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Abstract 

The research described in this Thesis is part of a project to develop a new database system for 
proteo-chemometric research. This new system uses a mediator/wrapper approach for 
integrating heterogeneous and autonomous data sources. Special-purpose modules for data 
representation and data analysis can be incorporated into the system through the extensibility 
of the object-relational mediator. 

Life science data sources and data exchange formats for the new Proteo-chemometric 
Analysis and Query System (PAQS) have been surveyed. Although important data sources 
exist on many different formats the trend towards XML is evident. For proteo-chemometric 
research it is important to be able to access data sources with binding affinity data. Most such 
data sources are only accessible via web forms, which limits the query capabilities. 

Database schemas for parts of the proteo-chemometric information domain have been 
developed within a functional data model with object-oriented extensions. These schemas 
have also been implemented in the Amos II system as a first-stage prototype of PAQS. 
Special emphasis has been put on modelling binding experiments and experiment evaluations, 
and the corresponding data types have been used to show how data analysis could be 
performed by means of foreign functions of the mediator.  

The mediator/wrapper approach is described in the Thesis, and examples are given of other 
systems which use this architecture for integrating life science data, both research prototypes 
and commercial systems. Introductions to the proteo-chemometric approach to drug design, to 
some general database concepts, and to information integration by means of database systems 
are also given.  
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1 Introduction 

The research described in this Thesis is motivated by the need for new approaches to the 
development of drugs. Generally speaking, there are two steps in drug development: First a 
key molecule, usually a protein, is identified. This "target protein" can have some biochemical 
function which, e.g., causes a disease. Then a drug molecule which moderates, or blocks, the 
function of the target protein is searched for. The proteo-chemometric approach to drug 
design (chapter 2) is one of many approaches to performing this second step efficiently. 

The work of this Thesis is part of a joint project between pharmacologists and computer 
scientists in order to develop a Proteo-chemometric Analysis and Query System (PAQS). 
More specifically, the PAQS project emanates from a need for a database system suitable for 
proteo-chemometric research. The aim of this new system is to provide users with uniform 
access to world-wide data on bindings between target proteins and potential drug molecules, 
as well as associated data. Further, PAQS shall provide the users with computational tools to 
analyse such ligand-protein interactions - together with additional data - in order to produce 
new knowledge. In order to accomplish this it is necessary for the new proteo-chemometric 
analysis and query system to integrate data from various autonomous and heterogeneous life 
science data sources.  

Four of the first steps towards the development of PAQS are (i) to develop an architecture for 
the system, (ii) to survey potential data sources and trends in life science data integration, (iii) 
to develop database schemas which represent the problem domain, and (iv) to develop 
methods for importing data from external sources. This Thesis deals with points (ii) and (iii). 
The general mediator/wrapper-architecture (step (i)) is described in section 7.1. With this 
architecture external data are imported through wrappers (step iv).  

1.1 Par ts and Pur poses of the Thesis 

This Thesis consists of three main parts. First, introductions to proteo-chemometric research, 
to database concepts, and to information integration are given in chapters 2, 3, and 4, 
respectively. These chapters are meant to provide the reader with a basis for the later parts of 
the Thesis.  

The second part consists of chapters 5 and 6. Chapter 5 surveys life science data on the web, 
focussing on the usefulness for the PAQS project. The chapter discusses data formats and 
protocols, as well as specific data sources. Chapter 6 surveys some work related to the PAQS 
project, viz. database solutions for the integration of heterogeneous life science data. One 
purpose of this part of the Thesis is to show solutions that have been used previously for 
standardisation and integration in this information domain. Further, the chapters should 
present current trends in order to give a good basis for the selection of data formats and data 
sources to be used in the PAQS project. Finally, the chapters should point at solutions in 
database and information system design which can be reused in PAQS.  

Chapter 8 constitutes the third part of the Thesis. In this part database schemas for radioligand 
binding experiments, evaluations of experiments, and related topics are described and 
discussed. The purpose of the chapter is to suggest design solutions for most subdomains of 
the PAQS information domain. The proposed database schemas should also be useful as 
templates for future XML schemas of binding experiments and similar topics. A third purpose 
with the chapter is to demonstrate how data analysis can be performed from within the 
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database manager, by the invocation of foreign functions. The design is supported by a 
prototype implemented in the Amos II system. 

1.2 Tools 

In order to prepare the surveys of chapters 5 and 6 primary and secondary literature was 
studied. Most of this information is available on the Web rather than in refereed printed 
sources. Since most of the web sites used in the survey were managed by the same 
organisation that manages the corresponding data source, data format, interchange protocol, et 
cetera, I regard the web site information as being authoritative, and fairly reliable. Some 
organisations may perhaps be a bit too positive in their judgements of their own products. 

The modelling and implementation described in chapter 8 was performed within the Amos II 
data model, a functional data model with object-oriented extensions (see section 3.2.6). 
Several Amos II releases have been used for implementing the evolving schemas. The latest 
version the prototype has been tested with is Amos II Beta Release 5, v6. A few tests in 
section 8.8.3 and Appendix F used a developer's (non-public) version (Amos II Beta Release 
5, v12, "camos"). Foreign functions were implemented in Java (JDK 1.3).  Since the Java 
programs were small, no interactive development environment was used. Diagrams were 
drawn with Edge Diagrammer (v4.0) from Pacestar Software. 

1.3 Acknowledgements 
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2 Proteo-Chemometr ic Research 

Proteo-chemometrics1 is a novel approach to the analysis of drug receptor interactions, which 
is an important component of drug design. In this Thesis relevant data sources, data formats, 
and design solutions for PAQS (Proteo-chemometric Analysis and Query System) will be 
described. The purpose of PAQS is to provide an information system for proteo-chemometric 
and other pharmacological research. In this chapter a brief description of the background to 
the proteo-chemometric method is given, without going into details either in biochemistry or 
statistics. The chapter is intended to give computer scientists and other readers not versed in 
biology or pharmacology a relevant background for the rest of the Thesis. In the last 
subsection (section 2.5) a few hot topics - or "buzz-words" - are explained. 

2.1 Binding Affinity Constants and the Action of Drugs 

Much of the modelling in chapter 8 of this Thesis deals with how to represent binding 
affinities, experiments made to determine binding affinities, and evaluations of these 
experiments. Hence, we start by describing why such binding affinities are interesting.  

Many drugs contain an active substance which competes for some naturally occurring 
substrate in binding to an enzyme or to a receptor. Enzymes are catalysts in the chemical 
processes of living systems. A biochemical process which by itself proceeds very slowly may 
be accelerated by many orders of magnitude (106-1012 times faster2) by an enzyme. Enzymes 
are also very specific, i.e. a given enzyme catalyses one particular reaction. Now, if an active 
drug substance binds to the enzyme its catalytic activity might become reduced, or even fully 
cancelled. Most known enzymes are proteins3.  

A receptor is a protein which binds a specific extra-cellular signalling molecule (e.g. a 
hormone) and then initiates a cell response. Receptors, like enzymes, are very specific, both 
with respect to which molecules they bind and which cell response they initiate. If an active 
drug substance binds to the receptor, the receptor becomes blocked, and signal transfer 
through the cell membrane is inhibited. 

Thus, in both cases described above the active drug substance functions by binding to some 
binding site. Obviously, it is essential to know how strongly a substance (usually called 
ligand) binds to various binding sites in order to understand or predict which effects the 
substance has (or will have) on a biochemical process. 

If a ligand binds strongly to a binding site we say that the site has a strong (or high) affinity 
for the ligand. For a quantitative measure of affinity we define the (binding) affinity constant 
(KA) as 

L + S          LS KA = 
[LS]

[L] [S]       (Equation 1) 

                                                        
1 Lapinsh, Prusis, Gutcaits, Lundstedt and Wikberg 2001; Prusis, Muceniece, Andersson, Post, Lundstedt and 
Wikberg 2001; Prusis 2001. 
2 Lodish, Berk, Zipursky, Matsudaira, Baltimore and Darnell (2000). 
3 "Ribozymes" are RNAs with catalytic activity. 
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where LS is the complex between ligand and binding site, and square brackets ([ ]) denote 
concentrations. This definition of affinity constant is the inverse of the dissociation constants 
used in chemistry. 

Traditionally, there are three important ways to determine affinity constants:  

• Biochemical experiments with binding assays (see next section). 

• Molecular modelling: Computer simulations of differences in free energy between the 
states { free ligand + free protein}  and { ligand bound to protein} . 

• QSAR (Quantitative Structure-Activity Relationship): The affinity of a new ligand is 
predicted from known affinities of similar ligands with help of statistical methods. 

In the following sections binding assays and chemometrics (including QSAR) are described. 
Molecular modelling is not treated in this Thesis, although, in principle, all affinity data 
would be of interest for the PAQS project. 

2.2 Binding Assays 

An assay is an experimental procedure or environment used to detect and quantify proteins. 
Each assay relies on some highly distinctive and characteristic property of a protein, e.g. the 
ability to bind a particular ligand, to catalyse a particular reaction, or to be recognised by a 
specific antibody2. Furthermore, a useful assay must be simple, fast, and sensitive towards the 
protein4. In this Thesis we are mainly interested in binding assays performed to determine 
affinity constants between receptors and ligands. 

2.2.1 Radioactive Labelling 

As discussed above, knowledge about receptors is essential to the design of new drugs. 
However, many receptors are difficult to identify and purify since they are present in minute 
amounts in the cell, and since there are furthermore large amounts of other proteins present5. 
Usually, receptors are detected, and quantitatively measured by their ability to bind 
radioactive ligands to a cell or cell fragment. The advantage of using radioactive labelling is 
that there is a very small background signal6. Thus, with a radioactively labelled substance in 
the sample we know that the signal recorded by the detector is due only to this substance, 
irrespective of what other substances that are present. Obviously, there are disadvantages with 
radioactive labelling, too. E.g., the labelled substance must be synthesised and it may not have 
exactly the same biochemical properties as the corresponding unlabelled substance. 
Furthermore, we introduce a new health hazard when working with radioactivity. 

                                                        
4 Many common protein assays only require 10 -9 to 10 -12 gram of material (Lodish et al 2000, p 90). 
5 Typically, a cell bears 10000-20000 receptors for a particular hormone. This is about one mill ionth of the total 
cell protein content (Lodish et al 2000, p 859). 
6 A low background has two advantages: First of all we can collect more of the interesting signal without 
saturating the detector or signal collection system. Secondly, with a low background, we have a better chance of 
getting a satisfactory signal-to-noise ratio. 
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2.2.2 Binding Experiments 

In a competition binding experiment the assay is made with one (or several) binding sites and 
one radiolabelled ligand (radioligand) of known concentration. Then a series of measurements 
are made for varying concentrations of a competing, non-labelled, ligand (the competitor). 
The concentration of bound radioligand is determined by measuring electrons emitted by 
radioactive decay of the radioligand. This is the only concentration actually measured since 
the concentrations of the competing ligand are "known", prepared by some simple series of 
dilutions. As the concentration of competing ligand increases, the concentration of bound 
radioligand will decrease, see Figure 1a. Thus, in a competition experiment there is one 
independent variable, the varying competitor concentration, and one dependent variable, the 
bound radioligand concentration7. 
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Figure 1. Diagrams of concentration binding experiments examining the binding between the radioligand 
[3H]MK912 and α2A- and α2C-adrenoreceptors in cerebral cortex membranes. (a, left) Competition curve of 
guanfacine with 0.22 nM [3H]MK912. (b, right) Saturation curves with (triangles) and without (diamonds) 20000 
nM BDF8933. Data taken from the BindAid manual (Wikberg 2001). 

In a masked competition experiment there is one (or several) additional non-labelled ligands 
with fixed concentrations, also competing for the binding site. In the database schema 
developed for the prototype no conceptual difference will be made between masked and non-
masked competition experiments. A masked competition experiment is distinguished by 
having more than one ligand with fixed concentration. (For a competition experiment there is 
always one: the radioligand.) 

In a saturation binding experiment it is instead the concentration of the radioligand which is 
varied. Usually two measurement series are made: the "total binding" of the radioligand is 
determined in an experiment without competing ligand, and the radioligand's "non-specific 

                                                        
7 It is also possible to perform a competition experiment with several varying competing l igands. Although this 
is not usual (if it ever has been done), the database schema of section 8.7 allows for this. However, we will  
assume that no experiments are made with several radioligands at the same time. As discussed in section 8.2, we 
will al low several dependent variables, but they origin in parallel experiments, and refer to the same radioligand.  
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binding" is determined in an experiment with an excess of saturating competing ligand8, see 
Figure 1b. Thus, in both these series it is the varying concentration of added radioligand that 
is the independent variable, and the concentration of bound radioligand that is the dependent 
variable. The two series differ in that when the non-specific binding is measured there is also 
a non-labelled competitor of fixed concentration. To get the "specific binding" of the 
radioligand one finally subtracts the "non-specific binding" from the "total binding". 

Both competition and saturation binding experiments study the reversible binding of ligands 
to receptors (or binding sites). A single such experiment, or a number of them taken together, 
may be analysed by the model9 

�
�=

=

+
+

=
n

1b
iim

1a
aab

biib
i FN

FK1

RFK
B       (Equation 2) 

where Bi and Fi are the bound and free concentrations of ligand i, Kab is the binding affinity 
constant of ligand a and site b, Ni is the non-specific binding parameter of ligand i, and Rb is 
the concentration of site b. Only one of the Bi:s is measured - the bound concentration of the 
radioligand10. 

Both saturation and competition binding experiments are of the more general type 
concentration binding experiment. There are also other types of binding experiments, e.g. 
time binding experiments. In the latter the rate of dissociation (or association) of complexes 
between binding sites and ligands are studied. Time is the independent variable, and the 
bound concentration of radioligand is the dependent variable. The rate of dissociation can be 
analysed with the following model9:  

�
=

−=
n

1b
ibibi )tKexp(R)t(B           (Equation 3) 

Here, t is the time, Kib is the rate constant for dissociation of ligand i  from binding site b, and 
Rib is the concentration of bound ligand i to site b at time t = 0. 

In order to get satisfactory statistics it is customary to perform "parallel" experiments: Several 
measurement series with the same experimental set-up (same assay, same ligands, same 
varying concentrations) are performed. Parallel experiments will be handled as being several 
dependent variables in the database schema (section 8.2.3).  

2.3 Chemometr ics 

Chemometrics is ” the use of mathematical and statistical methods for handling, interpreting, 
and predicting  chemical data” (Malinowski 1991). The classical example is that we wish to 
                                                        
8 I.e., it is assumed that the concentration of the competitor is large enough to completely block out the 
radioligand from the receptor binding site. Hence, any radioligand bound in the assay is bound "non-
specifically".  
9 In the fit program BindAid (Wikberg 2001) these models are called "Bindfit" and "Dissocfit", respectively. 
10 It is assumed that there is only one radioligand in the assay, and hence only one ligand contributing to the 
detected signal, plus background radiation and noise. Other, non-labelled, ligands could in principle be detected 
by other means - in practise this is very difficult. The schema to be described in this work will , however, 
accommodate measurements of several bound ligands in a single experiment. 
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optimise the yield of product C in the chemical reaction A + B  C + D. Since there are a 
multitude of parameters we can vary (solvent, catalysts, temperature, pressure, stoichiometric 
ratio of A and B, rate of addition of B to A, and so on - depending on the kind of reaction) the 
search space is large, and the parameters may be correlated. Naive optimisation methods will 
require long series of expensive and tedious experiments, and will generally be stopped when 
a "satisfactory" experimental set-up has been found. The chemometrical approach would be to 
first design a set of experiments which span the search space, perform these experiments, and 
then use multivariate statistical analysis to explore the search space. 

Other applications of chemometrics are calibration of instruments, QSAR, and analysis of 
spectra and chromatograms. Typical multivariate methods are principal component analysis 
(PCA), factor analysis, discriminant analysis, and projection to latent structures partial least 
squares analysis (PLS). Sometimes also pattern recognition, robotics and similar methods are 
counted as chemometrics11. 

In QSAR (Quantitative Structure-Activity Relationship) we wish to take a set of molecules 
with known experimental data and predict (or explain) some activity with help of the 
molecular structures. In order to put this quantitatively we obviously need to describe the 
molecular structures by some variables, in chemometrics called descriptors. 

Many descriptors are real-valued variables on a linear continuous scale (e.g. mass, logP, and 
dipole moment), but other types are also possible. For example, descriptors may be discrete 
variables (number of atoms in the molecule), or binary variables ("presence on non-presence 
of nitrogen in the molecule"). PAQS should be able to handle all kinds of descriptors, and this 
requires some careful data modelling in order to get a good design of the database schema.  

If we now wish to predict binding affinity constants the approach is as follows: (i) Find as 
many affinity constants as possible for the receptor of interest, either from the literature or 
from your own experiments. (ii) Choose those affinity data which seems trustworthy, and 
where the ligand can help spanning up a reasonable search space. (iii) Construct descriptors 
for the ligands. (iv) Perform a statistical analysis to build a statistical model. (v) Assess the 
validity of the model. (vi) Use the model to predict the affinity constant for one or several 
new ligands. If a high affinity is predicted for a ligand, obviously its actual affinity needs to 
be determined experimentally, too. 

2.4 Proteo-Chemometr ics 

Proteo-chemometrics is "chemometrics for the analysis of protein-ligand interactions" 
(Lapinsh et al 2001). The novel thing about the approach is that the descriptors refer to both 
ligands and receptors (or enzymes). I.e., we take affinity constants for a set of similar 
receptors and a set of ligands, and build the statistical model from all these. This has several 
advantages: We can find a larger number of relevant affinity data and, more interestingly, we 
span up a new kind of search space with variations both among the receptors and the ligands. 
Thus, it is possible to model ligand affinities to receptors, and also - in some cases - to discern 
which parts of the protein that is most important for binding. I.e., with proteo-chemometric 
analysis it is sometimes possible to determine the molecular mechanisms in the interactions 
between ligands and receptors1. 

                                                        
11 Hibbert and James 1987. 
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2.5 Bioinformatics, Genomics, and Pr oteomics 

To conclude the introduction of the application domain it is probably useful to discuss a few 
recent "buzz-words". 

The genome is the total genetic information carried by a cell or organism. Genomics is the 
study of the structure and function of whole genomes or other very large collections of genes. 

Even though we may have direct knowledge of all gene sequences for a given organism this 
does not imply that the functions of all such genes are understood. A new fundamental 
concept called proteome (PROTEin complement to a genOME) has emerged that should 
drastically help genomics to unravel biochemical and physiological mechanisms at the 
molecular level12. The proteome is the set of all proteins synthesised in a given organism, and 
proteomics is the identification of the complete set of proteins synthesised by a cell under a 
given set of physiological and environmental conditions, and the determination of the 
proteins' roles in cell activities13. Genomics may be divided into the subfields structural and 
functional genomics, and proteomics is in turn a subfield of functional genomics. 

The next level in the hierarchy of concepts is "physiomics", which considers how the 
proteome within and among cells co-operates to produce the biochemistry and physiology of 
individual cells and organisms14.  

Life science data is a very broad concept, encompassing proteomic and genomic data, as well 
as - among other things - clinical, toxicological, and chemical data. All these kinds of data are 
needed for drug development in the pharmaceutical industry. 

IBM recognises a series of "challenges" which need to be met for a successful use of life 
science data15: (i) Integration of increasing and diverse data sources. (ii) Integration across 
functional "silos" within the R&D organisation. (iii) Knowledge management, sharing and 
collaboration. (iv) Data management, security, access, and storage management. (v) Business-
to-business integration for outsourced functions. The PAQS project will mainly consider 
points (i) and (iii) of these. 

Bioinformatics 

The consequence of the breadth and scale of research efforts in structural and functional 
genomics is a very large quantity of data. A new discipline called "bioinformatics" has 
evolved, which deals with moving the data into (relational) databases, and with developing 
efficient methods for searching and viewing these data14. While genomics and proteomics 
heavily relies on the use of databases the research is mainly conducted in "white biology" 
laboratories. On the other hand, bioinformatics is purely "in-silico biology".  

One biology textbook (Lodish et al 2001) defines bioinformatics as "the rapidly developing 
area of computer science devoted to collecting, organising, and analysing DNA and protein 
sequences". Denning (2000), former chair of the Association of Computing Machinery 
(ACM), writes that bioinformatics is "an emerging area of intimate collaboration between 
computing and the biological sciences. Investigators are exploring a variety of models and 
architectures that can revolutionise computing, biology, and medicine". Denning also divides 

                                                        
12 What is Proteomics? 2001-11-30 
13 Butt 2001. 
14 What is Genomics? 2001-11-30. 
15 IBM Life Sciences Framework 2001-12-13. 
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computer science into 12 subareas, 11 established16 and one emerging - bioinformatics. 
Within the bioinformatics community, one opinion is that bioinformatics is "a new, growing 
area of science that uses computational approaches to answer biological questions" 
(Baxevanis 2001b). As in many scientific fields, the question is whether to focus on the 
methods or on the results. In bioinformatics there is still a need for both. In practice, 
bioinformatics applications are typically used by biologists since the domain knowledge is 
needed to interpret the results of database searches and application program computations. 

An interesting question is whether the PAQS project should be considered to be 
bioinformatics research. PAQS deals with the analysis of interactions between proteins and 
ligands, and it relies both on advances in database research and multivariate statistics. Hence, 
PAQS clearly lies within the field of "informatics", and it also deal with biological entities on 
a molecular level. In my opinion it is clear that the PAQS project lies within the domain of 
bioinformatics.  

                                                        
16 E.g.: Algorithms and data structures;  Databases and information retrieval; Human computer interaction. 
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3 Databases - an Introduction 

In this chapter an introduction to the area of databases and database-related concepts will be 
given, intended mainly for non-computer scientist readers. The chapter mainly consists of 
"standard" text-book material17, except for the last subsection (3.2.6) which is specialised on 
topics specific for this Thesis. 

3.1 Databases, Database Systems, and Database Management Systems 

There are numerous explanations and definitions of what a database actually is. Definitions 
range from the quite general "a collection of related data" (Elmasri and Navathe 2000) to 
more restrictive ones. Elmasri and Navathe lists three implicit properties for a database: (i) A 
database represents some aspect of the real world, i.e. some aspect that is of interest for users; 
(ii) A database consists of a collection of  data which is logically coherent and has some 
inherent meaning; (iii) A database is designed, built, and populated for a specific purpose. 

Usually, when people use the term "database" they mean something that is stored 
electronically (on disk, on tape, on in a computer's main memory), and is managed by a 
specialised software, a database management system (DBMS, vide infra). This is also what 
"database" most often will mean in this Thesis. In some places, however, we may use the term 
to encompass also other data sources on the Web.  

user

storage manager

data files

meta-data

DBA staff

query processor

DBMS

DBS

command-line
interface

API

application 
program

DB

 

Figure 2. A database system (DBS) consisting of a stored database (DB), a database management system 
(DBMS), and an application program. Users interact with the DBS either by issuing queries directly through the 
command-line interface or by executing the application program. An application programming interface (API) 
serves as a l ink between the DBMS and the application program. The DBS is maintained by database 
administration (DBA) staff.  

                                                        
17 Elmasri and Navathe 2000; Connolly and Begg 2002. 
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Figure 2 relates the concepts database (DB), database system (DBS), and database manage-
ment system (DBMS). To exemplify: The protein information resource18 (PIR) is a database 
system consisting of various application programs (e.g. web forms and programs to let users 
retrieve data), an Oracle DBMS, and the data which resides in disk files. Although we may 
informally refer to the PIR as "an Oracle database" it would be more correct to say that the 
database is managed by an Oracle DBMS, or that the PIR data resides in a database system of 
which an Oracle DBMS is one important component. 

A DBMS (DataBase Management System) is a specialised software package for managing 
databases. There are a range of tasks a DBMS should fulfil. The most obvious task is that a 
user should be able to access (retrieve and manipulate) data stored in the database. A few 
other tasks are (i) to provide facilities for backups and for restoring data after a system failure, 
(ii) to impose constraints such that the database is always in a consistent state (e.g. to ensure 
that all employees have different employee numbers), (iii) to provide authorisation control, 
and (iv) to allow many users to simultaneously use the database. Obviously, the DBMS 
should also provide some mechanism for constructing the database in the first place, and for 
modifying its structure.  

3.1.1 Metadata and Program-Data Independence 

An important aspect of a database system is that a description of the structure of the database 
is stored in the database itself. Such information is called metadata ("data about data") and is 
used by the DBMS in its work to access the data files. In a relational database (vide infra) the 
names of tables and columns are examples of such metadata.  

If we use an application program that directly reads and writes data from/to a data file on disk 
(no DBMS involved) the structure of the data file is explicitly embedded in the application 
program19. Each time we change the structure of the data file20 we need to make the 
corresponding changes to the application program. On the other hand, if we use a DBMS any 
changes of the data file structures can be absorbed by mappings within the DBMS, and the 
application program will not have to be changed. Thus, the use of a modern DBMS provides 
program-data independence21.  

3.1.2 Access Methods 

Once the data are stored in a database there must be some fast way to get hold of the data. 
Here, a few access methods will be described. No practical work on access methods has been 
made for this Thesis, but an introduction to the concepts is important in order to get an 

                                                        
18 The Protein Information Resource is a division of the National Biomedical Research Foundation (Washington 
DC), see http://pir.georgetown.edu. The PIR-PSD (protein sequence database) is claimed to be the largest public 
domain protein sequence database in which entries are annotated and classified (Barker et al 201). 
19 For example, a Fortran program reading a direct access disk file with employee records would have specified 
the length of each record in an OPEN-statement, and the order, length and type of each field (employee number, 
name, employed_since, salary) in READ- and FORMAT-statements.  
20 E.g., i f we add a field "department" to the employees, or simply change the length of employed_since from six 
to eight digits. 
21 Text books on databases wil l further describe logical and physical data independence as consequences of the 
ANSI-SPARC three-schema architecture. These are not our concern here. 
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understanding of future relevant subprojects for PAQS, and what various data sources can and 
cannot do. 

For the discussion, suppose we have a file of persons, each with a name, an age, and a title. In 
this example the name is unique for each person, while age and title are not. In an unordered 
file data are stored in random order, for example in the order they were entered. If there is no 
accompanying access structure we need to scan through the file until we find the right 
person22. In many commercial relational DBMSs (vide infra) this is called a "table scan". 

An index is some data structure which helps the DBMS find the correct record fast. There are 
different kinds of indexes, suitable for different purposes. Presently B-tree indexes and hash 
indexes are implemented in Amos II. For example, a search for the person with name 'Fredrik' 
will be fast if there is an index on the persons' names (either hash or B-tree), and a search for 
all young persons (age < 30, a "range query") will be fast if there is a B-tree index on the 
persons' ages23.  

For "modern" database problems it is often necessary to employ other index types than those 
mentioned above. E.g., geographical data is often indexed by R-trees, and text retrieval 
systems use "inverted indexes"24. In order to index chemical substances according to which 
functional groups they contain bitmap indexes can be used25. Sequences of characters (e.g. the 
genetic code or the amino acids of a protein) can also be indexed, for example by suffix 
arrays26.  

When we discuss information integration in chapter 4 we will see that one argument for the 
mediator/wrapper approach of Amos II (and against data warehousing) is that the data sources 
may have unique capabilities for their specific kind of data. These capabilities can only be 
utilised when the data resides in the original sources, not when it has been copied to a central 
repository.  

3.2 Data Models and Database Schemas 

A data model is a particular way of describing data, relations between the data and constraints 
on the data27. Another way to express this is that "a data model is a collection of concepts 
used to describe the structure of a database" 28. Usually, the data model also includes some 
basic operations to retrieve and update data in the database28. 

A database schema on the other hand is the description of the database, made in the language 
of a chosen data model. 

                                                        
22 Obviously, the fi le could be kept ordered on one field, e.g. the persons' names. Then, when we look for 
'Fredrik' we don't need to scan through the whole fi le, but can use a method called "binary search". However, 
keeping the file sorted will require a lot of work if persons are inserted and deleted.  
23 These and other index data structures are described in most text books on databases, see, e.g., Elmasri and 
Navathe 2000. 
24 Garcia-Molina, Ullman and Widom 2000. 
25 A "fingerprint" is a special kind of bitmap index suitable for screening large chemical databases, see, e.g., 
James, Weininger and Delany 2000. 
26 Andersson 2000.  
27 Connolly and Begg 2002, p 817. 
28 Elmasri and Navathe 2000, p 24. 
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As mentioned in the previous section, a DBMS is a package of computer programs, used to 
manage a stored database. It is worth noting that a DBMS implements a specific data model, 
and that the stored database is a "population" (or extension) of a specific database schema (the 
intension). The prototype of PAQS presented in this Thesis has been constructed with Amos 
II, a DBMS implementing a variant of the functional data model. In chapter 8 we discuss 
various alternative solutions to details in the database schema, but we will not depart from the 
functional data model. 

Although the work presented here has been made in the functional data model the following 
subsections will briefly mention other wide-spread data models and a few diagrammatic 
notations. This will hopefully provide a useful basis for readers not familiar with database 
terminology when comparing the approach of this Thesis with other work. 

3.2.1 The Entity-Relationship Data Model 

The Entity-Relationship (ER) model and the enhanced ER (EER) model are well-known 
examples of conceptual data models. These are used to construct high-level, "conceptual" 
database schemas which ordinary users relatively easily can understand. 

In the ER model the information domain is described in terms of entities, attributes, and 
relationships. An entity is an object we are interested in, e.g. a person, and an attribute is some 
value we ascribe to that person (e.g. the name "Fredrik"). An entity set is a collection of 
entities with similar structure (e.g. all persons), while an entity type is the formal definition of 
what entities belonging to a specific entity set should look like. A relationship is some 
association between one entity and another entity, and as for entities we also have relationship 
sets and relationship types. 

Typically, conceptual data models use a diagrammatic notation. For example, Figure 3 shows 
a simple ER diagram for a database schema with two entity types, four attributes, and one 
relationship type. 

Name

1
PERSON

Address

LABORATORY

Name

Title

WORKS_IN
N

 

Figure 3. ER schema diagram showing the entity types PERSON and LABORATORY, each with two attributes, 
and the interconnecting relationship type WORKS_IN. Each "real person" is represented by an entity, i .e. an 
instance of the entity type PERSON, and so on. The cardinalities 1 and N signify that a person may only work in 
one laboratory, while a laboratory may have several people working in it. 

3.2.2 The Relational Data Model 

Since conceptual data models use high-level concepts, suitable for discussions between 
database designers and users, schemas made within these models are usually not well suited 
for implementation. 

The relational data model  and the legacy network and hierarchical data models are the most 
well-known representational data models, and may be implemented in a direct way, contrary 
to the conceptual data models.  
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In the relational data model the database is logically a collection of relations (tables). A 
relational schema defines a relation as a set of attributes (columns of the table), and the 
relation itself consists of a set of tuples (rows) with values. Each tuple should have a simple 
("atomic") value for each attribute, i.e. there should be a single data value in each "slot" of the 
table. The relational model has a strong mathematical foundation and is easy to implement. 
Furthermore, the mapping from a schema in the ER model to a table description in the 
relational model is straightforward, see Figure 4. (A more detailed relational schema would 
also contain the data types of the attributes.) 

PersonNr Name Title LabNr

LabNr Name Address

PERSON

LABORA TORY

 

Figure 4. Relational schema diagram. Underlined attributes are primary keys (unique) and the arrow denotes the 
constraint that each value of PERSON.LabNr has to be an existing value of LABORATORY.LabNr. 

The relational data model has been the dominant data model for the last 20 years and a few 
examples of commercial relational DBMSs are Microsoft Access29, Oracle 729, and IBM's 
DB2 v529. Later versions of Oracle and DB2 have been extended with object-oriented 
features, and may now be called object-relational DBMSs (vide infra). 

SQL 

While it seems straightforward to implement the PERSON relational schema of Figure 4 as a 
st r uct  in the programming language C, for example, this is not something users or 
administrators of database systems need to do. Instead, they use SQL (the Structured Query 
Language): 

cr eat e t abl e PERSON (  
 Per sonNr  i nt  pr i mar y key,  
 Name var char ( 50) ,  
 Ti t l e var char ( 20) ,  
 LabNr  i nt  r ef er ences LABORATORY( LabNr )   
) ;  
  

Most users come in contact with SQL as a query language, to retrieve data from the database, 
and possibly they also insert, delete and update data. These operations all use SQL as a data 
manipulation language (DML). Conversely, when a new table is created or a new column is 
added to an existing table, SQL is used as a data definition language (DDL). The version of 
SQL used together with the DBMS Amos II is called AMOSQL, and this language too 
contains primitives for data manipulation as well as data definition. 

SQL is a declarative query language, which means that we only need to specify what we want 
to retrieve, not how it should be retrieved. For example, to get hold of the titles of all persons 
named 'Fredrik' the following SQL query would be issued: 

sel ect  Ti t l e f r om PERSON wher e Name=' Fr edr i k' ;   
Should we write the same in C or Java, we would need to first open the file PERSON, then 
scan the file for all records with the correct name, and finally print the title fields of the 
matching records. This is all made transparently by SQL, and we see one advantage of using a 

                                                        
29 Registered trademarks of Microsoft Corporation (http://www.microsoft.com/office/access), Oracle 
Corporation (http://www.oracle.com), and International Business Machines Corporation (http://www-
4.ibm.com/software/data/db2), respectively. 
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DBMS to handle stored data. Furthermore, since we do not specify how the result should be 
obtained the DBMS is free to perform a range of optimisations in order to retrieve the answer 
quickly. 

Amos II is a main-memory database, and we can see one advantage of the database approach 
if we compare a running Amos II system with a run-time system implemented in Java. (The 
comparison of the previous paragraph referred to data stored on disk.) Both systems would 
store real-world concepts as objects (e.g. of type Per son), but there is a significant difference 
in how we could get hold of the objects we want. In a pure Java application, users navigate 
from object to object. This is possible in an Amos II system too, but in Amos II we also have 
access to a powerful declarative query language and can use this to find relevant objects30. 

3.2.3 Object Data Models 

The original incentive for developing object-oriented database management systems 
(OODBMSs) was to provide a means to transparently store objects of application programs 
written in object-oriented programming languages such as C++ and Smalltalk31, i.e. to 
facilitate object persistence. By using an object-oriented approach both in application program 
and database the so-called "impedance mismatch problem" could be avoided. 

A more important argument, particularly from the perspective of the PAQS project, is that 
OODBMSs supposedly are more suited than RDBMSs for handling "modern applications", 
such as computer-aided design (CAD), computer-aided software engineering (CASE), 
geographical information systems (GIS), and multimedia systems32. Some factors in favour of 
OODBMSs are that they have a user-extensible type system, and that they more easily than 
RDBMSs can handle complex object, long transactions, object versioning, and schema 
evolution. Three of the major commercial OODBMSs are Objectivity/DB33, ObjectStore33,  
and FastObject t733. 

In an object data model, data are seen as objects with properties, or state, and behaviour. We 
may further speak of object types (vide infra) as a kind of user-defined data types. In an 
object-oriented (OO) environment the "real world" is modelled by a collection of objects that 
communicate with each other by exchanging messages. An important difference relative the 
relational model is that each object has a system-unique object identifier. Another difference, 
important from a modelling perspective, is that the implemented database schema often is 
easier to understand.  

Some important features of object-orientation (e.g. inheritance, overloading, and poly-
morphism) will be discussed in section 3.2.6, in connection with the Amos II data model.  

The Object Data Management Group 

One major drawback with OODBMSs relative RDBMSs is the lack of a standard. Different 
OODBMSs implement slightly different object-oriented data models (or object data models 
for short). The Object Data Management Group (ODMG) is a consortium of leading 

                                                        
30 In order to simulate database functionality a Java application could put objects in a hash table "registry". The 
objects would then be easily retrieved by the hash key (e.g. Name). 
31 While Java is arguably the most important object-oriented language, it did not exist at the time (end of 1980's). 
32 Elmasri and Navathe 2000; Connolly and Begg 2002. 
33 Registered trademarks of eXcelon Corporation (http://www.objectdesign.com/index2.html), Objectivity, Inc. 
(http://www.objectivity.com), and Poet Software GmbH (http://www.fastobjects.com), respectively. 



 
   

    
 
 20 

 

OODBMS vendors, and the major body of standardisation for OODBMSs. Their Object 
Standard34 consists of an object model, an object specification language, an object query 
language (OQL), and bindings to C++, Smalltalk, and Java.  

In the ODMG object data model the state of an object is defined by the values of its 
properties, and the properties are either attributes or relationships. The behaviour of an object 
is defined by the set of operations that can be executed on or by the object. Objects with a 
similarly defined set of properties and operations can be said to belong to the same class. An 
alternative view, held by the ODMG object model, is that a class is a specification of the 
abstract state and behaviour of an object type. Thus, these two uses of the concept class 
correspond to entity set and entity type in the ER model.  

The ODMG object model puts two aspects of the definition of a type: An external 
specification, and one or more implementations. An interface specifies the abstract behaviour 
of an object type, while a class specifies both abstract behaviour and state. Thus, in the 
ODMG object model we only need to know the interface of a type to be able to discuss how 
objects of that type may interact with other objects, but the class is necessary for a definition 
of the database schema. The functional model used in Amos II (section 3.2.6) is fairly close to 
the ODMG object model, but differs from it in some important ways - for example, there are 
(formally) no attributes in Amos II. 

OQL - the Object Query Language 

OQL (the Object Query Language)34 is the query language associated with ODMG's data 
model. It is in many aspects similar to the standard SQL92 for relational DBMSs, but includes 
OO features such as object identity, complex objects, and polymorphism35. 

Two other object query languages are OSQL and AMOSQL, of the Iris36 and Amos II 
systems, respectively. 

UML - the Unified Modelling Language 

The Unified Modelling Language (UML)37 has during the last five years become a de facto 
standard for object-oriented analysis and design. Although the diagrams of this Thesis will be 
drawn in an ER-diagram style (similar to Figure 3) it is worth noting that UML will probably 
soon become dominant also for database modelling38. Figure 5 shows a UML class diagram 
corresponding to the ER schema in Figure 339. (The operation changeLab was added in order 
to show how operations of OO classes are represented.)  

                                                        
34 Cattell, Barry, Berler, Eastman, Jordan, Russel, Schadow, Stanienda and Velez 2000. 
35 Thus, the objectives of OQL and the new SQL:1999 standard (Eisenberg and Melton 1999a) are very similar. 
Eventually, they may be merged to a single standard, or OQL may be "buried" by SQL:1999 (Stonebraker and 
Brown 1999). 
36 Wilkinson, Lyngbæk and Hasan 1990. 
37 A short and very good text on UML is Fowler 2000. 
38 Two recent books on UML for database modell ing: Uml for Database Design, E.J. Naiburg, R.A. 
Maksimchuk, Addison-Wesley (2001); Oracle8 Database Design Using UML Object Modeling, P. Dorsey, J.R. 
Hudicka, McGraw-Hil l (1998). 
39 Since the UML diagram is meant to have a conceptual perspective (Fowler 2000) it doesn't specify data types. 
For the same reason encapsulation is not considered.  
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1..1*

Perso n

nam e
title

changeLab(Laboratory newLab)

Laborator y
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works_ in

 

Figure 5. UML class diagram with two classes, four attributes, one operation, and one association. 

In the terminology of UML, relationship types (between entity types) are called associations 
(between classes), relationships between entities are links between objects, and cardinalities 
are multiplicities. 

Two Additional Advantages of Object-Oriented Databases 

It is often easier to understand an implemented object-oriented database schema than a 
relational database schema. Due to a process called "normalisation" data pertaining to the 
same concept (e.g. "person") may be spread over several relations (tables) in the relational 
schema. Due to the possibility to include lists, sets, bags (multisets) and other data structures 
as attributes to an object, the corresponding OO schema will usually have relatively coherent 
object types. 

Finally, we may note that during database design the object data model has a wider scope than 
the relational or the ER data models. In the "traditional" approach to database design a 
conceptual database schema is first constructed  as an ER diagram, followed by mapping to a 
"logical" database schema in the relational model. On the other hand, with an OO approach 
we may use the OO data model both for conceptual and logical schemas. The same is true for 
the functional data model (3.2.6), which was used in this Thesis.  

3.2.4 Object-Relational DBMSs 

Most of the major relational DBMSs have lately been converted to object-relational (OR) 
DBMSs, which means that desired object-oriented features have been incorporated into the 
relational products. For example, Oracle8i40, IBM's DB2 UDB40 (universal database server), 
and Informix Dynamic Server with Universal Data Option40 (IDS-UDO) may all be termed 
object-relational41. 

Stonebraker and Brown (1999) list four main features of an ORDBMS: support for (i) base 
type extensions, (ii) complex objects, (iii) inheritance, and (iv) a production rule system. The 
first three features must be available in an SQL context. It is worth noting that Amos II, the 
DBMS used in this work, sometimes is referred to as being object-relational. All four features 
above exist in Amos II, and features (i)-(iii) are probably used by most Amos II applications. 
The context, however, is not standard SQL but AMOSQL. 

An important aspect of commercial ORDBMSs is their abilities to use "plug-ins" to extend 
the functionality for a particular information domain. For example, there are spatial 
extensions available for all three ORDBMS products mentioned above, e.g. suitable for 

                                                        
40 Registered trademarks of Oracle Corporation (http://www.oracle.com) or  International Business Machines 
Corporation (http://www-4.ibm.com/software/data/db2 and http://www-3.ibm.com/software/data/informix). 
Informix was recently acquired by IBM, but IDS-UDO remains a distinct product. 
41 Stonebraker and Brown (1999) discuss various strategies a relational DBMS vendor may use to produce an 
object-relational DBMS. IBM and Informix have constructed "object-relational tops" on relational storage 
managers, while Oracle has used a strategy of incremental evolution of the relational DBMS. 
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efficient storage, access and analysis of GIS application data. These kind of extensions are 
called DataBlades (Informix), Cartridges (Oracle), and Extenders (DB2 UDB). In Amos II 
this functionality is achieved by means of foreign functions. The new SQL:1999 standard also 
includes external routines42. 

Often these kind of "plug-in" products are developed by independent third parties. For 
example,  DayCart43 is a "bundled set of tools which extends the Oracle server with new 
chemical capabilities" 44. To my knowledge, no such extension presently exists for the 
bioinformatics area. Since bioinformatics has been a "hot topic" for the last ten years this 
seems surprising, and I assume it is only a matter of time until the first one appears on the 
market. 

3.2.5 Functional Data Models 

In functional data models entities and functions are used to represent real world objects and 
properties of those objects, respectively. If we compare with the object model we see that 
functions take the roles of both attributes and relationships. 

For database schemas constructed in a functional data model a diagrammatic notation similar 
to that of ER-diagrams can be used, see Figure 6. 

Person Laboratoryworks_in

Charstring

title nameaddressname

 

Figure 6. Functional database schema diagram with three entity types and five functions. 

A function maps a given entity onto a set or a bag of target entities45, and hence there is 
always an explicit direction drawn for a function. As described in more detail in the next 
section, we may add constraints on this mapping, e.g. we may require that the function maps 
an entity onto a single (unique) entity, or that the target is an ordered sequence of entities. 

Many discussions of the functional data model for databases take Shipman's (1981) work on 
the functional model and the DAPLEX language as a starting point. This DAPLEX model46, 
and other "semantic data models" were meant to represent "the real world" more closely than 
previous data models47. As the benefits of the object-oriented approach became more and 

                                                        
42 Eisenberg and Melton 1999b. 
43 Registered trademark of Daylight Chemical Information Systems, Inc. 
(http://www.daylight.com/products/daycart.html). 
44 Kappler and Delany 2001. 
45 In the original DAPLEX functional data model (Shipman 1981) a function maps an entity onto a set of entities 
(no duplicates allowed). A bag (or multiset) is an unordered collection of objects where duplicates are allowed. 
46 Shipman (1981) uses the term "DAPLEX" to denote a data definition and data manipulation language. 
However, "the DAPLEX model" is often used to denote both the language and the underlying functional model 
as it is described by Shipman. This is also how the term is used in this Thesis.  
47 Connolly and Begg 2002, p 807. 
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more apparent, the DAPLEX model was extended by different research groups to incorporate 
various OO features. The database schema presented in this Thesis has been implemented in 
the Amos II system48. Several other research DBMSs implement some form of functional (or 
functional/object) models, e.g. P/FDM (section 6.1.1), Multibase49, Pegasus50, and Iris51. 

3.2.6 The Functional Data Model of Amos I I   

Amos II implements an object-oriented extension of the DAPLEX functional model. The 
Amos II data model is based on the IRIS data model52, and has three main concepts: objects, 
types, and functions. Similarly to Shipman's DAPLEX model an Amos II function maps an 
object onto one or several objects, but the concept of type is new. From now on we will deal 
with the Amos II data model (Risch, Josifovski and Katchaounov 2000). 

Diagrammatic Notation 

Name

1..*

Person

Project

Name

Title

responsible_for
0..1

ProjectLeader

Phone

 

Figure 7. Database schema in the functional model, drawn in the diagrammatic notation used in this Thesis. 

Figure 7 exemplifies how schema diagrams will be drawn in the rest of this Thesis. Symbols 
for types (rectangles) and functions (diamonds, ovals) were taken over from the ER diagram 
notation. In most diagrams a function which maps a type onto a literal type (vide infra) is 
represented by an oval while a diamond represents a function that maps a type onto a user-
defined type. Ovals with double borders correspond to "multi-valued attributes" of the ER 
model (e.g., in Figure 7 a person may have several phone numbers, but only one name). 

Symbols for inheritance (arrows with unfilled heads) and cardinalities (0..1) are the same as in 
the UML. Cardinalities follow a min..max notation, as in the UML and some versions of ER 
modelling53. Thus, the cardinalities of Figure 7 mean (a) that a project leader is responsible 
for at least one project, and (b) that a project has a single leader, or none. 

The "open" arrowhead from a diamond to a rectangle denotes the direction of the function.  

                                                        
48 Risch, Josifovski and Katchaounov 2001; Risch and Josifovski 2001. 
49 Landers and Rosenberg 1986 
50 Ahmed, De Smedt, Du, Kent, Ketabchi, Litwin, Rafii and Shan 1991. 
51 Wilkinson, Lyngbæk and Hasan 1990. 
52 Lyngbæk and Kent 1986. 
53 We would say that a person has 4..4 biological grandparents, but if we were only interested in relatives which 
are alive we would make it 0..4 grandparents. A * denotes any natural number. A few combinations of min..max 
are so common that we don't need to write them out in full: Only 1 means 1..1 (mandatory, an object of this type 
must take part in a function of this type), and only * means 0..*. Two other very common situations, without 
special symbols, are 0..1 and 1..*. 
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Objects and Types 

There are two kinds of objects in Amos II: literals (integers, reals, strings, et cetera) and 
surrogates. Only objects of  surrogate types have object identifiers (OIDs)54. Typically, "real 
world" objects we are interested in are represented as Amos II surrogate objects. For example, 
the object :donal d

55
 would be of the surrogate type Per son, while the literal "Donald" 

represents his name and the literal 30 his age. 

Further, there are four kinds of surrogate types: stored, proxy, derived, and integration union 
types. Objects of a stored type are created by the user, and are stored locally. The latter three 
surrogate types are used for information integration, and will be used in a demonstration 
example (see Appendix G). 

Types and Inheritance 

Each object belongs to a type, and as in the OO approach a type may be part of a 
generalisation/specialisation hierarchy. E.g., we may have the type Per son and another type 
Pr oj ect Leader . Obviously, a project leader is a person, and all functions we have defined 
for the type Per son are relevant and necessary also for the type Pr oj ect Leader . On the other 
hand, the type Pr oj ect Leader  may need a new function "r esponsi bl e_f or ", mapping onto 
a Pr oj ect  object. Thus, Pr oj ect Leader  is a subtype (or specialisation) of Per son

56. The 
situation is showed diagrammatically in Figure 7. 

The fact that Pr oj ect Leader  is a subtype of Per son means that all functions defined for 
Per son are inherited by Pr oj ect Leader . We save some work in not needing to redefine 
them, but the three big benefits of subtyping is that (1) we can express more of the "real-
world" semantics when we model, (2) the database schema gets easier to understand, and (3) 
we may use a Pr oj ect Leader  in every place we can use a Per son

57. The converse to (3) is of 
course not true. If we try to invoke the function r esponsi bl e_f or  on an object which is of 
type Per son but not Pr oj ect Leader  the system will generate an error. 

A constraint put on the type system in Amos II is that an object must always have a most 
specific type. I.e., if Pr oj ect Leader  and Pr of essor  are two subtypes of Per son, we cannot 
make : donal d a member of both those types since they are equally specific58. The solution 
here is that we construct a new type Pr oj ect Leadi ngPr of essor  as a subtype of both 
Pr oj ect Leader  and Pr of essor . This situation, when a type inherits directly from two 
different supertypes, is called multiple inheritance59. Obviously, this solution gets messy 
when there are more than two overlapping subtypes, and it is furthermore easy to forget some 
subtypes when the schema evolves. In these cases, other design solutions should be used, e.g. 
delegation instead of inheritance60. 

                                                        
54 Literals and surrogates correspond to l iterals and objects of the ODMG object model (Cattell et al 2000). 
55 The colon in the beginning of :donal d denotes that we refer to a specific object. The variable :donal d is a 
reference to the object. 
56 From a technical point of view it is possible to create two types Per son and Pr oj ect , and then give them a 
common subtype Pr oj ect Leader . However, this is a major modell ing error since we cannot say that a 
project leader is a project! 
57 An object which belongs to type t does also belong to all supertypes of t.  
58 When :donal d is a member of both Pr oj ect Leader  and Per son it is clear that Pr oj ect Leader  is 
the most specific type since it is a subtype of Per son. 
59 Multiple inheritance is allowed in some OO programming languages (C++) but not in others (Java).  
60 Grand 1998. 
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An object may dynamically change type, or take on a new type. For example, imagine that 
Donald, represented by an object :donal d of type Per son, is appointed project leader of a 
new project. Then we may add the type Pr oj ect Leader  to :donal d, and when the project is 
finished, we may remove this type61. In Amos II this dynamic addition of types to an object is 
only possible when the new type is a subtype of the object's most specific type. 

Finally, a set of subtypes may be disjoint or overlapping. E.g., if the type Per son had the two 
subtypes Man and Woman these would be disjoint62. Conversely, two subtypes Pr of essor  and 
Woman would be overlapping63.  

Functions 

As in the DAPLEX model, the Amos II functions describe both properties and behaviour of 
an object. There are five kind of functions in Amos II: 

• A stored function represents an attribute or a relationship which is stored in the database. 
Stored functions resemble tables in the relational model. 

• Derived functions are defined as AMOSQL queries over other functions. The 
corresponding construct in the relational model is a view. 

• Foreign functions are implemented externally of the Amos II system, as Java, Lisp, or C 
programs. They can be used to make complex computations, and thus correspond to "data 
blades", "cartridges", or "extenders" of ORDBMSs. Another use of foreign functions is to 
implement graphical user interfaces64.  

• A proxy function represents a function of some other database, and may be used for 
mediation. 

• A database procedure has the signature of a normal function, but is implemented in a 
procedural sublanguage of AMOSQL. 

Stored and derived functions are used all through the PAQS prototype. In several places, 
foreign functions and database procedures are used.   

Overloading of Functions 

The functions name( Per son)  - > char st r i ng and t i t l e( Per son)  - > char st r i ng are 
obviously different functions, and any system can distinguish between them. Amos II, like 
object-oriented systems, support overloading, which means that the system understands  
name( Per son)  - > char st r i ng and name( Labor at or y)  - > char st r i ng as different 

                                                        
61 In Java an object always has the same type. 
62 The specialisation of Per son into Man and Woman is furthermore total, or exhaustive, and the extents of Man 
and Woman together constitute a partition of the extent of Per son (Boman, Bubenko, Johannesson, Wangler 
1997). In UML a total specialisation can be represented by abstract classes. We will  use this in section 8.8.3 and 
Appendix E. 
63 In the diagrams I will  use the convention that subtypes which are attached to the same arrowhead symbol are 
disjoint, other overlapping (see, e.g., Figure 34, where a BindingExperiment is either a TimeBindingExperiment 
or a ConcBindingExperiment). Alternatively, constraint labels of the kind { di sj oi nt }  can be used.  

As described in the previous paragraph, implementation of a schema with two overlapping subtypes in Amos II 
requires the introduction of a common subtype. 
64 E.g. "goovi" of the Amos II system (Cassel and Risch 2001). 
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functions. The system "resolves" the name ambiguity between the two functions by means of 
the types of their arguments, Per son and Labor at or y

65. 

However, to overload the functions name( Per son)  and name( Labor at or y)  is mainly a 
matter of convenience, we don't need to invent (and remember) a new function name. To get 
an example of where overloading matters more, we use a function per sonal Dat a( Per son) . 
The personal data could for example be needed for a web server which displays information 
about all persons working at a laboratory. The personal data for a Per son would be name and 
title, but for a Pr oj ect Leader  it would be name, title, and the names of all projects he or she 
is responsible for. The difference from the previous example is that we will require the system 
to take a list of persons working at the laboratory, where some persons are project leaders but 
most are not, and print the personal data. By means of overloading this is possible: For most 
persons in the list only name and title is printed, but if the Per son is also a Pr oj ect Leader  
the implementation of per sonal Dat a( Pr oj ect Leader )  will take precedence, and the names 
of the projects will be printed together with name and title of the person. This is an example 
of polymorphism, a central feature in the object-oriented approach. 

Cardinality Constraints 

The only cardinality constraints built into the Amos II functional model are uniqueness 
constraints: 

• If we declare a function name(  Per son key )  - > char st r i ng nonkey we know that 
the function name maps a Per son object onto a single char st r i ng. I.e., a person has a 
single name. (However, we have not constrained names to be unique, i.e., there may be 
several persons with the same name.) 

• If we declare a function phones(  Per son nonkey )  - > char st r i ng nonkey  a Per son 
object may have several  phone numbers. Equivalently, we may declare the function as 
phones(  Per son )  - > bag of  char st r i ng. I.e., the function phones  may return 
several strings, and several persons may share a phone numbers. 

• We may also make the target of the function unique, as in name(  Chemi cal Subst ance 

nonkey )  - > char st r i ng key. This is reasonable if we wish to store many alternative 
names for each chemical substance, while keeping these names unique. E.g., the names 
chloromethane and methyl chloride refer to the same specific chemical substance. 

• Finally, if the mapping is 1:1, we make both sides of the function keys: empl oyeeI D(  

Empl oyee key )  - > char st r i ng key . 

The default is to make the first argument of a function a key, and all other arguments plus the 
target non-keys. Thus, the first example in the list could also be written name(  Per son )  - > 

char st r i ng. 

There is no direct way of setting other cardinality constraints, e.g. to constrain a person to 
have 0..2 biological parents. However, we may accomplish this by always using a database 
procedure when adding parents, and to let this procedure check that the person doesn't get too 
many parents66. Alternatively, we could use the active rule system of Amos II. In this specific 
                                                        
65 Although the type of the result is formally a part of the function signature, the Amos II system cannot resolve 
overloading on result types, and neither can OO languages such as Java or C++ system. Thus, the system cannot 
distinguish between the functions boss( Labor at or y)  - > Per son and boss( Labor at or y)  - > 
char st r i ng.  
66 Unlike in Java and other OO programming languages, there is no special constructor functionality in 
AMOSQL. 
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example, the semantics suggest a third solution: We simply let the Per son type have two 
different functions, mot her  and f at her , each giving single-valued results. 

Ordered Sequences of Objects 

The Amos II data type vect or  makes it possible to store objects (surrogates or literals) in an 
ordered sequence. This seems to be particularly useful for scientific and technical databases67. 
For example, in the PAQS prototype such sequences are used for data series (see section 8.2). 
However, there are presently quite few operations  available for vectors (creation and access 
by index number). In order to get more functionality out of the useful data structure I have 
implemented a few vector manipulations as Java foreign functions, see Appendix C. 

                                                                                                                                                                             
 
67 Maier and Vance (1993) strongly advocates for the inclusion of ordered structures in scientific databases. They 
note that although many OODBMSs contain some list or vector data type these types cannot be used effectively 
in query processing. The same applies in Amos II. 
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4 Information Integration 

One of the more important directions in recent research on database systems is information 
integration, i.e. to find methods by which data stored in two or more sources can be combined 
to one large, possibly virtual, database, and the combined data can be queried transparently by 
users and applications. The data sources may be a combination of databases, web sites, text 
files, et cetera. 

4.1 Three Appr oaches to Information Integr ation 

According to Garcia-Molina, Ullman and Widom (2000) the three main approaches to 
information integration are federation, warehousing, and mediation: 

• Federated databases are independent, but one database knows how to call upon each of 
the others to get the information needed. Thus, for n federated databases up to n(n-1) 
translations are needed. As long as the databases only need limited functionality of each 
other a federated system may well be the easiest to build.   

• A data warehouse may be used as a central repository for all integrated data in the 
organisation68. The data warehouse contains copies of data in the data sources, which are 
typically the organisation's production "on-line" databases. In contrary to most production 
databases, the warehouse contains historical data69. In order to provide fast answers to 
complex queries data may be presummarised at different levels (sales per 
day/month/year).  

The warehousing approach has met with great success in the business world, and data 
warehouses and data marts70 have been implemented as decision-support systems in many 
organisations. 

• A mediator supports a virtual database, which the user may query transparently. The 
mediator stores little or no data locally. The concept of mediators was introduced by 
Wiederhold (1990, 1992), and the mediator/wrapper approach taken by Amos II and the 
PAQS project will be described further in section 4.4. It is possible to build a system of 
several interoperating Amos II servers, each wrapping one or several data sources. We 
then get a federated database system where each local database follows a mediator/ 
wrapper approach. 

                                                        
68 A common definition is that a data warehouse is "a subject-oriented, integrated, time-variant, and non-volati le 
collection of data in support of  management's decision-making process" (Connolly and Begg 2002, p 1047). 

A few texts on Data Warehouses are Inmon, W.H. (1993) Building the Data Warehouse. New York, NY: John 
Wiley &  Sons; Kimball, R. (1996) The Data Warehouse Toolkit : Practical Techniques for Building 
Dimensional Data Warehouses. New York, NY: John Wiley & Sons; Kimball, R. & Merz, R. (2000) The Data 
Webhouse Toolkit: Building the Web-Enabled Data Warehouse. New York, NY: John Wiley & Sons. 
69 For example, the inventory database of a shop should keep track of how many items of each product the shop 
has on stock right now, and it is important that this information is up-to-date. The data warehouse would keep a 
history of perhaps five years back in time in order to facili tate queries giving information on trends et cetera. The 
warehouse would also be a good data source for data mining applications searching for patterns in this sales 
history.  
70 Data marts are smaller than data warehouses, intended for a department of the organisation or for a special 
user group. The central idea of replicating data from the original data sources is the same as for data warehouses. 



 
   

    
 
 29 

 

From the descriptions above we see that data warehousing differs from mediation and 
federation in one very significant way. With warehousing data from the sources are replicated 
in the warehouse, while in the other two approaches data always reside in the data sources. 
Typically, users cannot update data in the warehouse, i.e., the warehouse is read-only.  

Obviously there are advantages and disadvantages either way. E.g., a data warehouse should 
respond faster to a query since all data needed resides in one place (less communication costs) 
and may even be preaggregated in some useful way. On the other hand, with federation and 
mediation data is always up-to-date (as long as communication lines are up), and there is no 
need for a huge central storage facility. Furthermore, data sources may keep a high degree of 
autonomy (vide infra), and they may have unique capabilities which cannot be exploited when 
the data has been taken over to the warehouse. As discussed by Hellerstein, Stonebraker and 
Caccia (1999) the warehousing approach breaks physical data independence as well as some 
aspects of logical data independence. 

To conclude, we may say that warehousing is an approach used for data originating from 
within the organisation, possibly with some external "background" data added. If we mainly 
rely on data sources which are not under our control, warehousing is not suitable, and with 
full data source autonomy, e.g. all external data taken from web servers, mediation becomes 
the solution of preference.  

4.2 Three Dimensions of Distr ibuted Database Systems' Ar chitectures 

Architectures of distributed database systems (DDBSs) are often classified along three 
dimensions: distribution, heterogeneity, and autonomy (Özsu and Valduriez 1999): 

• Distribution refers to where data is located. 

• Heterogeneity refers to how different the local database systems are. They may be 
heterogeneous in a number of ways, some of the more important being hardware, data 
models, DBMSs (i.e. software), query languages, transaction protocols, and database 
schemas. Particularly, any attempt to integrate data from web servers and databases will 
have to deal with the quite varying data models, schemas, and querying capabilities of the 
data sources.  

• Finally, autonomy refers to the distribution of control. For example, the local database 
systems may or may not be free (i) to make changes to the local database schema, (ii) to 
decide which parts of the local schema that other database systems may access, and (iii) to 
temporarily leave the distributed database system. 

E.g., suppose that a distributed database system is developed top-down. Some central 
authority in the organisation decides that a DDBS is needed, what the database schema looks 
like, and which kind of hardware and software that will be used. Such a system will have the 
data distributed among the participating databases, but there will be no heterogeneity (all local 
database systems will look the same), and no autonomy (decisions are taken centrally, a local 
database administrator cannot decide to change the database schema, or to leave the DDBS). 
In this kind of system information integration should be a minor problem, it is provided for 
already in the design of the DDBS. 

On the other hand, all three approaches described in section 4.1 are meant for systems 
designed in a bottom-up way: The data sources to be integrated already exist when the need 
for information integration arises, and they are most likely heterogeneous in several ways. 
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4.2.1 Heterogeneous Distr ibuted Database Systems 

Bouguettaya, Benatallah and Elmagarmid (1999) give an overview of heterogeneous 
distributed database systems, i.e. information systems that provide interoperation and some 
degree of integration among multiple databases71. The overall problem to solve is that of data 
integration: to provide a uniform and transparent access to the data managed by multiple 
databases. According to Bouguettaya et al this may basically be accomplished in three ways: 

• After a global schema integration users get a uniform and consistent view of the data. 
Obviously, it may be difficult and time-consuming to completely integrate all local 
schemas. Furthermore, the method is not suitable if there are frequent changes to the local 
schemas. 

• In a federated database system (FDBS) the local schema of each data source is translated 
into an export schema constructed in a common data model. A federated schema is created 
as a view against relevant export schemas, either by the user (decentralised, or loosely 
coupled FDBS) or by federation administrators (centralised, or tightly coupled FDBS).  

• With a multidatabase language there is no need for a predefined global or partial schema. 
By means of this language users may query multiple databases at the same time. Some 
problems with this approach are that users need to know where data are located, and also 
understand the local schemas and "manually" resolve semantic conflicts.  

Figure 8 shows a reference five-level architecture which is often used for discussing these 
types of systems. In the three approaches above there is one, several, and none 
federated/global schemas, respectively. 

 

Local Schema (NDM )

Component Schema (CDM )

Export Schema (CDM)

Federated (Global) Schema (CDM)

External schemaExternal schema

Federated (Global) Schema (CDM)

Export Schema (CDM) Export S chema (CDM)

External schema

Local Schema (NDM)

Component Schema (CDM)

 

Figure 8. A five-level schema reference architecture for multidatabase systems (after Pitoura et al 1995). Local 
schema are constructed in the native data models (NDM) of the pre-existing database systems. When the 
multidatabase system is built the local schema are translated to component schema in the chosen common data 
model (CDM). A subset of the component schema is exported, and from the export schemas a federated or 
global schema is created by integration. Users and applications access the system through external schemas, 
which may be constructed in any data model. 

A single Amos II mediator system which wraps several data sources works with a single  
schema. However, the wrappers usually only translate parts of the local schemas for use in the 

                                                        
71 Other terms for heterogeneous distributed database systems are multidatabase systems and federated 
databases, see Bouguettaya et al (1999) for discussion and references. Note that the definition excludes the data 
warehousing approach as it assumes that data should remain localised in the data sources. 
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mediator, and the system would be a variant of a tightly coupled FDBS. Several Amos II 
servers may then be connected to form a federation, a loosely coupled FDBS. 

4.3 Problems in Information Integration 

In this section a short description is made of some problems that arise when data is integrated 
from different heterogeneous and autonomous data sources. The three architectural 
dimensions for distributed database systems (section 4.2) give rise to different kinds of 
problems.  

4.3.1 Distr ibution of Data 

Obviously, if we wish to integrate data from various autonomous sources there is little we can 
do about the distribution of data. In most cases we have no write access to the sources, and it 
is not realistic to load all source data to a local "warehouse". What we can do to increase 
performance is to cache frequently needed data locally in the mediator, and to store some 
precomputed summations and indexes72 in the mediator.  

4.3.2 Autonomy 

Since the data sources are autonomous, we will need to comply with whatever data models, 
database schemas, and querying capabilities they provide. This can be solved by the wrapper 
approach described below, but a remaining problem is that external data sources may change 
schema without notifying us. Usually, such schema changes will be rather small, and the 
functional object model of Amos II is well suited for schema evolution in response to such 
changes. 

A major problem is when a data source moves over to a new data format, e.g. from ASN.1 to 
XML (vide infra). Such a change requires that we construct a new wrapper for the source, and 
if we are quite unlucky (if the source is the only one to provide some important data) all 
queries towards the PAQS system will be impossible for several weeks73. 

Another autonomy-related problem is that it is quite possible, and probable, that some data 
sources where access is presently free of charge start to charge users. Different business 
models may give rise to different economical and technical problems. 

4.3.3 Heterogeneity 

The heterogeneity-related problem which probably has been studied most extensively is that 
of schema integration, where we need to consider both "the system level" (different data 

                                                        
72 E.g., if we use four different web databases for protein amino acid sequences it might be useful to store an 
index over which proteins that are in which external databases. In this way, we would not need to query all  
databases. However, such an index needs to be kept up-to-date. 
73 A simple source may be wrapped in a week or two, while more complex sources may require up to a few 
months of work to be completely modelled (Haas, Schwarz, Kodali, Kotlar, Rice and Swope 2001). If we have 
wrapped the data source once, it will  be easier the next time, and it wil l be particularly easy if we already know 
how to technically wrap the new format (e.g. a relational database or XML). However, when an organisation 
decides to make a change of data format, it is quite possible that they also change the schema drastically. 



 
   

    
 
 32 

 

models have different constructs) and "the data level" (similar information represented 
differently) (Elmagarmid, Du and Ahmed 1999). 

In general, the local schema of the data sources are translated to an integrated (partial or 
global) schema in a common data model. It is then clearly desirable that this common data 
model (e.g., the data model of the mediator) has greater modelling power than the data models 
of the sources, or else some semantics will likely be lost in the integrated schema. As 
mentioned in section 3.2.5, the functional model has rich semantic power74, and several 
mediator DBMSs implement a object-oriented or functional object data model75. 

Some important possible mismatches between the schemas of the various data sources are76: 

• Identity conflicts: The same "real-world" concept, e.g. a specific protein, is represented by 
different objects in different databases. This is really one of the things we wish to 
integrate in the PAQS project. As long as we can get the mediator to understand that the 
two objects refer to the same protein there is no problem, but what if the two databases 
have no unique protein identifier in common? 

• A schema conflict arises when one concept is represented differently in the data source 
schemas. The difference may be in naming or in structure: 

− The same concept may be represented by different names (synonyms), or worse, 
different concepts may be represented by the same name (homonyms). 

− One concept may be represented by different data model constructs, e.g. the 
classification of some persons as professors may be implemented by subtyping or by a 
discriminator attribute (a "flag"). 

− Data types may differ, e.g. phone numbers may be stored as character strings or 
integers. 

− Some concepts may be missing in one of the databases. E.g., one data source on 
affinity data may have no references to the original literature recorded, while all others 
do. This type of problem is often solved by using semi-structured data (e.g. XML) to 
represent integrated data which may not conform entirely (Garcia-Molina et al 2000). 

• Semantic conflicts: The same concept is interpreted is (slightly) different ways in the 
various data sources. A range of possible conflict types exist, for example (Wiederhold 
1982): 

− Scope: Are assistant professors really "professors"? 

− Abstraction: Does "income" refer to personal income or family income? 

− Time: Do we sum "total sales" over weeks or months? 

• Finally, there are data conflicts where different databases store different values for the 
same concept (i.e., there is no semantic conflict). For example, one database may store the 
atomic weight of hydrogen as 1.008 and another as 1.0079. Data conflicts are relatively 

                                                        
74 In a comparison of the functional, relational, network and hierarchical data models it was found that the 
functional model qualitatively subsumes the other three models (Demurjian and Hsiao 1988).  
75 Pitoura, Bukhres and Elmagarmid (1995) gives a compilation of object-oriented techniques for design and 
implementation of multidatabase systems.  
76 Pitoura et al (1995); Bouguettaya et al (1999); Garcia-Molina et al (2000); Wiederhold (1992). 
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easy to detect, and may be due to different levels of precision or to the fact that one 
database simply stores the wrong value77. 

In addition to the conflicts described above two schemas may, when taken together, have 
certain constraints in common. For example, a type in schema A might be constrained to be 
the subtype of a type in schema B78. Another example is when an attribute of schema A is 
derivable from one or several attributes of schema B79. Such correspondences are commonly 
called interschema properties80. 

4.4 The Mediator /Wrapper  Approach to Information Integr ation 

In a mediator/wrapper architecture (Figure 9) for information integration each data source is 
"wrapped" and the mediator provides a uniform view of the data.  

Wrapper

RDB OODB text file

Mediator

query            result

Wrapper Wrapper

 

Figure 9. Mediator/wrapper architecture (after Garcia-Molina et al 2000). 

In the following sections wrappers and mediators will be described separately. Two things 
from section 4.3 to bear in mind are that most data sources are fully autonomous (out of 
control of the administrator of the mediator/wrapper system), and that the data sources may be 
highly heterogeneous (different data models, database schemas, and querying capabilities). 

The Amos II system used to implement the prototype of this Thesis has a mediator/wrapper 
architecture with a functional OO data model81. Other research mediator/wrapper-systems are 
Garlic82 (from IBM), Tsimmis83 (Stanford & IBM), Information Manifold84 (AT&T), and 
Disco85 (INRIA). 

                                                        
77 When we deal with experimental data there is often no right-up "correct" value. E.g. we may find that different 
databases store widely different values of the affinity constant KAB between binding site A and ligand B, and this 
may be due to the different experimental conditions used. I.e., we can normally not assume that two data values 
of KAB refer to exactly the same real-world concept. 
78 E.g., Empl oyee of schema A is certainly a subtype of Per son in schema B. 
79 E.g., it is possible to derive the value of mol ecul ar Wei ght  in schema A from values of mol ecul ar -
Composi t i on and at omi cWei ght  in schema B. 
80 Boman, Bubenko, Johannesson and Wangler 1997. 
81 Risch, Josifovski and Katchaounov 2001. 
82 Tork Roth and Schwarz 1997; Haas, Miller, Niswonger, Turk Roth, Schwarz and Wimmers 1999. 
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IBM's DiscoveryLink (Haas et al 2001, section 6.2.1) is a system with purpose and 
architecture very similar to PAQS. DiscoveryLink is based on the wrapper/mediator 
architecture of Garlic, but uses IBM's ORDBMS DB2 UDB as integrating middleware. 

Typically, a mediator is constructed for a particular group of users, and the data sources might 
then all contain "similar" data - from a single information domain. One advantage of this 
specialisation is that each "local" mediator with associated data sources can be used as a 
component in a larger, extensible, distributed system (Özsu and Valduriez 1999, p 586). This 
would be possible with, e.g., Amos II mediators as components (Risch and Josifovski 2001). 
Figure 10 depicts such a system of collaborating or co-operating mediators. 

Application 1 Application 2

Mediator Mediator

Mediator
Mediator Mediator

data source

local data

data source data source

data source

local data

 

Figure 10. A system of collaborating mediators (after Josifovski 1999). Mediators with the sole responsibility to 
wrap a data source (the three at the bottom) may be called "translators" (Josifovski 1999). 

A new part of SQL, called Management of External Data (or SQL/MED, see section 4.4.3), 
can be used to access external data through wrapper interfaces (Melton, Michels, Josifovski, 
Kulkarni, Schwarz, and Zeidenstein 2001).  

4.4.1 Mediators 

In previous sections we have defined a mediator as a software component which provides a 
uniform view of data residing in various (heterogeneous and autonomous) data sources. 
Wiederhold (1992) emphasises that mediators should use domain knowledge as a driving 
force for data integration, and that the purpose of the mediator should be to create information 
which can be used in high-level (decision-making) applications. 

Wiederhold and Genesereth (1997) describe mediation as an architectural concept. They give 
three layers: 

• A foundation layer with base resources (databases and simulation programs). 

• A mediation layer with value-added services and domain-specific code. 

• An application layer where decision-makers use the information. 

An important point is that while the foundation layer is managed by database administrators, 
the mediation layer should be managed by domain specialists (Wiederhold 1992). 

                                                                                                                                                                             
83 Hammer, Garcia-Molina, Ireland, Papakonstantinou, Ullman and Widom 1995; Hammer, Garcia-Molina, 
Nestorov, Yerneni, Breunig and Vassalos 1997. 
84 Levy, Rajaraman and Ordille 1996. 
85 Tomasic, Raschid and Valduriez 1998. 
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According to Wiederhold and Genesereth (1997) a mediator needs to accomplish four main 
tasks in order to fulfil the overall objective of adding value. The mediator should be able to 

• access and retrieve data from multiple heterogeneous sources, 

• abstract and transform data into a common data model and a common database schema, 

• integrate the homogenised data, and 

• reduce the integrated data by abstraction in order to increase the "information density". 

As discussed in the next section, much of this functionality can be accomplished by means of 
cleverly designed wrappers. 

4.4.2 Wrappers 

A mediator may communicate with a data source through a wrapper (see Figure 9), which 
describes the data in the source and also provides a mechanism by which the mediator can 
retrieve the data. Basically, we may see the wrapper as a "simulation layer" on top of the 
source86. 

In a mediator/wrapper architecture there are several things a wrapper should be capable of. 
Obviously, the wrapper should model the contents of the data source in the common data 
model of the mediator. This corresponds to presenting an export schema in Figure 8. 

Secondly, a wrapper should allow the mediator to access data from the source. In order to do 
this, the wrapper must be able to translate mediator queries (often an object version of SQL) 
into whatever access methods the source has (SQL, web forms, open a file and read 
sequentially, et cetera).  

In addition to these two basic tasks some mediators require the wrapper to participate in query 
planning. I.e., the mediator should be able ask the wrapper for how much of a query it can 
answer, and at which cost. This is the approach taken by Garlic (Tork Roth and Schwartz 
1997) and DiscoveryLink (Haas et al 2001). 

4.4.3 SQL/MED 

SQL/MED (Management of External Data) is a new part of SQL that describes how standard 
SQL can be used to concurrently access external SQL and non-SQL data (Melton et al 2001). 
The architecture of SQL/MED is shown in Figure 11. 

Addressed by SQL/MED standard

SQL-
Server

SQL/MED
API

Foreign-Data
Wrapper

Foreign
Server

Foreign
Tables

Implementation-  dependent API

 

Figure 11. Components used by SQL/MED (Management of External Data) (after Melton et al 2001). 

                                                        
86 This is the view of Stonebraker and Brown (1999) when they describe how a wrapper can be used to extend a 
traditional relational DBMS with object-relational functionality. 
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The new SQL/MED standards seems to be strongly influenced by IBM's Garlic project. In the 
SQL/MED approach, the SQL database server breaks a query into fragments which are to be 
processed by different foreign servers. In the query planning phase each query fragment is 
converted to an SQL/MED request and sent to a wrapper, which analyses the request and 
constructs an SQL/MED reply together with an execution plan. The server then investigates 
the replies of the sources, and if it finds that the sources together are capable of answering the 
original query it constructs an overall execution plan. 

In the query execution phase the SQL database server sends the partial execution plans back 
to the appropriate wrappers. Each wrapper then accesses its external tables according to its 
execution plan, and returns the results to the SQL-server, which finally constructs an overall 
answer to the query. 

The present SQL/MED standard (called MED:2000) only allows simple queries and a read-
only interface to external data. The next version (due late 2002 or early 2003) is expected to 
allow for modifying data in external tables (Melton et al 2001). 
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5 L ife Science Data Sources and Formats 

During the last 20 or so years there has been an increasing interest in applying databases to 
biological data. Most research has been concerned with genetic codes, amino acid sequences 
of proteins (1º protein structure), and 3-D protein structures (3º and 4º structures). This shows, 
for instance, when examples of biology data are given in texts for the database community87. 

In this chapter available life science data formats and data sources on the Web will be 
discussed. Then, in the next chapter (6) a few database systems and standardisation projects 
for integration of biological data will be described. Since the number of data sources and data 
formats is large88 and rapidly expanding I will only describe a selection of them. I have 
selected those sources and formats I believe are most useful or interesting for the PAQS 
project. 

5.1 Requirements on a Web Data Source 

Markowitz, Chen, Kosky, and Szeto (2001) discuss a few criteria for how molecular biology 
databases on the Web can be evaluated and compared. Since their survey of some major web 
data sources was made 1996, details will have changed, and I will not discuss the individual 
data sources. However, a few general points of interest, and of relevance for the PAQS 
project, are metadata availability and query capabilities. 

Markowitz et al point out that in order for a web database to be really useful to the public it 
should provide comprehensive on-line metadata. For example, it is essential that users can see 
which entity types and relationship types the schema consists of, and which constraints that 
apply on the data. However, many web data bases had (1996) little or no metadata on-line, 
which according to Markowitz et al probably was due to the fact that schemas are revised 
frequently and  that it is laborious to keep such information up-to date on a web site.  

It was further pointed out that on-line metadata browsing is a very useful facility. This is 
something which should be easy to provide with Amos II since all metadata are stored as 
objects in the database. Actually, the program goovi (Cassel and Risch 2001) presently 
functions as a combined data and metadata browser for Amos II databases. What is needed is 
to make this kind of  information available to web browsers and, possibly, to restrict the 
browsing to metadata. 

Markowitz et al (2001) further discuss different ways to query databases. They suggest that a 
web site should provide fixed-form queries for the most common query types, as well as 
support for ad hoc queries, e.g. in SQL. 

5.2 Data Formats for  Infor mation Exchange in Bioinformatics 

Of special interest in the networked modern world is how an application can get hold of data 
from different data sources. This "information integration" aspect was discussed upon in 
chapter 4. From a practical point of view, information integration is easier the more 
standardised the data formats of the various data sources are, and in this section we will 
                                                        
87 Paton 2001; Bellahsene and Ripoche 2001; Hammer and McLeod 2001. 
88 The DBCAT catalog currently lists 511 databases in molecular biology, covering DNA, protein structures, 
li terature, et cetera (http://www.infobiogen.fr/services/dbcat/, 2002-01-23). 
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describe a few data formats that are in use for genomes, proteomes and other biological data, 
and also a few that have recently been proposed. 

5.2.1 Flat File Data Formats 

Several large web databases present users with the data on "flat file" formats. Such data 
typically consist of text on a very strict format, suitable for old FORTRAN-style I/O. These 
data sources existed before the birth of the Web, and data can in many cases still be 
downloaded by ftp.  

As we will see in the following sections several large data sources have gone over to 
managing their data with modern DBMSs. For backward compatibility users are still 
presented with the "flat file" data, but some servers have in parallel started exporting data as 
"semi-structured" XML files, or as CORBA/Java objects.   

5.2.2 ASN.1 at NCBI 

ASN.1 (Abstract Syntax Notation One)89 is a formal notation for describing data transmitted 
by telecommunications protocols. The notation contains basic types such as integers, 
character strings, and booleans (but not reals). There are also more complex types, e.g. 
structures, lists, and choices.  

A specification written in ASN.1 is similar to an XML DTD, and we can treat such a 
specification as a schema over the domain of interest. However, ASN.1 is not a data model as 
it lacks support for integrity constraints and data manipulations. Since data in ASN.1 
documents are "tagged", we say that the format is self-describing. 

Although ASN.1 was originally designed as a part of the OSI (Open System Interconnection) 
standard in telecommunications it has spread into other areas, e.g. biology. One a strong point 
of ASN.1 is the associated encoding rules for effectively transforming a data file to signals 
that can be transmitted. Of more interest in the web age is XER, encoding rules for 
transforming between ASN.1 and XML90.  

NCBI (the National Center for Biotechnology Information) uses ASN.1 as specification 
language for schemas. Although it is possible for a human to read small ASN.1 documents, 
larger ones get messy. At NCBI most data is presented in users in flat file formats (see, e.g. 
GenBank, section 5.5.2). There are publicly available programs for converting from ASN.1 
to, e.g., GenBank "flatfile format", and even a C library91 for handling ASN.1 files. With help 
of XER NCBI has recently started publishing data in XML format.  

5.2.3 XML 

XML, the eXtensible Markup Language, provides a standard way of defining a set of tags (a 
"vocabulary") for a domain of interest. Such a set of tag definitions, possibly together with the 
relationships between them, constitutes a new markup language - designed for the specific 
domain of interest. I.e., XML is used to define which tags that can be used in the new 

                                                        
89 ASN.1 Information Site (2001-12-12). 
90 Larmouth 2001. 
91 NCBI toolbox (2001-12-12). 
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language, and then this new language is used for documents or data. Since XML describes the 
structure of data it could be used for defining the structure of heterogeneous databases and 
data sources92,93.  

In the following subsections a few XML-related topics will be described very briefly. For 
more information, see, e.g., the official XML home page (http://www.w3.org/XML/). In 
section 5.2.4 various custom markup languages for life science applications will be described. 

DTDs and XML Schemas 

The technical definitions in the new language are captured in a Document Type Definition 
(DTD) or in an XML Schema. DTDs are the older mechanism, and more validating parsers 
are available for the DTD format. However, the XML Schema standard is more expressive. 
XML schemas are first class XML documents, and hence schemas and documents can be 
edited and processed by the same tools. Thus, I believe that XML Schema will be the more 
used mechanism as the number of parsers increases. 

XML APIs 

DOM and SAX are the two widely used standards for parsing of XML. DOM (the Document 
Object Model) is a tree-based API which provides an object-oriented view of the data. A 
DOM parser transforms the complete XML document to a tree structure in main memory, and 
this tree can then be traversed, queried, and manipulated. Conversely, SAX (the Simple API 
for XML) is event-based and provides serial access to the data. The XML document is parsed 
and appropriate events are fired, but no main-memory data structure is created. 

JAXB (Java XML Binding) is a third, non-generic, approach for binding Java applications to 
XML data. It is based on the idea that a specific XML schema (or DTD) can be directly 
represented as a number of Java classes. Thus, JAXB consists of a compiler which generates 
Java classes from an XML Schema (or DTD), and a runtime framework which transforms an 
XML instance into Java objects and vice versa94.  

RDF and Interoperability 

Although XML Schema provides a method for defining the structure of XML documents 
within a domain it does not support interoperability92. There are several ways to build XML 
schemas (or DTDs) for a domain. Thus, laborious mappings and translations might be needed 
before two application which use different schemas can exchange data. 

The Resource Description Framework (RDF) is an infrastructure that enables the encoding, 
exchange, and reuse of metadata92. It is the basis of  W3C's semantic web and "the RDF 
specifications provide a lightweight ontology system to support the exchange of knowledge 
on the Web" 95. More informally, with RDF you can "use any metadata you like, but make the 
description of them publicly available" 96. I am not aware of any use of RDF for information 
integration in the life sciences.  

                                                        
92 Connolly and Begg 2002, ch 29. 
93 A useful technique in this context could be  XSLT (eXtensible Stylesheet Language for Transformations) 
which can be used to transform an XML structure into, e.g., another XML structure, HTML, or SQL. 
94 Java Architecture for XML Binding (2002-01-17); Thelen 2001. 
95 Resource Description Framework (RDF), http://www.w3.org/RDF/ (2001-12-17). 
96 Rehn 2000. 
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XMI 

The XML Metadata Interchange Format (XMI) specifies an open information interchange 
model that is intended to give developers working with object technology the ability to 
exchange programming data over the Internet in a standardised way97.  

The only use of XMI for life science data management that I am aware of is the creation of a 
custom markup language (MAGE-ML) from an object model in the MAGE project (see 
section 5.2.4). Thus, in this case XMI was not used for exchanging schemas between 
applications, but only for creating a DTD from a schema. 

5.2.4 Custom Markup Languages 

XML is a metalanguage, a language for creating other languages. This is why XML is 
interesting in the context of the PAQS project. Various organisations and companies have 
produced their customised version of XML, i.e. custom markup languages. Most such efforts 
have simply defined a DTD (document type definition) and then tried to convince others to 
use it. An alternative, not yet explored by many, is to create an XML Schema over the domain 
of interest. 

It might be useful to differ between such markup languages that are created through 
collaborations between several companies or laboratories, possibly within some recognised 
body of standardisation, and those languages which are created by a single data provider due 
to client requests or supposed marketing advantages. We might suppose that a markup 
language of the later kind will closely follow the way clients use the original data source, and 
that it is probably not as general as the former kind of language. However, from the point of 
immediate usefulness the "single-data-source" language might be better, since the data should 
already be available. 

As far as I have found, no organisation has tried to sell its DTD. Instead, each believe it to be 
a competitive advantage to get as many users as possible, and DTDs are for free. In addition, 
many organisations and companies give away executables and source code for browsers and 
application programs associated with the customised markup language. 

In the following subsections a few custom markup languages will be described and discussed. 
The first is CML, mainly for small molecules and crystal structures. Then I have chosen 
BIOML, AGAVE, BSML, and PROXIML as examples of markup languages for genomes 
and proteomes. I believe that BSML is the one which eventually "win the race", i.e. get most 
followers over the next year or so. The last, MAML and MAGE-ML are chosen as examples 
of markup language for a domain with large volumes of experimental data.  

Other languages which are not directly suited for the PAQS project could still provide ideas. 
Two such languages are SBML and XSIL98.  

To my knowledge no custom (XML) language presently exists for the representation of  
binding assays and binding experiments. Work is underway to construct a DTD for BIND 
(section 5.4.1). The development of XML Schemas for binding experiments and similar 
topics could clearly be a useful part of the PAQS project. 
                                                        
97 XML Metadata Interchange Format (XMI), http://www-4.ibm.com/software/ad/library/standards/xmi.html, 
(2001-12-16). 
98 SBML (the Systems Biology Markup Language), http://www.cds.caltech.edu/erato/sbml-level-1/sbml.html 
(2001-02-19); XSIL (the eXtensible Scientific Interchange Language), http://www.cacr.caltech.edu/XSIL (2001-
02-19).  
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CML - The Chemical Markup Language 

The Chemical Markup Language (CML) was designed as an "HTML for molecules" 99. CML 
concentrates on "molecules" (discrete entities representable by a formula and usually a 
connection table), and supports reactions, compound molecules (clathrates, macromolecules, 
etc.), and macromolecular structures/sequences. However, CML has no specific support for 
physicochemical concepts, but allows quantities and properties to be specifically attached to 
molecules, atoms or bonds. 

According to the creators has CML been used together with XHTML (for text and images), 
SVG (line diagrams et c.), PlotML (graphs), MathML (equations), XLink (hypermedia), RDF 
and Dublin Core (metadata), and XML Schemas (for numeric and other data types). DTD and 
XSD (schema) files are available from the official web page (http://www.xml-cml.org/). A 
range of useful resources are available from CML's homepage, e.g. a browser and CML-DOM 
parser. 

It seems that CML has a strong focus on "publications", e.g. how web and print documents 
can display molecules and related information transparently. Thus, from the viewpoint of 
CML it is an advantage that XML supports "documents" and "data" in a seamless spectrum. 
In my opinion, CML should be extended (or combined with some other markup language) in 
order to provide a schema for experimental data of all kind. 

Murray-Rust started the development of CML very early, and CML is (together with 
MathML) often taken as an example of a custom markup language100. Although a white 
paper101 on CML claims that many companies and organisations have adopted CML, few 
examples are given. 

BIOML 

BIOML102 seems to have been one of the first markup languages for proteins and genes. It 
was produced by the company Proteomics (http://www.proteomics.com; 
http://www.bioml.com) for specification of biopolymer sequences, experimental information, 
and annotations. Proteomics explicitly mentions that the markup language should facilitate 
exchange of structure and annotation information over the Web.  

A BIOML document describes a physical object, e.g., a particular protein, in such a way that 
all known experimental information about that object can be associated with the object in a 
logical and meaningful way. Such structures can then be viewed with Proteomics' free 
BIOML browser (which uses a quite imaginative and figurative typefont for different letters). 

The DTD is publicly available, but the project seems to have come to an end in 1999. 

BSML 

The Bioinformatic Sequence Markup Language (BSML)103 is, according to its creators 
LabBook, Inc (http://www.labbook.com), a "public domain standard" for the encoding and 

                                                        
99 http://ww.xml.cml.org, Chemical Markup Language (2001-12-14); Murray-Rust, Rzepa, Wright and Zara 
2000.  
100 For example, in Deitel, H.M., Deitel, P.J., Nieto, T.R., Lin, T.M. &  Sadhu, P. (2001) XML - How to Program, 
Upper Saddle River, N.J.: Prentice Hall  as well as in Åström, P. (1999) XML, Extensible Markup Language (in 
Swedish), Stockholm, Sweden: Docendo. 
101 Murray-Rust and Rzepa 2001. 
102 The BIOML home page, http://www.bioml.com/BIOML/index.html (2001-12-14); Fenyö 1999. 
103 http://www.bsml.org/, BSML - An Emerging Industry Standard (2001-12-14). 
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display of DNA, RNA and protein sequence information. This markup language has gained 
dramatically in support over the last half-year. Since the creation of I3C (the Interoperable 
Informatics Infrastructure Consortium, section 5.3.4), where LabBook is a founding member, 
organisations such as IBM, Bristol-Myers Squibb, and EBI (European Bioinformatics 
Institute) have created alliances with LabBook and/or stated support for BSML104. LabBook 
also provides a free Genomic XML Viewer and sells a Genomic XML Browser.  

A distinguishing feature of BSML is that documents consist of two parts, a "definitions 
section" with bioinformatics data, and a "display section" with information on how the data 
should be represented graphically. Thus, the publicly available DTD is quite long, and the 
second section contains, e.g., elements concerning paper margins, the plotting of pie-charts, 
and the display of electrophoresis gels. These are thing we really do not want in a language 
for data exchange, they are instead related to publication of the data on the Web. However, 
this section is optional, and a DTD for data only is also available. 

If the I3C (or a few of the other major collaborations of LabBook) prove successful, then 
BSML will no doubt become the dominant markup language for exchange of biopolymer 
structures and annotations. However, the language is still evolving, and LabBook welcomes 
comments and suggestions on the present DTD (version 2.2). 

AGAVE 

AGAVE (Architecture for Genomic Annotation, Visualization and Exchange)105 is an XML 
format developed by DoubleTwist, Inc. (http://www.doubletwist.com) for managing, 
visualising and sharing annotations of genomic sequences. As in BIOML, the available DTD 
contains no elements referring to graphical representation, this is handled by DoubleTwist's 
Genomic Viewer.  

AGAVE is perhaps mainly intended to be used together with Prophecy, DoubleTwist’s  
Annotated Human Genome Database system, which includes an AGAVE compliant XML 
repository of the genomic annotations and uses AGAVE as a data exchange medium. 
However, currently EBI (the European Bioinformatics Institute, vide supra) provides its 
EMBL/GenBank/DDBJ data in two XML formats only, apart from the traditional "flatfile" 
format, and these are BSML and AGAVE. 

PROXIML 

PROXIML (the PROtein eXtensIble Markup Language)106 is the only biopolymer markup 
language I have found which utilises XML Schema instead of DTDs. PROXIML builds on 
CML, but is most likely not used by any of the major databases or integration projects. 

MAML and MAGE-ML 

The MicroArray Markup Language (MAML) is an effort of the MGED (MicroArray Gene 
Expression Database) group to design a standardised markup language for the domain of 
microarray gene expression experiments107.  

MAML, and any effort to standardise microarray data, needs to deal with the following five 
subdomains108: (i) the array, (ii) sample sources, treatments, and samples, (iii) hybridisations, 
                                                        
104 See http://www.bsml.org/news for a full l ist of press releases. 
105 http://www.agavexml.org/, Welcome to AGAVE  (2001-12-14). 
106 McArthur 2001, http://www.cse.ucsc.edu/~douglas/proximl/. 
107 Cover 2001; MGED group (2001-12-17), http://www.mged.org/.   
108 Array XML (AXML), http://www.xml.org/xml/zapthink/std409.html (2001-12-17). 
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(iv) data, and (v) analysis. These subdomains are similar to what is needed for the description 
of binding assay experiments, while the details will of course differ. 

One important problem in storing or exchanging microarray data in some XML format is how 
large amounts of numerical data should be represented109. In MAML this is solved by storing 
binary or ASCII data on an external file (specified by an URI (uniform resource identifier)). It 
is also possible to store (untagged) ASCII data within an XML document.  

The MicroArray Gene Expression Markup Language (MAGE-ML)110 is part of a larger 
project, where an object model (MAGE-OM) for gene expression data is defined according to 
OMG's Model Driven Approach (MDA). In MAGE-ML too, it is foreseen that the XML 
document shall reference external data files. By inspection of the MAGE-ML DTD it seems 
that data are organised in three-dimensional "cubes", with dimensions "BioAssay", 
"DesignElement", and "QuantitationType". I have, however, not tried to delve into the details 
of the MAGE object model or markup language, and they have not influenced the schemas 
presented in chapter 8 of the Thesis.  

An interesting difference between MAML/MAGE-ML and the previously described custom 
markup languages is that MAML and MAGE-ML are standardisation efforts, made by several 
co-operating laboratories. In the case of MAGE-ML one even uses the strict procedures of 
OMG.�

5.2.5 mmCIF 

CIF (the Crystallographic Information File) is a format for describing crystallographic 
experiments and the structures of small organic molecules. CIF was developed by the 
International Union of Crystallography (IUCr) and is the preferred format for submitting data 
to the various IUCr journals. Hence, mmCIF has the potential to be an important exchange 
format in all areas of chemistry. 

mmCIF is a CIF dictionary specific for biological macromolecules (hence mm)111. mmCIF 
contains over 1700 terms and provides the conceptual schema for the new Protein Data Bank 
of RCSB (section 5.5.4). A macromolecular structure in mmCIF format consists of name-
value pairs, with a loop construct for repeating record types (e.g. the atomic co-ordinates for 
each atom). It is possible to convert from mmCIF format to the more familiar PDB format, 
but the opposite is not always true. (The PDB format is too informal.) 

Westbrook and Bourne (2000) give a larger picture of STAR/mmCIF as an ontology for 
macromolecular structures. STAR (Self-defining Text Archival and Retrieval) has been used 
to define a data dictionary language (DDL). This DDL provides conventions for naming and 
defining data items within a dictionary, and at least eight dictionaries have been built - one of 
which is mmCIF. Finally, the data resides in data files which conform to the dictionary. The 
data files, with name-value pairs, constitute a form of semistructured data, and it should be 
easy to convert mmCIF into an XML DTD.  

                                                        
109 From reference 108: "Imagine a matrix of 10,000 genes by 1000 arrays. If each element-hybridization pair 
resulted in 20 numbers (each needing 20 bytes for XML encoding) this document would be 400 x 1,000 x 10,000 
=  40 GB for the complete file. Clearly a more compact representation must be allowed."  
110 http://www.geml.org/omg.htm 
111 Bourne, Berman, McMahon, Watenpaugh, Westbrook and Fitzgerald 1997. 
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5.3 Standar dised Protocols for  Infor mation Exchange 

In this section three different projects will be described, which all aim at producing standard 
protocols for exchange of life science data between applications. The first two use CORBA, 
and the third use XML. 

5.3.1 CORBA 

CORBA (Common Object Request Broker Architecture) is a standard for the exchange of 
objects between applications and common object services112. In a CORBA environment 
objects have interfaces defined in IDL (Interface Definition Language). Through these 
interfaces requests and messages can be passed between objects distributed over a network. A 
major advantage of CORBA is that the objects can be living in applications written in 
different object-oriented languages. Thus, distributed objects can co-operate irrespective of 
programming language, hardware, operating system, or geographic location, as long as they 
adhere to the same IDL interfaces.  

Obviously, these IDL definitions need to be general and stable. Hence, one way of providing 
for interoperability between applications within a specific domain would be to develop a 
standardised set of IDL interfaces for the domain. Within molecular biology/bioinformatics 
there are at least two such standardisation efforts (vide infra). 

Note that in contrast to ODMG's object data standard (see section 3.2.3) OMG's CORBA is 
not specifically intended for database systems. However, as long as the DBS presents an 
appropriate IDL interfaces for its types CORBA could be used to access it. For example, the 
P/FDM system has been given a CORBA  interface (see section 6.1.1).  

It should also be noted that interest in CORBA has recently decreased due to the appearance 
of XML as a possible format for data exchange113. 

5.3.2 The Life Sciences Research group 

The Life Sciences Research (LSR) group114 is a consortium of pharmaceutical companies, 
software and hardware vendors, and academic institutions working within the Object 
Management Group (OMG) in order to improve interoperability among object-oriented life 
science research applications. Examples of life science research areas covered by the LSR 
group are bioinformatics, genomics, cheminformatics, computational chemistry, and clinical 
trials. The LSR group works not only with CORBA, but also with other (object) technologies 
such as UML, XML, and EJB (Enterprise Java Beans). 

The LSR group is formally a Domain Task Force (DTF) of OMG, and it follows OMG's 
process to standardise models and interfaces. The work is performed by ten work groups 
(WG). Three work groups of particular interest to the PAQS project are (i) the 
Chemiformatics WG (CORBA interfaces for drug discovery research), (ii) the LECIS WG 
(laboratory equipment control interface specification), and (iii) the Workflow WG (to 

                                                        
112 CORBA is developed by OMG (Object Management Group), a consortium of major software vendors 
(http://www.omg.org). A starting point for learning about CORBA is a CORBA FAQ page provided by OMG:  
http://www.omg.org/gettingstarted/corbafaq.htm (2001-12-07). 
113 Davidson, Crabtree, Brunk, Schug, Tannen, Overton and Stoeckert 2001. 
114 Introduction to LSR (2001-12-06). 
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describe and control flow of data between components, e.g. to represent scientific 
experiments). In addition, there are work groups on themes such as 3-D macromolecular 
structures, sequence analysis, and microarray gene expression data. 

5.3.3 The EU-funded CORBA project 

The European Union funds a research project115 which aims to combine the data and services 
of a number of European biological databases using CORBA. One of the project partners is 
EBI (the European Bioinformatics Institute) where the EMBL Nucleotide Sequence Database 
has been made available through CORBA servers116. Since the original EMBL data are 
published on flat file format this clearly has the potential of increasing the availability for OO 
applications.  

EBI is one of the major stakeholders in the LSR group too, and there is some work to make 
the EU project's IDL comply to that of the LSR (or the other way around). Presently, the two 
standardisation efforts have not produced compatible interfaces, however. 

5.3.4 The Interoperable Informatics Infrastructure Consortium 

The Interoperable Informatics Infrastructure Consortium (I3C)117 develops common protocols 
and interoperable technologies (specifications and guidelines) for data exchange and 
knowledge management for the life science community. In contrast to other standardisation 
efforts (e.g. the LSR-DTF in section 5.3.2) I3C will also develop technology solutions, not 
only standards. 

I3C was created in January 2001 and has over 60 participating life science and information 
technology organisations118. The goals of this relatively new organisation are (i) to facilitate 
an open development of standards, protocols, administration and a technical infrastructure for 
the life science industry, (ii) to establish a common communications standard protocol that is 
extensible and can be delivered to the community in a timely fashion, and (iii) to provide 
forums for discussion of issues that affect technology evolution, development and use. 

The main product of I3C so far seems to have been a demonstration119 of a working prototype 
at the BIO2001 conference120. The demonstration was meant to represent a workflow of the 
typical molecular biologist who identifies a collection of sequences of interest and performs a 
series of analyses on those sequences to further explore the data (see Figure 12). The proto-
type relies on Java and an open XML-in, XML-out paradigm, and used BSML of LabBook 
(section 5.2.4) as communication protocol. What is rather impressive is the integration of 

                                                        
115 Contract: BIO4-CT96-0346. "Linking Biological Databases …" (2001-12-06). 
116 CORBA at EBI (2001-12-06). 
117 I3C Home Page, http://www.i3c.org/ (2001-12-14). 
118 I3C was originally indented for industrial partners only, but now has also governmental agencies and 
universities as members. For a list of participating organisations (as of July 28th, 2001), see 
http://www.i3c.org/html/i3c_faq_june01.htm (2001-12-14). 
119 Unfortunately, there is no publicly available web site where one can test the concepts. For those of us who 
were not present at BIO2001 the only available information is a single web page: I3C Demo at BIO2001, 
http://www.i3c.org/Bio2001/i3c_demo_final.htm (2001-12-14). 
120 BIO 2001 is an international convention and exhibition organised by the Biotechnology Industry 
Organization in San Diego, June 2001, see http://www.bio.org/events/2001/event2001home.html (2001-12-19). 
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technology from eight different companies and organisations121 for this demonstration. This, I 
believe, shows the potential strength of I3C. 

Database Services

User Interfaces

DiscoveryLink 
Browser (LabBook)

INCOGEN VIBE

LabBook
Genomic XML Viewer

Analysis Services

App A

App C

App B

XML

XML

Database C

Database A

Database B

IBM's 
DiscoveryLink

 

Figure 12. Architecture of the I3C demonstration prototype. (After I3C Demo at BIO2001.) 

Of particular interest is that IBM's DiscoveryLink (section 6.2.1) and LabBook's BSML 
standard (section 5.2.4) play central roles in the I3C architecture. 

As seen in Figure 12 the product VIBE from INCOGEN122 has a central position in the  I3C 
demonstration set-up. VIBE (Visual Integrated Bioinformatics Environment)123 is a tool for 
visual data analysis and mining. In VIBE a user may construct a "pipeline" of data filtering 
and analysis modules by means of connected icons on the screen. This pipeline can then be 
saved as XML or executable Perl code. According to the information available on the web 
site, VIBE is designed specifically to work with analysis programs of the Decypher platform 
from TimeLogic124. However, VIBE is extensible, and this has obviously been utilised in the 
I3C demo. 

                                                        
121 Blackstone, IBM, INCOGEN, LabBook, National Cancer Institute (NCI), Sun, TimeLogic, and 
TurboGenomics. 
122 The Institute for Computational Genomics, Inc., http://www.incogen.com (2002-01-10). 
123 http://www.incogen.com/vibe/; INCOGEN VIBE (2002-01-10). 
124 http://www.timelogic.com/biodata.htm (2002-01-10). 
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5.3.5 The ISYS platform 

The ISYS platform125 is a means for application interoperability which does not depend on a 
standardised protocol. It cannot even be said to be a standardisation effort, since it emanates 
from a single laboratory126. However, it is presented as an alternative to the CORBA approach 
(sections 5.3.1-5.3.3), and as such it is interesting to mention in this section. The architecture 
is similar to CORBA, with software components registered as service providers and/or event 
listeners.  

What distinguishes ISYS from other solutions is a process called "interactive discovery", 
where registered components at run-time are interrogated whether they can operate on some 
data selected by the user. Those components which can operate on the data are added to a 
menu in the GUI, together with appropriate descriptions. Thus, there is no common schema or 
interface but instead each "data producer" can give an object as many or few attributes as 
desired, and different "data consumers" may have different views of the same object. The 
system is implemented in Java, and existing databases and applications are integrated by 
wrapping with Java classes. 

The authors conclude that the design makes ISYS suitable for systems where there is little 
overlap between the data used by different components, and that the solution will be 
ineffective if various components should share large parts of their schemas. 

5.4 Binding Affinity Data Sour ces on the Web 

 The journal Nucleic Acid Research yearly publishes a "molecular biology database 
collection" (Baxevanis 2001)127. A few of these data sources provide binding affinity data. 

Note that some of the projects described in this section may very well be thought of as 
projects for information integration, and could have been put in chapter 6. However, I have 
tried to keep sources which focus on a single kind of data in this section, and reserved chapter 
6 for projects with a wider scope. 

5.4.1 BIND - the Biomolecular  Interaction Network Database 

The Biomolecular Interaction Network Database (BIND) is a database of interactions between 
pairs of objects128. Each such interacting object may be a protein, DNA, RNA, ligand, 
molecular complex, or other biochemical entities. The scope of BIND is rather wide129. The 
database contains information about experimental conditions used to observe the interaction, 
cellular location, kinetics, thermodynamics et cetera. To cite the web page130: 

"Development of the BIND 2.0 data model has led to the incorporation of virtually all components 
of molecular mechanisms including interactions between any two molecules composed of proteins, 

                                                        
125 Siepel, Tolopko, Farmer, Steadman, Schilkey, Perry and Beavis 2001. 
126 NCGR, the National Center for Genome Resources, Santa Fé, New Mexico. 
127 The list from January 2001, with accompanying short papers by the database providers, is publicly available 
at http://nar.oupjournals.org/content/vol29/issue1/ (2001-12-09). 
128 Bader and Hogue 2000; Bader, Donaldson, Wolting, Ouellette, Pawson, and Hogue 2001. 
129 BIND could very well have been placed as a warehousing integration project in section 6.3. 
130 BIND - The Biomolecular Interaction Network Database (2001-12-10). 
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nucleic acids and small molecules. Chemical reactions, photochemical activation and 
conformational changes can also be described. Everything from small molecule biochemistry to 
signal transduction is abstracted in such a way that graph theory methods may be applied for data 
mining. The database can be used to study networks of interactions, to map pathways across 
taxonomic branches and to generate information for kinetic simulations. BIND anticipates the 
coming large influx of interaction information from high-throughput proteomics efforts including 
detailed information about post-translational modifications from mass spectrometry."  

The data format used by BIND is ASN.1 (Abstract Syntax Notation.1, section 5.2.2), the 
reason being that NCBI (the US National Center for Biotechnology Information) uses ASN.1 
to describe and store its biological and publication data. BIND also uses the NCBI database 
schema131, extended with many additional types and attributes.  

We will not here go into the details of the fairly complex BIND schema. It is available as an 
ASN.1 specification132 from ftp://ftp.bind.ca/BIND (where also the database files and some 
source code is available). The schema is also described by Bader and Hogue (2000), in text as 
well as in (slightly incorrect) UML diagrams.  

Three central concepts are BIND-interaction, BIND-object (two for each interaction) and 
BIND-desc (descriptions of interactions). Each object has an "object type id", which is a 
choice133 between protein, ligand, DNA, et cetera. Further each object has an "object origin" 
(choice between organism, chemical, and not specified). It is obvious that UML is not suited 
to graphically represent the semistructured ASN.1 data format. Unfortunately, neither the web 
site nor the publications use some form of tree to graphically describe the schema. 

The creators of BIND have made a point out of using the data format and schema of NCBI. 
They note that the schema is "mature", i.e. that the core of it is stable, and does not change as 
often as many other schemas. Furthermore, as pointed out by Ostell, Wheelan and Kans 
(2001) NCBI is a US Government agency, with the possibility to play a long-term role in 
bioinformatics.   

BIND can be queried through a web form, but this functionality seems fairly poorly 
developed. The public web form for querying BIND is not very detailed. For example, in the 
"advanced query" form one can only choose between a text search and a search on BIND 
accession ID numbers.  

It is also relevant to consider how BIND treats non-public data. In general, a BIND object 
which describes a biopolymer sequence will store a link to a sequence database, e.g. 
GenBank. Sequences which are not publicly available may be represented by a NCBI-Bioseq 
object. Further, each interaction may be labelled private, in which case the record is not 
exported during data exchange, but may be viewed in-house. 

The database is growing134, and new data may be submitted through web forms. New data is 
indexed by BIND staff and validated by a scientist. This ought to ensure good quality of the 
data.   

The BIND project originated in academia, but some of the people in the project are also 
affiliated with MDS Proteomics, Inc (see the following subsection).  

                                                        
131 In BIND and NCBI publications this is called the NCBI data model. In this Thesis I try to make a distinction 
between schema and model.  
132 Work is also underway to define an XML DTD translation from ASN.1. 
133 CHOICE is a construct of ASN.1. It is in essence an enumerated type, only more complex. Perhaps the best 
way to represent a CHOICE in UML would be as disjoint subclasses of an abstract class.   
134 March 2001: 5805 interactions, Dec 2001: 5939 interactions. 
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MDS Proteomics, IBM, and BIND 

In January 2001, MDS Proteomics135 and IBM announced having formed a "strategic 
alliance". MDS Proteomics will start using IBM's DiscoveryLink 6.2.1 as a data integration 
technology, and IBM will invest in MDS Proteomics. 

The really interesting point, however, is that IBM and MDS Proteomics together will work to 
establish the database BIND. In the press release BIND is characterised as "a publicly 
available bioinformatics database that will allow researchers world-wide to submit and review 
results of research about molecular interactions and the detailed cellular mechanisms of life" 
and the two companies make "a long-term commitment to continued support" 136.  

If the commitments expressed in the press release are fulfilled we can expect BIND to have a 
strong position as a data source in bioinformatics.    

5.4.2 DIP – Database of Interacting Proteins 

DIP (Database of Interacting Proteins)137 is a database of protein pairs that are known to 
interact with each other. DIP is publicly available through a web form. The service is intended 
to aid scientists who study protein-protein interactions, signalling pathways, multiple 
interactions and complex systems. New data can be entered through a web form, but is 
curated before it is made publicly available.   

DIP is implemented as three tables in a relational mySQL database: Proteins, Interactions, and 
Experiments. Proteins can be searched by PIR, SWISS-PROT, or GenBank identification 
codes. The database contains information (if available) about the protein regions involved in 
the interaction, the dissociation constant and the experimental methods used to study the 
interaction.  

Data Mining of MEDLINE 

DIP has recently started to use data mining for finding relevant publications in MEDLINE. A 
Bayesian classifier extracts abstracts that potentially describe protein-protein interactions, and 
these articles are then checked by a (human) curator138. This approach might rapidly increase 
the number of interaction entries in DIP and this novel idea is the main reason I have included 
DIP in this compilation. 

5.4.3 Interact – a protein-protein interaction database 

Interact is an object-oriented database to accommodate and query data associated with 
protein-protein interactions139. The database is implemented in the commercial OODBMS 
                                                        
135 http://www.mdsproteomics.com. The information concerning the co-operation with IBM can be found at 
http://www.mdsproteomics.com/default.asp?qID=8&qType=PressDisplay, "IBM and MDS Proteomics"  (2001-
12-10). 
136 Whether BIND shall continue to be free of charge is not mentioned, and neither is the relation between the 
publicly available BIND and MDS Proteomics proprietary version of BIND (used in the company's own 
functional proteomics research projects). 
137 Xenarios, Fernandez, Salwinski, Duan, Thompson, Marcotte and Eisenberg 2001; Xenarios, Rice, Salwinski, 
Baron, Marcotte and Eisenberg 2000. 
138 Marcotte, Xenarios and Eisenberg 2001. 
139 Interact - A Protein-Protein Interaction database (2001-12-10). 
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Poet 5.0. This has the advantage that the DBMS is fully ODMG compliant, and that it can be 
queried by OQL. Such OQL queries can be embedded into application programs, or entered 
through a web form.  

According to the web page of Interact there are about 1000 interactions and 200 complexes in 
the database. These data have either been entered by scientists through web forms or loaded 
from MIPS140.  

The database Interact is presently not publicly available from the web site, not even for a 
demo - probably because the project has been terminated. 

The database schema of Interact is given as a UML class diagram on the Interact web page. A 
simplified version of the schema is given in Figure 13. This is similar to a class diagram for 
protein interaction data published by the same group in connection with the GIMS project 
(see section 6.3.2). 

Protein
2..2

GeneFamily

Interaction

GenericInteraction

ExperimentparticipatesIn

participatesIn

belongsTo

1..1

isOfType

1..1

studiedBy

0..*2..2

0..*

0..*

0..*

1..1 0..*

dissociation
Constant

 

Figure 13. Simplified schema of how protein interactions are represented in Interact. 

5.4.4 The Binding Database 

The Binding DB141 is a public database of measured binding affinities for various types of 
molecules, from the biological to the purely chemical. According to the web-site, the 
BindingDB aims to facilitate a range of activities, including elucidation of the physical 
mechanisms of molecular recognition, discovery of new drugs, and discovery of ligands for 
use in chemical separations and catalysis.  

Data is publicly available through web form searches on, e.g., one or two reactant names, 
authors, and ∆Gº ranges. It is also possible to perform "advanced queries" to combine a 
selection of search fields, or to perform BLAST searches. A very nice feature of the Binding 
DB is the structure search. The user can sketch a molecular structure on a canvas and search 
for the structure in the database.  

To the best of my knowledge, no information on the architecture or database solution is 
available on the web site. However, a detailed term catalogue142 is available, with names and 
explanations for entity types and attributes. From this metadata it seems the web-site is 
backed by a relational database. A DTD for XML data is also available. 

                                                        
140 Mewes, Hani, Pfeifer and Frishman 1998. 
141 The Binding DB is managed by the Center for Advanced Research in Biotechnology, University of Maryland, 
see The Binding Database, http://www.bindingdb.org, (2001-12-09). 
142 http://www.bindingdb.org/bind/entity_report.html (2001-12-10). 
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The database presently holds only few data and the rate of growth the last half-year has been 
insignificant143. A further disadvantage of the database is that the data is not curated. 
Experimentalists are invited to deposit binding data via on-line forms, with the only quality 
restriction being that the method by which data was determined must have been published. 

The main lesson to learn from the Binding DB is the use of a drawing tool to help in 
substructure searches.  

5.4.5 PDSP Drug Database 

The Psychoactive Drug Screening Program (PDSP) keeps a database of dissociation constants 
(K i values) for receptor/ligand complexes. It is possible to search on, e.g., receptor, radio-
ligand ("hot ligand"), test ligand (competitor), and combinations thereof.  

Some (in-house) experimental information is available on-line, and all dissociation constants 
have links to PubMed literature entries (see section 5.5.1). The database is publicly available 
through a web form, but there seems to be no mechanism for user submission of data.  

The data in the database seems highly relevant to the PAQS project, but there is no 
description of  the long-term goals, the architecture or the database schema on the web site. 

5.4.6 GPCRDB 

GPCRDB144 is an informal collaboration between different providers of databases for G 
protein-coupled receptors (GPCRs). The data can be queried through various web forms, and 
the focus on G-coupled receptors fit nicely with the focus of present proteo-chemometric 
research in Uppsala.  

Of interest is also that GPCRDB replies to "advanced queries" by using an embedded "smart 
query engine"145. The system supports query rewrite mechanisms which, in case the first 
query results obtained by the user are not satisfactory, propose more restricted or more 
relaxed reformulations of the queries. This advanced query system is implemented with an 
object-relational Informix Universal Server (IUS) DBMS.  

5.5 Other  Bioinformatics Data Sources on the Web 

In the previous section we saw a few publicly available databases on the Web which 
specialise on interactions between macromolecules and small molecules. There are, however, 
many important databases for useful background information, such as protein sequences, 
protein 3D structures, and literature references. Some of these will be described in this 
section. 

An important aspect of information systems in biology is that there are primary and secondary 
databases. The primary databases are "archives", they store experimental results, possibly 
with some interpretation. On the other hand, the data of secondary databases are curated, they  

                                                        
143 239 binding reactions 2001-12-10, and 236 binding reactions 2001-04-10. 
144 GPCRDB, http://www.gpcr.org/ (2001-12-10). 
145 GPCR Query, http://www.darmstadt.gmd.de/~gpcrdb/ (2001-12-10); Che, Chen and Aberer 1999. 
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have gone through some independent review process, and are generally considered to be of 
high quality. 

In bioinformatics, the three domains of interest which has been most subjected to database 
storage are nucleotide sequences of genes, amino acid sequences of proteins, and protein 3D 
structures (see, e.g. Baxevanis and Oulette 2001).  

5.5.1 PubMed and MEDLINE 

PubMed is a service of the National Library of Medicine (NLM, http://www.nlm.nih.gov/) to 
provide the public with access to over 11 million MEDLINE citations and additional life 
science journals. PubMed includes links to many sites providing full text articles and other 
related resources. MEDLINE, in turn, is NLM's main bibliographic database, covering the 
fields of medicine, nursing, dentistry, veterinary medicine, health care systems, and 
preclinical sciences. 

PubMed is publicly available via the NCBI Entrez retrieval system146. Obviously, it would be 
of great advantage if PAQS could interface easily to PubMed. A minimum requirement is that 
all literature citations should have "MEDLINE unique identifier" (MUID) or "PubMed 
identifier" (PMID), where appropriate. 

5.5.2 DDBJ/EMBL/GenBank 

During the last years the sequencing of the human genome has arisen much public interest. 
Although genome data are not directly relevant to the PAQS project, this section will touch 
upon databases for nucleotide sequences. 

Arguably the most important primary database in bioinformatics is the annotated collection of 
all publicly available nucleotide and protein sequences held by GenBank (USA), EMBL 
(European Molecular Biology Laboratory), and DDBJ (DNA DataBank of Japan). These 
three databases take part in the International Nucleotide Sequence Database Collaboration and 
exchange information daily. Thus, all three contain the same sequences, but provide them on 
slightly different formats.  

GenBank 

GenBank is the genetic sequence database of NIH (the National Institute of Health), built by 
NCBI (The National Center for Biotechnology Information). Users retrieve data on the 
GenBank flatfile format (GBFF)147, but as described in section 5.2.2 efforts are underway to 
provide data on XML format (mapped from ASN.1). 

EMBL at EBI 

The European Bioinformatics Institute (EBI, http://www.ebi.ac.uk) is an outstation to the 
European Molecular Biology Laboratory (EMBL). EBI manages a range of databases of 
biological data, including nucleic acid sequences, protein sequences, and macromolecular 
structures.  

Although the EMBL nucleotide sequence database is implemented in an Oracle8i database 
system normal users have traditionally only been able to retrieve data on the "EMBL flatfile 

                                                        
146 Entrez PubMed, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed (2001-12-18). 
147 Karsch-Mizrachi and Oulette 2001. 
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format". The XEMBL project148 tries to provide users with EMBL nucleotide sequences on 
various XML formats (see section 5.2.4) formats. Presently, BSML and AGAVE are 
available.  

Thus, we see that EBI and NCBI here follow different strategies. EMBL provide users with 
data on XML formats of other organisations, while NCBI simply maps their internal ASN.1 to 
a new (site-specific) XML format. 

5.5.3 SWISS-PROT and ExPASy 

The ExPASy (Expert Protein Analysis System, http://www.expasy.ch/) server of the Swiss 
Institute of Bioinformatics (SIB) is mainly concerned with the analysis of protein sequences 
and structures. ExPASy is a portal to at least eight different databases, where the most 
important are SWISS-PROT and TrEMBL.  

SWISS-PROT149 is a curated protein sequence database which strives to provide a high level 
of annotations150, a minimal level of redundancy (different literature reports are merged as 
much as possible) and high level of integration with other databases (cross-references to about 
60 other databases).  

The database was created in 1986, and is maintained by SIB and EBI (European 
Bioinformatics Institute) in collaboration. Release 40.6 of SWISS-PROT (13-Dec-2001) 
contains 103258 entries. SWISS-PROT can be searched through web forms, by accession 
number, author, citation, organism, gene name, et cetera. Users may alternatively retrieve data 
on SWISS-PROT flat file format by means of ftp. 

TrEMBL is a computer-annotated supplement of SWISS-PROT that contains all the 
translations of EMBL nucleotide sequence entries which have not yet been integrated in 
SWISS-PROT.  

SIB has, together with EBI, formed the Human Proteomics Initiative (HPI) project151. The 
goal of HPI is to high quality annotations of all known human protein sequences.  

5.5.4 PDB 

The Protein Data Bank (PDB)152 has long been a repository for protein 3-D structures 
determined by X-ray crystallography. The data format (also called PDB) is popular in many 
branches of chemistry, not only crystallography. Nowadays, PDB also contains structures 
determined by NMR, and recently the database was transferred from Brookhaven National 
Laboratory to RCSB (the Research Collaboratory for Structural Bioinformatics, 
http://www.rcsb.org/). 

                                                        
148 The XEBML Project, http://www.eb.ac.uk/xembl (2001-12-06). 
149 ExPASy - SWISS-PROT and TrEMBL, http://us.expasy.org/sprot/ (2001-12-17). 
150 SWISS-PROT annotations of a protein are descriptions of its function(s), post-translational modification(s), 
binding sites, 2º and 4º structures, variants, similarities to other proteins, and disease(s) associated with 
deficiencies in the protein, et cetera.  
151 Human Proteomics Initiative, http://www.expasy.org/sprot/hpi/ (2001-12-06). 
152 Berman, Westbrook, Feng, Gil liand, Bhat, Weissig, Shindyalov and Bourne 2000; The RCSB Protein Data 
Bank, http://www.rcsb.org/pdb/ (2001-12-17). 
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RCSB has changed the PDB data format from the classical "Fortran-style" flat file format to 
mmCIF (section 5.2.5), which, however, is transparent to users accessing the traditional 
format. Since different research groups use (or interpret) the PDB format differently it might 
be advantageous for a new project such as PAQS to try to use the stricter mmCIF format. 

Primary experimental and coordinate data are stored under a relational Sybase DBMS. 
However, users may only access data through web forms, or retrieve the final curated data by 
ftp (on PDB or mmCIF format). 

As of 11-Dec-2001 PDB contained 16859 structures. This is about one order of magnitude 
less than the number of entries in SWISS-PROT, and this is due to the fact that it is much 
more difficult to experimentally determine 3-D structures than amino acid sequences. 

5.5.5 MMDB 

The Molecular Modelling DataBase (MMDB) contains protein 3-D structures derived from 
PDB data153. However, MMDB differs from PDB in several aspects. First of all, in PDB 
structures are described as atomic coordinates, which can be supplemented by information on 
which amino acid residue each atom belongs to. However, it is up to the application program 
to determine which atoms that are bonded to each other. In MMDB the data files contain all 
bonding information explicitly154.  

A second difference is that MMDB (as other NCBI databases) uses ASN.1 as a schema 
definition language. Thus MMDB is well integrated with the US National Library of 
Medicine and GenBank. MMDB is accessible through the Entrez system (section 6.4.1). 

5.5.6 PIR 

The Protein Information Resource (PIR, http://pir.georgetown.edu) distributes PIR-Inter-
national Protein Sequence Database (PSD) together with MIPS of Germany and JIPID of 
Japan. PIR-PSD155 claims to be "the most comprehensive and expertly annotated protein 
sequence database in the public domain".  

PIR-PSD is a public domain database, accessible through web forms and downloadable by 
ftp. The PIR-PSD flat files are available in XML format, with an associated DTD file, as well 
as in the original NBRF and CODATA formats. The PSD sequence file is distributed in 
FASTA format.  

                                                        
153 Hogue 2001. 
154 From a purist's point of view the PDB approach is the correct. It is the atomic coordinates which are 
determined in X-ray crystallography, and there are furthermore a few cases where it is not straightforward to 
determine if two atoms are bonded together or not.  

However, in software for modelling and visualisation of biomolecules it is often necessary to define exactly 
which atoms that are bonded together (and by which types of bonds), and it is probably from this practise the 
need for MMDB has arisen.  

A further advantage of the MMDB approach is that a database search for a specific (simple) structural feature 
might be faster in internal coordinates than in Cartesian coordinates. This, however, will depend on the structural 
feature. 
155 PIR-International Protein Sequence Database, http://pir.georgetown.edu/pirwww/dbinfo/pirpsd.html (2001-
12-16). 
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PIR-PSD and other databases at PIR are implemented under an object-relational Oracle8i 
DBMS. Barker et al (2001) describe that they have used both object and relational features in 
the database design, and also both ER and UML modelling. Unfortunately, there seems to be 
no detailed information (e.g. database schemas) available in print or on the PIR web site156.  

5.5.7 GDB - the Genome DataBase 

The Genome DataBase (GDB)157 is the official central repository for genomic mapping data 
resulting from the Human Genome Project. Although the contents of the database is not of 
direct interest to the PAQS project some other aspects of GDB are. 

GDB is implemented in the OPM data model (vide infra). The web site of GDB has a lot of 
relevant information, e.g. database schemas and descriptions of the data model and the system 
architecture. This is in very good accordance with the conclusions drawn by Markowitz et al 
(2001) in section 5.1158.  

The data stored in GDB are divided among three databases, one for biological information, 
one for citations, and one "registry" database for people with editing privileges or otherwise 
involved in the database. This modular approach is managed by an object broker middle layer, 
between clients and the Sybase data servers. 

Thus, I think PAQS should take over the idea of a separate server with people and 
authorisations from GDB. This should be possible to implement as a separate Amos II server, 
although Amos II presently does not support protection, neither of objects nor of the type 
system. Furthermore, GDB has set an example when it comes to meta-data availability. 
(However, this meta-data is only available as documents. The actual database is not queried.) 

OPM - the Object-Protocol Model 

The Object-Protocol Model159 was developed by Markowitz, Chen et al160 as an object-
oriented data model with specific constructs for representing scientific experiments. 
Experiments are modelled by protocol classes (instead of object classes). A protocol takes an 
input and produces an output. Further, protocol classes can be expanded as alternative 
subprotocols, sequences of subprotocols, and optional subprotocols.  

There are a range of database management and browsing tools available for OPM. However, 
the OPM project finished in 1997, and the members went into industry. This is a potential 
problem for GDB and other projects where a unique DBMS is used to implement a database 
system which is meant to last for a long time. If the OPM project partners are no longer 
available, and if the GDB staff has not got enough expertise in the OPM system some 
modifications of the database system will be difficult to perform. E.g., changes of the 
database schema and of input and output formats are tasks the GDB staff should be able to do, 
but they probably cannot improve or extend the system (e.g. implement new features of SQL) 
without technical OPM expertise. 

                                                        
156 Furthermore, although Barker et al (2001) claim that metadata and technical bulletins are available at the PIR 
web site, I have not been able to find any such material produced more recently than 1997. 
157 The Genome Database, http://www.gdb.org (2001-04-20). 
158 The OPM model was developed by the very same research group, and this group has also taken part in the 
construction of GDB.  
159 Chen and Markowitz 1995. 
160 The OPM Project, http://gizmo.lbl.gov/opm.html (2001-12-17). 
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6 Related Work: Database Systems for  L ife Science Data 
Integration 

In this chapter a few database systems for integration of biological, bioinformatics, or life 
science data will be described. The purpose is to compare the approaches and capabilities of 
these systems with those anticipated for PAQS, and perhaps to induce ideas about new 
features for PAQS. 

Some major efforts for the integration of biology data were mentioned already in chapter 5, 
treated as potential data formats for PAQS, e.g. the two CORBA standardisation project 
mentioned in section 5.3.  

There is a rapid growth in the number of niched companies performing proteomics or drug 
design research, "out-sourced" from a (larger) pharmaceutical company. Such "proteomics 
companies" often claim to have unique expertise in one or several fields (e.g. mass 
spectrometry, cell signalling, protein structure determination, or computational chemistry). In 
a way, these companies function as mediators: they integrate information from different 
sources, and add value in the form of their own research. However, since we are interested in 
software platforms which facilitate information integration we will not further discuss such 
companies. 

As discussed in the beginning of chapter 5, only some of the many integration projects can be 
described in this Thesis.  

6.1 Resear ch Prototype Mediator  Systems 

Most mediator systems for the integration of biological data have the characteristic in 
common that they origin in mediator research projects performed at an academic computer 
science laboratory, and that the interest in using these mediators for biological data has grown 
during the bioinformatics boom of the 1990's. Of special importance is the well-known 
Human Genome Project (http://www.ornl.gov/hgmis/), which is reflected by the fact that most 
of the projects aim to integrate different sources of genome data. 

In principle, this type of mediator systems could be used as data sources in the PAQS project, 
or conversely. Thus, we could have a system of collaborating mediators, similar to the picture 
given in Figure 10, but with the difference that all participants would not be Amos II 
mediators. From a technical point of view it is the public interface which is determining. If a 
mediator system only publishes web forms for fixed-form queries other systems will only 
have limited use for it. If, on the other hand, a mediator is open for standard OQL queries, has 
a CORBA interface, or can be queried as an XML source, there is greater potential for 
collaboration.  

6.1.1 P/FDM 

P/FDM (Prolog/Functional Data Model) is an OODBMS created by Gray, Kemp et al in 
Aberdeen161. Similarly to Amos II, P/FDM employs a functional data model based on 
DAPLEX (see section 3.2.5).  

                                                        
161 Gray and Kemp 1990. 
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The Aberdeen group has used P/FDM for biological data for more than 10 years. Their main 
work seems to have been on defining schemas for representing protein structures and the 
integration of such data from heterogeneous data sources162. For example, a declarative 
constraint language to describe the semantics of 3-D protein structure data has been 
developed163. An important and interesting goal of the Aberdeen group has been to make it 
possible to perform efficient geometric calculations over proteins in the P/FDM system162.  

As mentioned above, P/FDM has been used as a CORBA server164. An architecture is 
described where a graphical user interface connects to P/FDM through a coarse grain CORBA 
interface, and P/FDM provides query processing services over local and remote databases, 
also through CORBA interfaces. It seems that only the "upper", GUI-to-P/FDM, part of the 
architecture was implemented, perhaps due to the lack of CORBA servers at the time. 

The most important data source for P/FDM seems to have been SRS (Sequence Retrieval 
System, see section 6.4.2), but recently the group has widened the scope to more diverse data 
sources165, e.g. EBI's ArrayExpress (microarray based gene expression data, see section 6.3.1) 
and Ensembl (eukaryotic genomes). A recent publication166 on P/FDM describes how the 
system is used to build a database federation for bioinformatics, and how the P/FDM mediator 
is used to integrate locally stored data with data from the SRS.  

To conclude, the P/FDM effort is similar to the PAQS project when it comes to architecture 
and technical possibilities. However, the applications lie within another domain, and the data 
sources are only partially overlapping.  

6.1.2 K2/K leisli 

K2 (and its predecessor Kleisli) follows a mediating, view integrating, approach to the 
integration of heterogeneous data sources167. In the K2 architecture wrappers are called "data 
drivers", and such have been developed for a range of formats and sources, e.g., GenBank, 
BLAST, KEGG, and SRS. These data drivers have the responsibility to provide K2 with 
source metadata, to transmit queries to the sources, and to convert the query results to K2's 
internal format. However, rewriting from OQL (the query language of K2) to the native query 
language of the source is made by K2, not by the data driver.  

K2 has an extensible rule-based optimiser, but optimisation is presently not cost-based due to 
problems in estimating accurate costs in the distributed environment. An interesting option in 
K2 is to define virtual classes which span several underlying databases. This resembles the 
integration union types of Amos II168. A major advantage of K2 over the earlier Kleisli, and 
possibly over Amos II, is that K2 has OMG's standard OQL as query language.  

From the examples given by Davidson et al (2001) it seems the scope is wider than only gene 
and protein sequences. The overlap with the PAQS project seems presently small, however. 

                                                        
162 Kemp, Dupont and Gray 1996. 
163 Embury and Gray 1995. 
164 Kemp,  Robertson, Gray and Angelopoulos 2000. 
165 Kemp, Fothergill, Gray and Angelopoulos 2001. 
166 Kemp, Angelopoulos and Gray 2000. 
167 Davidson, Crabtree, Brunk, Schug, Tannen, Overton and Stoeckert 2001. 
168 Josifovski and Risch 1999. 
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6.1.3 Tambis and Ontology-Based Approaches 

In computer science the term ontology is often used for a "specification of a representational 
vocabulary for a shared domain of discourse, which may include definitions of classes, 
relations, functions, and other objects" (Kashyap and Sheth 1999). Thus, an ontology can be 
seen as a list of commonly understood terms, and different application domains have different 
ontologies169.  

An ontology in this meaning of "concept repository" can be used for information integration, 
and one representative example of this is the TAMBIS project described in the following 
subsection. Another example is mmCIF (section 5.2.5), which has been described as an 
ontology for macromolecular structure. 

TAMBIS 

The TAMBIS project from Manchester170 aims to provide users with maximum transparency 
when accessing bioinformatics data sources around the world. To achieve this TAMBIS uses 
a central ontology (a conceptual representation of biological concepts and terminology) 
together with mappings from terms of the ontology onto terms in external sources. TAMBIS 
follows a mediator/wrapper architecture where query translation, query planning, and 
wrapping is based on CPL/Kleisli171. 

The central and most developed part of the TAMBIS project seems to be TaO, the Tambis 
Ontology. TaO has several roles: (i) to describe biologists knowledge, (ii) to encompass the 
schemas of underlying data sources, (iii) to link conceptual terms to terms in the sources, (iv) 
to mediate between equivalent or nearly equivalent concepts in different sources, and (v) to 
help users to form biologically realistic queries and explore the ontology. 

TAMBIS focuses on DNA and protein structures. Representative questions a user can ask is 
"find homologues to apoptosis receptor proteins" and "find motifs in enzymes which use 
thyamine as substrate and iron as cofactor". Higher-level, exploring, questions like "what can 
I say about the concept 'receptor'?" can be answered, too. 

A Difference Between the Ontology Approach and Mediation 

TAMBIS has a mediator/wrapper architecture similar to that of e.g. Kleisli, P/FDM, or PAQS. 
However, when it comes to information integration there is a major difference between the 
mediation approach and the ontology approach. In PAQS we will only build a partial 
integrated schema of  the sources. I.e., we will only care to model those aspects of the domain 
that is of interest to the users of PAQS. In an ontology-based approach, the ontology should 
(eventually) encompass all concepts that the user community knows about the domain (for 
example bioinformatics). I.e., the ontology could be said to correspond to a global schema, 
and all information present in the source schemas should also be present in the ontology172.  

                                                        
169 In philosophy, on the other hand, ontology is a form of metaphysics dealing with the true nature of being 
(Odelstad 2001). 
170 TAMBIS,  http://img.cs.man.ac.uk/tambis/index.html (2001-12-06); Baker, Goble, Bechhofer, Paton, Stevens 
and Brass 1999.  
171 Buneman, Davidson, Hart, Overton and Wong 1995.  
172 In a way, we could say that the ontology represents a "super-global" schema, since there will probably be 
concepts in the ontology which are present in none of the sources. However, a mediator may contain local data 
not present in any source, and often this local data has some semantic meaning which no source schema 
captures. Thus, the same "super-globality" applies for mediators. 
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6.2 Commer cial M iddlewar e Solutions 

In principle we can think of two types of commercial systems. The software can be intended 
to be installed at the customer's site, and the business model would be to sell (or rent) a 
system, and to sell consulting expertise. This applies for DiscoveryLink, described in the next 
section.  

A second business model would be to integrate data at the software provider's site, and 
publish a web interface which customers can put queries through173. This has the serious 
disadvantage that proprietary data owned by the customer is not included in the integration.  

It may be noted that the bioinformatics research community has a strong tradition of sharing 
data, see, e.g., the publicly available gene and protein sequences in the data sources of section 
5.5, and it would be difficult to sell web services to academic users. This contrasts with the 
situation in, e.g., chemistry. 

6.2.1 DiscoveryLink 

DiscoveryLink174 is a database middleware system from IBM Life Sciences175. The purpose 
of DiscoveryLink is very similar to that of the PAQS project176 and the research projects 
described in section 6.1. The system integrates heterogeneous data sources so that users can 
access data in a uniform and transparent manner.  

Like the research prototypes of the previous section DiscoveryLink follows a 
mediator/wrapper-like architecture (see Figure 14). However, DiscoveryLink uses IBM's DB2 
UDB as mediator (or middleware) and employs a relational data model for information 
integration. The research prototypes (with object-oriented or functional data models) ought to 
provide richer modelling capabilities in the mediators. However, IBM argues that the use of a 
commercial industrial-strength DBMS as middleware is of advantage. Furthermore, users can 
query the DiscoveryLink system with standard SQL queries while most similar systems use 
OQL or some specialised query language. 

Several enhancements to the way DiscoveryLink now works are described by Haas et al 
(2001). One of these is the possibility to keep prematerialized summary tables stored in 
DiscoveryLink to avoid accessing the data sources. This is probably an idea which should be 
taken over by the PAQS project. 

                                                        
173 A number of alternatives are possible here. Pay-per-minute, pay-per-month, pay-per-query, and pay-per-
tuple-returned are probably all too simple. For example, FIZ Karlsruhe (http://www.fiz-karlsruhe.de/) uses a 
combination of time connected, number of queries, amount of information returned, and a cost factor specific for 
the underlying source to bil l customers. 
174 DiscoveryLink (2001-12-18); Haas, Schwarz, Kodali, Kotlar, Rice, and Swope 2001. 
175 IBM Life Sciences (2001-12-13). 
176 Actually, one of the example queries used by IBM to demonstrate how DiscoveryLink works is "Show me all  
the compounds that have been tested against members of the family of serotonin receptors and have IC50 values 
within nanomolar/ml range". Apart from the unfortunate choice of unit for IC50 this is exactly the kind of query 
we would like to put to PAQS. 
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Figure 14. DiscoveryLink architecture. (After Haas et al 2001.) 

Wrappers 

The data sources are integrated with the system by means of wrappers (see section 4.4). This 
solution is taken from IBM's research project Garlic177. A wrapper has four principal 
responsibilities: (i) To map the schema of the data source to DiscoveryLink's relational model, 
(ii) to inform DiscoveryLink of the data source's query capabilities, (iii) to map query 
fragments from DiscoveryLink to requests in the native query language of the data source, 
and (iv) to issue those query requests and return the results to DiscoveryLink. An important 
feature is that any specialised query capabilities of a data source are modelled as user-defined 
functions in DiscoveryLink.  

A future enhancement to DiscoveryLink is to improve query optimisation by directly 
involving the wrappers in query planning. When a user issues a query to DiscoveryLink the 
system should ask the wrappers which parts of the query each of them is able to answer. In 
return, the wrappers should send a "wrapper plan" together with the associated estimated cost. 
The DBMS then uses the wrapper plans to construct a reasonable global query plan. This 
solution to query optimisation over distributed heterogeneous data sources has been validated 
in the Garlic project, and is more or less identical to the approach in the new SQL/MED 
standard (see section 4.4.3). 

Semantic Data Integration 

Although DiscoveryLink can integrate data from different sources the system does not 
automatically solve the problems of heterogeneity178. A solution suggested by Haas et al 
(2001) is that database administration staff should build translation tables, which could then 
be stored in DiscoveryLink. The lookup in such tables would impair performance, but the 
solution is in principle possible for all middleware or mediator systems which have the 
capability to store data locally. 

                                                        
177 Garlic, http://www.almaden.ibm.com/cs/garlic.html (2001-12-18). 
178 Haas et al (2001) give three examples of "semantic confl icts": (i)  upper/lower case strings, (ii) different 
names for one and the same drug, and (ii i) no common keys between objects in different sources. In the 
terminology of section 4.3.3 (i) is a data conflict, while (i i) and (i ii) are identity confl icts. A semantic conflict, on 
the other hand, would be when a concept is interpreted differently in different sources. (E.g., if one source treats 
ligands and radiolabelled l igands uniformly as "ligands", while another separates them into "l igands" and "hot 
ligands".) 
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Schema Evolution 

Haas et al (2001) discuss the frequent change of database schemas in life science data sources. 
They describe how the wrapper architecture of DiscoveryLink has been designed for 
extensibility, and that the system therefore is well prepared for changes in data sources. In this 
context it is worth noting that the easier schema evolution is said to be one of the advantages 
of object-oriented DBMSs over relational DBMSs179. This might lead one to believe that 
mediators based on OO (or functional) data models are better suited for a situation where 
source schemas changes are frequent. However, it is the wrappers which should do the 
mapping between source and middleware, and it is of course essential that the wrappers are 
easy to modify. In practise, it should be the case that small changes in data source schemas 
can be absorbed by the wrappers, while only larger source changes require changes to the 
middleware schema.   

Availability 

DiscoveryLink is a commercial product of IBM. From the demonstration examples available 
at the DiscoveryLink web site I conclude that it should be possible to query the data sources 
through some web interface once the system has been installed at the customer's site. Another, 
and potentially more useful way to query DiscoveryLink is through DB2's JDBC API. There 
is no mentioning of constructing a publicly available web site powered by DiscoveryLink.  

DiscoveryLink is a major component of the I3C architecture, see section 5.3.4. 

6.2.2 Oracle Gateway with DARWIN Analysis 

Banerjee (2000) describes how Oracle's data mining tool Darwin can be used for 
bioinformatics and proposes Oracle's gateway technologies as a means for accessing non-
Oracle databases180.  

In an independent (but perhaps slightly dated) study of three (anonymous) commercial 
product Rezende and Hergula (1998) found that the gateway approach to integrating 
heterogeneous data sources was inferior to more general middleware approaches. 

In my opinion, Banerjee's suggestion of having Oracle technology as a powerful back-end for 
web servers is more realistic. Such a portal could then, for example, provide wide research 
communities with access to XML based data. 

6.3 Warehouse Appr oaches 

From chapter 4 we recall that a data warehouse is a central repository for integrated data. 
Several of the data sources listed in sections 5.3.4 and 5.5 include components of integration 
by the warehousing approach and could have been discussed in this section instead.  

                                                        
179 Connolly and Begg 2002, p 792, 828. 
180 To the best of my knowledge, this system - adapted for bioinformatics - is not commercially available. 
However, since the solution was presented by an Oracle affi liate and consists of commercially available 
components, I have chosen to l ist it in this section. 
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6.3.1 Ar rayExpress 

At EBI (European Bioinformatics Institute) the ArrayExpress project is committed to 
establishing a public repository for gene expression data from microarray experiments181. 
Microarray data are not of direct use to the PAQS project182 but the ArrayExpress project is 
nevertheless worth studying. First of all, ArrayExpress attempts to define a standard for a 
subdomain of experimental molecular biology. Similarly, one possible goal of PAQS is to 
define a standard for binding assay data. On a lower level, there may be similarities in how 
experiments are described, e.g. how an array or an assay is represented in a database. 

ArrayExpress aims to build a data repository. The purposes of the repository are183 to make 
the data available to many parties, to facilitate "cross-validation" of data, to establish 
benchmarks and standards, and to create the ability to build up progressively more detailed 
information. Finally, the repository should function as a public resource which can be 
referenced by scientific literature184.  

Obviously, a repository of data follows the warehousing approach to information integration, 
described in section 4.1. An interesting aspect of this is of course that ArrayExpress will need 
to define a database schema which is expressive and detailed enough to capture information 
from a wide range of laboratories and experimental set-ups. This would be a great challenge 
even for a "traditional" information domain, but an additional complication is that the 
microarray scene is new, and rapidly changing. Thus, the schema as well as the data model 
used for constructing the schema and for implementing the database must be flexible enough 
to provide for facile schema evolution. 

A conceptual schema in UML is given on the home page of ArrayExpress185. Interestingly, 
this schema lacks all object-oriented features, and it seems to be intended for implementation 
in a relational DBMS186. The schema has been implemented in P/FDM (see section 6.1.1)187, 
and as a relational database188.  

The ArrayExpress homepage also links to a more comprehensive description of how 
microarray data can be represented and stored189. This document has schemas drawn in 

                                                        
181 The ArrayExpress Database (2001-12-17). 
182 First of all, the purpose of microarrays is to investigate what proteins are produced from the different genes of 
a genome under different environmental conditions. In PAQS, we are interested in how proteins interact with 
ligands. Secondly, the experimental set-up is different and the experimental raw data are different too 
(fluorescent or radiation images in microarrays, versus radioactive counts from a detector in binding 
experiments). Finally, the analysis of the experiments are different.  
183 Establishing a Public Repository for DNA Microarray-Based Gene Expression Data (2001-12-17). 
184 Repositories with this reference function exist for example in crystallography. In that scientific community it 
is customary to publish (in a journal paper) only a drawing of a substance whose structure has been determined, 
together with some important geometric parameters (e.g. bond lengths). A full  list of atomic coordinates and 
thermal parameters must then be deposited, for example with the Cambridge Crystallographic Data Centre 
(CCDC, http://www.ccdc.cam.ac.uk (2001-12-10)). Other depositing schemes do exist, too. 
185 Structure and Design of ArrayExpress Database (2001-12-17) 
186 In the document is stated that it is straight-forward to map the schema to the ER model, but also to a range of 
other models (e.g. Java programs). 
187 aeFDM: FDM implementation of the ArrayExpress Schema (2001-12-17). 
188 The maxdSQL Database (2001-12-17). 
189 ArrayExpress Schema, Model and Documentation (2001-12-17). 
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OMT190, and does include OO features (e.g. subtyping). The schemas of references 185 and  
189 differ in central parts.  

6.3.2 GIMS - the Genome Information Management System 

In a recent paper191 which mainly deals with how genomic data, protein interactions, and gene 
expression experiments can be modelled conceptually Paton et al introduce the Genome 
Information Management System (GIMS)192. From the brief description it seems GIMS is a 
continuation of Interact (section 5.4.3), with a much wider scope.  

GIMS follows a warehousing approach to integration, with the warehouse implemented in the 
OODBMS Poet. Data from "information sources" are loaded through wrappers. The principal 
way to explore GIMS is expected to be through canned queries, i.e. predefined parameterised 
queries in web browsers or application programs. 

One of the conceptual models of Paton et al (2000) deals with how transcriptome data can be 
represented (see Figure 15). This is a similar modelling problem as that of ArrayExpress 
(section 6.3.1), and the schema of Paton et al has given some inspiration to the modelling of 
experiments described later in this Thesis.  
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1..1
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Figure 15. Schema for representing transcriptome data according to Paton et al (2000), simplified and 
transferred to the functional diagram notation. 

Each experiment has a collection of measurement points, consisting of spot readings (in the 
special case of gene expression data). To each measurement point we may associate an 
environment, which records the extent (condition degree) to which some property (condition) 
holds when a measurement is made193. 

                                                        
190 OMT (Object Modeling Technique) is a diagrammatic notation for object-oriented modell ing. OMT is similar 
to (and a predecessor of)  UML. 
191 Paton, Khan, Hayes, Moussouni, Brass, Eilbeck, Goble, Hubbard.and Oliver 2000. 
192 Genome Information Management System, http://img.cs.man.ac.uk/gims/ (2001-12-17). 
193 For example, the two conditions temperature and pH may have the values 25 ºC and 7.0, respectively. These 
two "condition degrees" then constitute the "environment" valid for a specific set of measurement points. 
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6.3.3 GUS - the Genomics Unified Schema 

Davidson et al (2001) have developed the Genomics Unified Schema (GUS), which is a data 
warehouse used to integrate data from major sequence databases (GenBank, SWISS-PROT, 
dbEST).  

GUS uses a relational data model and is implemented with an Oracle8i DBMS. The relational 
schema is large, over 180 tables. One reason for this is that it is difficult to represent the 
compressed schemas of  sequence databases by a relational model. Only SWISS-PROT maps 
to 15 tables, and all in all about 50 tables are required to mirror the external databases. The 
large schema makes the system difficult to comprehend, and therefore an object layer (in Perl) 
has been implemented on top of the relational system. 

In conventional data warehouses for business applications value is added to the data through 
summations on different levels of aggregation. In GUS, which has a focus on sequences and 
genes, it is annotations that add value. An important aspect of GUS is hence to track how 
annotations change, when they change, which algorithms that were used, and so on. This 
management of metadata is handled by version tables. 

6.4 Inter linked Collections of Data Sources 

One approach to providing a useful query interface to a collection of data sources is to create 
a layer of links between database records on top of the data sources. Thus, if a user searches 
for the protein X, she will not only get the sequence from a protein sequence database, but 
also the corresponding records from a literature database, and a 3-D structure database - if  
she has marked those databases "active" in the web interface.  

There is no real information integration or transparency in this kind of system. The user needs 
to choose which databases to search, and usually no attempt is made to resolve conflicts. 
Thus, although the data may be collected at a central site, they reside in separate databases, 
and are not integrated as in a Data Warehouse. Davidson et al (2001) call this type of system a 
"link driven federation". 

6.4.1 Entrez 

Entrez194 is a retrieval system for searching several linked databases. It provides access to 
biomedical literature (PubMed), nucleotide sequences (GenBank), protein sequences (SWISS-
PROT, PIR, PDB and other), 3-D macromolecular structures (MMDB), complete genome 
assemblies, and several other types of data.  

What makes Entrez more powerful than an ordinary web interface is that most of its records 
are linked to other records, both within a given database and between databases. Records 
connected through intra-database links are called "neighbours". An important feature is that 
these links not only are based on exact matches, but also on pre-computed similarity searches. 

                                                        
194 Entrez Home, http://www.ncbi.nlm.nih.gov/Entrez/ (2001-12-18). 
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6.4.2 SRS 

The Sequence Retrieval System (SRS) was developed by EMBL (European Molecular 
Biology Laboratory) during the 1990s. SRS has gradually evolved and changed, and is now 
an integration platform for molecular biology and genome analysis, owned by Lion 
Bioscience195.  

SRS is publicly available at EBI196 and at several mirror sites. However, some of the 
accompanying software is not free. There are currently several dozen servers world-wide that 
provide access to over 300 different databanks via the Web. Only through the EBI web 
interface a user may access 158 databanks (19-Nov-2001). An SRS server may access 
databases stored locally together with databases on the Web. Presently, SRS can retrieve data 
from relational DBMSs, XML servers, and flat files.   

SRS integrates heterogeneous data sources ("databanks") behind a single interface and 
integration framework. SRS is said to employ a "meta level approach" information 
integration197. Thus, SRS uses metadata about structure, format and syntax of the data sources 
to build indices for each file in each database source, to build link indices between each 
integrated database, and to help in data retrieval of specific fields upon user requests. 

In addition, another level of metadata is used to let users define how data should be retrieved, 
e.g. as XML data files or as Java objects. Thus, SRS is, according to the information available 
on the Web, extremely flexible for users who are prepared to invest some time and effort to 
learn the system and the tools. Furthermore, there are various extensions to SRS, for example, 
SRS Objects198 provides APIs to C++, Java, Perl, and Python, as well as CORBA interfaces. 
It is possible for an organisation to install the SRS system locally (an Oracle 8 DBMS is 
required) and then to integrate their own data sources. 

Integrating Relational Data Sources in SRS 

When a new relational database is introduced in an SRS system the administrator needs to run 
a series of programs to extract the database schema, and manually define a HUB table (vide 
infra), a HUB accession column (with unique values), and a set of columns that should be 
presented as search fields in web interfaces.  

The querying and retrieval of data from relational databases proceeds in two steps199. When a 
user has filled in the web form to produce a query the first step is to retrieve the relevant keys  
from a HUB table and the second step is to use the keys to assemble objects with all the fields 
the user has asked for.  

SRS first analyses the schema information it has about the RDBMS and then generates an 
SQL query which is sent to the RDBMS via JDBC200. The interesting part is that the query is 
formulated so that it converges (through joins) to a "HUB", which is the "table of most 
interest", and the centre of a star topology201.  

                                                        
195 http://www.lionbioscience.com/, http://www.lionbio.co.uk/. Actually, the system has changed so much that 
SRS is now its name, not an acronym. 
196 SRS 6, http://srs6.ebi.ac.uk/ (2001-12-17). 
197 SRS Technology, http://www.lionbioscience.com/htm/c_1/content_c_1_1_1.htm (2001-04-06). 
198 SRS 6 Extensions, http://www.lionbioscience.com/htm/c_1/content_c_1_1_2.htm (2001-04-06). 
199 SRS Relational (2001) 
200 JDBC is often interpreted as Java DataBase Connectivity, although this is not an "official" acronym.  
201 Cf. star schemas in Data Warehouse dimensionality design, see, e.g., Connolly and Begg 2002, ch 31. 
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When the relevant keys (which are drawn from the accession column in the HUB table) have 
been returned to SRS a new SQL query is formulated to retrieve the information. This query 
is constructed to start with one or more HUB keys, and then proceed outwards. The relevant 
information is collected and result objects are built up incrementally. 

Although this is not mentioned in the documentation available to me (e.g., refs. 195-199), it is 
probable that many query plans are stored (or cached) in the SRS system. It seems 
uneconomical to need to analyse the schemas of the participating databases for each and every 
standard query. 
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7 A Database System for  Proteo-Chemometr ic Research 

In this section PAQS - the Proteo-chemometric Analysis and Query System - is described. 
The PAQS project emanates from a research proposal made by Tore Risch (Dept of 
Information Science, Uppsala University) and Jarl Wikberg (Dept of Pharmaceutical 
Pharmacology, Uppsala University), and should result in a database system for proteo-
chemometric research. The approach used in the project is to integrate information from 
various distributed, heterogeneous, and autonomous data sources by means of a mediator-
wrapper architecture.  

7.1 Ar chitecture of PAQS 

The architecture of PAQS follows that of many other mediator-wrapper systems (see section 
4.4). This architecture was defined before the start of my Thesis work. Figure 16 illustrates 
the PAQS architecture with three layers:  

• The client layer contains various applications, e.g. for analysis and visualisation. This 
layer could also contain a web interface.  

• The mediator layer is the PAQS system itself, the core of which is an extensible database 
engine, i.e. the Amos II DBMS202. The parts which are specific for PAQS are the various 
wrappers and plug-ins (vide infra). 

• The data source layer stores the data. Most of these data sources will be resources 
accessed over the Web, but some will be local databases.  

 Extensible OO query languageAPI

Analysis

programs
Visualization

System

Client

Extensible database engine

Mediator

Data

sourceProtein seq.
file

Chemical
struct. file

Other PAQS systemsRDBMS

ODBC

Relational Proteo Chemical Inter-PAQSWrappers

Optimize

Abstract

Match

Plug-ins

Index

Proteometric
Queries

Pharmacological
file

Pharm.

 

Figure 16. Architecture of PAQS. (Figure made by T. Risch.) 

                                                        
202 Risch, Josifovski and Katchatounov 2000; Flodin, Josifovski, Katchaounov, Risch, Sköld and Werner 2000. 
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7.1.1 Application Programs 

There are several conceivable types of application programs:  

• Analysis programs may access PAQS in order to get hold of needed data. Other analysis 
programs may take their data from other sources (e.g. from some laboratory equipment) 
and deposit the results in PAQS.  

• Analysis programs could invoke other programs, e.g. for visualisation.  

• The system could be open for queries over a web interface, either through some web form 
with limited querying alternatives or via direct submission of AMOSQL queries. 

• Another PAQS system may be a client203.  

• A meta-data browser could be used by persons wishing to understand the PAQS schema. 

No work has been done on the client layer for this M.Sc. Thesis. 

7.1.2 Wrappers and Data Sources 

Wrappers are an important part of the mediator-wrapper architecture of Amos II and PAQS. A 
wrapper functions as an interface to an external data source, and it is only by means of such 
wrappers the mediator is able to access external data. The approach has recently been 
included in the SQL:1999 standard as SQL/MED (Melton et al 2001, see section 4.4.3). 

Presently, the Amos II system incorporates wrappers for relational databases (as ODBC data 
sources) and XML files. It is possible that other wrappers will have to be implemented for 
access to important data sources. However, this might very well be unnecessary work since 
there is a very strong trend towards XML formats in life science research. A discussion of 
various available data sources on the Web was made in chapter 5 of this Thesis. Most binding 
affinity data sources present their data through web forms, and it is thus important that Amos 
II can access such forms efficiently204. 

I have not designed or implemented a wrapper in this work. For an example of the use of an 
existing wrapper, see Appendix G. 

7.1.3 Algor ithms for  Plugging-In  

One thing which distinguishes commercial object-relational DBMSs from the older relational 
DBMSs is the possibility to extend the functionality for a particular information domain by 
means of "plug-ins" (see section 3.2.4). These possibilities should be even larger for most 
research prototype ORDBMSs. 

In Amos II the foreign functions provide this extensibility. Thus, functionality can be 
included by code in Java, C, or Lisp. For the PAQS project this is of great importance as 
many small and middle-sized computations can be performed by foreign functions: 

                                                        
203 This is conceivable in at least two situations: (i) Several laboratories have their own PAQS systems running, 
but share local information by accessing each others' systems. (ii) There is one central PAQS installation, but  
one laboratory wishes to use a local PAQS server to manage some proprietary or preliminary data without 
sharing it with others. 
204 Petrini 2001. 
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• A main benefit will be from the point of reusability. I.e., an existing implementation of an 
algorithm could easily be plugged in and used. There is no need to code and debug the 
algorithm once more. 

• Some algorithms are impossible or very difficult to implement in AMOSQL since the 
necessary mathematical functions are missing in query languages. However, they can 
easily be implemented as foreign functions205. 

• Small visualisation programs could be used as plug-ins, e.g. used to do simple xy-plots of 
data series (section 8.2).  

• Foreign functions could work as interfaces to the file system. E.g., we may import a 
certain data item from a certain type of text file by means of a Java function. (I.e., we 
construct a very simple kind of wrapper, specialised on a single task.) 

• It would even in some cases be possible to wrap a large and complex program by a Java 
class, and then plug it in by means of a foreign function. One limiting factor will be the 
response time206. Furthermore, if the program requires some additional user input, e.g. 
through a GUI it is questionable if we conceptually can classify it as a foreign function. 

An open question in the PAQS architecture is how much of the proteo-chemometric analysis 
that is to be implemented as AMOSQL functions. In a traditional solution the database system 
would only be used for data storage and access, through the API. All analysis would be 
performed in special-purpose programs. At the other extreme is a situation where all analysis 
and visualisation algorithms are implemented as foreign functions, and the whole proteo-
chemometric analysis takes place by calls from the DBMS. The database schemas presented 
in chapter 8 allows for both these solutions, and intermediaries. In connection with 
experiment evaluations (section 8.8) I have shown how analysis from PAQS could be 
implemented.  

7.2 The Information Domain with Subdomains 

The information domain of interest for proteo-chemometric analysis is coarsely described in 
Figure 17. The lines indicate direct interdependencies, and one example of how to read the 
Figure is to follow the bold lines: A series of binding experiments are made with a binding 
assay. These experiment are then evaluated (by some curve fitting program) so that a number 
of  fit parameters are determined. Each fit parameter represents some property of a chemical 
entity or a combination of chemical entities (e.g. a binding affinity between a ligand and a 
receptor). 

In chapter 8 of the Thesis the modelling and implementation of most of the subdomains are 
described. However, all subdomains have not been modelled to equal detail. Subdomains with 
dotted "borders" in Figure 17 were only implemented as "stubs" (ChemicalEntity, Protocol, 
Reference), or not at all (Descriptor). These remaining subdomains are further commented 
upon in section 9.1. 

                                                        
205 For example, see Appendix C or the matrix operations of Flodin, Orsborn and Risch (1998).  
206 For example, it is not unusual that quantum chemistry computations of molecular properties execute for 
several days. 
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Figure 17. Division of the domain of interest into subdomains. 

7.3 The Prototype for  PAQS 

The first stage prototype for a proteo-chemometric analysis and query system presented in 
this Thesis consists of the database schemas of chapter 8 implemented in Amos II. No 
graphical user interface or wrapper to external data sources have been implemented. A few 
examples of  how data can be stored and queried are presented in Appendix B.  

The scripts needed to generate the database, together with some sample data and further 
demonstration examples, are available as supplementary electronic material. The DBMS 
Amos II needed to run the scripts is available for download over the Web 
(http://www.dis.uu.se/~udbl/amos/ 2002-01-16).  
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8 Modelled and Implemented Subdomains 

In the work for this Thesis many parts of the necessary database schema for a proteo-
chemometric analysis and query system (PAQS) have been modelled and implemented in 
Amos II. This chapter describes and discusses these parts, including some background 
information and related work.  

The database schemas described in this chapter all refer to the mediator of a mediator/wrapper 
architecture. I do not discuss the schemas of external data sources, although the presented 
schemas will in many cases provide good starting points for defining XML Schemas. In most 
cases the data will actually be stored in some external source, possibly on the Web, and the 
schemas are the representations in the integration schema of the mediator. Thus, data which is 
read from external sources can be viewed and manipulated by Amos II functions, presented to 
the user, and possibly stored in some local database. However, in the discussion of design 
solutions it is in many cases convenient to talk about attributes that "store" properties of a 
type, as if they were stored permanently in the mediator. 

It has been difficult to choose the order in which to present the following subsections. The 
first section, which is quite long, deals with quantities and units, and after that a larger data 
structure called Dat aSer i es  is introduced. In the middle of the chapter the modelling of 
binding assays, binding experiments, and various supporting types is discussed. Finally, 
experiment evaluations (numerical fits) are discussed in a fairly long subsection. Each 
subsection should be fairly self-contained, with references to other sections. 

The chapter contains a few code excerpts in AMOSQL and Java, where appropriate. Full code 
listings can be found in the electronic supplementary material. A short demonstration of the 
implementation is given in Appendix B. 

8.1 Quantities and Units 

There are many ways to model measurements. A few things in need of consideration is how 
to represent a measured value, how to represent the system of units, and how to handle error 
estimates of measured values. In the following subsections various approaches to representing 
a single measured value, units and errors will be discussed. The final schema which has been 
implemented in the prototype is given in section 8.1.10. It is worth noting that the database 
prototype uses this approach for single measurements, but another approach, presented in 
section 8.2, for (longer) series of data.  

8.1.1 The Measured Value 

First of all we need to determine how to represent the measured value, which is usually a real 
number. In a computer, real numbers are handled by some floating point number data type 
and in many programming languages one may choose a floating point type of appropriate 
precision. For example, Java has the relevant data types f l oat  and doubl e, while Fortran77 
has r eal  and doubl e pr eci si on. The DBMS Amos II has only one floating point data type, 
r eal  (with approximately 15 significant digits). 

For some properties we may know that the measured value is always an integer, e.g. the age 
of an (adult) person. Furthermore, some measurements do not result in a number at all but in a 
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choice from a set of predefined allowed values, an enumeration207. For many measurements in 
science a value is only interesting as part of one or several sequences of numbers (e.g. an 
infrared spectrum). In some occasions, the measured value may even be a complex number.  

In the implemented prototype all measurements are treated as real numbers (using the Amos 
II literal data type r eal ). Spectra can be handled as pairs of Dat aSer i es objects, where each 
data series is a sequence of real numbers (section 8.2). 

8.1.2 The Need for  Units 

In this section we will discuss a few alternative ways to represent systems of units. The 
approaches differ greatly in expressiveness, flexibility, and the amount of ”knowledge” that 
clients need to have to be able to use the units.  

Why do we need units at all? In principle we could prescribe that all concentrations in the 
database system will be given in the unit nanomolar, all masses in gram, all volumes in 
millilitres, and so on. Alternatively, we could decide to always use the SI base and derived 
units208. Unfortunately, neither is convenient since there will typically be applications and 
user groups that insist on using their customary units. For example, the ”standard” unit of 
concentration in chemistry is mole/litre, also called molar. It would be very hard to convince 
chemists to give concentrations in the SI unit mole/meter3. Choosing a system of units other 
than the SI system will eventually lead to the same kind of problem.  

Using units is also more or less a prerequisite for interoperability. If we wish to use data from 
several data sources on the Web, we can be almost certain that not all of them use the same 
set of units. Obviously, we may wrap the data source to a common system of units, but as we 
will see there are several advantages of using explicit units. 

Unit Conversion 

If we have units in the database, we also want a means for converting between different units. 
This is very useful if we allow different units for the same physical dimension (e.g. meter, 
millimetre, and Angstrom (Å) for lengths), since we would then be able to add 0.0010 m and 
1.0*107 Å to get 2.0 mm. Unit conversion will be necessary if we want to be able to access 
other data sources, even if we restrict our own database to have only one unit per dimension. 
The other data source will quite likely have its data in other units, and our wrapper will then 
need to convert from the external units to the internal units. 

A few approaches to unit conversion will be discussed in the following sections. I have found 
very few publications on unit conversion. However, Novak (1995) discusses the conversion of 
units of measurements in the context of dimensional analysis (vide infra), and also describes 
algorithms209 for conversion and simplification of units. Interestingly, he uses eight base 
units, the seven SI units and dollar.  

                                                        
207 Furthermore, one often differentiates between ordinal variables (with some inherent relative order) and 
nominal variables (with no meaningful order) (Han and Kamber 2001, p 343). The colour of an athlete's eye 
would be a nominal variable, but the colour of  the medal he or she won at the Olympic games would be an 
ordinal variable. 
208 There are seven SI base units (meter, ki logram, second, Ampere, Kelvin, mole, candela). The derived units 
are multiplicative combinations of the base units, e.g. meter/second and mole/meter3. 
209 Of further interest is that Novak (1995) describes the implementation of the algorithms in LISP, one of the 
languages the Amos II system is implemented in. However, I have not used LISP for unit conversion, but 
AMOSQL and Java.  
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8.1.3 Dimensional Analysis 

Why is it hard to represent units at all? One could think that it is just a technical matter, but 
actually there are quite a few intriguing problems in the conceptual modelling of units and 
measurements. This section will present a few of these problems, arising when dimensional 
analysis is used to relate units of different physical dimensions to each other. The database 
schema used for the prototype avoids the problems by not trying to keep these relationships at 
all. 

Dimensional analysis is a technique which relies on the fact that ” the various terms in a 
physical equation must have identical dimensional formulae if  the equation is to be true for 
all consistent systems of units”  (Pitt 1977). A mechanical quantity can be expressed mass, 
time and length, e.g. area = (length)2, energy = (mass) *  (length)2 / (time)2, and so on. Science 
students early learn to use the technique for checking if the equations they use can be 
correct210. 

By dimensional analyses we know that we can only compare quantities that have the same 
physical dimensions. E.g., we may add a distance to a distance, but not a distance to a 
volume.  

Some nice examples of the difficulties with dimensional analysis are the following211:  

• A force multiplied by a distance may be either a torque or an amount of work done. 
Torque and work will have the same units (Newton*meter), but they are quite different 
physical properties, which usually would not make sense to add.  

• On the other hand, it does make sense to compare a cup of salt with 100 gram of salt, even 
though the first is a volume and the second is a mass. 

• Are the angles 40° and 400° the same? The answer depends on whether we deal with 
circular or rotational angle. 

• The water solubility of a substance is usually given as the mass of substance it is possible 
to dissolve (at 25 °C) in 100 grams of water. Thus, if we subject this concentration unit 
(g/100g) to dimensional analysis we get a unitless dimension. On the other hand, mass%, 
volume%, and mole fraction are other dimensionless ways to measure concentrations. 
Clearly, these concentrations are not equivalent, but according to dimensional analysis we 
will be able to add quantities measured in these units. What is worse, we may add the 
interest on our bank account (1 % ?) to the concentration of  carbon dioxide in normal dry 
air (0.03 volume%), but what does the result mean? 

Thus, dimensional analysis is a powerful tool to relate and manipulate units (see also section 
8.1.5), but there are some problems in constructing a general system without anomalies. This 
would be quite an interesting research problem for a computer scientist interested in 
modelling, and with a background in the natural sciences. It is, however, perhaps not of 
immediate concern to the PAQS project.  

                                                        
210 For example, assume we want to calculate how far an athlete runs in 20 seconds if he has a speed of 10 m/s. 
We remember that speed (v), distance (d) and time (t) are related in some way, but how? We attempt the 
equation d = t/v. However, dimensional analyses tells us that the unit of [t/v] is second/(meter/second) =  s2/m, 
which is certainly not what we expected for a distance. So the equation we tried was wrong… 
211 The first three examples were taken from an 130-page unfinished work report (Kent, Janowski, Hamilton, and 
Hepner 1996). 
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8.1.4 Units as Character  Str ings, an Enumerated Type, or a Domain 

Obviously, one simple way of representing units is as character strings. When a new quantity, 
e.g. 1.25 m/s, is entered into the database the user has to type in both ”1.25”  and ”m/s” . The 
database administrator has no control over which units that are used, or that all users use the 
same character string when they mean one and the same unit. E.g., another user may write 
”mps”, and some other will prefer to use ”cm/s” , or even ” inch/hour” . How shall the database 
system know that ”mps” and ”m/s” are the same, and how shall it know how to convert from 
”cm/s”  to ”m/s”  if the units are simple character strings?  

In the programming language C an enumerated type can be used to define which values an 
attribute may take212. Similarly, ODMG's object model (3.2.3) has the literal data type 
enum

213. For relational databases we instead speak of "domains", and an attribute's domain is 
the set of values that can be assigned to the attribute214.  

To use an enumerated type or domain solves the problem of synonyms, but not conversion 
between different units215.  

8.1.5 Units by Vectors 

Hamilton (1996) desribes an approach for handling units which relies on vectors and 
dimensional analysis (see section 8.1.3). One first defines a set of base units, e.g. the seven SI 
base units. Then all other units can be derived from these. Assume that we have defined only 
two base units: metre (for length), and second (for time). These units span up a "unit space", 
and we can represent the unit of  the property length by the vector < 1, 0 >, and the unit for 
acceleration (m/s2) by < 1, -2 >. Hamilton suggests this approach as a means to represent units 
in a compact way, with minimal agreement among communicating parties.  

The vector approach is very expressive since the relationships between different physical 
properties are preserved. The approach is compact since it doesn't rely on a large enumeration 
of units. The disadvantage that there is only one unit for each dimension remains. More 
serious disadvantages are that the method has problems with handling dimensionless 
properties, and different properties having the same dimension (Hamilton 1996). 

8.1.6 Units and Quantities as Objects 

A quite different approach to that of the previous section, and one perhaps more suitable in an 
object-oriented environment, is to represent both units and measurement values as first-class 
objects.  

                                                        
212 In an object-oriented language, e.g. Java, enumerated types may be substituted by the "typesafe enum pattern" 
(Bloch 2001). 
213 However, the Java mappings for enum are not yet defined. 
214 In ISO SQL 2 a domain is a name, a data type, an optional default value, and an optional CHECK statement 
(Connolly and Begg 2002). An example is CREATE DOMAI N Gender  AS CHAR DEFAULT ' F'  CHECK 
( VALUE I N ( ' M' , ' F' ) ) ; , whereupon an attribute sex  could have the type Gender . However, according to 
O'Neil and O'Neil (2001, p 419) none of the major DBMS products support such an enumerated data type. 
Instead they suggest the solution with an additional table containing all al lowed strings.  
215 A table with all valid conversions could be used. However, it is not trivial to keep such a table up-to-date as 
new units are added. 
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Fowler (1997) suggests a schema similar to that in Figure 18 for representing patients in a 
hospital, with Quant i t y  as a type that knows both the value (amount ) and the unit of a 
measurement.  

Charstring

QuantityheightPerson Unitunit

name name

amount

Real ConversionRationumber

to from

 

Figure 18. Quantity and Unit as concepts for representing measurement values                                                    
(after  Fowler (1997)216).  

Fowler also advocates the use of compound units. The left part of Figure 19 uses bags, while 
the right part only uses sets. (Both approaches would work in Amos II.) Fowler's approach is 
very similar to the vector approach presented in section 8.1.5, but object-oriented.  
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AtomicUnit CompoundUnit

direct

inverse
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Unit

AtomicUnit CompoundUnit
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1..*
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Figure 19. Two ways of modelling compound units according to Fowler217.                                                           
(After Fowler (1997), adapted to the functional data model notation of the present thesis.) 

It seems that compound units and conversion ratios may be combined, as in Figure 20218. For 
example, if we have : met er  defined as a base unit for length, we could proceed according to 
the following219 to construct the concentration unit : nanomol ar : 

                                                        
216 Figure 18 has been drawn in the "functional EER" model language first encountered in section 3.2.5. The 
original Figures of Fowler are drawn in "crow-feet notation", and on his home page (Janicijevic and Fowler 
2001) they are available in UML. For clarity the attributes name, hei ght , and amount  are drawn as explicit 
functions from user-defined types to literal data types. 
217 In by-passing, we may note that ”AtomicUnit”  is not a suitable name in a database for the natural sciences. 
Atomic units is a system of units often used in quantum mechanics and particle physics instead of the metric 
system! 
218 The solution in Figure 20 closely resembles the "Composite" design pattern (Gamma et al 1995; Grand 1998). 
However, that pattern is used to build whole-part hierarchies, with no sharing of "parts" between "wholes". In 
contrast, a unit (e.g. metre) could potentially be used by many derived units (e.g. m2, m/s, dm).  
219 1 dm3 = (1 m * 0.1 dm/m)3 = 0.001 m3; 1 molar = 1 M = 1 mol/dm3; 1 nM = 10-9 M. We choose to 
consistently first apply conver si onRat i o and then power . 
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uses( : deci met er )  = < : met er ,  1,  0. 1 > 
uses( : dm3)  = < : met er ,  3,  0. 1 > 
uses( : mol ar )  = bag(  < : mol ,  1,  1 >,  < : dm3,  - 1,  1>)  
uses( : nanomol ar )  = < : mol ar ,  1,  1. 0e- 9 > 

Unit

BaseUnit DerivedUnit

1..*
uses

power

conversionRatio

name

0..*

 

Figure 20. A schema for units, including conversion and compound units. 

Note that in Figure 20 the function uses  maps Der i vedUni t  onto the ”abstract”  type Uni t , 
not onto BaseUni t . I.e., we may define a derived unit in terms of other derived units. During 
this definition care must be taken that no circular paths are constructed, and it will be more 
work to follow the path from a derived unit all the way to its constituent base units than in 
Figure 19. However, an advantage is that it is easy to define a new derived unit, even though 
it may be "far away" from the base units (cf. :nanomol ar  in the example above).  

In the prototype all units are treated equally, no difference is made between base units and 
derived units. One of the schemas above should be implemented as soon as we want the 
database to do more general calculations than unit conversions. 

An example of when we need a schema with compound units is when we want to be able to 
do arithmetics with quantities for different properties. It is easy to construct a  method for 
adding two quantities of  the same physical property, e.g. adding (15 cm) to (1.2 dm), and this 
is done for the prototype. However, if we wish to be able to multiply two quantities and let the 
database return an answer with correct unit we need compound units: 
: t ot al _amount  = <0. 00102, : mol > + (  <4. 02, : gr am> /  <432. 3, : gr am_per _mol > )  

8.1.7 Accuracies and Error  Estimates 

In science the accuracy of the recorded value is often important. For example, there is a 
significant difference if we say that the concentration of a solution is 0.50 nanomolar or 0.500 
nanomolar (nM). In the latter case we know the concentration of the solution to a ten-fold 
higher accuracy220. Even better221 is of course if we explicitly include an error estimate and 
give the concentration as (0.500 ± 0.007) nM. To further complicate things it is not 
uncommon that the estimated error is asymmetric, e.g. 0.007

0.003-0.500 + nM. These considerations 

are even more important in statistical data analysis, where we could need to describe not only 
the mean of a distribution, but also its variance, skew, and kurtosis. 

Once we have introduced the type Quant i t y  (in some way similar to Figure 18) it is 
straightforward to represent error estimates of individual measurement values. Easiest is to 
add a real attribute er r or Est i mat e to the data type Quant i t y, with the understood 
assumption that amount  and er r or Est i mat e are given in the same unit. This has the 

                                                        
220 The quantity 0.50 nM is given with two significant digits, and 0.500 nM with three. 
221 Some physicists claim that having a measured value without an error estimate is no more worth than having 
no measured value at all. 
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disadvantage that it does not tell how the error was estimated, i.e. if it is a known constant of 
the measurement process, the variance of a series of measurements, or something else. 

A bit more elaborate would be to create a separate data type Er r or Type, to describe error 
estimates more generally. With the schema of Figure 21 it is even possible to have several 
error estimates for a single measurement value. 

Quantity

amount

ErrorEstimate ErrorType

amount

1..1 1..10..* 0..*

unit unit

estimated_
error

type_of_
error

 

Figure 21. A schema for measurement errors. 

No error estimates have been implemented in the prototype database, but the schema in 
Figure 21 would be easy to implement once the properties of the type Er r or Type have been 
established. Note, however, that it is one thing to implement a schema to tag each quantity 
with one or several error estimates, but it is quite another thing to use these errors in 
arithmetic calculations222. 

This is an area worth more work. We would indeed like a proteo-chemometric database to be 
aware of accuracies, if not error types. Thus, the addition of 0.50 gram and 0.3012 gram 
should result in 0.80 gram (not 0.8012 gram!). Similarly, adding 1.0 microgram to 1.0 
kilogram should result in 1.0 kilogram (not 1.000001 kilogram!). 

Finally, we may note that the way Amos II displays real numbers have no relation to the way 
we store them in the database. For example, 1.0e6 and 1.0e5 will be displayed as 1E+06 and 
100000. 0, respectively. This is worth remembering, and with a graphical user interface, e.g. 
written in Java, the programmer will have better control of how numbers are displayed. 

8.1.8 Proper ties and Unit Types 

A subject which Fowler (1996) does not discuss is how we can know which physical property 
the unit is used for. If we have an attribute hei ght ( Per son)  it is easy to understand what the 
quantity 1.80 meter means. Similarly, if a quantity is associated with an observation, which in 
turn is associated with a property, the meaning of the quantity is clear. But these are both 
examples of data already stored in the database. When the user shall insert a quantity in the 
database, how do we prescribe which units that are suitable for the property mass?  

A relatively simple solution is to put a relationship between the types Uni t  and Pr oper t y , in 
Amos II as a function pr oper t y( Uni t ) - >Pr oper t y. As long as we don't have many 
properties in the database this will work fine, and probably the approach only gets into 
problems when there are several properties having the same set of units223. Since this could be 
a problem, e.g. when it comes to different properties using molar, molar-1, and s-1, we 
introduce a type Uni t Type, see Figure 22.  

                                                        
222 Statistics may tell us how to add two values with standard deviations to give a new value with standard 
deviation, but to add one quantity with one error type to another quantity with another error type is considerably 
harder, and probably impossible to do in a general way. 
223 E.g., the physical properties work and torque both have the SI unit Nm (Newton meter). 
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PropertyUnit
0..*1..1

UnitType
1..1

name name name

usestype
0..*

scaleFactor
 

Figure 22. A schema for grouping sets of units, and for coupling these to properties. 

With this solution we get great flexibility, it is easy to keep track of which units that ”belong 
together”  and can be converted to each other. The scale factor is a number used for converting 
from one unit to another224. As an example, assume we wish to convert the quantity 9.5 dm to 
centimetres. First of all, both the units : deci met er  and : cent i met er  belong to the UnitType 
: l engt h, so we may converted between them. Next we find that scal eFact or ( : deci met er )  

= 0. 1 and scal eFact or ( : cent i met er )  = 0. 01. The correct new value is 9.5*(0.1/0.01) = 
95. For each Uni t Type there will be one ”base unit”  with scale factor 1.0, typically one of the 
SI base or derived units. (For concentration the unit molar has scale factor 1.0.)  

8.1.9 Concentrations 

Since the database prototype is developed for the domain of proteo-chemometrics, 
concentration is an important concept. A problem is that there are many different meanings of 
the term ”concentration” . What we have used so far is also called ”molarity” , from the unit 
molar (mol/dm3). I.e., the molarity of a solution of solute A in solvent S is the amount of A 
divided by the volume of the solution. In physical chemistry it is often convenient to work 
with ”molality”  (unit: molal (mol/kg)), which is the amount of solute A divided by the mass 
of solvent S. Molality is also a concentration, and many other exist (e.g. mole fraction, mass 
percent, volume percent225).  If we are dealing with dilute water solutions the molarity and the 
molality are approximately equal, but this is not generally valid. Thus, there is no single 
conversion factor between molarity and molality226. 

In Figure 22 we have constrained each Pr oper t y  to have a single Uni t Type. This enables us 
to ask questions of the kind ”which is the base unit for the property dipole moment?”. Thus, 
we cannot have two Uni t Type objects for concentration. Instead we make the choice that 
concentrations in the prototype are given in some unit of type molarity227. 

For the property solubility the same type of problem arises as for concentration. Some data 
sources give the solubility of substance A in solvent S (typically water) as the mass of A that 
dissolves in 100 gram of S (at a specified temperature). Other data sources instead takes the 
mass of A that dissolves in 100 millilitre S. Since solubilities are usually only given with one 
or two significant digits, the two numbers will in practise be the same for the solvent water228. 

                                                        
224 Note that Figure 22 assumes that scale factors are exact. There is no error estimate associated with a scale 
factor. 
225 See any textbook on general chemistry, e.g. (Silberberg 1996) for a more detailed explanation. 
226 Actually there is not a single conversion factor between molarity and molality even for a given solution. The 
problem is that the molarity depends (to a very small degree) on the temperature, while the molality does not. 
However, a discussion of this leads us far into the subject of physical chemistry. 
227 I.e., in Amos II we have the following stored function:  uses( : concent r at i on)  - > : mol ar i t y, where 
: mol ar i t y  is an object of type Uni t Type, and : concent r at i on is an object of type Pr oper t y . 
228 The density of water is (with two significant digits) 1.0 g/ml from 5 °C to 30 °C. 
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8.1.10 A Database Schema for  Quantities and Units 

Figure 23 shows the database schema for quantities and units that has been implemented in 
the prototype. The type Obser vat i on is described further in section 8.3229. Note that some of 
the features discussed above have not been implemented, e.g. error estimates and the concept 
of compound units.  

PropertyUnit
0..*1..1

UnitType
1..1

name name name

usestype
0..*

scaleFactor

Quantity Observation dataquantity

unit

amount

1..1

1..1

1..1

1..1

0..*

0..*

 

Figure 23. Implemented database schema for quantities and units. 

In the schema diagram of Figure 23 several types have an attribute name. These attributes are 
implemented as keys in the Amos II prototype. E.g., the name of a unit is unique – there can 
be no two units with the same name.  

An implementation according to the schema of Figure 23 has the following advantages: 

• It can handle conversion between units belonging to the same Uni t Type,  

• it is easy to extend to new units (each unit is an instance of the type Uni t ), and  

• it can handle additions and subtractions of quantities given in different units (as long as 
the units belong to the same Uni t Type).  

However, the schema does not keep relationships between dimensions, to accomplish this 
some variant of compound units need be implemented. The representation of units is not 
particularly compact (see Hamilton 1996). 

8.1.11 The Quantity Type Revisited 

The type Quant i t y  is implemented in AMOSQL with the following interface230: 
t ype 
 Quant i t y  
 

                                                        
229 For example, this type will  tell us what it is we observe (The concentration of which l igand? The volume of 
which assay?), and how we have observed it (with apparatus X, data from reference Y). 
230 This and other interfaces listed in the Thesis are not complete. Only the (subjectively) most important or 
interesting methods and functions are included. ”Methods” are functions mapping objects of type Quant i t y  
onto a single type, while "functions" are Amos II functions with several arguments or tuple results. (The division 
into methods and functions is taken over from goovi , a graphical browser for the Amos II system (Cassel and 
Risch 2001).) Methods and functions may both be Amos II stored or derived functions, e.g. 
amount ( Quant i t y )  is a stored function, but t oSt r i ng( Quant i t y)  is a derived function. ”Constructors”  
are functions intended for object creation, similar to constructors in Java and other object-oriented languages. 
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met hods 
amount (  Quant i t y  q key )  - > r eal  [ st or ed]  
uni t (  Quant i t y  q key )  - > Uni t  [ st or ed]  
t oSt r i ng(  Quant i t y  q )  - > char st r i ng  

 
f unct i ons 
  / *  uni t  conver si on * /  
 conver t (  Quant i t y q,  Uni t  u )  - > r eal  
 conver t (  Quant i t y q,  char st r i ng uni t Name )  - > r eal  
 
  / *  ar i t hmet i cs,  wi t h choi ce of  r esul t  uni t  * /  
 pl us(  Quant i t y  q1,  Quant i t y q2,  Uni t  r esul t Uni t  )  - > Quant i t y 
 mi nus(  Quant i t y q1,  Quant i t y  q2,  Uni t  r esul t Uni t  )  - > Quant i t y  
 
  / *  ar i t hmet i cs,  r esul t  gi ven i n uni t  of  q1 * /         
 pl us(  Quant i t y  q1,  Quant i t y q2 )  - > Quant i t y  
 mi nus(  Quant i t y q1,  Quant i t y  q2 )  - > Quant i t y  
 
  / *  equal i t y of  Quant i t y obj ect s * /  
 equal (  Quant i t y q1,  Quant i t y  q2 )  - > bool ean  
 
  / *  compar i sons * /  
 l essThan(  Quant i t y  q1,  Quant i t y q2 )  - > bool ean 
 gr eat er Than(  Quant i t y q1,  Quant i t y  q2 )  - > bool ean 
 l essThanOr Equal To(  Quant i t y q1,  Quant i t y  q2)  - > bool ean  
 gr eat er ThanOr Equal To(  Quant i t y  q1,  Quant i t y q2 )  - > bool ean 
 
const r uct or s 
 cr eat eQuant i t y(  r eal  amount ,  Uni t  u)  - > Quant i t y  
 

A few of the functions will be demonstrated in Appendix B231. Note that the second pair of 
functions pl us  and mi nus in the listing are overloaded on the corresponding native Amos II 
functions (which take numbers or charstrings as arguments). We could also overload abs, 
max , and mi n, but without a framework for compound units we cannot implement t i mes or 
di v . Finally, it could be useful to overload a few aggregation functions, e.g. sum and 
aver age.  

The interfaces of Uni t  and Uni t Type are not listed here, but one important point is that Uni t  
objects should be created with the ”constructor”  

cr eat eUni t ( char st r i ng uni t Name, r eal  scal eFact or , Uni t Type ut )  - > Uni t   
 

which assures that the database is not populated withv equivalent units. The function 
cr eat eUni t  checks that the unit does not already exists under the same or another name (but 
the same unit type and scale factor). On the other hand, since name is a key for Uni t  the 
Amos II system will throw an error if we try to create a unit with name “m”  for molality if the 
name “m”  already is in use for meters.  

8.2 Data Ser ies 

In many cases it is not a single measurement that is interesting, but instead a series of data 
points, all referring to the same property. Typical examples from science are different kind of 
spectra. For example, an infrared spectrum may record the percentage of infrared light 
transmitted through a sample for a large number of different frequencies232. Other examples 
                                                        
231 equal To( Quant i t y , Quant i t y) - >bool ean would be more in line with the naming conventions of 
the Java collections framework. However, this caused a strange overload error in some of the test scripts, 
probably due to a bug in Amos II.  
232 IR spectra are usually measured in % transmitted light intensity versus wavenumber (frequency divided by 
speed of light). 
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are time series, e.g. how stock exchange rates change over a day or over a year. For a 
competition experiment in a binding assay, the concentration of bound radioligand varies with 
the concentration of competitor ligand.  

One thing these examples have in common is that one particular point taken alone is of 
limited interest, and that it is often useful to plot the data in an xy-diagram. We need to see 
quite a range of an infrared spectrum in order to identify the chemical compound, we need to 
see the trends (and understand them) in order to make money on the stock exchange, and for 
the competition binding experiment we need a series of points to make a reasonable fit to 
some model of the binding interactions. 

In a data series each data point contains the same kind of data. Such data series will typically 
be stored as columns in an Excel sheet (see Figure 24). There are several alternative ways to 
represent such data series. Which is most appropriate will depend on how strong the coupling 
is between the data points, on the data model of the DBMS, and on the kind of applications to 
use the data. In Amos II, a suitable data type to use is vect or , which makes it possible to 
represent an ordered sequence of numbers (or any objects).  

8.2.1 Dependent and Independent Var iables 

Typically, the kind of data described above have one independent variable and one dependent 
variable ("x and y"). For the competition binding experiment the amount of radioligand bound 
to receptors at cell membranes depend on how much of competing ligands is present in the 
assay.  

It is  also possible to consider situations with several dependent variables (a meteorologist 
measuring temperature, atmospheric pressure, humidity et cetera at a series of altitudes) and 
situations with several independent variables (the same meteorologist measuring the 
temperature for a series of points in space (different longitude, latitude, and altitude).  

Binding experiments usually have only one dependent and one independent variable, i.e. a 
single radioligand is present in the assay, and the concentration of a single (labelled or non-
labelled) ligand is varied. However, the prototype described in this Thesis has been designed 
to accommodate several dependent and independent variables. This decision was taken in 
order to accommodate for other types of experiments, and also possible new future binding 
experiment designs. 

An Example of a Series of Measurements 

Let us consider a competition binding experiment. In principle we have one independent 
variable, the concentration of the competitor (in BindAid called ”varying” ), and one 
dependent variable, the concentration of bound radioligand (called ”bound”). In practice, we 
will often have two or more ”parallel”  experiments in order to get better statistics. Each of 
these parallel experiments have the same experimental set-up, and the same series of varying 
ligand concentrations (the same independent variable). However, the values in the series of 
bound ligand concentrations may differ slightly due to statistical errors233. 

Figure 24 shows the beginning of such a data series, taken from a spreadsheet. Here we have 
two parallel experiments. There are three columns of raw data (”varying”, 2* ”DPM”) and 
one column of derived data (”bound”  = average(DPM) *  conversion factor). 
                                                        
233 If one of the data series has a systematic error it was in fact not performed in exactly the same way as the 
others, and hence they were actually not parallel. Thus it is important to have the same experimental procedure, 
and experimentator, for parallel experiments.  
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No. Varying Bound DPM DPM
1 5000 0.01125 140 130
2 1000 0.01104 135 130
3 200 0.02000 345 135
4 40 0.01542 190 180  

Figure 24. Example data from competition binding experiment. From the BindAid manual (Wikberg). 

There is a choice as to whether we store raw data (counts per minute, or disintegrations per 
minute) or calculated concentrations for bound ligand concentrations. From a database 
perspective it would not be customary to store both of them since a simple factor can be used 
to convert between the two. One objective with the database system to be developed is that it 
should be able to analyse the same data over and over again. Hence, I have provided the 
possibility to store the raw DPM data in the prototype system. Of course, it is equally possible 
to store averaged concentrations, but both should not be stored. In the prototype it is possible 
to take raw data (one or several DPM columns in the spreadsheet) and by a simple function 
invocation convert them to an averaged concentration data series in units of nanomolar (nM). 
This averaged series will not be stored, but calculated as needed. 

In practise, experimental raw data will not be stored in the main-memory mediator, but in 
some data source on disk, e.g. in a relational database or as XML files. In this case the 
translator which imports the data could be designed to either convert all concentration data 
series to the units nanomolar, or keep raw data. 

8.2.2 Representing a Ser ies of Measurements 

A solution often encountered in science is to represent the kind of data series shown in Figure 
24 as a sequence of (x,y) points, or (x, y1, y2,…, ym) points if we wish to have m dependent 
variables in the same experiment (2 for Figure 24). A data series would thus be represented by 
a vector of (m+1)-tuples. 

Measurement Points 

If we instead use an object-oriented approach, we get a schema diagram as in Figure 25. Each 
row now corresponds to a Measur ement Poi nt . We constrain all these measurement points for 
the bound series to have the same unit, and those for the varying series to have the same unit. 

ConcBindingExperiment MeasurementPoint
1..*1..1

concVarying
{sequence}

consists_of

otherData?

concBound

{sequence}

unit_
varying

Unit

1..1

0..*0..*

1..1

unit_
bound

 

Figure 25. The Measur ement Poi nt  approach. 

The schema above is valid if there is only one varying concentration per Experiment. The 
double rings around concBound mean that concBound is a multivalued attribute of 
Measur ement Poi nt , i.e. that we may store values from parallel experiments.  
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Data Series 

We now turn to another approach, to let each column of Figure 24 correspond to a 
Dat aSer i es. For example, the column named ”varying” in Figure 24 will correspond to one 
Dat aSer i es object, and this object will have an attribute val ues  containing four real 
numbers in a specified order. In Amos II we implement this as a vect or  of real numbers. 
Obviously, one constraint we need to take care to implement is that all Dat aSer i es belonging 
to an Exper i ment  should have equally long val ues-vectors. 

Experiment
1..*1..1

{sequence}

DataSeries

nameunit

valuesconsists_of

 

 Figure 26. The Dat aSer i es  approach. 

The schema presented above fails to work nicely if one Dat aSer i es has missing points, if the 
unit is changed in the middle of the series (from nM to µM), or if some “protocol variable” is 
changed (e.g. detector amplification). For now, we assume the latter two things never 
happen234. 

Points That are Not Valid 

The “missing point problem”  is closely connected to the situation when the experimentator 
knows that one point is invalid (due to some experimental mistake). For example, suppose we 
want to average the two data series { 34.0, 35.0, 38.0, 50.0, ...}  and { 36.0, 32.0, 523.0, 
45.0,…}  and that it is known that point 3 in the second data series is (for some reason) 
incorrect. Then it should be possible to mark exactly this value as “non-valid”, so that it is not 
used in the averaging. 

Thus, we may include a Boolean flag val i d. (If a data point is missing we may arbitrarily put 
the value to zero and mark the point invalid.) This approach could also be of advantage if we 
would like to be able to store error estimates of individual values235.  Similarly, we could label 
each point with a comment (text), see Figure 27.  

1..*
DataSeries

valid

DataPoint

value
{sequence}

comment

errorconsists_of
1..1

 

Figure 27. Explicit Dat aPoi nt  objects, with boolean val i d flags. 

8.2.3 How Data Ser ies are Implemented in the Prototype 

The solution chosen for the prototype is a hybrid of the last two approaches. We will handle 
the data point values as sequences of real numbers (val ues), and indicate which (if any) 
points that are non-valid by including their indexes in the set nonval i ds . 
                                                        
234 In practise, such a situation would be handled by splitting the data into two distinct Dat aSer i es  objects, 
one with detector setting A and one with detector setting B. The person evaluating the experiments can of course 
sti ll make the decision to analyse both these data series together. Depending on the application using the 
database it could instead be more convenient to split the data into two distinct Exper i ment  objects.  
235 I.e., this is necessary if we have some direct measure of the error, not just a statistical model. 
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Experiment Protocol
1..*1..1 0..*

{sequence}

DataSeries

name values

data

nonvalids

Propertyproperty
1..1

0..*
Unit

0..*

made_
under

1..1

unit
1..1

 

Figure 28. The schema for Dat aSer i es  implemented in the prototype database. 

A "normal" Exper i ment  object would be linked to two Dat aSer i es  objects, one for the 
independent variable, and one for the dependent. 

In Figure 28 we have introduced relationships from the type Dat aSer i es  to the types 
Pr oper t y and Pr ot ocol . The former of course indicates which physical property the data 
series records (e.g. time), and the latter is a specification of the experimental set-up. For data 
series of bound radioligand concentrations we could for example record information about 
which beta-counter detector that was used. This kind of information is obviously possible to 
get only from some laboratories. 

Nonvalid Data Points 

In the Amos II prototype of PAQS the attribute nonval i ds is implemented as a bag236. 
Obviously a data point should be valid or non-valid, not doubly non-valid, so a set would be 
the appropriate data structure. The work-around in the prototype is to use two functions 
i nval i dat eDat aPoi nt (  Dat aSer i es,  i nt eger  )  and val i dat eDat aPoi nt ( Dat aSer i es,  

i nt eger )  that should be used instead of directly invoking AMOSQL commands (e.g. 
i nval i dat eDat aPoi nt ( : ds, 3) ;  instead of add nonval i ds( : ds) =3; ). These two functions 
check array bounds, so that we do not store an index in nonval i ds  to an element that does not 
exist in the vector val ues. Furthermore, i nval i dat eDat aPoi nt  only accepts valid data 
points, effectively making nonval i ds a set as long as no elements are added to the bag 
directly. 

The dependency (or coupling) between various attributes to a Data Series object is rather 
strong. Some precautions have been made to avoid problems. For example, the function 
r emoveDat aPoi nt ( Dat aSer i es,  i nt eger )  will not only remove a data point from the 
vector val ues , but also try to remove the point from the bag nonval i ds. Furthermore, those 
integers in nonval i ds  that are larger than the index of the removed data point will be 
decremented in order to reflect the disappearance of the data point. 

However, the prototype is still full of “ loopholes” . E.g., it is perfectly possible to first define a 
data series with 10 values, then invalidate point number 9, and then reassign val ues   to 
another vector (say of length 7). If this reassignment is made by executing an AMOSQL 
command, no automatic concomitant reassignment if the bag nonval i ds  will be performed. 

                                                        
236 A mathematical bag is an unordered collection of objects. In contrary to a mathematical set, a bag may 
contain duplicates. 
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8.2.4 Concentration Data Series 

Each data series representing a varying ligand concentration clearly needs to be associated 
with the corresponding chemical entity in some way. A further peculiarity with concentration 
data is that we may wish to store "raw" detector readings from some detector which does not 
display concentration units. In the BindAid manual (Wikberg 2001) this is the case for all 
radioligand data, where concentrations are entered as beta-counter readings (in the units 
"disintegrations per minute") and then converted to nanoMolar.  

We could say that a special thing for a data series representing beta-counter readouts or other 
"raw" concentration data is that there should be a way to convert the values to nanomolar 
concentration units. We could either consider a "DPMConcDataSeries" subtype of ConcDat a-

Ser i es (left part of Figure 29), or a "RadioDataSeries" (to the right in Figure 29). Other kinds 
of data series do not need to be subtypes of Dat aSer i es. E.g. a time data series from a time 
binding assay is simply a sequence of real values measured in some unit of time.  

ChemicalEntity

ConcDataSeries
0..*

DataSeries

DPMConcDataSeries

1..1

ligand

ChemicalEntity

ConcDataSeries
0..*

DataSeries
1..1

ligandRadioDataSeries LabeledCE

RadiolabeledCEradioligand

0..*

1..1

 

Figure 29. Two alternative ways of representing data series for concentrations.  

The solution chosen for the prototype is to subtype Dat aSer i es to ConcDat aSer i es , but not 
further. We treat beta-counters simply as a special kind of concentration detectors. Since we 
know the conversion factor from DPM (disintegrations per minute) to nM (nanomolar) a 
“DPMConcDataSeries”  can be handled just as a ConcDat aSer i es. We simply introduce an 
new unit of concentration for each conversion factor237. 

One disadvantage by the simplification made here is that we loose some of the domain 
semantics. We know that a "RadioDataSeries" must pertain to a radiolabelled chemical entity, 
but if we have only ConcDat aSer i es , we cannot constrain this to be true. I believe there is 
still an advantage to keep this part of the schema relatively simple and flexible. Therefore, I 
have chosen to not make any other subtypes of Dat aSer i es than ConcDat aSer i es . 

                                                        
237 Appendix 1 of the BindAid manual (Wikberg 2001) describes how to calculate a conversion factor from dpm 
to nM: f = 2.22 * a * V, where a is the specific activity of the ligand (in the unit Curie/mmol), and V the assay 
volume (in µl). The conversion factor so obtained has the unit dpm/nM, and by dividing a "dpm value" by the 
factor we get the corresponding "nM value". Note that the conversion factors implemented in the prototype are 
defined in the opposite way: By multiplication with a factor 0.001 we turn a length measured in meters into 
millimetres.  

If we know the conversion factor in the BindAid style it is easy to calculate a scale factor to be used in the 
schema of units described in Section 8.1.6, as long as we remember that the base unit for concentration is molar, 
not nanomolar. For a conversion factor of 13486 nM/dpm we get the scale factor as t i mes( di v( 1. 0,  
13486. 0) ,  1. 0e- 9) ;  
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8.2.5 Averaging and Conversion of Data Ser ies 

For a database of scientific data it is important to have good primitives for manipulating data. 
For single numbers, Amos II has the usual arithmetic operations, and as discussed in section 
8.1.11 the prototype is implemented with functions for addition and subtraction of quantities 
belonging to the same unit type (but not necessarily the same unit).  

When we deal with data series in the form of Amos II vectors we obviously want some means 
for vector manipulation too. The native vector implementation in Amos II allows the user to 
retrieve an element from the vector (e.g. val ues( : myDat aSer i es) [ 2]  to get the third 
element), but it is not possible to easily reassign vector elements. In the prototype, the 
function updat e( Dat aSer i es ds,  i nt eger  i dx,  r eal  new)  accomplishes this, but the 
implementation in AMOSQL is not very efficient (a repeated concatenation of vector 
elements). 

A few vector operations have been implemented as foreign functions by methods in the Java 
class Pr ot 1Vect or  (see Appendix C). These methods are used when a data series is converted 
to a new unit (method Pr ot 1Vect or . scal eVect or ), and in a few other places. I believe 
additional operations should be implemented as part of the core Amos II system in order to 
get a more full-feathered scientific database engine. For larger applications the speed of these 
operations will be important.  

An example of when it is useful to be able to average a set of data series is when an 
experiment has two parallel "DPM" data series of beta counter read-outs, and we want to 
convert them to a single data series in units nanomolar. The val ues vector for a new 
(averaged) data series may be obtained with the function aver age_dat aser i es( bag b,  

Uni t  u)  - > vect or  of  r eal . Some useful utility functions which make the averaging 
easier have been implemented: 

• the function aver age2nM( bag)  - > vect or  of  r eal  which takes a bag of Dat aSer i es  
as argument and calculates their average in nM units,  

• aver age_bound( Bi ndi ngExper i ment , Chemi cal Ent i t y)  - > vect or  of  r eal  which 
averages (in nM) all "bound" data series for a specified Bi ndi ngExper i ment  and 
Chemi cal Ent i t y , and  

• aver age_bound( Bi ndi ngExper i ment )  - > <char st r i ng,  vect or  of  r eal > which 
averages (also in nM) all "bound" data series for each distinct ligand in a specified 
Bi ndi ngExper i ment . 

The implementation of these functions is described in more detail in Appendix C.3. 

8.2.6 Inter face of Type DataSeries 

The interfaces of the types Dat aSer i es  and ConcDat aSer i es  are available as supplementary 
material. Some useful functions, partly mentioned above, are listed below. By using the 
constructors we ascertain that the vectors val ues is initialised to an empty vector, { } , and not 
NIL. 

f unct i ons 
 i sNonVal i d(  Dat aSer i es,  i nt eger  i ndex )  - > bool ean 
 i sVal i d(  Dat aSer i es,  i nt eger  i ndex )  - > bool ean 
 i nval i dat eDat aPoi nt (  Dat aSer i es,  i nt eger  i ndex )  - > bool ean  
 val i dat eDat aPoi nt (  Dat aSer i es,  i nt eger  i ndex )  - > bool ean  
 addDat aPoi nt (  Dat aSer i es,  r eal  val ue )  - > bool ean  
 updat e(  Dat aSer i es,  i nt eger  i ndex,  r eal  new_val ue )  - > bool ean  
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 r emoveDat aPoi nt (  Dat aSer i es,  i nt eger  i ndex )  - > bool ean  
 conver t _ser i es(  Dat aSer i es,  Uni t  )  - > vect or  of  r eal  
 
const r uct or s 
 cr eat eDat aSer i es(  char st r i ng name )  - > Dat aSer i es 
 cr eat eConcDat aSer i es(  Chemi cal Ent i t y  l i gand )  - > ConcDat aSer i es 

8.3 Obser vations, Proper ties, and Environments  

In this section we introduce the types Envi r onment  and Obser vat i on. They both take their 
origin in measurements of physical properties, either taken from the literature, or performed 
by the submitting laboratory. In section 8.1 we saw how measured values are represented as 
objects of the type Quant i t y, where each quantity has an "amount" and a unit. The type 
Obser vat i on is used to link a quantity to a property (what was measured), a protocol (how 
the measurement was made), and a reference (who made the measurement and where has it 
been published). 

8.3.1 Observations are Data for Proper ties 

In Figure 30 we let a function dat a( Pr oper t y)  - > Obser vat i on relate properties and 
observations. The alternative is to have a function made_f or ( Obser vat i on)  - > 

Pr oper t y
238. Although the choice in  Figure 30 might seem odd for properties such as 

temperature and pressure (having no associated chemical entities), it is quite convenient when 
we deal with binding affinities (an "intensive bimolecular property", vide infra)239.  

ObservationProperty

MolecularProperty

BiMolecularProperty

ChemicalEntity

data

data

data

0..*

0..* 0..*

0..1

0..1

0..1

0..1

0..2

 

Figure 30. Observations and properties. 

In Figure 30 we have subtyped Pr oper t y to Mol ecul ar Pr oper t y  and Bi Mol ecul ar -

Pr oper t y. Here we make a difference between intensive and extensive properties (vide infra), 
and we only include intensive properties as objects of these two subtypes.  

                                                        
238 If that approach had been chosen the title of this section would have been: "Observations are Made for 
Properties". 
239 Obviously, it must be possible to navigate easily in both directions. This is true with the query language 
AMOSQL, but to make the navigation even easier, both the functions discussed were implemented (dat a as a 
stored function, and made_f or  as a derived function). 
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Interface of Observation 

The interface of the implemented type Obser vat i on is available as supplementary material, 
but a few functions for facilitating access of stored data are worth mentioning here. There are 
three stored functions corresponding to the three dat a relationships in Figure 30 : 

dat a(  Pr oper t y nonkey )  - > Obser vat i on key  
dat a(  Mol ecul ar Pr oper t y  nonkey,  Chemi cal Ent i t y )  - > Obser vat i on key  
dat a(  Bi Mol ecul ar Pr oper t y  nonkey,  Chemi cal Ent i t y,  Chemi cal Ent i t y )   
- > Obser vat i on key 

The derived functions made_f or ( Obser vat i on)  - > Pr oper t y  and made_f or _ent i t y(  

Obser vat i on )  - > bag of  Chemi cal Ent i t y may be used to get the relevant property and 
one/two chemical entities, respectively. Finally, there is a whole range of functions al l Obs, 
with different arguments, each returning a bag of observations as the result of an AMOSQL 
query. E.g., al l Obs( : af f i ni t y)  would return all affinity observations, while al l Obs(  

: af f i ni t y ,  : al f a2A)  would return all affinities including the chemical entity : al f a2A . 

Intensive and Extensive Properties 

Intensive properties are those properties that do not depend on how much of the sample we 
have, e.g. pressure, temperature, concentration, and molecular weight. Extensive properties 
are mass, volume, energy content et cetera. If we take a sample of 1 dm3 water and divide it 
into two beakers containing 0.5 dm3 each, the temperature in both beakers are the same as in 
the original sample, but the volume in each beaker is less than the original sample volume. 

The molecular properties we store are intensive (e.g. dipole moment). Extensive properties 
(e.g. mass) certainly may belong to a specific ChemicalEntity, but they also belong to a 
sample or a some preparation procedure, which we have not yet tried to model. It is likely that 
a convenient way to model a sample preparation240 will include observations linking intensive 
properties to chemical entities. 

8.3.2 Problems with the Proper ty Hierarchy 

Some more work is needed on modelling properties. The name "MolecularProperty" suggests 
properties of the kind molecular weight, dipole moment, solubility et cetera, i.e. properties 
one expects to find in a tabulation of chemical data for different substances. This was also the 
original intent, and it is for these properties functions of the type dat a( Mol ecul ar Pr oper t y,  

Chemi cal Ent i t y)  - > Obser vat i on is most natural.  

When the prototype was implemented it was found convenient to include all intensive 
properties related to chemical substances in the extent of Mol ecul ar Pr oper t y , i.e. also 
concentration. However, it is evident that a concentration is not a "molecular" property in the 
same way as a dipole moment. The concentration relates to a specific situation (a sample), 
while the dipole moment is something valid for all samples of this substance (provided they 
have the same state).  

Furthermore, there is a problem of terminology. The property "volume" could refer to a 
sample volume (an extensive property not belonging to a particular chemical substance), or to 
the volume of solvent used in a sample preparation (also extensive, but clearly related to a 
particular substance).  

                                                        
240 "Take 1.3 mil ligram of substance A and dilute it with solvent B to a volume of 100 mill ili tres." 
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Fixed Ligand Concentrations 

Taken “to the extreme” , the approach with observations would suggest that we also store the 
fixed ligand concentrations of binding experiments (see section 8.7) as Obser vat i on objects. 
Then the f i xedLi gands  relationship between Exper i ment  and Chemi cal Ent i t y  (section 8.7) 
could be implemented in the database as a derived function. However, there is a conceptual 
difference between a bioactive compound that is binding to the receptor and a Mg2+ ion. 
Hence, the two cases have been kept apart. The function f i xedLi gands will be used for the 
former, while the latter will be stored as part of an environment (next section). 

8.3.3 Environments 

An environment consists of a collection of observations. These are such data that are 
associated with an assay or an experiment, but not stored as attributes to it. For example, the  
person who performed an assay is stored directly with the Assay object while the 
concentration of an added alkaline earth metal ion would be stored as an Obser vat i on object 
under the assay's Envi r onment . In some respect the Envi r onment  is a description of the 
experimental conditions. However, much of such data (e.g. experimental procedures) should 
be stored under Pr ot ocol , which is meant to be a more “standardised”  way of describing how 
the assay was prepared241. Most environmental conditions are stored under Assay, but a few 
may suit better under Exper i ment . 

Experiment

Observationconsists_ofEnvironment

0..1

0..*

1..* 0..*

Assay
0..1

0..*
environment

environment
name

 

Figure 31. Environments of assays and experiments. 

8.4 Binding Assays 

Binding assays are a special type of assays where the binding of one or several ligands to one 
or several binding sites (e.g. cell membrane receptors) are studied. We may perform a variety 
of different binding experiments with a binding assay, e.g. time binding experiments and 
concentration binding experiments. (A brief introduction to these aspects of drug design was 
given in section 2.2.) 

We may distinguish between time binding assays and concentration binding assays, but this is 
not necessary. Instead we do a clear separation of different kind of experiments (see next 
section). Thus, the kind of information we want to store for an assay is how, when, where, and 
by whom the assay is performed. In addition to this we store the sample volume, and for a 
binding assay we store which binding sites we expect the assay to contain, and for which 

                                                        
241 Presently, the implementation of Pr ot ocol  is the simplest possible: a name and a description, both 
character strings. Future extensions of this relies on possibilities to interface with lab computers and other 
electronic equipment. For example, if  an XML or CORBA standard schema for chemical, biochemical, or 
pharmacological laboratory experiments eventually would be agreed upon, the database type Pr ot ocol  could 
be evolved to follow this standard, and functions for importing such data could be developed. 



 
   

    
 
 90 

 

experiments it was used. Finally, we also store an "environment", which is a collection of 
observations or measurement data (see section 8.3). This gives us the EER-diagram of Figure 
32, with Figure 33 for additional details. (The types Bi ndi ngExper i ment  and Envi r onment  
will be discussed in other sections.) 

Assay

Person Laboratory

revised
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name

Revision

persondate

description

prepared_
according_to

date

prepared_
by

BindingAssay

ChemicalEntity

BindingExperimentcurves

binding_
Entity

description

entered

environmentEnvironment

Protocol

date

prepared_in

name

description

 

Figure 32. The Assay subdomain.  

8.4.1 Revisions 

The type Revi s i on is intended for information that is obtained after the assay was entered 
into the database. This could be if, e.g., it was later found that a preparation procedure does 
not accomplish exactly what was believed at the time of preparation, or if some systematic 
error has been detected. 

8.5 Protocols and Refer ences  

At the present stage of the prototype, the type Pr ot ocol  is only a text description, and it is 
used in several places, e.g. for describing the preparation of assays and for describing the set-
up of experiments. It is probable that this type could be subtyped, to get better, more 
specialised, data structures for these descriptions.  

Reference objects should hold information on where data has been published, e.g. in a journal 
article, on the Web, or in a database on CD/DVD. Presently, references are just character 
strings. There are several alternatives, but probably the modelling solution of some major data 
source, e.g. MedLine, should be followed. 

8.6 Per sons and Laborator ies 

Persons, laboratories, addresses, and countries may be described  by Figure 33. 
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Figure 33. Persons and Laboratories. 

8.7 Binding Exper iments 

As discussed in section 2.2.2, there are different kinds of binding experiments, e.g. time 
binding experiments and concentration binding experiments. The thing they have in common 
is that the dependent variable is the concentration of bound radioligand. On the other hand, 
they have different independent variables: in a time binding experiment the bound ligand 
concentration is a function of time (a kinetic experiment), while in a concentration binding 
experiment it instead depends on the concentration of some ligand (a thermodynamic 
equilibrium has been reached). 

With the description of section 2.2 as background, the diagram of Figure 34 may be 
constructed. 
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Figure 34. Conceptual schema of binding experiments.  

A few constraints that have been introduced here are: 
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• There may be several "bound_radioligand" Radi oDat aSer i es for a Bi ndi ngExper i ment . 
In practice they then refer to parallel experiments, although this is not prescribed by the 
schema. 

• A Compet i t i onExper i ment  normally has a single "varying_ligand" ConcDat aSer i es, 
but several are possible. 

• There is a single ”added_radioligand” for a Sat ur at i onExper i ment . 

• ConcBi ndi ngExper i ment s  (but not Ti meBi ndi ngExper i ment s) may have one or several 
” fixed_ligands” , additional ligands with fixed concentrations. 

• Each Radi oDat aSer i es  and ConcDat aSer i es refers to a single "ligand" 
Chemi cal Ent i t y . Thus, there are not several radiolabelled ligands giving a compound 
signal. 

8.7.1 Implementation of Binding Experiments 

When we implement binding experiments in the prototype database we will make a few 
simplifications: 

• We do not distinguish between Radi oDat aSer i es  and ConcDat aSer i es . Instead we treat 
a data series that is measured by beta-counters as any concentration data series (as long as 
we know how to convert from DPM to nM), see section 8.2.4. 

• We do not subtype ConcBi ndi ngExper i ment . The two relationships "added_radioligand" 
and "varying_ligand" are substituted by a single relationship "varying". 

• We do not subtype Ti meBi ndi ngExper i ment . 

• We introduce two types TBE_enum and CBE_enum to serve as classifiers of time and 
concentration binding experiments, respectively (vide infra). 

Figure 35 shows the stored functions in the implementation of binding experiments. The 
interfaces of the types Exper i ment , Bi ndi ngExper i ment , Ti meBi ndi ngExper i ment , and 
ConcBi ndi ngExper i ment  are available as supplementary material. Quite a few derived 
functions have been implemented in order to help the user to access relevant data, and some 
of them will be mentioned in this section. 
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Figure 35. Modified schema for experiments, used for implementation. 

”Fixed ligands”  are stored as tuples <Chemi cal Ent i t y,  Quant i t y>,  where the quantity of 
course is the fixed concentration of  the chemical entity. To add such a ligand one should use 
add_f i xed_l i gand( ConcBi ndi ngExper i ment ,  Chemi cal Ent i t y ,  r eal  concent r at i on,  
Uni t ) , which will check that the ligand is not already stored as a ” fixed ligand”  under this 
experiment242. If we want a list of all fixed ligands in an experiment, without their 
concentrations we may use the function f i xed_l i gands( Chemi cal Ent i t y)

243. 

To get the average of all bound data series for a ligand in an experiment the function 
aver age_bound(  Bi ndi ngExper i ment ,  Chemi cal Ent i t y  )  - > vect or  of  r eal  may be 
used. This function returns the resulting vector in the unit nM. 

Finally, a consistency requirement on an experiment is that all its data series should be 
equally long. This is checked by consi st ent ( Exper i ment  e)  - > bool ean. 

Views of All Data Series of an Experiment 

For an object : exp of type Exper i ment  it is trivial to find all its data series, we simply follow 
the “data”  link: dat a( : exp) ;  However, the task is not that trivial if the object’s most specific 
type is Bi ndi ngExper i ment  or further down in the hierarchy. Consider for example an object 
: t be1 of type Ti meBi ndi ngExper i ment . This object has at least two data series, exactly one 
data series representing time (t i me( : t be1) ), and one or several data series  representing 
bound radioligand concentrations (bound( : t be1) ). Thus, we need to make a union of these, 
and any possible other data series (which may be stored as dat a( : t be1) ): 

                                                        
242 I.e., we do not want ligand A to be stored twice, but we do allow several different fixed ligands. 
243 This will be useful when we want to find all  l igands involved in an experiment or assay, irrespective of 
whether they are fixed or varying. For example, this information is needed when an experiment evaluation is 
constructed (section 8.8). 
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cr eat e f unct i on al l Dat a( Ti meBi ndi ngExper i ment  t be)   
- > Dat aSer i es ds  
as   
sel ect  ds  
wher e (  ds=dat a( t be)  or  ds=t i me( t be)  or  ds=bound( t be)  ) ;  
 

Similarly, we have a function al l Dat a( ConcBi ndi ngExper i ment )  returning all data series 
for a concentration binding experiment. To allow for polymorphic calls we also define 
functions al l Dat a with arguments of  type Bi ndi ngExper i ment  and Exper i ment .  

Views of Independent and Dependent Data Series 

PAQS users will probably not work much with the concept of independent and dependent 
variables. If the need should arise we could split the function dat a( Exper i ment )  in two, or 
label it with a flag. For the types further down in the hierarchy the situation is clearer, e.g. we 
know that for objects of type ConcBi ndi ngExper i ment  independent (var y i ng) and 
dependent (bound) variables are easy to distinguish. However, there is no ” label”  explicitly 
telling an application that var yi ng is an independent variable. A situation where the question 
of independent and dependent variables will be important is when we try to automate plotting. 
E.g., a reasonable extension of the type Exper i ment  would be a function which plots its data 
series in an xy-diagram244. Clearly, we are then a bit particular about getting the independent 
variable on the x-axis. 

Further Classification of Binding Experiments 

As we have seen previously in section 2.2.2 there are different kinds of concentration binding 
experiments, e.g. saturation binding experiments and competition binding experiments. The 
same applies for time binding experiments, which can be dissociation experiments or 
association experiments. According to Figure 34 there is no difference between the types 
Di ssoci at i onExper i ment  and Associ at i onExper i ment  and their supertype Ti me-

Bi ndi ngExper i ment  (except for the classification itself), and hence there is really no need to 
implement them as three different types. 

Instead of subtyping the type Ti meBi ndi ngExper i ment  as Di ssoci at i onExper i ment  and 
Associ at i onExper i ment  it would be useful to store all time binding experiments as 
instances of Ti meBi ndi ngExper i ment , and to have a label indicating if the experiment was 
dissociation or association. This is clearly a case where an enumerated type would be useful. 
However, enumerated types are presently not available in Amos II. 

The solution chosen in the prototype is to implement the enumeration as a separate type 
“TBE_enum”, with one instance for dissociation and one for association experiments. This 
has the advantage that, in the future, the type can be extended to include some functionality. 
(For example, each object of  this type could store which Fi t Model  objects that are 
appropriate to use for curve fit analysis, if this should differ.) Another advantage of 
implementing the classification of time binding experiments by a separate type instead of by 
inheritance is that if a new kind of time binding experiment (with no additional functions) is 
encountered, it can be stored as a new instance of  TBE_enum, and the type system needs not 
be changed245. 

                                                        
244 This could be accomplished by shipping the relevant data series to an external function in the same way as 
when data series are averaged. 
245 To hard-code the experimental types (which are part of the domain logic) into the GUI, would be a poor 
solution since we would need to change the code and recompile the GUI as soon as we add an experiment type. 
This also contradicts the principle that domain constraints should be implemented in the database schema, and 
not in application programs. 
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In the case of the two types of concentration binding experiments, we see that the types 
Sat ur at i onExper i ment  and Compet i t i onExper i ment  in Figure 34 differ somewhat from 
each other. However, since we presently choose not to distinguish between Radi oDat aSer i es  
and ConcDat aSer i es  we may without problems use the schema in Figure 35, with 
CBE_enum.  

8.8 Exper iment Evaluations  

When we take a competition binding experiment and analyse it with a curve fitting program 
to get the affinity constants for all ligand/receptor pairs, we ”evaluate”  the experiment. This 
section discusses how such experiment evaluations can be modelled, and how they actually 
could be performed by the database system. 

In section 8.8.3 we temporarily depart from object-orientation. An alternative implementation 
of the ”Strategy”  design pattern will be discussed. This alternative approach is not strictly 
object-oriented, but relies on storing the name of a function as an attribute to a type. 

First of all we may note that the usual approach to perform an experiment evaluation is to take 
one experiment at a time as input to a curve fitting program. Wikberg's fit program BindAid 
can take several experiments in a ”multi-curve fit” , and the prototype database will be able to 
represent this more general case. 

Secondly, there are different kind of fit parameters. If we analyse a concentration binding 
experiment the main purpose is to get values for the affinity constants. However, usually a 
number of other parameters are determined together with the affinity constant. The prototype 
will store all these parameters, not only the fitted affinity constants. Different approaches to 
representing these different kind of fit parameters are discussed in section 8.8.6. 

Thirdly, we should consider how many of the tasks of a fit program the DBMS shall be able 
to take over. In section 8.8.1 we will see how the implemented database schema can construct 
the an appropriate set of fit parameters for a chosen "fit model", and in section 8.8.2 we will 
see how the correct weights can be calculated. Thus, it would be possible to write the fit 
algorithms as foreign functions (in Java or C) and start the fits from within the database. 
(Even better would be to make the foreign function an interface to an existing fit program, and 
not recode the algorithms.) The prototype does, however, not perform the actual fit. 



 
   

    
 
 96 

 

1..*
Experiment

date

1..*

1..1

FitParameter

person

0..*

 experiments ExperimentEvalution
1..10..*

sumSquaredRes

parameters

method

name

locked

numberOfLigands

numberOfSites

CalculationMethod model

0..*

1..1

WeightingModel FitModel

0..*

0..*

1..1 1..1

weightingParameters

{sequence}

ComputerProgram
0..*

name
name

description description

weightingParameters name

{sequence}

1..*

name

date

person

defaultParameters

{sequence}

weighting_
Model

useDefaultWPs

formula formulafitModels
1..* 0..*weighting_

Models

program

 

Figure 36. Experiment evaluations connect fit parameters with experiments and calculation methods. 

Figure 36 summarises the introduction above and will serve as starting point for the following 
sections. Objects of type Exper i ment Eval uat i on thus represent "runs" or executions of a 
curve-fitting program246. On the other hand, the details about program, fit model, weighting 
scheme et cetera are handled by the type Cal cul at i onMet hod (8.8.4). 

8.8.1 Fit Models 

A fit program implements one or several fit models, where a fit model is some equation with 
parameters. These parameters are adjusted in the fit in order to make the equation represent 
the experimental data as accurately as possible. Section 2.2.2 gave the equations for a few 
such fit models (as implemented in the fit program BindAid). However, the number of fit 
models used in different laboratories are large. It is not realistic to try to define these models 
once and for all, and it must be possible for a user to submit data to the database without 
specifying a fit model.  

Note that in the approach chosen here, objects of the type Fi t Model  represent algorithms for 
performing fits, not the results of such fits. Thus, the results of an experiment evaluation are 
not kept as attribute values in a Fi t Model  object, but as separate Fi t Par amet er  objects. 

Most fit models will have a varying number of associated parameters to fit depending on the 
number of binding sites and ligands247. For example, assume we are analysing a competition 
binding experiment which involves two ligands L1 and L2 and an assay containing one 
binding site B. We decide to analyse this experiment by the fit model called ”Bindfit”  (see 

                                                        
246 Other types of experiment evaluations are also possible, e.g. the visual inspection of a curve, but we will  not 
discuss these here. 
247 The exceptions are models which simply try to fit the experimental data to a predefined curve shape, e.g. 
exponential, logarithmic, or sigmoid. Such models, too, can be used in the prototype. 
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section 2.2.2). There are then five fit parameters: the concentration of B, non-specific binding 
constant for L1 and L2, and the affinity constants for L1/B and L2/B.  

The prototype will be able to combine a set of experiments with a fit model, and then 
construct the correct number of fit parameters. However, the prototype will not actually 
perform the fit. Instead the user may enter the fit results manually. It would be straight-
forward to extend the prototype to perform the fit too, as Amos II foreign functions. However, 
this will not be an interesting feature until there are good interfaces both for import of 
experimental data and for user interaction (graphically).  

Creating the Correct FitParameter Objects 

The behaviour which differs between Fi t Model  objects in the prototype is the way fit 
parameters are created.  The function set upFi t Par amet er s( Exper i ment Eval uat i on)  will 
return a bag with the correct Fi t Par amet er  objects for the fit model chosen. This is done in 
the following way: 

• The Exper i ment Eval uat i on object (: ee) first collects ligands and binding sites in two 
bags. (This information is of course taken from the appropriate Exper i ment  objects.) 
Then : ee calls upon its Cal cul at i onMet hod (: cm) to create fit parameters: cr eat eFi t -

Par amet er s( Cal ul at i onMet hod,  bag l i gands,  bag si t es) . 

• : cm, in turn, knows which fit model that shall be used, and calls upon the appropriate 
object : f m of some subtype to Fi t Model : cr eat eFi t Par amet er s( Fi t Model ,  bag 

l i gands,  bag s i t es) .  

• Finally, : f m knows which fit parameters are needed, and has the appropriate behaviour 
implemented in cr eat eFi t Par amet er s , either as a database procedure or as a foreign 
function.  

8.8.2 Weighting  Models 

Many fit programs allow a user to assign different ”weights”  to data points. If the fit program 
works by minimising the sum of squared residuals between experimental and calculated 
values, then each such residual may be given a weight to indicate its importance in the target 
function. The prototype knows how to calculate these weights for a small number of 
weighting schemes. Since many such schemes take the experimental data value into account 
the algorithms for generating weights take a vector of real values as input. The output is a 
vector consisting of the weights, not the weighted values248. (It is usually the residuals that are 
weighted, not the experimental data.)  

The type Wei ght i ngModel  has the attributes name, description and formula, exactly as 
Fi t Model . Each Wei ght i ngModel  object has two sequences: wei ght i ngPar amet er s  and 
def aul t Par amet er s . These are simply the names of the parameters and their default values. 
The meaning of the parameters may be inferred from the attributes descr i pt i on and 
f or mul a of the Wei ght i ngModel  object. A Cal cul at i onMet hod object may also have a 
sequence  wei ght i ngPar amet er s, these are the actual values used in the calculation. If the 
Wei ght i ngModel  does not contain any parameters249 there are no wei ght i ngPar amet er s  on 

                                                        
248 The function mul t i pl y_vect or s( vect or  v1, vect or  v2)  - > vect or  of  r eal  will multiply any two vectors 
of equal lengths, element by element. 
249  For example, no weighting parameters are needed when all  weights are unity, or equal to the inverses of the 
data values.  
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the Cal cul at i onModel  object, and the same is true when the default weighting parameters 
are used. In the latter case the boolean flag useDef aul t WPs  is true250. 

Three weighting schemes were implemented in the prototype, all taken from the fit program 
BindAid (Wikberg 2001). Note that the weights should be multiplied to the respective 
residuals in the target function. The three weighting models were implemented as subtypes of 
the type Wei ght i ngModel , with different implementations of the function get Wei ght s. In 
section 8.8.3 and Appendix E an alternative implementation is discussed. 

No Weights: Type NoWeighting 

All weights are unity. The two vectors holding names and default values of weighting 
parameters are empty. The function get Wei ght s( NoWei ght i ng,  vect or  y ,  vect or  wp)  
returns a vector of equal length as the vector y , and with all elements set to 1.0. 

Inverse Squares: Type MunsonRodbardWeighting 

The variance of the measured data value is estimated to be equal to the inverse of the square 
of the data value (Munson and Rodbard 1980). These variance estimates are used as weights. 
The two vectors holding names and default values of weighting parameters are empty. The 
function get Wei ght s( MunsonRodbar dWei ght i ng, vect or  y, vect or  wp)  returns a vector 
with elements 2/1 ii yw = . (The vector wp is not used.) 

A Three-Parameter Model: Type DeLeanWeighting 

A weighting model with three parameters introduced to avoid unreasonably high weighting 
factors for data values close to zero (De Lean, Hancock and Lefkowitz 1982). The vectors 
holding names and default values are { ”a” , ”b” , ”c”}  and { 0.000001, 0.001, 1.5} , 
respectively. The function get Wei ght s( DeLeanWei ght i ng, vect or  y , vect or  wp)  returns a 

vector with elements )/(1 c
i

yba
i

w ×+= , where { a,b,c}  are the values of the vector wp. 

8.8.3 Two Approaches for  Implementing the Strategy Pattern in Amos II  

A Fi t Model  object has state (the values of its attributes name, descr i pt i on, and f or mul a) 
and behaviour (methods to create the correct type and number of Fi t Par amet er  objects). The 
behaviour is different for the different Fi t Model  subtypes, and we may consider the types 
Exper i ment Eval uat i on, Cal cul at i onMet hod, and Fi t Model  to constitute a ”Strategy”  
design pattern251, see Appendix E. The same applies for Wei ght i ngModel , where the 
behaviour which differs between subtypes is the way a vector of weights is calculated. 

The implementation described above and in Appendix E does work, but the number of 
subtypes will per definition grow linearly with the number of fit models. Thus, there will 
eventually be quite many subtypes of Fi t Model , and this will become unsurveyable. Another 
major disadvantage with the approach chosen above is that a user who wishes to add a new fit 
model needs to add a new subtype to Fi t Model , i.e. change the database schema. 

                                                        
250 Since users will  be allowed to manipulate the database by AMOSQL commands it could by accident happen 
that the useDef aul t WPs  flag set true at the same time as wei ght Par amet er s  contains real values. 
However, the method get Wei ght i ngPar amet er s( Cal cul at i onMet hod)  will fetch the default 
parameters as soon as useDef aul t WPs  is set true. 
251 Gamma, Helm, Johnson, Vlissides 1995; Grand 1998. 
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The weighting models are implemented in the same way, and suffer from the same problems, 
although it is not expected that the total number of weighting models will be as large as the 
number of fit models. 

An alternative approach would be to store each fit model as an instance of type Fi t Model , 
and each weighting model as an instance of Wei ght i ngModel . Thus, no subtypes should be 
used. This approach is straight-forward if the types should only have state, but no behaviour. 
But we want to let each Fi t Model  object know which Fi t Par amet er  objects to create, and 
we also want to let each Wei ght i ngModel  object know how to calculate the weights for a 
given vector of real numbers. Eventually, we might want to let Fi t Model  objects be able to 
perform the fit too, probably by means of Amos II foreign functions. 

Thus, we want to benefit from the object-oriented approach and include operations, but we 
don’ t want to use inheritance. One way to accomplish this is to use a flag to classify the 
Wei ght i ngModel  objects as one of the three kinds mentioned above. The type 
Wei ght i ngModel  could then implement get Wei ght s by means of i f / t hen/ el se-controlled 
conditional execution252. This is not a very beautiful solution. A more serious disadvantage is 
that a user who wants to add a weighting model needs to change existing code, adding another 
el se/ i f / t hen clause. (With the inheritance solution the user adds another subtype, but does 
not change existing AMOSQL code.) Hence, this procedural approach is rather poor. 

A third solution is now possible in Amos II253. Amos II functions are first-class objects in the 
type system, instances of the meta-type f unct i on. With the Amos II function f unct i on-

named(  char st r i ng )  - > f unct i on it is easy to get hold of a function from its name. Thus, 
first we implement a method to calculate the weights for each weighting model, but in 
contrary to the OO polymorphism/inheritance solution we give each implemented function a 
name of its own. Secondly we store the names of the implemented functions as attributes 
get Wei ght sFunct i onName of the corresponding Wei ght i ngModel  objects. Now, all we need 
is a means to apply a function if we have a handle to it254. This is accomplished by the foreign 
function appl y(  f unct i on f ,  vect or  par amet er s)  - > vect or  r esul t s, which was 
implemented in Lisp by Tore Risch for this project. See Appendix F for a detailed example of 
how to use the function appl y , and a comparison with the Java method 
j ava. l ang. r ef l ect . Met hod. i nvoke( Obj ect ,  Obj ect [ ] ) . 

With this new approach, the functions actually calculating the weights are decoupled from the 
Wei ght i ngModel  type255. A function for calculating weights takes two vectors as arguments 
(values and weighting parameters) and returns another vector (weights). The function thus has 
no connection whatsoever to the type Wei ght i ngModel . However, any sensible name given to 
such a function should allude to weighting in general as well as the specific model. E.g., a 
function name may be ”getDeLeanWeights”.  

Now, what a user needs to do in order to store a new weighting model (or a new fit model) is 
to create an instance of Wei ght i ngModel  (Fi t Model ), including a name for the function to do 

                                                        
252 In many programming languages a switch/case construct would be used instead of if/then/else. 
253 The approach described here does presently not work with the official Amos II version available at the Amos 
II web site. The "developers" Amos II version is needed, where a user can go out to Lisp.   
254 Usually, we apply (or invoke) a function by writing its name in an AMOSQL statement, i.e. 
name( : donal d) ;  applies the function name on an object : donal d (presumably of type Per son). In an OO 
system a method invocation might look like donal d. name( ) ; . However, in the functional language Lisp 
higher-order functions such as ( appl y f unct i on ar g_l i s t )  are often quite useful (Haraldsson 1993).  
255 In an OO system object behaviour is implemented as methods of a class, and in the Amos II functional model 
as functions taking the object's type as an argument.  
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the calculations, and then implement this function. The implementation can be as a foreign 
function, in Java, whence the function implementation in Amos II could be very brief: 

cr eat e f unct i on get DeLeanWei ght s(  vect or  val ues,   
vect or  wei ght i ngPar amet er s  )  - > vect or  of  r eal   
as  f or ei gn " JAVA: Pr ot 1Wei ght i ng/ del eanWei ght s" ;  

 
This last ”apply function” approach has the advantages that  

• there will not be a plethora of subtypes to Fi t Model ,  

• a user needs not introduce new types, and  

• the user needs not change any existing AMOSQL code.  

One disadvantage may be that the approach is less object-oriented than the normal Amos II 
data model. However, we have accomplished the same functionality as the OO polymorphic 
solution with subtypes, but without using the procedural swi t ch/ case or i f / t hen/ el se 
constructs. There ought to be no significant loss of performance since the extra level of 
indirection should be considerably less time-consuming than the algorithms used in the 
"concrete strategies". 

8.8.4 Calculation Methods 

A calculation method represents the way a calculation was performed, not the actual result. 
For a curve fit this implies that by looking up a calculation method we should be able to 
determine which model (section 8.8.1) that was used to fit the experimental data, which  
weighting scheme that was used (section 8.8.2), and the setting of any parameters that 
determine the execution of the fit program. We do not expect to find the values of the fitted 
parameters here, they should instead be related directly to an Exper i ment Eval uat i on object.  

In section 8.8.2 we saw that a weighting model may use a few parameters to calculate the 
weights. For each such ”weighting parameter”  there is presumably a default value, stored 
under the corresponding Wei ght i ngModel  object. Under Cal cul at i onMet hod we store a 
boolean useDef aul t WPs  , and, if useDef aul t WPs  is not t r ue, a vector with the weighting 
parameters actually used.  

If we apprehend a calculation method as a combination of a fit model, a weighting model, and 
a set of weighting parameter values, then we will often want to use the same combination 
over and over again. For a given fit program, it is likely that only a few such combinations are 
ever used. Therefore it is useful to store each Cal cul at i onMet hod object with a special 
name, and also to know who created it and when. 

8.8.5 Computer  Programs 

The schema in Figure 36 has each Fi t Model  associated to several Comput er Pr ogr ams , and 
vice versa. Clearly a single program may implement several fit models. What is more difficult 
to solve, however, is whether a model can be implemented by several programs. Take two 
programs from two different origins, e.g. BindAid (Wikberg 2001) and SigmaPlot (SigmaPlot  
2001). These two programs may very well implement the same model, under the same name 
or under different names, but in slightly different ways. Here, we take a practical approach: If 
the difference is such that one program has an additional fit parameter, then we say that the 
two programs implement different models (even though they may claim to implement the 
same model). Furthermore, two implementations may differ in the way they solve the 
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numerical optimisation problem. Then, the fit model is still the same, but the final result could 
be quite different256. We still consider this as one and the same Fi t Model  object. That the 
implementations may differ is handled by the relationship between Cal cul at i onMet hod and 
Comput er Pr ogr am

257. Thus, we could say that it is the f or mul a attribute of Fi t Model  that 
determines it258. 

The type Comput er Pr ogr am should include attributes on the program’s origin, i.e. by whom it 
was written (person + laboratory, or company). Program versions could also be handled 
explicitly instead of having each version as a separate program (the present solution). 

8.8.6 Fit Parameters  

Assume that we have an assay which contains one binding site B, and that the binding 
experiment we are analysing involves two ligands L1 and L2. The Bi ndf i t  fit model then has 
five fit parameters: the concentration of B, non-specific binding constant for L1 and L2, and 
the affinity constants for L1/B and L2/B. The schema to be developed in this section will 
represent all these parameters, not only the fitted affinity constants. We have already in Figure 
36 seen that the fit parameters will be represented as Fi t Par amet er  objects associated with 
an Exper i ment Eval uat i on object. In this section we will look closer at the Fi t Par amet er  
type. 

Different Kind of Fit Parameters 

Conceptually, the fit parameters in a program such as BindAid differ from another in two 
ways (see Figure 37): What property they refer to (i.e. what, in the real world, we try to fit a 
value to), and under which constraints they are used in the fit program. The constraints 
occurring in BindAid are “none”  (the parameter is free to float in the fit), constrained to be 
equal to another parameter, and held constant259. If we use the Bi ndf i t  model of  BindAid 
there are three kind of parameters: one concentration for each binding site (or receptor), one 
non-specific binding parameter for each ligand, and one affinity constant for each 
ligand/binding site combination. 

Thus, in Figure 37 we would like each Fi t Par amet er  to be one of the three subtypes at the 
bottom, and also to be one of the three subtypes to the right. The two hierarchies are 
orthogonal to each other, and to implement this multiple inheritance situation as separate 
types in Amos II would require 9 additional subtypes260. This is clearly not the way to 
proceed, especially when we consider that there are many more alternatives: In the hierarchy 
to the right we should include other properties for other types of data analysis, e.g. 

                                                        
256 For example, the two programs could very well find two different local minima even when they start from the 
same point of the optimisation problem hypersurface. 
257 In the implemented prototype no check is made that all Comput er Pr ogr am – Fi t Model  links are present. 
I.e., a Cal cul at i onModel  object : cm may very well be linked to a Fi t Model  object : f m and a 
Comput er Pr ogr am object : cp without : f m and : cp being linked. This will not be a problem. The main 
benefit of the Comput er Pr ogr am - Fi t Model  relationship will be when the database has been populated 
with known programs and models, and it is accessed through a graphical user interface. 
258 In principle, f or mul a could be declared a key in the Amos II implementation. However, it will  occasionally 
be practical to be able to use Fi t Model  objects without formulas, and therefore I have chosen not to make  
formulae unique. 
259 Further possibilities for fit constraints exist: proportional to another parameter, the average of several other 
parameters, and so on. 
260  Amos II allows for multiple inheritance, but an object is required to have a most specific type (3.2.6). 
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dissociation rate constant and initial bound concentration for Di ssocFi t  calculations. In the 
lower hierarchy other types of fit constraints (e.g. averaging) are possible. 
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equalTo

 

Figure 37. Conceptual schema of different kind of fit parameters (for the Bindfit model of BindAid). 

The further modelling and implementation of fit constraints is described in section 8.8.7.  

In the ("property") hierarchy to the right of Figure 37 the only difference between the 
subtypes is whether they are linked to ligands, receptors, or both261. If we are willing to give 
up the control of this linking we can easily exchange the hierarchy to the right of Figure 37 
for something simpler, see Figure 38. 
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ligandvalue
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MolecularProperty

BiMolecularProperty

 

Figure 38. How the prototype relates fitted properties and chemical entities to fit parameter. 

We subtype Pr oper t y  to Mol ecul ar Pr oper t y  and Bi Mol ecul ar Pr oper t y (see section 8.3), 
but never use this information explicitly to control the linking of Fi t Par amet er  objects. 
Instead we rely on the users and the applications to use "factory methods" for creating the 
correct Fi t Par amet er s. An example of this is described in connection to the Fi t Model  type 
in section 8.8.1. It would also be possible to use triggers in the database to make sure that 
only correctly linked Fi t Par amet er s occur. Thus, we have arrived at a situation where we 
have subtyped Pr oper t y instead of Fi t Par amet er . 

Limitations of  the Suggested Schema  

The suggested schema in Figure 38 has the constraint that a Fi t Par amet er  may be linked to 
at most one receptor and one ligand. This is adequate for binding affinity constants (R + L �  
RL), dissociation rate constants (RL �  R + L), and, as far as I have been able to see, all other 

                                                        
261  Some fit parameters should have neither receptor nor l igand links, e.g. the P-parameter (or pseudo Hill  
coefficient) of the logfit model. 
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fit parameters encountered in the BindAid program. However, the schema is obviously not 
suited for descriptions of general chemical kinetics or equilibria.  

As pointed out above, the schema does not catch the full semantics. I.e., we know that a fitted 
binding affinity is valid for exactly one ligand and one binding site, but this is not proscribed 
by the schema. This is something I find unfortunate, but one advantage is that we do not need 
to create new subtypes of Fi t Par amet er  or any other type when a new kind of fit parameter 
is introduced. All we need to do is to create a new object of type Pr oper t y (or one of its 
subtypes).  

An alternative solution would be to use three generic subtypes to the type Fi t Par amet er , one 
for the kind of fit parameters which only should be linked to a ligand, and so on (see top of 
Figure 39). This would allow new kind of fit parameters to be added without schema changes. 
A second alternative (bottom of Figure 39) would be to have a single function mapping from 
Fi t Par amet er  to Chemi cal Ent i t y , but with an additional attribute indicating the "role" 
which the chemical entity plays. (This would be similar to an association class in UML). The 
first of these alternatives seems quite attractive. 
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Figure 39. Two alternative schemas for fit parameter, keeping some more of the domain semantics.  

A further potential disadvantage with the solution presented here is that there could be a large 
amount of small objects. However, the Fi t Par amet er  objects should be stored in external 
data sources, not in the mediator. Thus, even if all experiment evaluations were performed 
from the mediator, the Fi t Par amet er  objects would be stored externally (e.g. on XML files) 
and deleted from the Amos II system once a satisfactory fit was accomplished. When need 
arises for a parameter, e.g. a binding afffinity it can be accessed from the external source. 

The Vector Alternative 

Several alternative designs where vectors are used have also been investigated. For example, 
an Exper i ment Eval uat i on object could have five vector attributes: bi ndi ngSi t es, 
l i gands , eval uat edPr oper t i es, par amet er Val ues, and f i t Const r ai nt s. Then the vector 
indices would couple ligands and receptors with the correct fit parameter values through some 
algorithm262. However, such schemes will be quite complex and inflexible. Furthermore, the 
OO approach of Figure 38 will suit better with import and export of XML data. (An 
advantage with most vector approaches is that the user-defined types get more cohesive.) 

                                                        
262 Suppose we have N l igands and M binding sites. Then, if the "Bindfit" model is used, there wil l be N*M 
binding affinities, N non-specific bindings, and M site concentrations in each of the latter three vectors. 
However, if another fit model is used there wil l be a different number of fit parameters. 
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8.8.7 Fit Constraints 

There are some important differences between fit parameters which are subject to different fit 
constraints (free, constant, shared,, averaged,…). For free-floating parameters we would like 
to store the initial value and an estimated error, and for shared parameters a link to another fit 
parameter. Constants would need neither of these. (On the other hand, an “average of”  
constraint would imply the need to refer to a set of other parameters.) For all constrained 
parameters it should be possible to store a textual motivation on why the constraint was 
introduced, or from where the value was taken. 

First of all, we may discriminate between those fit parameters that are free to float and those 
that are constrained in some way. This can be modelled conceptually as in Figure 40: 
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error
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Figure 40. A schema which differentiates parameters free to float from others. 

Alternatively, we can do as in Figure 41 and in the prototype: We get rid of the constraint 
hierarchy of Fi t Par amet er  by delegating it to a separate type Fi t Const r ai nt . 
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Figure 41. Constraints on fit parameters handled by delegation. This is the approach chosen in the prototype. 

This solution will make it easy to let the schema evolve to include new fit constraints. 
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9 Remaining Issues for  the Implemented Prototype 

In this section 9.1 the parts of the problem domain that remain to be modelled will be 
discussed. Then, section 9.2 will describe some work of a more technical or programming art 
which needs to be done in order to make a more interesting prototype of PAQS. In the last 
sections a few suggestions to improvements of the Amos II mediator system will be given.  

9.1 Remaining Subdomains 

As mentioned above (section7.2), some subdomains are only represented by stubs, and some 
have not been modelled at all. In the following subsections a few comments on these 
subdomains are given. 

9.1.1 References 

References can be of many types, e.g. they could refer to printed literature (books, journals), 
web sites, compilations in databases, or private communications. In the presented schema all 
references are represented by a single type Ref er ence, which only has a single attribute 
descr i pt i on (a character string). Clearly, the type should have much more structure, and 
probably the way to proceed is to model references in the same way as some major data 
source or integration effort. Since PubMed (5.5.1) is an important resource when it comes to 
publications, I believe this would be the choice. Then, integration with BIND (5.4.1) would 
also be easy. 

9.1.2 Protocols 

Protocols are descriptions of some experimental (or calculational) procedure. For example, a 
protocol could describe how a sample was prepared. Usually, several (many) samples would 
be prepared according to the same protocol. The presented schemas have a type Pr ot ocol  
with two attributes, a name and a descr i pt i on (character string). The type will have to be 
modelled in more detail.  

9.1.3 Chemical Entities 

Chemi cal Ent i t y is the type used to denote all small organic molecules, large biopolymers 
(proteins, DNAs), and inorganic salts. I.e., it is used for ligands, binding sites, and possible 
additives in the assay. The type representing these very different kind of chemical species 
presently only has the attribute name. Although Chemi cal Ent i t y  is subtyped as Label ed-

Chemi cal Ent i t y, which in turn is subtyped as Radi oLabel edChemi cal Ent i t y  these 
subtypes have no additional attributes.  

Obviously, there should be many more attributes, e.g. representing label position, molecular 
structure, and physico-chemical properties. For proteins the amino acid sequences must be 
represented, and there should be effective means for searching the underlying data sources for 
a particular amino acid sequence, and for a chemical substructure. 

The idea behind using a subtyping hierarchy is the following: Suppose we wish to label a 
hormone (called HormH) by exchanging a specific hydrogen atom (H) for the radioactive 
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isotope iodine-125 (125I). We could then store the hormone (HormH) as a Chemi cal Ent i t y, 
the hormone with iodine as a Label edChemi cal Ent i t y (HormI), and the radioactive 
substance we use in the binding experiment as a Radi oLabel edChemi cal Ent i t y  (Horm125I). 
Thus, the position and the atomic number of the label should be attributes of Label ed-

Chemi cal Ent i t y, while the radioactive properties should be stored under Radi oLabel ed-

Chemi cal Ent i t y. In this way, each labelled substance can refer back to a "normal" 
(unlabelled) substance. Thus, although HormI is itself a "normal" substance (with a IUPAC 
name, a CAS number et cetera), it is easy to store that it "originated" from HormH.  

Obviously, other design solutions are possible, too, e.g. with a radiolabelled substance being a 
composition of a chemical entity and a label. However, I believe it is important to keep the 
possibility for polymorphism. 

9.1.4 Descr iptors 

The one subdomain of Figure 17 which has neither been included in the modelling of chapter 
8 nor implemented is the one called "Descriptors".  

In a proteo-chemometric multivariate analysis each Chemi cal Ent i t y object must be 
described by some descriptors. These descriptors will be different for ligands (small organic 
molecules) and binding sites (amino acid sequences). They will also be different for different 
investigations, and within one and the same investigation some testing of new descriptors will 
often be made. Thus, we need a general and flexible way to organise descriptors in the 
database. 

I have not presented a database schema for descriptors in this Thesis, but I believe the 
following two points are important to consider: (1) Descriptors may be stored in the database 
as numbers or as bitstrings. (2) There are two alternative kinds of descriptors, depending on 
their origin. To elaborate on point (2):  

• Some descriptors are generated as part of the investigation. An example is the set of 24 
binary descriptors used for 4-piperidyl oxazole derivatives263. Each of these only has a 
meaning as a member of the set, together with the definition. Therefore it seems 
appropriate to view a coherent set (e.g. called "DescriptorSet") as the central type here, 
with the descriptors stored as attributes.  

• On the other hand, physico-chemical descriptors are more self-supported. Take for 
example the lipophilicity, the dipole moment, and the van der Waals surface area of a 
ligand molecule. These are experimentally or theoretically determined properties, and they 
have a meaning without being included in a set of descriptors. However, the values stored 
(e.g. in external databases) most certainly have to be transformed or normalised in order to 
be used in a multi-variate analysis, and hence it is fair to say that such descriptors too will 
be used in coherent descriptor sets. 

9.2 Technical topics 

There are a range of more "technical" topics which need to be considered to make PAQS 
work as intended. Wrappers (9.2.1) will be needed to get access to external data sources and 
indexes (9.2.2) will help to get a good performance. 
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9.2.1 Wrapping Data Sources 

An important aspect of the mediator-wrapper architecture of PAQS and similar systems is the 
use of wrappers for importing external data (see sections 4.4.2 and 7.1.2). Such wrappers have 
not been implemented in the Thesis work, but a number of potential data sources have been 
identified (chapter 5).  

From the development described in chapters 5 and 6 I find it likely that three wrapper types 
will be needed for PAQS in the near future: (i) A general wrapper to XML data, which can be 
customised for specific markup languages, e.g. BSML. (ii) A wrapper for web forms. (iii) A 
wrapper for relational databases264. All three of these do already exist, although it is only the 
ODBC/relational wrapper which is currently used "in production". 

9.2.2 Indexing and Cluster ing 

The Amos II system presently incorporates two aspect of physical database design: indexes 
and clustering. As mentioned in section 3.1.2 indexing is important for helping the DBMS 
find the correct object fast. In traditional, disk-based, database systems, clustering is another 
means to speed up data access by storing related data together. With Amos II, a main-memory 
DBMS, clustering is instead used to decrease the database size.  

Indexing will certainly be an important topic for the PAQS system, especially if extended to 
the contents of external sources. In this Thesis, indexes have only been used to define 
cardinality constraints. No additional indexes for performance have been added.  

In the present Amos II system hash and B-tree indexes are implemented. It is likely that the 
full-scale production PAQS will require some additional index type(s), particularly for 
retrieval on protein and chemical substructures. 

Clustering will be important only for those functions and types where large volumes of data 
are stored locally in the PAQS system. Most of the data will, however, be stored in external 
data sources, and for these clustering is not interesting. 

9.2.3 Visualisation 

Visualisation is a great help in any data analysis. First of all, it would be quite helpful with a 
simple plot routine for data series (8.2). This would also be rather easy to implement as a 
foreign function in Java. A more ambitious project would be to provide for advanced 
visualisation of data mining routines, i.e. the proteo-chemometric multivariate analysis. Here, 
an alternative to an implementation from scratch would be to wrap an existing visualisation 
package by a Java class.  

A very useful feature would be if a user could sketch a molecular structure on a canvas and 
then search for the structure in PAQS (see the Binding Database, section 5.4.4). 

                                                        
264 Although no web data source described in chapter 5 actually allows direct access via ODBC, this wrapper 
will be needed for databases installed locally, e.g. for purchased databases of chemical substances. 
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9.3 Suggestions for  Amos II  

To conclude this section of remaining topics a "wish list" of  features for the Amos II system 
is presented. These features are not necessary for a successful implementation of PAQS, but 
they would simplify the development of the system and/or render the final system more 
effective.  

9.3.1 Secur ity Matters 

Authorisation 

The usability of PAQS would be greater if users were allowed to put complex AMOSQL 
questions to the system, and not only use fixed-form queries via a web page. However, if a 
command-line interface is provided on the web, one must first make sure users cannot delete 
local data of other users, or change the database schema. Most commercial DBMSs have 
authorisation mechanisms for this, but no such mechanism yet exists for the Amos II system.  

Encapsulation 

Encapsulation is implemented in OO programming languages (e.g. Java and C++) as visibility 
modifiers. For example, if a Java method is declared pr i vat e, it can only be used from within 
its class. Similar primitives in Amos II would be useful if users have direct access to the 
system via AMOSQL. For example, in section 3.2.6 it was described how enforcing more 
complicated cardinality constraints is a problem in Amos II. If the regular cr eat e statement 
could be made non-accessible for users they would be forced to use special "constructor" 
functions.  

Future revisions of the SQL:1999 standard will probably contain different levels of 
encapsulation265. 

9.3.2 Vector Operations 

The Amos II data type vect or  makes it possible to store objects (surrogates or literals) in an 
ordered sequence. This is particularly useful for scientific and technical databases. However, 
there are presently quite few operations  available for vectors (creation, access of an element 
by index number, concatenation of two vectors). Special-purpose vector manipulations can be 
implemented as foreign functions (see Appendix C), but it would be reasonable to include a 
larger number of general-purpose vector functions in the Amos II distribution, e.g. 
substitution of an element. 

It is possible to put an index on a vector as a whole, but not on individual vector elements. 
This does presently not seem to present a problem for PAQS.  

9.3.3 Abstract Types  

Two object-oriented features missing in the Amos II functional OO data model are 
encapsulation (9.3.1) and abstract types. 

An abstract class in Java is a class of which one cannot create objects (the class is non-
instantiable). In short, abstract methods of the abstract class are implemented in subclasses, 
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and these subclasses are then "concrete" (i.e. instantiable, not abstract). This is a useful 
concept both in modelling and implementation of an OO system. A corresponding construct 
in Amos II would be to have abstract types, and abstract functions.  

The concept of abstract types has found its way into the new SQL:1999 standard265, where 
types may be specified as "instantiable" or "not instantiable". 

9.3.4 Miscellaneous 

Comments on One Line 

Text enclosed by /*  … */ is treated as a comment in AMOSQL scripts. However, such 
comments cannot be nested, and thus it is difficult to temporarily comment out a large portion 
of a script where a small part (e.g. one line) is already commented out. A nice feature would 
be to allow a special one-line comment syntax, too. 

Clearer IUT Interface and Documentation 

It is far from straight-forward to work with integration union types (IUTs). The implemented 
syntax is not the same as in the examples of the relevant publication (Josifovski and Risch 
1999), and it seems that not all combinations of types are possible. A better documentation of 
this feature is needed, particularly since this information integration aspect of Amos II is very 
important. 

Sorting 

Standard SQL allows sorting and grouping of query results. At least a sort function would be 
useful in AMOSQL, too. This probably applies to most problem domains, not just PAQS. 
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10 Conclusions 

Integration of life science data sources is a very active research area. Some important trends 
which have been described in chapters 5 and 6 are the use of XML and CORBA as media for 
information exchange and the use of mediating middleware for integration. 

When XML and CORBA are compared, it is obvious that XML has the larger momentum, 
especially the Bioinformatics Sequences Markup Language (BSML, 5.2.4), supported by the 
Interoperable Informatics Infrastructure Consortium (I3C, 5.3.4). I find it likely that BSML 
will dominate the scene for bioinformatics markup languages for the next year or so, and that 
its structure will soon be specified by an XML Schema. However, the scope of the Life 
Sciences Research group (LSR, 5.3.2) is much wider than that of BSML, and I expect that 
LSR will be able to give useful input during the development of XML Schemas in other areas 
than sequences. The merging of schemas is especially likely as many organisations are 
participants in several standardisation co-operations simultaneously. 

Binding affinities are the most important external data for a proteo-chemometric analysis and 
query system (PAQS). In this area the Biomolecular Interaction Network Database (BIND, 
5.4.1) seems to provide most data. Furthermore, this data is supported by a publicly available 
schema. A problem with using BIND as a data source is that the web interface for data access 
does not allow advanced queries. A further potential problem is that it seems uncertain to 
what extent future upgrades and improvements will be available free of charge over the Web. 

The strength of the mediator/wrapper approach for integrating life science data sources has 
been shown both by the many projects in academic laboratories (6.1), and by the commercial 
product DiscoveryLink from IBM (6.2.1). I expect this trend to become even more 
pronounced with the advent of the SQL/Management of External Data standard (4.4.3).  

The database schemas presented and discussed in chapter 8 show that the functional data 
model of the Amos II system is well suited for the many fairly complex features of the PAQS 
information domain. For example, the combination of subtyping and function overloading 
provides a powerful mechanism for polymorphism, which is important both in modelling and 
in implementation. Furthermore, the vector data type is suitable for representing data series. 

The schemas presented for binding experiments and experiment evaluations have been 
modelled in enough detail for a production mediator system, and they will provide a good 
basis for the development of a custom markup language. Some important parts of the problem 
domain, e.g. assays and descriptors, need further consideration.  

The use of foreign functions as a means for performing data analysis has been exemplified by 
experiment evaluations (section 8.8). With the database schemas presented, it will be easy to 
developed the prototype further in order to allow the complete curve fitting of binding 
experiments from within the Amos II system. A considerably larger project would be to 
implement the whole multivariate analysis as foreign functions, and this is not supported by 
the presented schemas. 
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Appendix A : Abbreviations 

The following list includes some abbreviations which occur in several places in the text, 
figures, or code excerpts. Many abbreviations which only occur in a single paragraph or short 
section (together with an explanation) are not included. 

Amos Active Mediator Object System 
API  application programming interface 
BA, ba binding affinity 
BIND Biomolecular Interaction Network Database 
BSML Bioinformatic Sequence Markup Language 
CBE  concentration binding experiment 
CDS  concentration data series 
CE  ChemicalEntity 
CML  Chemical Markup Language 
conc  concentration 
DB  database 
DBMS database management system 
DBS  database system 
DDBS distributed database system 
DDL  data definition language (with mmCIF: data dictionary language) 
DML  data manipulation language 
DPM, dpm disintegrations per minute 
DS, ds data series (also data source in Appendix G) 
DTD  data type definition (in connection with XML) 
EBI  European Bioinformatics Institute 
ee  experiment evaluation 
fm  fit model 
fp  fit parameter(s) 
GUI  graphical user interface 
I3C  Interoperable Informatics Infrastructure Consortium 
JDBC "Java database connectivity", officially not an abbreviation 
m  metre 
M  molar, mol/dm3, a unit for concentrations of solutions 
MED  Management of External Data (in connection with SQL) 
NCBI National Center for Biotechnology Information 
nM  nanomolar (10-9 M), a unit for concentrations of solutions 
ODBC open database connectivity 
ODMG Object Data Management Group 
OID  object identifier 
OMG  Object Management Group 
OO  object-oriented, object-orientation 
OODBMS object-oriented database management system 
OQL  Object Query Language 
ORDBMS object-relational database management system 
PAQS Proteo-chemometric Analysis and Query System 
PDB  Protein Data Bank, also a popular fi le format 
PIR  Protein Information Resource 
RDBMS relational database management system 
SI  Système International (d'Unités) 
SQL  Structured Query Language 
SRS  Sequence Retrieval System 
TBE  time binding experiment 
UML  Unified Modeling Language 
wm   weighting model 
wp  weighting parameter(s) 
XML  eXtensible Markup Language 
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Appendix B : Examples from the Prototype 

In this Appendix a short demonstration of the implemented schema is given. For a larger 
demonstration, see the electronic supplementary material: "prot1_observationData.amosql" 
(some binding affinity data from the literature), "load_appendix45.amosql" (load data of the 
BindAid manual, appendices 4 & 5), and "demo_queries_appendix45_part[1-7].amosql" 
(queries over the loaded data). 

B.1 A Competition Binding Exper iment 

Here we will see how a competition binding experiment may be stored in the database. The 
data is taken from the BindAid manual (Wikberg 2001), appendix 4. The corresponding 
graphical representation of the schema is given in Figure 35. 

/ *  The bi ndi ng assay * /  
cr eat e Bi ndi ngAssay( name)  i nst ances  
   : app4_ass1 ( " Assay of  Bi ndAi d Appendi x4" ) ;  
add descr i pt i on( : app4_ass1)  = " Cer ebr al  cor t ex membr anes" ;  
add bi ndi ngEnt i t y( : app4_ass1)  = : al f a2A;  
 
/ *  One concent r at i on bi ndi ng exper i ment ,   
   a non- masked compet i t i on cur ve * /  
cr eat e ConcBi ndi ngExper i ment ( name,  cbeType)  i nst ances  
   : app4_exp1 ( " cur ve 1,  p 57" ,  : compet i t i on) ;  
set  descr i pt i on( : app4_exp1)  =  
   " non- masked compet i t i on cur ve f or  BRL44408" ;  
add_f i xed_l i gand( : app4_exp1,  : h3_mk912 ,  0. 326,  " nM" ) ;  
add cur ves( : app4_ass1) =: app4_exp1;  
 
/ *  Conver si on f r om dpm uni t s t o nM accor di ng t o page 57 * /  
set  : t emp = t i mes( di v( 1. 0,  13486. 0) ,  1. 0e- 9) ;  
set  : dpm_13486 = cr eat eUni t ( " dpm ( 13486) " ,  : t emp,  : mol ar i t y) ;  
 
/ *  Two dat aser i es per  cur ve,   
   one i ndependent  ( var yi ng)  and one dependent  ( bound)  * /  
cr eat e ConcDat aSer i es( l i gand,  uni t ,  pr oper t y)  i nst ances 
   : ds1v ( : br l 44408,  : nM,  : conc) ;  
set  val ues( : ds1v)  =  
   {  100000. 0,  31645. 6,  10014. 4,  3169. 1,  1002. 9,  317. 37,   
     100. 43,  31. 783,  10. 058,  3. 1828,  1. 0072,  0. 3187 } ;  
cr eat e ConcDat aSer i es( l i gand,  uni t ,  pr oper t y )  i nst ances 
   : ds1b ( : h3_mk912,  : dpm_13486,  : conc ) ;  
set  val ues( : ds1b)  =  
   {  31. 0,  31. 0,  36. 0,  46. 0,  55. 0,  89. 0,   
     115. 0,  137. 0,  186. 0,  260. 0,  305. 0,  328. 0 } ;   
add var yi ng( : app4_exp1)  = : ds1v;  
add bound( : app4_exp1)    = : ds1b;  
 
/ *  Get  a handl e t o t he desi r ed bi ndi ng exper i ment  * /  
sel ect  e i nt o : e41  
   f r om Exper i ment  e wher e name( e)  = " cur ve 1,  p 57" ;  
 
/ *  Demo quer i es wi t h answer s * /  
count ( al l Dat a( : e41) ) ;  / *  How many dat a ser i es  i n t he exper i ment ? * /  
answer :  2 
consi st ent ( : e41) ;  / *  Al l  dat a ser i es ar e equal l y l ong? * /  
answer :  TRUE 
 
name( al l _l i gands( : e41) ) ;  / *  Li gands i nvol ved i n t hi s exper i ment  * /  
answer :  " 3H- MK912"  
        " BRL44408"  
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/ *  How many dat a poi nt s  ar e t her e i n t he bound r adi ol i gand     
   dat aser i es? And how many of  t hese ar e non- val i d? * /  
sel ect  l engt h( ds)  f r om Dat aSer i es ds wher e ds=bound( : e41) ;  
answer :  12 
count ( nonval i ds( bound( : e41) ) ) ;  
answer :  0 
name( uni t ( bound( : e41) ) ) ;  / *  Uni t  of  bound dat a ser i es  * /  
answer :  " dpm ( 13486) "  
conver t _ser i es( bound( : e41) ,  get _uni t ( " nM" ) ) ;  / *  Ser i es i n nM * /  
answer :  {  0. 00229868,  0. 00229868,  0. 00266943,  0. 00341094,  0. 0040783,    
          0. 00659944,  0. 00852736,  0. 0101587,   0. 0137921,   0. 0192793,      
          0. 022616,    0. 0243215 }  

B.2 An Exper iment Evaluation 

The schema for experiment evaluations is described in section 8.8. The following 
demonstration is part of "load_appendix45.amosql". It certainly is too tedious to type in this 
much to store a single curve fit, but if a GUI is used only the numbers need be entered. Two 
even better solutions are (i) to read the values directly from some output of the fit program, 
and (ii) to invoke the fit program directly from the Amos II system, and let it return the 
results. 

/ *  Cr eat e an i nst ance of  Exper i ment Eval uat on and l i nk  i t  t o t hr ee  
   bi ndi ng exper i ment s and a f i t  met hod * /  
cr eat e Exper i ment Eval uat i on i nst ances : app4_expeval 1;  
set  exper i ment s( : app4_expeval 1)  = : app4_exp1;  
add exper i ment s( : app4_expeval 1)  = : app4_exp2;  
add exper i ment s( : app4_expeval 1)  = : app4_exp3;  
set  met hod( : app4_expeval 1)  = : bi ndf i t _cal c;  
set  name( : app4_expeval 1)  =  
    " Bi ndf i t  cal cul at i on f r om Bi ndAi d manual ,  "  + 
    " Appendi x4,  p59 ( one bi ndi ng si t e) " ;  
 
/ *  Cr eat e t he f i t  par amet er s * /  
set upFi t Par amet er s(  : app4_expeval 1 ) ;  
asser t Equal s(  7,  number Of Fi t Par amet er s( : app4_expeval 1)  ) ;  
 
/ *  Get  hol d of  par amet er s  and set  const r ai nt s /  
set  : k11 = get Par amet er ( : app4_expeval 1, : af f i ni t y, : al f a2A, : br l 44408) ;  
set  : k21 = get Par amet er ( : app4_expeval 1, : af f i ni t y,  : al f a2A,  
                        : r auwol sc i ne) ;  
set  : k31 = get Par amet er ( : app4_expeval 1, : af f i ni t y, : al f a2A, : h3_mk912) ;  
set  : n1  = get Par amet er ( : app4_expeval 1, : nonspecbi nd, : br l 44408) ;  
set  : n2  = get Par amet er ( : app4_expeval 1, : nonspecbi nd, : r auwol sc i ne) ;  
set  : n3  = get Par amet er ( : app4_expeval 1, : nonspecbi nd, : h3_mk912) ;  
set  : r 1  = get Par amet er ( : app4_expeval 1, : conc, : al f a2A) ;  
set Fi t Const r ai nt Fl oat i ng( : r 1,  0. 1) ;  
set Fi t Const r ai nt Fl oat i ng( : k11,  0. 01) ;  
set Fi t Const r ai nt Fl oat i ng( : k21,  0. 1) ;  
set Fi t Const r ai nt Const ant ( : k31,  0. 74) ;  
set Fi t Const r ai nt Fl oat i ng( : n1,  0. 01) ;  
set Fi t Const r ai nt Shar ed( : n2,  : n1) ;  
set Fi t Const r ai nt Shar ed( : n3,  : n1) ;  
 
/ *  Fi t  r esul t s * /  
set  sumOf Squar edResi dues( : app4_expeval 1)  = 31. 98;  
set Fl oat i ngResul t (  : r 1,   0. 1150,    0. 004694 ) ;  
set Fl oat i ngResul t (  : n1,   0. 008876,  0. 0009101 ) ;  
set Fl oat i ngResul t (  : k11,  0. 03448,   0. 005875 ) ;  
set Fl oat i ngResul t (  : k21,  0. 4801,    0. 1056) ;  
 
/ *  Demo quer i es wi t h answer s * /  
name( exper i ment s( : app4_expeval 1) ) ;  / *  Exper i ment s  i n eval uat i on * /  
answer :  " cur ve 3,  p 58"  
        " cur ve 2,  p 58"  
        " cur ve 1,  p 57"  
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name( model ( met hod( : app4_expeval 1) ) ) ;  / *  Fi t  model  used * /  
answer :  " Bi ndf i t "  
/ *  Number  of  f i t  par amet er s,  and di st r i but i on over  t ypes * /  
number Of Fi t Par amet er s( : app4_expeval 1) ;  
answer :  7 
sel ect  name( p) ,  count ( get Par amet er ( : app4_expeval 1,  p) )  
   f r om Pr oper t y p 
   wher e count ( get Par amet er ( : app4_expeval 1,  p) )  > 0;  
answer :  <" af f i ni t y const ant " , 3> 
        <" concent r at i on" , 1> 
        <" l i gand non- speci f i c  bi ndi ng par amet er " , 3> 
/ *  What  wer e t he r esul t s of  t he f i t t ed [ f l oat i ng]  af f i ni t i es?  
   bi ndi ng si t e,  l i gand,  val ue,  uni t ,  est i mat ed er r or  * /  
sel ect  name( bi ndi ngSi t e( f p) ) ,  name( l i gand( f p) ) ,  val ue( f p) ,   
       name( uni t ( f p) ) ,  er r or ( f p)   
   f r om Fi t Par amet er  f p 
   wher e i sFl oat i ng( f p)  and f p = get Par amet er ( : app4_expeval 1,   
                                 get _pr oper t y( " af f i ni t y  const ant " ) ) ;  
answer :   
   <" al f a2A adr enocept or " , " Rauwol sc i ne" , 0. 4801, " ( nM) ^ - 1" , 0. 1056> 
   <" al f a2A adr enocept or " , " BRL44408" , 0. 03448, " ( nM) ^ - 1" , 0. 005875> 

B.3 Search for  Binding Affinities 

The following demonstration assumes some data has been stored in the database, e.g. through 
the scripts "prot1_observationData.amosql". It is further assumed that some experiment 
evaluations are stored, e.g. the one from section B.2. 

/ *  How many bi ndi ng af f i ni t i es ar e st or ed as obser vat i ons and  
   how many ar e s t or ed as r esul t s  of  exper i ment  eval uat i ons? * /  
set  : af f  = get _pr oper t y( " af f i ni t y  const ant " ) ;  
count (  al l Obs(  : af f  )  ) ;  
answer :  8 
count (  get Par amet er s(  : af f  )  ) ;  / *  al l :  const ant ,  f l oat i ng,  .  .  .  * /  
answer :  3 
count (  i sFl oat i ng( get Par amet er s( : af f ) )  ) ;  / *  onl y  f l oat i ng * /  
answer :  2 
 
/ *  Focus on t he ' al f a2A adr enocept or '  * /  
set  : a2A = get CE( ' al f a2A adr enocept or ' ) ;  
count (  al l Obs(  : af f ,  : a2A )  ) ;  
answer :  4 
l i s t _af f i ni t i es(  : a2A ) ;  
answer :  <" al f a2A adr enocept or " , " Ri sper i done" , "  23. 0 ( nM) ^ - 1 " > 
        <" al f a2A adr enocept or " , " BRL44408" , "  5. 68 ( nM) ^- 1 " > 
        <" al f a2A adr enocept or " , " BDF8933" , "  2. 0 ( nM) ^- 1 " > 
        <" al f a2A adr enocept or " , " 3H- MK912" , "  0. 74 ( nM) ^- 1 " > 
count (  get Fi t t edAf f i ni t i es(  : a2A )  ) ;  
answer :  2 
get Li gandsAndFi t t edAf f i ni t i esFor Si t e(  : a2A ) ;  
answer :  <" Rauwol sci ne" , 0. 4801, " ( nM) ^- 1" , 0. 1056> 
        <" BRL44408" , 0. 03448, " ( nM) ^- 1" , 0. 005875> 
/ *  Wher e does t he al f a2A: Ri sper i done val ue come f r om? * /  
sel ect  descr i pt i on( r ef er ence( o) )  
   f r om Obser vat i on o 
   wher e o = dat a( : af f ,  : a2a,  get CE( " Ri sper i done" ) ) ;  
answer :  " Schot t e A,  Janssen PF,  Gommer en W,  Luyt en WH,  Van Gompel  P,   
         Lesage AS,  De Loor e K,  Leysen JE. :   
         ' Ri sper i done compar ed wi t h new and r ef er ence ant i psychot i c   
         dr ugs:  i n vi t r o and i n v i vo r ecept or  bi ndi ng. '  
         Psychophar macol ogy ( Ber l )  1996 Mar ; 124( 1- 2) : 57- 73. "  
         / *  Taken f r om PDSP dr ug dat abase on t he Web * /  
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Appendix C : Vector  and Bag Manipulations 

This Appendix describes a few vector and bag operations implemented as foreign functions. 
Only the Amos II functions and excerpts of the Java code will be given here. For full Java 
code, see supplementary material (Prot1Vector.java, Prot1BagOperations.java). For an 
explanation of the Amos II - Java interface, see Elin and Risch 2001.  

These functions are intended for use with PAQS prototypes only. I believe these operations, 
and several more vector and matrix266 operations should be included in the Amos II system, 
but it would probably be preferably if they were implemented in Lisp or C and integrated into 
the Amos II core distribution.  

C.1 Vector  Ar ithmetics 

A vector of reals may be scaled, i.e. each of its elements multiplied by a real number267, by 
means of the function scal e_vect or . This operation is used for converting data series from 
one unit to another. 

cr eat e f unct i on scal e_vect or (  vect or  of  r eal  v,  r eal  sf  )  - >  
  vect or  of  r eal  
  as sel ect  scal e_vect or _f or ei gn(  v ,  sf  ) ;  
 
c r eat e f unct i on scal e_vect or _f or ei gn(  vect or  of  r eal  v,  r eal  sf  )  - > 
  vect or  of  r eal  as  f or ei gn " JAVA: Pr ot 1Vect or / scal eVect or " ;  

 

Two (equal length) vectors of real numbers may be multiplied element by element, and the 
result put in a new vector. 

cr eat e f unct i on mul t i pl y_vect or s(  vect or  v1,  vect or  v2 )  - >  
 vect or  of  r eal  
 as  sel ect  mul t i pl y_vect or s_f or ei gn(  v1,  v2 ) ;  
 
c r eat e f unct i on mul t i pl y_vect or s_f or ei gn(  vect or  v1,  vect or  v2 )  - >  
  vect or  as f or ei gn " JAVA: Pr ot 1Vect or / mul t i pl yVect or s" ;  
 

A bag of  vectors may also be averaged, element by element: 
cr eat e f unct i on aver age_vect or s(  bag b )  - >  
 vect or  of  r eal  
 as  sel ect  aver age_vect or s_f or ei gn(  vect or of ( b)  ) ;  
 
c r eat e f unct i on aver age_vect or s_f or ei gn(  vect or  v  )  - >  
  vect or  as f or ei gn " JAVA: Pr ot 1Vect or / aver ageVect or s" ;  
 

Other vector operations which would be useful in scientific and engineering applications are 
the inner product (or dot product) and the cross product (or vector product). 

                                                        
266 A nice example of the use of matrices for a database system in the domain of finite element analysis is given 
by Flodin, Orsborn and Risch (1998). In this work the matrix operations (e.g. various matrix-vector 
multiplications) were implemented as foreign functions in C. These function definitions are, however, not 
included in the Amos II distribution, and there seems to be no mentioning of them in the documentation. 
267 In vector calculus terminology this is the scalar product. 
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C.2 Bag Operations 

Union, intersection, and difference of bags were also implemented as foreign functions in 
Java. Bag difference was used in assertions, see Appendix D: 

cr eat e f unct i on bagDi f f er ence(  bag a,  bag b )  - > Obj ect  
  as sel ect  i n(  f or ei gnBagDi f f er ence(  vect or of ( a) ,  vect or of ( b)  )  ) ;  
c r eat e f unct i on f or ei gnBagDi f f er ence(  vect or  a,  vect or  b )  - >  
  vect or  as f or ei gn " JAVA: Pr ot 1BagOper at i ons/ bagDi f f er ence" ;  
 
cr eat e f unct i on bagUni on(  bag a,  bag b )  - > Obj ect  
  as sel ect  i n(  f or ei gnBagUni on(  vect or of ( a) ,  vect or of ( b)  )  ) ;  
c r eat e f unct i on f or ei gnBagUni on(  vect or  a,  vect or  b )  - > vect or  
  as f or ei gn " JAVA: Pr ot 1BagOper at i ons/ bagUni on" ;  
 
cr eat e f unct i on bagI nt er sect i on(  bag a,  bag b )  - > Obj ect  
  as sel ect  i n(  f or ei gnBagI nt er sect i on( vect or of ( a) , vect or of ( b) )  ) ;  
cr eat e f unct i on f or ei gnBagI nt er sect i on( vect or  a, vect or  b)  - > vect or  
  as f or ei gn " JAVA: Pr ot 1BagOper at i ons/ bagI nt er sect i on" ;  

C.3 Data Ser ies Aver aging 

The averaging of data series was described in section 8.2.5. The operation is complicated by 
the fact that a data series may have one or several non-valid data points, which are not to be 
included in the averaging. E.g., suppose data series A has the values vA={ 1.0, 2.2, 3.0, 44.0, 
5.1}  and data series B the values vB={ 1.0, 1.8, 3.2, 4.0, 4.9} . Then it is highly likely that the 
fourth data point of vA is in error, and that the correct average should be { 1.0, 2.0, 3.1, 4.0, 
5.0} 268. Such nonvalid points are handled by a bag nonval i ds (see Figure 28).  

The values for a new (averaged) data series may be obtained with the function 
aver age_dat aser i es( bag b,  Uni t  u)  - > vect or  of  r eal . Each data series in the bag b 
is converted to the desired unit u, and then the function aver age_vect or s_nonval i ds  is 
invoked with an argument consisting of a bag of tuples <" vect or  of  conver t ed 

val ues" , " vect or  of  nonval i d poi nt  i ndexes" >. This bag of tuples is converted to a 
vector and the foreign Java function Pr ot 1Vect or . aver ageVal i dVect or s is invoked269. The 
structure of the vector shipped out to the foreign function thus is the following: 

vect or  
   vect or _f or _dat aser i es1 
      vect or 1_val ues      
      vect or 1_nonval i ds  
   vect or _f or _dat aser i es2 
      vect or 2_val ues 
      vect or 2_nonval i ds  
   vect or _f or _dat aser i es3 
      vect or 3_val ues 
      vect or 3_nonval i ds  
   . . .  
 

The algorithm in Pr ot 1Vect or . aver ageVal i dVect or s will only take the average of the data 
series, future enhancements could allow the calculation of variance and other measures of 
spread. A very coarse description of Pr ot 1Vect or . aver ageVal i dVect or s is as follows: 
                                                        
268 Thus, the fourth element of the result is an "average" of one value only. A peculiarity of the implemented 
foreign function is that the result vector will have the value -999.999 in any position where all of the input 
vectors have a nonvalid elements. Possibly, i t would be better to return null. 
269 This fairly complicated solution was chosen in order to ascertain that the Java method will be able to match 
the non-valid indexes to the correct vector. Another constraint is that the Amos II interface to Java foreign 
functions requires a single vector (containing all  arguments) to be shipped out. 
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1.  Read i nput  i nt o l ocal  Java var i abl es 
2.  Check t hat  al l  vect or s  ar e of  equal  l engt h 
3.  Sum up al l  i nput  vect or s  t o a r esul t  vect or ,  el ement  by el ement  
4.  Check t hat  nonval i d poi nt s  ar e cor r ect l y  def i ned,   
   and r emove t hem f r om t he sum 
5.  Di vi de each el ement  of  t he r esul t  vect or  by number  of  poi nt s  used 
6.  Put  back i nt o r esul t  t upl e.  Emi t  

The three basic functions for data series averaging are: 
cr eat e f unct i on aver age_dat aser i es( bag b,  Uni t  u)   
- > vect or  of  r eal  
as sel ect  aver age_vect or s_nonval i ds(  sel ect  conver t _ser i es( ds,  u) ,   

vect or of ( nonval i ds( ds)  )   
   f r om Dat aSer i es ds 
   wher e ds = i n( b)  ) ;  
 
c r eat e f unct i on aver age_vect or s_nonval i ds(  bag b )   
- > vect or  of  r eal  
as sel ect  aver age_vect or s_nonval i ds_f or ei gn(  vect or of ( b)  ) ;  
 
c r eat e f unct i on aver age_vect or s_nonval i ds_f or ei gn(  vect or  v  )   
- > vect or  
as f or ei gn " JAVA: Pr ot 1Vect or / aver ageVal i dVect or s" ;  

 
Finally, as described in section 8.2.5 a few of useful utility functions have been implemented: 

• Function aver age2nM takes a bag of Dat aSer i es  as argument and calculates their average 
in nM units: 

cr eat e f unct i on aver age2nM(  bag b )  - >  
  vect or  of  r eal  
  as sel ect  aver age_dat aser i es(   
     (  sel ect  ds f r om ConcDat aSer i es ds wher e ds = i n( b)  ) ,       
     get _uni t ( " nM" )  ) ;  
 

• aver age_bound( Bi ndi ngExper i ment , Chemi cal Ent i t y)  averages all "bound" data 
series for a specified Bi ndi ngExper i ment  and Chemi cal Ent i t y : 

cr eat e f unct i on aver age_bound(  Bi ndi ngExper i ment  e,   
                               Chemi cal Ent i t y  l i gand )  - >  
  vect or  of  r eal  
  as sel ect  aver age2nM(  sel ect  ds  f r om ConcDat aSer i es ds 
                        wher e ds=bound( e)  and l i gand=l i gand( ds)  ) ;  

• aver age_bound( Bi ndi ngExper i ment )  averages all "bound" data series for each distinct 
ligand in a specified Bi ndi ngExper i ment : 

cr eat e f unct i on aver age_bound(  Bi ndi ngExper i ment  exp )  - >  
  <char st r i ng,  vect or  of  r eal > 
  as sel ect  name( l i gand) ,  aver age_bound(  exp,  l i gand )   
     f r om Chemi cal Ent i t y l i gand  
     wher e l i gand = bound_l i gands(  exp ) ;  
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Appendix D : Tests and Asser tions 

During the implementation of a growing schema it is important that tests are performed 
frequently. Tests help the developer to find out when a feature starts working, and also when 
it stops working (e.g. due to unintended side effects). 

For example, when the types Quant i t y, Uni t , and Uni t Type are implemented (see sections 
8.1.10, 8.1.11), it is necessary to check that the unit conversions and quantity arithmetics give 
correct results, and this should preferably be checked after each change affecting these types. 
For many types, e.g. Dat aSer i es and Bi ndi ngExper i ment , the main purpose of tests are to 
ascertain that more or less complicated sequences of function invocations behave as assumed.  

The very simplest tests are those which print out a message or an intermediate result. 
However, with this method of visual inspection it soon becomes tedious to go through the 
outputs to make sure the results are correct, and in practise only a few tests are run. A better 
solution would be a silent and automatic test, which is easy to run and only reports errors. 
Such tests exist for application development in programming languages, e.g. the JUnit 
framework270 for development in Java.  

The tests made during the development of the schemas in this Thesis follows the philosophy 
of JUnit, and also have taken over some structure from that package. The JUnit framework as 
such is not used, however, and the testing is performed in AMOSQL scripts, not in a Java 
class inheriting from JUnit's TestCase class. All test functionality is implemented in 
"prot1_assert.amosql" and "Prot1Assert.java", which in turn use "prot1_utility.amosql" and 
"Prot1BagOperations.java". 

Let us now return to the types Quant i t y , Uni t , and Uni t Type in order to exemplify the 
testing. The following (edited) excerpt of "prot1_quantityExamples.amosql" contains several 
kinds of tests: 

cr eat e Quant i t y  ( amount ,  uni t )  i nst ances  
  : q1 ( 2. 0,  : hour s) ,  : q2 ( 120. 0,  : mi nut es) ;  
 
asser t Equal s(  2. 0,  amount ( : q1)  ) ;  
asser t Equal s(  " hour s" ,  name( uni t ( : q1) )  ) ;  
/ *  uni t  conver s i on * /  
asser t Equal s(  120. 0,  conver t ( : q1,  : mi nut es)  ) ;  
asser t Equal s(  7200. 0,  conver t ( : q1,  " seconds" )  ) ;  
/ *  quant i t y  ar i t hmet i cs  * /  
asser t Equal s(  4. 0,  amount ( pl us( : q1, : q2, : hour s) )  ) ;  
 
/ *  equal i t y  t est s  on bags r equi r e anot her  f unct i on * /  
asser t BagEqual s(  bag( : kel vi n, : cel si us) ,  uni t s( : t emper at ur eUni t )  ) ;  
 
set  : u1a = cr eat eUni t ( " u1" , 1. 1, : massUni t ) ;  
/ *  unnecessar y uni t  cr eat i on,  i nst ead : u2a i s  ass i gned t o : u1a * /  
set  : u2a = cr eat eUni t ( " u2" , 1. 1, : massUni t ) ;  
asser t Equal s(  1. 1,  scal eFact or ( : u2a)  ) ;  
asser t Equal s(  : u1a,  : u2a ) ;  
 
/ *  Al l  pr ev i ous asser t i ons ar e passed * /  
/ *  The f ol l owi ng woul d t hr ow an Asser t i onFai l edEr r or ,   
   and i nt er r upt  t he scr i pt   
asser t Equal s(  : seconds,  : hour s ) ;  * /  
 

As may be seen in the examples, asser t Equal s  is overloaded, and can take either two 
Obj ect s  as argument, or a message string (which is printed if the assertion fails) plus two 

                                                        
270 http://www.junit.org (2001-02-16). 



 
   

    
 
 129 

 

Obj ect s . Actually, there is even more overloading, and there are eight different resolvents to 
asser t Equal s: 

asser t Equal s(  Obj ect  expect ed,  Obj ect  act ual  )  - > bool ean 
asser t Equal s(  vect or  expect ed,  vect or  act ual  )  - > bool ean 
asser t Equal s(  number  expect ed,  number  act ual  )  - > bool ean 
asser t Equal s(  number  expect ed,  number  act ual ,  number  del t a )  - >  

bool ean 
 + f our  f unct i ons wi t h addi t i onal  message st r i ngs 
 
asser t BagEqual s(  bag expect ed,  bag act ual  )  - > bool ean 
 + wi t h addi t i onal  message st r i ng 
 

The reason for overloading with number  arguments is that this makes it possible to compare 
an i nt eger  with a r eal  (i.e. type checking is overridden). A test which I belive would be 
useful for scientific and technical database implementations is the one which takes three 
number  arguments. The third argument del t a is the maximum allowed difference between 
the expect ed and act ual  numbers for the assertion to be valid. In this way rounding errors 
and approximations can be handled in assertions. 

Two vectors pass asser t Equal s only if they are equal element by element. This is handled 
fully by the Amos II core. The overloaded function simply is a means to introduce additional 
information upon failures. Note however, that the vectors { 4,5}  and{ 4.0,5.0}  are not equal 
since the elements have different data types.  

Two bags should be considered equal if the bags contain the same elements, irrespective of 
order. This is not handled gracefully by the Amos II system, which treats bag(1,2,3) and 
bag(3,2,1) as unequal. Thus, bag equality was implemented by means of bag differences: 

i f  (  some(  bagDi f f er ence( act ual , expect ed)  )  or   
     some(  bagDi f f er ence( expect ed, act ual )  )  )   
t hen f ai l Equal s( message,  expect ed,  act ual ) ;  

Equality tests on bags should use the function asser t BagEqual s . When I implemented this 
under the name asser t Equal s  the Amos II system was not able to resolve the overloaded 
functions correctly.  
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Appendix E : The Fi t Model  Strategy Pattern 

As described in section 8.8, a Fi t Model  object has both state (the values of its attributes name, 
descr i pt i on, and f or mul a) and behaviour (methods to create the correct type and number of 
Fi t Par amet er  objects). This behaviour is different for the different Fi t Model  subtypes. The 
same applies for Wei ght i ngModel , where the behaviour which differs between subtypes is the 
way a vector of weights is calculated.  

In this Appendix will be shown how the types Exper i ment Eval uat i on, Cal cul at i on-

Met hod, and Fi t Model  (or Wei ght i ngModel ) constitute a ”Strategy”  design pattern271. In an 
object-oriented programming language such as Java, this design pattern consists of an abstract 
class272 (”AbstractStrategy”) with one concrete subclass for each implemented algorithm273, 
see Figure E1.  

Cli ent AbstractStrategy

ConcreteStrategy1 ConcreteStrategy2 ConcreteStrategy3

uses

* 0..1
operation()

operation() operation() operation()

 

Figure E1. The Strategy design pattern as a UML class diagram. (After Grand 1998.) 

This is similar to how Fi t Model  (and Wei ght i ngModel ) are implemented, although Amos II 
does not allow the designer to define abstract types (or to enforce singletons): 

/ *  " Abst r act  t ype"  Fi t Model  * /  
cr eat e t ype Fi t Model  pr oper t i es  (   
   name char st r i ng key,  descr i pt i on char st r i ng,  f or mul a char st r i ng) ;  
 
/ *  " abst r act "  met hod * /  
cr eat e f unct i on cr eat eFi t Par amet er s( Fi t Model , bag l i gands, bag si t es)   
    - > Fi t Par amet er ;  
 
/ *  " Concr et e subt ype"  Bi ndf i t  of  Fi t Model  * /  
cr eat e t ype Bi ndf i t  under  Fi t Model ;  
 
/ *  " concr et e"  met hod * /  
cr eat e f unct i on cr eat eFi t Par amet er s( Bi ndf i t ,  bag l i gands,  bag s i t es)  
   - > Fi t Par amet er  as 

begi n 
.  .  .  l engt hy i mpl ement at i on .  .  .   
end;     

 
/ *  Ot her  " concr et e"  subt ypes of  Fi t Model  * /  
 .  .  .  

                                                        
271 Gamma, Helm, Johnson, Vlissides 1995; Grand 1998. 
272 An abstract class is a class without extent, i.e. no objects can be created of it. Abstract classes may include 
both concrete and abstract methods (with and without implementation, respectively). Concrete subclasses of an 
abstract class must implement all abstract methods of the superclass.  
273 The concrete subclasses are singletons, i.e. there is only one object of each class. 
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/ *  One i nst ance of  each " concr et e"  subt ype i s  cr eat ed,   
   none of  " abst r act "  super t ype Fi t Model  * /  
cr eat e Bi ndf i t  i nst ances : bi ndf i t ;  
set  name( : bi ndf i t )  = " Bi ndf i t " ;   
set  descr i pt i on( : bi ndf i t )  =  
   " Rever si bl e bi ndi ng of  N l i gands t o M si t es" ;  
set  f or mul a( : bi ndf i t ) = " B_i =\ sum_{ b=1} ^ { m} \ l ef t ( \ f r ac{ K_{ i b} F_i R_b} "  
                     + " { 1+\ sum_{ a=1} ^{ n} K_{ ab} F_a} \ r i ght ) +N_i F_i " ;  
.  .  .  
 

Figure E2 shows a UML class diagram of the Amos II types Fi t Model  (with subtypes), 
Cal cul at i onModel , and Exper i ment Eval uat i on. The diagram is drawn according to an 
object-oriented data model, e.g., as if model  were an attribute of Cal cul at i onMet hod 
(instead of a function which maps a Cal cul at i onMet hod object onto a Fi t Model  object). The 
type Cal cul at i onMet hod takes the role of Cl i ent  in Figure E1, and Cal cul at i onMet hod is 
in turn called by Exper i ment Eval uat i on.  

1

*

Calcu lat ionMethod

createFitParameters(bag ligands, bag sites) : bag of FitParameters

FitModel

createFitParameters(bag ligands, bag sites) : bag of FitParameter

Bin dfit

createFitParameters(bag ligands, bag sites) : bag of FitParameter

Unknow nFi tM odel

createFitParameters(bag ligands, bag sites) : bag of FitParameter

other concrete FitModel subtypes can be added

Experim entEvaluation

experiments : bag of Experiment
parameters : bag of F itParameter

setupFitParameters() : boolean
getLigands() : bag of ChemicalEntity
getSites() : bag of ChemicalEntity

*

1

model

method

 
Figure E2. UML class diagram of the Fi t Model  Strategy pattern. 

 
Similar diagrams could be drawn for Wei ght i ngModel , whereby the NoWei ght i ng subtype of 
Wei ght i ngModel  would corresponds to a ”Null object”  pattern274. 

The UML sequence diagram of Figure E3 shows how the appropriate set of Fi t Par amet er  
objects are created for an Exper i ment Eval uat i on object (cf. section 8.8.1).  

:expEval :calcMethod :fitModel

:fitParam

setupFitParameters()

getLigands() : bag

getSites() : bag

createFitParameters(bag, bag) : bag

createFitParameters(bag, bag) : bag

* [needs more] new

bag of FitParameter
bag of FitParameter

 

                                                        
274 Woolf 1997; Grand 1998. 
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Figure E3. UML sequence diagram for the creation of fit parameter objects.
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Appendix F : Polymorphic Behaviour  by Applying Functions 

As described in section 8.8.3, the use of the foreign function appl y  is an alternative to subtyping 
through inheritance when implementing the ”Strategy”  pattern. The foreign function is 
implemented in Lisp, and is presently not included in the Amos II core. It cannot be used in the 
official Amos II version, but only in the ”developers version”  (camos2), where it is possible to go 
out to Lisp and define new functions. The Amos II foreign function appl y  does in turn use the 
Lisp function apply. 

The foreign function appl y  was implemented by Tore Risch (Dept of Information Science, 
Uppsala University) who is principal investigator in the Amos II database engine research 
project, as well as supervisor for this Thesis. The impetus for this implementation was 
discussions between Tore and me as to whether AMOSQL allows a user to invoke a function 
he/she has a reference to. This was not possible, and the security aspects of including this feature 
in Amos II have not yet been fully investigated.  

F.1 How to Use the appl y Function 

The interface of appl y  is appl y( f unct i on f ,  vect or  par amet er s)  - > vect or  r esul t s, i.e. 
all arguments to the function f should be packed into a vector, and the results are returned in a 
vector. The following code excerpt shows how different weighting models are implemented as 
instances of type Wei ght i ngModel , with an attribute get Wei ght sFunct i onName. The function 
get Wei ght s  takes the Wei ght i ngModel  object as argument, and gets the appropriate function 
with f unct i onnamed. This function is then ”applied” , and the contents of the result is returned as 
a vector of real weights275. (A foreign function is used since Amos II can not handle 
exponentiation.) 

cr eat e t ype Wei ght i ngModel  pr oper t i es (  name char st r i ng key,  .  .  .  ,  
get Wei ght sFunct i onName char st r i ng ) ;  

 
cr eat e Wei ght i ngModel  ( name,  .  .  .  ,  get Wei ght sFunct i onName)   

i nst ances 
: nowei ght s ( " No wei ght i ng" ,  .  .  .  ,   

" get Uni t yWei ght s" ) ,  
: munsonr odbar d ( " Munson & Rodbar d wei ght i ng" ,  .  .  .  ,   

" get MunsonRodbar dWei ght s" ) ,  
: del ean ( " DeLean wei ght i ng" ,  .  .  .  ,   

" get DeLeanWei ght s" ) ;  
 
cr eat e f unct i on get DeLeanWei ght s(   vect or  val ues,   

vect or  wei ght i ngPar amet er s )   
- > vect or  of  r eal   
as f or ei gn " JAVA: Pr ot 1Wei ght i ng/ del eanWei ght s" ;   

 
 
cr eat e f unct i on get Wei ght s(  Wei ght i ngModel  wm,  vect or  val ues,   

vect or  wei ght i ngPar amet er s )   

                                                        
275 Note that ”apply(---)”  will give us a vector of results. I.e., since our result is a vector (of weights) this vector will 
be the single element of another vector ( {  {  0.01, 0.012, 0.014,…}  } ). To extract the elements of a collection we use 
i n. A bug in Amos II prevents us from using direct addressing to get the first element of the result vector. If there 
had been more that one argument, we could have wrapped the method containing ”apply(---)” . 
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- > vect or  of  r eal  
    as sel ect  i n(  appl y(  f unct i onnamed(  get Wei ght sFunct i onName( wm)  ) ,   
                         { val ues,  wei ght i ngPar amet er s}  )  ) ;  

F.2 A Compar ison With Java 

Usually, we apply a function by explicitly giving its name in an AMOSQL statement, e.g. 
name( : donal d) ;  applies (or invokes) the function name on an object : donal d (presumably of 
type Per son). Similarly, in Java we invoke the method get Name( )  by donal d. get Name( ) ;  

(where, presumably, the variable donal d is assigned to an object of class Per son) . 

The possibility to use the functions f unct i onnamed and appl y  together in AMOSQL does at 
least partially corresponds to one of to Java’s reflection capabilities (see the Java reflection API 
(java.lang.reflect Class Method 2001)).  

We saw the implementation in AMOSQL in the previous section, an example of use is: 
/ *  obj ect  : del ean assumed set up appr opr i at el y * /  
set  : val ues = { 10. 0,  11. 0,  12. 0,  23. 0,  29. 0,  45. 0} ;  
set  : wei ght i ngpar amet er s = { 1. 0e- 6,  1. 0e- 3,  1. 5} ;  
set  : wei ght s = get Wei ght s(  : del ean,  : val ues,  : wei ght i ngpar amet er s ) ;  
/ *  now : wei ght s = { 31. 6218, 27. 4094, 24. 0557, 9. 06576, 6. 40325, 3. 31268}  * /  
 

The corresponding pattern implemented in Java:  
/ *  obj ect  wm assumed assumed set up appr opr i at el y * /  
doubl e[ ]  val ues = { 9. 0,  11. 0,  12. 0,  23. 0,  29. 0,  45. 0} ;  
doubl e[ ]  wei ght i ngpar amet er s = { 1. 0,  1. 0,  1. 0} ;  
doubl e[ ]  wei ght s;  
wei ght s = wm. get Wei ght s(  val ues,  wei ght i ngpar amet er s ) ;  
 
c l ass Wei ght i ngModel  {  
   .  .  .  
   publ i c doubl e[ ]  get Wei ght s(  doubl e[ ]  val ues,  doubl e[ ]  wp )   
   {  
      doubl e[ ]  r esul t  = nul l ;  
      Cl ass c = Wei ght i ngModel . cl ass;  
      Cl ass[ ]  par amet er Types =  
         new Cl ass[ ]  {  doubl e[ ] . c l ass,  doubl e[ ] . c l ass } ;  
      Met hod wei ght i ngMet hod;  
      Obj ect [ ]  ar gument s = new Obj ect [ ]  {  val ues,  wp } ;  
      t r y  
      {  
         Met hod wei ght i ngMet hod = c. get Met hod(  
            get Wei ght sFunct i onName,  par amet er Types ) ;  
         r esul t  = ( doubl e[ ] )  wei ght i ngMet hod. i nvoke(  nul l ,  ar gument s ) ;  
      }  cat ch ( NoSuchMet hodExcept i on e)  {  
           Syst em. out . pr i nt l n( e) ;  
      }  cat ch ( I l l egal AccessExcept i on e)  {  
           Syst em. out . pr i nt l n( e) ;  
      }  cat ch ( I nvocat i onTar get Except i on e)  {  
           Syst em. out . pr i nt l n( e) ;  
      }  
      r et ur n r esul t ;  
   }  
}  / /  c l ass Wei ght i ngModel  
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There are two major differences: (i) In Java we would expect the class Wei ght i ngModel  to 
implement all weighting methods, and also have an attribute get Wei ght sFunct i onName 
discriminating between them. In the Amos II/Lisp solution, the type Wei ght i ngModel  only has 
the discriminating attribute. The functions to calculate weighting methods are implemented 
independent of any user-defined type. Similarly, the Java method get Met hod is bound to a 
specific class, while the Amos II f unct i onnamed is not. (ii) With the Java reflection API the 
method get Met hod takes a vector of parameter types as argument to help resolving overloaded 
methods. In the Amos II/Lisp solution this resolution is made dynamically and transparently, with 
help of  the types in the vector of arguments to  appl y.  

It seems easier to use the ”apply function”  approach in Amos II than to use Met hod. i nvoke in 
Java. However, the comparison is not altogether fair since the Java reflection API contains a lot 
more features than invoking a method. 
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Appendix G : Integration of External Data 

One of the main purposes of the PAQS project is to create a means for information integration by 
defining a common data model in the mediator and wrapping external data sources. Such 
wrappers have not been implemented in the prototype developed for this Thesis. However, this 
Appendix will demonstrate the use of external data sources with a small example. Furthermore, 
the Appendix will give examples of information integration by means of derived types (G.3) and 
integration union types (G.4). 

The examples are also available from the author (fbn@hig.se) in electronic format as four files 
("ChemicalData.mdb", "Register_ODBC_data_source.txt", "External_demo.amosql", and "Exter-
nal_IUT_demo.amosql"). 

G.1 The Relational Database 

As an example of a relational data source we take a very small MS Access database of chemical 
data, ”ChemicalData.mdb”. We may access the data in the ChemicalData database through an 
ODBC276 wrapper in the Amos II system277. Note that the database of chemical data we will use 
is for demonstration purposes only, it has fewer columns than a commercial molecular properties 
database would have, and there are very few rows in each of the tables.  

Although the database is small, it is representative of how data would be stored in a larger 
commercial relational database of chemical properties. The relational database schema for 
”ChemicalData.mdb”  is the following: 

ORGANI C_COMPOUNDS(  
Subst ance,  For mul a,  Mol ecul ar Wei ght ,  Densi t y,  Di pol eMoment ,  
Heat Of Combust i on )  

I NORGANI C_COMPOUNDS(  
Subst ance,  For mul a,  Mol ecul ar Wei ght ,  Densi t y,  Di pol eMoment ,  
Sol ubi l i t y,  Sol ubi l i t yCode )  

ELEMENTS(    
Znuc,  El ement ,  Symbol ,  At omi cWei ght ,  Densi t y,  Domi nant I sot ope,  
Per cent ageDI ,  Radi oact i veI sot ope1,  Per cent ageRI 1,  Radi oact i ve-
I sot ope2,  Per cent ageRI 2,  Radi oact i veI sot ope3,  Per cent ageRI 3 )  

 

The meaning of the various attributes should be clear from their names, and a more detailed 
description is given in the MS Access database. Underlined attributes have been declared primary 
keys. (These keys, and the unique fields El ement  and Symbol  in El ement s  are indexed in the MS 
Access database. This is not necessary for the Amos II access.) 

                                                        
276 ODBC (Open Database Connectivity) is a standard interface designed to provide interoperability between 
relational products. 
277 The Amos II system wrapper for ODBC data sources is described in (Brandani 1998). 
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G.2 Access the External Data Source from Amos II  

It is assumed that the external MS Access database has been registered as an ODBC data source 
under the Windows operating system, and also within the Amos II system (see supplementary 
material, "Register_ODBC_data_source.txt"). 

After having registered the external database under the name 'ds' we may investigate the data 
source by retrieving metadata, access the data source by executing SQL commands through the 
ODBC API, or access the data source through the ODBC wrapper. Examples are given in the 
following sections. 

G.2.1 Query Metadata 

t abl es( ' ds' ) ;  
col umns( ' ds' ,  ' ELEMENTS' ) ;  
pr i mar y_keys( ' ds' ,  ' ELEMENTS' ) ;  

G.2.2 Execute SQL Commands through the ODBC API 

One way to access the database is by direct SQL statements278 through the ODBC API: 

sql ( ' ds' , ' sel ect  znuc,  el ement  f r om el ement s or der  by znuc' ,  { } ,  - 1) ;  
set  : sql _st r i ng = ' sel ect  el ement ,  domi nant i sot ope,  per cent ageDI ,  '  + 
                  ' r adi oact i vei sot ope1,  per cent ageRI 1 f r om el ement s '  + 
                  ' wher e per cent ageDI  < ? and per cent ageRI 1 > ?' ;  
set  : par amet er s = { 50. 0,  10. 0} ;  
sql ( ' ds' ,  : sql _st r i ng,  : par amet er s,  - 1) ;  
 

If the external database was not defined as a read-only ODBC data source insertions, updates and 
deletions are possible too. 

However, this direct use of the ODBC API is not a suitable means for data integration. For 
example, we use AMOSQL to access local data, but SQL2 syntax to access the external data. 
There is no location transparency, and the impedance mismatch remains. 

G.2.3 Import Tables Through the ODBC Wrapper  

The second  way to access the external database is through the ODBC wrapper. When a table is 
imported into Amos II the relational table becomes represented by a proxy type of the Amos II 
functional data model. This proxy type can then be queried almost as a stored type279: 

i mpor t _t abl e( ' ds' ,  ' ELEMENTS' ) ;  
                                                        
278 The syntax is sql ( odbc_ds dat a_sour ce,  char st r i ng sql _st r i ng,  vect or  par amet er s,  i nt eger  
max_r ows)  - > bag of  vect or  r esul t s . I.e., the first argument 'ds' is the name we have registered the external 
database under, and the last argument is the max number of rows we want the ODBC connection to return. (We 
know there cannot be more than a little bit over 100 rows in the El ement s  table, but there might be thousands of 
small polar molecules stored in the table Or gani c_Compounds .) Sql strings containing question marks are filled in 
with the elements of the vector of parameters.  
279 The data in the external database can be queried, but we cannot insert or update data through the proxy type. 
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i mpor t _t abl e( ' ds' ,  ' I nor gani c_Compounds' ) ;  
i mpor t _t abl e( ' ds' ,  ' Or gani c_Compounds' ) ;  
 
sel ect  znuc( e) ,  el ement ( e)  f r om el ement s@ds e;  
 
sel ect  oc i nt o : ni t met   

f r om Or gani c_Compounds@ds oc 
wher e subst ance( oc)  = " ni t r omet hane" ;  

di pol e_moment ( : ni t met ) ;  
 

It is easy to mix stored types and proxy types in the AMOSQL query, e.g. in the following  join 
of Or gani c_Compounds  and Chemi cal Ent i t y

280: 
sel ect  subst ance( oc) ,  di pol e_moment ( oc)  

f r om Or gani c_Compounds@ds oc,  Chemi cal Ent i t y ce 
wher e subst ance( oc)  = name( ce) ;  

G.3 Data Integration by Der ived Types 

In the previous section we saw how external data could be incorporated by first importing tables 
and then querying these tables in AMOSQL. However, Amos II has more powerful data 
integration primitives: object-oriented views implemented as derived types and integration union 
types (Josifovski and Risch 1999). 

A derived type (DT) is a subtype of one or several existing (stored or proxy) types while an 
integration union type (IUT) is a supertype of several existing types. An example of using 
derived types is given in this section, and one with IUTs in the following. 

We continue the example from above and create a derived type (DT) Or gani cs  as a subtype of 
the user-defined stored type Chemi cal Ent i t y  and the proxy type Or gani c_compounds@ds  which 
represents an external data source. The extent of Or gani cs  is restricted to those instances which 
satisfy the wher e clause in the following definition: 

cr eat e der i ved t ype Or gani cs 
   subt ype of  Or gani c_compounds@ds oc,  Chemi cal Ent i t y ce 
   wher e name( ce)  = subst ance( oc) ;  
 

We may now query the new type Or gani cs  transparently, just as an ordinary user-defined Amos 
II data type. The following query example shows that we can use one local function 
(name( Chemi cal Ent i t y) ) and one attribute of the relational table (di pol e_moment ) in the same 
query transparently: 

sel ect  name( o) , di pol e_moment ( o)  f r om or gani cs o;  
 

For a fuller description of  the functions available for the Amos II odbc_ds data type, see the 
Amos II User's Manual (Flodin et al 2000).  

                                                        
280 In this and the following examples it is assumed that the scripts "prot1_chemicalentity.amosql" and 
"prot1_chemicalentityExamples.amosql" have been run. Alternatively, the following definitions and instantiations 
can been made: 

   cr eat e t ype Chemi cal Ent i t y  pr oper t i es (  name char st r i ng key ) ;  
   cr eat e Chemi cal Ent i t y  ( name)  i nst ances  

      : met hanol  ( " met hanol " ) ,   :et hanol  ( " et hanol " ) ,  : met hane ( " met hane" ) ;  
   cr eat e Chemi cal Ent i t y  ( name)  i nst ances             
      : i odi de ( " I - " ) , : t r i i odi de ( " ( I 3) - " ) , : i odi ne ( " I 2" ) ;  
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G.4 Data Integration by Integration Union Types 

An integration union type (IUT) is a supertype of several existing types. Suppose, for example, 
that we wish to import the two external tables Or gani c_Compounds  and I nor gani c_Compounds, 
and then make a union Compounds  of them. We can then use the latter type, Compounds, 
transparently as an Amos II type281. This should be fairly simple since we expect no semantic 
heterogeneity between them (see, however, footnote 282). It might also be useful to integrate this 
type Compound with the local type Chemi cal Ent i t y, but then quite a lot of reconciliation 
between the schemas has to be made.  

The use of integration union types (IUTs) in Amos II is technically a bit more complicated than 
the use of derived types. At the present status of Amos II IUTs are mainly intended for 
integrating data from two or more external data sources. The scenario described by Risch and 
Josifovski (2001) is that data from two relational databases should be integrated. Each database is 
being wrapped by an Amos II mediator and a third mediator imports the types of the two 
mediators, and integrates them, possibly together with a locally stored type, as an IUT.  

The demonstration example given below integrates data from two relational tables of the same 
database as one IUT. Thus, only two mediators are used:  

• "Mediator_ChemData" wraps the ODBC data source (a "translator", cf. Figure 10). This 
mediator imports the two tables of organic and inorganic substances from the MS Access 
database. When it is running, it listens for clients. The mediator also functions as nameserver. 

• "Integrator" creates an IUT from two proxy types which represent the two wrapped tables. 
The "Integrator" first registers with the nameserver, and then imports types from the mediator 
of the ChemData database: 

i mpor t _db( ' Medi at or _ChemDat a' ) ;  
i mpor t _t ype( ' Or gani c_Compounds_ds' ,  ' Medi at or _ChemDat a' ) ;  
i mpor t _t ype( ' I nor gani c_Compounds_ds' ,  ' Medi at or _ChemDat a' ) ;  
 

We can now create the integration union type. (Only a subset of the columns in the external 
database tables were used for this demonstration example.) 

cr eat e der i ved t ype Compounds 
  key char st r i ng subst ance 
  super t ype of  
    Or gani c_Compounds_ds@medi at or _ChemDat a oc    = subst ance( oc) ,  
    I nor gani c_Compounds_ds@medi at or _ChemDat a i oc = subst ance( i oc)  
  f unct i ons 
    (  name char st r i ng,  u_f or mul a char st r i ng,   
      u_sol ubi l i t y  r eal ,  u_di pol e_moment  r eal  )  
    case oc:  
      name = subst ance( oc) ;  
      u_f or mul a = f or mul a( oc) ;  
      u_sol ubi l i t y  = 0. 0;  
      u_di pol e_moment  = di pol e_moment ( oc) ;  
    case i oc:  
      name = subst ance( i oc) ;  
      u_f or mul a = f or mul a( i oc) ;  
      u_sol ubi l i t y  = sol ubi l i t y( i oc) ;  
      u_di pol e_moment  = di pol e_moment ( i oc) ;  
    case oc,  i oc:  

                                                        
281 Since IUTs and DTs are based on Amos II proxy type it is presently not possible to update the data source. 
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      name = subst ance( i oc) ;  
      u_f or mul a = f or mul a( i oc) ;  
      u_sol ubi l i t y  = sol ubi l i t y( i oc) ;  
      u_di pol e_moment  = di pol e_moment ( i oc) ;  
  end f unct i ons 
  pr oper t i es ( CAS_nr  char st r i ng) ;  

 

Now we can query the two MS Access tables as one single Amos II type. 
sel ect  name( c) ,  u_f or mul a( c) ,  u_di pol e_moment ( c)   
   f r om Compounds c wher e u_di pol e_moment ( c)  > 10. 0;  

 

In the definition of the IUT we first declare two proxy types to use, then list a few functions the 
IUT should have, and then give implementations for the functions. (In the present case the two 
tables are expected to be non-overlapping, so " case oc,  i oc"  will likely never occur282.) 
Finally, there is a possibility to define new attributes to an IUT, i.e. attributes existing in neither 
of the data sources (CAS_nr  above). 

Note that I have chosen to set the solubility to zero for organic compounds in the example. Since 
the table does not list water solubilities for organic compounds an alternative would be to set all 
such attributes to nul l . However, then the inorganic and organic compounds would be treated 
unequally. The data source for inorganic compounds actually has a lot of nul l  values in the 
solubility column, but these are set to 0.0 when imported through the ODBC wrapper283. Hence, 
if a missing solubility in the inorganic compounds data source results in 0.0 for the IUT, then so 
should all missing organic compound solubilities. 

It is worth noting that I have not managed to create an IUT from one proxy type and one (local) 
stored type. This seems not possible in the present Amos II version. I.e., it is not possible to 
create an IUT of Chemi cal Ent i t y  and Or gani c_Compounds_ds@medi at or _ChemDat a. In order 
to do that we need to have Chemi cal Ent i t y  in another mediator. Then, we could import two 
types, and construct an IUT of them. Neither is it possible to create an IUT from a stored type and 
a proxy type for an imported table (i.e. importing the table directly, and not going via a second 
mediator). It is possible, however, to create an integration union type from two stored types. This 
is probably of little practical use, since it is easier to use the inheritance primitives of the type 
system. 

 

                                                        
282 Actually, in the tables that were used to populate the database (Aylward and Findley 1994) a few substances exist 
as inorganic as well as organic compounds (e.g. CCl4). Interestingly, the data are heterogeneous in two ways:  (1) 
Some molecular properties are given with a higher precision in the table of organic compounds, and  (2) the thermo-
chemical data refer to the gas phase and to the standard state at 25 °C for organic and inorganic compounds, 
respectively. In the terminology of section 4.3.3, case (1) is a "data conflict" (the two data sources have different 
values), and case (2) is a "semantic conflict" (different meaning of the same concept).  Thus, even the task of 
integrating data from two tables of the same data source could be quite demanding. 
283 When executing an SQL command through the ODBC API, we have the possibility to exclude null values: 
sql 2( ' ds' , ' sel ect  subst ance,  f or mul a,  sol ubi l i t y  f r om i nor gani c_compounds 
wher e sol ubi l i t y  <> nul l ' , { } , 10) ;  A corresponding possibility does not seem to exist when going 
through the ODBC wrapper. 


