskt vägtullssystem, vars tull beror på tra-
fikläget. Dataströmhanteringssystemet måste fortlöpande beräkna tull 
och upptäcka olyckor baserat på stående frågor över positionsdata från 
samtliga fordon och vägavsnitt. All bearbetning måste dessutom ske 
inom tillåten svarstid (engelska Maximum Response Time, MRT). Utma-
ningen är att kunna hantera data från så många motorvägar som möjligt. 

Inom dessa studier har vi vidareutvecklat SCSQ och fått inblick i följande 
specifika frågeställningar: 

4. Om uppdelningen av indataströmmen kräver att vissa data mångfaldigas, 
hur kan vi säkerställa skalbarhet i uppdelningen när strömhastigheten 
ökar? 

5. Om uppdelningen av indataströmmen är kostsam, hur kan uppdelningen 
automatiskt parallelliseras samtidigt som den ökade resursförbrukningen 
hålls inom rimliga gränser? 

Frågorna 4 och 5 är specialiseringar av frågorna 1 och 2. Tabell 1 på sidan 
13 visar hur studierna täcker forskningsfrågorna. 
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5.3 Sammanfattning av studierna 
I Paper I definieras forskningsfrågorna, som vi redogjorde för i avsnittet 
ovan. I Paper II beskrivs den första prototypen av SCSQ, som kördes i en 
parallelldatormiljö med en IBM BlueGene superdator och ett antal Linux-
kluster där flera hårdvarusystem måste utnyttjas optimalt av dataströmhante-
raren. Vi utvecklade primitiver för effektiv strömkommunikation och paral-
lell strömbearbetning (strömprocesser; SP:er). Vi såg att schemaläggningen 
av strömprocesser i parallelldatormiljön hade avgörande betydelse. Därför 
måste strömprocesserna placeras noga i en sådan miljö för hög ström-
hastighet. Dessa resultat gav svar på forskningsfråga tre. 

Arbetet i Paper I och Paper II ligger till grund för Paper VI, som sam-
manfattar SCSQs arkitektur och diskuterar hur SCSQ utnyttjar kommunika-
tionssystemet i en parallelldatormiljö. 

Med primitiver på plats för strömkommunikation och frågedistribution, 
använde vi SCSQ för att studera olika praktiska tillämpningar inom parallell 
strömbearbetning. I Paper III implementerades ett system i SCSQ för fortlö-
pande automatisk planering av stora mängder samåkningar (trip grouping 
algorithm; TG) med syfte att minska resekostnader i storstadsområden. Inda-
taströmmen bestod av begärda resor. I ett första experiment delades denna 
ström upp genom att de parallellt arbetande processerna turades om att ta 
emot de begärda resorna. Det visade sig att denna enkla strömuppdelning 
försämrade besparingarna. Besparingarna blev större när indataströmmen 
delades upp med spatiala metoder jämfört med när den uppdelades på enk-
laste sätt. Detta visar att användardefinierad uppdelning av indataströmmar 
är en viktig teknik. För att möjliggöra avancerad strömuppdelning utökades 
SCSQL med postfilter, som transformerar och filtrerar resultatströmmen från 
en strömprocess och därigenom avgör hur tupler ska skickas vidare. Paper 
III ger svar på forskningsfrågorna ett och två. 

För att ytterligare driva utvecklingen av SCSQ framåt implementerade vi 
LRB i SCSQ. Vår implementation kallas scsq-lr. I Paper IV utvärderades 
olika metoder att parallellisera användardefinierad uppdelning av dataström-
mar. Som övergripande strategi för att dela upp strömmarna genererades träd 
av parallella strömprocesser, där varje strömprocess utförde en del av upp-
delningsarbetet. De parallella kostsamma strömbearbetningarna kördes på 
delströmmarna från trädets löv. I studien visade vi att en sådan trädformad 
strömuppdelning skalar betydligt bättre än om uppdelningen utförs av en 
enda strömprocess. Med denna ansats uppnådde vi en tiopotens högre pre-
standa för LRB (64 motorvägar) än dittills publicerade resultat. Sammanfatt-
ningsvis ger Paper IV svar på forskningsfrågorna ett, två och fyra. 

Ett problem med trädformad strömuppdelning är att indataströmmen mås-
te passera trädets rot, där den användardefinierade strömuppdelningen utförs 
på strömmens alla data. Ett annat problem är kommunikationskostnaden: Det 
krävs mycket datorkraft för att skicka tupler mellan strömprocesserna i trä-
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det. Kostnaderna för strömuppdelning och kommunikation gör att roten blir 
en flaskhals. För att eliminera denna flaskhals utvecklade vi en fullständigt 
parallelliserad strömuppdelningsmetod i Paper V, där den den användardefi-
nierade strömuppdelningen utförs parallellt på delar av strömmen. Detta 
resulterar i en komplicerad graf-formad parallell exekveringsplan, som vi 
kallar parasplit. För att minska kommunikationskostnaden klumpade vi 
samman tuplerna till fysiska fönster (på engelska physical windows) i 
parasplit. Vi visade att strömuppdelning med parasplit – och därmed paral-
lell strömbearbetning – kan utföras i en hastighet som ligger nära nätverkets 
maximala hastighet. Vi visade även att den ytterligare datorkraft som måste 
skjutas till för att köra alla processer i parasplit var måttlig. Med parasplit 
uppnådde vi åter en tiopotens högre prestanda för LRB (512 motorvägar) än 
vårt tidigare resultat i Paper IV. På så sätt ger Paper V svar på samtliga 
forskningsfrågor. 

Vi började med att ställa forskningsfrågorna ett, två och tre. När vi arbe-
tade med dessa frågor upptäckte vi att det var kritiskt för prestanda att inda-
taströmmen kunde delas upp på ett skalbart sätt. Således uppstod forsk-
ningsfrågorna fyra och fem. I våra fem studier I – V har vi givit några svar 
på forskningsfrågorna, och vet således nu lite mer om skalbar parallellisering 
av kostsamma stående frågor över massiva dataströmmar. Emellertid har 
ytterligare nya forskningsfrågor uppkommit under arbetets gång, som allt-
jämt återstår att lösa. Dessa nya frågor skisseras i Kapitel 4, Future Work. 
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Abstract– Scientific instruments, such as radio telescopes, colliders, sensor 
networks, and simulators generate very high volumes of data streams that 
scientists analyze to detect and understand physical phenomena. The high 
data volume and the need for advanced computations on the streams require 
substantial hardware resources and scalable stream processing. We address 
these challenges by developing data stream management technology to sup-
port high-volume stream queries utilizing massively parallel computer hard-
ware. We have developed a data stream management system prototype for 
state-of-the-art parallel hardware. The performance evaluation uses real 
measurement data from LOFAR, a radio telescope antenna array being de-
veloped in the Netherlands. 

1. Background 

LOFAR [13] is building a radio telescope using an array of 25,000 omni 
directional antenna receivers whose signals are digitized. These digital data 
streams will be combined in software into streams of astronomical data that 
no conventional radio telescopes have been able to provide earlier. Scientists 
perform computations on these data streams to gain more scientific insight. 

The data streams arrive at the central processing facilities at a rate of sev-
eral terabits per second, which is too high for the data to be saved on disk. 
Furthermore, expensive numerical computations need to be performed on the 
streams in real time to detect events as they occur. For these data intensive 
computations, LOFAR utilizes an IBM BlueGene supercomputer and con-
ventional clusters. 

High-volume streaming data, together with the fact that several users 
wanting to perform analyses suggests the use of a data stream management 
system (DSMS) [9]. We are implementing such a DSMS called SCSQ (Su-
per Computer Stream Query processor, pronounced cis-queue), running on 
the BlueGene computer. SCSQ scales by dynamically incorporating more 
computational resources as the amount of data grows. Once activated, con-
tinuous queries (CQs) filter and transform the streams to identify events and 
reduce data volumes of the result streams delivered in real time. The area of 
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stream data management has gained a lot of interest from the database re-
search community recently [1] [8] [14]. An important application area for 
stream-oriented databases is that of sensor networks where data from large 
numbers of small sensors are collected and queried in real time [21] [22]. 
The LOFAR antenna array will be the largest sensor network in the world. In 
difference to conventional sensor networks where each sensor produces a 
limited amount of very simple data, the data volume produced from each 
LOFAR receiver is very large. 

Thus, DSMS technology needs to be improved to meet the demands of 
this environment and to utilize state-of-the-art hardware. Our application 
requires support for computationally expensive continuous queries over data 
streams of very high volumes. These queries need to execute efficiently on 
new types of hardware in a heterogeneous environment. 

2. Research problem 

A number of research issues are raised when investigating how new hard-
ware developments like the BlueGene massively parallel computer can be 
optimally utilized for processing continuous queries over high-volume data 
streams. For example, we ask the following questions: 
1. How is the scalability of the continuous query execution ensured for 

large stream data volumes and many stream sources? New query execu-
tion strategies need to be developed and evaluated. 

2. How should expensive user-defined computations, and models to dis-
tribute these, be included without compromising the scalability? The 
query execution strategies need to include not only communication but 
also computation time. 

3. How does the chosen hardware environment influence the DSMS archi-
tecture and its algorithms? The BlueGene CPUs are relatively slow 
while the communication is fast. This influences query distribution. 

4. How can the communication subsystems be utilized optimally? The 
communication between different CPUs depends on network topology 
and the load of each individual CPU. This also influences query distribu-
tion. 

3. Our approach 

To answer the above research questions we are developing a SCSQ proto-
type. We analyze the performance characteristics of the prototype system in 
the target hardware environment in order to make further design choices and 
modifications. The analyses are based on a benchmark using real and simu-
lated LOFAR data, as well as test queries that reflect typical use scenarios. 
These experiments provide test cases for prototype implementation and sys-
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tem re-design. In particular, performance measurements provide a basis for 
designing a system that is more scalable than previous solutions on standard 
hardware. 

The CQs are specified declaratively in a query language similar to SQL, 
extended with streaming and vector processing operators. Vector processing 
operators are needed in the query language since our application requires 
extensive numerical computations over highvolume streams of vectors of 
measurement data. The queries involve stream theta joins over vectors ap-
plying non-trivial numerical vector computations as join criteria. To filter 
and transform streams before merging and joining them, the system supports 
sub-queries parameterized by stream identifiers. These sub-queries execute 
in parallel on different nodes. 

A particular problem is how to optimize high-volume stream queries in 
the target parallel and heterogeneous hardware environment, consisting of 
BlueGene compute nodes communicating with conventional shared-nothing 
Linux clusters. Pre- and post-processing computations are done on the Linux 
clusters, while parallelizable computations are likely to be more efficient on 
the BlueGene. The distribution of the processing should be automatically 
optimized over all available hardware resources. When several different 
nodes are involved in the execution of a stream query, properties of the dif-
ferent communication mechanisms (TCP, UDP, MPI) substantially influence 
the query execution performance. 

4. The hardware environment 

Figure 1 illustrates the stream dataflow in the target hardware environment. 
The users interact with SCSQ on a Linux front cluster where they specify 
CQs. The input streams from the antennas are first pre-processed according 
to the user CQs in the Linux back-end cluster. Next, BlueGene processes the 
CQs over these pre-processed streams. The output streams from BlueGene 
are then post-processed in the front cluster and the result stream is finally 
delivered to the user. Thus, three parallel computers are involved and it is up 
to SCSQ to transparently and optimally distribute the stream processing 
between these. 

 
Figure 1. Stream data flow in the target hardware environment. 

The hardware components have different architectures. The BlueGene fea-
tures dual PowerPC 440d 700MHz (5.6 Gflops max) compute nodes con-
nected by a 1.4 Gbps 3D torus network, and a 2.8 Gbps tree network [3]. 
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Each compute node has a local 512 MB memory. The compute nodes run the 
compute node kernel (CNK) OS, a simple single-threaded operating system 
that provides a subset of UNIX functionality. Each compute node has two 
processors, of which normally one is used for computation and the other one 
for communication with other compute nodes. MPI is used for communica-
tion between BlueGene compute nodes, whereas communication with the 
Linux clusters utilizes I/O nodes that provide TCP or UDP. One important 
limitation of CNK is the lack of support for server functionality (no listen(), 
accept() or select() are implemented). Furthermore, two-way communication 
is expensive and should be avoided for time-critical code. Each I/O-node is 
equipped with a 1 Gbit/s network interface. In LOFAR’s BlueGene, there are 
6144 dual processor compute nodes, grouped in processing sets, or psets, 
consisting of 8 compute nodes and one I/O node. This I/O-rich configuration 
enables high volumes of incoming and outgoing data streams. 

The Linux front and back-end clusters are IBM JS20 computers with dual 
PowerPC 970 2.2GHz processors. 

5. The SCSQ system 

Figure 2 illustrates the architecture of the SCSQ components running on the 
different clusters. 

 
Figure 2. The SCSQ components. Double arrows indicate data streams. 

On the front cluster, the user application interacts with a SCSQ client man-
ager. The client manager is responsible for i) interacting with the user appli-
cation, ii) sending CQs and meta-data, such as client manager identification, 
to the query coordinator for compilation. 

The query coordinator is responsible for i) compiling incoming CQs from 
client managers, ii) starting one or more front stream processors (FSP) to do 
the post processing of the streams from the BlueGene, and iii) posting in-
structions to the BlueGene components for execution of CQs. When the 
query coordinator receives a new CQ from a client manager, the query coor-
dinator initiates new FSPs for post-processing of that CQ. It also maintains a 
request queue of CQs and other instructions to be processed by the Blue-
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Gene. This queue is regularly polled by the BlueGene compute node coordi-
nator (CNC) (single arrow in Figure 2). 

The CNC is responsible for i) retrieving new CQs and instructions from 
the query coordinator, ii) assigning and coordinating stream processors on 
the compute nodes, and iii) monitoring the execution of all stream proces-
sors. The BlueGene processors to be used by SCSQ are initiated once when 
the system is set up. The CNC is always executing on a single node while all 
other nodes are stream processors waiting for instructions from the CNC. 
When the CNC retrieves a new CQ, it assigns one idle stream processor to 
be the new query master for that query. 

A query master is responsible for i) compiling and executing its stream 
query, ii) delivering the result to an FSP on the front cluster previously initi-
ated by the query coordinator, iii) starting new stream processors of subque-
ries if needed, iv) communicating with the backend cluster to retrieve input 
data, and v) monitoring the execution of its stream query. When a query 
master receives a CQ it is compiled and then the execution is started. If the 
query master determines that additional stream processors are needed for 
some stream subqueries, it dynamically requests the CNC to assign new 
ones. The query master then sends the subqueries to the new stream proces-
sors for execution. Each stream processor may in turn start new subqueries 
when so required. Stream queries may be terminated either by explicit user 
intervention or by some stop condition in the query. Therefore, the stream 
processors also exchange control messages to initialize and terminate stream 
queries. Control messages are also used to regulate the stream flow between 
the processors 

The only difference between a stream processor and a query master is that 
the query master delivers its result to an FSP in the front cluster using TCP, 
while a stream processor delivers its result stream through MPI to the stream 
processor or query master that initiated it 

Nodes participating in the processing of a stream are called working 
nodes. Stream processors, query masters, and FSPs are all working nodes. 

When a working node needs measurements from an input stream it initi-
ates TCP communication for that stream through its preparator. A prepara-
tor is a working node running on the back-end cluster wrapping one or more 
input streams. 

The set-up of a stream query generates a distributed query execution tree, 
as illustrated by the double arrows in Figure 2. 

We have implemented the first SCSQ prototype and are evaluating it. All 
BlueGene and front node functionality for execution of single user queries 
have been implemented. We have used this implementation to analyze 
bandwidth properties of the I/O nodes and strategies for efficient buffering in 
the MPI and TCP communication subsystems. 

The implementation of SCSQ nodes is based on Amos II (Active Media-
tor Object System) [18] [19], which is modified to allow execution of con-
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tinuous queries over streams in the target hardware environments. The SCSQ 
modules are extensible by linking user-defined functions written in compiled 
C. On the front and back-end clusters, dynamic linking is allowed. However, 
only static linking is allowed on BlueGene. As a consequence, all user-
defined stream operators written in C must be statically linked with the 
stream processor executable for the BlueGene. To configure dynamically the 
stream processors at run-time we utilize a built-in Lisp interpreter to com-
municate code between the front cluster and the BlueGene. All time-critical 
code running on the BlueGene is written in C and statically linked. 

6. Related work 

The SCSQ implementation is related to research in DSMSs, parallel and 
distributed databases, continuous query processing, and database technology 
for scientific applications. 

A promising approach to achieve the high performance, flexibility, and 
expressiveness required is to develop a distributed DSMS running on highly 
connected clusters of main memory nodes [2] [7] [12], which is extensible 
through user-defined data representations and computational models [10]. 
Most of the DSMS, e.g. [6] [8] [14] [15] [20], are designed for rather small 
data items and a relatively small cost of the stream operators per item. In 
contrast, SCSQ is intended for a very high total stream volume, large data 
item sizes, and computationally expensive scientific operators and filters. 

The use of extensible database technology where database queries call us-
er-defined functions in the database engine have been shown very useful for 
astronomical applications [17]. Parallelization of user-defined functions has 
been studied in [16]. 

Distributed execution of expensive user-defined stream query functions 
has been studied in the recently proposed Grid Stream Data Manager 
(GSDM) [10] [11], an object-relational DSMS for scalable scientific stream 
query processing. GSDM features a framework for predefined and custom-
ized parallelization schemes, which distribute the execution of user-defined 
stream query functions over the Grid. Like SCSQ, GSDM is intended for 
scalable on-line analysis using expensive user-defined stream query func-
tions over high-volume scientific data streams from instruments and simula-
tions. 

However, unlike all other DSMSs, SCSQ will be optimized for a hetero-
geneous target hardware environment including a BlueGene supercomputer. 
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7. Ongoing work 

Query execution scalability is achieved by developing query processing 
strategies able to utilize an increasing number of compute nodes while opti-
mally utilizing the communication facilities. 

To generate local query execution plans on each stream processor we em-
ploy query optimization strategies based on heuristics and a simple cost 
model. 

Queries are distributed based on the need to execute sub-queries in paral-
lel. Currently, each stream processor can execute only one sub-query. Any 
stream processor can at run-time request idle stream processors from the 
CNC to execute sub-queries. This allows dynamic reconfiguration of the 
distributed query execution plan. 

The performance monitoring subsystem in each stream processor meas-
ures the performance of different phases of stream query execution. It is 
currently used to evaluate the characteristics of different execution strate-
gies. However, the same mechanism will also be used to optimize the stream 
query distribution itself. Since our system allows dynamic reassignment of 
stream processors we will use the performance monitoring subsystem for 
adaptive run-time query re-optimization. This is necessary since sudden 
bursts in the measured signals may require execution plans to be dynami-
cally reconfigured. 

To analyze the system and understand the issues that are relevant to the 
LOFAR application we are developing a benchmark. The benchmark in-
cludes real and simulated data as well as queries from the radio astronomy 
application domain. We are initially concentrating on queries that detect 
transients among a large number of incoming streams. We scale the number 
of incoming streams and optimize throughput and latency as the data volume 
grows. Therefore, we scale not only the data volume but also the computa-
tion time in our experiments. 

A stream oriented communication protocol between stream processors is 
developed based on MPI. We measure the characteristics for different com-
munication methods between the stream processors. The communication 
latency and bandwidth depend on the topology and the load of the nodes. For 
example, nodes far apart have long latency but may have a high bandwidth, 
since there are many communication links between them that can be used in 
parallel. On the other hand, highly loaded intermediate nodes slow down 
communication [5]. These characteristics will influence query decomposi-
tion and distribution. 

The query execution performance depends on the utilization of each 
stream processor. The utilization of a stream processor depends on the rela-
tion between its stream rate and computational load. Each stream processor 
is buffering its incoming and outgoing streams. The buffer utilization of a 
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stream processor indicates the load balance between communication and 
processing. Each stream processor monitors its buffer utilization and adapts 
the flow rate by sending control messages regularly. In an overflow situa-
tion, different policies can be devised, for example: load shedding by drop-
ping incoming data [23], simplifying aggregation operators [4], sending con-
trol messages that slow down sub query stream processors, or asking CNC 
for more stream processors. 

It is also important to analyze the performance of queries involving ex-
pensive operators. We investigate the scalability over large numbers of high-
volume input streams that are merged by computationally expensive stream 
combination functions from the benchmark. The goal is to understand how 
to distribute the streams and computations optimally in the heterogeneous 
target hardware environment. 

7. Ongoing work 

This work is supported by LOFAR. 
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Abstract– We have developed a data stream management system that sup-
ports declarative stream queries running over high data volumes in a super-
computing environment. To enable specification of massively parallel com-
putations our query language provides processes as query language objects. 
The queries call process construction functions that execute stream sub-
queries assigned to a CPU. Such queries can be used to define query func-
tions that parallelize computations. The CPU assignment is normally auto-
matic, but can also be influenced by the user. We show how this enables 
performance measurements of different communication topologies in a het-
erogeneous hardware environment containing a Linux cluster and a 
BlueGene 

1. Introduction 

LOFAR [13] is currently building a radio telescope using an array of 25,000 
omni-directional antenna receivers whose signals are digitized into data 
streams of very high rate. Scientists perform computations on these data 
streams to gain scientific insight. The LOFAR antenna array will be the larg-
est sensor network in the world. The receivers produce raw data streams that 
arrive at the central processing facilities at a rate, which is too high for the 
data to be saved on disk. Furthermore, advanced numerical computations are 
performed on the streams in real time to detect astronomical events as they 
occur. For these data-intensive computations, LOFAR utilizes an IBM Blu-
eGene supercomputer combined with conventional Linux clusters. 

To enable stream processing in heterogeneous and massively parallel en-
vironments of LOFAR’s kind we have developed a data stream management 
system called SCSQ (Super Computer Stream Query processor, pronounced 
sis-queue) [22]. SCSQ transparently executes on a variety of hardware plat-
forms and operating systems, including MS Windows, Linux, and BlueGene. 
To support transparent streaming in a heterogeneous environment consisting 
of clusters with different communication subsystems, SCSQ features internal 
drivers that currently support MPI and TCP for carrying streams. 
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Continuous queries (CQs) are declaratively specified in a query language, 
SCSQL (pronounced sis-kel). To maximize throughput of streams and com-
putations it is important to parallelize CQs into continuous subqueries, each 
executing as a separate process on a CPU. To enable a customized paralleli-
zation, SCSQL provides stream processes (SPs) as first-class objects in que-
ries. The user associates subqueries with SPs. Massively parallel computa-
tions are defined in terms of sets of subqueries, executing on sets of stream 
processes. 

Properties of the different CPUs, communication mechanisms, and oper-
ating systems substantially influence query execution performance. These 
properties are stored in a database, which is used by the query optimizer 
when assigning an SP to a CPU. 

In implementing the query optimizer, it is crucial to understand how dif-
ferent strategies to distribute computation and communication influence the 
execution performance. It is particularly important for our application to 
maximize the bandwidth of the data streams from the receivers into the 
compute nodes of the BlueGene. The incoming streams are critical paths of 
the application since a sub-optimal input data rate will slow down the entire 
stream processing chain. In this paper, we use SCSQL queries in order to 
measure the streaming bandwidth of different communication topologies 
between a back-end Linux cluster and the BlueGene, as well as between 
compute nodes inside the BlueGene. SCSQ optionally allows the user to 
influence the choice of CPU to which an SP is assigned. We use this facility 
to specify different communication topologies in SCSQL. 

In summary, we present the following contributions: 
• The introduction of stream processes enables specification of mas-

sively parallel computations in the query language SCSQL.  
• We show how SCSQL can be used to measure streaming band-

width inside a BlueGene using different communication topolo-
gies. The results from these measurements provide a basis for au-
tomatic CPU allocation strategies inside BlueGene. 

• Analogously, inbound streaming bandwidth from a Linux cluster 
to BlueGene is measured using different communication topolo-
gies specified in SCSQL to provide a basis for automatic set-up of 
inbound streaming communication. 

Before presenting the results, we give an overview of the SCSQ system 
and the heterogeneous hardware environment in which the experiments were 
performed. An introduction to the query language SCSQL is also given, and 
we show how to formulate mapreduce [8] and radix fft [12] queries using 
SCSQL. 
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2. The SCSQ system 

In this section, we first describe the LOFAR hardware environment that is 
used for our experiments. Then, we present the overall SCSQ architecture 
and finally we describe the features of SCSQL that are used in the experi-
ments. 

2.1. Hardware environment 
Figure 1 illustrates the stream dataflow in the LOFAR hardware environ-
ment. Users interact with SCSQ on a Linux front-end cluster. Another Linux 
back-end cluster first receives the streams from the sensors where they are 
pre-processed. Next, the BlueGene processes these streams. The output 
streams from the BlueGene are then post-processed in the front-end cluster 
and the result stream is finally delivered to the user. Thus, three computer 
clusters are involved. 

 
Figure 1. Stream data flow in the LOFAR environment. 

The hardware components are characterized by different architectures. The 
BlueGene features dual PowerPC 440d 700MHz (5.6 Gflops max) compute 
nodes connected by a 1.4 Gbps 3D torus network, and a 2.8 Gbps tree net-
work. The time it takes for a compute node to send data to another one de-
pends on the relative locations of these nodes in the torus, and how loaded 
the nodes between them are. Each compute node has a local 512 MB mem-
ory. The compute nodes run the compute node kernel (CNK) OS [15], a 
simple single-threaded operating system that provides a subset of UNIX 
functionality. One important limitation of CNK is the lack of support for 
server capabilities (no listen(), accept() or select()). Each compute node has 
two CPUs, of which normally one is used for computation and the other one 
for communication with other compute nodes. A native MPI implementation 
is used for communication between BlueGene compute nodes, whereas com-
munication with the Linux clusters utilizes I/O nodes that provide TCP or 
UDP. Each I/O-node is equipped with a 1 Gbit/s network interface. I/O 
nodes are only used for communication, and cannot be used for computa-
tions. In LOFAR’s BlueGene, there are 6144 dual processor compute nodes, 
grouped in processing sets of 8 compute nodes and one I/O node. 

The Linux front and back-end clusters are IBM JS20 computers with dual 
PowerPC 970 2.2GHz processors. Each computer in the back-end cluster has 
a 1 Gigabit Ethernet interface connected via a switch to the BlueGene. 
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2.2. SCSQ architecture 
Figure 2 illustrates a query that is set up for execution in the hardware envi-
ronment. SCSQ users interact with the client manager, in which they specify 
CQs using SCSQL. The execution of a CQ forms a directed acyclic graph of 
running processes (RPs), each executing the subquery specified in one SP. 

 
Figure 2. Set-up of a CQ for execution in SCSQ. Wide arrows indicate 
data streams. 

The execution of CQs may be stopped either by explicit user intervention or 
by a stop condition in the query that makes the stream finite. When a CQ is 
stopped, its RPs are terminated. RPs regularly exchange control messages, 
which are used to regulate the stream flow between them and to terminate 
execution upon a stop condition. 

When a user submits a CQ, it is optimized and started in the client man-
ager. When the client manager identifies an SP, the sub-query of that SP is 
registered with the coordinator of the cluster where the sub-query is to be 
executed (feCC, bgCC, or beCC in Figure 2). Then, the coordinator starts an 
RP to execute the sub-query. In addition, an RP can dynamically start new 
RPs by requesting them from the cluster coordinator of the cluster where the 
new RP is started. 

Since the BlueGene lacks server functionality, sub-queries from the client 
manager to be executed on the BlueGene are registered with the feCC. The 
bgCC retrieves new sub-queries from the feCC by polling. As BlueGene 
compute nodes can execute only one process, each new RP in BlueGene is 
assigned to a new compute node. 

Each cluster coordinator maintains an internal compute node database 
(CNDB) containing the properties and status of the possibly thousands of 
compute nodes in its cluster. A node selection algorithm in the cluster coor-
dinator starts the new RP on a suitable compute node by querying its CNDB. 
Currently, a naïve node selection algorithm is used, returning the next avail-
able node. 
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2.3. Running Processes 
An RP has the components shown in Figure 3. It is responsible for i) compil-
ing its subquery into a local Stream Query Execution Plan, SQEP and inter-
preting it, ii) delivering the result to other RPs, its subscribers, iii) dynami-
cally requesting new RPs from a coordinator if needed, iv) retrieving its 
input data from other RPs, its producers, and v) monitoring the execution of 
its SQEP. 

receiver
driver

SQEP 
operators

sender
driver

SCSQL

 
Figure 3. A SCSQ running process. 

The operators in the SQEP are executed when data arrives. Incoming data is 
buffered in a receiver driver and de-marshaled (materialized) into objects. 
Streams of materialized data objects are delivered to the operators of the 
SQEP. The objects resulting from the operators are passed on to the sender 
driver, which marshals them and sends the buffer contents to subscribers. 
Objects are dynamically de-allocated when no longer needed by any opera-
tor. The sender and receiver drivers can use various network protocols for 
carrying the streams. We have implemented stream carrier protocols based 
on MPI and TCP. SCSQ supports the use of MPI on any MPI enabled clus-
ter. MPI is always used inside the BlueGene as that is the only allowed pro-
tocol, while TCP is always used when communicating between clusters. The 
MPI sender and receiver drivers contain double buffers so that one buffer 
can be processed while the other one is read or written. 

2.4. SCSQL 
SCSQL is a query language similar to SQL, but extended with streams and 
stream processes as first-class objects. Stream processes allows dynamic 
parallelization of continuous queries, which is used in this paper to measure 
the performance of a massively parallel and heterogeneous computing envi-
ronment. This section introduces SCSQL. 

All data in SCSQ is represented by objects in SCSQL. The relation be-
tween first-class objects in SCSQL is illustrated in Figure 4. A stream is an 
object that represents (possibly unbounded) sequences of any kind of ob-
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jects. The result of a continuous subquery is a stream. Continuous subqueries 
are assigned to stream processes. Users of SCSQL define parallel and dis-
tributed stream computations by assigning continuous subqueries to stream 
processes. 

Figure 4. The relation between 
streams, stream processes and 
objects in SCSQL. 

The function sp(s, c) assigns the subquery s to a new stream process to be 
run in cluster c. The function extract(p) requests elements (objects) from the 
subquery assigned to stream process p. If p ever terminates, extract(p) also 
terminates. The function streamof(e) transforms the output of any expression 
e to a stream. This is useful when a stream output is desired from functions 
that do not naturally return streams, e.g. count(), which returns a single inte-
ger. 

To enable easy handling of sets of parallel stream processes, the function 
spv(s, c) assigns each subquery in the set s to a new stream process on some 
compute node in the cluster c, and returns a set (bag) of handles to the as-
signed stream processes. 

The function merge(p) generalizes extract() by requesting elements from 
each stream process in p. merge() terminates when (if ever) the last stream 
process in p terminates. 

The use of the data types representing streams and stream processes al-
lows specification of parallel and distributed CQs with different topologies. 
merge() provides stream combinations, while variables bound to sets of 
stream processes provide parallel execution. 

For example, the distributed grep mapreduce [8] query using 1000 paral-
lel grep calls is specified in SCSQL as follows: 

 
1 
2 
3 
4 

merge(spv( 
     select grep("pattern", filename(i))  
     from integer i  
     where i in iota(1,1000))); 
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Line 1 contains the reduce predicate. In this case there is no reduction, so 
there is no function outside the merge. On line 2, the subquery performs a 
grep for a pattern on the ith filename in a table. Each subquery executes in a 
separate process. Line 4 specifies the degree of parallelism, in this case 1000 
processes. iota(n,m) generates all integers from n to m. In this example, 
iota() is used to generate 1000 duplicates of the select stream, and to provide 
a key to the filename() table. 

Splitting of streams is specified by referencing common variables bound 
to stream processes, as illustrated by the following query function, which 
implements the radix2 parallelization of FFT [12] for a stream source named 
s. 

 
1 
2 
3 
4 
5 
6 
7 

create function radix2(string s) 
                       ->stream 
as select radixcombine(merge({a,b})) 
from sp a, sp b, sp c 
where a=sp(fft(odd (extract(c)))) 
  and b=sp(fft(even(extract(c)))) 
  and c=sp(receiver(s)); 

The receiver() function returns a stream of 1D arrays of signal data. odd(x) 
and even(x) obtain odd and even elements from array x,  respectively. radix-
combine() combines the results from the partial FFT algorithms working in 
parallel. 

Optionally, the SCSQL user can constrain the allowed compute nodes for 
the node selection algorithm by specifying a node allocation query as an 
extra argument to sp() and spv(). This query returns a stream of allowable 
compute nodes in preferred allocation order, called the allocation sequence. 
The allocation sequence is passed to the node allocation algorithm of the 
cluster coordinator when it allocates the RP for an SP. The node selection 
algorithm will choose the first available node in the allocation sequence. (In 
case the stream contains no available node, the query will fail.) Thus, alloca-
tion sequences allow the user to restrict and prioritize the node selection 
order.  

In the next section we show how we utilize allocation sequences to en-
force different communication topologies. This helps us determine how to 
achieve maximum streaming bandwidth. The gained knowledge will be used 
to improve the node selection algorithm. 

3. Streaming performance 

Using SCSQL and its allocation sequence option, we set up different com-
munication topologies and measure how they influence the streaming band-
width. The following experiments are performed: 
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1. The streaming bandwidth between RPs executing on compute nodes 
inside the BlueGene is measured. For good performance of extract() and 
merge(), SCSQ buffers incoming elements in the receiver driver. Differ-
ent buffer settings for MPI streams inside the BlueGene are evaluated. 
Furthermore, explicit node selections are used to measure different 
communication topologies inside the BlueGene. 

2. The bandwidth is measured for communicating streams from RPs in the 
back-end cluster to RPs inside the BlueGene. The impact on the band-
width of different node selections in the back-end cluster and in the Blu-
eGene is measured. As the system uses TCP for communication between 
the back-end cluster and BlueGene, we rely on the buffering of the TCP 
stack in this case. 

In all experiments, the streams contain arrays of numerical data, as required 
by the application. The bandwidth is computed by measuring the total time 
to communicate a finite stream of 3MB arrays between stream processes. 
Small array sizes increase processing overhead, and we are primarily inter-
ested in communication performance, hence the large array size. Each ex-
periment was performed five times in order to achieve low variance in the 
measurements. 

3.1. Intra-BG streaming 
The following experiments are performed: 
1. We measure the bandwidth of point-to-point communication between 

two RPs, which execute on different BlueGene compute nodes. 
2. We measure the bandwidth of stream merging from two RPs to a third 

one. 
In the experiments, we vary the buffer sizes of the communication sub-

system. We also compare the usage of double and single buffering. 
Figure 5 illustrates the set-up of the point-to-point measurement. a gener-

ates a stream of large arrays and b counts the total number of arrays in the 
finite stream extracted from a. The result of the count is sent to the front-end. 
Since only one number is transmitted from b to the client manager, the total 
time measured is dominated by the time for streaming the data from a to b. 

Figure 5. Intra-BG point to point 
streaming. 

The sending RP a (i) generates the arrays, (ii) marshals them into a send 
buffer and (iii) transmits the send buffers when they are full. The receiving 
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RP b (iv) receives buffers, (v) de-marshals the buffer contents, (vi) allocates 
new arrays, (vii) counts them, and (viii) de-allocates them. Only the result of 
the count is streamed to the front-end. The query is expressed in SCSQL as 
follows: 

 
1 
2 
3 
4 
5 

select extract(b) 
from sp a, sp b 
where b=sp(streamof(count(extract(a))) 
           'bg',0) and 
   a=sp(gen_array(3000000,100),'bg',1); 

gen_array() generates the finite stream of 100 arrays of size 3MB each. The 
calls to sp() assign the streams to new stream processes on a compute nodes 
in the ’bg’ (BlueGene) cluster. The function count() counts the number of 
elements in a bag. The function streamof() makes a stream of the output of 
count(). Allocation sequences are specified in the third arguments of the sp() 
calls as single node identifier values (0 and 1), since we want to exactly spe-
cify the selected node here. The selected node cannot be busy in this query 
since we know what nodes are allocated and where they are located in the 
BlueGene. 

Figure 6 shows the bandwidth of intra-BG point-to-point streaming. As 
can be seen, the optimal buffer size is 1000 bytes for both single and double 
buffering. The drop-off above the 1000-byte buffer size is probably due to 
cache misses. The performance degradation for buffers smaller than 1000 
bytes buffer size is because 1K is the smallest message size that can be ex-
changed in the BlueGene 3D torus. Furthermore, we observe that double 
buffering pays off for large buffers. A number of bumps are clearly seen in 
the double-buffer curve. No explanation for this phenomenon can be found, 
but it is nevertheless statistically significant. 
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Figure 6. Point to point streaming performance. 

For stream merging, we measure the throughput when two RPs send data to 
a third one. When messages are sent between non-adjacent nodes in Blue-
Gene, they must be routed through the communication co-processors of the 
nodes in between. Communication will be slower if these co-processors are 
busy. 

Since the enumeration of compute nodes in the BlueGene 3D torus is 
known, it is easy to specify the two communication topologies in Figure 7 
using the allocation sequence feature of SCSQL. In both cases c merges data 
from the streams of a and b. The two experiments are defined in SCSQL by 
varying x and y in the following query: 

 
1 
2 
3 
4 
5 

Select extract(c) 
from sp a, sp b, sp c 
where c=sp(count(merge({a,b})), 'bg',0) 
and a=sp(gen_array(3000000,100),'bg',x) 
and b=sp(gen_array(3000000,100),'bg',y); 

count() counts the total number of arrays in the merged streams a and b. The 
explicit node selections 0, x, and y on lines 3–5 specify the exact BlueGene 
node numbers where the RPs execute. 
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Figure 7. Alternative BlueGene node selections for stream 
merging. 

Figure 7A shows a sequential node selection, where MPI messages from b to 
c are routed through the communication co-processor of a. Here, x=1 and 
y=2 to select compute nodes arranged as in figure 7A. Figure 7B shows a 
balanced node selection, where messages from a and b are sent directly to c 
over individual communication channels. Here, x=1 and y=4 to select com-
pute nodes arranged as in figure 7B. 

Figure 8 shows the total streaming input bandwidth at node c for stream 
merging using the two node selection strategies. Both single and double buf-
fering is evaluated. Analogously to the results of the point-to-point streaming 
experiment shown in Figure 6, we expected double buffering to pay off for 
large buffers. 
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Figure 8. Alternative BlueGene node selections for stream 
merging. 

We observe the following: 

11



1. The streaming bandwidth depends highly on the compute nodes to which 
the RPs are allocated. This is because of the topology of the BlueGene 
3D torus interconnection network. 

2. The benefit of double buffering is less significant than that of point-to-
point communication. 

3. Finally, an interesting observation is that buffers smaller than 10K are 
much slower for stream merging than for point-to-point communication. 

The reason for better performance for large buffers when merging streams 
is that the single-threaded communication co-processor of c must handle 
data streams from both a and b. In c, it switches between receiving messages 
from a and b. Less frequent switching improves communication. By con-
trast, for point-to-point communication, all messages come from the same 
source, so the co-processor does not pay any switching penalty. Thus, send-
ing larger but fewer messages is beneficial for stream merging while the 
opposite holds for point-to-point communication. 

3.2. BG inbound streaming 
We conducted experiments for six different ways to inject data streams into 
the BlueGene, named Query 1 through Query 6. The inbound streaming 
bandwidth of each query is measured for different numbers of parallel input 
streams by altering a query variable n. In all experiments, the total number of 
arrays in all the finite streams produced in the back-end cluster is counted. 
The output data from the query is a single integer. Thus, the time to execute 
the query is dominated by time for streaming the data from the back-end 
cluster into the BlueGene. 

Query 1 investigates the streaming bandwidth when all streams 1 through 
n are sent from a single node in the back-end cluster through a single I/O 
node into a single compute node in the BlueGene. Query 2 differs from 
Query 1 in that several compute nodes in the back-end cluster are injecting 
data into BlueGene. This is to investigate whether parallelization over sev-
eral compute nodes in the back-end cluster will improve the streaming band-
width compared to that of Query 1. Queries 3 and 4 transfer all data over one 
single I/O node but parallelize the receiving over several compute nodes in 
BlueGene. This is to see whether parallelizing the receiving compute nodes 
will improve the streaming bandwidth in comparison to all streams being 
received on a single compute node. Queries 5 and 6 are analogous to Queries 
3 and 4 but parallelize the data injection into BlueGene over several I/O 
nodes. By intuition, query 6 can be expected to achieve the highest stream-
ing bandwidth of all queries, since parallel back-end compute nodes inject 
data through parallel I/O channels. 

The distribution pattern of Query 1 is shown in Figure 9. All streams are 
produced on a1 through an, executing on the same compute node in the back-
end cluster. All streams are sent to b inside BlueGene, which merges and 
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counts them. c extracts the count from b unchanged and sends it to the client 
manager in the front cluster. The reason to include c in this query is to make 
all experiments comparable. 

Back-end BlueGene Front-end

CM

a1

a2

a3

a4

b cI/O

 
Figure 9. Execution distribution of Query 1. 

Query 1 is formulated in SCSQL as follows: 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

select extract(c) from 
bag of sp a, sp b, sp c,  
integer n 
where c=sp(extract(b),'bg') 
and   b=sp(count(merge(a)), 'bg') 
and   a=spv( 
  (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', 1) 
and n=4; 

The explicit node selection on line 9 assigns all back-end SPs to compute 
node 1 in the back-end cluster. 

The execution distribution of Query 2 is shown in Figure 10. In this 
query, a1 through an execute on different compute nodes in the back-end 
cluster. All streams are sent to b inside the BlueGene, which merges them 
and counts the total number of arrays. c passes on the count unchanged as 
before. 

 
Figure 10. Execution distribution of Query 2. 
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Query 2 is formulated in SCSQL as follows: 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

select extract(c) from 
bag of sp a, sp b, sp c,  
integer n 
where c=sp(extract(b), 'bg') 
and   b=sp(count(merge(a)), 'bg') 
and   a=spv( 
  (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', urr('be')) 
and n=4; 

Only the last argument to spv() in line 9 differs from Query 1. Here we want 
to assign each SP in a to different compute nodes. The node allocation func-
tion urr(cl) retrieves a stream from the CNDB of cluster cl of compute node 
identifiers where each identifier represents a new available node in the clus-
ter in a round-robin fashion. This allocation sequence stream is later shipped 
back to the cluster coordinator by the spv() call to be used by the node selec-
tion algorithm. By shipping stream handles we avoid unnecessary data ship-
ping. 

The execution distribution of Query 3 in Figure 11 parallelizes the aggre-
gation over several RPs, each one running on a separate receiving BlueGene 
compute node. Compute nodes belonging to the same pset use the same I/O 
node for inbound communication. All streams from the back-end cluster are 
sent to the BlueGene compute nodes through a single I/O node by specifying 
b1 through bn to belong to the same pset. 

Back-end BlueGene Front-end

CM

a1

a2

a3

a4

c

b1

b2

b3

b4

I/O

 
Figure 11. Execution distribution of Query 3. 

Query 3 is defined by the following SCSQL query. 
 

1 
2 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
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3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

integer n 
where c=sp(streamof(sum(merge(b)),  
           'bg')) 
and   b=spv( 
  (select streamof(count(extract(p))) 
   from sp p 
   where p in a), 
            'bg', inPset(1)) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', 1) 
and n=4; 

On line 10, the processor selection function inPset(k), which returns a stream 
of compute node identifiers in pset number k, forces all SPs to belong to the 
same pset. 

The execution distribution of Query 4, shown in Figure 12, differs from 
Query 3 in that the back-end RPs run on different compute nodes. 

Query 4 is defined by the following SCSQL query. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))), 
'bg') 
and   b=spv( 
  (select streamof(count(extract(p))) 
  from sp p 
  where p in a), 
            'bg', inPset(1)) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
            'be', urr('be')) 
and n=4; 

The only difference from Query 3 is the call to urr() on line 14, enforcing all 
RPs to execute on different compute nodes in the back-end cluster. 
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Figure 12. Execution distribution of Query 4. 

The execution distribution of Query 5, shown in Figure 13, utilizes different 
I/O nodes for the communication of streams from the back-end cluster. 

 
Figure 13. Execution distribution of Query 5. 

The following SCSQL query defines Query 5. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))),       
           'bg') 
and   b=spv( 
 (select streamof(count(extract(p))) 
  from sp p  
  where p in a), 
            'bg', psetrr()) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
          'be', 1) and n=4; 
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This query differs from Query 3 in the processor selection on line 10. The 
function psetrr() returns a stream of BlueGene compute node numbers, 
where each succeeding node number belongs to a new pset in a round-robin 
fashion. This will parallelize the inbound communication over different I/O 
nodes, since compute nodes belonging to different psets will use different 
I/O nodes. 

Finally, the execution distribution of Query 6 is shown in Figure 14. This 
query differs from Query 5 in that back-end stream processes run on differ-
ent nodes in the back-end cluster. 

 
Figure 14. Execution distribution of Query 6. 

The following SCSQL query defines Query 6. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

select extract(c) from 
bag of sp a, bag of sp b, sp c, 
integer n 
where c=sp(streamof(sum(merge(b))),  
           'bg') 
and   b=spv( 
 (select streamof(count(extract(p))) 
  from sp p 
  where p in a), 
            'bg', psetrr()) 
and a=spv( 
 (select gen_array(3000000,100) 
  from integer i where i in iota(1,n)), 
          'be', urr('be')) 
and n=4; 

The difference from Query 5 is the call to urr() on line 14, assigning all SPs 
to different compute nodes in the back-end cluster. 

Figure 15 compares the BG inbound streaming bandwidth for Queries 1 
through 6. n is the number of RPs in the back-end cluster that inject streams 
into the BlueGene. The y-axis measures the total inbound streaming band-
width from the back-end cluster into the BlueGene compute nodes.  
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We observe the following: 
1. Queries 1 through 4 all communicate using a single I/O node on the Blu-

eGene. They all have significantly lower bandwidth than that of Queries 
5 and 6. Thus, as expected, it is favorable to use many I/O nodes. 

2. The streaming bandwidth of Queries 3 and 4 are slightly better than that 
of Queries 1 and 2. Changing from one to two receiving BlueGene com-
pute nodes off-loads the communication burden, while further increasing 
the number of receiving compute nodes is not worthwhile since the total 
streaming bandwidth does not increase. Hence, it pays off to increase the 
number of receiving compute nodes from one to two even if there is only 
one I/O node available. This communication topology should be used in 
the node selection algorithm when compute nodes are available but the 
number of I/O nodes is limited. 

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10
n

S
tr

ea
m

in
g 

ba
nd

w
id

th
 [M

bp
s] Query 1 Query 2

Query 3 Query 4

Query 5 Query 6

Figure 15. Results for queries 1 through 6. 

 
3. As can be seen, the best streaming bandwidth is achieved for Query 5, 

which peaks at ~920 Mbps. It is surprising that a single 1 Gbps connec-
tion from the back-end cluster is faster than four separate 1 Gbps con-
nections as in Query 6. It is thus faster to inject streams over different 
I/O nodes from the same back-end cluster compute node than from dif-
ferent back-end compute nodes. This indicates coordination problems in 
the I/O node when communicating with many outside nodes. The con-
clusion is that the node selection algorithm should attempt to co-locate 
back-end RPs to the same compute node until saturation. 
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4. Similarly, the streaming bandwidth of Query 1 is better than that of 
Query 2, indicating that it is better to run as many RPs on the same back-
end node as possible rather than running them on different back-end 
nodes. 

5. In Query 5, there is a significant performance dip for n=5. This is proba-
bly because there were only four I/O nodes available on the BlueGene 
partition where the experiments were performed. For n>4, compute 
nodes have to share I/O nodes and therefore the bandwidth decreases. In 
this case, the node selection algorithm could resort to increase the num-
ber of receiving compute nodes as in observation (2) above. 

We are currently investigating how to extend the node selection algorithm 
with the above knowledge. 

4. Related work 

There are many data stream management system (DSMS) implementations, 
some of which execute on a single node [3] [5] [7] [9] [14] [17] [19], and 
some are distributed [1] [4] [10] [11] [16] [20] [21]. Some of these imple-
mentations provide high-level SQL-like query languages such as STREAM 
[3] and TelegraphCQ [5]. In [3], streams are treated as continuously updated 
relations, while in [5] they are implemented as external functions emitting 
tuples as an unbounded bag. Unlike all other DSMS projects, the SCSQ data 
model treats both streams and processes as first class objects. Stream proc-
esses allow users to specify massively parallel and distributed computations 
in CQs by dynamically starting stream processes at run time. Furthermore, 
the SCSQ user can optionally even influence the location for the node as-
signments, which has been used in this paper to measure communication 
performance. 

Tribeca [19] provides pipes as first-class objects in its query language. 
These pipes are similar to our stream data type but Tribeca provides no par-
allelization of their execution, and no dynamic process creation. Similarly, 
WaveScope [9] provides a stream processing language where arbitrary com-
putations can be specified as functions over streams in a non-distributed 
stream processing environment. 

SPC [11] was evaluated using the Linear Road Benchmark [2] on a highly 
parallel PC cluster. However, the distribution is manual and SPC has no 
query language as SCSQL. 

Dynamic load balancing for distributed DSMSs has been studied in [4] 
[20] [21]. In Borealis [1], a central coordinator migrated stream processing 
operators between nodes using load statistics [21]. Medusa nodes migrate 
operators between each other using computational economy methods [4]. In 
D-CAPE [20], different initial distribution and redistribution strategies were 
experimentally evaluated. The explicit optional node placement primitives of 
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SCSQ can be used for static load balancing, as was done in this paper to 
measure performance. In addition, SQCQL provides user primitives to spec-
ify how to logically parallelize algorithms dynamically through stream proc-
esses. This is orthogonal to load balancing.   

Distributed execution of expensive user-defined stream query functions 
has been studied in GSDM [10]. GSDM distributes its stream computations 
by selecting and composing distribution templates from a library. By con-
trast, all distribution topologies are expressed as SCSQL queries. In [10], 
only one parallelization topology (partition, compute, and combine) for user-
defined functions is provided. Mapreduce [8] also provides another special 
distribution topology, namely map and reduce. SCSQL allows the specifica-
tion of any communication topology. Sawzall [17] features a high-level lan-
guage that enables compact specifications of massively parallel mapreduce 
tasks. However, Sawzall is restricted to the mapreduce distribution topology. 
Furthermore, Sawzall lacks many advanced operators for aggregation and 
computation, whereas SCSQ features all common stream operators including 
window aggregation. 

5. Conclusions and future work 

We presented the SCSQ system, which is a DSMS that runs in a massively 
parallel hardware environment featuring a BlueGene. Several different kinds 
of clusters are included in the execution of a continuous query. 

The query language SCSQL provides both streams and stream processes 
as first class objects. The users of SCSQ are thereby given control over the 
parallelization of stream queries and functions. Users specify parallel com-
putations by assigning sub-queries to stream processes executed in parallel. 
We have shown how to parallelize mapreduce and radix FFT using SCSQL. 
Furthermore, SCSQL also allows the user to specify allocation sequences 
that restrict and prioritize which compute nodes to be chosen for execution. 
Using such allocation sequences, we specified different physical communi-
cation topologies for a mapreduce-like query. These experiments measured 
different topologies for inbound streaming into BlueGene. The measurement 
showed that in order to achieve reasonable performance, a considerable 
amount of I/O nodes must be designated to handle input streams. In our ex-
periments, we also discovered that it is favorable to use as few as possible 
input compute nodes in the back-end cluster. This indicates that the Blue-
Gene I/O is a bottleneck. These experiments provide basis for extending the 
node selection algorithm.  

Moreover, our experiments show that the flexibility of the query language 
provides a powerful tool for investigating the streaming performance of any 
computer environment. These experiments can easily be repeated on other 
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kinds of clusters to understand their streaming performance and to provide 
basis for specific node selection algorithms. 
SCSQL allocation sequences were also used to measure the bandwidth of 
communication between compute nodes inside BlueGene using native MPI. 
The impact of buffer sizes and double buffering used in the MPI communi-
cation was measured for different topologies. The optimal stream buffer size 
for MPI communication inside BlueGene was highly dependent on whether 
point-to-point or merging stream communication was performed. In general, 
the buffer should be much larger in the case of stream merging. Double buf-
fering proved to be less important in our experiments. 

Furthermore, the location of the BlueGene compute nodes highly affects 
the inter-node communication since data may be routed through intermediate 
nodes in the 3D-torus of BlueGene. We showed that stream merging per-
forms up to 60% better if no busy intermediate nodes are involved in the 
communication. 

We are currently experimenting with refinements of the node selection al-
gorithm for the BlueGene based on the results of this paper. It should be 
investigated whether it is possible to parameterize the node selection algo-
rithm so that it can be used in any parallel hardware environment. In the 
current hardware configuration, we have only four I/O nodes and four nodes 
in the back-end cluster. It remains to be investigated what happens for large 
amounts of back-end and I/O nodes. It is also important to analyze the per-
formance of continuous queries involving expensive functions. Further mea-
surements could be made using benchmarks such as The Linear Road 
Benchmark [2]. The goal is to understand how to distribute streams and 
computations optimally in a heterogeneous hardware environment. 
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Abstract– Transportation-related problems, like road congestion, parking, 
and pollution are increasing in most cities. In order to reduce traffic, recent 
work has proposed methods for vehicle sharing, for example for sharing cabs 
by grouping “closeby” cab requests and thus minimizing transportation cost 
and utilizing cab space. However, the methods proposed so far do not scale 
to large data volumes, which is necessary to facilitate large-scale collective 
transportation systems, e.g., ride-sharing systems for large cities. 

This paper presents highly scalable trip grouping algorithms, which gen-
eralize previous techniques and support input rates that can be orders of 
magnitude larger. The following three contributions make the grouping algo-
rithms scalable. First, the basic grouping algorithm is expressed as a con-
tinuous stream query in a data stream management system to allow for a 
very large flow of requests. Second, following the divide-and-conquer para-
digm, four space-partitioning policies for dividing the input data stream into 
sub-streams are developed and implemented using continuous stream que-
ries. Third, using the partitioning policies, parallel implementations of the 
grouping algorithm in a parallel computing environment are described. Ex-
tensive experimental results show that the parallel implementation using 
simple adaptive partitioning methods can achieve speed-ups of several or-
ders of magnitude without significantly effecting the quality of the grouping. 

1. Introduction 

Transportation-related problems, like congestion, parking, and pollution are 
increasing in most cities. Waiting in traffic jams not only degrades the qual-
ity of social life, but according to estimates, the economic loss caused by 
traffic jams in most countries is measured in billions of US dollars yearly. 
Parking is also a serious problem. In some large cities, it is estimated that as 
many as 25% of the drivers on the road are only looking for empty parking 
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places. This again causes unnecessary congestion. Finally, the increasing 
number of vehicles idling on the roads results in an unprecedented carbon 
emission, which has unquestionably negative effects on the environment. 

By reducing the number of vehicles on the roads, Collective Transporta-
tion (CT) clearly provides a solution to these problems. Public transporta-
tion, the most common form of CT, tries to meet the general transportation 
demands of the population at large. By generalizing the transportation needs, 
the individual is often inconvenienced by long wait times at off-peak hours 
or between connections, and a limited number of access points (bus, metro, 
train stops) from which the individual is forced to use other methods of 
transportation (walking, bicycling, using a private car). Ride-sharing, or car 
pooling, which is another form of CT is becoming widespread in metropoli-
tan areas. Ride-sharing is often encouraged by local transportation authori-
ties by facilitating car pool lanes that are only accessible to multiple-
occupancy vehicles and by eliminating tolls on bridges and highways for 
these vehicles. Despite all the encouragement, there is a tremendous amount 
of unused transportation capacity in the form of unoccupied seats in private 
vehicles. This fact can mainly be attributed to the lack of effective systems 
that facilitate large-scale ride-sharing operations. The systems that do exist 
[3, 15, 22] are either 1) offered from a limited number access points due to 
the system infrastructure constraints, 2) have inadequate methods for the 
positioning of trip requests and/or vehicles, or 3) have either inefficient or 
ineffective methods for matching or grouping trip requests and trip offers. 

Yet another form of CT, namely cab-sharing, was recently proposed [12]. 
The key idea of cab-sharing is to use unoccupied cab space to reduce the 
cost of transportation, ultimately resulting in direct savings to the individual. 
The described Cab-Sharing System (CSS) overcomes most of the above 
limitations of existing ride-sharing systems. In particular, at the heart of the 
system is a trip grouping algorithm that is able to find subsets of closeby trip 
requests, which can be grouped into collective cab fares to minimize the 
transportation cost, or equivalently maximize the savings to the user. Using a 
simple implementation in standard SQL, assuming a reasonable number 
(high spatio-temporal density) of trip requests, the trip grouping algorithm 
was demonstrated to be able to group trip requests effectively. The trip 
grouping algorithm can be generalized to facilitate other CT systems, e.g., a 
ride-sharing system. However, as it is demonstrated in the present paper, due 
to its algorithmic complexity, the grouping algorithm scales poorly as the 
volume of trip requests increases. This limits its applicability to facilitate 
large-scale CT systems, such as a metropolitan or nation-wide ride-sharing 
system. 

To make the trip grouping algorithm scale to input rates several orders of 
magnitude larger than in a typical cabsharing application, this paper makes 
the following three contributions. First, using a Data Stream Management 
System (DSMS), SCSQ [24], the trip grouping algorithm is expressed as a 
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continuous stream query to allow for continuous processing of large trip 
request streams. Second, following the divide-and-conquer paradigm, static 
and adaptive versions of two space-partitioning policies (point quad and KD 
partitioning) for dividing the input data stream into sub-streams are devel-
oped and implemented using continuous stream queries. Finally, using the 
partitioning policies, the grouping algorithm is implemented using a data 
stream management system in a parallel computing environment. The paral-
lelization of the implementation is facilitated by using an extension of the 
query language, in which processes are query language objects. Extensive 
experimental results show that the parallel implementation using simple 
partitioning methods can achieve speed-ups of several orders of magnitude 
without significantly affecting the quality of the grouping. In particular, an 
adaptive partitioning method called adaptive KD partitioning achieves the 
best overall performance and grouping quality. 

The remainder of this paper is organized as follows. Section 2 reviews re-
lated work. Section 3 defines the vehicle-sharing problem, reviews the op-
erational aspects of a recently proposed Cab-Sharing System (CSS), de-
scribes and analyzes a trip grouping algorithm that solves the vehicle-sharing 
problem and is employed to facilitate the CSS. Furthermore, a new Ride-
Sharing System (RSS) is proposed, and the trip grouping algorithm is 
adapted to meet the application requirements of the proposed RSS. Section 4 
describes the main contributions of the paper in making the trip grouping 
algorithm highly scalable, hence applicable in large-scale CT system, such 
as an RSS. Section 6 describes and analyzes the results of the experiments 
that were conducted to measure the performance of the proposed highly 
scalable trip grouping algorithm. Finally, Section 7 concludes and points to 
future research directions. 

2. Related work 

The optimization of CT has been studied in the scientific community for 
years [5, 20]. However, with the exception of the work presented in [12], on 
which the present paper is based, it is believed that no previous research has 
considered the online grouping of trip requests. The problem of grouping n 
objects into a number of groups is in general referred to as the clustering 
problem, which is an extensively researched problem in computer science. 
However, the unique requirements of the problem of vehicle-sharing mean 
that general clustering techniques have limited applicability. 

Vehicle-sharing as a form of CT has been considered in industrial and 
commercial settings. For example, most taxi companies in larger cities have 
been offering the possibility of shared transportation between a limited num-
ber of frequent origins and destinations. Scientifically very little is known 
about the computational aspects of these vehicle-share operations. However, 
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the computer systems supporting such operations are likely to be semi-
automatic, to perform batch-grouping of requests, and to suffer from scal-
ability problems. In comparison, the trip grouping algorithm proposed in this 
paper is automatic, performs online-grouping or requests, and is highly scal-
able. 

More automatic systems that perform online optimization of vehicle-
sharing also exist [3, 15, 22]. These systems however perform a computa-
tionally easier task. They either match pairs of trip requests only [15] or are 
offered from/between a limited set of locations [3, 15, 22]. Additionally, the 
high volume scalability of these systems has not been demonstrated. None-
theless, the analysis in [21] and the existence of these systems are evidence 
that the problem considered by the paper is real and has industrial applica-
tions. 

Parallel processing of high-volume data streams has been considered by 
several papers [4, 7, 17, 18, 23, 24, 25]. Some of these study the paralleliza-
tion of continuous stream queries [7, 23, 24]. GSDM [7] decomposes the 
computation of a single continuous stream query into a partition, a compute, 
and a combine phase. In GSDM, the distributed execution strategies are ex-
pressed as data flow distribution templates, and queries implementing the 
three phases are specified in separate scripts. In contrast, SCSQ [24] exposes 
the parallelization phases to the query language so that the distribution pat-
terns becomes part of a single parallel, continuous stream query. This paper 
utilizes the stream processing engine and query language in SCSQ to express 
and evaluate different (parallel) stream processing strategies for an RSS. 

In GSDM, two different stream partitioning strategies are considered: 
window distribute (WD) and window split (WS). In WD, entire logical win-
dows are distributed among compute nodes. In WS, an operator dependent 
stream split function splits logical windows into smaller ones and assigns 
them to particular compute nodes for processing. WS has several advantages 
over WD. First, in applications where the execution time of the stream query 
scales superlinearly with the size of the logical window, WS provides supe-
rior parallel execution performance over WD. Second, in realtime response 
systems, where the query scales superlinearly, WD is not applicable as it can 
introduce severe delays in the result stream. Third, in systems where the 
quality of the results that are computed in parallel are highly dependent on 
the tuples inside the logical windows of the compute nodes, WD provides 
inferior results in quality over WS, because individual tuples are not consid-
ered in the partition phase. As all of the above three conditions hold in the 
case of vehicle-sharing, WD is clearly not of interest. WS is similar to the 
spatial stream partitioning methods presented in this paper in the sense that 
both presented partitioning methods consider individual tuples in the parti-
tioning process. However, in the static cases no windows are formed over 
the stream, but rather tuples are assigned to compute nodes based on a gen-
eral partitioning table. In contrast, in the adaptive cases windows are formed 
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over the stream, the partitioning table is periodically updated based on the 
tuples in a window, and then tuples are assigned to compute nodes the same 
way as in the static case. 

Database indices support the efficient management and retrieval of data in 
large databases. In particular, spatial indices support efficient retrieval of 
spatial objects, i.e., objects that have physical properties such as location and 
extent. Spatial indices can be divided into two types: data partitioning and 
space partitioning spatial indices [19]. The partitioning mechanisms used in 
spatial indices have a close relation to the partitioning performed in the pre-
sent paper. 

Data partitioning indices usually decompose the space based on Minimum 
Bounding Rectangles (MBRs). A primary example is the R-tree that splits 
space with hierarchically nested, and possibly overlapping Minimum Bound-
ing Rectangles (MBRs) [13]. However, for the application at hand, data par-
titioning schemes are not well suited for several reasons. They often use a 
non-disjoint decomposition of  space.  Consequently, a naı̈ve partitioning 
based on MBRs could either assign requests to several partitions, and hence 
later to several shares, or could assign requests from a region where several 
MBRs overlap to several partitions, thereby potentially eliminating the 
chance for good matches. While a disjoint partitioning of space could be 
derived based on the MBRs, computation to derive such a partitioning would 
be complex and potentially expensive, and the derived partitions will most 
likely not be balanced. 

On the other hand, space partitioning indices decompose the entire space 
into disjoint cells. These disjoint cells can be based on a regular grid, or on 
an adaptive grid. Regular grids can result in empty partitions because of 
skewed data distributions. Hence, a regular grid is not well-suited for the 
application at hand as it does not support load-balancing. 

Quad-trees partition the space into four quadrants in a recursive fashion 
[6]. Quad-trees divide each region into four equally sized regions, while 
point quad trees [19] allow the size of the regions to be dynamic. Quad-trees 
have been extended to higher dimensions also. One of the space partitioning 
methods used in this paper is quite similar to a 1-level deep, four dimen-
sional point quad tree with the exception that in the herein considered space 
partitioning method a split point is not necessarily a data point. The k-d-tree 
is a space partitioning spatial index that hierarchically divides each dimen-
sion into two along each of the k dimensions [1, 2]. The other partitioning 
method used in this paper corresponds to a 1-level deep, four dimensional k-
d-tree. 
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3. Vehicle-sharing 

Large-scale, personalized, on-demand CT systems need efficient and effec-
tive computer support. Systems providing this support have two aspects. The 
first aspect is operational aspect as to how information is communicated 
between the user and the service provided by the system, and how trip re- 
quests are processed. There second aspect is computational or algorithmic 
and deals with how the optimization of CT is performed. The following sub-
sections study an existing CT system and propose a new one. Section 3.1 
formalizes the vehicle-sharing problem, adopted from [12]. Section 3.2 de-
scribes the operational aspects of a Cab-Sharing System (CSS) – an instance 
of a CT system in which the shared ve- hicles are cabs. Section 3.3 describes 
the computational or algorithmic aspects of the trip grouping algorithm em-
ployed in the CSS. Section 3.4 describes the problems that arise when the 
trip grouping algorithm is applied in larger scale CT systems. Section 3.5 
proposes a Ride-Sharing Service (RSS) and describes its operational re-
quirements. Finally, Section 3.6 describes how the trip grouping algorithm in 
Section 3.3 can be modified to meet these requirements. 

3.1 The Vehicle-Sharing Problem 
Let R2 denote the 2-dimensional Euclidean space, and let T ≡ N+ denote the 
totally ordered time domain. Let R = {r1, . . . , rn} be a set of trip requests 
ri = <tr, lo, ld, te>, where tr ∈ T is the request time, lo ∈ R2 and ld ∈ R2 are the 
origin and destination locations, and te ≥ tr ∈ T is the expiration time, i.e., the 
latest time by which the trip request must be accommodated. A trip request 
ri = <tr, lo, ld, te> is valid at time t if tr ≤ t ≤ te. Δt = te − tr is called the wait 
time of the trip request. A vehicle-share s ⊆ R is a subset of the trip requests. 
A vehicle-share is valid at time t if all trip requests in s are valid at time t. 
Let |s| denote the number of trip request in the vehicle-share. Let d(l1, l2) be a 
distance measure between two locations l1 and l2. Let m(s, d(., .)) be a me-
thod that constructs a valid and optimal pick-up and drop-off sequence of 
requests for a vehicle-share s and assigns a unique distance to this sequence 
based on d(., .). Let the savings p for a trip request ri ∈ s be 
p(ri, s) = 1 − m(s, d(., .)) / [|s|⋅m({ri}, d(., .))]. Then the vehicle-sharing prob-
lem is defined as follows. 

DEFINITION 1. For a given maximum vehicle-share size K, and minimum 
savings min_savings ∈ [0, 1], the vehicle-sharing problem is to find a 
disjoint partitioning S = {s1 ⊎ s2 ⊎ …} of R, such that ∀sj ∈ S, sj is valid, 
|sj| ≤ K, and the expression 

( )
∈ ∈Ss sr

ji

j ji

srp ,  
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is maximized under the condition that ∀ri ∈ sj :p(ri, sj) ≥ min_savings or 
{ri} = sj. 

3.2 Overview of the Cab-Sharing System 
The Cab-Sharing System (CSS) proposed in [12] is a Location-Based Ser-
vice (LBS) in the transportation domain. In its most simple form, it is acces-
sible to the user via a mobile phone through an SMS interface. The compo-
nents and operation of the CSS is depicted in Figure 1 and can be described 
as follows. The user inputs two addresses with an optional maximum time 
that s/he is willing to wait. The service in turn then: 
1. geocodes the addresses, 
2. calculates an upper bound on the cost of the fare, 
3. validates the user’s account for sufficient funds, 
4. submits the geocoded request to a pool of pending requests, 
5. within the maximum wait time period finds a nearly optimal set of “clo-

seby” requests using a number of heuristics (described in Section 3.3), 
6. delivers the information about the set (request end points, and suggested 

pickup order) to the back-end cab dispatch system, 
7. delivers information about the fare (estimated time or arrival, cost, sav-

ings, etc…) to the involved users. 
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Figure 1. Cab-sharing service components and process. 
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3.3 A Trip Grouping Algorithm 
Finding the optimal solution to the vehicle-sharing problem is computation-
ally difficult. Given n requests, the number of possible disjoint partitionings, 
where the size of the vehicle-shares is exactly K is: 
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In the case of n = 100 and K = 4, this expression evaluates to a number that 
has 155 digits. The number of possible disjoint partitions, where the size of 
the vehicle-shares is at most K = 4 is even larger. Clearly, evaluating all 
possible options and selecting the most optimal one is not a feasible ap-
proach. Instead, the Trip Grouping (TG) algorithm at the heart of the CSS 
tries to derive a nearly optimal solution by employing a number of heuristics 
and approximations. The steps of the TG algorithm along with the applied 
heuristics and approximations are described next. 
1. Distinguish between the set of expiring trip requests (Rx) and all valid 

requests (Rq). Wait with mandatory grouping of trip requests until expi-
ration time. A request can also be grouped into a vehicle-share before its 
expiration time with another expiring request. This lazy heuristic does 
not make the algorithm miss out on an early cost-effective grouping for 
the request, but rather gives the requests more opportunities to be part of 
a grouping. 

2. Based on the distance measure d(., .), define a pairwise fractional extra 
cost (FEC) between two requests and calculate it for every pair of expir-
ing and valid requests. In the TG algorithm the fractional extra cost be-
tween two requests ri and rj (w.r.t. ri) is defined as FEC(ri, rj) = [d(ri.lo,rj 
.lo) + d(ri.ld, rj.ld)] / d(ri.lo,ri.ld). In the case when the distance measure 
d(., .) is the Euclidean distance, the calculations of fractional extra costs 
between three requests r1, r2, and r3 (w.r.t. r1) are shown in Figure 2. 
Note that the defined fractional extra cost is an upper bound on the true 
fractional extra cost, as there may be a shorter route than to serve the re-
quests in the order assumed by the fractional extra cost calculation, i.e., 
ri.lo → ri.lo → ri.ld → ri.ld. 

3. Consider the best, i.e., lowest cost / highest savings, K-sized vehicle-
share for an expiring request ri ∈ Rx to be composed of the first K re-
quests with lowest FEC for ri. This heuristic assumes that pair-wise frac-
tional extra costs are additive. 

4. Estimate the Amortized Cost (AC) of a vehicle-share s (w.r.t. ri) as the 
normalized cumulative sum of FECs as 
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This heuristic assumes that there exists an optimal pick-up and drop-off 
sequence for requests in s, such that the cost of this sequence 
m(s, d(., .)) ≤ AC(ri, s) · d(ri.lo, ri.ld). 

5. Greedily group the best maximum K-sized vehicle-share that has the 
minimum amortized cost over all expiring trip requests. This heuristic is 
greedy because it possibly assigns a not-yet-expiring request rj to a vehi-
cle share of an expiring request, without considering what the current or 
even future best vehicle-share would be for rj. 

6. Remove requests that are part of the best vehicle-share from further con-
sideration. 

7. Repeat steps 2 through 7 as long as the best vehicle-share meets the 
minimum savings requirement. 

8. Assign remaining trip requests to their own (single person) “vehicle-
shares”. 

FEC(r1,r2) = (d2’ + d2’’) / d1

FEC(r1,r3) = (d3’ + d3’’) / d1

AC({r1,r2,r3})=(1+FEC(r1,r2)+FEC(r1,r3)) / 3
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Figure 2. Illustration of fractional extra cost (FEC) and amortized cost (AC) calcula-
tions w.r.t. request r1. 

Even though the TG algorithm is based on heuristics, estimations and as-
sumptions, in [12], it has been found to effectively optimize the vehicle-
sharing problem. Furthermore, while some assumptions about extra costs for 
vehicle-shares do not hold in all cases, the combination of the approxima-
tions and assumptions result in an estimated cost for the vehicle-shares that 
is higher than the true minimum cost if the optimal pick-up and drop-off 
sequence is considered. 
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3.4 Problems with Large-Scale CT Systems 
Unfortunately, the TG algorithm cannot be naïvely applied to facilitate a 
large-scale CT system, such as a ride-sharing system. The TG algorithm 
needs to calculate the pairwise fractional extra costs between expiring re-
quests and all requests in the queue, entailing on the order of O(n2) cost cal-
culations. In [12] a simple but effective implementation of the TG algorithm 
was able to handle loads of up to 50,000 requests per day, during which at 
peak traffic hours the number of requests within 10 minutes was at most 
2,500. However, as input sizes increase, the execution times of any serial 
implementation of the TG algorithm will reach a point where continuous 
grouping is not possible. Then, the algorithm is not able to find nearly opti-
mal groups for all the expiring request before they actually expire. This is 
demonstrated in Figure 3, where a load of 250,000 requests with common 
wait times of 10 minutes are grouped minute-by-minute using a highly effi-
cient implementation of the TG algorithm. This implementation of the TG 
algorithm is able to keep up with the request flow most of the time, but when 
the number of pending requests exceeds about 5,200 (during rush hour), it is 
not able to find groups for the expiring requests within the allowed execution 
time of 60 seconds. In the example the grouping cycle time of the TG algo-
rithm is 60 seconds, i.e. the algorithm is responsible for grouping the request 
that will expire within the next 60 seconds. Altering this grouping cycle time 
does not eliminate the problems of the algorithm in the case of large input 
sizes. Figure 3 also reveals that the computational complexity of the imple-
mentation of the TG algorithm is O(n3). This is due to the fact that, as de-
scribed by the third heuristic in Section 3.3, the best K-sized vehicle-share is 
composed of the first K requests with lowest FEC for an expiring request. 
This necessitates a linear-time top-K selection for each expiring request, 
making the algorithmic complexity of the TG algorithm O(n3). Conse-
quently, the above described scalability problems severely limit the applica-
bility of the TG algorithm in a large-scale CT system. 

3.5 Ride-Sharing Application Requirements 
Ride-sharing is a type of vehicle-sharing where private vehicles are used as 
transportation. This fact represents additional requirements on solution to the 
general trip-sharing problem. In the context of ride-sharing there are ride-
requests and ride-offers. Ride-requests are synonymous to trip requests both 
in form and semantics, with the exception that ride-requests do not necessar-
ily have to be served. Ride-offers have at least three important attributes in 
addition to the attributes of a trip request. The first attribute specifies whether 
the offering person is willing to leave his/her vehicle behind. A person offer-
ing a ride with willingness of leaving his/her vehicle behind is either willing 
to take alternate modes of transportation or relies on the efficient operation 
of the ride-sharing system for future trips until he/she returns to his/her vehi-
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cle. A person not willing to leave his her vehicle behind values or needs 
his/her independence throughout the day. The second attribute specifies a 
maximum relative extra cost the offering person is prepared to incur. Finally, 
the third attribute specifies the maximum number of additional passengers 
the offering person’s vehicle can accommodate. 
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Figure 3. Scalability problems of the general trip grouping algorithm. 

3.6 Application of the TG Algorithm in a RSS 
It is clear that the TG algorithm cannot be applied in its current form for a 
ride-sharing application. However, a few simple modifications can make it 
applicable. First, in the context of ride-sharing, the ride offering person 
would like to leave as soon as the best vehicle-share that can be constructed 
meets the maximum relative extra cost requirements of the ride-offer. Hence, 
it makes sense to prioritize the order of greedy grouping based on the time 
the ride-offers have been present in the system. Second, because maximum 
relative extra cost requirements are defined by ride-offers individually, in 
every grouping cycle (execution of the TG algorithm) the best vehicle-share 
for all ride-offers needs to be considered. Third, every vehicle-share needs to 
fulfill the following two conditions: 1) it can contain only one ride-offer 
where the offering person is not willing to leave his/her vehicle behind, and 
2) it has to contain at least one ride-offer of any type. To fulfill the above 
conditions it is enough to distinguish between two different sets: 1) the set of 
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ride-offers of either type {Ro
ō ∪ Ro

o}, and 2) the joint set of ride-request and 
ride-offers where the offering person is willing to leave his / her vehicle 
behind {Rr ∪ Ro

o}. Associating these sets to sets used by the TG algorithm as 
Rx = {Ro

ō ∪ Ro
o} and Rq = {Rr ∪ Ro

o}, the vehicle shares constructed by the 
TG algorithm fulfill the above two conditions. 

Obviously, the modifications to the TG algorithm that are necessary to fa-
cilitate the proposed RSS are straight-forward. However, to preserve clarity 
in representation, the remainder of the paper considers only the implementa-
tion of a highly scalable TG algorithm. 

4. Highly scalable trip grouping 

Although the TG algorithm can be modified to meet the unique requirements 
of the proposed RSS, as it was demonstrated in Section 3.4, the algorithm in 
its present form does not scale with the input size and hence cannot be ap-
plied in large scale CT systems, such as the proposed RSS. This section de-
scribes a parallel implementation of the TG algorithm in the SCSQ Data 
Stream Management System. 

Queries and procedures in SCSQ [23] (pronounced sis-queue) are speci-
fied in the query language SCSQL [24] (pronounced sis-kel). SCSQL is sim-
ilar to SQL, but is extended with streams as first-class objects. SCSQ also 
features a main memory database. This database is used to keep the trip re-
quests that are waiting, along with statistics about the data distributions. The 
waiting requests are processed by the TG algorithm and the statistics are 
used by the partitioners. 

Details of the implementations are organized as follows. Section 4.1 de-
scribes how the trip grouping algorithm is implemented as a stored proce-
dure in SCSQL. Section 4.2 outlines how SCSQ allows parallelization of the 
continuous stream query implementation of the TG algorithm. Section 4.3 
describes four spatial partitioning methods that are used to partition the 
stream of trip requests into sub-streams for parallelization purposes. 

4.1 Processing of a Request Stream 
The TG algorithm is expressed as a procedure in SCSQL, which is listed 
below. 

(1) create function tg(vector input_window, 

(2)                    integer K, real min_savings, 

(3)                    integer wait_time)->vector 

(4) as begin 

(5)   declare vector ex, vector bcss, timeval ct; 

(6)   insert_q(in(input_window)); 

(7)   set ct = get_end(input_window); 

(8)   set ex = select_ex_q(curr_time, wait_time); 
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(9)   set bcss = {}; 

(10)   for each vector r where r = in(ex) 

(11)   begin 

(12)     remove_q(r); 

(13)     set s = select subvector(ac,0,i) 

(14)             from vector fec, vector ac, 

(15)                  integer i, integer k 

(16)             where fec = topk(calc_FEC(r),2,K) 

(17)             and ac = calc_AC(fec,2) 

(18)             and i = min(ac,2); 

(19)     if savings(s) >= min_savings 

(20)     begin 

(21)       set bcss = concat(bcss,members(s)); 

(22)       remove_q(members(s)); 

(23)     end; 

(24)     else 

(25)       set bcss = concat(bcss,r); 

(26)   end; 

(27)   result bcss; 

(28) end; 

The tg procedure takes an input window of the most recently arrived 
trip requests, and the three algorithm parameters K, min_savings, and 
wait_time. The output of tg is a vector of best vehicle-shares, bcss. 
tg executes as follows. First, on line 6, all requests in input_window 
are added to the main memory table of waiting requests q. Then, on line 7, 
based on the wait time parameter and the current time ct (indicated by the 
end of the input window), expiring requests, ex, are selected from q. The 
for each loop on line 10 iterates over each request r in ex as follows. On 
line 12, the request r is removed from the q. Then, in a compound query on 
lines 13–18, the best, maximum K-sized vehicle-share for r is found. The 
first part of the compound query, on line 16, calculates the fractional extra 
costs calc_FEC(r)=<r,ri,fec> between r and all other requests in q, 
and selects the tuples for the K requests with the lowest fractional extra costs. 
The remaining parts of the compound query, on lines 17–18, calculates the 
amortized costs calc AC(fec)=<r,ri,ac> based on the top-K frac-
tional extra costs, and selects the lowest of these costs. The best vehicle-
share that corresponds to this lowest amortized cost is assigned to s on line 
13. Finally, if the savings of s is greater than equal to min savings, 
then the members of s are added to the best vehicle-shares, bcss (line 21), 
and are removed from q (line 22). Otherwise, r could not share its trip, and 
will be the only one in its vehicle-share (line 25). The implementations of 
the derived functions insert_q, get_end, select_ex_q, remove_q, 
subvector, calc_FEC, savings, and members are omitted to pre-



 14 

serve brevity. For efficiency reasons, core functions that need to iterate over 
a set, such as topk and calc_AC are implemented as foreign functions in 
Lisp. Foreign functions allow subroutines defined in C/C++, Lisp, or Java to 
be called from SCSQL queries. The implementation of these functions is 
also omitted. 

4.2 Parallel Stream Processing in SCSQ 
Apart from streams, SCSQL includes Stream Processes (SPs) as first-class 
objects in queries. SPs allows dynamic parallelization of continuous queries, 
which is used in this paper to divide the incoming trip requests. The user 
associates subqueries with SPs. Massively parallel computations are defined 
in terms of sets of parallel subqueries, executing on sets of SPs. 

The output of an SP is sent to one or more other SPs, which are called 
subscribers of that SP. The user can control which tuples are sent to which 
subscriber using a postfilter. The postfilter is expressed in SCSQL, and can 
be any function that operates on the output stream of its SP. For each output 
tuple from the SP, the postfilter is called once per subscriber. Hence, the 
postfilter can transform and filter the output of an SP to determine whether a 
tuple should be sent to a subscriber. Postfilters are used in the experiments to 
partition the input stream between the SPs that are carrying out TG. 

The divide-and-conquer experiments are expressed as queries in SCSQL. 
All these queries have the same communication pattern between SPs, as 
shown in Figure 4. A Partition SP reads a stream of incoming trip requests 
(S1). That stream is partitioned into partial streams, which are sent to the 
Compute SPs. Each Compute SP executes the tg procedure on its partial 
stream. Also, each Compute SP evaluates the savings achieved, by compar-
ing the total cost of all trips with the total cost of the shared trips. The results 
of all Compute SPs are merged together by a Combine SP. The resulting 
stream of cab requests (S2) is sent to the user. 

S2CombineS1 Partition Compute

Compute

Compute

 
Figure 4. Communication pattern of TGs working in parallel. 

4.3 Spatial Partitioning Methods 
Section 3.4 showed that the TG algorithm does not scale well enough for 
large-scale CT systems. The key idea to overcome the scaling issue is a di-
vide-and-conquer approach. Each request ri = <tr, lo, ld, te> are characterized 



 15 

by its origin and destination locations, lo ∈ R2 and ld ∈ R2. Hence, a request 
can be geographically characterized by a point in lo×ld. In other words, a 
request is characterized by a point in R4. The divide-and-conquer approach is 
to partition this space and assign each partition to one TG. Intuitively, this 
approach will gain in execution time since each TG algorithm has less work-
load, but will lose some of the vehicle-sharing opportunities since none of 
the partitions are able to probe all combinations that a serial implementation 
can do. The goal is to find a partitioner that executes efficiently and achieves 
maximum savings. The following partitioning strategies are implemented in 
SCSQL and investigated experimentally. 

4.3.1 Baseline Queries 
Two baseline queries are executed; the unpartitioned query and the round-
robin query. These queries form a performance baseline of the best and 
worst possible savings and execution speeds. All other methods should be 
compared to the measurements of these two queries.  

The unpartitioned query applies a single TG algorithm on the entire re-
quest stream without any partitioning. Since all requests are going to a single 
TG, all possible sharing opportunities will be investigated. The unpartitioned 
query will give the best savings, but it will also take the longest time to exe-
cute because all burden will be placed on a single node. The unpartitioned 
query is expressed in SCSQL as follows: 

 
 select tg(v, 4, 0.8, 600, 60) 

from vector v, charstring file 

where v = twinagg(streamfile(file), 60.0, 60.0) 

and file in 

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"}; 

The streamfile(file) function reads tuples that are stored in file, 
and streams them out. The twinagg(inputstream, size, 
stride) function is taking a stream as the first argument and emits a time 
window over the last size seconds, every stride seconds. Hence, if 
size=stride, twinagg emits tumbling (consecutive and non-overlapping) 
windows of the input stream. This twinagg() makes sure that tg() al-
ways will get one minute worth of requests each time. Hence, tg() will get 
called once per minute. If no requests have arrived during a certain minute, 
twinagg() will emit an empty window for that minute. 
tg(input_window, K, min_savings, wait_time) performs 
the trip grouping algorithm. The query is executing once per file in the col-
lection of filenames given on the last line of the query. 

The round-robin partitioner will send the first request to one working SP. 
The next request will be sent to another working SP, and so on. This way, 
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each SP will be given exactly 1/n of the total load, so the load balance is 
perfect. Since the round-robin partitioning scheme is perfectly load balanced, 
it will achieve the maximum possible execution speed. On the other hand, a 
TG algorithm executing in an SP that is operating on a round-robin data 
partition can be expected to give inferior savings since nearby requests not 
necessarily go to the same TG. Thus, the round-robin partitioner is expected 
to achieve the least savings. It is expressed in SCSQL as: 

 
 select merge(b) 

from bag of sp b, sp c, integer n, charstring file 

where b = spv(select streamof(tg(twinagg(stract(c), 

              60.0, 60.0), 4, 0.8, 600))) 

              from integer i where i=iota(1,n)) 

and c = sp(winagg(streamfile(file), n, n), n, ’rr’) 

and n in {16, 8, 4, 2} 

and file in 

{"L16.dat", "L8.dat", "L4.dat", "L2.dat", "L1.dat"}; 

In this query, the output of streamfile is passed into  
winagg(input_stream, size, stride), which is forming tum-
bling windows of size n, n being the number of subscribers to the Partition 
SP c. Each window is an ordered set of tuples, so it is represented as a vec-
tor. The round-robin function rr, is applied once per subscriber. For sub-
scriber i, rr picks up the i-th element in the vector emitted from winagg. 
The SP(stream, nsubscribers, postfilter) is assigning 
stream and postfilter to a new SP, which should expect n subscrib-
ers. Thus, a combination of a winagg on a stream and a vector dereference 
in the postfilter function results in a round-robin partitioner. 
iota(m,n) generates all integers from m to n. Hence, the query in the 

call to spv(bag of stream) creates n duplicates of the query  
streamof(tg(twinagg(stract(c),60.0, 60.0), 4, 0.8, 600)), where 
stract(c) is extracting the stream from stream process c. Each one of 
these queries will be assigned to a stream process. Finally, the output of all 
the stream processes in b will be merged. Refer to Figure 4 for a graphical 
representation of the communication pattern: The partition is done at SP c, 
compute is performed by the SPs in b, and the combination is done in the 
merge at top level. 

4.3.2 Static Point Quad Partitioning 
Static point quad partitioning (SPQ) calculates from historical data the medi-
ans of each dimension of the trip requests. Each dimension of the four-
dimensional trip request data space is split once along the median of each 
dimension. Figure 5(a) shows the SPQ partitions for some data points in two 
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dimensions. By splitting each dimension once, SPQ par titions the four-
dimensional trip request data space into 16 regions. One or more regions can 
be assigned to one SP, executing a TG algorithm for that region. This 
SCSQL query executes SPQ: 

 
 select merge(b) 

from bag of sp b, sp c, integer n, charstring file 

where b = spv(select streamof(tg(twinagg(stract(c), 

              60.0, 60.0), 4, 0.8, 600))) 

              from integer i where i=iota(1,n)) 

and c = sp(streamfile(file),n,’pq’) 

and n in {16,8,4,2} 

and file in 

{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"}; 

The difference between this query and the round-robin query above is only 
in the call to the partitioning SP c. Instead of applying postfilter function rr 
on a window, SP c is applying the pq postfilter on the tuples from 
streamfile. For each tuple, pq decides which subscriber it should go to. 

4.3.3 Static KD Partitioning 
Static KD partitioning (SKD) splits trip request data in a hierarchical fashion 
by processing dimensions one after the other as follows. For a given dimen-
sion, SKD first calculates the local median for that dimension, and then 
splits the local trip request data for the dimension based on the median into 
approximately equal sized subsets. Figure 5(b) shows the SKD partitions for 
some data points in two dimensions. The data is first split around the median 
of the horizontal dimension, then the data in each of the so obtained parti-
tions is further split around the local (horizontal) median of each of the parti-
tions. By splitting once per dimension, the KD also partitions the four-
dimensional trip request data space into 16 regions. The SCSQL query that 
executes SKD differs from that of SPQ in that it applies another postfilter 
function at the partitioning SP, namely kd instead of pq. Since the differ-
ence is so small, the SCSQL query is not shown here. 

4.3.4 Adaptive Point Quad Partitioning 
The trip request data distribution changes over time. During the morning 
rush hours people want to move from their homes (residential district) to 
their work (business and industrial districts). During the evening rush hours 
the opposite is true. The trip requests that correspond to the morning rush 
hour movements are likely to fall in different partitions than the trip requests 
that correspond to the evening rush hour movements. Consequently, the 
“morning rush hour” partitions will be densely populated in the morning-
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hours, and the “evening rush hour” partitions will be densely populated in 
the evening hours. Clearly, a static partitioning method does not consider 
these temporal changes in data distribution and is therefore likely to result in 
temporarily unbalanced partitions. 
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4

 
(a) SPQ (b) SKD 

Figure 5. Illustrations of the static partitioning methods. 

The adaptive point quad partitioning (APQ) adjusts the boundaries of the 
partitions periodically, based on statistics obtained from a recent history 
buffer of the trip request stream, and distributes the newly arriving trip re-
quests according the newly adjusted partitions. Figure 6(a) shows two con-
secutive partitionings that are constructed by the APQ partitioning for some 
data points in two dimensions. Hollow dots represent data points that were 
present when the previous partitioning was constructed, but are not present 
or are not relevant for the construction of the current partitioning. In con-
trast, solid rectangular markers represent data points that were not present 
when the previous partitioning was constructed, but are relevant for the con-
struction of the current partitioning. Solid and dashed lines represent current 
and previous partition boundaries. The following SCSQL query executes TG 
algorithm with APQ: 

 
 select merge(b) 

from bag of sp b, sp c, integer n, charstring file 

where b = spv(select streamof(tg(twinagg(stract(c), 

              60.0, 60.0), 4, 0.8, 600))) 

              from integer i where i=iota(1,n)) 

and c = sp(pqstat(streamfile(file), 

           600.0, 60.0, 10),n,’pq’) 

and n in {16,8,4,2} 

and file in 
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{"L16.dat","L8.dat","L4.dat","L2.dat","L1.dat"}; 

This query differs from the SPQ query in the call to the partitioning SP c. 
The streamfile function is wrapped by pqstat(inputstream, 
size, stride, samplefreq). This function emits the same stream 
as its input stream, and maintains statistics in a main memory table of SCSQ. 
Every stride×samplefreq seconds, pqstat computes medians in 
each dimension of lo × ld across the tuples seen in the last size seconds. 
These median values are then used in the pq postfilter. This way, the parti-
tioning decisions are always done on recent data. 

4.3.5 Adaptive KD Partitioning 
The adaptive KD partitioning (AKD) adjusts the boundaries of the partitions 
periodically, based on statistics obtained from a recent history buffer of the 
trip request stream, and distributes the newly arriving trip requests according 
the newly adjusted partitions. Figure 6(b) shows two consecutive partition-
ings that are constructed by the AKD partitioning for some data points in 
two dimensions. The semantics of the symbols used in the figure are the 
same as in the case of the APQ partitioning. However, Figure 6(b) depicts a 
situation that can happen in either one of the adaptive spatial partitioning 
methods. Consider the data point inside the triangle. Since it was present 
when the previous partition was constructed it has been assigned to compute 
node 2 for processing. According to the newly constructed partitions how-
ever, it should be assigned to compute node 4. To avoid communication 
between compute nodes, the following design choice is made: once a data 
point is assigned to a partition (compute node), it is never reassigned to an-
other partition, even if the newly adjusted partitions would suggest this. 

The SCSQL query that executes SKD differs from SPQ in that it applies 
another statistics wrapper function and another postfilter function at the par-
titioning SP, namely kdstat instead of pqstat and kd instead of pq. 
kdstat works analogously to pqstat with the difference that it maintains 
dynamical versions of local dimension splits of the kind that SKD has. Since 
the difference between this query and the APQ query is so small, the SCSQL 
AKD query is not shown here. 

5. Density-based spatial stream partitioning 

In all spatial partitioning methods proposed in this paper, the space of re-
quests is split by planes. The locations of the splitting planes are determined 
by the medians of request data. These splitting planes potentially eliminate 
the discovery of good shares, when members of the good shares are on dif-
ferent sides of a splitting plane. This naturally leads to some degradation in 
the overall grouping. The degradation is larger when the planes are cutting 
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through denser regions of the request space with many sharing opportunities, 
than when the planes are cutting through sparser regions of the request 
space. Since neither of the proposed partitioning methods consider the distri-
bution density of the requests, the degradation of grouping quality due to 
boundary effects can be expected to be approximately the same for all four 
partitioning methods. However, as Section 6 demonstrates, this degradation 
is rather small. 
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(a) APQ (b) AKD 

Figure 6. Illustrations of the dynamic partitioning methods. 

No matter how small the degradation is, simple spatial partitioning meth-
ods that take into account the density of the data could reduce the degrada-
tion. The objective of such a density-based partitioning is to determine the 
positions of the splitting planes so that they pass through regions where data 
is sparse. To achieve this, a simple but effective clustering method [9] can be 
used to find local minima in the multimodal data distributions along each 
dimension, and place splitting planes at those locations. Figure 7 shows the 
distributions for each dimension of the request data during morning peak 
hours and off-peak hours. During the morning peak hours, there does not 
seem to be any regions where the request data is very sparse. However, dur-
ing off-peak hours, when people who are not working are most likely to be 
in one of the larger shopping malls, the distributions of the destination di-
mensions (tx, ty) are clearly multimodal. In this later situation, ensuring that 
splitting planes are chosen correctly at local minima would minimize the 
boundary effects. However, since most of the requests are during peak hours, 
the overall average grouping achieved by the parallel TG algorithm would 
not be substantially improved. 

Since the local minima are likely not to be at the median values of the di-
mensions, there exists a trade-off between equal-sized partitions and parti-
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tions with minimal boundary effects. A dual-objective partitioning that takes 
this trade-off into consideration could weigh the expected degradation 
against the imbalance between the created partitions. Although the imple-
mentation of the density-based and the dual-objective spatial stream parti-
tioning methods is straight-forward, it is left for future research. 

The proposed spatial stream partitioning methods are devised to scale the 
TG algorithm to very large flows of requests. However, they can be consid-
ered as a general approach to make computationally intensive spatial analy-
sis tasks scalable through parallelization. For example, the density-based and 
the dual-objective spatial stream partitioning methods can be applied to 
speed up spatial clustering of streams, spatio-temporal rule mining [10], or 
the processing of high-resolution image streams. 

6. Experiments 

The parallel implementations of the TG algorithm were tested on a cluster of 
Intel® Pentium® 4 CPU 2.80GHz PCs. Each SP in the query language 
started a running process (RP) on a separate node in the cluster. TCP/IP over 
Fast Ethernet was used to carry streams between the nodes. 

Trip request data was simulated using ST-ACTS, a spatio-temporal activ-
ity simulator [11]. Based on a number of real world data sources, ST-ACTS 
simulates realistic trips of approximately 600,000 individuals in the city of 
Copenhagen, Denmark. For the course of a workday, out of the approxi-
mately 1.55 million generated trips, approximately 251,000 trips of at least 
3-kilometer length were selected and considered as trip requests. To test the 
scalability of each of the parallel implementations using the four spatial 
stream partitioning methods, decreasing sized subsets of the total load of 
251,000 trip requests were constructed by only considering every second, 
fourth, eighth and sixteenth trip request in the input stream. These subsets 
are referred to as 1/2, 1/4, 1/8, 1/16 load, respectively. 

To evaluate the effectiveness of the four spatial stream partitioning meth-
ods, for the purposes of parallelization of the TG algorithm, two measures 
were used: (overall) execution time and average savings achieved by the 
grouping (also referred to as the quality of the grouping or quality for short). 

The reported savings for each vehicle-share are based on amortized costs, 
which has been shown to overestimate the true cost of a vehicle-share that 
considers the optimal pick-up and drop-off sequence of requests. Hence, the 
reported savings underestimate the true savings. Nonetheless, the reported 
savings can be used as an unbiased measure for the quality of the grouping. 

 



 22 

7.18 7.2 7.22 7.24 7.26 7.28

x 10
5

0

0.5

1

1.5

2
x 10

4

fx
6.17 6.175 6.18

x 10
6

0

0.5

1

1.5

2
x 10

4

fy

7.2 7.25 7.3

x 10
5

0

1

2

3

4

5

x 10
4

tx
6.17 6.175 6.18 6.185

x 10
6

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

ty  

(a) Morning peak hours 



 23 

7.18 7.2 7.22 7.24 7.26 7.28

x 10
5

0

2000

4000

6000

8000

10000

12000

fx
6.17 6.175 6.18

x 10
6

0

2000

4000

6000

8000

10000

fy

7.2 7.22 7.24 7.26

x 10
5

0

5000

10000

15000

20000

tx
6.17 6.172 6.174 6.176 6.178

x 10
6

0

5000

10000

15000

ty  
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Figure 7. Request data distributions along each dimension. “f” and “t” stand for 
“from” and “to”, respectively. Hence, fx and fy are request origin dimensions, 
while tx and ty are request destination dimensions. 

For each of the partitioning methods an extensive set of experiments were 
performed for fixed algorithm parameters (K = 4, min_saving = 0.2, and 
Δt = 10 minutes) under varying loads using degrees of parallelization. The 
adaptive partitioning methods updated the partitions every 10 minutes based 
on the trip request that arrived in the last 10 minutes. 
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6.1 Baseline Performance  
To establish a point of reference for the performance measures the baseline 
queries specified in Section 4.3.1 were executed. Table 1 shows the results 
for the unpartitioned query. Savings obtained by the unpartitioned query 
(serial execution) are considered to be optimal, while running times are con-
sidered to be worst case performance. Note that these measures are “opti-
mal” and “worst case” with respect to the TG algorithm. Moreover, as it is 
demonstrated in Section 3.3, due to the computational complexity of the 
vehicle-sharing problem, the calculation of a truly optimal grouping, even in 
the case of a few requests, is infeasible. Due to the large difference in scale 
between serial and parallel execution times, serial execution times are not 
shown in subsequent figures. Savings achieved by the unpartitioned query 
(serial execution) are also not shown in subsequent figures, but are used to 
report relative performance of the parallel executions in terms of savings and 
quality. 

Table 1. Performance of the serial TG algorithm. 

load execution time (sec) savings 

0.06125 28.8 0.325 
0.125 120.1 0.388 

0.25 702.9 0.445 

0.5 16343.5 0.491 

1 69771.6 0.530 

In comparison, the round-robin query was executed to obtain optimal execu-
tion times due to perfect load balancing and worst case savings due to the 
distribution independent partitioning of requests between SPs. The results of 
these experiments are shown in Figures 8 and 9 as RR, however it is empha-
sized that RR is not one of the proposed spatial stream partitioning methods, 
but is only used as a reference. 

6.2 Absolute Performance of the Parallel TG Algorithms 
Figures 8 and 9 show the absolute performance of the parallel TG algorithm 
for varying load and degrees of parallelization using different spatial stream 
partitioning methods. From Figure 8(a) it can be seen that the execution 
times of all of the methods decrease as the parallelism is increased. Figure 
8(a) also reveals that the adaptive versions of the spatial partitioning meth-
ods adjust well to the changing spatial distribution of the requests, resulting 
in more balanced partitions and ultimately faster execution times when com-
pared to their static version. The improvement in execution time due to adap-
tive partitioning is most evident for the SPQ partitioning. Figure 8(b) shows 
that while the execution time of the TG algorithms can be scaled, the under-
lying algorithmic complexity of the TG algorithm executed on the compute 
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nodes does not change. The effect of the underlying algorithmic complexity 
is more observable for spatial partitioning methods that construct less bal-
anced partitionings, in particular SPQ. 

Figure 9(a) shows that in general the quality of the grouping decreases as 
the degree of parallelization is increased. However in the case of non-spatial 
partitioning (RR) this degradation is significant, while in the case of either 
one of the four spatial partitioning methods it is negligible. Figure 9(b) 
shows that the grouping quality increases as the load is increased. This is due 
to the simple fact that the spatio-temporal density of the trip requests in-
creases. As a consequence, the likelihood that a request becomes part of a 
“good” vehicle share increases. The almost negligible differences between 
the qualities achieved by the four partitioning methods, as explained in Sec-
tion 5, is due to the fact that since neither of the partitioning methods con-
sider the data densities, but only the medians of the dimensions, the total 
degradation due to boundary effects is approximately the same for the four 
partitioning methods. 

6.3 Relative Performance of the Parallel TG Algorithms 
Figure 10 shows relative execution times of the parallel TG algorithms when 
compared to the optimal execution time that is achieved by RR partitioning 
due to perfect load balancing. With the exception of the SPQ partitioning, all 
other partitioning methods result in parallel execution times that are within 
the same order of magnitude as the optimal. There are potentially two 
sources for this slowdown: the cost of partitioning and the extended execu-
tion times due to improper load balancing. Since adaptive partitioning meth-
ods have to maintain a limited history of the stream and periodically recom-
pute partition boundaries based on this history, they do additional work 
compared to their static counterparts. Figure 10 shows that execution times 
resulting from adaptive partitioning are significantly shorter than the execu-
tion times achieved by static partitioning. Hence, it is clear that the addi-
tional time needed to perform the spatially partitioned parallel queries can 
mainly be attributed to unbalanced partitions. 

Finally, comparing the savings in Figure 9(b) to the savings in Table 1 re-
veals that the grouping quality achieved by either one of the partitioning 
methods is within the 95% of the optimal quality for the full load. Even if 
the load is decreased to 1/16 of the total load, all the spatial partitioning me-
thods still achieve approximately 90% of the maximum possible savings. 

The experiments can be summarized as follows. First, RR partitioning has 
perfect load balance and is a very simple partitioning method, hence it has 
the fastest execution time. However, RR partitions the space badly and 
achieves a bad grouping quality. Second, using a spatial partitioning method 
improves grouping quality. All spatial partitioning methods achieve at least 
95% of the maximum possible savings in the case of the full load. Third, the 
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adaptive partitioning methods always execute faster than their static equiva-
lents. That is because the adaptive methods constantly adapt the partitioning 
according to the last tuples observed, which will lead to better load balance. 

2 4 8 16
0

5000

10000

15000

20000

25000

30000

# of processors

ex
ec

ut
io
n
tim

e
(s
ec

)
E xecution time full load

R R
S PQ
S KD
APQ
AKD

 

(a) Performance for full load. 
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(b) Performance for 16 processors. 
Figure 8. Execution times for the parallel TG algorithm for different partitioning 
methods for varying parallelization and load. 
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(a) Quality for full load. 
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(b) Quality for 16 processors. 
Figure 9. Savings for the parallel TG algorithm for different partitioning methods 
for varying parallelization and load. 
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Figure 10. Relative performance for the parallel TG algorithm (compared to RR 
partitioning) for different partitioning methods for varying parallelization. 

At the same time, the savings are approximately the same for both the static 
and adaptive partitionings. Adaptive partitioning is also preferred from an 
operational point of view, since it does not need any prior knowledge about 
the data distribution. Finally, since all partitioning methods (except RR) 
achieve about the same savings, the preferred method is the one with the 
fastest execution time of SPQ, SKD, APQ, and AKD. Thus, AKD is the best 
partitioning method. 

7. Conclusions and future work 

This paper proposed highly scalable algorithms for trip grouping to facilitate 
large-scale collective transportation systems. The algorithms are imple-
mented using a parallel data stream management system, SCSQ. First, the 
basic trip grouping algorithm is expressed as a continuous stream query to 
allow for a very large flow of requests. Second, following the divide-and-
conquer paradigm, four spatial stream partitioning methods are developed 
and implemented to divide the input request stream into sub-streams. Third, 
using the infrastructure of SCSQ and the partitioning methods, parallel im-
plementations of the grouping algorithm are executed in a parallel comput-
ing environment. Extensive experimental results show that the parallel im-
plementation using simple adaptive partitioning methods can achieve sub-
stantial speed-ups, without significantly affecting the quality of the grouping. 
As discussed in Section 5, spatial partitioning is not only appropriate for the 
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given application, but it is applicable to parallelize computationally expen-
sive spatial analysis tasks. As it was demonstrated, SCSQ can easily accom-
modate the parallel implementation of such tasks. 

Future work will be along four paths. First, for the adaptive partitioning 
methods, the effects of keeping a longer history versus sampling more fre-
quently will be investigated. Second, the density-based and dual-objective 
spatial stream partitioning methods will be implemented and their effective-
ness evaluated. Third, the proposed partitioning methods, independent of the 
rate of flow, always construct a fixed number of partitions. While not sub-
stantially, but as the number of partitions increases the grouping quality de-
creases. Hence, an adaptive partitioning approach in which the number of 
partitions is increased / decreased depending on the rate of flow will be de-
vised and tested. Finally, to preserve clarity the paper presented the generic 
TG algorithm in its simplest form. In particular, in the presented version all 
vehicles are assumed to have the same passenger capacity and all requests 
have a common minimum savings parameter. Furthermore, in-route group-
ing, i.e., assigning requests to already active but not fully-occupied vehicle-
shares, is not handled by the simple version of the TG algorithm. Future 
work will consider the implementation of a more complex version of the TG 
algorithm that addresses the above issues. 
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Scalable Splitting of Massive Data Streams 
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Abstract– Scalable execution of continuous queries over massive data 
streams often requires splitting input streams into parallel sub-streams over 
which query operators are executed in parallel. Automatic stream splitting is 
in general very difficult, as the optimal parallelization may depend on appli-
cation semantics. To enable application specific stream splitting, we intro-
duce splitstream functions where the user specifies non-procedural stream 
partitioning and replication. For high-volume streams, the stream splitting 
itself becomes a performance bottleneck. A cost model is introduced that 
estimates the performance of splitstream functions with respect to through-
put and CPU usage. We implement parallel splitstream functions, and relate 
experimental results to cost model estimates. Based on the results, a split-
stream function called autosplit is proposed, which scales well for high de-
grees of parallelism, and is robust for varying proportions of stream parti-
tioning and replication. We show how user defined parallelization using 
autosplit provides substantially improved scalability (L = 64) over previ-
ously published results for the Linear Road Benchmark. 

Keywords: Distributed stream systems, parallelization, query optimization. 

1. Introduction 

Data Stream Management Systems (DSMS) are becoming commonplace for 
a wide range of scientific and industrial applications, with high-volume data 
streams and queries that involve complex computations. Scalable execution 
in such applications requires parallelization. The parallelization of a query is 
called the parallelization strategy. In general, it is very difficult to automate 
the parallelization strategy, since the optimal parallelization may depend on 
application semantics. Our approach is to extend the query language with 
second-order functions to enable the user to specify non-procedural paral-
lelization strategies. These functions split an input stream into large collec-
tions of parallel streams over which queries produce collections of result 
streams. Depending on the application, this collection of result streams can 
be merged, aggregated or further partitioned. 
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Splitstream functions partition and/or replicate input streams into a collec-
tion of streams. For each tuple in the input stream, splitstream decides 
whether the tuple should be sent to one specific DSMS node (partitioning) or 
many DSMS nodes (replication). Partitioning a stream is necessary when 
executing expensive queries. Replication is required, e.g., when aggregates 
are computed over data distributed over many local DSMS nodes. A split-
stream function is compiled and optimized into a splitstream plan. We show 
how to automatically generate an optimized splitstream plan with high 
throughput and low CPU cost given a non-procedural splitstream specifica-
tion. A generic splitstream function autosplit is defined that generates an 
optimized parallel splitstream plan based on a simple decision rule. To in-
vestigate the scalability of splitstream functions, we have parallelized an 
implementation of the Linear Road Benchmark (LRB), which is called scsq-
plr. We focus on the performance bottleneck in the parallelization strategy of 
scsq-plr, which is splitting the stream of position reports and account bal-
ance queries. In summary, we present the following results: 
• Splitstream functions are introduced, which enable non-procedural user 

defined specification of parallelization strategies. 
• A cost model is introduced that estimates CPU utilization and through-

put of splitstream plans. 
• A theoretically optimal tree shaped splitstream plan is devised that has 

maximum throughput according to the cost model. This plan is com-
pared with other splitstream plans. 

• A generic splitstream function autosplit automatically generates tree 
shaped splitstream plans. Autosplit is shown to improve the scalability of 
LRB substantially. 

2. Splitstream Functions 

A stream function, Q(S, …)  So is a parameterized query that transforms 
one or more input stream arguments S into one or more output streams So. A 
parallelization function operates on collections of streams, and is used for 
specifying parallel executions of stream functions. Figure 1 illustrates three 
basic classes of parallelization functions; splitstream, mapstream, and merg-
estream. splitstream splits an input stream into two or more output streams. 
The number of output streams of a splitsteam is called its width. mapstream 
applies a stream function on each stream in a collection of streams, while 
mergestream merges or joins a collection of streams into a single output 
stream. Examples of mergestream functions are stream union and windowed 
stream join. Although all parallelization functions are used in the final eval-
uation experiment, the focus of this paper is to optimize splitstream func-
tions since they are shown to be a performance bottleneck. 
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Figure 1. Splitstream, mapstreams, and mergestream. 

A splitstream function has the basic signature splitstream(stream s, integer 
w, function rfn, function bfn)  vector of stream sv. The input stream s is 
split into w output streams in the vector sv. The first functional argument rfn 
is the routing function, having signature rfn(object tpl, integer w)  integer, 
which returns the output stream number (between 0 and w – 1) for each tuple 
that should be routed to a single output stream. The functional argument 
bfn(object tpl)  boolean is the broadcast function, which returns true for 
tuples to be broadcasted to all output streams. bfn and rfn return nil for tuples 
that should neither be broadcasted nor routed. rfn and bfn are defined de-
claratively in the query language by the user. 

2.1 Parallelizing LRB 
LRB [1] simulates a traffic system of expressways with variable tolling that 
depends on the utilization of the roads and the presence of accidents. Vehi-
cles undertake journeys in the expressway system consisting of L express-
ways while emitting stream of position reports. An implementation must 
respond correctly to the continuous and historical queries of the benchmark 
within the allowed maximum response time (MRT). The number of ex-
pressways that an implementation is able to handle is called the L-rating of 
the implementation. An LRB implementation can be seen as a stream func-
tion LR(S)  So. The LRB input stream S consists of four kinds of tuples; P, 
A, D, and E (event type 0, 2, 3, and 4, respectively), of which 99% are posi-
tion reports P. The rest of the tuples are account balance queries A (0.5%), 
daily expenditure queries D (0.1%), and estimated travel time queries E 
(0.4%). Currently, E tuples are ignored [1]. The D tuples are computed over 
historical data, their frequency is very low, and the allowed MRT is 10 sec, 
so any DBMS can respond to D tuples within the required time. Allowed 
MRT for P and A tuples are five seconds. Since these tuples are very fre-
quent, they have to be processed efficiently. The input stream rate increases 
continuously during the 180 minutes of the simulation. The result stream So 
contains toll and accident alerts (event type 0 and 1), and query responses 
(event type 2 and 3). Some position reports do not result in toll alerts, so the 
rate of So is less than that of S. 

Our single node LRB implementation scsq-lr [17] spent most of its CPU 
time computing segment statistics. This processing is local to each express-



 4 

way, i.e., events on one expressway are independent of events on other ex-
pressways. Thus, the key to efficient parallelization is to partition the input 
stream into L parallel streams, and execute one instance of LR() for each 
expressway, as is employed in scsq-plr. The A tuples require account balance 
information. In scsq-plr, a local account table is maintained on each LR(), so 
that vehicles accumulate account balance locally on each expressway. Then, 
account balance queries must aggregate account data from all expressways. 
Therefore, all A tuples are broadcasted to all DSMS nodes running LR(). 

Figure 2 illustrates this parallelization strategy for L = 4. The input stream 
is first split by splitstreamD, whose routing function rfnD(e, w) is defined as: 

create function rfnD(Event e, Integer w)  Integer as  

select i from integer i where 

(eventtype(e)<3 and i=0) or (eventtype(e)=3 and i=1); 

In splitstreamX, the body of rfnX(e, w) is select expressway(e) where 
eventtype(e)=0, while bfnX(e) is defined as select eventtype(e)=2. 
Each stream from splitstreamX is processed by an lr node (executing LR()), 
whose result stream is split by splitstreamO using rfnO(e, w) defined as  
select eventtype(e). splitstreamO and splitstreamD do not broadcast, so 
they have no bfn. All toll and accident alert result streams are merged with 
union-all. Account balance answers from each splitstreamO are joined on 
query id and added together. 

 
Figure 2. The parallelization strategy in scsq-plr. L = 4. 
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2.2 Single Process Splitstream 
A splitstream function is naïvely implemented by a single process split-
stream operator fsplit, its modules being shown in Figure 3. The input stream 
S is read and de-marshalled by the consume module. In the process module, 
rfn and bfn are called for each tuple. Each emit module marshals and emits 
tuples to its output stream Soi, i = 0…w–1. 

 
Figure 3. Modules of fsplit. 

The rate Φ of a stream is defined as the number of tuples per second. The 
CPU cost C for executing fsplit in Figure 3 is computed as 

( ))()( bwrcebwrocpccC ⋅++⋅+++Φ= . (1) 

In Equation 1, the consume cost cc measures reading and de-marshalling 
one input tuple, the process cost cp measures the execution of rfn and bfn per 
input tuple, and the emit cost ce measures emitting a tuple. b is the broadcast 
percentage, which is the proportion of tuples in the input stream to be emit-
ted to all w output streams according to bfn. Notice that b is multiplied by w. 
r is the routing percentage, i.e. the proportion of tuples to be routed accord-
ing to rfn, while o is the omit percentage, which is the proportion of tuples 
that are not emitted at all. As a tuple is either broadcasted, routed, or omit-
ted, r + b + o = 1. Thus, the cost C decreases if o increases because of small-
er emit cost. Assuming rfn routes each tuple with equal probability for all 
output streams So0…Sow–1, the rate of each output stream is Φoi = Φ ·  
(b + r / w) for all i. 

For scsq-plr, Table 1 shows percentages o, b, and r, widths w, and output 
stream rates Φ of splitstreamD, splitstreamX, and splitstreamO, respectively. E 
(0.4%) tuples are dropped by splitstreamD. P (99%) and A (0.5%) tuples are 
routed to splitstreamX, and D (0.1%) tuples are routed to dailyexp(). split-
streamX broadcasts A tuples to all lr() nodes and routes P tuples of express-
way j = 0…L–1 to the corresponding lr(). Thus, splitstreamX has b = 
0.5% / 99.5% ≈ 0.5%, and r = 99% / 99.5% ≈ 99.5%. Each splitstreamO 
routes the low rate result stream Φri from one lr() node. 

According to Equation 1, the cost of fsplit increases when w is increasing 
if b > 0. Therefore, the cost of splitstreamX increases when scaling L, turning 
splitstreamX into the bottleneck when executing scsq-plr with high L. Stream 
replication is a scalability problem for large w, even if b is very close to zero, 
as in LRB. 
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Table 1. Tuple percentages, widths, and output 
stream rates of splitstream functions in LRB. 

 o b r w Φ 

D 0.4% 0% 99.6% 2 ΦX = 99.5% · Φ ΦD = 0.1% · Φ 
X 0% 0.5% 99.5% L Φi = ΦX · (0.5% + 99.5% / L) 

O 0% 0% 100% 3 Φri < Φi 

3. Splitstream Trees 

To alleviate the bottleneck in splitstreamX when scaling w, we propose a 
hierarchical splitstream plan, called a splitstream tree. Each level l in a split-
stream tree is numbered, starting from 1 at the root to the depth d. Each node 
in the tree executes fsplit, and the width of the nodes on level l is called the 
fanout fl of level l. A hierarchical hash function defined in this section en-
ables any user defined rfn to be executed in a splitstream tree. Furthermore, 
we introduce a cost model for splitstream trees. Using this cost model, a 
splitstream tree with maximum throughput can be generated if r and b are 
known. We compare its performance to a practical splitstream tree, which 
does not require knowledge of r and b. 

3.1 Multi-Level Hash Function 
Since each level l in a splitstream tree has fanout fl, the result of rfn on level 
l must be an integer in range [0, fl –1]. In addition, a splitstream tree must 
result in the same set of output streams as that of fsplit. To fulfill these re-
quirements, the hierarchical hash function defined in Equation (2) is applied 
on the result of the routing function rfn(t) at each level l and tuple t. 

.mod
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The denominator λl-1 of Equation 2 is the cumulative fanout of level l – 1, 
i.e., the fanout that the tuple has undergone in the tree levels above level l. 
The cumulative fanout at the root is λ0 = f0 = 1, and the cumulative fanout λl 
is 

.∏
≤

=
l

l
k

kfλ  (3) 

The output streams of a node at level l  are denoted So(l)
i, i = 0…fl  – 1. For 

example, if splitstreamX in Figure 2 is executed as a splitstream tree with 
f1= 2 and f2 = L/2, then h1(rfn) routes position reports of even-numbered ex-
pressways to output stream So(1)

0 and position reports of odd-numbered ex-
pressways to So(1)

1, according to Equation 2. On level 2, h2(rfn) routes tuples 
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of expressway number x to So(2)i, i = x/2. bfn is the same in all nodes, so 
that one copy of each broadcast tuple arrives at each leaf. 

3.2 A Cost Model for Splitstream Trees 
In the following discussion, we assume that then omit percentage o = 0, as in 
our splitstreamX example. If b > 0 (and thus r < 1), the routing percentage 
decreases at each level. This is because the number of tuples to broadcast 
stay the same in all output streams, whereas the number of tuples to be 
routed decreases per level. Equation 4 defines the routing and broadcasting 
percentages rl and bl at level l. 
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The rate of one of the output streams at level l is Φo(l). 
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The cost Cl of executing a node at level l in a splitstream tree depends on the 
output stream rate from level l – 1 according to Equation 5. 

( ) ( )( )lll
l

l bfrcecpccΦoC )( ⋅+⋅++⋅= −1  (6) 

The emit capacity E of a node executing the fsplit operator is defined as its 
maximum stream rate. The throughput Φmax of a splitstream tree is limited by 
E and by the level in the splitstream tree with the highest cost. 

( )ll
C

E

maxmax =Φ  
(/) 

Finally, the total cost of a splitstream tree of depth d can be estimated by 
adding the splitstream costs for all nodes at each level. The number of nodes 
at level l is λl–1. 


=

− ⋅=
d

CC
1

1
l

llλ  
(8) 

3.3 Maxtree and Exptree splitstream trees 
Assuming that the percentages r and b are known and constant, it is possible 
to construct an optimal splitstream tree that maximizes the throughput ac-
cording to the cost model. We call this splitstream tree maxtree, which max-
imizes the throughput while minimizing the total cost. The cost at level l = 1 
is minimized by choosing f1 = 2, so that C1 = Φ · (cc + (r + 2b) · (cp + ce)). 
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Levels are added until λd ≥ w. By choosing a fanout fl of each level l > 1 
such that Cl ≤ C1, we ensure that no downstream level in the splitstream tree 
will be a bottleneck. The total cost in Equation 8 is minimized by minimiz-
ing the number of splitstream tree levels. The number of levels are mini-
mized by maximizing fl on all levels l > 1, while keeping Cl ≤ C1. Solving fl 
for Cl = C1 using Equation 6 obtains the following formula for the optimal 
fanout fl at level l (see [17] for details). 

.
1

112
1 


















−








+

++=
−l

l λcecp

cc

b

r
f  

(9) 

The ratio between the costs a = cc/(cp+ce) depends on the costs of rfn and 
bfn and on the properties of the computing and network environments. In 
general, these parameters are unknown, so the formula in Equation 9 cannot 
be determined. Therefore, maxtree can only be used for comparison in con-
trolled experiments where a is known. We determined a = 1.08 for split-
streamX in a preliminary experiment. To simplify the theoretical discussion 
of maxtree, a was rounded to 1. 

Equation 9 shows that optimal fanout fl increases quickly for small l > 1 
if r > 0. Based on this observation, we introduce a splitstream tree called 
exptree, which increases its fanout for each level with a constant factor. 
exptree was set to generate trees with f1 = 2, and fl = 2 · fl–1 for all l > 1. We 
show that the performance of exptree will be almost as good as that of max-
tree, without the need to know a, r, and b. 

3.4 Theoretical Evaluation 
Throughput and total CPU cost were estimated for the splitstream plans us-
ing Equations 7 and 8, assuming cc = 1 and a = 1. In a scale-up evaluation, w 
was scaled from 2 to 256 while keeping b = 0.5%, as in splitstreamX. In a 
robustness evaluation, b was scaled from 0 to 1 while keeping w = 64. Figure 
4 shows the estimated performance. 

In the scale-up evaluation, the estimated throughput was plotted in Figure 
4 (a) as the percentage of emit capacity E. The estimated total CPU cost was 
plotted in Figure 4 (b). As expected, the single-process fsplit degrades when 
w increases. On the other hand, fsplit also consumes the least total CPU. The 
CPU cost of exptree increases when a new tree level is added, e.g. when 
increasing w from 8 to 16. For such small values of b = 0.5% as in LRB, 
maxtree generates a shallower tree and thus consumes less CPU resources 
than exptree. 
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Figure 4. (a) Estimated throughput and (b) total CPU cost, b = 0.5%. (c) Estimated 
throughput and (d) total CPU cost, w = 64. 
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When scaling b in the robustness evaluation, Figure 4 (d) shows that the 
CPU cost of maxtree increases sharply when b increases. If b ≈ 1 in Equation 
9, fl = 2 on all maxtree levels, resulting in a binary tree. A splitstream tree 
with so many nodes consumes a lot of CPU. Figure 4 (c) shows that all split-
stream functions have the same throughput for b = 0, but the throughput of 
fsplit drops quickly when b increases. For moderate values of b (up to 10%), 
the estimated throughput of exptree is the same as that of maxtree. For 
higher values of b, the estimated throughput of exptree is lower, however 
much better than fsplit. 

4. Experimental Setup 

The splitstream functions were implemented using our prototype DSMS 
SCSQ [21]. Queries and views are expressed in terms of typed functions in 
SCSQ’s functional query language SCSQL, resulting in one of three collec-
tion types stream, bag, and vector. A stream is an object that represents or-
dered (possibly unbounded) sequences of objects, a bag represents relations, 
and a vector represents bounded sequences of objects. For example, vectors 
are used to represent stream windows, and vectors of streams are used to 
represent ordered collections of streams. 

Queries are specified using SCSQL in a client manager. The distributed 
execution plan of a query forms a directed acyclic graph of stream processes 
(SPs), each emitting tuples on one or more streams. Continuous query defini-
tions are shipped to a coordinator. Unless otherwise hinted, the coordinator 
dynamically starts new SPs in a round robin fashion over all its compute 
nodes, so that the load is balanced across the cluster. The coordinator returns 
a handle of each newly started SP. 

In the SPs, a cost-based query optimizer transforms each query to a local 
stream query execution plan (SQEP), by utilizing the query optimizer of 
Amos II [9]. A SQEP reads data from its input streams and delivers data on 
one or more of its output streams. Stream drivers for several communication 
protocols are implemented using non-blocking I/O and carefully tuned buff-
ers. A timer flushes the output stream buffers at regular time intervals to 
ensure that no tuples will remain for too long. The SCSQ kernel is imple-
mented in C, where SQEPs are interpreted. SQEPS may call the Java VM to 
access DBMSs over JDBC. Thus, an SP may be stateful in that it stores, 
indexes, and retrieves data using internal main memory tables or external 
databases. In scsq-plr, local main memory tables are used to store account 
balance data, and MySQL is used to store daily expenditure data. 

In our experiments, each SP is a UNIX process on a cluster of compute 
nodes featuring two quad-core Intel® Xeon® E5430 CPUs @ 2.66GHz and 
6144 KB L2 cache. Six such compute nodes (48 cores in total) were avail-
able for the experiments. For large splitstream trees, there were fewer CPUs 
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than SPs. Then, some SPs were co-located on the same CPU. For inter-node 
communication, TCP/IP was used over gigabit Ethernet. Intra node commu-
nication used TCP/IP over the loopback interface. Throughput is computed 
by measuring the execution time of SCSQ over a finite stream. The CPU 
usage of each SP is determined using a profiler in SCSQ that measures the 
time spent in each function by interrupt driven sampling. 

5. Preliminary Experiments 

Two preliminary experiments were performed. The purpose of the first one 
is twofold: We show that the emit capacity for moderately sized tuples is 
bound by the CPU and not by the network. We also show that the emit ca-
pacity E for an SP, and thus the cost, is the same for moderately sized tuples 
no matter if streaming inter or intra node. Since the cost is the same, the 
scheduling of SPs is greatly simplified. 

One SP was streaming tuples of specified size to another SP, which 
counted them. Intra node streaming was performed with the SPs on the same 
compute node, while they were on different nodes for inter node streaming. 
The emit capacity is shown in Figure 5 (a), with less than 3.5% relative stan-
dard deviation. For tuples of moderate size, the emit capacity is the same for 
inter and intra node streaming. LRB input stream tuples have 15 attributes, 
occupying 83 bytes including header. The network bandwidth consumption 
is 143 Mbit/s for these tuples, which is significantly less than the capacity of 
a gigabit Ethernet interface. Streaming moderately sized tuples as in LRB is 
CPU bound, because of the overhead of marshalling and (de)allocating many 
small objects. For tuples of size greater than 512 bytes, the intra node 
throughput is better. Usually however, tuples are smaller. 

The purpose of the second preliminary experiment is to measure con-
sume, process, and emit costs (cc, cp, and ce) splitstreamX in our environ-
ment, as required by maxtree. We do that by executing splitstreamX as an 
fsplit with w = 1. One SP generated a stream of 3 million tuples. A second 
SP applied fsplit with w = 1 on the stream from the first SP, using the rfn and 
bfn of splitstreamX. A third SP counted the number of tuples in the single 
output stream from fsplit. 

The CPU times obtained from the fsplit SP are shown in Figure 5 (b). Us-
ing these CPU times, a = cc / (cp + ce) ≈ 1.08, which is used in all maxtree 
experiments. Furthermore, the throughput of this simple splitstream was 
Φmax = 109) · 103 tuples per second (relative standard deviation 0.6%). In 
LRB, the maximum input stream rate is 1670 tuples per second and ex-
pressway, so this throughput corresponds to 65 (109000/1670) expressways 
in LRB. No splitstream tree can be expected to have higher throughput than 
fsplit with w = 1. Thus, no splitstream tree will be able to split the input 
stream of LRB for L > 65. 
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Figure 5. (a) Inter and intra node emit capacity, (b) CPU time breakdown for fsplit 
with w = 1. 

6. Experimental Evaluation 

The goal with the experimental evaluation is to investigate the properties of 
the splitstream plans in a practical setting. Throughput and total CPU con-
sumption were studied in a scale-up experiment and a robustness experi-
ment, set up in the same way as in the analytical evaluation. In order to es-
tablish statistical significance, each experiment was performed five times 
and the average is plotted in the graphs. 

Figure 6 shows the throughput and CPU usage of the splitstream trees. Er-
ror bars (barely visible) show one standard deviation. All experimental re-
sults agree perfectly with the theoretical estimates in Figure 4 with one ex-
ception: The measured throughput of maxtree shown in Figure 6 (c) was 
significantly lower for large values of b than estimated. This is because the 
total CPU usage exceeds the CPU resources available for our experiments. If 
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resources were abundant, maxtree should have been feasible for splitting 
streams with a high broadcast percentage. If resources are limited, exptree is 
shown to achieve the same throughput as maxtree at a smaller CPU cost. The 
experiments confirm that our cost model is realistic. 

6.1 Autosplit 
We observe that exptree achieves the same scale-up as maxtree. Further-
more, the robustness of exptree is the same as that of maxtree when re-
sources are not abundant. Based on these results, we implement autosplit 
using the following decision rule: If bfn is present, generate an exptree. If 
only rfn is present and thus b = 0, generate a single fsplit, since a single fsplit 
has the same throughput as the splitstream trees for b = 0, but consumes less 
CPU. 

6.2 LRB Performance 
To verify the high scalability of autosplit, it was used as the splitstream 
function in scsq-plr as shown in Figure 2. autosplit generated an exptree for 
splitstreamX and fsplit for splitstreamD and splitstreamO since they had no 
bfn. The performance of LRB using autosplit is compared to LRB using 
fsplit in all splitstream functions. To simplify the experiments, the dailyexp() 
node was disabled since the daily expenditure processing has no bearing on 
scalability of LRB stream processing in scsq-plr. 

When using the round robin scheduler of the coordinator described in 
Section 4, scsq-plr with autosplit achieved L = 52. The limiting factor was 
that the first node of the plan was not granted enough CPU resources, be-
cause too many SPs were assigned to the same multi-core compute node. By 
adding a hint to the coordinator to limit the number of SPs on the first com-
pute node, the L-rating for autosplit improved to L = 64, as illustrated by 
Figure 7. The y-axis is the MRT, and the x-axis is the number of minutes into 
the simulation. fsplit keeps up until minute 125, when response time ac-
cumulates and exceeds the allowed MRT at 129 minutes.  

When b = 0.5% as in splitstreamX, the maximum throughput of fsplit with 
w = 64 is 100000 tpl/sec according to the results in Figure 6(c). At 125 min-
utes, the stream rate for L = 64 is getting close to 100000 tpl/sec. Thus, fsplit 
is unable to keep up with the increasing input stream rate. Since the maxi-
mum throughput of exptree is higher, autosplit achieves the higher L-rating 
of L = 64. The bumps in the curves are because of cron jobs executing on the 
compute nodes beyond our control. 
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Figure 6. (a) Measured throughput and (b) measured total CPU cost for b = 0.5%. 
(c) Measured throughput and (d) measured total CPU cost for w = 64. 
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Figure 7. Maximum response time for L = 64. 

In conclusion, we have shown that fsplit cannot achieve L = 64 in LRB, and 
that smart scheduling is necessary to take full advantage of autosplit. fsplit 
with smart scheduling was measured to achieve L = 52. Notice that in stan-
dard LRB, the improvement with autosplit could not be expected to be very 
large. However, as indicated theoretically by Figure 4 (a) and experimentally 
in Figure 6 (c), the gain will be bigger if the broadcast percentage b is 
greater. 

7. Related Work 

This paper complements other work on parallel DSMS implementations [4, 
8, 12, 15, 19], by allowing the user to specify non procedural stream split-
ting, and by parallelizing the execution of stream splitting. This allows paral-
lel execution of expensive queries over massive data streams. 

In previous work [22], we introduced stream processes, allowing the user 
to manually specify parallel stream processing. The stream splitting proved 
to be very efficient for online spatio-temporal optimization of trip grouping 
[7], based on static or dynamic routing decisions. Similarly, GSDM [12] 
distributed its stream computations by selecting and composing distribution 
templates from a library, in which some basic templates were defined includ-
ing both splitting and joining. By contrast, the stream splitting in this paper 
is specified through declarative second order splitstream functions, allowing 
optimizable stream splitting insensitive to the percentages of tuples to broad-
cast or route. 

Gigascope [4] was extended with automatic query dependent data parti-
tioning in [14] for queries that monitored network streams. The query execu-
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tion was automatically parallelized by inferring partitioning sets based on 
aggregation and join attributes in the queries. The stream splitting was per-
formed in special hardware, which provided high throughput. By contrast, 
we have developed a method to split streams involving both routing and 
broadcasting by generating efficient hierarchical splitstream plans executing 
on standard PCs. Furthermore, splitstream functions allow the user to de-
claratively specify splitstream strategies, which allows parallelization of 
queries that cannot be parallelized automatically. 

Efficient locking techniques were developed in [5] to parallelize aggrega-
tion operators using threads. Since SCSQ uses processes instead of threads 
for parallelization, locking is not an issue. 

Partitioning a query plan by statically distributing the execution of its op-
erators proved to be a bottleneck in [13]. In [2], query plans were partitioned 
by dynamically migrating operators between processors. However, expen-
sive operators are still bottlenecks. In our work, the bottleneck was over-
come by splitting the input stream into several parallel streams, and further 
reduced by parallelizing the stream splitting itself. Furthermore, allowing 
both routing and broadcasting provide a powerful method to parallelize que-
ries, as shown by scsq-plr. 

The Flux operator [18] dynamically repartitions stateful operators in run-
ning streams by adaptively splitting the input stream based on changes in 
load. By contrast, we have studied user defined stream splitting. Dynamic 
scheduling of distributed operators in continuous queries has been studied in 
[19] and [23]. A dynamic distributed scheduling is introduced in [19] based 
on knowledge about anticorrelations in load between different independent 
operators in a plan. In [23], stream operators are dynamically migrated be-
tween compute nodes based on the current load of the nodes. By contrast, 
this paper concentrates stream splitting for parallel processing downstream. 
However, scheduling proved to be important, and future work should inves-
tigate the effectiveness of these approaches when used with parallelization 
functions. 

Dryad [10] generalizes Map-Reduce [6] by implementing an explicit 
process graph building language where edges represent communication 
channels between vertices representing processes. By contrast, SCSQ users 
specify parallelization strategies over streams on a higher level using de-
clarative second order parallelization functions. These parallelization func-
tions are automatically translated into parallel execution plans (process 
graphs) depending on the arguments to the parallelization functions. 

SCOPE [3] and Map-Reduce-Merge [20] are more specialized than 
Dryad, providing an SQL-like query language over large distributed files. 
The queries are optimized into parallel execution plans. Dryad, Map-
Reduce-Merge, and SCOPE operate on sets rather than streams. None of 
these provide parallelization functions. 
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Out of the existing implementations of LRB, IBM’s Stream Processing 
Core (SPC) is the only attempt to parallelize the execution [13]. The SPC 
implementation of LRB was partitioned into 15 building blocks, each of 
which performed a part of the implementation. One processing element 
computed all segment statistics on a single CPU, which proved to be a bot-
tleneck. With the SCSQ implementation and autosplit, we achieved over 25 
times the L-rating of the SPC implementation by user defined paral-
lelization. The performance difference between SCSQ and SPC illustrates (i) 
the importance of how the execution is parallelized; and (ii) the usefulness of 
splitstream functions where the user provides application knowledge for the 
parallelization declaratively by specifying rfn and bfn. 

For streams, rfn and bfn are analogous to fragmentation and replication 
schemes for distributed databases [16]. However, for distributed databases 
the emphasis is mainly on distributing data without skew. In our case, there 
are orders of magnitude higher response time demands on stream splitting 
and replication than on disk data fragmentation and replication. Therefore, 
the performance of stream splitting is critical. 

8. Conclusions and Future Work 

We investigated the performance of splitstream functions, which are paral-
lelization functions that provide both partitioning and replication of an input 
stream into a collection of streams. A splitstream function is compiled into a 
splitstream plan. We first defined a theoretical cost model to estimate the 
resource utilization of different splitstream plans, and then investigated the 
performance of these splitstream plans experimentally using the SCSQ 
DSMS. Based on both theoretical and experimental evaluations, we devised 
the splitstream function autosplit, which splits an input stream, given the 
degree of parallelism, and two functions specifying how to distribute and 
partition the input stream. The routing function returns the output stream 
number for each input tuple that should be routed to a single output stream. 
The broadcast function selects the tuples that should be broadcasted to all 
output streams. autosplit was shown to generate a robust and scalable execu-
tion plan with performance close to what is theoretically optimal for a tree 
shaped execution plan. autosplit was used to parallelize the Linear Road 
DSMS Benchmark (LRB), and shown to achieve an order of magnitude 
higher L-rating than other published implementations. 

A simple scheduler was used in the experiments, which balanced the load 
evenly between the compute nodes for all splitstream plans. This scheduler 
achieved L = 52 in the LRB experiment. By hinting the scheduler not to 
overload the first node of the execution plan, the L-rating improved to 64, 
which is close to the theoretically maximum throughput for scsq-plr in our 
cluster environment. 
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As splitstream has shown to be sensitive to the cost of rfn and bfn, future 
work includes optimizing splitstream for a wider class of rfn and bfn. By 
devising a cost model like in [24], the scheduling of SPs can be further im-
proved. The robustness of dynamic rescheduling and SP migration should be 
investigated. It should be investigated whether other, non-tree shaped split-
stream plans can improve performance further. Furthermore, other applica-
tion scenarios are being studied within the iStreams project [11]. 
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Abstract– Scalable execution of expensive continuous queries over massive 
data streams requires input streams to be split into parallel sub-streams. The 
query operators are continuously executed in parallel over these sub-streams. 
Stream splitting involves both partitioning and replication of incoming tu-
ples, depending on how the continuous query is parallelized. We provide a 
stream splitting operator that enables such customized stream splitting. 
However, it is critical that the stream splitting itself keeps up with input 
streams of high volume. This is a problem when the stream splitting predi-
cates have some costs. Therefore, to enable customized splitting of high-
volume streams, we introduce a parallelized stream splitting operator, called 
parasplit. We investigate the performance of parasplit using a cost model and 
experimentally. Based on these results, a heuristic is devised to automati-
cally parallelize the execution of parasplit. We show that the maximum 
stream rate of parasplit is network bound, and that the parallelization is en-
ergy efficient. Finally, the scalability of our approach is experimentally 
demonstrated on the Linear Road Benchmark, showing an order of magni-
tude higher stream processing rate over previously published results, allow-
ing at least 512 expressways. 

1. Introduction 

Decision-making in real time over streaming data requires processing of 
continuous queries involving expensive computations. Applications include 
scientific and engineering settings where complex analyses are performed 
over streams of high volume from instruments and equipment. To enable 
scalable execution of such continuous queries with expensive computations, 
input streams must be split into parallel sub-streams over which the expen-
sive query operators are continuously executed in parallel. Naïvely imple-
mented, stream splitting becomes a bottleneck for input streams of high vol-
ume, non-trivial parallelization conditions, or when massive parallelization 
of query operators is required. 

We eliminate this bottleneck by introducing a novel parallel stream split-
ting operator, called parasplit, which splits input streams of high volume 



 2 

according to non-trivial customized parallelization conditions into massively 
parallel sub-streams. Expensive query operators are applied on these sub-
streams in parallel. By parallelizing not only the expensive query operators 
but also the stream splitting, we show that the maximum stream rate of 
parasplit is network-bound and not bound by the cost of the split conditions. 
We estimate energy efficiency by measuring CPU cost, and show that the 
additional CPU cost of parallelizing the stream splitting in parasplit is mod-
erate compared to the cost of only executing the stream splitting. Thus, we 
enable processing of expensive continuous queries close to the maximum 
capacity of the network. 

To facilitate data-parallel stream processing, an input stream S must be 
split into q parallel streams over which an expensive continuous query op-
erator Q is applied in parallel on separate CPUs PQj, j = 1…q. A typical 
parallelization of an expensive function Q on a high-volume stream S is 
shown in Figure 1. A splitstream operator splits S into q parallel streams by 
partitioning and/or replicating input streams into a collection of streams. For 
each tuple in the input stream, splitstream decides whether the tuple should 
be sent to one specific DSMS node (partitioning) or to many DSMS nodes 
(replication), according to a specification provided by the user. Q is applied 
on each parallel stream. The result streams from each application of Q can 
be merged, e.g. based on time stamps [4]. It is easy to see that when scaling 
the cost of Q and the rate of the input stream S, it is necessary to scale the 
parallelism q in order to keep up with the input stream rate. 

 
Figure 1. Streamed data parallelism. 

For each tuple in S, it must be decided to which parallel sub-stream Sj the 
tuple should be sent. However, non-trivial routing decisions will prohibit 
scalability when the input streams rate increases. Furthermore, a large value 
of q may affect the cost of the split. Parasplit is a splitstream function that 
eliminates these bottlenecks by parallelizing its split predicates. 

We proceed by introducing splitstream functions in general and parasplit 
in particular (Section 2). In Section 3, we introduce stream processes (SPs) 
as a DSMS node executing a sub-plan in a distributed environment. A cost 
model for the SPs used by parasplit is defined (Section 3.1), resulting in 
general heuristics for automatic parallelization of parasplit (Section 3.2). 
Parasplit has been implemented in the parallel DSMS SCSQ [32]. It is 
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shown both theoretically and experimentally how to achieve network bound 
stream rates, independent of the cost of the stream splitting function and q 
(Section 4.1). The cost heuristic is validated experimentally and compared to 
the theoretical model (Section 4.2). Finally, we apply parasplit on the Linear 
Road Benchmark (LRB) [3], and show that it enables an order of magnitude 
higher stream processing rate over previously published results, allowing 
512 expressways (Section 4.3). We conclude by contrasting this contribution 
to other work in parallel stream processing and outline future work. 

2. Splitstream Functions 

A splitstream function has the basic signature 

splitstream(stream S, integer q, function rfn, function bfn)  vector of 
stream sv. 

Variants of splitstream may have additional parameters. The input stream S 
is split into q output streams in the vector sv. The first functional argument 
rfn is the routing function, having signature rfn(object tpl, integer q)  inte-
ger, which returns the output stream number (between 0 and q–1) for each 
tuple that should be routed to a single output stream. The function bfn(object 
tpl)  boolean is the broadcast function, which returns true for tuples to be 
broadcasted to all output streams. bfn and rfn return nil for tuples that should 
be neither broadcasted nor routed, i.e. omitted. For example, splitstream in 
Figure 1 splits the input stream S into q parallel streams according to its rout-
ing and broadcast functions, resulting in a vector of q parallel streams. Since 
rfn and bfn have non-zero cost, splitstream may become a bottleneck for 
high input stream rates. The splitstream function 

parasplit(stream S, integer q, function rfn, function bfn)  vector of stream 
sv  

eliminates this bottleneck by scaling out the execution of rfn and bfn in addi-
tion to Q. 

A call to parasplit dynamically creates a distributed execution plan that 
consists of many intercommunicating distributed operating system proc-
esses, each running a sub-plan. Such processes are called stream processes, 
(SPs). Each SP computes tuples of its output streams by processing its input 
streams according to its local sub-plan. 

Figure 2 shows the SPs involved in parasplit, with q = 8 and p = 3. First, 
the window router PR reads entire physical windows of size W containing 
binary represented tuples from the input stream S. Each physical window is 
uniformly and randomly routed to one of the p parallel sub-streams Si, i = 
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0…p–1. Uniform routing balances Tij for all i, while random routing elimi-
nates any time periodicities present in the attributes used for splitting, which 
balances Tij for all j over time. Since the window router is processing entire 
physical windows, its cost is not a bottleneck for sufficiently large windows 
and suitable scheduling, as will be validated. 

Second, each window splitter PSi unpacks the tuples of the physical win-
dows of its sub-stream Si received from PR. According to the stream splitting 
functions rfn and bfn, each tuple is distributed to zero, one or more continu-
ous query processors PQj, j = 0…q–1. The output stream rate of a window 
splitter is potentially greater than its input stream rate if any tuples are 
broadcasted. Since a compute node in a cluster usually has only a single 
network interface, its output stream rate may not exceed its input stream rate. 
Therefore, parasplit schedules all window splitters on other compute nodes 
than the window router. 

Third, each query processor PQj merges all received streams Tij, i = 0… 
p–1, into a local stream Uj, over which the expensive query operator Q is 
executed. Since the tuples arriving at PQj have travelled through p different 
window splitters in parallel, the order of arrival of the tuples at each query 
processor may be different than their order of arrival at the window router. 
Each tuple of the input stream S is time stamped before arrival. To maintain 
time order in Uj, each query processor PQj always moves the tuple from Tij, 
i = 0…p–1, with the least timestamp to Uj. Since the window router uni-
formly distributes tuples over all Si, all streams Tij have the same rate for all 
i. Therefore, the merge operator of PQj does not have to idle-wait for tuples 
due to empty inputs. 

 
Figure 2. Parasplit. 
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3. A Cost Model for Stream Processes 

A distributed continuous query execution plan consists of intercommunicat-
ing SPs. Each SP runs an execution plan containing some or all of the sub-
plans (modules) and operators shown in Figure 3. Each input stream Sj, j = 
0…u–1, is first read and de-marshalled by a consume operator. The merge 
module merges several streams into one according to its installed sub-plan. 
The compute module executes a continuous sub-plan over the merged input 
streams. In the split module, tuples that are emitted from the compute mod-
ule are processed according to stream splitting partitioning and replication 
conditions specified by rfn and bfn. Each emit operator marshals and emits 
tuples to its result stream Ri, i = 0…q–1. In parasplit, the window router PR 
and window splitters PSi have only one consume operator but several emit 
operators, while each query processor PQj has several consume operators. 
For example, in the parasplit example shown in Figure 2, each SP executing 
PQj merges three input streams and emits one output stream. 

 
Figure 3. Modules and operators in a stream process. 

An SP in SCSQ is implemented as a UNIX process in a cluster. However, 
the cost model can be applied on SPs in any distributed environment. Con-
sume and emit operators in SCSQ are implemented for TCP, UDP, MPI, and 
UNIX pipes. 

Next, we introduce a cost model for processing a tuple in an SP. We in-
vestigate how the cost of executing each SP in parasplit is affected by the 
scale-out of the window splitters PSi and the query processors PQj. Based on 
this, we define a heuristic that enables us to easily achieve maximum input 
stream rate. 

3.1 Cost of streaming a tuple 
The CPU cost C for an SP to process an incoming tuple is computed using 
Equation (1). 

( )
( ))()( bqrcebqrocs

cqucmcpcrC

⋅++⋅++
++⋅++=

σ
 

(1) 

The read cost cr is the cost of reading and de-marshalling an input tuple in a 
consume operator. As a merge module polls the input streams for pending 
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data and merges the read tuples, it has both a poll cost cp and a merge cost 
cm, which are multiplied by the number of input streams u. The query cost 
cq is the cost per tuple of executing the compute module on the merged 
stream. The selectivity of the sub-plan is σ, so the result stream rate is multi-
plied by σ, which affects the costs of split and emit. The split cost cs is the 
cost to execute the split module per tuple received from the compute module. 
The emit cost ce is the cost of marshalling and emitting a tuple on one output 
stream. In the split module, b is the proportion of tuples to be replicated to 
all q output streams according to a replication condition. b is called the 
broadcast percentage. Hence, b is multiplied by q in Equation (1). The rout-
ing percentage r is the proportion of output tuples to be routed according to a 
partitioning condition. o is the omit percentage, which is the proportion of 
output tuples that are neither broadcasted nor routed. As each output tuple is 
either broadcasted, routed, or omitted, r + b + o = 1. 

The coefficients of the general cost Equation (1) depend on the operators 
executed by the SP. We now specialize Equation (1) for each kind of SP in 
parasplit. 

3.1.1 Window router 
The cost CPR of executing the window router PR in parasplit is given by Eq-
uation (2). PR has only one consume operator and therefore does not poll or 
merge any tuples. Furthermore, PR does not execute any compute module. 
Therefore, PR has cp = cm = cq = 0 and σ = 1. As PR routes every incoming 
window to the window splitters PSi, r = 1, and b = o = 0. Finally, the split 
and emit costs csW and ceW of PR are the costs of distributing entire windows 
of the input stream S to the window splitters. 

WWWPR cecscrC ++=  (2) 

3.1.2 Window splitter 
Equation (3) models the cost of processing a tuple in a window splitter PSi. 
Like PR, each PSi has cp = cm = cq = 0 and σ = 1, as it does not execute any 
merge or compute module. The cost of reading a tuple from PR is estimated 
by crW, as each incoming stream Si contains the same kind of physical win-
dows as the incoming stream to PR. cs estimates the cost of executing rfn 
and bfn per tuple in PSi. ce models the cost of emitting each tuple from PSi. 

( ) ( )bqrcebqrocscrC WPS ⋅++⋅+++=  (3) 

3.1.3 Query processor 
Equation (4) models the cost per tuple in each query processor PQj of merg-
ing the streams Tij from the window splitters PSi, i = 0…p–1, and executing 
the continuous query operator Q. cr is the read cost of reading a single tuple. 
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As each PQj merges p streams, the poll and merge costs are multiplied by p. 
Finally, O is the cost of executing the expensive continuous query operator 
Q in the compute module and emitting the result downstream. 

( ) OcmcppcrCPQ ++⋅+=  (4) 

3.2 A heuristic stream rate model for parasplit 
We define the maximum stream rate of each kind of SP in parasplit as ΦPR 
for the window router PR, ΦPS for the window splitters PSi, and ΦPQ for the 
query processors PQj. Each of these maximum stream rates are potential 
bottlenecks, since they all affect the maximum possible stream rate in paras-
plit. In other words, the maximum stream rate of parasplit ΦPARASPLIT = 
min(ΦPR, ΦPS, ΦPQ). In particular, the window router is the critical bottle-
neck, since the window splitter and query processors are parallelized. The 
hypothesis is that for a large enough window size W, ΦPR should be network 
bound. 

3.2.1 Physical window size 
The input stream to PR is delivered as physical windows, each window con-
taining W bytes. The cost of PR is influenced by the physical window size 
W. With a large enough window, the cost of executing PR for each window 
is insignificant compared to the communication cost. Then, ΦPR is expected 
to approach maximum network speed, independent of communication proto-
col, which is validated experimentally for 1 Gbps. The first step is to find a 
large enough W such that ΦPR is maximized. To determine the window size 
W, we profile the window router once and for all in the cluster used. PR is 
executed with p = 4 routing windows to PSi containing only the consume 
operators. The window size is doubled until there is less than 0,15% im-
provement of ΦPR. On our cluster, we achieved ΦPR = 987 Mbps for W = 16 
kB, which is close to our wire speed, so PR is network bound. The profiling 
is fast, as each measurement is run for 1 second. In our experiments, it con-
verged after 9 rounds. 

3.2.2 Window splitter parallelism 
For a given call to parasplit, p must be determined. Let ΦD be the desired 
input stream rate. We choose p such that p⋅ΦPS ≥ ΦD so that the window 
splitters are not bottlenecks. Equation (3) estimates the cost per tuple of 
splitting a tuple in a window splitter according to rfn and bfn. In our heuristic 
we assume that crW = 0, as the cost of reading a tuple from a physical win-
dow is assumed to be low in comparison to the more expensive rfn and bfn. 
We assume o = 0, which will over-estimate CPS. 

Assuming that parasplit is mainly used for scaling out computations by 
partitioning the input data stream, we estimate the broadcast frequency to be 
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rather low. To accommodate parallelization strategies involving high 
amounts of broadcast, b is configurable, but we set a default value of b = 
0.01. Based on this reasoning, we approximate CPS of Equation (3) with ĈPS 
of Equation (5): 

( ) ( )qcecsCPS ⋅+⋅+= 01.099.0ˆ  (5) 

Next, cs+ce is estimated by measuring the maximum stream rate ΦPS
(1) of a 

single window splitter on a small section of the input stream with q = 1. 
cs+ce = 1/ΦPS

(1). Furthermore, p should be as small as possible to minimize 
the merge cost in Equation (4), while still satisfying p ≥ ΦD/ΦPS. Therefore, p 
is estimated by Equation (6). The maximum stream rate of parasplit with this 
heuristic value of p is evaluated in the experiments. 

( )







⋅+⋅

Φ
Φ= qp

PS

D 01.099.0ˆ
)1(

 
(6) 

By estimating o = 0, our heuristic in Equation (6) may choose a p that is 
slightly greater than what is needed to keep up with the desired stream rate 
ΦD. A too low p may not keep up with ΦD. However, we note that if a lower 
bound of o is known, a smaller p could be chosen to save cost in Equation 
(4), which is future work. 

3.2.3 Efficiency of parasplit 
To estimate the energy efficiency of parasplit, we define efficiency η as the 
CPU time ratio between all PSi, i = 0…p–1, and all SPs involved in paras-
plit. Formally, the efficiency is given by Equation (7), where CPQ

O=0 is the 
cost of performing the read, poll, and merge in PQ, i.e. the cost of executing 
PQ with no continuous query installed. With no query execution cost, O = 0. 

)0( =⋅+⋅+
⋅=

O
PQPSPR

PS

CqCpC

Cpη  
(7) 

The efficiency is a measurement of the additional work incurred by execut-
ing parasplit in comparison to executing a window splitter in a single proc-
ess. Note however that a window splitter of a single process would not be 
able to achieve the stream rate of parasplit. 

4. Evaluating parasplit 

The purposes of the experiments are the following: 
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• Validate the heuristic for parasplit. 
• Validate that parasplit is network bound in practice. 
• Evaluate the efficiency of parasplit by measuring the CPU cost overhead 

of parallelizing rfn and bfn in parasplit. 
• Show that parasplit allows one order of magnitude more expressways 

over previous work in an LRB implementation. 

In all experiments, each SP is a UNIX process on a cluster of compute 
nodes, each node featuring two quad-core Intel® Xeon® E5520 CPUs @ 
2.27GHz and 8 MB L2 cache. For the scale-up experiments, a maximum of 
70 such compute nodes were available. TCP was used for stream communi-
cation between SPs. All SPs of parasplit were distributed over different 
compute nodes in this cluster. Thus, the capacity of the 1 Gbps network in-
terfaces were the upper bound for all inter-process stream rates in the ex-
periments. 

As a test stream, we use the input stream of event tuples e of LRB. There 
are four kinds of events; P, A, D, and E, of which 99% are position reports P 
that are emitted from vehicles travelling on the expressways numbered from 
0 to L–1 . The rest of the tuples are account balance queries A (0.5%), daily 
expenditure queries D (0.1%), and estimated travel time queries E (0.4%). 
Our LRB implementation scsq-plr [26], parallelizes the execution by distrib-
uting the input stream events per expressway, i.e. q = L. In our experiments, 
input events of type D and E are omitted, so o = 0.5%. Type P events are 
routed to the query processors PQj executing the corresponding expressway 
j=0…L–1, so r = 99%. Type A events are broadcasted, so b = 0.5%. The 
input stream is split according to rfnLR(e, q) defined as select ex-
pressway(e) where eventtype(e)=P, and bfnLR(e) is defined as 
select eventtype(e)=A. In order to measure maximum input stream 
rate, the LRB input events were streamed at maximum possible rate. 

4.1 Window router stream rate 
The goal of this experiment is to confirm that PR is not CPU bound but net-
work bound for sufficiently large window size. In the experiment, one SP 
was executing PR, which received and routed an input stream of physical 
windows of size W to p window splitters with only consume operators in-
stalled. p was varied from 4 to 512. Figure 4 shows ΦPR for different p when 
varying W from 72 bytes to 16kB. 

The maximum stream rate is 980 Mbps, achieved for p ≤ 64. A slightly 
lower maximum stream rate of 975 Mbps was measured for p = 128. For 
higher values of p, the performance degrades for unknown reasons. 
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Figure 4. ΦPR for different W, p. 

To alleviate the degradation in stream rate when scaling p, we made an ex-
periment with a two-level tree of window routers with equal fanout √p on 
each level, and W = 16 kB. Figure 5 shows that the degradation then be-
comes negligible even for very large values of p. Thus, a PR tree has higher 
ΦPR for high values of p than a single process PR. 
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Figure 5. ΦPR for different p. 

4.2 Parasplit scale-up 
The scale-up is defined as ΦPARASPLIT when q is increased. In the scale-up 
experiments, we measure ΦPARASPLIT when varying q and setting p according 
to the heuristic given in Section 3.2.2. ΦPS

(1) was measured to 123.7 Mbps, 
and ΦD was set to 1 Gbps. The scale-up of the heuristic parasplit using the 
approximate Equation (6) was compared to the scale-up according to the cost 
model given by Equations (2) and (3). The values of crW, cs, and ce were 
obtained by detailed profiling of one PR node and of one PSi node executing 
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rfnLR() and bfnLR(). For reference, we also measure the scale-up of parasplit 
with p = 1 and with p = q. For p = 1, all stream splitting is performed in a 
single process, i.e. the naïve fsplit [32], which is the baseline for the experi-
ments. To compare with the so far best published stream splitting strategy, 
we also measure the scale-up of maxtree [32]. Based on knowledge of com-
munication costs, and b and r, maxtree forms an optimized tree of split-
stream processes, where each process splits the input stream according to rfn 
and bfn. The maximum stream rate of maxtree is sensitive to the cost of rfn 
and bfn, a limitation not present in parasplit. To make maxtree fully compa-
rable, its implementation is slightly improved over [32] by reading physical 
windows of the input stream rather than individual tuples. 

Figure 6 shows that parasplit achieves an order of magnitude higher 
maximum stream rate than maxtree and naïve fsplit (p = 1) for high values of 
q. The single PR measurements have a single process window router, 
whereas the PR tree measurement employs a tree of window routers, as de-
vised in Section 4.1. It is clear that p must be chosen carefully, since paras-
plit with neither p = 1 nor p = q does scale. As predicted by Equation (3), p = 
1 does not scale with q. 

In the single PR experiments, 849 Mbps was measured for q = 512 and 
the heuristic setting of p = 55 in Equation (6), whereas 840 Mbps was 
achieved for q = 512 and the cost model setting of p = 44 in Equations (2) 
and (3). The scale-up of heuristic parasplit (parasplit, single PR) is the same 
as that of parasplit with p chosen using the cost model (cost model, single 
PR). This shows that our heuristics are sound. The best maximum stream 
rate was achieved using a tree shaped window router (parasplit PR tree), 
confirming the results in Figure 5. In particular, for q = 512, PR tree 
achieves a maximum stream rate of 913 Mbps (p = 55 as set by the heuristic 
in Equation (6)). 
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Figure 6. Scale-up. 
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4.3 Parasplit efficiency 
The purpose of this experiment is to measure the CPU overhead that paras-
plit incurs when parallelizing rfn and bfn. The total CPU time of each SP 
was measured using system performance counters in the /proc file sys-
tem. Parasplit was invoked with a dummy query Q that only counted the 
incoming tuples. The cost O of this simple query was subtracted from CPQ 
before η was computed using Equation (7). The same experiments were per-
formed as in Section 4.2 except for maxtree. 

Figure 7 shows the efficiency when increasing q. As expected, the exact 
cost model based setting of p (cost model, single PR) has the highest effi-
ciency. However, we notice that the efficiency of the heuristic parasplit vari-
ants (parasplit, single PR and parasplit, PR tree) is very close to that of the 
cost model. Finally, we notice that the efficiency goes down with bad 
choices of p (p=1, p=q). 

Substantially over-estimated p = q is particularly bad, since the poll and 
merge costs in the query nodes are then multiplied by p in Equation (4). We 
conclude that p should be set to the recommended heuristic value, and that a 
PR tree should be used in parasplit for all values of p and q, as parasplit PR 
tree achieves superior scale-up and does not degrade efficiency substantially 
compared to any of the single PR. 
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Figure 7. Parasplit efficiency for increasing q. 

4.4 LRB experiment 
As a final experiment, we compare the achievable stream rate of scsq-plr 
using parasplit to other implementations of LRB [3]. The number of ex-
pressways that an implementation is able to handle is called the L-rating of 
the implementation. An LRB implementation produces five result streams; 
toll and accident alerts (event type T and AA), and query responses (event 
type A, D, and E). Currently, E tuples are ignored in all LRB implementa-
tions [3]. The D tuples are computed over data that does not change during 
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the LRB simulation. In an experiment performed after the publication [32], 
we verified that a conventional database on a single compute node was suffi-
cient to handle queries over historical data (event type D) for an L-rating up 
to 64. However, the conventional DBMS cannot handle the very high query 
rates presented here. A solution would involve scaling out the historical da-
tabase over many compute nodes, which is future work. In the present ex-
periment, we choose to ignore the D tuples. As a consequence, the imple-
mentation used here results in three output streams (event type T, AA, and 
A). 

Parasplit was used to split the input stream in scsq-plr according to Figure 
8, using only a single process PR. The input stream rate for each expressway 
in LRB is maximum 1700 tuples/s. The size of each tuple is 72 bytes, so the 
input stream rate will be ΦD = 1700·512·72·8 Mbps ≈ 500 Mbps. Given q = 
512 and ΦD = 500 Mbps, parasplit determines p = 25 according to Equation 
(6), as ΦPS

(1) = 123.7 Mbps. 
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Figure 8. scsq-plr using parasplit. 

The expensive continuous query Q is here the computation of the LRB query 
result streams. Each PQj node was processing all tuples of expressway j. The 
output stream of each lrj is split on event type according to the routing func-
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tion rfnO(e) defined as select eventtype(e); where event type T is 
0, AA is 1 and A is 2 in the output stream. 

The toll and accident alert result streams are merged using stream union-
all (i.e. ignoring timestamp order). Account balance answers from all lrj are 
grouped on query id, and the sums of the account balances from all express-
ways lrj are aggregated for each query id.  

Aggregating q streams of account balance responses with a total stream 
rate of q·Φa results in an output stream rate of Φa after the aggregation. In 
scsq-plr with q = 512, the total stream rate of account balance answers is 
much greater than the capacity of the 1 Gbps network interfaces used in the 
experiments. Similar to aggregation trees of [31], account balance answers 
are hierarchically aggregated in two level tree as shown in Figure 8, with k = 
22 ≈ √512 for the two-level distributed aggregation tree of 512 input 
streams. Finally, all union and aggregation processes were scheduled on 
different compute nodes, so that disk and network throughput for these proc-
esses was no bottleneck. 

LRB requires a maximum response time (MRT) of 5 seconds for events 
of type T, AA, and A. In our LRB experiment we measured the maximum 
response time for all events e in the output stream to be MRT(e) < 5 s. Thus, 
we conclude that scsq-plr using parasplit achieves an L-rating of 512, with 
daily expenditure queries disabled. Table 1 lists the currently published LRB 
implementations. 

Table 1. LRB implementations. 

Name Year L #cores Comment 

Aurora [3] 2004 2.5 1  

SPC [19] 2006 2.5 170 3 GHz Xeon 

XQuery [6] 2007 1.5 1  

scsq-lr [26] 2007 1.5 1 laptop 

DataCell [23] 2009 1 4 1.4s average response time 

stream schema [13] 2010 5 4  

scsq-plr [32] 2010 64 48 maxtree 

CaaaS [9] 2011 1 2 Streaming MapReduce 

scsq-plr 2011 512 560 Parasplit. D disabled 

5. Related work 

This paper complements other work on parallel DSMS implementations [1] 
[11] [14] [16] [18] [24] [29] [32], by employing massive scale-out based on 
customizable stream splitting functions. 

The fragmentation and replication conditions provided as meta-data in a 
distributed database [25] corresponds to the routing and broadcast functions 
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in parasplit. While the emphasis of distributed databases is scaling out data, 
the extreme stream rates for DSMSs require scaling out also the routing and 
broadcast functions, which is the topic of this paper. 

In previous work [15], we have shown that stream splitting, utilizing non-
trivial routing decisions, proved to be very efficient when parallelizing 
online spatio-temporal optimization of transportation. Splitstream functions 
were introduced in [32], where tree-shaped distributed execution plans were 
shown to improve the rate of stream splitting. These techniques enabled an 
L-rating of 64 in LRB. However, the splitstream trees developed in [32] 
were sensitive to the cost of rfn and bfn. By contrast, we have shown that 
parasplit achieves an order of magnitude higher stream rates independent of 
the cost of rfn and bfn by parallelizing the stream splitting in a lattice. 

GSDM [18] distributed its stream computations by generating parallel 
execution plans with tree shaped stream splitting, through parameterized 
code generators. Parallelizing the queries in GSDM was reported to achieve 
a maximum stream rate of 16 Mbps. By contrast, parasplit is network bound 
by utilizing physical windows and a lattice based stream splitting strategy 
and allows not only routing but also broadcasting of tuples. 

SPADE [14] has a stream splitting operator that includes capabilities of 
replicating tuples [2], similar to splitstream. StreamInsight [21] has both 
stream splitting operator and a broadcast operator that replicates entire 
streams to multiple processing operators, similar to a publish/subscribe-
system. By contrast, parasplit allows fine grained customized specification 
of what individual tuples in the stream to broadcast or route. The throughput 
of distribution and replication in System S was reported to degrade with the 
number of output nodes in [2]. Custom stream partitioning was also shown 
to be a bottleneck in [7]. By contrast, we have shown that parasplit provides 
network bound stream processing by massive scale-out of customized split-
ting and broadcasting in a lattice shaped distributed execution plan. 

Gigascope [11] was extended with automatic query dependent data parti-
tioning in [20] for computing aggregates in high-volume network monitoring 
queries, distributed over the output from special hardware splitting a very 
high volume input stream. The evaluation focused on aggregation of a num-
ber of input streams, each with a stream rate of 200 Mbps. The input stream 
splitting was outside the scope of their work, as it was assumed to be per-
formed by special hardware. By contrast, our work focuses on stream split-
ting in software rather than hardware, scaling up to network stream rate by 
parallelizing the stream splitting on standard PCs. 

Partitioning a query plan by statically distributing the execution of its op-
erators proved to be a bottleneck in SPC [19]. In Medusa [5], query plans 
were partitioned by dynamically migrating operators between processors. 
However, expensive operators are still bottlenecks. In our work, such bottle-
necks are eliminated by both splitting the input stream into several parallel 
streams, and by parallelizing the stream splitting itself. Furthermore, allow-
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ing combined routing and broadcasting in parasplit provides a powerful 
method for data parallelization. 

Of the existing implementations of LRB shown in Table 1, there are three 
attempts to parallelize the execution: SPC [19], Stream Schema [13], and 
Continuous analytics as a Service (CaaaS) [9]. Unlike these systems, paras-
plit provides massive scale-up by automatic parallelization of rfn and bfn, 
enabling network bound input stream rates independent of the cost of paral-
lelization. 

The SPC implementation of LRB was partitioned into 15 processing ele-
ments, each of which executed a separate stream operator. The operator that 
computed all segment statistics became a hot spot. By contrast, parasplit uses 
data parallelism rather than operator parallelism, and is shown to achieve 
over 100 times the number of expressways of the SPC implementation. This 
performance difference illustrates the usefulness of customizable data paral-
lelization provided by parasplit. 

Automatic parallelization of stream queries based on user provided stream 
metadata was discussed in [13], where a parallelized implementation of LRB 
was shown to achieve L = 5 on a 4-core PC. By contrast, in parasplit, meta-
data is expressed as queries in rfn and bfn. 

The use of physical windows called SigSegs in XStream [16] was shown 
to reduce tuple passing overhead substantially. Similarly, we also save 
communication cost by operating on physical windows of stream events in 
the window router of parasplit. While entire SigSegs were distributed in 
XStream, parasplit allows massive parallelization based on hierarchical win-
dow routing and parallelized customized distribution and replication of tu-
ples. This is shown to maintain network bound stream rates independent of 
the cost of splitting. 

Recently [28], event detection using regular expressions was implemented 
on an FPGA, which achieved gigabit wire speed. By contrast, parasplit al-
lows parallelization of arbitrary CQs in software with no need for special 
hardware. 

MapReduce [12] can be seen as a form of parallelized group-by over large 
data sets. Dryad [17] allows more flexible parallelization schemes by im-
plementing an explicit process graph building language. By contrast, SCSQ 
does not require the user to explicitly construct process graphs, since the 
process graphs of SCSQ are automatically generated by the parallelization 
functions. SCOPE [8] and Map-Reduce-Merge [30] provide an SQL-like 
query language over large distributed files. However, Dryad, Map-Reduce, 
and SCOPE are all batch systems, operating on data at rest (sets), while 
SCSQ continuously processes streaming data. MapReduce was recently ex-
tended with streaming capabilities [9] [10]. The problem of scalable stream 
splitting is not handled by streaming MapReduce. 

A MapReduce wrapper was recently added to the DSMS System S [22], 
combining data at rest with streaming data. However, calling MapReduce 



 17 

from a DSMS is different from scaling out the execution of a DSMS, which 
is the focus of this paper. 

6. Conclusions and future work 

Scalable splitting of streams is necessary to achieve high stream rates in a 
parallel DSMS. We have introduced parasplit, which enables splitting input 
streams of high volume into a high number of output streams by paralleliz-
ing user defined stream splitting specifications. Parasplit is shown to enable 
a network bound stream rate independent of communication protocol (e.g. 
93% of a 1 Gbps interface) for parallelization of expensive continuous que-
ries over streams. This is achieved by (i) automatic parallelization of the 
execution of the stream splitting specifications, and (ii) by hierarchically 
routing of physical windows of sufficient size. Based on a cost model, we 
devised a heuristic that automatically chooses physical window size and 
parallelization of the stream splitting specifications for close-to-optimum 
efficiency according to the cost model. By scaling out stream splitting with 
parasplit in the scsq-plr implementation of the Linear Road Benchmark, we 
achieved an order of magnitude higher stream processing rate over previ-
ously published results, allowing 512 expressways. 

As future work, we plan to investigate alternatives for scaling out a paral-
lel database to combine high volumes of data at rest with high volumes of 
data in motion. Furthermore, it should be investigated how to push down 
selection predicates of Q into rfn, effectively saving communication cost by 
increasing omit percentage o in the window splitters. 

Our experiments have been performed in a cluster of up to 70 compute 
nodes with 8 cores each connected by a 1 Gbps switched network. The be-
havior of parasplit should be investigated for higher network speeds, more 
cores, and more compute nodes. 

It should be investigated if the efficiency of parasplit can be improved by 
using hardware acceleration such as FPGAs, by comparing the costs of 
hardware accelerated parasplit to that of standard hardware parasplit. 

The query plan of parasplit is optimized, parallelized, and scheduled when 
the CQ is started. Although this approach was shown to work well in our 
evaluations, it would be worthwhile to extend it with methods for adaptive 
parallelization and scheduling of execution over streams after the CQ has 
been started, as in [24] [27] [29] [33]. For example, it should be investigated 
if p and W can be set adaptively based on system load. 
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