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Abstract

The research described in this Thesis is part of a project to develop a new database system for
proteo-chemometric research. This new sysem uses a mediator/wrapper approach for
integrating heterogeneous and autonomous data sources. Special-purpose modules for data
representation and data analysis can be incorporated into the system through the extensibility
of the object-relational mediator.

Life science data sources and data exchange formats for the new Proteo-chemometric
Analysis and Query Sysem (PAQS) have been surveyed. Although important data sources
exis on many different formats the trend towards XML is evident. For proteo-chemometric
research it is important to be able to access data sources with binding affinity data. Most such
data sources are only accessible via web forms, which limits the query capabilities.

Database schemas for parts of the proteo-chemometric information domain have been
developed within a functional data model with object-oriented extensions. These schemas
have also been implemented in the Amos Il system as a firs-stage prototype of PAQS.
Special emphasis has been put on modelling binding experiments and experiment evaluations,
and the corresponding data types have been used to show how data analyss could be
performed by means of foreign functions of the mediator.

The mediator/wrapper approach is described in the Thesis, and examples are given of other
systems which use this architecture for integrating life science data, both research prototypes
and commercial systems. Introductions to the proteo-chemometric approach to drug design, to
some general database concepts, and to information integration by means of database systems
are aso given.
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1 Introduction

The research described in this Thesis is motivated by the need for new approaches to the
development of drugs. Generally speaking, there are two steps in drug development: First a
key molecule, usually a protein, isidentified. This "target protein” can have some biochemica
function which, e.g., causes a disease. Then a drug molecule which moderates, or blocks, the
function of the target protein is searched for. The proteo-chemometric approach to drug
design (chapter 2) is one of many approaches to performing this second step efficiently.

The work of this Theds is part of a joint project between pharmacologists and computer
scientists in order to develop a Proteo-chemometric Anaysis and Query System (PAQS).
More specifically, the PAQS project emanates from a need for a database system suitable for
proteo-chemometric research. The aim of this new system is to provide users with uniform
access to world-wide data on bindings between target proteins and potential drug molecules,
as well as associated data. Further, PAQS shall provide the users with computational tools to
analyse such ligand-protein interactions - together with additional data - in order to produce
new knowledge. In order to accomplish this it is necessary for the new proteo-chemometric
analysis and query system to integrate data from various autonomous and heterogeneous life
science data sources.

Four of the first steps towards the development of PAQS are (i) to develop an architecture for
the system, (ii) to survey potential data sources and trends in life science data integration, (iii)
to develop database schemas which represent the problem domain, and (iv) to develop
methods for importing data from external sources. This Thesis deals with points (ii) and (iii).
The generd mediator/wrapper-architecture (step (i)) is described in section 7.1. With this
architecture external data are imported through wrappers (step iv).

1.1 Partsand Purposesof the Thesis

This Thesis consists of three main parts. Firg, introductions to proteo-chemometric research,
to database concepts, and to information integration are given in chapters 2, 3, and 4,
respectively. These chapters are meant to provide the reader with a basis for the later parts of
the Thesis.

The second part consists of chapters 5 and 6. Chapter 5 surveys life science data on the web,
focussing on the usefulness for the PAQS project. The chapter discusses data formats and
protocols, as well as specific data sources. Chapter 6 surveys some work related to the PAQS
project, viz. database solutions for the integration of heterogeneous life science data. One
purpose of this part of the Thess is to show solutions that have been used previously for
standardisation and integration in this information domain. Further, the chapters should
present current trends in order to give a good basis for the selection of data formats and data
sources to be used in the PAQS project. Finally, the chapters should point at solutions in
database and information system design which can be reused in PAQS.

Chapter 8 constitutes the third part of the Thesis. In this part database schemas for radioligand
binding experiments, evaluations of experiments, and related topics are described and
discussed. The purpose of the chapter is to suggest design solutions for most subdomains of
the PAQS information domain. The proposed database schemas should also be useful as
templates for future XML schemas of binding experiments and similar topics. A third purpose
with the chapter is to demonstrate how data analysis can be performed from within the



database manager, by the invocation of foreign functions. The design is supported by a
prototype implemented in the Amos || system.

1.2 Tools

In order to prepare the surveys of chapters 5 and 6 primary and secondary literature was
studied. Most of this information is available on the Web rather than in refereed printed
sources. Since most of the web sites used in the survey were managed by the same
organisation that manages the corresponding data source, data format, interchange protocol, et
cetera, | regard the web site information as being authoritative, and fairly reliable. Some
organisations may perhaps be a bit too positive in their judgements of their own products.

The modelling and implementation described in chapter 8 was performed within the Amos |1
data model, a functiona data model with object-oriented extensions (see section 3.2.6).
Several Amos Il releases have been used for implementing the evolving schemas. The latest
version the prototype has been tested with is Amos |l Beta Release 5, v6. A few tests in
section 8.8.3 and Appendix F used a developer's (non-public) version (Amos Il Beta Release
5, v12, "camos'). Foreign functions were implemented in Java (JDK 1.3). Since the Java
programs were small, no interactive development environment was used. Diagrams were
drawn with Edge Diagrammer (v4.0) from Pacestar Software.

1.3 Acknowledgements



2 Proteo-Chemometric Research

Proteo-chemometrics' is a novel approach to the analysis of drug receptor interactions, which
is an important component of drug design. In this Thesis relevant data sources, data formats,
and design solutions for PAQS (Proteo-chemometric Analysis and Query System) will be
described. The purpose of PAQS isto provide an information system for proteo-chemometric
and other pharmacological research. In this chapter a brief description of the background to
the proteo-chemometric method is given, without going into details either in biochemistry or
statistics. The chapter is intended to give computer scientists and other readers not versed in
biology or pharmacology a relevant background for the rest of the Thesis. In the last
subsection (section 2.5) afew hot topics - or "buzz-words' - are explained.

2.1 Binding Affinity Constantsand the Action of Drugs

Much of the modelling in chapter 8 of this Thess deals with how to represent binding
affinities, experiments made to determine binding affinities, and evaluations of these
experiments. Hence, we start by describing why such binding affinities are interesting.

Many drugs contain an active substance which competes for some naturally occurring
substrate in binding to an enzyme or to a receptor. Enzymes are catalysts in the chemical
processes of living systems. A biochemical process which by itself proceeds very slowly may
be accelerated by many orders of magnitude (10°-10" times faster”) by an enzyme. Enzymes
are also very specific, i.e. a given enzyme catalyses one particular reaction. Now, if an active
drug substance binds to the enzyme its catalytic activity might become reduced, or even fully
cancelled. Most known enzymes are proteins’,

A receptor is a protein which binds a specific extra-cellular signalling molecule (e.g. a
hormone) and then initiates a cell response. Receptors, like enzymes, are very specific, both
with respect to which molecules they bind and which cell response they initiate. If an active
drug substance binds to the receptor, the receptor becomes blocked, and signal transfer
through the cell membrane is inhibited.

Thus, in both cases described above the active drug substance functions by binding to some
binding site. Obvioudy, it is essentia to know how strongly a substance (usually called
ligand) binds to various binding sites in order to understand or predict which effects the
substance has (or will have) on a biochemica process.

If aligand binds strongly to a binding site we say that the site has a strong (or high) affinity
for the ligand. For a quantitative measure of affinity we define the (binding) affinity constant
(KA) as

[LS]
[L][S] (Equation 1)

L+S < LS Ka=

e
! Lapinsh, Prusis, Gutcaits, Lundstedt and Wikberg 2001; Prusis, Muceniece, Andersson, Post, Lundstedt and
Wikberg 2001; Prusis 2001.

2 Lodish, Berk, Zipursky, Matsudaira, Baltimore and Darnell (2000).
% "Ribozymes' are RNAs with catalytic activity.



where LS is the complex between ligand and binding site, and square brackets ([ ]) denote
concentrations. This definition of affinity constant is the inverse of the dissociation constants
used in chemigry.

Traditionally, there are three important ways to determine affinity constants:
» Biochemica experiments with binding assays (see next section).

* Molecular modelling: Computer simulations of differences in free energy between the
sates {free ligand + free protein} and {ligand bound to protein}.

* QSAR (Quartitative Structure-Activity Relationship): The affinity of a new ligand is
predicted from known affinities of similar ligands with help of statistical methods.

In the following sections binding assays and chemometrics (including QSAR) are described.
Molecular modelling is not treated in this Thesis, athough, in principle, al affinity data
would be of interest for the PAQS project.

2.2 Binding Assays

An assay is an experimental procedure or environment used to detect and quarntify proteins.
Each assay relies on some highly distinctive and characteristic property of a protein, e.g. the
ability to bind a particular ligand, to catalyse a particular reaction, or to be recognised by a
specific antibody”. Furthermore, a useful assay must be simple, fast, and sensitive towards the
protein®. In this Thesis we are mainly interested in binding assays performed to determine
affinity constants between receptors and ligands.

2.2.1 Radioactive Labelling

As discussed above, knowledge about receptors is essential to the design of new drugs.
However, many receptors are difficult to identify and purify since they are present in minute
amounts in the cell, and since there are furthermore large amounts of other proteins present”.
Usualy, receptors are detected, and quantitatively measured by their ability to bind
radioactive ligands to a cell or cell fragment. The advantage of using radioactive labelling is
that there is a very small background signal®. Thus, with a radioactively labelled substance in
the sample we know that the signal recorded by the detector is due only to this substance,
irrespective of what other substances that are present. Obvioudy, there are disadvantages with
radioactive labelling, too. E.g., the labelled substance must be synthesised and it may not have
exactly the same biochemica properties as the corresponding unlabelled substance.
Furthermore, we introduce a new health hazard when working with radioactivity.

4 Many common protein assays only require 10  to 10 2 gram of material (Lodish et a 2000, p 90).

® Typically, a cell bears 10000-20000 receptors for a particular hormone. This is about one millionth of the total
cell protein content (Lodish et a 2000, p 859).

® A low background has two advantages: First of al we can collect more of the interesting signal without
saturating the detector or signal collection system. Secondly, with a low background, we have a better chance of
getting a satisfactory signal-to-noise ratio.



2.2.2 Binding Experiments

In a competition binding experiment the assay is made with one (or several) binding sites and
one radiolabelled ligand (radioligand) of known concentration. Then a series of measurements
are made for varying concentrations of a competing, non-labelled, ligand (the competitor).
The concentration of bound radioligand is determined by measuring electrons emitted by
radioactive decay of the radioligand. This is the only concentration actually measured since
the concentrations of the competing ligand are "known", prepared by some simple series of
dilutions. As the concentration of competing ligand increases, the concentration of bound
radioligand will decrease, see Figure la Thus, in a competition experiment there is one
independent variable, the varying competitor concentration, and one dependent variable, the
bound radioligand concentration’.

0,12

« "total binding" ¢

A "non-specific binding"

0,02@ ®

0,08 +

L 2
0,01 T L X 3
2

0,04
]

| -
SRR W
0,00 : : : : 0,00 }
0 2

1 10 100 1000 10000 100000

Bound radioligand concentration [nM
([
Bound radioligand concentration [nM]

4 6
Varying competitor concentration [nM] Varying radioligand concentration [nM]

Figure 1. Diagrams of concentration binding experiments examining the binding between the radioligand
[*HIMK912 and a,s- and o,c-adrenoreceptors in cerebral cortex membranes. (a, left) Competition curve of
guanfacine with 0.22 nM [*H]MK912. (b, right) Saturation curves with (triangles) and without (diamonds) 20000
nM BDF8933. Data taken from the BindAid manud (Wikberg 2001).

In a masked competition experiment there is one (or several) additional non-labelled ligands
with fixed concentrations, also competing for the binding dte. In the database schema
developed for the prototype no conceptua difference will be made between masked and non-
masked competition experiments. A masked competition experiment is distinguished by
having more than one ligand with fixed concentration. (For a competition experiment there is
always one: the radioligand.)

In a saturation binding experiment it is instead the concentration of the radioligand which is
varied. Usualy two measurement series are made: the "total binding" of the radioligand is
determined in an experiment without competing ligand, and the radioligand's "non-specific

—
"1t is dso possible to perform a competition experiment with several varying competing ligands. Although this
is not usua (if it ever has been done), the database schema of section 8.7 dlows for this. However, we will
assume that no experiments are made with several radioligands at the same time. As discussed in section 8.2, we
will allow severa dependent variables, but they origin in parald experiments, and refer to the same radioligand.



binding" is determined in an experiment with an excess of saturating competing ligand®, see
Figure 1b. Thus, in both these series it is the varying concentration of added radioligand that
is the independent variable, and the concentration of bound radioligand that is the dependent
variable. The two series differ in that when the non-specific binding is measured there is also
a non-labelled competitor of fixed concentration. To get the "specific binding" of the
radioligand one finally subtracts the "non-specific binding" from the "tota binding".

Both competition and saturation binding experiments study the reversible binding of ligands
to receptors (or binding sites). A single such experiment, or a number of them taken together,
may be analysed by the model®

n .
B = Zlﬂa& + NjF  (Equation 2)
P14 Z KabFa

a=1
where B; and F; are the bound and free concentrations of ligand i, K4, is the binding affinity
constant of ligand a and site b, N; is the non-specific binding parameter of ligand i, and Ry, is
the concentration of site b. Only one of the B;:s is measured - the bound concentration of the
radioligand™®.

Both saturation and competition binding experiments are of the more genera type
concentration binding experiment. There are aso other types of binding experiments, e.g.
time binding experiments. In the latter the rate of dissociation (or association) of complexes
between binding sites and ligands are studied. Time is the independent variable, and the
bound concentration of radioligand is the dependent variable. The rate of dissociation can be
analysed with the following model®:

n
Bi(t) = Z Ry exp(—Kipt) (Equation 3)
b=1
Here, t is the time, Kjy, is the rate constant for dissociation of ligand i from binding site b, and
Rip is the concentration of bound ligand i to siteb at timet = 0.

In order to get satisfactory statistics it is customary to perform "parald™ experiments. Severa
measurement series with the same experimental set-up (same assay, same ligands, same
varying concentrations) are performed. Paralel experiments will be handled as being severa
dependent variables in the database schema (section 8.2.3).

2.3 Chemometrics

Chemometrics is "the use of mathematical and statistical methods for handling, interpreting,
and predicting chemica data” (Mainowski 1991). The classical example is that we wish to

8 l.e, it is assumed that the concentration of the competitor is large enough to completely block out the
radioligand from the receptor binding site. Hence, any radioligand bound in the assay is bound "non-
specifically”.

® In thefit program BindAid (Wikberg 2001) these modd s are called "Bindfit" and "Dissocfit", respectively.

101t js assumed that there is only one radioligand in the assay, and hence only one ligand contributing to the
detected signal, plus background radiation and noise. Other, non-labelled, ligands could in principle be detected
by other means - in practise this is very difficult. The schema to be described in this work will, however,
accommodate measurements of several bound ligands in a single experiment.

10



optimise the yield of product C in the chemical reaction A + B —7* C + D. Sincethere are a
multitude of parameters we can vary (solvent, catalysts, temperature, pressure, stoichiometric
ratio of A and B, rate of addition of B to A, and so on - depending on the kind of reaction) the
search space is large, and the parameters may be correlated. Naive optimisation methods will
require long series of expensive and tedious experiments, and will generally be stopped when
a"satisfactory" experimental set-up has been found. The chemometrical approach would be to
first design a set of experiments which span the search space, perform these experiments, and
then use multivariate statistical analysis to explore the search space.

Other applications of chemometrics are calibration of instruments, QSAR, and analyss of
spectra and chromatograms. Typical multivariate methods are principal component analysis
(PCA), factor analysis, discriminant analysis, and projection to latent structures partial least
squares analysis (PLS). Sometimes dso pattern recognition, robotics and smilar methods are
counted as chemometrics'.

In QSAR (Quantitative Structure-Activity Relationship) we wish to take a set of molecules
with known experimental data and predict (or explain) some activity with help of the
molecular structures. In order to put this quantitatively we obvioudy need to describe the
molecular structures by some variables, in chemometrics called descriptors.

Many descriptors are real-valued variables on a linear continuous scae (e.g. mass, logP, and
dipole moment), but other types are adso possible. For example, descriptors may be discrete
variables (number of atoms in the molecule), or binary variables ("presence on non-presence
of nitrogen in the molecule"). PAQS should be able to handle al kinds of descriptors, and this
requires some careful data modelling in order to get a good design of the database schema.

If we now wish to predict binding affinity constants the approach is as follows: (i) Find as
many affinity constants as possible for the receptor of interest, either from the literature or
from your own experiments. (ii) Choose those affinity data which seems trustworthy, and
where the ligand can help spanning up a reasonable search space. (iii) Construct descriptors
for the ligands. (iv) Perform a statistical analysis to build a statistica model. (v) Assess the
validity of the model. (vi) Use the model to predict the affinity constant for one or severa
new ligands. If a high affinity is predicted for a ligand, obviously its actual affinity needs to
be determined experimentally, too.

2.4 Proteo-Chemometrics

Proteo-chemometrics is "chemometrics for the analysis of protein-ligand interactions’
(Lapinsh et a 2001). The novel thing about the approach is that the descriptors refer to both
ligands and receptors (or enzymes). l.e., we take affinity constants for a set of similar
receptors and a set of ligands, and build the statistical model from al these. This has severd
advantages. We can find a larger number of relevant affinity data and, more interestingly, we
span up anew kind of search space with variations both among the receptors and the ligands.
Thus, it is possible to model ligand affinities to receptors, and aso - in some cases - to discern
which parts of the protein that is most important for binding. I.e., with proteo-chemometric
analysis it is sometimes possible to determine the molecular mechanisms in the interactions
between ligands and receptors'.

™ Hibbert and James 1987.
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2.5 Bioinformatics, Genomics, and Proteomics

To conclude the introduction of the application domain it is probably useful to discuss a few
recent "buzz-words".

The genome is the tota genetic information carried by a cell or organism. Genomics is the
study of the structure and function of whole genomes or other very large collections of genes.

Even though we may have direct knowledge of all gene sequences for a given organism this
does not imply that the functions of al such genes are understood. A new fundamenta
concept called proteome (PROTEIn complement to a genOME) has emerged that should
drastically help genomics to unravel biochemical and physiologicad mechanisms at the
molecular level*®. The proteome is the set of all proteins synthesised in a given organism, and
proteomics is the identification of the complete set of proteins synthesised by a cell under a
given set of physiologicd and environmenta conditions, and the determination of the
proteins roles in cell activities™. Genomics may be divided into the subfields structural and
functional genomics, and proteomicsisin turn a subfield of functional genomics.

The next level in the hierarchy of concepts is "physiomics', which considers how the
proteome within and among cells co-operates to produce the biochemistry and physiology of
individual cells and organisms™.

Life science data is a very broad concept, encompassing proteomic and genomic data, as well
as - among other things - clinical, toxicological, and chemical data. All these kinds of data are
needed for drug development in the pharmaceutical industry.

IBM recognises a series of "challenges' which need to be met for a successful use of life
science data™: (i) Integration of increasing and diverse data sources. (i) Integration across
functional "dlos' within the R&D organisation. (iii) Knowledge management, sharing and
collaboration. (iv) Data management, security, access, and storage management. (v) Business-
to-business integration for outsourced functions. The PAQS project will mainly consder
points (i) and (iii) of these.

Bioinformatics

The consequence of the breadth and scale of research efforts in structural and functiona
genomics is a very large quantity of data. A new discipline called "bioinformatics' has
evolved, which deals with moving the data into (relational) databases, and with developing
efficient methods for searching and viewing these data'®. While genomics and proteomics
heavily relies on the use of databases the research is mainly conducted in "white biology"
laboratories. On the other hand, bioinformaticsis purely "in-silico biology".

One biology textbook (Lodish et a 2001) defines bioinformatics as "the rapidly developing
area of computer science devoted to collecting, organising, and analysing DNA and protein
sequences’. Denning (2000), former chair of the Association of Computing Machinery
(ACM), writes that bioinformatics is "an emerging area of intimate collaboration between
computing and the biological sciences. Investigators are exploring a variety of models and
architectures that can revolutionise computing, biology, and medicine". Denning also divides

2 \What is Proteomics? 2001-11-30

B Butt 2001.

¥ What is Genomics? 2001-11-30.

> 1BM Life Sciences Framework 2001-12-13.



computer science into 12 subareas, 11 established™® and one emerging - bioinformatics.
Within the bioinformatics community, one opinion is that bioinformatics is "a new, growing
area of science that uses computational approaches to answer biological questions'
(Baxevanis 2001b). As in many scientific fields, the question is whether to focus on the
methods or on the results. In bioinformatics there is till a need for both. In practice,
bioinformatics applications are typically used by biologists since the doman knowledge is
needed to interpret the results of database searches and application program computations.

An interesting question is whether the PAQS project should be considered to be
bioinformatics research. PAQS deals with the analysis of interactions between proteins and
ligands, and it relies both on advances in database research and multivariate statistics. Hence,
PAQS clearly lies within the field of "informatics', and it also deal with biological entities on
a molecular level. In my opinion it is clear that the PAQS project lies within the domain of
bioinformatics.

18 E.g.: Algorithms and data structures; Databases and information retrieval; Human compuiter interaction.
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3 Databases - an Introduction

In this chapter an introduction to the area of databases and database-related concepts will be
given, intended mainly for non-computer scientist readers. The chapter mainly consists of
"standard" text-book material’, except for the last subsection (3.2.6) which is speciaised on
topics specific for this Thesis.

3.1 Databases, Database Systems, and Database Management Systems

There are numerous explanations and definitions of what a database actually is. Definitions
range from the quite general "a collection of related data’ (Elmasri and Navathe 2000) to
more regtrictive ones. Elmasri and Navathe lists three implicit properties for a database: (i) A
database represents some aspect of the real world, i.e. some aspect that is of interest for users;
(if) A database consists of a collection of data which is logically coherent and has some
inherent meaning; (iii) A database is designed, built, and populated for a specific purpose.

Usualy, when people use the term "database' they mean something that is stored
electronically (on disk, on tape, on in a computer's main memory), and is managed by a
specialised software, a database management system (DBMS, vide infra). This is aso what
"database” most often will mean in this Thess. In some places, however, we may use the term
to encompass also other data sources on the Web.

O

user

/4
Cpplication
program

APL~

DBA staff

comman®

interface

N

query processor

DBMS

storage manager

—
DB [data fes
meta-data

\ees /

Figure 2. A database system (DBS) consisting of a stored database (DB), a daabase management system
(DBMYS), and an application program. Users interact with the DBS either by issuing queries directly through the
command-line interface or by executing the application program. An application programming interface (API)
serves as a link between the DBMS and the application program. The DBS is maintained by database
administration (DBA) staff.

¥ Elmasri and Navathe 2000; Connolly and Begg 2002.
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Figure 2 relates the concepts database (DB), database system (DBS), and database manage-
ment system (DBMS). To exemplify: The protein information resource™ (PIR) is a database
system consisting of various application programs (e.g. web forms and programs to let users
retrieve data), an Oracle DBMS, and the data which resides in disk files. Although we may
informally refer to the PIR as "an Oracle database” it would be more correct to say that the
database is managed by an Oracle DBMS, or that the PIR data resides in a database system of
which an Oracle DBMS is one important component.

A DBMS (DataBase Management System) is a specidised software package for managing
databases. There are a range of tasks a DBM S should fulfil. The most obvious task is that a
user should be able to access (retrieve and manipulate) data stored in the database. A few
other tasks are (i) to provide facilities for backups and for restoring data after a system failure,
(if) to impose constraints such that the database is dways in a consistent state (e.g. to ensure
that al employees have different employee numbers), (iii) to provide authorisation control,
and (iv) to alow many users to simultaneoudy use the database. Obviously, the DBMS
should also provide some mechanism for constructing the database in the first place, and for
modifying its structure.

3.1.1 Metadata and Program-Data Independence

An important aspect of a database system is that a description of the structure of the database
is stored in the database itself. Such information is caled metadata ("data about data') and is
used by the DBMS in its work to access the data files. In arelationa database (vide infra) the
names of tables and columns are examples of such metadata.

If we use an application program that directly reads and writes data from/to a data file on disk
(no DBMS involved) the structure of the data file is explicitly embedded in the application
program®®. Each time we change the structure of the data file®® we need to make the
corresponding changes to the application program. On the other hand, if we use a DBMS any
changes of the data file structures can be absorbed by mappings within the DBMS, and the
application program will not have to be changed. Thus, the use of a modern DBM S provides
program-data independence®.

3.1.2 Access Methods

Once the data are stored in a database there must be some fast way to get hold of the data
Here, afew access methods will be described. No practical work on access methods has been
made for this Thesis, but an introduction to the concepts is important in order to get an

'8 The Protein Information Resource is a division of the National Biomedical Research Foundation (Washington
DC), see http://pir.georgetown.edu. The PIR-PSD (protein sequence database) is claimed to be the largest public
domain protein sequence database in which entries are annotated and classified (Barker et al 201).

1 For example, a Fortran program reading a direct access disk file with employee records would have specified
the length of each record in an OPEN-statement, and the order, length and type of each fidd (employee number,
name, employed_since, sdary) in READ- and FORMAT-statements.

2 E.g., if we add afield "department” to the employees, or simply change the length of employed_since from six
to eight digits.

2 Text books on databases will further describe logical and physical data independence as consequences of the
ANSI-SPARC three-schema architecture. These are not our concern here.
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understanding of future relevant subprojects for PAQS, and what various data sources can and
cannot do.

For the discussion, suppose we have afile of persons, each with a name, an age, and atitle. In
this example the name is unique for each person, while age and title are not. In an unordered
file data are stored in random order, for example in the order they were entered. If thereis no
accompanying access structure we need to scan through the file until we find the right
person®. In many commercial relational DBMSs (vide infra) thisis caled a "table scan”.

An index is some data structure which helps the DBMS find the correct record fast. There are
different kinds of indexes, suitable for different purposes. Presently B-tree indexes and hash
indexes are implemented in Amos I1. For example, a search for the person with name 'Fredrik’
will be fagt if there is an index on the persons names (either hash or B-tree), and a search for
all young persons (age < 30, a "range query") will be fast if there is a B-tree index on the
persons ages’™.

For "modern” database problems it is often necessary to employ other index types than those
mentioned above. E.g., geographical data is often indexed by R-trees, and text retrieva
systems use "inverted indexes'®*. In order to index chemical substances according to which
functional groups they contain bitmap indexes can be used®. Sequences of characters (e.g. the
genetézc6 code or the amino acids of a protein) can aso be indexed, for example by suffix
arrays™.

When we discuss information integration in chapter 4 we will see that one argument for the
mediator/wrapper approach of Amos |1 (and against data warehousing) is that the data sources
may have unique capabilities for their specific kind of data. These capabilities can only be
utilised when the data resides in the original sources, not when it has been copied to a centra
repository.

3.2 Data Modelsand Database Schemas

A data model is a particular way of describing data, relations between the data and constraints
on the data®’. Another way to express this is that "a data model is a collection of concepts
used to describe the structure of a database” 2. Usually, the data model aso includes some
basic operations to retrieve and update data in the database®®.

A database schema on the other hand is the description of the database, made in the language
of a chosen data model.

Z Obvioudly, the file could be kept ordered on one field, eg. the persons names. Then, when we look for
'Fredrik’ we dont need to scan through the whole file, but can use a method called "binary search". However,
keeping the file sorted will require alot of work if persons are inserted and del eted.

% These and other index data structures are described in most text books on databases, see, e.g., Elmasri and
Navathe 2000.

% GarciaMalina, Ullman and Widom 2000.

% A "fingerprint” is a specia kind of bitmap index stitable for screening large chemica databases, see, e.q.,
James, Weininger and Delany 2000.

% Andersson 2000.
%’ Connolly and Begg 2002, p 817.
% Elmasri and Navathe 2000, p 24.
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As mentioned in the previous section, a DBMS is a package of computer programs, used to
manage a stored database. It is worth noting that a DBM S implements a specific data modd,
and that the stored database is a "population” (or extension) of a specific database schema (the
intension). The prototype of PAQS presented in this Thesis has been congtructed with Amos
[, a DBMS implementing a variant of the functiond data model. In chapter 8 we discuss
various aternative solutions to details in the database schema, but we will not depart from the
functional data model.

Although the work presented here has been made in the functional data model the following
subsections will briefly mention other wide-spread data models and a few diagrammatic
notations. This will hopefully provide a useful basis for readers not familiar with database
terminology when comparing the approach of this Thesis with other work.

3.21 TheEntity-Relationship Data Model

The Entity-Relationship (ER) model and the enhanced ER (EER) model are well-known
examples of conceptual data models. These are used to construct high-level, "conceptual”
database schemas which ordinary users relatively easily can understand.

In the ER model the information domain is described in terms of entities, attributes, and
relationships. An entity is an object we are interested in, e.g. a person, and an atribute is some
value we ascribe to that person (e.g. the name "Fredrik"). An entity set is a collection of
entities with smilar structure (e.g. al persons), while an entity type is the forma definition of
what entities belonging to a specific entity set should look like. A relationship is some
association between one entity and another entity, and as for entities we also have relationship
sets and relationship types.

Typically, conceptual data models use a diagrammatic notation. For example, Figure 3 shows
a smple ER diagram for a database schema with two entity types, four attributes, and one
relationship type.

Figure 3. ER schema diagram showing the entity types PERSON and LABORATORY , each with two attributes,
and the interconnecting relationship type WORKS _IN. Each "real person” is represented by an entity, i.e. an
instance of the entity type PERSON, and so on. The cardinalities 1 and N signify that a person may only work in
one laboratory, while a laboratory may have several people working in it.

3.2.2 TheReational Data M odel

Since conceptual data models use high-level concepts, suitable for discussions between
database designers and users, schemas made within these models are usually not well suited
for implementation.

The relational data mode and the legacy network and hierarchical data models are the most
well-known representational data models, and may be implemented in a direct way, contrary
to the conceptud data models.
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In the relational data model the database is logically a collection of relations (tables). A
relational schema defines a relation as a set of attributes (columns of the table), and the
relation itself consists of a set of tuples (rows) with values. Each tuple should have a smple
("atomic") value for each attribute, i.e. there should be a single data value in each "dot" of the
table. The relationad model has a strong mathematical foundation and is easy to implement.
Furthermore, the mapping from a schema in the ER model to a table description in the
relational model is straightforward, see Figure 4. (A more detailed relational schema would
also contain the data types of the attributes.)

PERSON

| PersonNr | Name | Title | LabNr |
LABORATO RY,//- \-J
| LabNr | Name | Address |

Figure 4. Relationa schema diagram. Underlined attributes are primary keys (unique) and the arrow denotes the
congtraint that each value of PERSON.LabNr has to be an existing value of LABORATORY .L&bNr.

The relational data model has been the dominant data model for the last 20 years and a few
examples of commercia relationa DBMSs are Microsoft Access?, Oracle 7%°, and IBM's
DB2 v5%. Later versions of Oracle and DB2 have been extended with object-oriented
features, and may now be called object-relational DBM Ss (vide infra).

SQL
While it seems straightforward to implement the PERSON relational schema of Figure 4 as a
struct in the programming language C, for example, this is not something users or
administrators of database systems need to do. Instead, they use SQL (the Structured Query
Language):
create tabl e PERSON (
PersonNr int primary key,
Nane varchar (50),

Titl e varchar(20),
LabNr int references LABORATORY( LabNr)

)

Most users come in contact with SQL as a query language, to retrieve data from the database,
and possibly they also insert, delete and update data. These operations all use SQL as a data
manipulation language (DML). Conversely, when a new table is created or a new column is
added to an existing table, SQL is used as a data definition language (DDL). The version of
SQL used together with the DBMS Amos Il is called AMOSQL, and this language too
contains primitives for data manipulation as well as data definition.

SQL is a declarative query language, which means that we only need to specify what we want
to retrieve, not how it should be retrieved. For example, to get hold of the titles of al persons
named 'Fredrik’ the following SQL query would be issued:

select Title from PERSON where Nane='Fredrik';
Should we write the same in C or Java, we would need to first open the file PERSON, then
scan the file for all records with the correct name, and finally print the title fields of the
matching records. Thisis all made transparently by SQL, and we see one advantage of using a

® Registered trademarks of Microsoft Corporation  (http://www.microsoft.com/office/access), Orade
Corporation  (http://www.oraclecom), and International Business Machines Corporation (http://www-
4.ibm.com/software/data/db2), respectively.
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DBMS to handle stored data. Furthermore, since we do not specify how the result should be
obtained the DBMS is free to perform a range of optimisations in order to retrieve the answer
quickly.

Amos Il is a main-memory database, and we can see one advantage of the database approach
if we compare a running Amos Il system with a run-time system implemented in Java. (The
comparison of the previous paragraph referred to data stored on disk.) Both systems would
store real-world concepts as objects (e.g. of type Per son), but there is a significant difference
in how we could get hold of the objects we want. In a pure Java application, users navigate
from object to object. Thisis possible in an Amos Il system too, but in Amos Il we also have
access to a powerful declarative query language and can use this to find relevant objects™.

3.2.3 Object Data Models

The origina incentive for developing object-oriented database management systems
(OODBMSs) was to provide a means to transparently store objects of application programs
written in object-oriented programming languages such as C++ and Smalltak®, i.e. to
facilitate object persistence. By using an object-oriented approach both in application program
and database the so-called "impedance mismatch problem” could be avoided.

A more important argument, particularly from the perspective of the PAQS project, is that
OODBMSs supposedly are more suited than RDBMSs for handling "modern applications’,
such as computer-aided design (CAD), computer-aided software engineering (CASE),
geographical information systems (GIS), and multimedia systems®. Some factors in favour of
OODBMSs are that they have a user-extensible type system, and that they more easily than
RDBMSs can handle complex object, long transactions, object versioning, and schema
evolution. Three of the major commercid OODBMSs are Objectivity/DB*®, ObjectStore®,
and FastObject t7%.

In an object data model, data are seen as objects with properties, or state, and behaviour. We
may further speak of object types (vide infra) as a kind of user-defined data types. In an
object-oriented (OO) environment the "real world" is modelled by a collection of objects that
communicate with each other by exchanging messages. An important difference relative the
relational mode is that each object has a system-unique object identifier. Another difference,
important from a modelling perspective, is that the implemented database schema often is
easier to understand.

Some important features of object-orientation (e.g. inheritance, overloading, and poly-
morphism) will be discussed in section 3.2.6, in connection with the Amos |1 data mode.

The Object Data Management Group

One maor drawback with OODBM Ss relative RDBMSs is the lack of a standard. Different
OODBM Ss implement dightly different object-oriented data models (or object data models
for short). The Object Data Management Group (ODMG) is a consortium of leading

% |n order to simulate database functionality a Java application could put objects in a hash table "registry”. The
objects would then be essily retrieved by the hash key (e.g. Nane).

31 While Javais arguably the most important object-oriented language, it did not exist at the time (end of 1980's).
*® Elmasri and Navathe 2000; Connolly and Begg 2002.

% Registered trademarks of eXcelon Corporation (http://www.objectdesign.comvindex2.html), Objectivity, Inc.
(http://www.objectivity.com), and Poet Software GmbH (http://www.fastobjects.com), respectively.
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OODBMS vendors, and the mgor body of standardisation for OODBMSs. Their Object
Standard® consists of an object model, an object specification language, an object query
language (OQL), and bindings to C++, Smalltalk, and Java.

In the ODMG object data model the state of an object is defined by the values of its
properties, and the properties are either attributes or relationships. The behaviour of an object
is defined by the set of operations that can be executed on or by the object. Objects with a
similarly defined set of properties and operations can be said to belong to the same class. An
aternative view, held by the ODMG object modd, is that a class is a specification of the
abstract state and behaviour of an object type. Thus, these two uses of the concept class
correspond to entity set and entity type in the ER modd.

The ODMG object model puts two aspects of the definition of a type An externd
specification, and one or more implementations. An interface specifies the abstract behaviour
of an object type, while a class specifies both abstract behaviour and state. Thus, in the
ODMG abject model we only need to know the interface of a type to be able to discuss how
objects of that type may interact with other objects, but the class is necessary for a definition
of the database schema. The functional model used in Amos 11 (section 3.2.6) isfairly close to
the ODM G object modé, but differs from it in some important ways - for example, there are
(formally) no attributesin AmoslI.

OQL - the Object Query Language

OQL (the Object Query Language)® is the query language associated with ODMG's data
model. It is in many aspects similar to the standard SQL92 for relational DBM Ss, but includes
OO features such as object identity, complex objects, and polymorphism®.

Two other object query languages are OSQL and AMOSQL, of the Iris® and Amos I
systems, respectively.

UML - the Unified Modelling Language

The Unified Modelling Language (UML)* has during the last five years become a de facto
standard for object-oriented analysis and design. Although the diagrams of this Thesis will be
drawn in an ER-diagram style (similar to Figure 3) it is worth noting that UML will probably
soon become dominant aso for database modelling®. Figure 5 shows a UML class diagram
corresponding to the ER schema in Figure 3%. (The operation changeLab was added in order
to show how operations of OO classes are represented.)

% Cattell, Barry, Berler, Eastman, Jordan, Russel, Schadow, Stanienda and Velez 2000.

% Thus, the objectives of OQL and the new SQL:1999 standard (Eisenberg and Melton 1999a) are very similar.
Eventualy, they may be merged to a single standard, or OQL may be "buried" by SQL:1999 (Stonebraker and
Brown 1999).

% Wilkinson, Lyngbaek and Hasan 1990.
37 A short and very good text on UML is Fowler 2000.

% Two recent books on UML for database modelling: Uml for Database Design, E.J. Naiburg, RA.
Maksimchuk, Addison-Wesley (2001); Oracle8 Database Design Using UML Object Modeling, P. Dorsey, JR.
Hudicka, McGraw-Hill (1998).

¥ Since the UML diagram is meant to have a conceptua perspective (Fowler 2000) it doesn't specify data types.
For the same reason encapsulation is not considered.
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Person Laboratory

name works_in name
title . address

changelLab(Laboratory newLab)

Figure 5. UML class diagram with two classes, four attributes, one operation, and one association.

In the terminology of UML, relationship types (between entity types) are called associations
(between classes), relationships between entities are links between objects, and cardindities
are multiplicities.

Two Additional Advantages of Object-Oriented Databases

It is often easier to understand an implemented object-oriented database schema than a
relational database schema. Due to a process called "normalisation” data pertaining to the
same concept (e.g. "person”) may be spread over several relations (tables) in the relationa
schema. Due to the possibility to include lists, sets, bags (multisets) and other data structures
as attributes to an object, the corresponding OO schema will usually have relatively coherent
object types.

Finally, we may note that during database design the object data model has awider scope than
the relational or the ER data models. In the "traditional” approach to database design a
conceptual database schemais first constructed as an ER diagram, followed by mapping to a
"logical" database schema in the relational model. On the other hand, with an OO approach
we may use the OO data model both for conceptud and logica schemas. The same is true for
the functional data modd (3.2.6), which was used in this Thesis.

3.24 Object-Relational DBM Ss

Most of the major relational DBMSs have lately been converted to object-relational (OR)
DBMSs, which means that desired object-oriented features have been incorporated into the
relational products. For example, Oracle8i*’, IBM's DB2 UDB™ (universal database server),
and Informix Dynamic Server with Universal Data Option®® (IDS-UDO) may all be termed
object-relational **.

Stonebraker and Brown (1999) list four main features of an ORDBMS: support for (i) base
type extensions, (ii) complex objects, (iii) inheritance, and (iv) a production rule system. The
first three features must be available in an SQL context. It is worth noting that Amos I, the
DBMS used in this work, sometimes is referred to as being object-relational. All four features
above exist in Amos 1, and features (i)-(iii) are probably used by most Amos |1 applications.
The context, however, is not standard SQL but AMOSQL.

An important aspect of commercial ORDBMSs is their abilities to use "plug-ins' to extend
the functiondity for a particular information domain. For example, there are spatial
extensions available for al three ORDBMS products mentioned above, e.g. suitable for

“ Registered trademarks of Oracle Corporation (http://www.oracle.com) or International Business Machines
Corporation  (http://www-4.ibm.com/software/data/ldb?2  and  http://www-3.ibm.conm/software/datalinformix).
Informix was recently acquired by IBM, but IDS-UDO remains a distinct product.

4 Stonebraker and Brown (1999) discuss various strategies a relational DBMS vendor may use to produce an
object-rdationa DBMS. IBM and Informix have constructed "object-relational tops’ on relational storage
managers, while Oracle has used a strategy of incremental evolution of the relational DBMS.
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efficient storage, access and analysis of GIS application data. These kind of extensons are
called DataBlades (Informix), Cartridges (Oracle), and Extenders (DB2 UDB). In Amos Il
this functionality is achieved by means of foreign functions. The new SQL:1999 standard also
includes external routines®.

Often these kind of "plug-in" products are developed by independent third parties. For
example, DayCart® is a "bundled set of tools which extends the Oracle server with new
chemical capabilities’ *. To my knowledge, no such extension presently exists for the
bioinformatics area. Since bioinformatics has been a "hot topic" for the last ten years this
seems surprising, and | assume it is only a matter of time until the first one appears on the
market.

3.2.5 Functional Data Models

In functional data models entities and functions are used to represent real world objects and
properties of those objects, respectively. If we compare with the object model we see that
functions take the roles of both attributes and relationships.

For database schemas constructed in a functional data model a diagrammatic notation similar
to that of ER-diagrams can be used, see Figure 6.

Laboratory

Charstring B

Figure 6. Functional database schema diagram with three entity types and five functions.

A function maps a given entity onto a set or a bag of target entities™, and hence there is
always an explicit direction drawn for a function. As described in more detail in the next
section, we may add constraints on this mapping, e.g. we may require that the function maps
an entity onto a single (unique) entity, or that the target is an ordered sequence of entities.

Many discussions of the functional data model for databases take Shipman's (1981) work on
the functional model and the DAPLEX language as a starting point. This DAPLEX model“,
and other "semantic data models' were meant to represent "the real world" more closely than
previous data models’’. As the benefits of the object-oriented approach became more and

“2 Eisenberg and Melton 1999b.

® Registered trademark of Daylight Chemical Information Systems, Inc.
(http://www.daylight.conVproducts/daycart.html).

4 Kappler and Delany 2001.

“ |n the original DAPLEX functional data model (Shipman 1981) a function maps an entity onto a set of entities
(no duplicates allowed). A bag (or multiset) isan unordered collection of objects where duplicates are dlowed.

“ Shipman (1981) uses the term "DAPLEX" to denote a data definition and data manipulation language.
However, "the DAPLEX modd" is often used to denote both the language and the underlying functional model
asit isdescribed by Shipman. Thisisaso how thetermisused in this Thesis.

" Connolly and Begg 2002, p 807.
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more apparent, the DAPLEX model was extended by different research groups to incorporate
various OO features. The database schema presented in this Thesis has been implemented in
the Amos |1 system®. Several other research DBMSs implement some form of functional (or
functional/object) models, e.g. PPFDM (section 6.1.1), Multibase®, Pegasus™, and Iris*.

3.2.6 TheFunctional Data M odel of Amos| |

Amos Il implements an object-oriented extension of the DAPLEX functiond model. The
Amos |l data mode is based on the IRIS data model®, and has three main concepts: objects,
types, and functions. Similarly to Shipman's DAPLEX model an Amos Il function maps an
object onto one or severd objects, but the concept of type is new. From now on we will dea
with the Amos Il data mode (Risch, Josifovski and Katchaounov 2000).

Diagrammatic Notation

Figure 7. Database schema in the functional model, drawn in the diagrammatic notation used in this Thesis.

Figure 7 exemplifies how schema diagrams will be drawn in the rest of this Thesis. Symbols
for types (rectangles) and functions (diamonds, ovals) were taken over from the ER diagram
notation. In most diagrams a function which maps a type onto a literal type (vide infra) is
represented by an oval while a diamond represents a function that maps a type onto a user-
defined type. Ovals with double borders correspond to "multi-valued attributes' of the ER
model (e.g., in Figure 7 a person may have severa phone numbers, but only one name).

Symbols for inheritance (arrows with unfilled heads) and cardinalities (0..1) arethe same asin
the UML. Cardinalities follow a min..max notation, as in the UML and some versions of ER
modelling®. Thus, the cardinalities of Figure 7 mean (a) that a project leader is responsible
for at least one project, and (b) that a project has a single leader, or none.

The "open" arrowhead from a diamond to a rectangle denotes the direction of the function.

* Risch, Josifovski and Katchaounov 2001; Risch and Josifovski 2001.
“ anders and Rosenberg 1986

% Ahmed, De Smedt, Du, Kent, Ketabchi, Litwin, Rafii and Shan 1991.
> Wilkinson, Lyngbaek and Hasan 1990.

52 | ynghak and Kent 1986.

%8 \We would say that a person has 4..4 biological grandparents, but if we were only interested in relatives which
are dive we would make it 0..4 grandparents. A * denotes any natural number. A few combinations of min..max
are so common that we don't need to write them out in full: Only 1 means 1..1 (mandatory, an object of this type
must take part in a function of this type), and only * means 0..*. Two other very common situations, without
specia symbols, are 0..1 and 1..*.
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Objects and Types

There are two kinds of objects in Amos II: literds (integers, redls, strings, et cetera) and
surrogates. Only objects of surrogate types have object identifiers (OIDs)>*. Typically, "red
world" objects we are interested in are represented as Amos || surrogate objects. For example,
the object :donal d® would be of the surrogate type Per son, while the literal "Donad"
represents his name and the literal 30 his age.

Further, there are four kinds of surrogate types: stored, proxy, derived, and integration union
types. Objects of a stored type are created by the user, and are stored locally. The latter three
surrogate types are used for information integration, and will be used in a demonstration
example (see Appendix G).

Types and Inheritance

Each object belongs to a type, and as in the OO approach a type may be part of a
generalisation/specialisation hierarchy. E.g., we may have the type Per son and another type
Proj ect Leader . Obvioudy, a project leader is a person, and all functions we have defined
for the type Per son are relevant and necessary also for the type Pr oj ect Leader . On the other
hand, the type Pr oj ect Leader may need a new function "r esponsi bl e_f or ", mapping onto
a Proj ect object. Thus, Proj ect Leader is a subtype (or specialisation) of Person®. The
Situation is showed diagrammatically in Figure 7.

The fact that Proj ect Leader is a subtype of Person means that all functions defined for
Person are inherited by Proj ect Leader . We save some work in not needing to redefine
them, but the three big benefits of subtyping is that (1) we can express more of the "red-
world" semantics when we model, (2) the database schema gets easier to understand, and (3)
we may use a Pr oj ect Leader in every place we can use a Per son”’. The converseto (3) is of
course not true. If we try to invoke the function r esponsi bl e_f or on an object which is of
type Per son but not Pr oj ect Leader the system will generate an error.

A constraint put on the type system in Amos |l is that an object must always have a most
specific type. |.e., if Proj ect Leader and Prof essor are two subtypes of Per son, we cannot
make : donal d @ member of both those types since they are equally specific®®. The solution
here is that we construct a new type Proj ect Leadi ngProf essor as a subtype of both
Proj ect Leader and Prof essor. This dtuation, when a type inherits directly from two
different supertypes, is caled multiple inheritance®™. Obvioudy, this solution gets messy
when there are more than two overlapping subtypes, and it is furthermore easy to forget some
subtypes when the schema evolves. In these cases, other design solutions should be used, e.g.
delegation instead of inheritance®.

% Literals and surrogates correspond to literals and objects of the ODMG object model (Cattell et a 2000).

% The colon in the beginning of :donal d denotes that we refer to a specific object. The variable :donal d isa
reference to the object.

% From atechnical point of view it is possible to create two types Per son and Pr o ect , and then give them a
common subtype Pr oj ect Leader. However, this is a mgor moddling error since we cannot say that a
project leader is a project!

" An object which belongs to type t does dso belong to all supertypes of t.

% When :donal d is a member of both Pr oj ect Leader and Per son it is clear that Pr oj ect Leader is
the most specific type sinceit is a subtype of Per son.

¥ Multiple inheritance is alowed in some OO programming | anguages (C++) but nat in others (Java).
% Grand 1998.

24



An object may dynamically change type, or take on a new type. For example, imagine that
Donald, represented by an object :donal d of type Person, is appointed project leader of a
new project. Then we may add the type Pr oj ect Leader to :donal d, and when the project is
finished, we may remove this type®’. In Amos |1 this dynamic addition of types to an object is
only possible when the new type is a subtype of the object's most specific type.

Finally, a set of subtypes may be digoint or overlapping. E.g., if the type Per son had the two
subtypes Man and Wran these would be disjoint®®. Conversely, two subtypes Pr of essor and
woran would be overlapping®,

Functions

As in the DAPLEX modd, the Amos Il functions describe both properties and behaviour of
an object. There are five kind of functionsin AmoslI:

* A gored function represents an attribute or a relationship which is stored in the database.
Stored functions resemble tables in the relational model.

e Derived functions are defined as AMOSQL queries over other functions. The
corresponding construct in the relational model isaview.

» Foreign functions are implemented externally of the Amos Il system, as Java, Lisp, or C
programs. They can be used to make complex computations, and thus correspond to "data
blades®, "cartridges’, or "extenders' of ORDBM Ss. Another use of foreign functionsis to
implement graphical user interfaces™.

* A proxy function represents a function of some other database, and may be used for
mediation.

* A database procedure has the signature of a norma function, but is implemented in a
procedural sublanguage of AMOSQL.

Stored and derived functions are used al through the PAQS prototype. In several places,
foreign functions and database procedures are used.

Overloading of Functions

The functions nane(Person) -> charstring and title(Person) -> charstring are
obvioudy different functions, and any system can distinguish between them. Amos II, like
object-oriented systems, support overloading, which means that the system understands
nane(Person) -> charstring and name(Laboratory) -> charstring as different

% |n Java an object always has the same type.

% The specialisation of Per son into Man and Wonan is furthermore total, or exhaustive, and the extents of Man
and Wonan together congtitute a partition of the extent of Per son (Boman, Bubenko, Johannesson, Wangler
1997). In UML atotal speciaisation can be represented by abstract classes. We will use this in section 8.8.3 and
Appendix E.

% |n the diagrams | will use the convention that subtypes which are attached to the same arrowhead symbol are
digoint, other overlapping (see, e.g., Figure 34, where a BindingExperiment is either a TimeBindi ngExperi ment
or a ConcBindingExperiment). Alternativey, constraint labels of thekind { di sj oi nt} can be used.

As described in the previous paragraph, implementation of a schema with two overlapping subtypes in Amos I
requires the introduction of a common subtype.

% E.g. "goovi" of the Amos || system (Cassel and Risch 2001).
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functions. The system "resolves’ the name ambiguity between the two functions by means of
the types of their arguments, Per son and Labor at or y®.

However, to overload the functions nane(Person) and name(Laboratory) is manly a
matter of convenience, we don't need to invent (and remember) a new function name. To get
an example of where overloading matters more, we use a function per sonal Dat a( Per son).
The personal data could for example be needed for a web server which displays information
about al persons working at a laboratory. The personal data for a Per son would be name and
title, but for a Pr oj ect Leader it would be name, title, and the names of dl projects he or she
is responsible for. The difference from the previous example is that we will require the system
to take alist of persons working at the laboratory, where some persons are project leaders but
most are not, and print the persona data. By means of overloading this is possible: For most
persons in the list only name and title is printed, but if the Per son is aso a Proj ect Leader

the implementation of per sonal Dat a( Proj ect Leader) will take precedence, and the names
of the projects will be printed together with name and title of the person. This is an example
of polymorphism, a centra feature in the object-oriented approach.

Cardinality Constraints

The only cardindlity constraints built into the Amos Il functional model are uniqueness
congtraints:

« If we declare a function name( Person key ) -> charstring nonkey we know that
the function name maps a Per son object onto a single charstring. l.e., a person has a
sngle name. (However, we have not constrained names to be unique, i.e., there may be
several persons with the same name.)

» If we declare a function phones( Person nonkey ) -> charstring nonkey aPerson
object may have several phone numbers. Equivalently, we may declare the function as
phones( Person ) -> bag of charstring. |l.e, the function phones may return
severa strings, and severa persons may share a phone numbers.

*  We may aso make the target of the function unique, as in nanme( Cheni cal Subst ance
nonkey ) -> charstring key. Thisisreasonable if we wish to store many aternative
names for each chemical substance, while keeping these names unique. E.g., the names
chloromethane and methyl chloride refer to the same specific chemical substance.

* Findly, if the mapping is 1:1, we make both sides of the function keys: enpl oyeel D(
Enpl oyee key ) -> charstring key.

The default is to make the first argument of a function a key, and all other arguments plus the
target non-keys. Thus, the first example in the list could also be written name( Person ) ->
charstring.

There is no direct way of setting other cardinality constraints, e.g. to constrain a person to
have 0..2 biologica parents. However, we may accomplish this by always using a database
procedure when adding parents, and to let this procedure check that the person doesn't get too
many parents®®. Alternatively, we could use the active rule system of Amos 1. In this specific

% Although the type of the result is formally a part of the function signature, the Amos Il system cannot resolve
overloading on result types, and neither can OO languages such as Java or C++ system. Thus, the system cannot
distinguish between the functions boss(Laboratory) -> Person and boss(Laboratory) ->
charstring.

% Unlike in Java and other OO programming languages, there is no special constructor functionality in
AMOSQL.
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example, the semantics suggest a third solution: We simply let the Person type have two
different functions, not her and f at her , each giving single-valued resullts.

Ordered Sequences of Objects

The Amos Il datatype vect or makes it possible to store objects (surrogates or literas) in an
ordered sequence. This seemsto be particularly useful for scientific and technical databases’’.
For example, in the PAQS prototype such sequences are used for data series (see section 8.2).
However, there are presently quite few operations available for vectors (creation and access
by index number). In order to get more functionality out of the useful data structure | have
implemented a few vector manipulations as Java foreign functions, see Appendix C.

" Maier and Vance (1993) strongly advocates for the inclusion of ordered structures in scientific databases. They
note that although many OODBMSs contain some list or vector data type these types cannot be used effectively
in query processing. The same appliesin AmoslI.
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4 Information Integration

One of the more important directions in recent research on database systems is information
integration, i.e. to find methods by which data stored in two or more sources can be combined
to one large, possibly virtual, database, and the combined data can be queried transparently by
users and applications. The data sources may be a combination of databases, web sites, text
files, et cetera

4.1 Three Approachesto Information Integration

According to GarciaMolina, Ullman and Widom (2000) the three main approaches to
information integration are federation, warehousing, and mediation:

» Federated databases are independent, but one database knows how to call upon each of
the others to get the information needed. Thus, for n federated databases up to n(n-1)
trandations are needed. As long as the databases only need limited functionality of each
other afederated system may well be the easiest to build.

* A data warehouse may be used as a central repository for al integrated data in the
organisation®®. The data warehouse contains copies of data in the data sources, which are
typically the organisation's production "on-line" databases. In contrary to most production
databases, the warehouse contains historical data®. In order to provide fast answers to
complex queries data may be presummarised at different levels (sdes per

day/month/year).

The warehousing approach has met with great success in the busness world, and data
warehouses and data marts™ have been implemented as decision-support systems in many
organisations.

* A mediator supports a virtual database, which the user may query transparently. The
mediator stores little or no data locally. The concept of mediators was introduced by
Wiederhold (1990, 1992), and the mediator/wrapper approach taken by Amos Il and the
PAQS project will be described further in section 4.4. It is possible to build a system of
severa interoperating Amos |l servers, each wrapping one or several data sources. We
then get a federated database system where each local database follows a mediator/
wrapper approach.

% A common definition is that a data warehouse is "a subject-oriented, integrated, time-variant, and non-volatile
collection of dataiin support of management's decision-making process’ (Connolly and Begg 2002, p 1047).

A few texts on Data Warehouses are Inmon, W.H. (1993) Building the Data Warehouse. New York, NY: John
Wiley & Sons, Kimbal, R. (1996) The Data Warehouse Toolkit : Practical Techniques for Building
Dimensional Data Warehouses. New York, NY: John Wiley & Sons, Kimball, R. & Merz, R. (2000) The Data
Webhouse Toolkit: Building the Web-Enabled Data Warehouse. New York, NY: John Wiley & Sons.

% For example, the inventory database of a shop should keep track of how many items of each product the shop
has on stock right now, and it is important that this information is up-to-date. The data warehouse would keep a
history of perhaps five years back in time in order to facilitate queries giving information on trends et cetera. The
warehouse would also be a good data source for data mining applications searching for patterns in this sdes
history.

™ Data marts are smaller than data warehouses, intended for a department of the organisation or for a special
user group. The central idea of replicating data from the origina data sources is the same as for data warehouses.
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From the descriptions above we see that data warehousing differs from mediation and
federation in one very significant way. With warehousing data from the sources are replicated
in the warehouse, while in the other two approaches data always reside in the data sources.
Typically, users cannot update data in the warehousg, i.e., the warehouse is read-only.

Obvioudly there are advantages and disadvantages either way. E.g., a data warehouse should
respond faster to a query since all data needed resides in one place (less communication costs)
and may even be preaggregated in some useful way. On the other hand, with federation and
mediation data is always up-to-date (as long as communication lines are up), and there is no
need for a huge central storage facility. Furthermore, data sources may keep a high degree of
autonomy (vide infra), and they may have unique capabilities which cannot be exploited when
the data has been taken over to the warehouse. As discussed by Hellerstein, Stonebraker and
Caccia (1999) the warehousing approach breaks physical data independence as well as some
aspects of logical data independence.

To conclude, we may say that warehousing is an approach used for data originating from
within the organisation, possibly with some external "background" data added. If we mainly
rely on data sources which are not under our control, warehousing is not suitable, and with
full data source autonomy, e.g. al externd data taken from web servers, mediation becomes
the solution of preference.

4.2 Three Dimensionsof Distributed Database Systems Architectures

Architectures of distributed database systems (DDBSs) are often classified along three
dimensions: distribution, heterogeneity, and autonomy (Ozsu and Valduriez 1999):

« Digtribution refers to where datais located.

» Heterogeneity refers to how different the loca database systems are. They may be
heterogeneous in a number of ways, some of the more important being hardware, data
models, DBMSs (i.e. software), query languages, transaction protocols, and database
schemas. Particularly, any attempt to integrate data from web servers and databases will
have to deal with the quite varying data models, schemas, and querying capabilities of the
data sources.

* Findly, autonomy refers to the distribution of control. For example, the local database
systems may or may not be free (i) to make changes to the loca database schema, (ii) to
decide which parts of the local schema that other database systems may access, and (iii) to
temporarily leave the distributed database system.

E.g., suppose that a digributed database sysem is developed top-down. Some central
authority in the organisation decides that a DDBS is needed, what the database schema looks
like, and which kind of hardware and software that will be used. Such a system will have the
data distributed among the participating databases, but there will be no heterogeneity (all loca
database systems will look the same), and no autonomy (decisions are taken centraly, aloca
database administrator cannot decide to change the database schema, or to leave the DDBS).
In this kind of system information integration should be a minor problem, it is provided for
already in the design of the DDBS.

On the other hand, al three approaches described in section 4.1 are meant for systems
designed in a bottom-up way: The data sources to be integrated already exist when the need
for information integration arises, and they are most likely heterogeneous in severa ways.
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4.2.1 Heterogeneous Distributed Database Systems

Bouguettaya, Benatallah and Elmagarmid (1999) give an overview of heterogeneous
distributed database systems, i.e. information systems that provide interoperation and some
degree of integration among multiple databases™. The overall problem to solve is that of data
integration: to provide a uniform and transparent access to the data managed by multiple
databases. According to Bouguettaya et d this may basically be accomplished in three ways.

» After a global schema integration users get a uniform and consistent view of the data.
Obvioudy, it may be difficult and time-consuming to completely integrate all local
schemas. Furthermore, the method is not suitable if there are frequent changes to the loca
schemas.

» Inafederated database system (FDBS) the local schema of each data source is trandated
into an export schema constructed in a common data model. A federated schemais created
as a view against relevant export schemas, either by the user (decentralised, or loosely
coupled FDBS) or by federation administrators (centralised, or tightly coupled FDBS).

« With amultidatabase language there is no need for a predefined global or partial schema.
By means of this language users may query multiple databases at the same time. Some
problems with this approach are that users need to know where data are located, and also
understand the locd schemas and "manually” resolve semantic conflicts.

Figure 8 shows a reference five-level architecture which is often used for discussing these
types of systems. In the three approaches above there is one, several, and none
federated/global schemas, respectively.

Extemal schema External schema External schema

|Federated (Global) Schema (CDM)

|Federated (Global) Schema (CDM) |

| Export Schema (CDM) | | Export Schema (CDM) | Export Schema (CDM) |
| Component Schema (CDM) | | Component Schema (CDM) |
| Local Schema (NDM) | | Local Schema (NDM) |

Figure 8. A five-level schema reference architecture for multidatabase systems (after Pitoura et a 1995). Loca
schema are constructed in the native data models (NDM) of the pre-existing database systems. When the
multidatabase system is built the local schema are trandated to component schema in the chosen common data
model (CDM). A subset of the component schema is exported, and from the export schemas a federated or
globa schema is created by integration. Users and applications access the system through externa schemeas,
which may be constructed in any data model.

A sngle Amos Il mediator system which wraps severd data sources works with a sngle
schema. However, the wrappers usually only trandate parts of the local schemas for use in the

" Other terms for heterogeneous distributed database systems are multidatabese systems and federated
databases, see Bouguettaya et a (1999) for discussion and references. Note that the definition excludes the data
warehousing approach as it assumes that data should remain locdised in the data sources.



mediator, and the system would be a variant of a tightly coupled FDBS. Several Amos Il
servers may then be connected to form a federation, aloosely coupled FDBS.

4.3 Problemsin Information Integration

In this section a short description is made of some problems that arise when datais integrated
from different heterogeneous and autonomous data sources. The three architectura
dimensions for digtributed database systems (section 4.2) give rise to different kinds of
problems.

4.3.1 Distribution of Data

Obvioudly, if we wish to integrate data from various autonomous sources there is little we can
do about the digribution of data. In most cases we have no write access to the sources, and it
is not realistic to load all source data to a local "warehouse”". What we can do to increase
performance is to cache frequently needed data locally in the mediator, and to store some
precomputed summations and indexes’ in the mediator.

4.3.2 Autonomy

Since the data sources are autonomous, we will need to comply with whatever data models,
database schemas, and querying capabilities they provide. This can be solved by the wrapper
approach described below, but a remaining problem is that externa data sources may change
schema without notifying us. Usually, such schema changes will be rather small, and the
functional object model of Amos Il is well suited for schema evolution in response to such
changes.

A mgor problem is when a data source moves over to a new data format, e.g. from ASN.1 to
XML (vide infra). Such a change requires that we construct a new wrapper for the source, and
if we are quite unlucky (if the source is the only one to provide some important data) al
queries towards the PAQS system will be impossible for several weeks’.

Another autonomy-related problem is that it is quite possible, and probable, that some data
sources where access is presently free of charge start to charge users. Different business
models may give rise to different economical and technica problems.

4.3.3 Heterogeneity

The heterogeneity-related problem which probably has been studied most extensively is that
of schema integration, where we need to consider both "the sysem level" (different data

2 Eg., if we use four different web databases for protein amino acid sequences it might be useful to store an
index over which proteins that are in which externa databases. In this way, we would not need to query al
databases. However, such an index needs to be kept up-to-date.

" A simple source may be wrapped in a week or two, while more complex sources may require up to a few
months of work to be completely modelled (Haas, Schwarz, Kodali, Kotlar, Rice and Swope 2001). If we have
wrapped the data source once, it will be easier the next time, and it will be particularly easy if we already know
how to technically wrap the new format (e.g. a relationa database or XML). However, when an organisation
decides to make a change of data format, it is quite possible that they aso change the schema drastically.
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models have different constructs) and "the data level® (similar information represented
differently) (Elmagarmid, Du and Ahmed 1999).

In genera, the local schema of the data sources are trandated to an integrated (partia or
global) schema in a common data model. It is then clearly desirable that this common data
model (e.g., the data model of the mediator) has greater modelling power than the data models
of the sources, or else some semantics will likely be lost in the integrated schema As
mentioned in section 3.2.5, the functional mode has rich semantic power™, and severa
mediator DBM Ss implement a object-oriented or functional object data model ™.

Some important possible mismatches between the schemas of the various data sources are’:

» Identity conflicts: The same "rea-world" concept, e.g. a specific protein, is represented by
different objects in different databases. This is really one of the things we wish to
integrate in the PAQS project. As long as we can get the mediator to understand that the
two objects refer to the same protein there is no problem, but what if the two databases
have no unique protein identifier in common?

» A schema conflict arises when one concept is represented differently in the data source
schemas. The difference may bein naming or in structure:

— The same concept may be represented by different names (synonyms), or worse,
different concepts may be represented by the same name (homonyms).

— One concept may be represented by different data model constructs, e.g. the
classification of some persons as professors may be implemented by subtyping or by a
discriminator attribute (a "flag").

- Data types may differ, e.g. phone numbers may be stored as character strings or
integers.

— Some concepts may be missing in one of the databases. E.g., one data source on
affinity data may have no references to the original literature recorded, while all others
do. This type of problem is often solved by using semi-structured data (e.g. XML) to
represent integrated data which may not conform entirely (GarciasMolina et al 2000).

* Semantic conflicts: The same concept is interpreted is (dightly) different ways in the
various data sources. A range of possible conflict types exist, for example (Wiederhold
1982):

— Scope: Are assistant professors redly "professors'?
— Abstraction: Does "income" refer to personal income or family income?
— Time: Do we sum "total sales’ over weeks or months?

» Findly, there are data conflicts where different databases store different values for the
same concept (i.e., there is no semantic conflict). For example, one database may store the
atomic weight of hydrogen as 1.008 and another as 1.0079. Data conflicts are relatively

™ In a comparison of the functional, relational, network and hierarchical data models it was found that the
functional model qualitatively subsumes the other three models (Demurjian and Hsiao 1988).

™ Pitoura, Bukhres and Elmagarmid (1995) gives a compilation of object-oriented techniques for design and
implementation of multidatabase systems.

" Pitouraet d (1995); Bouguettaya et a (1999); GarciaMolina et a (2000); Wiederhold (1992).
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easy to detect, and may be due to different levels of precision or to the fact that one
database simply stores the wrong value’”.

In addition to the conflicts described above two schemas may, when taken together, have
certain constraints in common. For example, a type in schema A might be constrained to be
the subtype of a type in schema B'®. Another example is when an attribute of schema A is
derivable from one or several attributes of schema B”. Such correspondences are commonly
called interschema properties™.

4.4 TheMediator/Wrapper Approach to Information Integration

In a mediator/wrapper architecture (Figure 9) for information integration each data source is
"wrapped" and the mediator provides a uniform view of the data.

query@ result

Mediator
== ) =
Wrapper Wrapper Wrapper

VA ) 2

Figure 9. Mediator/wrapper architecture (after GarciaMolinaet d 2000).

In the following sections wrappers and mediators will be described separately. Two things
from section 4.3 to bear in mind are that most data sources are fully autonomous (out of
control of the administrator of the mediator/wrapper system), and that the data sources may be
highly heterogeneous (different data models, database schemas, and querying capabilities).

The Amos Il system used to implement the prototype of this Thes's has a mediator/wrapper
architecture with a functional OO data model®. Other research mediator/wrapper-systems are
Garlic® (from IBM), Tsimmis® (Stanford & IBM), Information Manifold®* (AT&T), and
Disco® (INRIA).

" When we deal with experimental data there is often no right-up "correct"” value. E.g. we may find that different
databases store widely different va ues of the affinity constant K xg between binding site A and ligand B, and this
may be due to the different experimental conditions used. I.e., we can normally not assume that two data values
of K g refer to exactly the same real-world concept.

8 E.g., Enpl oyee of schemaA is certainly a subtype of Per son in schemaB.

™ Eg., it is possible to derive the value of nol ecul ar Wei ght in schema A from values of nol ecul ar -
Conposi ti on and at om cWi ght in schemaB.

% Boman, Bubenko, Johannesson and Wangler 1997.
8 Risch, Josifovski and Katchaounov 2001.
% Tork Roth and Schwarz 1997; Haas, Miller, Niswonger, Turk Roth, Schwarz and Wimmers 1999.



IBM's DiscoveryLink (Haas et a 2001, section 6.2.1) is a system with purpose and
architecture very similar to PAQS. DiscoveryLink is based on the wrapper/mediator
architecture of Garlic, but usesIBM's ORDBMS DB2 UDB as integrating middleware.

Typically, a mediator is constructed for a particular group of users, and the data sources might
then al contain "similar" data - from a single information domain. One advantage of this
specialisation is that each "local" mediator with associated data sources can be used as a
component in alarger, extensible, distributed system (Ozsu and Valduriez 1999, p 586). This
would be possible with, e.g., Amos Il mediators as components (Risch and Josifovski 2001).
Figure 10 depicts such a system of collaborating or co-operating mediators.

Application 2
local data

e —

data source

Application 1

local data

data source

data source

Mediator

Mediator

data source

Figure 10. A system of collaborating mediators (after Josifovski 1999). Mediators with the sole responsibility to
wrap a daa source (the three at the bottom) may be called "trandators’ (Josifovski 1999).

A new part of SQL, called Management of External Data (or SQL/MED, see section 4.4.3),
can be used to access external data through wrapper interfaces (Melton, Michels, Josifovski,
Kulkarni, Schwarz, and Zeidenstein 2001).

441 Mediators

In previous sections we have defined a mediator as a software component which provides a
uniform view of data residing in various (heterogeneous and autonomous) data sources.
Wiederhold (1992) emphasises that mediators should use domain knowledge as a driving
force for data integration, and that the purpose of the mediator should be to create information
which can be used in high-level (decision-making) applications.

Wiederhold and Genesereth (1997) describe mediation as an architectural concept. They give
three layers.

« A foundation layer with base resources (databases and smulation programs).
* A mediation layer with value-added services and domain-specific code.
» Anapplication layer where decision-makers use the information.

An important point is that while the foundation layer is managed by database administrators,
the mediation layer should be managed by domain specialists (Wiederhold 1992).

8 Hammer, GarciaMolina, Ireland, Papakonstantinou, Ullman and Widom 1995; Hammer, Garcia-Molina,
Nestorov, Yerneni, Breunig and Vassal os 1997.

8 |evy, Rejaraman and Ordille 1996.
% Tomasic, Raschid and Valduriez 1998.



According to Wiederhold and Genesereth (1997) a mediator needs to accomplish four main
tasksin order to fulfil the overall objective of adding value. The mediator should be able to

* access and retrieve data from multiple heterogeneous sources,

e abstract and transform data into a common data model and a common database schema,
» integrate the homogenised data, and

» reduce the integrated data by abstraction in order to increase the "information density".

As discussed in the next section, much of this functionality can be accomplished by means of
cleverly designed wrappers.

442 Wrappers

A mediator may communicate with a data source through a wrapper (see Figure 9), which
describes the data in the source and also provides a mechanism by which the mediator can
retrievgethe data. Basically, we may see the wrapper as a "smulation layer" on top of the
source™.

In a mediator/wrapper architecture there are severa things a wrapper should be capable of.
Obvioudly, the wrapper should model the contents of the data source in the common data
model of the mediator. This corresponds to presenting an export schemain Figure 8.

Secondly, a wrapper should allow the mediator to access data from the source. In order to do
this, the wrapper must be able to trandate mediator queries (often an object verson of SQL)
into whatever access methods the source has (SQL, web forms, open a file and read
sequentially, et cetera).

In addition to these two basic tasks some mediators require the wrapper to participate in query
planning. I.e., the mediator should be able ask the wrapper for how much of a query it can
answer, and at which cost. This is the approach taken by Garlic (Tork Roth and Schwartz
1997) and DiscoveryLink (Haas et a 2001).

443 SQL/MED
SQL/MED (Management of External Data) is a new part of SQL that describes how standard

SQL can be used to concurrently access externa SQL and non-SQL data (Melton et d 2001).
The architecture of SQL/MED is shown in Figure 11.

o Addressed by SQL/MED standard -—-—----——-—-—--_

./ SQL- SQL/MED Foreign-Data ||
:\ Server API Wrapper )
AN /
N /

N -

Implementation-| dependent AP

—_ 3
Foreign Foreign
Tables Server

Figure 11. Components used by SQL/MED (Management of External Data) (after Melton et al 2001).

% This is the view of Stonebraker and Brown (1999) when they describe how awrapper can be used to extend a
traditiona relational DBMS with object-reational functiondity.



The new SQL/MED standards seems to be strongly influenced by IBM's Garlic project. In the
SQL/MED approach, the SQL database server breaks a query into fragments which are to be
processed by different foreign servers. In the query planning phase each query fragment is
converted to an SQL/MED request and sent to a wrapper, which analyses the request and
constructs an SQL/MED reply together with an execution plan. The server then investigates
the replies of the sources, and if it finds that the sources together are capable of answering the
origina query it constructs an overall execution plan.

In the query execution phase the SQL database server sends the partial execution plans back
to the appropriate wrappers. Each wrapper then accesses its external tables according to its
execution plan, and returns the results to the SQL-server, which finally constructs an overall
answer to the query.

The present SQL/MED standard (caled MED:2000) only allows simple queries and a read-
only interface to external data. The next version (due late 2002 or early 2003) is expected to
allow for modifying data in external tables (Melton et al 2001).
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5 Life Science Data Sources and Formats

During the last 20 or so years there has been an increasing interest in applying databases to
biological data. Most research has been concerned with genetic codes, amino acid sequences
of proteins (1° protein structure), and 3-D protein structures (3° and 4° structures). This shows,
for instance, when examples of biology data are given in texts for the database community?’.

In this chapter available life science data formats and data sources on the Web will be
discussed. Then, in the next chapter (6) a few database systems and standardisation projects
for integration of biological data will be described. Since the number of data sources and data
formats is large® and rapidly expanding | will only describe a selection of them. | have
selected those sources and formats | believe are most useful or interesting for the PAQS
project.

5.1 Requirementson a Web Data Source

Markowitz, Chen, Kosky, and Szeto (2001) discuss a few criteria for how molecular biology
databases on the Web can be evaluated and compared. Since their survey of some major web
data sources was made 1996, details will have changed, and | will not discuss the individua
data sources. However, a few genera points of interest, and of relevance for the PAQS
project, are metadata availability and query capabilities.

Markowitz et a point out that in order for a web database to be really useful to the public it
should provide comprehensive on-line metadata. For example, it is essentia that users can see
which entity types and relationship types the schema consists of, and which constraints that
apply on the data. However, many web data bases had (1996) little or no metadata on-line,
which according to Markowitz et a probably was due to the fact that schemas are revised
frequently and that it is laborious to keep such information up-to date on aweb site.

It was further pointed out that on-line metadata browsing is a very useful facility. This is
something which should be easy to provide with Amos Il since al metadata are stored as
objects in the database. Actually, the program goovi (Cassel and Risch 2001) presently
functions as a combined data and metadata browser for Amos Il databases. What is needed is
to make this kind of information available to web browsers and, possibly, to restrict the
browsing to metadata.

Markowitz et a (2001) further discuss different ways to query databases. They suggest that a
web site should provide fixed-form queries for the most common query types, as well as
support for ad hoc queries, e.g. in SQL.

5.2 Data Formatsfor Information Exchange in Bioinformatics

Of special interest in the networked modern world is how an application can get hold of data
from different data sources. This "information integration” aspect was discussed upon in
chapter 4. From a practical point of view, information integration is easier the more
standardised the data formats of the various data sources are, and in this section we will

8 paton 2001; Bellahsene and Ripoche 2001; Hammer and McLeod 2001.

® The DBCAT catalog currently lists 511 databases in molecular biology, covering DNA, protein structures,
literature, et cetera (http://www.infobiogen.fr/services/dbcat/, 2002-01-23).
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describe a few data formats that are in use for genomes, proteomes and other biological data,
and also afew that have recently been proposed.

5.2.1 Flat File Data Formats

Several large web databases present users with the data on "flat file" formats. Such data
typically consist of text on a very strict format, suitable for old FORTRAN-style 1/0. These
data sources existed before the birth of the Web, and data can in many cases till be
downloaded by ftp.

As we will see in the following sections several large data sources have gone over to
managing their data with modern DBMSs. For backward compatibility users are il
presented with the "flat file" data, but some servers have in paralle started exporting data as
"semi-structured” XML files, or as CORBA/Java objects.

5.2.2 ASN.1at NCBI

ASN.1 (Abstract Syntax Notation One)® is a formal notation for describing data transmitted
by telecommunications protocols. The notation contains basic types such as integers,
character strings, and booleans (but not reals). There are also more complex types, e.g.
structures, lists, and choices.

A specification written in ASN.1 is smilar to an XML DTD, and we can treat such a
specification as a schema over the domain of interest. However, ASN.1 is not a data model as
it lacks support for integrity congraints and data manipulations. Since data in ASN.1
documents are "tagged", we say that the format is self-describing.

Although ASN.1 was originally designed as a part of the OSI (Open System Interconnection)
standard in telecommunications it has spread into other areas, e.g. biology. One a strong point
of ASN.1 is the associated encoding rules for effectively transforming a data file to signals
that can be transmitted. Of more interest in the web age is XER, encoding rules for
transforming between ASN.1 and XML,

NCBI (the National Center for Biotechnology Information) uses ASN.1 as specification
language for schemas. Although it is possible for a human to read smal ASN.1 documents,
larger ones get messy. At NCBI most data is presented in users in flat file formats (see, e.g.
GenBank, section 5.5.2). There are publicly available programs for converting from ASN.1
to, e.g., GenBank "flatfile format", and even a C library”* for handling ASN.1 files. With help
of XER NCBI has recently started publishing datain XML format.

523 XML

XML, the eXtensible Markup Language, provides a standard way of defining a set of tags (a
"vocabulary") for adomain of interest. Such a set of tag definitions, possibly together with the
relationships between them, constitutes a new markup language - designed for the specific
domain of interest. I.e,, XML is used to define which tags that can be used in the new

% ASN.1 Information Site (2001-12-12).
% |_armouth 2001.
L NCBI tool box (2001-12-12).



language, and then this new language is used for documents or data. Since XML describes the
structure of data it could be used for defining the structure of heterogeneous databases and
data sources™®®,

In the following subsections a few XML-related topics will be described very briefly. For
more information, see, e.g., the official XML home page (http://www.w3.0org/XML/). In
section 5.2.4 various custom markup languages for life science applications will be described.

DTDs and XML Schemas

The technical definitions in the new language are captured in a Document Type Definition
(DTD) or in an XML Schema. DTDs are the older mechanism, and more validating parsers
are available for the DTD format. However, the XML Schema standard is more expressive.
XML schemas are first class XML documents, and hence schemas and documents can be
edited and processed by the same tools. Thus, | believe that XML Schema will be the more
used mechanism as the number of parsersincreases.

XML APIs

DOM and SAX are the two widely used standards for parsing of XML. DOM (the Document
Object Model) is a tree-based API which provides an object-oriented view of the data. A
DOM parser transforms the complete XML document to a tree sructure in main memory, and
this tree can then be traversed, queried, and manipulated. Conversely, SAX (the Simple API
for XML) is event-based and provides serid access to the data. The XML document is parsed
and appropriate events are fired, but no main-memory data structure is created.

JAXB (Java XML Binding) is a third, non-generic, approach for binding Java applications to
XML data. It is based on the idea that a specific XML schema (or DTD) can be directly
represented as a number of Java classes. Thus, JAXB consists of a compiler which generates
Java classes from an XML Schema (or DTD), and a runtime framework which transforms an
XML instance into Java objects and vice versa™.

RDF and Interoperability

Although XML Schema provides a method for defining the structure of XML documents
within a domain it does not support interoperability®®. There are several ways to build XML
schemas (or DTDs) for adomain. Thus, laborious mappings and trandations might be needed
before two application which use different schemas can exchange data.

The Resource Description Framework (RDF) is an infrastructure that enables the encoding,
exchange, and reuse of metadata™. It is the basis of W3C's semantic web and "the RDF
specifications provide a lightweight ontology system to support the exchange of knowledge
on the Web" ®. More informally, with RDF you can "use any metadata you like, but make the
description of them publicly available" *. | am not aware of any use of RDF for information
integration in the life sciences.

% Connolly and Begg 2002, ch 29.

% A useful technique in this context could be XSLT (eXtensible Stylesheet Language for Transformations)
which can be used to transform an XML structure into, e.g., another XML structure, HTML, or SQL.

% Java Architecture for XML Binding (2002-01-17); Thelen 2001.
% Resource Description Framework (RDF), http://www.w3.0rg/RDF/ (2001-12-17).
% Rehn 2000.
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XMI

The XML Metadata Interchange Format (XMI) specifies an open information interchange
model that is intended to give developers working with object technology the ability to
exchange programming data over the Internet in a standardised way”".

The only use of XMI for life science data management that | am aware of is the creation of a
custom markup language (MAGE-ML) from an object model in the MAGE project (see
section 5.2.4). Thus, in this case XMI was not used for exchanging schemas between
applications, but only for creating aDTD from a schema.

524 Custom Markup Languages

XML is a metalanguage, a language for creating other languages. This is why XML is
interesting in the context of the PAQS project. Various organisations and companies have
produced their customised version of XML, i.e. custom markup languages. Most such efforts
have simply defined a DTD (document type definition) and then tried to convince others to
use it. An aternative, not yet explored by many, isto create an XML Schema over the domain
of interest.

It might be useful to differ between such markup languages that are created through
collaborations between several companies or laboratories, possibly within some recognised
body of standardisation, and those languages which are created by a single data provider due
to client requests or supposed marketing advantages. We might suppose that a markup
language of the later kind will closely follow the way clients use the origina data source, and
that it is probably not as general as the former kind of language. However, from the point of
immediate usefulness the "single-data-source” language might be better, since the data should
already be available.

Asfar as | have found, no organisation has tried to sell its DTD. Instead, each believe it to be
a competitive advantage to get as many users as possible, and DTDs are for free. In addition,
many organisations and companies give away executables and source code for browsers and
application programs associated with the customised markup language.

In the following subsections a few custom markup languages will be described and discussed.
The first is CML, mainly for small molecules and crystal structures. Then | have chosen
BIOML, AGAVE, BSML, and PROXIML as examples of markup languages for genomes
and proteomes. | believe that BSML is the one which eventualy "win the race”, i.e. get most
followers over the next year or so. The last, MAML and MAGE-ML are chosen as examples
of markup language for a domain with large volumes of experimental data.

Other languages which are not directly suited for the PAQS project could still provide ideas.
Two such languages are SBML and XSIL®.

To my knowledge no custom (XML) language presently exists for the representation of
binding assays and binding experiments. Work is underway to construct a DTD for BIND
(section 5.4.1). The development of XML Schemas for binding experiments and similar
topics could clearly be a useful part of the PAQS project.

% XML Metadata Interchange Format (XMI), http://www-4.ibm.comvsoftware/ad/library/standards/xmi.html,
(2001-12-16).

% SBML (the Systems Biology Markup Language), http://www.cds.caltech.edu/erato/sbmi-level-1/sbml.html
(2001-02-19); XSIL (the eXtensible Scientific Interchange Language), http://www.cacr.cal tech.edu/X SIL (2001-
02-19).



CML - The Chemical Markup Language

The Chemical Markup Language (CML) was designed as an "HTML for molecules' *. CML
concentrates on "molecules’ (discrete entities representable by a formula and usualy a
connection table), and supports reactions, compound molecules (clathrates, macromolecules,
etc.), and macromolecular structures/sequences. However, CML has no specific support for
physicochemical concepts, but allows quantities and properties to be specifically attached to
molecules, atoms or bonds.

According to the creators has CML been used together with XHTML (for text and images),
SVG (line diagrams et c.), PlotML (graphs), MahML (eguations), XLink (hypermedia), RDF
and Dublin Core (metadata), and XML Schemas (for numeric and other datatypes). DTD and
XSD (schema) files are available from the official web page (http://www.xml-cml.org/). A
range of useful resources are available from CML's homepage, e.g. abrowser and CML-DOM
parser.

It seems that CML has a strong focus on "publications’, e.g. how web and print documents
can display molecules and related information transparently. Thus, from the viewpoint of
CML it is an advantage that XML supports "documents’ and "data" in a seamless spectrum.
In my opinion, CML should be extended (or combined with some other markup language) in
order to provide a schemafor experimental data of al kind.

Murray-Rust started the development of CML very early, and CML is (together with
MathML) often taken as an example of a custom markup language'®. Although a white
paper'® on CML claims that many companies and organisations have adopted CML, few

examples are given.
BIOML

BIOML'% seems to have been one of the first markup languages for proteins and genes. It
was produced by the company Proteomics  (http://www.proteomics.com;
http://www.bioml.com) for specification of biopolymer sequences, experimental information,
and annotations. Proteomics explicitly mentions that the markup language should facilitate
exchange of structure and annotation information over the Web.

A BIOML document describes a physical object, e.g., a particular protein, in such a way that
al known experimental information about that object can be associated with the object in a
logical and meaningful way. Such structures can then be viewed with Proteomics free
BIOML browser (which uses a quite imaginative and figurative typefont for different letters).

The DTD is publicly available, but the project seems to have come to an end in 1999.
BSML

The Bioinformatic Sequence Markup Language (BSML)'® is, according to its creators
LabBook, Inc (http://www.labbook.com), a "public domain standard" for the encoding and

% http://ww.xml.cml.org, Chemical Markup Language (2001-12-14); Murray-Rust, Rzepa, Wright and Zara
2000.

100 For example, in Deitd, H.M., Deitd, P.J,, Nieto, T.R., Lin, T.M. & Sadhu, P. (2001) XML - How to Program,
Upper Saddle River, N.J.: Prentice Hall aswell asin Astrom, P. (1999) XML, Extensible Markup Language (in
Swedish), Stockholm, Sweden: Docendo.

101 Murray-Rust and Rzepa 2001.
192 The BIOML home page, http://www.bioml.conVBIOML/index.html (2001-12-14); Fenyd 1999.
193 http:/Avww.bsml.org/, BSVIL - An Emerging Industry Standard (2001-12-14).
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display of DNA, RNA and protein sequence information. This markup language has gained
dramatically in support over the last half-year. Since the creation of 13C (the Interoperable
Informatics Infrastructure Consortium, section 5.3.4), where LabBook is a founding member,
organisations such as IBM, Bristol-Myers Squibb, and EBI (European Bioinformatics
Institute) have created alliances with LabBook and/or stated support for BSML'™. LabBook
also provides afree Genomic XML Viewer and sellsa Genomic XML Browser.

A distinguishing feature of BSML is that documents consst of two parts, a "definitions
section” with bioinformatics data, and a "display section" with information on how the data
should be represented graphicaly. Thus, the publicly available DTD is quite long, and the
second section contains, e.g., elements concerning paper margins, the plotting of pie-charts,
and the display of electrophoresis gels. These are thing we really do not want in a language
for data exchange, they are instead related to publication of the data on the Web. However,
this section is optional, and aDTD for data only is also available.

If the 13C (or a few of the other major collaborations of LabBook) prove successful, then
BSML will no doubt become the dominant markup language for exchange of biopolymer
structures and annotations. However, the language is still evolving, and LabBook welcomes
comments and suggestions on the present DTD (version 2.2).

AGAVE

AGAVE (Architecture for Genomic Annotation, Visuaization and Exchange)'®® is an XML
format developed by DoubleTwist, Inc. (http://www.doubletwist.com) for managing,
visualising and sharing annotations of genomic sequences. As in BIOML, the available DTD
contains no elements referring to graphical representation, this is handled by DoubleTwist's
Genomic Viewer.

AGAVE is perhaps mainly intended to be used together with Prophecy, DoubleTwist’'s
Annotated Human Genome Database system, which includes an AGAVE compliant XML
repository of the genomic annotations and uses AGAVE as a data exchange medium.
However, currently EBI (the European Bioinformatics Institute, vide supra) provides its
EMBL/GenBank/DDBJ data in two XML formats only, apart from the traditional "flatfile"
format, and these are BSML and AGAVE.

PROXIML

PROXIML (the PROtein eXtenslble Markup Language)'® is the only biopolymer markup
language | have found which utilises XML Schema instead of DTDs. PROXIML builds on
CML, but ismost likely not used by any of the major databases or integration projects.

MAML and MAGE-ML

The MicroArray Markup Language (MAML) is an effort of the MGED (MicroArray Gene
Expression Database) group to design a standardised markup language for the domain of
microarray gene expression experiments'’.

MAML, and any effort to standardise microarray data, needs to dea with the following five
subdomains'®: (i) the array, (ii) sample sources, treatments, and samples, (iii) hybridisations,

104 See hitp://www. bsml.org/news for afull list of press rel esses.

1% http:/Avww.agavexml .org/, Welcome to AGAVE (2001-12-14).

108 McArthur 2001, http://www.cse.ucsc.edu/~douglas/proximl/.

197 Cover 2001; MGED group (2001-12-17), http://www.mged.org/.

198 Array XML (AXML), http://www.xml.org/xml/zapthink/std409.html (2001-12-17).
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(iv) data, and (v) analysis. These subdomains are similar to what is needed for the description
of binding assay experiments, while the details will of course differ.

One important problem in storing or exchanging microarray datain some XML format is how
large amounts of numerical data should be represented’®. In MAML this is solved by storing
binary or ASCII data on an external file (specified by an URI (uniform resource identifier)). It
is also possible to store (untagged) ASCII data within an XML document.

The MicroArray Gene Expresson Markup Language (MAGE-ML)Y® is part of a larger

project, where an object model (MAGE-OM) for gene expression data is defined according to
OMG's Model Driven Approach (MDA). In MAGE-ML too, it is foreseen that the XML
document shall reference external data files. By inspection of the MAGE-ML DTD it seems
that data are organised in three-dimensional "cubes'’, with dimensons "BioAssay",
"DesignElement”, and "QuantitationType". | have, however, not tried to delve into the details
of the MAGE object model or markup language, and they have not influenced the schemas
presented in chapter 8 of the Thess.

An interegting difference between MAML/MAGE-ML and the previously described custom
markup languages is that MAML and MAGE-ML are standardisation efforts, made by several
co-operating laboratories. In the case of MAGE-ML one even uses the strict procedures of
OMG.

525 mmCIF

CIF (the Crystalographic Information File) is a format for describing crystallographic
experiments and the structures of small organic molecules. CIF was developed by the
International Union of Crystallography (IUCr) and is the preferred format for submitting data
to the various IUCr journals. Hence, mmCIF has the potential to be an important exchange
format in all areas of chemistry.

mmCIF is a CIF dictionary specific for biologica macromolecules (hence mm)***. mmCIF
contains over 1700 terms and provides the conceptua schema for the new Protein Data Bank
of RCSB (section 5.5.4). A macromolecular structure in mmCIF format consists of name-
value pairs, with aloop construct for repeating record types (e.g. the atomic co-ordinates for
each atom). It is possble to convert from mmCIF format to the more familiar PDB format,
but the opposite is hot dways true. (The PDB format istoo informal.)

Westbrook and Bourne (2000) give a larger picture of STAR/mmCIF as an ontology for
macromolecular structures. STAR (Self-defining Text Archival and Retrieval) has been used
to define a data dictionary language (DDL). This DDL provides conventions for naming and
defining data items within a dictionary, and at least eight dictionaries have been built - one of
which is mmCIF. Finaly, the data resides in data files which conform to the dictionary. The
data files, with name-value pairs, constitute a form of semistructured data, and it should be
easy to convert mmCIF into an XML DTD.

199 From reference 108: "Imagine a matrix of 10,000 genes by 1000 arrays. If each element-hybridization pair
resulted in 20 numbers (each needing 20 bytes for XML encoding) this document would be 400 x 1,000 x 10,000
= 40 GB for the completefile. Clearly a more compact representation must be allowed."

19 http:/Avww.geml.org/omg.htm
"1 Bourne, Berman, McMahon, Watenpaugh, Westbrook and Fitzgerald 1997.



5.3 Standardised Protocolsfor Information Exchange

In this section three different projects will be described, which al aim at producing standard
protocols for exchange of life science data between applications. The first two use CORBA,
and the third use XML.

531 CORBA

CORBA (Common Object Request Broker Architecture) is a standard for the exchange of
objects between applications and common object services™. In a CORBA environment
objects have interfaces defined in IDL (Interface Definition Language). Through these
interfaces requests and messages can be passed between objects distributed over a network. A
maor advantage of CORBA is that the objects can be living in applications written in
different object-oriented languages. Thus, distributed objects can co-operate irrespective of
programming language, hardware, operating system, or geographic location, as long as they
adhere to the same IDL interfaces.

Obvioudly, these IDL definitions need to be general and stable. Hence, one way of providing
for interoperability between applications within a specific domain would be to develop a
standardised set of IDL interfaces for the domain. Within molecular biology/bioinformatics
there are at least two such standardisation efforts (vide infra).

Note that in contrast to ODMG's object data standard (see section 3.2.3) OMG's CORBA is
not specifically intended for database systems. However, as long as the DBS presents an
appropriate IDL interfaces for its types CORBA could be used to access it. For example, the
P/FDM system has been given a CORBA interface (see section 6.1.1).

It should also be noted that interest in CORBA has recently decreased due to the appearance
of XML as apossible format for data exchange'**.

5.3.2 ThelLife Sciences Research group

The Life Sciences Research (LSR) group™ is a consortium of pharmaceutical companies,
software and hardware vendors, and academic ingtitutions working within the Object
Management Group (OMG) in order to improve interoperability among object-oriented life
science research applications. Examples of life science research areas covered by the LSR
group are bioinformatics, genomics, cheminformatics, computational chemistry, and clinica
trials. The LSR group works not only with CORBA, but aso with other (object) technologies
such as UML, XML, and EJB (Enterprise Java Beans).

The LSR group is formally a Domain Task Force (DTF) of OMG, and it follows OMG's
process to standardise models and interfaces. The work is performed by ten work groups
(WG). Three work groups of particular interest to the PAQS project are (i) the
Chemiformatics WG (CORBA interfaces for drug discovery research), (ii) the LECIS WG
(laboratory equipment control interface specification), and (iii) the Workflow WG (to
-

Y2 CORBA is developed by OMG (Object Management Group), a consortium of magjor software vendors
(http://www.omg.org). A starting point for learning about CORBA is a CORBA FAQ page provided by OMG:
http://www.omg.org/getti ngstarted/corbafag.htm (2001-12-07).

3 Davidson, Crabtree, Brunk, Schug, Tannen, Overton and Stoeckert 2001.
"4 Introduction to LSR (2001-12-06).



describe and control flow of data between components, eg. to represent scientific
experiments). In addition, there are work groups on themes such as 3-D macromolecular
structures, sequence analysis, and microarray gene expression data.

5.3.3 TheEU-funded CORBA project

The European Union funds a research project™ which aims to combine the data and services

of a number of European biological databases using CORBA. One of the project partners is
EBI (the European Bioinformatics Institute) where the EMBL Nucleotide Sequence Database
has been made available through CORBA servers'®. Since the origind EMBL data are
published on flat file format this clearly has the potentia of increasing the availability for OO
applications.

EBI is one of the mgjor stakeholders in the LSR group too, and there is some work to make
the EU project's IDL comply to that of the LSR (or the other way around). Presently, the two
standardisation efforts have not produced compatible interfaces, however.

5.3.4 ThelnteroperableInformaticsInfrastructure Consortium

The Interoperable Informatics Infrastructure Consortium (13C)™” develops common protocols

and interoperable technologies (specifications and guidelines) for data exchange and
knowledge management for the life science community. In contrast to other standardisation
efforts (e.g. the LSR-DTF in section 5.3.2) 13C will also develop technology solutions, not
only standards.

I3C was created in Januargl 2001 and has over 60 participating life science and information
technology organisations™®. The goals of this relatively new organisation are (i) to facilitate
an open development of standards, protocols, administration and a technical infrastructure for
the life science industry, (ii) to establish a common communications standard protocol that is
extensible and can be delivered to the community in a timely fashion, and (iii) to provide
forums for discussion of issues that affect technology evolution, development and use.

The main product of 13C so far seems to have been a demonstration'*® of a working prototype

at the BIO2001 conference'®’. The demonstration was meant to represent a workflow of the
typical molecular biologist who identifies a collection of sequences of interest and performs a
series of analyses on those sequences to further explore the data (see Figure 12). The proto-
type relies on Java and an open XML-in, XML-out paradigm, and used BSML of LabBook
(section 5.2.4) as communication protocol. What is rather impressive is the integration of

1> Contract: BIO4-CT96-0346. "Linking Biological Databases ..." (2001-12-06).
116 CORBA at EBI (2001-12-06).
17 13C Home Page, http://www.i3c.org/ (2001-12-14).

118 13C was originaly indented for industrid partners only, but now has aso governmental agencies and
universities as members. For a list of participaing organisations (as of July 28", 2001), see
http://www.i3c.org/html/i3c_faq june01.htm (2001-12-14).

119 Unfortunately, there is no publidy available web site where one can test the concepts. For those of us who
were not present at BIO2001 the only available information is a single web page: 13C Demo at BIO2001,
http://mwww.i3c.org/Bio200V/i3c_demo_final.htm (2001-12-14).

20 B|O 2001 is an international convention and exhibition organised by the Biotechnology Industry
Organization in San Diego, June 2001, see http://www.bio.org/events/2001/event2001home html (2001-12-19).



technology from eight different companies and organisations'®* for this demonstration. This, |
believe, shows the potential strength of 13C.

/Database Services /g

u
User Interfaces
Database A
) ) DiscoveryLink A A M
Analysis Services Browser (LabBook) [\ y IBM's —
DiscoveryLink T
u
App A XML w
Y Database B
u
App B ( INCOGEN VIBE
‘ XML
A e . 7 -
LabBook A A
\—/ Genomic XML Viewer |\ k Y Database C

\{/_/

Figure 12. Architecture of the I3C demonstration prototype. (After 13C Demo at BIO2001.)

Of particular interest is that IBM's DiscoveryLink (section 6.2.1) and LabBook's BSML
standard (section 5.2.4) play central rolesin the 13C architecture.

As seen in Figure 12 the product VIBE from INCOGEN'? has a central position in the 13C
demonstration set-up. VIBE (Visua Integrated Bioinformatics Environment)*? is a tool for
visual data analysis and mining. In VIBE a user may construct a "pipeline” of data filtering
and analysis modules by means of connected icons on the screen. This pipeline can then be
saved as XML or executable Perl code. According to the information available on the web
site, VIBE is designed specificaly to work with analysis programs of the Decypher platform
from TimeLogic**. However, VIBE is extensible, and this has obviously been utilised in the
I3C demo.

e
21 Blackstone, IBM, INCOGEN, LabBook, Nationa Cancer Institute (NCI), Sun, Timelogic, and
TurboGenomics.

122 The Ingtitute for Computational Genomics, Inc., http://www.incogen.com (2002-01-10).
123 http: //www.incogen.com/vibe/; INCOGEN VIBE (2002-01-10).
124 http:/vww.ti mel ogi c.comvbi odata.htm (2002-01-10).
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535 ThelSYSplatform

The ISY'S platform™® is a means for application interoperability which does not depend on a
standardised protocol. It cannot even be said to be a standardisation effort, since it emanates
from a single laboratory™°. However, it is presented as an aternative to the CORBA approach
(sections 5.3.1-5.3.3), and as such it is interesting to mention in this section. The architecture
is similar to CORBA, with software components registered as service providers and/or event
listeners.

What distinguishes ISYS from other solutions is a process caled "interactive discovery”,
where registered components at run-time are interrogated whether they can operate on some
data selected by the user. Those components which can operate on the data are added to a
menu in the GUI, together with appropriate descriptions. Thus, there is no common schema or
interface but instead each "data producer” can give an object as many or few atributes as
desired, and different "data consumers' may have different views of the same object. The
sysem is implemented in Java, and existing databases and applications are integrated by
wrapping with Java classes.

The authors conclude that the design makes ISY S suitable for systems where there is little
overlap between the data used by different components, and that the solution will be
ineffective if various components should share large parts of their schemas.

5.4 Binding Affinity Data Sour ceson the Web

The journal Nucleic Acid Research yearly publishes a "molecular biology database
collection” (Baxevanis 2001)*?’. A few of these data sources provide binding affinity data

Note that some of the projects described in this section may very well be thought of as
projects for information integration, and could have been put in chapter 6. However, | have
tried to keep sources which focus on a single kind of data in this section, and reserved chapter
6 for projects with awider scope.

5.4.1 BIND -theBiomolecular Interaction Network Database

The Biomolecular Interaction Network Database (BIND) is a database of interactions between
pairs of objects'?®. Each such interacting object may be a protein, DNA, RNA, ligand,
molecular complex, or other biochemica entities. The scope of BIND is rather wide'?. The
database contains information about experimental conditions used to observe the interaction,
cellular location, kinetics, thermodynamics et cetera. To cite the web page™:

"Development of the BIND 2.0 data modd has led to the incorporation of virtually all components
of molecular mechanisms including interactions between any two mol ecules composed of protens,

125 Siepel, Tolopko, Farmer, Steadman, Schilkey, Perry and Beavis 2001.
26 NCGR, the National Center for Genome Resources, Santa Fé, New Mexico.

27 The list from January 2001, with accompanying short papers by the database providers, is publicly available
a http://nar.oupjourna s.org/content/vol 29/issuel/ (2001-12-09).

128 Bader and Hogue 2000; Bader, Donadson, Wolting, Ouellette, Pawson, and Hogue 2001.
129 BIND could very well have been placed as awarehousing integration project in section 6.3.
30 BIND - The Biomolecular Interaction Network Database (2001-12-10).
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nudeic acids and small molecules. Chemical reactions, photochemical activation and
conformational changes can aso be described. Everything from small molecule biochemistry to
signal transduction is abstracted in such a way that graph theory methods may be applied for data
mining. The database can be used to study networks of interactions, to map pathways across
taxonomic branches and to generate information for kinetic simulations. BIND anticipates the
coming large influx of interaction information from high-throughput proteomics efforts including
detailed information about post-trandl ational modifications from mass spectrometry.”

The data format used by BIND is ASN.1 (Abstract Syntax Notation.l, section 5.2.2), the
reason being that NCBI (the US National Center for Biotechnology Information) uses ASN.1
to describe and store its biological and publication data. BIND aso uses the NCBI database
schema'®!, extended with many additional types and attributes.

We will not here go into the details of the fairly complex BIND schema. It is available as an
ASN.1 specification® from ftp://ftp.bind.ca’/BIND (where also the database files and some
source code is available). The schemais aso described by Bader and Hogue (2000), in text as
well asin (dightly incorrect) UML diagrams.

Three central concepts are BIND-interaction, BIND-object (two for each interaction) and
BIND-desc (descriptions of interactions). Each object has an "object type id", which is a
choice™® between protein, ligand, DNA, et cetera. Further each object has an "object origin”
(choice between organism, chemical, and not specified). It is obvious that UML is not suited
to graphically represent the semistructured ASN.1 data format. Unfortunately, neither the web
site nor the publications use some form of treeto graphically describe the schema

The creators of BIND have made a point out of using the data format and schema of NCBI.
They note that the schema is "mature’, i.e. that the core of it is stable, and does not change as
often as many other schemas. Furthermore, as pointed out by Ostell, Wheelan and Kans
(2001) NCBI is a US Government agency, with the possibility to play a long-term role in
bioinformatics.

BIND can be queried through a web form, but this functionality seems fairly poorly
developed. The public web form for querying BIND is not very detailed. For example, in the
"advanced query" form one can only choose between a text search and a search on BIND
accession ID numbers.

It is aso relevant to consider how BIND treats non-public data. In general, a BIND object
which describes a biopolymer sequence will store a link to a sequence database, e.g.
GenBank. Sequences which are not publicly available may be represented by a NCBI-Bioseqg
object. Further, each interaction may be labelled private, in which case the record is not
exported during data exchange, but may be viewed in-house.

The database is growing™*, and new data may be submitted through web forms. New data is
indexed by BIND staff and validated by a scientist. This ought to ensure good quality of the
data.

The BIND project originated in academia, but some of the people in the project are aso
affiliated with MDS Proteomics, Inc (see the following subsection).

31 1n BIND and NCBI publications this is called the NCBI data model. In this Thesis | try to make a distinction
between schema and model.

182 \Work is d so underway to definean XML DTD translation from ASN.1.

133 CHOICE is a congtruct of ASN.1. It isin essence an enumerated type, only more complex. Perhaps the best
way to represent a CHOICE in UML would be as digoint subclasses of an abstract class.

18 March 2001; 5805 interactions, Dec 2001; 5939 interactions.



MDS Proteomics, IBM, and BIND

In January 2001, MDS Proteomics™ and IBM announced having formed a "strategic
dliance". MDS Proteomics will start using IBM's DiscoveryLink 6.2.1 as a data integration
technology, and IBM will invest in MDS Proteomics.

The really interesting point, however, is that IBM and MDS Proteomics together will work to
establish the database BIND. In the press release BIND is characterised as "a publicly
available bioinformatics database that will alow researchers world-wide to submit and review
results of research about molecular interactions and the detailed cellular mechanisms of life"
and the two companies make "along-term commitment to continued support” **°.

If the commitments expressed in the press release are fulfilled we can expect BIND to have a
strong position as a data source in bioinformatics.

5.4.2 DIP - Database of Interacting Proteins

DIP (Database of Interacting Proteins)™®’ is a database of protein pairs that are known to
interact with each other. DIP is publicly available through a web form. The service isintended
to ad scientists who study protein-protein interactions, signalling pathways, multiple
interactions and complex systems. New data can be entered through a web form, but is
curated before it is made publicly available.

DIP isimplemented as three tables in arelational mySQL database: Proteins, Interactions, and
Experiments. Proteins can be searched by PIR, SWISS-PROT, or GenBank identification
codes. The database contains information (if available) about the protein regions involved in
the interaction, the dissociation constant and the experimental methods used to study the
interaction.

Data Mining of MEDLINE

DIP has recently started to use data mining for finding relevant publications in MEDLINE. A
Bayesian classifier extracts abstracts that potentialy describe protein-protein interactions, and
these articles are then checked by a (human) curator®, This approach might rapidly increase
the number of interaction entries in DIP and this novel idea is the main reason | have included
DIP in this compilation.

54.3 Interact —aprotein-proten interaction database

Interact is an object-oriented database to accommodate and query data associated with
protein-protein interactions™>. The database is implemented in the commercia OODBMS

35 http://www.mdsproteomics.com. The information concerning the co-operation with IBM can be found a
http://www.mdsproteomi cs.com/default.asp?gl D=8& qType=PressDisplay, "IBM and MDS Proteomics' (2001-
12-10).

1% Whether BIND shall continue to be free of charge is not mentioned, and neither is the relation between the
publicly available BIND and MDS Proteomics proprietary version of BIND (used in the company's own
functional proteomics research projects).

37 Xenarios, Fernandez, Salwinski, Duan, Thompson, Marcotte and Eisenberg 2001; Xenarios, Rice, Salwinski,
Baron, Marcotte and Eisenberg 2000.

38 Marcotte, Xenarios and Eisenberg 2001.
39 |nteract - A Protein-Protein I nteraction database (2001-12-10).
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Poet 5.0. This has the advantage that the DBMS is fully ODMG compliant, and that it can be
queried by OQL. Such OQL queries can be embedded into application programs, or entered
through aweb form.

According to the web page of Interact there are about 1000 interactions and 200 complexesin
the database. These data have either been entered by scientists through web forms or loaded
from MIPS*°.

The database Interact is presently not publicly available from the web site, not even for a
demo - probably because the project has been terminated.

The database schema of Interact is given as a UML class diagram on the Interact web page. A
simplified version of the schema s given in Figure 13. This is similar to a class diagram for
protein interaction data published by the same group in connection with the GIMS project
(see section 6.3.2).

0.*

2.2

dissociation
Constant

belongsTo

1.1
GeneFamily

Figure 13. Simplified schema of how protein interactions are represented in Interact.

5.4.4 TheBinding Database

The Binding DB'* is a public database of measured binding affinities for various types of
molecules, from the biologica to the purely chemical. According to the web-site, the
BindingDB aims to fecilitate a range of activities, including eucidation of the physica
mechanisms of molecular recognition, discovery of new drugs, and discovery of ligands for
use in chemica separations and catalysis.

Data is publicly available through web form searches on, e.g., one or two reactant names,
authors, and AGP° ranges. It is dso possible to perform "advanced queries’ to combine a
selection of search fields, or to perform BLAST searches. A very nice feature of the Binding
DB is the structure search. The user can sketch a molecular structure on a canvas and search
for the structure in the database.

To the best of my knowledge, no information on the architecture or database solution is
available on the web site. However, a detailed term catalogue®* is available, with names and
explanations for entity types and attributes. From this metadata it seems the web-site is
backed by arelational database. A DTD for XML datais aso available.

140 Mewes, Hani, Pfeifer and Frishman 1998.

! The Binding DB is managed by the Center for Advanced Research in Biotechnol ogy, University of Maryland,
see The Binding Database, http://www.bindingdb.org, (2001-12-09).

12 http:/vww.bindingdb.org/bind/entity_report.html (2001-12-10).



The database presently holds only few data and the rate of growth the last half-year has been
insignificant'®. A further disadvantage of the database is that the data is not curated.
Experimentalists are invited to deposit binding data via on-line forms, with the only quality
restriction being that the method by which data was determined must have been published.

The main lesson to learn from the Binding DB is the use of a drawing tool to help in
substructure searches.

54.5 PDSP Drug Database

The Psychoactive Drug Screening Program (PDSP) keeps a database of dissociation constants
(K vaues) for receptor/ligand complexes. It is possible to search on, e.g., receptor, radio-
ligand ("hot ligand"), test ligand (competitor), and combinations thereof.

Some (in-house) experimental information is available on-line, and all dissociation constants
have links to PubMed literature entries (see section 5.5.1). The database is publicly available
through aweb form, but there seemsto be no mechanism for user submission of data.

The data in the database seems highly relevant to the PAQS project, but there is no
description of the long-term goals, the architecture or the database schema on the web site.

54.6 GPCRDB

GPCRDB' is an informa collaboration between different providers of databases for G
protein-coupled receptors (GPCRs). The data can be queried through various web forms, and
the focus on G-coupled receptors fit nicely with the focus of present proteo-chemometric
research in Uppsala.

Of interest is also that GPCRDB replies to "advanced queries’ by using an embedded "smart
query engine"'*®. The system supports query rewrite mechanisms which, in case the first
query results obtained by the user are not satisfactory, propose more restricted or more
relaxed reformulations of the queries. This advanced query system is implemented with an
object-relational Informix Universal Server (IUS) DBMS.

5.5 Other Bioinformatics Data Sour ces on the Web

In the previous section we saw a few publicly available databases on the Web which
specialise on interactions between macromolecules and smal molecules. There are, however,
many important databases for useful background information, such as protein sequences,
protein 3D structures, and literature references. Some of these will be described in this
section.

An important aspect of information systems in biology is that there are primary and secondary
databases. The primary databases are "archives’, they store experimental results, possibly
with some interpretation. On the other hand, the data of secondary databases are curated, they

143 239 hinding reactions 2001-12-10, and 236 binding reactions 2001-04-10.
44 GPCRDB, http://www.gpcr.org/ (2001-12-10).
4% GPCR Query, http://www.darmstadt.gmd.de/~gpcrdb/ (2001-12-10); Che, Chen and Aberer 1999.
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have gone through some independent review process, and are generally considered to be of
high quality.

In bioinformatics, the three domains of interest which has been most subjected to database
storage are nucleotide sequences of genes, amino acid sequences of proteins, and protein 3D
structures (see, e.g. Baxevanis and Oulette 2001).

55.1 PubMed and MEDLINE

PubMed is a service of the National Library of Medicine (NLM, http://www.nlm.nih.gov/) to
provide the public with access to over 11 million MEDLINE citations and additional life
science journals. PubMed includes links to many sites providing full text articles and other
related resources. MEDLINE, in turn, is NLM's main bibliographic database, covering the
fields of medicine, nursing, dentistry, veterinary medicine, heath care systems, and
preclinical sciences.

PubMed is publicly available viathe NCBI Entrez retrieval system™. Obvioudly, it would be
of great advantage if PAQS could interface easily to PubMed. A minimum requirement is that
al literature citations should have "MEDLINE unique identifier" (MUID) or "PubMed
identifier” (PMID), where appropriate.

55.2 DDBJ/EMBL/GenBank

During the last years the sequencing of the human genome has arisen much public interest.
Although genome data are not directly relevant to the PAQS project, this section will touch
upon databases for nucleotide sequences.

Arguably the most important primary database in bioinformatics is the annotated collection of
al publicly available nucleotide and protein sequences held by GenBank (USA), EMBL
(European Molecular Biology Laboratory), and DDBJ (DNA DataBank of Japan). These
three databases take part in the International Nucleotide Sequence Database Collaboration and
exchange information daily. Thus, al three contain the same sequences, but provide them on
dightly different formats.

GenBank

GenBarnk is the genetic sequence database of NIH (the National Institute of Health), built by
NCBI (The National Center for Biotechnology Information). Users retrieve data on the
GenBank flatfile format (GBFF)'’, but as described in section 5.2.2 efforts are underway to
provide data on XML format (mapped from ASN.1).

EMBL at EBI

The European Bioinformatics Institute (EBI, http://www.ebi.ac.uk) is an outstation to the
European Molecular Biology Laboratory (EMBL). EBI manages a range of databases of
biological data, including nucleic acid sequences, protein sequences, and macromolecular
structures.

Although the EMBL nucleotide sequence database is implemented in an Oracle8i database
syssem normal users have traditionally only been able to retrieve data on the "EMBL flatfile

148 Entrez PubMed, http://www.nchi.nlm.ni h.gov/entrez/query.fcgi 2db=PubMed (2001-12-18).
147 Karsch-Mizrachi and Oul ette 2001.
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format". The XEMBL project™® tries to provide users with EMBL nucleotide sequences on
various XML formats (see section 5.2.4) formats. Presently, BSML and AGAVE are
available.

Thus, we see that EBI and NCBI here follow different strategies. EMBL provide users with
data on XML formats of other organisations, while NCBI simply maps their internal ASN.1 to
anew (site-specific) XML format.

553 SWISS-PROT and ExPASy

The ExXPASy (Expert Protein Analysis System, http://www.expasy.ch/) server of the Swiss
Ingtitute of Bioinformatics (SIB) is mainly concerned with the anaysis of protein sequences
and structures. EXPASy is a porta to at least eight different databases, where the most
important are SWISS-PROT and TrEMBL.

SWISS-PROT™° is a curated protein sequence database which strives to provide a high level
of annotations*®, a minimal level of redundancy (different literature reports are merged as
much as possible) and high level of integration with other databases (cross-references to about
60 other databases).

The database was created in 1986, and is maintaned by SIB and EBI (European
Bioinformatics Institute) in collaboration. Release 40.6 of SWISS-PROT (13-Dec-2001)
contains 103258 entries. SWISS-PROT can be searched through web forms, by accesson
number, author, citation, organism, gene name, et cetera. Users may alternatively retrieve data
on SWISS-PROT flat file format by means of ftp.

TrEMBL is a computer-annotated supplement of SWISS-PROT that contains al the
trandations of EMBL nucleotide sequence entries which have not yet been integrated in
SWISS-PROT.

SIB has, together with EBI, formed the Human Proteomics Initiative (HPI) project™*. The
goal of HPI isto high quality annotations of all known human protein sequences.

554 PDB

The Protein Data Bank (PDB)™? has long been a repository for protein 3-D structures
determined by X-ray crystallography. The data format (adlso called PDB) is popular in many
branches of chemistry, not only crystallography. Nowadays, PDB also contains structures
determined by NMR, and recently the database was transferred from Brookhaven Nationa
Laboratory to RCSB (the Research Collaboratory for Structural Bioinformatics,
http://www.rcsb.org/).

1% The XEBML Project, http://www.eb.ac.uk/xembl (2001-12-06).
149 EXPASy - SMSS-PROT and TrEMBL, http://us.expasy.org/sprot/ (2001-12-17).

150 9WISS-PROT annotations of a protein are descriptions of its function(s), post-translational modification(s),
binding sites, 2° and 4° structures, variants, similarities to other proteins, and disease(s) associated with
deficiencies in the protein, et cetera.

! Human Proteomics I nitiative, http://www.expasy.org/sprot/hpi/ (2001-12-06).

152 Berman, Westbrook, Feng, Gilliand, Bhat, Weissig, Shindyalov and Bourne 2000; The RCSB Protein Data
Bank, http://www.rcsb.org/pdb/ (2001-12-17).



RCSB has changed the PDB data format from the classica "Fortran-style" flat file format to
mmCIF (section 5.2.5), which, however, is transparent to users accessing the traditiona
format. Since different research groups use (or interpret) the PDB format differently it might
be advantageous for a new project such as PAQS to try to use the stricter mmCIF format.

Primary experimenta and coordinate data are stored under a relationa Sybase DBMS.
However, users may only access data through web forms, or retrieve the final curated data by
ftp (on PDB or mmCIF format).

As of 11-Dec-2001 PDB contained 16859 structures. This is about one order of magnitude
less than the number of entries in SWISS-PROT, and this is due to the fact that it is much
more difficult to experimentally determine 3-D structures than amino acid sequences.

555 MMDB

The Molecular Modelling DataBase (MMDB) contains protein 3-D structures derived from
PDB data™. However, MMDB differs from PDB in severa aspects. First of al, in PDB
structures are described as atomic coordinates, which can be supplemented by information on
which amino acid residue each atom belongs to. However, it is up to the application program
to determine which atoms that are bonded to each other. In MMDB the data files contain all
bonding information explicitly™*.

A second difference is that MMDB (as other NCBI databases) uses ASN.1 as a schema
definition language. Thus MMDB is well integrated with the US Nationa Library of
Medicine and GenBank. MMDB is accessible through the Entrez system (section 6.4.1).

556 PIR

The Protein Information Resource (PIR, http://pir.georgetown.edu) distributes PIR-Inter-
national Protein Sequence Database (PSD) together with MIPS of Germany and JIPID of
Japan. PIR-PSD™ claims to be "the most comprehensive and expertly annotated protein
sequence database in the public domain”.

PIR-PSD is a public domain database, accessible through web forms and downloadable by
ftp. The PIR-PSD flat files are available in XML format, with an associated DTD file, as well
as in the original NBRF and CODATA formats. The PSD sequence file is distributed in
FASTA format.

153 Hogue 2001.

> From a purist's point of view the PDB approach is the correct. It is the atomic coordinates which are
determined in X-ray crystalography, and there are furthermore a few cases where it is not straightforward to
determine if two atoms are bonded together or not.

However, in software for modelling and visualisation of biomolecules it is often necessary to define exactly
which atoms that are bonded together (and by which types of bonds), and it is probably from this practise the
need for MMDB has arisen.

A further advantage of the MMDB approach is that a database search for a specific (ssimple) structura feature
might be faster in internal coordinates than in Cartesian coordinates. This, however, will depend on the structural
feature.

%% p|R-International Protein Sequence Database, http://pir.georgetown.edw/pirwwwi/dbinfo/pirpsd.html (2001-
12-16).



PIR-PSD and other databases at PIR are implemented under an object-relational Oracle8i
DBMS. Barker et a (2001) describe that they have used both object and relational featuresin
the database design, and also both ER and UML modelling. Unfortunately, there seems to be
no detailed information (e.g. database schemas) available in print or on the PIR web site™™.

55.7 GDB - the Genome DataBase

The Genome DataBase (GDB)™’ is the official central repository for genomic mapping data
resulting from the Human Genome Project. Although the contents of the database is not of
direct interest to the PAQS project some other aspects of GDB are.

GDB is implemented in the OPM data model (vide infra). The web site of GDB has a lot of
relevant information, e.g. database schemas and descriptions of the data model and the system
architecture. Thisisin very good accordance with the conclusions drawn by Markowitz et al
(2001) in section 5.1,

The data stored in GDB are divided among three databases, one for biologica information,
one for citations, and one "registry" database for people with editing privileges or otherwise
involved in the database. This modular approach is managed by an object broker middle layer,
between clients and the Sybase data servers.

Thus, | think PAQS should take over the idea of a separate server with people and
authorisations from GDB. This should be possible to implement as a separate Amos |1 server,
although Amos Il presently does not support protection, neither of objects nor of the type
sysem. Furthermore, GDB has set an example when it comes to meta-data availability.
(However, this meta-data is only available as documents. The actua database is not queried.)

OPM - the Object-Protocol Mode

The Object-Protocol Model™® was developed by Markowitz, Chen et a*® as an object-
oriented data model with specific congructs for representing scientific experiments.
Experiments are modelled by protocol classes (instead of object classes). A protocol takes an
input and produces an output. Further, protocol classes can be expanded as alternative
subprotocols, sequences of subprotocols, and optiona subprotocols.

There are arange of database management and browsing tools available for OPM. However,
the OPM project finished in 1997, and the members went into industry. This is a potential
problem for GDB and other projects where a unigue DBMS is used to implement a database
system which is meant to last for a long time. If the OPM project partners are no longer
available, and if the GDB staff has not got enough expertise in the OPM system some
modifications of the database system will be difficult to perform. E.g., changes of the
database schema and of input and output formats are tasks the GDB staff should be able to do,
but they probably cannot improve or extend the system (e.g. implement new features of SQL)
without technical OPM expertise.

8 Furthermore, although Barker et a (2001) claim that metadata and technical bulletins are available at the PIR
web site, | have nat been able to find any such material produced more recently than 1997.

7 The Genome Database, http://www.gdb.org (2001-04-20).

58 The OPM model was devel oped by the very same research group, and this group has dso taken part in the
construction of GDB.

19 Chen and Markowitz 1995.
150 The OPM Project, http://gizmo.Ibl.gov/opm.html (2001-12-17).



6 Related Work: Database Systemsfor Life Science Data
| ntegration

In this chapter a few database systems for integration of biological, bioinformatics, or life
science data will be described. The purpose is to compare the approaches and capabilities of
these systems with those anticipated for PAQS, and perhaps to induce ideas about new
features for PAQS.

Some mgor efforts for the integration of biology data were mentioned dready in chapter 5,
treated as potential data formats for PAQS, e.g. the two CORBA sandardisation project
mentioned in section 5.3.

There is a rapid growth in the number of niched companies performing proteomics or drug
design research, "out-sourced” from a (larger) pharmaceutica company. Such "proteomics
companies’ often clam to have unique expertise in one or severa fields (e.g. mass
spectrometry, cell signalling, protein structure determination, or computational chemistry). In
a way, these companies function as mediators. they integrate information from different
sources, and add value in the form of their own research. However, since we are interested in
software platforms which facilitate information integration we will not further discuss such
companies.

As discussed in the beginning of chapter 5, only some of the many integration projects can be
described in this Thesis.

6.1 Research Prototype Mediator Sysems

Most mediator systems for the integration of biological data have the characteristic in
common that they origin in mediator research projects performed at an academic computer
science laboratory, and that the interest in using these mediators for biological data has grown
during the bioinformatics boom of the 1990's. Of special importance is the well-known
Human Genome Project (http://www.ornl.gov/hgmis/), which is reflected by the fact that most
of the projects aim to integrate different sources of genome data.

In principle, this type of mediator systems could be used as data sources in the PAQS project,
or conversely. Thus, we could have a system of collaborating mediators, similar to the picture
given in Figure 10, but with the difference that all participants would not be Amos Il
mediators. From a technical point of view it is the public interface which is determining. If a
mediator sysem only publishes web forms for fixed-form queries other systems will only
have limited use for it. If, on the other hand, a mediator is open for standard OQL queries, has
a CORBA interface, or can be queried as an XML source, there is greater potential for
collaboration.

6.1.1 P/FDM

P/FDM (Prolog/Functional Data Model) is an OODBMS created by Gray, Kemp et a in
Aberdeen®™. Similarly to Amos II, PPFDM employs a functional data model based on
DAPLEX (see section 3.2.5).

181 Gray and Kemp 1990.



The Aberdeen group has used P/FDM for biological data for more than 10 years. Their main
work seems to have been on defining schemas for representing protein structures and the
integration of such data from heterogeneous data sources'®®. For example, a declarative
constraint language to describe the semantics of 3-D protein structure data has been
developed'®. An important and interesting goal of the Aberdeen group has been to make it

possible to perform efficient geometric calculations over proteinsin the P/FDM system'®.

As mentioned above, P/FDM has been used as a CORBA server'®. An architecture is
described where a graphica user interface connects to P/FDM through a coarse grain CORBA
interface, and P/FDM provides query processing services over local and remote databases,
also through CORBA interfaces. It seems that only the "upper”, GUI-to-P/[FDM, part of the
architecture was implemented, perhaps due to the lack of CORBA servers at the time.

The most important data source for PPFDM seems to have been SRS (Sequence Retrieva
System, see section 6.4.2), but recently the group has widened the scope to more diverse data
sources'®, e.g. EBI's ArrayExpress (microarray based gene expression data, see section 6.3.1)
and Ensembl (eukaryotic genomes). A recent publication’® on P/IFDM describes how the
system is used to build a database federation for bioinformatics, and how the P/FDM mediator
isused to integrate locally stored data with data from the SRS.

To conclude, the P/FDM effort is similar to the PAQS project when it comes to architecture
and technical possibilities. However, the applications lie within another domain, and the data
sources are only partially overlapping.

6.1.2 K2/Kledi

K2 (and its predecessor Kleidi) follows a mediating, view integrating, approach to the
integration of heterogeneous data sources™’. In the K2 architecture wrappers are caled "data
drivers', and such have been developed for a range of formats and sources, e.g., GenBark,
BLAST, KEGG, and SRS. These data drivers have the respongbility to provide K2 with
source metadata, to transmit queries to the sources, and to convert the query results to K2's
internal format. However, rewriting from OQL (the query language of K2) to the native query
language of the source is made by K2, not by the data driver.

K2 has an extensible rule-based optimiser, but optimisation is presently not cost-based due to
problems in estimating accurate costs in the distributed environment. An interesting option in
K2 is to define virtual classes which span several underlying databases. This resembles the
integration union types of Amos 1'%, A major advantage of K2 over the earlier Kleidli, and
possibly over Amosl I, isthat K2 has OMG's standard OQL as query language.

From the examples given by Davidson et a (2001) it seems the scope is wider than only gene
and protein sequences. The overlap with the PAQS project seems presently small, however.

162 K emp, Dupont and Gray 1996.

163 Embury and Gray 1995.

164 Kemp, Robertson, Gray and Angel opoul os 2000.

1% K emp, Fothergill, Gray and Angelopoul os 2001.

168 K emp, Angelopoul os and Gray 2000.

187 Davidson, Crabtree, Brunk, Schug, Tannen, Overton and Stoeckert 2001.
198 Josifovski and Risch 1999.
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6.1.3 Tambisand Ontology-Based Approaches

In computer science the term ontology is often used for a "specification of a representational
vocabulary for a shared domain of discourse, which may include definitions of classes,
relations, functions, and other objects’ (Kashyap and Sheth 1999). Thus, an ontology can be
seen as alist of commonly understood terms, and different application domains have different
ontologies'®.

An ontology in this meaning of "concept repository” can be used for information integration,
and one representative example of this is the TAMBIS project described in the following
subsection. Another example is mmCIF (section 5.2.5), which has been described as an
ontology for macromolecular structure.

TAMBIS

The TAMBIS project from Manchester'” aims to provide users with maximum transparency
when accessing bioinformatics data sources around the world. To achieve this TAMBIS uses
a central ontology (a conceptual representation of biological concepts and terminology)
together with mappings from terms of the ontology onto terms in external sources. TAMBIS
follows a mediator/wrapper architecture where query trandation, query planning, and
wrapping is based on CPL/Kleidi'™.

The central and most developed part of the TAMBIS project seems to be TaO, the Tambis
Ontology. TaO has several roles: (i) to describe biologists knowledge, (ii) to encompass the
schemas of underlying data sources, (iii) to link conceptua terms to terms in the sources, (iv)
to mediate between equivalent or nearly equivalent concepts in different sources, and (v) to
help users to form biologically realistic queries and explore the ontology.

TAMBIS focuses on DNA and protein structures. Representative questions a user can ask is
"find homologues to apoptosis receptor proteins' and "find motifs in enzymes which use
thyamine as substrate and iron as cofactor”. Higher-level, exploring, questions like "what can
| say about the concept 'receptor'?* can be answered, too.

A Difference Between the Ontology Approach and Mediation

TAMBIS has a mediator/wrapper architecture similar to that of e.g. Kleidi, P/FDM, or PAQS.
However, when it comes to information integration there is a major difference between the
mediation approach and the ontology approach. In PAQS we will only build a partia
integrated schema of the sources. I.e., we will only care to model those aspects of the domain
that is of interest to the users of PAQS. In an ontology-based approach, the ontology should
(eventually) encompass all concepts that the user community knows about the domain (for
example bioinformatics). |.e., the ontology could be said to correspond to a globa schema,
and all information present in the source schemas should also be present in the ontology™ .

189 1n philosophy, on the other hand, ontology is a form of metaphysics dedling with the true nature of being
(Odelstad 2001).

0 TAMBIS, http://img.cs.man.ac.uk/tambis/index.html (2001-12-06); Baker, Goble, Bechhofer, Paton, Stevens
and Brass 1999.

! Buneman, Davidson, Hart, Overton and Wong 1995.

172 |n a way, we could say that the ontology represents a "super-global” schema, since there will probably be
concepts in the ontology which are present in none of the sources. However, a mediator may contain local data
not present in any source, and often this local data has some semantic meaning which no source schema
captures. Thus, the same "super-globdity" gpplies for mediators.



6.2 Commercial Middlewar e Solutions

In principle we can think of two types of commercial systems. The software can be intended
to be installed at the cusomer's site, and the business model would be to sell (or rent) a
system, and to sell consulting expertise. This applies for DiscoveryLink, described in the next
section.

A second business mode would be to integrate data at the software provider's site, and
publish a web interface which customers can put queries through'®. This has the serious
disadvantage that proprietary data owned by the customer is not included in the integration.

It may be noted that the bioinformatics research community has a strong tradition of sharing
data, see, e.g., the publicly available gene and protein sequences in the data sources of section
5.5, and it would be difficult to sell web services to academic users. This contrasts with the
Situation in, e.g., chemistry.

6.2.1 DiscoveryLink

DiscoveryLink'” is a database middleware system from IBM Life Sciences'”. The purpose
of DiscoveryLink is very smilar to that of the PAQS project'”® and the research projects
described in section 6.1. The system integrates heterogeneous data sources so that users can
access data in a uniform and transparent manner.

Like the research prototypes of the previous section DiscoveryLink follows a
mediator/wrapper-like architecture (see Figure 14). However, DiscoveryLink uses IBM's DB2
UDB as mediator (or middleware) and employs a relational data model for information
integration. The research prototypes (with object-oriented or functional data models) ought to
provide richer modelling capabilities in the mediators. However, IBM argues that the use of a
commercial industrial-strength DBM S as middleware is of advantage. Furthermore, users can
query the DiscoveryLink system with standard SQL queries while most similar systems use
OQL or some speciaised query language.

Several enhancements to the way DiscoveryLink now works are described by Haas et d
(2001). One of these is the possibility to keep prematerialized summary tables stored in
DiscoveryLink to avoid accessing the data sources. This is probably an idea which should be
taken over by the PAQS project.

e
% A number of aternaives are possible here. Pay-per-minute, pay-per-month, pay-per-query, and pay-per-
tuple-returned are probably al too smple. For example, FIZ Karlsruhe (http://www.fiz-karlsruhe.de/) uses a
combination of time connected, number of queries, amount of information returned, and a cost factor specific for
the underlying source to bill customers.

74 DiscoveryLink (2001-12-18); Haas, Schwarz, Kodali, Kotlar, Rice, and Swope 2001.
175 |BM Life Sciences (2001-12-13).

178 Actually, one of the example queries used by IBM to demonstrate how DiscoveryLink works is "Show me all
the compounds that have been tested against members of the family of serotonin receptors and have 1C50 vaues
within nanomolar/ml range'. Apart from the unfortunate choice of unit for IC50 thisis exactly the kind of query
we would like to put to PAQS.
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Figure 14. DiscoveryLink architecture. (After Haas et a 2001.)
Wrappers

The data sources are integrated with the system by means of wrappers (see section 4.4). This
solution is taken from IBM's research project Garlic'’’. A wrapper has four principa
responsibilities: (i) To map the schema of the data source to DiscoveryLink's relational model,
(i) to inform DiscoveryLink of the data source's query capabilities, (iii) to map query
fragments from DiscoveryLink to requests in the native query language of the data source,
and (iv) to issue those query requests and return the results to DiscoveryLink. An important
feature is that any speciaised query capabilities of a data source are modelled as user-defined
functions in DiscoveryLink.

A future enhancement to DiscoveryLink is to improve query optimisation by directly
involving the wrappers in query planning. When a user issues a query to DiscoveryLink the
system should ask the wrappers which parts of the query each of them is able to answer. In
return, the wrappers should send a "wrapper plan” together with the associated estimated cost.
The DBMS then uses the wrapper plans to construct a reasonable global query plan. This
solution to query optimisation over distributed heterogeneous data sources has been validated
in the Garlic project, and is more or less identica to the approach in the new SQL/MED
standard (see section 4.4.3).

Semantic Data Integration

Although DiscoveryLink can integrate data from different sources the system does not
automatically solve the problems of heterogeneity'”. A solution suggested by Haas et a
(2001) is that database adminigtration staff should build trandation tables, which could then
be stored in DiscoveryLink. The lookup in such tables would impair performance, but the
solution is in principle possible for all middleware or mediator systems which have the
capability to store datalocally.

M Garlic, http://www.a maden.ibm.com/cg/garlic.html (2001-12-18).

8 Haas et a (2001) give three examples of "semantic conflicts’: (i) upper/lower case strings, (ii) different
names for one and the same drug, and (iii) no common keys between objects in different sources. In the
terminol ogy of section 4.3.3 (i) isadata conflict, while (ii) and (iii) areidentity conflicts. A semantic conflict, on
the other hand, would be when a concept is interpreted differently in different sources. (E.g., if one source treats
ligands and radiolabelled ligands uniformly as "ligands’, while another separates them into "ligands"' and "hot

ligands'".)



Schema Evolution

Haas et al (2001) discuss the frequent change of database schemasin life science data sources.
They describe how the wrapper architecture of DiscoveryLink has been designed for
extensibility, and that the system therefore is well prepared for changes in data sources. In this
context it is worth noting that the easier schema evolution is said to be one of the advantages
of object-oriented DBMSs over rdationd DBMSs'”®. This might lead one to believe that
mediators based on OO (or functiona) data models are better suited for a situation where
source schemas changes are frequent. However, it is the wrappers which should do the
mapping between source and middleware, and it is of course essential that the wrappers are
easy to modify. In practise, it should be the case that small changes in data source schemas
can be absorbed by the wrappers, while only larger source changes require changes to the
middleware schema

Availability

DiscoveryLink is a commercia product of IBM. From the demonstration examples available
at the DiscoveryLink web site | conclude that it should be possible to query the data sources
through some web interface once the system has been installed at the customer's site. Another,
and potentially more useful way to query DiscoveryLink is through DB2's JDBC API. There
is no mentioning of constructing a publicly available web site powered by DiscoveryLink.

DiscoveryLink isamaor component of the I3C architecture, see section 5.3.4.

6.2.2 Oracle Gateway with DARWIN Analysis

Banerjee (2000) describes how Oracles data mining tool Darwin can be used for

bioinformatics and proposes Oracle's gateway technologies as a means for accessing non-
Oracle databases™®.

In an independent (but perhaps dightly dated) study of three (anonymous) commercial
product Rezende and Hergula (1998) found that the gateway approach to integrating
heterogeneous data sources was inferior to more general middleware approaches.

In my opinion, Banerjee's suggestion of having Oracle technology as a powerful back-end for
web servers is more redistic. Such a portal could then, for example, provide wide research
communities with access to XML based data

6.3 Warehouse Approaches

From chapter 4 we recall that a data warehouse is a central repository for integrated data
Several of the data sources listed in sections 5.3.4 and 5.5 include components of integration
by the warehousing approach and could have been discussed in this section instead.

e —
17 Connolly and Begg 2002, p 792, 828.

0 Tg the best of my knowledge, this system - adapted for bicinformatics - is not commercialy available.
However, since the solution was presented by an Oracle ffiliate and consists of commercidly available
components, | have chosento list it in this section.
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6.3.1 ArrayExpress

At EBI (European Bioinformatics Ingtitute) the ArrayExpress project is committed to
establishing a public repository for gene expresson data from microarray experiments™.
Microarray data are not of direct use to the PAQS project'® but the ArrayExpress project is
nevertheless worth studying. First of al, ArrayExpress attempts to define a standard for a
subdomain of experimental molecular biology. Similarly, one possible goal of PAQS is to
define a standard for binding assay data. On a lower level, there may be similarities in how
experiments are described, e.g. how an array or an assay is represented in a database.

ArrayExpress aims to build a data repository. The purposes of the repository are’® to make
the data available to many parties, to facilitate "cross-validation” of data, to establish
benchmarks and standards, and to create the ability to build up progressively more detailed
information. Findly, the repository should function as a public resource which can be
referenced by scientific literature'®,

Obvioudly, a repository of data follows the warehousing approach to information integration,
described in section 4.1. An interesting aspect of thisis of course that ArrayExpress will need
to define a database schema which is expressive and detailed enough to capture information
from a wide range of laboratories and experimental set-ups. This would be a great challenge
even for a "traditional" information domain, but an additional complication is that the
microarray scene is new, and rapidly changing. Thus, the schema as well as the data model
used for constructing the schema and for implementing the database must be flexible enough
to provide for facile schema evolution.

A conceptual schema in UML is given on the home page of ArrayExpress'™. Interestingly,
this schema lacks all object-oriented features, and it seems to be intended for implementation
in arelational DBM S'®. The schema has been implemented in P/IFDM (see section 6.1.1)*,
and as arelational database'®®.

The ArrayExpress homepage aso links to a more comprehensive description of how
microarray data can be represented and stored'®. This document has schemas drawn in

181 The ArrayExpress Database (2001-12-17).

182 First of al, the purpose of microarrays is to investigate what proteins are produced from the different genes of
a genome under different environmental conditions. In PAQS, we are interested in how proteins interact with
ligands. Secondly, the experimental set-up is different and the experimenta raw data are different too
(fluorescent or radiation images in microarrays, versus radioactive counts from a detector in binding
experiments). Findly, the andysis of the experiments are different.

183 Establishing a Public Repository for DNA Microarray-Based Gene Expression Data (2001-12-17).

184 Repositories with this reference function exist for example in crystallography. In that scientific community it
is customary to publish (in ajourna paper) only a drawing of a substance whaose structure has been determined,
together with some important geometric parameters (e.g. bond lengths). A full list of atomic coordinates and
thermal parameters must then be deposited, for example with the Cambridge Crystalographic Data Centre
(CCDC, http://www.ccde.cam.ac.uk (2001-12-10)). Other depositing schemes do exist, too.

185 gructure and Design of ArrayExpress Database (2001-12-17)

188 | the document is stated that it is strai ght-forward to map the schema to the ER model, but aso to arange of
other models (e.g. Java programs).

187 aeFDM: FDM impl ementation of the ArrayExpress Schema (2001-12-17).
188 The maxdSQL Database (2001-12-17).
189 ArrayExpress Schema, Model and Documentation (2001-12-17).
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OMT*®, and does include OO features (e.g. subtyping). The schemas of references 185 and
189 differ in central parts.

6.3.2 GIMS- the Genome Information Management System

In a recent paper™®* which mainly deals with how genomic data, protein interactions, and gene
expression experiments can be modelled conceptually Paton et a introduce the Genome
Information Management System (GIM S)™®. From the brief description it seems GIMS is a
continuation of Interact (section 5.4.3), with a much wider scope.

GIMS follows a warehousing approach to integration, with the warehouse implemented in the
OODBMS Poet. Data from "information sources' are loaded through wrappers. The principa
way to explore GIMS is expected to be through canned queries, i.e. predefined parameterised
gueriesin web browsers or application programs.

One of the conceptual models of Paton et d (2000) deals with how transcriptome data can be
represented (see Figure 15). This is a similar modelling problem as that of ArrayExpress
(section 6.3.1), and the schema of Paton et a has given some inspiration to the modelling of
experiments described later in this Thesis.

SpotReading
1.*

--
1.1

0..*

Figure 15. Schema for representing transcriptome data according to Paton et a (2000), smplified and
transferred to the functional diagram notation.

Each experiment has a collection of measurement points, consisting of spot readings (in the
special case of gene expression data). To each measurement point we may associate an
environment, which records the extent (condition degree) to which some property (condition)
holds when a measurement is made®.

%0 OMT (Object Modeling Technique) is a diagrammatic notation for object-oriented modelling. OMT is similar
to (and a predecessor of) UML.

191 paton, Khan, Hayes, Moussouni, Brass, Eilbeck, Goble, Hubbard.and Oliver 2000.
192 Genome Information Management System, http://img.cs.man.ac.uk/gims/ (2001-12-17).

198 For example, the two conditions temperature and pH may have the values 25 °C and 7.0, respectively. These
two "condition degrees' then constitute the "environment” valid for a specific set of measurement points.



6.3.3 GUS- the Genomics Unified Schema

Davidson et d (2001) have developed the Genomics Unified Schema (GUS), which is a data
warehouse used to integrate data from major sequence databases (GenBank, SWISS-PROT,
dbEST).

GUS uses arelational data model and is implemented with an Oracle8i DBMS. The relationa
schema is large, over 180 tables. One reason for this is that it is difficult to represent the
compressed schemas of sequence databases by arelational model. Only SWISS-PROT maps
to 15 tables, and al in al about 50 tables are required to mirror the externa databases. The
large schema makes the system difficult to comprehend, and therefore an object layer (in Perl)
has been implemented on top of the relational system.

In conventiona data warehouses for business applications value is added to the data through
summations on different levels of aggregation. In GUS, which has a focus on sequences and
genes, it is annotations that add value. An important aspect of GUS is hence to track how
annotations change, when they change, which agorithms that were used, and so on. This
management of metadata is handled by version tables.

6.4 Interlinked Collections of Data Sources

One approach to providing a useful query interface to a collection of data sourcesisto create
a layer of links between database records on top of the data sources. Thus, if a user searches
for the protein X, she will not only get the sequence from a protein sequence database, but
also the corresponding records from a literature database, and a 3-D structure database - if
she has marked those databases "active" in the web interface.

There is no real information integration or transparency in this kind of system. The user needs
to choose which databases to search, and usually no attempt is made to resolve conflicts.
Thus, athough the data may be collected at a central site, they reside in separate databases,
and are not integrated as in a Data Warehouse. Davidson et al (2001) call this type of system a
"link driven federation"”.

6.4.1 Entrez

Entrez'® is a retrieval system for searching several linked databases. It provides access to
biomedical literature (PubMed), nucleotide sequences (GenBank), protein sequences (SWISS-
PROT, PIR, PDB and other), 3-D macromolecular structures (MMDB), complete genome
assemblies, and several other types of data

What makes Entrez more powerful than an ordinary web interface is that most of its records
are linked to other records, both within a given database and between databases. Records
connected through intra-database links are called "neighbours'. An important feature is that
these links not only are based on exact matches, but also on pre-computed similarity searches.

194 Entrez Home, http://www.nchi.nlm.nih.gov/Entrez/ (2001-12-18).



6.42 SRS

The Sequence Retrievad System (SRS) was developed by EMBL (European Molecular
Biology Laboratory) during the 1990s. SRS has gradually evolved and changed, and is now
an integration platform for molecular biology and genome analysis, owned by Lion
Bioscience™.

SRS is publicly available at EBI'® and at several mirror sites. However, some of the
accompanying software is not free. There are currently several dozen servers world-wide that
provide access to over 300 different databanks via the Web. Only through the EBI web
interface a user may access 158 databanks (19-Nov-2001). An SRS server may access
databases stored locally together with databases on the Web. Presently, SRS can retrieve data
from relational DBM Ss, XML servers, and flat files.

SRS integrates heterogeneous data sources (“databanks') behind a single interface and
integration framework. SRS is sad to employ a "meta level approach” information
integration™’. Thus, SRS uses metadata about structure, format and syntax of the data sources
to build indices for each file in each database source, to build link indices between each
integrated database, and to help in dataretrieva of specific fields upon user requests.

In addition, another level of metadata is used to let users define how data should be retrieved,
e.g. as XML datafiles or as Java objects. Thus, SRS s, according to the information available
on the Web, extremdly flexible for users who are prepared to invest some time and effort to
learn the system and the tools. Furthermore, there are various extensions to SRS, for example,
SRS Objects'*® provides APIsto C++, Java, Perl, and Python, as well as CORBA interfaces.
It is possible for an organisation to instal the SRS system locally (an Oracle 8 DBMS is
required) and then to integrate their own data sources.

Integrating Relational Data Sourcesin SRS

When a new relational database is introduced in an SRS system the administrator needs to run
a series of programs to extract the database schema, and manually define a HUB table (vide
infra), a HUB accession column (with unique vaues), and a set of columns that should be
presented as search fields in web interfaces.

The querying and retrieval of data from relational databases proceeds in two steps™®®. When a
user hasfilled in the web form to produce a query the first step isto retrieve the relevant keys
from a HUB table and the second step is to use the keys to assemble objects with al the fields
the user has asked for.

SRS first anayses the schema information it has about the RDBMS and then generates an
SQL query which is sent to the RDBMS via JDBC?®. The interesting part is that the query is
formulated so that it converges (through joins) to a "HUB", which is the "table of most
interest”, and the centre of a star topology*™.

195 http://www.lionbioscience.comV, http://www.lionbio.co.uk/. Actualy, the system has changed so much that
SRS is now its name, not an acronym.

1% SRS 6, hitp://srs6.ebi.ac.uk/ (2001-12-17).

197 3RS Technol ogy, http://www.lionbioscience.com/htm/c_1/content_c 1 1_1.htm (2001-04-06).

198 SRS 6 Extensions, http://www.lionbioscience.comvhtm/c_1/content_c_1 1_2.htm (2001-04-06).

1% gRS Relational (2001)

20 JDBC is often interpreted as Java DataBase Connectivity, although thisis not an "official" acronym.
XL Cf, star schemas in Data Warehouse dimensionality design, see, e.g., Connolly and Begg 2002, ch 31.



When the relevant keys (which are drawn from the accession column in the HUB table) have
been returned to SRS a new SQL query is formulated to retrieve the information. This query
is constructed to start with one or more HUB keys, and then proceed outwards. The relevant
information is collected and result objects are built up incrementaly.

Although this is not mentioned in the documentation available to me (e.g., refs. 195-199), it is
probable that many query plans are stored (or cached) in the SRS system. It seems
uneconomical to need to analyse the schemas of the participating databases for each and every
standard query.



7 A Database System for Proteo-Chemometric Research

In this section PAQS - the Proteo-chemometric Analysis and Query System - is described.
The PAQS project emanates from a research proposal made by Tore Risch (Dept of
Information Science, Uppsala University) and Jarl Wikberg (Dept of Pharmaceutica
Pharmacology, Uppsala University), and should result in a database system for proteo-
chemometric research. The approach used in the project is to integrate information from
various distributed, heterogeneous, and autonomous data sources by means of a mediator-
wrapper architecture.

7.1 Architecture of PAQS

The architecture of PAQS follows that of many other mediator-wrapper systems (see section
4.4). This architecture was defined before the start of my Thesis work. Figure 16 illustrates
the PAQS architecture with three layers.

Wrappers Relational Pharm. Proteo | Chemical | Inter-PAQS

The client layer contains various applications, e.g. for anadysis and visualisation. This
layer could also contain aweb interface.

The mediator layer is the PAQS system itself, the core of which is an extensible database
engine, i.e. the Amos Il DBMS?®. The parts which are specific for PAQS are the various
wrappers and plug-ins (vide infra).

The data source layer stores the data. Most of these data sources will be resources
accessed over the Web, but some will be local databases.

Analysis
programs

Visualization Proteometric Client
System Queries

API Extensible OO query language m

Extensible database engine

Abstract

Match Mediator

Plug-ins
| ODBC | Data

i i i source
RDBMS P_harmacologlcal P_rotem seq. Chem|cgl Other PAQS systems
file file struct. file

Figure 16. Architecture of PAQS. (Figure made by T. Risch.)

202 Risch, Josifovski and Katchatounov 2000; Flodin, Josifovski, Katchaounov, Risch, Skald and Werner 2000.
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7.1.1 Application Programs

There are severa conceivable types of application programs:

* Analyss programs may access PAQS in order to get hold of needed data. Other analysis
programs may take their data from other sources (e.g. from some laboratory equipment)
and deposit the resultsin PAQS.

* Analyss programs could invoke other programs, e.g. for visualisation.

» The system could be open for queries over aweb interface, either through some web form
with limited querying alternatives or via direct submission of AMOSQL queries.

+ Another PAQS system may be a client®.
* A meta-data browser could be used by persons wishing to understand the PAQS schema.
No work has been done on the client layer for thisM.Sc. Thesis.

7.1.2 Wrappersand Data Sources

Wrappers are an important part of the mediator-wrapper architecture of Amos|l and PAQS. A
wrapper functions as an interface to an external data source, and it is only by means of such
wrappers the mediator is able to access external data. The approach has recently been
included in the SQL:1999 standard as SQL/MED (Melton et a 2001, see section 4.4.3).

Presently, the Amos Il system incorporates wrappers for relational databases (as ODBC data
sources) and XML files. It is possible that other wrappers will have to be implemented for
access to important data sources. However, this might very well be unnecessary work since
there is a very strong trend towards XML formats in life science research. A discussion of
various available data sources on the Web was made in chapter 5 of this Thesis. Most binding
affinity data sources present their data through web forms, and it is thus important that Amos
Il can access such forms efficiently®*.

| have not designed or implemented a wrapper in this work. For an example of the use of an
existing wrapper, see Appendix G.

7.1.3 Algorithmsfor Plugging-In

One thing which distinguishes commercid object-relational DBMSs from the older relationa
DBMSs is the possibility to extend the functionality for a particular information domain by
means of "plug-ins’ (see section 3.2.4). These possbilities should be even larger for most
research prototype ORDBM Ss.

In Amos |l the foreign functions provide this extensibility. Thus, functionality can be
included by code in Java, C, or Lisp. For the PAQS project this is of great importance as
many small and middle-sized computations can be performed by foreign functions:

e
%3 This is conceivable in at least two situations: (i) Severa laboratories have their own PAQS systems running,
but share local information by accessing each others systems. (ii) There is one centra PAQS installation, but
one laboratory wishes to use a loca PAQS server to manage some proprietary or preliminary data without
sharing it with others.

204 Petrini 2001.



* A main benefit will be from the point of reusability. |.e., an existing implementation of an
algorithm could easily be plugged in and used. There is no need to code and debug the
algorithm once more.

* Some algorithms are impossible or very difficult to implement in AMOSQL since the
necessary mathematical functions are missing in query languages. However, they can
easily beimplemented as foreign functions™®.

e Small visualisation programs could be used as plug-ins, e.g. used to do smple xy-plots of
data series (section 8.2).

» Foreign functions could work as interfaces to the file sysem. E.g., we may import a
certain data item from a certain type of text file by means of a Java function. (l.e., we
construct avery simple kind of wrapper, specialised on asingle task.)

» It would even in some cases be possible to wrap a large and complex program by a Java
class, and then plug it in by means of a foreign function. One limiting factor will be the
response time®®. Furthermore, if the program requires some additional user input, e.g.
through a GUI it is questionable if we conceptually can classify it as a foreign function.

An open question in the PAQS architecture is how much of the proteo-chemometric analysis
that isto be implemented as AMOSQL functions. In a traditiona solution the database system
would only be used for data storage and access, through the API. All analysis would be
performed in special-purpose programs. At the other extreme is a Situation where al analysis
and visualisation algorithms are implemented as foreign functions, and the whole proteo-
chemometric andysis takes place by calls from the DBMS. The database schemas presented
in chapter 8 dlows for both these solutions, and intermediaries. In connection with
experiment evaluations (section 8.8) | have shown how analysis from PAQS could be
implemented.

7.2 Thelnformation Domain with Subdomains

The information domain of interest for proteo-chemometric analysis is coarsely described in
Figure 17. The lines indicate direct interdependencies, and one example of how to read the
Figure is to follow the bold lines: A series of binding experiments are made with a binding
assay. These experiment are then evaluated (by some curve fitting program) so that a number
of fit parameters are determined. Each fit parameter represents some property of a chemical
entity or a combination of chemica entities (e.g. a binding affinity between a ligand and a
receptor).

In chapter 8 of the Thesis the modelling and implementation of most of the subdomains are
described. However, al subdomains have not been modelled to equd detail. Subdomains with
dotted "borders' in Figure 17 were only implemented as "subs® (ChemicalEntity, Protocol,
Reference), or not at al (Descriptor). These remaining subdomains are further commented
upon in section 9.1.

%5 For example, see Appendix C or the matrix operations of Flodin, Orsborn and Risch (1998).

26 For example, it is not unusua that quantum chemistry computations of molecular properties execute for
several days.
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Figure 17. Division of the domain of interest into subdomains.

7.3 ThePrototypefor PAQS

The first stage prototype for a proteo-chemometric analysis and query system presented in
this Thesis consists of the database schemas of chapter 8 implemented in Amos Il. No
graphical user interface or wrapper to externa data sources have been implemented. A few
examples of how data can be stored and queried are presented in Appendix B.

The scripts needed to generate the database, together with some sample data and further
demonstration examples, are available as supplementary electronic material. The DBMS
Amos Il needed to run the scripts is available for download over the Web
(http://www.dis.uu.se/~udbl/amos/ 2002-01-16).
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8 Modelled and Implemented Subdomains

In the work for this Thesis many parts of the necessary database schema for a proteo-
chemometric analysis and query system (PAQS) have been modeled and implemented in
Amos Il. This chapter describes and discusses these parts, including some background
information and related work.

The database schemas described in this chapter dl refer to the mediator of a mediator/wrapper
architecture. | do not discuss the schemas of external data sources, athough the presented
schemas will in many cases provide good starting points for defining XML Schemas. In most
cases the data will actually be stored in some external source, possibly on the Web, and the
schemas are the representations in the integration schema of the mediator. Thus, data which is
read from external sources can be viewed and manipulated by Amos |1 functions, presented to
the user, and possibly stored in some local database. However, in the discussion of design
solutions it is in many cases convenient to talk about attributes that "store" properties of a
type, asif they were stored permanently in the mediator.

It has been difficult to choose the order in which to present the following subsections. The
first section, which is quite long, deals with quantities and units, and after that a larger data
structure caled DataSeri es is introduced. In the middle of the chapter the modelling of
binding assays, binding experiments, and various supporting types is discussed. Findly,
experiment evaluations (numerica fits) are discussed in a fairly long subsection. Each
subsection should be fairly self-contained, with references to other sections.

The chapter contains afew code excerptsin AMOSQL and Java, where appropriate. Full code
ligtings can be found in the electronic supplementary material. A short demonstration of the
implementation is given in Appendix B.

8.1 Quantitiesand Units

There are many ways to model measurements. A few things in need of consideration is how
to represent a measured vaue, how to represent the system of units, and how to handle error
estimates of measured values. In the following subsections various approaches to representing
a single measured value, units and errors will be discussed. The final schema which has been
implemented in the prototype is given in section 8.1.10. It is worth noting that the database
prototype uses this approach for single measurements, but another approach, presented in
section 8.2, for (longer) series of data.

811 TheMeasured Value

First of all we need to determine how to represent the measured value, which is usually ared
number. In a computer, real humbers are handled by some floating point number data type
and in many programming languages one may choose a floating point type of appropriate
precision. For example, Java has the relevant data types f | oat and doubl e, while Fortran77
hasreal and doubl e precisi on. The DBMS Amos Il has only one floating point data type,
real (with approximately 15 significant digits).

For some properties we may know that the measured value is always an integer, e.g. the age
of an (adult) person. Furthermore, some measurements do not result in anumber at al butina
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choice from a set of predefined alowed vaues, an enumeration®®”. For many measurementsin
science a value is only interesting as part of one or several sequences of numbers (e.g. an
infrared spectrum). In some occasions, the measured value may even be a complex number.

In the implemented prototype all measurements are treated as real numbers (using the Amos
[l literal data type r eal ). Spectra can be handled as pairs of Dat aSer i es objects, where each
data seriesis a sequence of real numbers (section 8.2).

8.1.2 TheNeed for Units

In this section we will discuss a few aternative ways to represent systems of units. The
approaches differ greatly in expressiveness, flexibility, and the amount of ”knowledge” that
clients need to have to be able to use the units.

Why do we need units a all? In principle we could prescribe that all concentrations in the
database system will be given in the unit nanomolar, al masses in gram, al volumes in
millilitres, and so on. Alternatively, we could decide to always use the Sl base and derived
units’®, Unfortunately, neither is convenient since there will typically be applications and
user groups that insist on using their customary units. For example, the "standard” unit of
concentration in chemistry is mole/litre, aso called molar. It would be very hard to convince
chemists to give concentrations in the SI unit mole/meter®. Choosing a system of units other
than the Sl system will eventually lead to the same kind of problem.

Using units is aso more or less a prerequisite for interoperability. If we wish to use data from
several data sources on the Web, we can be amost certain that not al of them use the same
set of units. Obviously, we may wrap the data source to a common system of units, but as we
will see there are several advantages of using explicit units.

Unit Conversion

If we have units in the database, we aso want a means for converting between different units.
This is very useful if we allow different units for the same physica dimension (e.g. meter,
millimetre, and Angstrom (A) for lengths), since we would then be able to add 0.0010 m and
1.0*10” A to get 2.0 mm. Unit conversion will be necessary if we want to be able to access
other data sources, even if we restrict our own database to have only one unit per dimension.
The other data source will quite likely have its data in other units, and our wrapper will then
need to convert from the external unitsto the internal units.

A few approaches to unit conversion will be discussed in the following sections. | have found
very few publications on unit conversion. However, Novak (1995) discusses the conversion of
units of measurements in the context of dimensional analysis (vide infra), and also describes
algorithms®® for conversion and simplification of units. Interestingly, he uses eight base
units, the seven Sl units and dollar.

X7 Furthermore, one often differentiates between ordina variables (with some inherent relative order) and
nominal variables (with no meaningful order) (Han and Kamber 2001, p 343). The colour of an athlete's eye
would be a nomina variable, but the colour of the medal he or she won at the Olympic games would be an
ordina varigble.

28 There are seven Sl base units (meter, kilogram, second, Ampere, Kelvin, mole, candela). The derived units
are multiplicative combinations of the base units, e.g. meter/second and mole/meter”.

20 Of further interest is that Novak (1995) describes the implementation of the agorithms in LISP, one of the
languages the Amos Il system is implemented in. However, | have not used LISP for unit conversion, but
AMOSQL and Java

72



8.1.3 Dimensonal Analyss

Why is it hard to represent units at all? One could think that it is just a technical matter, but
actually there are quite a few intriguing problems in the conceptual modelling of units and
measurements. This section will present a few of these problems, arisng when dimensiona
analysis is used to relate units of different physical dimensions to each other. The database
schema used for the prototype avoids the problems by not trying to keep these relationships at
al.

Dimensional analysis is a technique which relies on the fact that "the various terms in a
physical equation must have identica dimensional formulae if the equation is to be true for
all consstent systems of units’ (Pitt 1977). A mechanical quantity can be expressed mass,
time and length, e.g. area = (length)?, energy = (mass) * (length)? / (time)?, and so on. Science
studentzsloearly learn to use the technique for checking if the equations they use can be
correct”.

By dimensional analyses we know that we can only compare quantities that have the same
physical dimensions. E.g., we may add a distance to a distance, but not a distance to a
volume.

Some nice examples of the difficulties with dimensional analysis are the following®":

» A force multiplied by a distance may be ether a torque or an amount of work done.
Torque and work will have the same units (Newton*meter), but they are quite different
physical properties, which usually would not make sense to add.

*  On the other hand, it does make sense to compare a cup of salt with 100 gram of salt, even
though the first is a volume and the second is a mass.

* Are the angles 40° and 400° the same? The answer depends on whether we deal with
circular or rotational angle.

* The water solubility of a substance is usually given as the mass of substance it is possible
to dissolve (at 25 °C) in 100 grams of water. Thus, if we subject this concentration unit
(9/200g) to dimensional analysis we get a unitless dimension. On the other hand, mass%,
volume%, and mole fraction are other dimensionless ways to measure concentrations.
Clearly, these concentrations are not equivalent, but according to dimensional andysis we
will be able to add quantities measured in these units. What is worse, we may add the
interest on our bank account (1 % ?) to the concentration of carbon dioxide in normal dry
air (0.03 volume%o), but what does the result mean?

Thus, dimensional analysis is a powerful tool to relate and manipulate units (see also section
8.1.5), but there are some problems in constructing a genera system without anomalies. This
would be quite an intereting research problem for a computer scientist interested in
modelling, and with a background in the natural sciences. It is, however, perhaps not of
immediate concern to the PAQS project.

219 For example, assume we want to calculate how far an athlete runs in 20 seconds if he has a speed of 10 ns.
We remember that speed (v), distance (d) and time (t) are related in some way, but how? We attempt the
equation d = t/v. However, dimensiona analyses tells us that the unit of [t/v] is second/(meter/second) = s7m,
which is certainly not what we expected for a distance. So the equation we tried was wrong...

21 The first three examples were taken from an 130-page unfinished work report (Kent, Janowski, Hamilton, and
Hepner 1996).

73



8.1.4 UnitsasCharacter Strings, an Enumerated Type, or a Domain

Obvioudly, one simple way of representing units is as character strings. When a new quartity,
e.g. 1.25 m/s, is entered into the database the user has to type in both ”1.25” and "m/s’. The
database adminigtrator has no control over which units that are used, or that all users use the
same character string when they mean one and the same unit. E.g., another user may write
"mps’, and some other will prefer to use ”cm/s’, or even "inch/hour”. How shall the database
system know that "mps’ and "m/s’ are the same, and how shal it know how to convert from
"cm/s’ to "m/s’ if the units are simple character strings?

In the programming language C an enumerated type can be used to define which values an
attribute may take’?. Similarly, ODMG's object model (3.2.3) has the literal data type
enunt™3. For relational databases we instead speak of "domains’, and an attribute's domain is

the set of values that can be assigned to the attribute®™,

To use an enumerated type or domain solves the problem of synonyms, but not converson
between different units?™.

8.1.5 Unitsby Vectors

Hamilton (1996) desribes an approach for handling units which relies on vectors and
dimensiona analysis (see section 8.1.3). One first defines a set of base units, e.g. the seven SI
base units. Then all other units can be derived from these. Assume that we have defined only
two base units: metre (for length), and second (for time). These units span up a "unit space”,
and we can represent the unit of the property length by the vector < 1, 0 >, and the unit for
acceleration (m/s?) by < 1, -2 >. Hamilton suggests this approach as a means to represent units
in a compact way, with minimal agreement among communicating parties.

The vector approach is very expressve since the relationships between different physical
properties are preserved. The approach is compact since it doesn't rely on a large enumeration
of units. The disadvantage that there is only one unit for each dimension remains. More
serious disadvantages are that the method has problems with handling dimensionless
properties, and different properties having the same dimension (Hamilton 1996).

8.1.6 Unitsand Quantities as Objects

A quite different approach to that of the previous section, and one perhaps more suitablein an
object-oriented environment, is to represent both units and measurement values as first-class
objects.

22 In an object-oriented language, e.g. Java, enumerated types may be substituted by the "typesafe enum pattern”
(Bloch 2001).

13 However, the Java mappings for enumare not yet defined.

24 10 1SO SQL 2 adomain is a name, a data type, an optiona default value, and an optional CHECK statement
(Connolly and Begg 2002). An example is CREATE DOVAIN Gender AS CHAR DEFAULT 'F' CHECK
(VALUE IN ("M ,"'F));, whereupon an attribute sex could have the type Gender . However, according to
ONell and O'Neil (2001, p 419) none of the mgor DBMS products support such an enumerated data type.
Instead they suggest the solution with an additional table containing al alowed strings.

25 A table with dl valid conversions could be used. However, it is not trivial to keep such a table up-to-date as
new units are added.
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Fowler (1997) suggests a schema similar to that in Figure 18 for representing patients in a
hospital, with Quantity as a type that knows both the value (anount) and the unit of a
measurement.

Charstring

o < > ]
T
[ e > e

Person

ConversionRatio

Figure 18. Quantity and Unit as concepts for representing measurement values
(after Fowler (1997)7°).

Fowler also advocates the use of compound units. The left part of Figure 19 uses bags, while
the right part only uses sets. (Both approaches would work in Amos 11.) Fowler's approach is
very similar to the vector approach presented in section 8.1.5, but object-oriented.

AtomicUnit | CompoundUnit | | AtomicUnit |

217

Figure 19. Two ways of modelling compound units according to Fowler=".
(After Fowler (1997), adapted to the functiona data model notation of the present thesis.)

inverse

It seems that compound units and conversion ratios may be combined, as in Figure 20%8. For
example, if we have : net er defined as a base unit for length, we could proceed according to
the following™® to construct the concentration unit : nanonol ar

218 Figure 18 has been drawn in the "functional EER" model language first encountered in section 3.2.5. The
original Figures of Fowler are drawn in "crow-feet notation”, and on his home page (Janicijevic and Fowler
2001) they are available in UML. For clarity the attributes nane, hei ght , and anount are drawn as explicit
functions from user-defined typesto literal data types.

27 |n by-passing, we may note that " AtomicUnit” is not a suitable name in a database for the natural sciences.
Atomic units is a system of units often used in quantum mechanics and particle physics instead of the metric
system!

218 The solution in Figure 20 closely resembles the "Composite” design pattern (Gamma et al 1995; Grand 1998).
However, that pattern is used to build whole-part hierarchies, with no sharing of "parts’ between "wholes’. In
contrast, aunit (e.g. metre) could potentially be used by many derived units (e.g. m?, nvs, dm).

291 dm® = (1 m* 0.1 dwm)® = 0.001 m*% 1 molar =1 M = 1 mol/dm* 1 nM = 10° M. We choose to
consistently first apply conver si onRat i o and then power .
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uses(:decineter) = < :neter, 1, 0.1 >

uses(:dnmB) = < :neter, 3, 0.1 >

uses(:molar) = bag( < :nol, 1, 1 > < :dnB, -1, 1>)
uses(:nanomolar) = < :npolar, 1, 1.0e-9 >

DerivedUnit

BaseUnit

Figure 20. A schemafor units, including conversion and compound units.

Note that in Figure 20 the function uses maps Der i vedUni t onto the "abstract” type Uni t,
not onto BaseUni t . |.e., we may define a derived unit in terms of other derived units. During
this definition care must be taken that no circular paths are constructed, and it will be more
work to follow the path from a derived unit all the way to its constituent base units than in
Figure 19. However, an advantage is that it is easy to define a new derived unit, even though
it may be "far away" from the base units (cf. :nanonol ar inthe example above).

In the prototype all units are treated equaly, no difference is made between base units and
derived units. One of the schemas above should be implemented as soon as we want the
database to do more general calculations than unit conversions.

An example of when we need a schema with compound units is when we want to be able to
do arithmetics with quantities for different properties. It is easy to construct a method for
adding two quantities of the same physical property, e.g. adding (15 cm) to (1.2 dm), and this
is done for the prototype. However, if we wish to be able to multiply two quantities and let the
database return an answer with correct unit we need compound units:

:total _ampbunt = <0.00102,:nol > + ( <4.02,:gran> / <432.3,:gramper_nol > )

8.1.7 Accuraciesand Error Estimates

In science the accuracy of the recorded value is often important. For example, there is a
significant difference if we say that the concentration of a solution is 0.50 nanomolar or 0.500
nanomolar (nM). In the latter case we know the concentration of the solution to a ten-fold
higher accuracy?®’. Even better®" is of course if we explicitly include an error estimate and
give the concentration as (0.500 £ 0.007) nM. To further complicate things it is not
uncommon that the estimated error is asymmetric, €.g.0.500*$5% nM. These consderations
are even more important in statistical data analysis, where we could need to describe not only
the mean of adistribution, but also its variance, skew, and kurtosis.

Once we have introduced the type Quantity (in some way similar to Figure 18) it is
straightforward to represent error estimates of individua measurement values. Easest is to
add a real attribute errorEsti mate to the data type Quantity, with the understood
assumption that anount and errorEstimate are given in the same unit. This has the

20 The quantity 0.50 nM is given with two significant digits, and 0.500 nM with three.

2! Some physicists claim that having a measured value without an error estimate is no more worth than having
no measured vaue &t all.
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disadvantage that it does not tell how the error was estimated, i.e. if it is a known constant of
the measurement process, the variance of a series of measurements, or something else.

A bit more elaborate would be to create a separate data type Er r or Type, to describe error
estimates more generally. With the schema of Figure 21 it is even possible to have severa
error estimates for a single measurement value.

Figure 21. A schemafor measurement errors.

No error estimates have been implemented in the prototype database, but the schema in
Figure 21 would be easy to implement once the properties of the type Er r or Type have been
established. Note, however, that it is one thing to implement a schema to tag each quantity
with one or severa error estimates, but it is quite another thing to use these errors in
arithmetic calculations™.

This is an area worth more work. We would indeed like a proteo-chemometric database to be
aware of accuracies, if not error types. Thus, the addition of 0.50 gram and 0.3012 gram
should result in 0.80 gram (not 0.8012 gram!). Similarly, adding 1.0 microgram to 1.0
kilogram should result in 1.0 kilogram (not 1.000001 kilogram!).

Finally, we may note that the way Amos Il displays real numbers have no relation to the way
we store them in the database. For example, 1.0e6 and 1.0e5 will be displayed as 1E+06 and
100000. 0, respectively. This is worth remembering, and with a graphical user interface, e.g.
written in Java, the programmer will have better control of how numbers are displayed.

8.1.8 Propertiesand Unit Types

A subject which Fowler (1996) does not discuss is how we can know which physical property
the unit is used for. If we have an attribute hei ght ( Per son) it is easy to understand what the
quantity 1.80 meter means. Similarly, if a quantity is associated with an observation, which in
turn is associated with a property, the meaning of the quantity is clear. But these are both
examples of data already stored in the database. When the user shall insert a quantity in the
database, how do we prescribe which units that are suitable for the property mass?

A relatively simple solution is to put a relationship between the types Unit and Property, in
Amos Il as a function property(Unit)->Property. As long as we don't have many
properties in the database this will work fine, and probably the approach only gets into
problems when there are several properties having the same set of units*®®. Since this could be
a problem, eg. when it comes to different properties using molar, molar®, and s*, we
introduce atype Uni t Type, See Figure 22.

22 atistics may tell us how to add two values with standard deviations to give a new value with standard
deviation, but to add one quantity with one error type to another quantity with another error type is considerably
harder, and probably impossible to do in a general way.

3 E g., the physical properties work and torque both have the SI unit Nm (Newton meter).
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Property

scaleFactor

Figure 22. A schema for grouping sets of units, and for coupling these to properties.

With this solution we get great flexibility, it is easy to keep track of which units that ”belong
together” and can be converted to each other. The scale factor isa number used for converting
from one unit to another®. As an example, assume we wish to convert the quantity 9.5 dm to
centimetres. First of all, both the units: deci neter and : centi net er belong to the UnitType
. | engt h, SO we may converted between them. Next we find that scal eFact or (: deci net er)

= 0.1 and scal eFact or (: centinmeter) = 0.01. The correct new vaue is 9.5*(0.1/0.01) =
95. For each Uni t Type there will be one ”base unit” with scale factor 1.0, typically one of the
Sl base or derived units. (For concentration the unit molar has scale factor 1.0.)

8.1.9 Concentrations

Since the database prototype is developed for the domain of proteo-chemometrics,
concentration is an important concept. A problem is that there are many different meanings of
the term ”concentration”. What we have used so far is aso called "molarity”, from the unit
molar (mol/dm?). I.e., the molarity of a solution of solute A in solvent S is the amount of A
divided by the volume of the solution. In physical chemistry it is often convenient to work
with "molality” (unit: molal (mol/kg)), which is the amount of solute A divided by the mass
of solvent S. Molality is aso a concentration, and many other exist (e.g. mole fraction, mass
percent, volume percent?®). If we are dealing with dilute water solutions the molarity and the
molality are approximately equal, but this is not generally valid. Thus, there is no single
conversion factor between molarity and molality?%.

In Figure 22 we have constrained each Property to have a single Uni t Type. This enables us
to ask questions of the kind "which is the base unit for the property dipole moment?’. Thus,
we cannot have two Uni t Type objects for concentration. Instead we make the choice that
concentrations in the prototype are given in some unit of type molarity®*’.

For the property solubility the same type of problem arises as for concentration. Some data
sources give the solubility of substance A in solvent S (typically water) as the mass of A that
dissolves in 100 gram of S (at a specified temperature). Other data sources instead takes the
mass of A that dissolves in 100 millilitre S. Since solubilities are usudly only given with one
or two significant digits, the two numbers will in practise be the same for the solvent water®?®,

24 Note that Figure 22 assumes that scale factors are exact. There is no error estimate associated with a scale
factor.

%25 See any textbook on general chemistry, e.g. (Silberberg 1996) for amore detail ed explanation.

26 Actually there is not a single conversion factor between molarity and molality even for a given solution. The
problem is that the molarity depends (to a very small degree) on the temperature, while the molality does not.
However, adiscussion of thisleads us far into the subject of physical chemistry.

27| e, in Amos Il we have the following stored function: uses(: concentration) -> :nolarity, where
:mol arity isan object of type Uni t Type, and: concent r ati on isan object of type Property.

8 The density of water is (with two significant digits) 1.0 g/ml from 5 °C to 30 °C.
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8.1.10 A Database Schema for Quantitiesand Units

Figure 23 shows the database schema for quantities and units that has been implemented in
the prototype. The type Cbser vat i on is described further in section 8.3%°. Note that some of
the features discussed above have not been implemented, e.g. error estimates and the concept
of compound units.

data

1.1
Property

Figure 23. Implemented database schema for quantities and units.

In the schema diagram of Figure 23 several types have an attribute nane. These attributes are
implemented as keys in the Amos Il prototype. E.g., the name of a unit is unique — there can
be no two units with the same name.

An implementation according to the schema of Figure 23 has the following advantages.
» It can handle conversion between units belonging to the same uni t Type,
» itiseasy to extend to new units (each unit is an instance of the type uni t ), and

* it can handle additions and subtractions of quantities given in different units (as long as
the units belong to the same Uni t Type).

However, the schema does not keep relationships between dimensions, to accomplish this
some variant of compound units need be implemented. The representation of units is not
particularly compact (see Hamilton 1996).

8.1.11 The Quantity Type Revisited

The type Quant i ty isimplemented in AMOSQL with the following interface®:

type
Quantity

29 For example, this type will tell us what it is we observe (The concentration of which ligand? The volume of
which assay?), and how we have observed it (with apparatus X, data from reference ).

20 This and other interfaces listed in the Thesis are not complete. Only the (subjectively) most important or
interesting methods and functions are included. "Methods’ are functions mapping objects of type Quantity
onto a single type, while "functions' are Amos Il functions with several arguments or tuple results. (The division
into methods and functions is taken over from goovi , a graphical browser for the Amos Il system (Cassel and
Risch 2001).) Methods and functions may both be Amos Il stored or derived functions, e.g.
anmount (Quanti ty) isastored function, butt oSt ri ng( Quanti ty) isaderived function. " Constructors’
are functions intended for object creation, similar to constructors in Java and other object-oriented languages.

79



net hods
amount ( Quantity g k
unit( Quantity q key
toString( Quantity g

e
> Unit [stored]

) -> real [stored]
-> charstring

y
)
)

functions
/* unit conversion */
convert( Quantity g, Unit u) -> real
convert( Quantity g, charstring unitNanme ) -> real

[* arithnetics, with choice of result unit */
plus( Quantity g1, Quantity g2, Unit resultUnit ) -> Quantity
m nus( Quantity g1, Quantity g2, Unit resultUnit ) -> Quantity

/* arithmetics, result given in unit of ql */
plus( Quantity g1, Quantity g2 ) -> Quantity
m nus( Quantity g1, Quantity q2 ) -> Quantity

/* equality of Quantity objects */
equal ( Quantity ql, Quantity g2 ) -> bool ean

/* conparisons */
| essThan( Quantity gl, Quantity g2 ) -> bool ean
greaterThan( Quantity g1, Quantity q2 ) -> bool ean
I essThanOr Equal To( Quantity gql, Quantity q2) -> bool ean
gr eat er ThanOr Equal To( Quantity gql, Quantity g2 ) -> bool ean

constructors
createQuantity( real amount, Unit u) -> Quantity

A few of the functions will be demonstrated in Appendix B®!. Note that the second pair of
functions pl us and ni nus in the listing are overloaded on the corresponding native Amos I
functions (which take numbers or charstrings as arguments). We could aso overload abs,
max, and nmi n, but without a framework for compound units we cannot implement ti nes or
div. Finaly, it could be useful to overload a few aggregation functions, e.g. sum and
aver age.

The interfaces of Uni t and Uni t Type are not listed here, but one important point is that Uni t
objects should be created with the ” constructor”

createUnit(charstring unitNane, real scal eFactor, UnitType ut) -> Unit

which assures that the database is not populated withv equivaent units. The function
creat eUni t checks that the unit does not aready exists under the same or another name (but
the same unit type and scae factor). On the other hand, since name is a key for Unit the
Amos Il system will throw an error if we try to create a unit with name “m” for moldlity if the
name “m” aready isin use for meters.

8.2 Data Series

In many cases it is not a single measurement that is interesting, but instead a series of data
points, all referring to the same property. Typical examples from science are different kind of
spectra. For example, an infrared spectrum may record the percentage of infrared light
transmitted through a sample for a large number of different frequencies™. Other examples

Bl equal To(Quantity, Quantity)->bool ean would be more in line with the naming conventions of
the Java collections framework. However, this caused a strange overload error in some of the test scripts,
probably due to abug in Amos 1.

%2 |R spectra are usually measured in % transmitted light intensity versus wavenumber (frequency divided by

speed of light).



are time series, e.g. how stock exchange rates change over a day or over a year. For a
competition experiment in a binding assay, the concentration of bound radioligand varies with
the concentration of competitor ligand.

One thing these examples have in common is that one particular point taken aone is of
limited interest, and that it is often useful to plot the data in an xy-diagram. We need to see
quite a range of an infrared spectrum in order to identify the chemical compound, we need to
see the trends (and understand them) in order to make money on the stock exchange, and for
the competition binding experiment we need a series of points to make a reasonable fit to
some model of the binding interactions.

In a data series each data point contains the same kind of data. Such data series will typically
be stored as columns in an Excel sheet (see Figure 24). There are severa aternative ways to
represent such data series. Which is most appropriate will depend on how strong the coupling
is between the data points, on the data mode of the DBMS, and on the kind of applications to
use the data. In Amos |1, a suitable data type to use is vect or, which makes it possible to
represent an ordered sequence of numbers (or any objects).

8.2.1 Dependent and Independent Variables

Typically, the kind of data described above have one independent variable and one dependent
variable ("x and y"). For the competition binding experiment the amount of radioligand bound
to receptors at cell membranes depend on how much of competing ligands is present in the

assay.
It is aso possible to consider situations with several dependent variables (a meteorologist
measuring temperature, atmospheric pressure, humidity et cetera at a series of atitudes) and
Stuations with several independent variables (the same meteorologist measuring the
temperature for a series of points in space (different longitude, latitude, and atitude).

Binding experiments usually have only one dependent and one independent variable, i.e. a
single radioligand is present in the assay, and the concentration of a single (labelled or non-
labelled) ligand is varied. However, the prototype described in this Thesis has been designed
to accommodate several dependent and independent variables. This decision was taken in
order to accommodate for other types of experiments, and also possible new future binding
experiment designs.

An Example of a Series of Measurements

Let us consider a competition binding experiment. In principle we have one independent
variable, the concentration of the competitor (in BindAid called ”varying’), and one
dependent variable, the concentration of bound radioligand (called ”bound”). In practice, we
will often have two or more "pardld” experiments in order to get better statistics. Each of
these parallel experiments have the same experimental set-up, and the same series of varying
ligand concentrations (the same independent variable). However, the values in the series of
bound ligand concentrations may differ dightly due to statistical errors™>.

Figure 24 shows the beginning of such a data series, taken from a spreadsheet. Here we have
two parale experiments. There are three columns of raw data ("varying”, 2* "DPM”) and
one column of derived data ("bound” = average(DPM) * conversion factor).

23 |f one of the data series has a systematic error it was in fact not performed in exactly the same way as the

others, and hence they were actually not parald. Thus it is important to have the same experimenta procedure,
and experimentator, for parald experiments.
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No. Varying Bound DPM DPM
1 5000 0.01125 140 130
2 1000 0.01104 135 130
3 200 0.02000 345 135
4 40 0.01542 190 180

Figure 24. Example data from competition binding experiment. From the BindAid manual (Wikberg).

There is a choice as to whether we store raw data (counts per minute, or disintegrations per
minute) or calculated concentrations for bound ligand concentrations. From a database
perspective it would not be customary to store both of them since a smple factor can be used
to convert between the two. One objective with the database system to be developed is that it
should be able to anadyse the same data over and over again. Hence, | have provided the
possibility to store the raw DPM data in the prototype system. Of coursg, it is equdly possible
to store averaged concentrations, but both should not be stored. In the prototype it is possible
to take raw data (one or several DPM columns in the spreadsheet) and by a smple function
invocation convert them to an averaged concentration data series in units of nanomolar (nM).
This averaged series will not be stored, but calculated as needed.

In practise, experimental raw data will not be stored in the main-memory mediator, but in
some data source on disk, e.g. in a relational database or as XML files. In this case the
trandator which imports the data could be designed to either convert all concentration data
series to the units nanomolar, or keep raw data.

8.2.2 Representing a Series of Measurements

A solution often encountered in science is to represent the kind of data series shown in Figure
24 as a sequence of (x,y) points, or (X, yi, Y2,..., Ym) points if we wish to have m dependent
variables in the same experiment (2 for Figure 24). A data series would thus be represented by
avector of (m+1)-tuples.

Measurement Points

If we instead use an object-oriented approach, we get a schema diagram as in Figure 25. Each
row now corresponds to a Measur errent Poi nt . We constrain all these measurement points for
the bound series to have the same unit, and those for the varying series to have the same unit.

{sequence}
1.*

ConcBindingExperiment

MeasurementP oint
\ {sequence}

otherData?

0.* 0..*

Figure 25. The Measur enent Poi nt approach.

The schema above is valid if there is only one varying concentration per Experiment. The
double rings around concBound mean tha concBound is a multivalued attribute of
Measur enent Poi nt, i.e. that we may store values from parallel experiments.
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Data Series

We now turn to another approach, to let each column of Figure 24 correspond to a
Dat aSer i es. For example, the column named "varying” in Figure 24 will correspond to one
Dat aSeri es oObject, and this object will have an attribute val ues containing four red
numbers in a specified order. In Amos Il we implement this as a vect or of real numbers.
Obvioudly, one constraint we need to take care to implement is that all Dat aSer i es belonging
to an Exper i ment should have equally long val ues-vectors.

{sequence}

Figure 26. The Dat aSer i es approach.

The schema presented above fails to work nicely if one Dat aSer i es has missing points, if the
unit is changed in the middle of the series (from nM to uM), or if some “protocol variable” is
changed (e.g. detector amplification). For now, we assume the latter two things never
happen234-

Points That are Not Valid

The “missing point problem” is closdly connected to the situation when the experimentator
knows that one point isinvalid (due to some experimental mistake). For example, suppose we
want to average the two data series {34.0, 35.0, 38.0, 50.0, ...} and {36.0, 32.0, 523.0,
45.0,...} and that it is known that point 3 in the second data series is (for some reason)
incorrect. Then it should be possble to mark exactly this value as “non-valid”, so that it is not
used in the averaging.

Thus, we may include a Boolean flag val i d. (If a data point is missing we may arbitrarily put
the value to zero and mark the point invalid.) This approach could aso be of advantage if we
would like to be able to store error estimates of individual values™®. Similarly, we could |abel
each point with a comment (text), see Figure 27.

{sequence}
1.*

DataSeries DataPoint

/
il

Figure 27. Explicit Dat aPoi nt objects, with boolean val i d flags.

8.2.3 How Data Seriesare Implemented in the Prototype

The solution chosen for the prototype is a hybrid of the last two approaches. We will handle
the data point values as sequences of real numbers (val ues), and indicate which (if any)
points that are non-valid by including their indexesin the set nonval i ds.

%4 In practise, such a situation would be handled by splitting the data into two distinct Dat aSer i es objects,
one with detector setting A and one with detector setting B. The person evaluating the experiments can of course
still make the decision to analyse both these data series together. Depending on the application using the
database it could instead be more convenient to split the datainto two distinct Exper i ment objects.

35| e, thisis necessary if we have some direct measure of the error, not just a statistical model.



{sequence}

"
1.1

1.1

Figure 28. The schemafor Dat aSer i es implemented in the prototype database.

A "norma" Experinent object would be linked to two Dat aSeri es objects, one for the
independent variable, and one for the dependent.

In Figure 28 we have introduced relationships from the type DataSeries to the types
Property and Protocol . The former of course indicates which physical property the data
series records (e.g. time), and the latter is a specification of the experimental set-up. For data
series of bound radioligand concentrations we could for example record information about
which beta-counter detector that was used. This kind of information is obviously possible to
get only from some laboratories.

Nonvalid Data Points

In the Amos Il prototype of PAQS the attribute nonval i ds is implemented as a bag®®.
Obvioudly a data point should be valid or non-valid, not doubly non-valid, so a set would be
the appropriate data structure. The work-around in the prototype is to use two functions
i nval i dat eDat aPoi nt ( Dat aSeries, integer ) andvalidateDat aPoi nt ( Dat aSeri es,

i nteger) that should be used instead of directly invoking AMOSQL commands (e.g.
i nval i dat eDat aPoi nt (: ds, 3); instead of add nonval i ds(: ds) =3;). These two functions
check array bounds, so that we do not store an index in nonval i ds to an element that does not
exig in the vector val ues. Furthermore, inval i dat eDat aPoi nt only accepts valid data
points, effectively making nonval i ds a set as long as no elements are added to the bag
directly.

The dependency (or coupling) between various attributes to a Data Series object is rather
strong. Some precautions have been made to avoid problems. For example, the function
r enoveDat aPoi nt (Dat aSeri es, integer) will not only remove a data point from the
vector val ues, but also try to remove the point from the bag nonval i ds. Furthermore, those
integers in nonval i ds that are larger than the index of the removed data point will be
decremented in order to reflect the disappearance of the data point.

However, the prototype is still full of “loopholes’. E.g., it is perfectly possible to first define a
data series with 10 values, then invalidate point number 9, and then reassign val ues to
another vector (say of length 7). If this reassignment is made by executing an AMOSQL
command, no automatic concomitant reassignment if the bag nonval i ds will be performed.

6 A mathematical bag is an unordered collection of objects. In contrary to a mathematical set, a bag may
contain duplicates.



8.2.4 Concentration Data Series

Each data series representing a varying ligand concentration clearly needs to be associated
with the corresponding chemica entity in some way. A further peculiarity with concentration
data is that we may wish to store "raw" detector readings from some detector which does not
display concentration units. In the BindAid manual (Wikberg 2001) this is the case for al
radioligand data, where concentrations are entered as beta-counter readings (in the units
"disntegrations per minute") and then converted to nanoMolar.

We could say that a special thing for a data series representing beta-counter readouts or other
"raw" concentration data is that there should be a way to convert the values to nanomolar
concentration units. We could either consider a"DPM ConcDataSeries' subtype of ConcDat a-
Seri es (left part of Figure 29), or a"RadioDataSeries’ (to the right in Figure 29). Other kinds
of data series do not need to be subtypes of Dat aSeri es. E.g. atime data series from atime
binding assay is Ssmply a sequence of real values measured in some unit of time.

’ DataSeries ‘ ’ ChemicalEntity ‘
JAY

. ’ RadioDataSeries ‘ ’ ConcDataSeries
/\ 0.*
radioligand . RadiolabeledCE

Figure 29. Two aternative ways of representing data series for concentrations.

The solution chosen for the prototype is to subtype Dat aSer i es to ConcDat aSeri es, but not
further. We treat beta-counters simply as a special kind of concentration detectors. Since we
know the conversion factor from DPM (disintegrations per minute) to nM (nanomolar) a
“DPMConcDataSeries’ can be handled just as a ConcDat aSeri es. We simply introduce an
new unit of concentration for each conversion factor®®’.

One disadvantage by the smplification made here is that we loose some of the domain
semantics. We know that a "RadioDataSeries' must pertain to a radiolabelled chemical entity,
but if we have only ConcDat aSeri es, we cannot constrain this to be true. | believe there is
still an advantage to keep this part of the schema relatively smple and flexible. Therefore, |
have chosen to not make any other subtypes of Dat aSer i es than ConcDat aSeri es.

37 Appendix 1 of the BindAid manual (Wikberg 2001) describes how to calculate a conversion factor from dpm
tonM: f =222 * a* V, where a is the specific activity of the ligand (in the unit Curie/mmol), and V the assay
volume (in pl). The conversion factor so obtained has the unit dpm/nM, and by dividing a "dpm value" by the
factor we get the corresponding "nM value'. Note that the conversion factors implemented in the prototype are
defined in the opposite way: By multiplication with a factor 0.001 we turn a length measured in meters into
millimetres.

If we know the conversion factor in the BindAid style it is easy to calculate a scale factor to be used in the
schema of units described in Section 8.1.6, aslong as we remember that the base unit for concentration is molar,
not nanomolar. For a conversion factor of 13486 nM/dpm we get the scae factor as ti mes(di v( 1.0,

13486.0), 1.0e-9);



8.2.5 Averaging and Conversion of Data Series

For a database of scientific data it isimportant to have good primitives for manipulating data.
For single numbers, Amos |1 has the usua arithmetic operations, and as discussed in section
8.1.11 the prototype is implemented with functions for addition and subtraction of quantities
belonging to the same unit type (but not necessarily the same unit).

When we deal with data series in the form of Amos Il vectors we obviously want some means
for vector manipulation too. The native vector implementation in Amos Il alows the user to
retrieve an element from the vector (e.g. val ues(: nyDataSeries)[2] to get the third
element), but it is not possble to easily reassign vector elements. In the prototype, the
function updat e(Dat aSeries ds, integer idx, real new) accomplishes this, but the
implementation in AMOSQL is not very efficient (a repeated concatenation of vector
elements).

A few vector operations have been implemented as foreign functions by methods in the Java
class Pr ot 1Vect or (see Appendix C). These methods are used when a data series is converted
to a new unit (method Prot 1Vect or. scal eVector), and in a few other places. | beieve
additional operations should be implemented as part of the core Amos Il system in order to
get a more full-feathered scientific database engine. For larger applications the speed of these
operations will be important.

An example of when it is useful to be able to average a set of data series is when an
experiment has two pardlel "DPM" data series of beta counter read-outs, and we want to
convert them to a single data series in units nanomolar. The val ues vector for a new
(averaged) data series may be obtained with the function aver age_dat aseri es(bag b,
Unit u) -> vector of real. Some useful utility functions which make the averaging
easier have been implemented:

» the function aver age2nM bag) -> vector of real which takes a bag of Dat aSeri es
as argument and calculates their average in nM units,

e average_bound( Bi ndi ngExperi nent, Chemi cal Entity) -> vector of real which
averages (in nM) al "bound" data series for a specified Bi ndi ngExperi nent and
Cheni cal Enti ty, and

e average_bound(Bi ndi ngExperinent) -> <charstring, vector of real> which
averages (dso in nM) al "bound" data series for each distinct ligand in a specified
Bi ndi ngExperi nment.

The implementation of these functions is described in more detail in Appendix C.3.

8.2.6 Interfaceof TypeDataSeries

The interfaces of the types Dat aSeri es and ConcDat aSeri es ae available as supplementary
material. Some useful functions, partly mentioned above, are listed below. By using the
constructors we ascertain that the vectorsval ues isinitialised to an empty vector, {}, and not
NIL.

functions
i sNonVal i d( DataSeries, integer index ) -> bool ean
isValid( DataSeries, integer index ) -> bool ean
i nval i dat eDat aPoi nt ( Dat aSeries, integer index ) -> bool ean
val i dat eDat aPoi nt ( Dat aSeries, integer index ) -> bool ean
addDat aPoi nt ( DataSeries, real value ) -> bool ean
update( DataSeries, integer index, real new value ) -> bool ean
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renoveDat aPoi nt ( Dat aSeries, integer index ) -> bool ean
convert_series( DataSeries, Unit ) -> vector of real

constructors
createDataSeri es( charstring name ) -> DataSeries
createConcDat aSeri es( Chenical Entity ligand ) -> ConcDataSeries

8.3 Observations, Properties, and Environments

In this section we introduce the types Envi ronment and oser vat i on. They both take their
origin in measurements of physical properties, either taken from the literature, or performed
by the submitting laboratory. In section 8.1 we saw how measured values are represented as
objects of the type Quantity, where each quantity has an "amount” and a unit. The type
oser vati on is used to link a quantity to a property (what was measured), a protocol (how
the measurement was made), and a reference (who made the measurement and where has it
been published).

8.3.1 Observationsare Data for Properties

In Figure 30 we let a function data(Property) -> Qbservation relae properties and
observations. The adlternative is to have a function nade_for(Qoservation) ->
Propert y>*®. Although the choice in Figure 30 might seem odd for properties such as
temperature and pressure (having no associated chemical entities), it is quite convenient when
we deal with binding affinities (an "intensive bimolecular property”, vide infra)®.

0..1 0.*
Property data Observation
Z; /

BiMolecularProperty

Figure 30. Observations and properties.

In Figure 30 we have subtyped Property tO Mol ecul arProperty and Bi Mol ecul ar-
Property. Here we make a difference between intensive and extensive properties (vide infra),
and we only include intensive properties as objects of these two subtypes.

28 If that approach had been chosen the title of this section would have been: "Observations are Made for
Properties’.

2 Obvioudly, it must be possible to navigate eesily in both directions. This is true with the query language
AMOSQL, but to make the navigation even easier, both the functions discussed were implemented (dat a as a
stored function, and made_f or as aderived function).
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Interface of Observation

The interface of the implemented type Coser vat i on is available as supplementary material,
but a few functions for facilitating access of stored data are worth mentioning here. There are
three stored functions corresponding to the three dat a relationshipsin Figure 30 :

data( Property nonkey ) -> Cbservation key

dat a( Mol ecul ar Property nonkey, Chem cal Entity ) -> Cbservation key

dat a( Bi Mol ecul ar Property nonkey, Chem cal Entity, Chemnical Entity )
-> (bservation key

The derived functions made_for (Cbservation) -> Property and nade for _entity(
Qoservation ) -> bag of Chemi cal Entity may be used to get the relevant property and
one/two chemica entities, respectively. Finally, there is a whole range of functions al | Qos,
with different arguments, each returning a bag of observations as the result of an AMOSQL
query. E.g., all bs(:affinity) would return al affinity observations, while al | Cos(
caffinity, :alfa2A) wouldreturnall afinitiesincluding the chemical entity : al f a2A.

Intensive and Extensive Properties

Intensive properties are those properties that do not depend on how much of the sample we
have, e.g. pressure, temperature, concentration, and molecular weight. Extensive properties
are mass, volume, energy content et cetera. If we take a sample of 1 dm?® water and divide it
into two beakers containing 0.5 dm® each, the temperature in both beakers are the same as in
the origina sample, but the volume in each beaker is less than the original sample volume.

The molecular properties we store are intensive (e.g. dipole moment). Extensive properties
(e.0. mass) certainly may belong to a specific ChemicaEntity, but they aso belong to a
sample or a some preparation procedure, which we have not yet tried to model. It islikely that
a convenient way to model a sample preparation®* will include observations linking intensive

properties to chemical entities.

8.3.2 Problemswith the Property Hierarchy

Some more work is needed on modelling properties. The name "M olecularProperty” suggests
properties of the kind molecular weight, dipole moment, solubility et cetera, i.e. properties
one expects to find in atabulation of chemical data for different substances. This was also the
original intent, and it is for these properties functions of the type dat a( Ml ecul ar Property,
Cheni cal Entity) -> Cbservationismost naturdl.

When the prototype was implemented it was found convenient to include al intensive
properties related to chemical substances in the extent of Mol ecul ar Property, i.e. aso
concentration. However, it is evident that a concentration is not a "molecular" property in the
same way as a dipole moment. The concentration relates to a specific situation (a sample),
while the dipole moment is something valid for all samples of this substance (provided they
have the same date).

Furthermore, there is a problem of terminology. The property "volume" could refer to a
sample volume (an extensive property not belonging to a particular chemica substance), or to
the volume of solvent used in a sample preparation (also extensive, but clearly related to a
particular substance).

20 »Take 1.3 milligram of substance A and diluteit with solvent B to a volume of 100 millilitres."



Fixed Ligand Concentrations

Taken “to the extreme”, the approach with observations would suggest that we also store the
fixed ligand concentrations of binding experiments (see section 8.7) as Qbser vat i on oObjects.
Then the fi xedLi gands relationship between Exper i ment and Cheni cal Enti ty (section 8.7)
could be implemented in the database as a derived function. However, there is a conceptual
difference between a bioactive compound that is binding to the receptor and a Mg®" ion.
Hence, the two cases have been kept apart. The function f i xedLi gands will be used for the
former, while the latter will be stored as part of an environment (next section).

8.3.3 Environments

An environment consists of a collection of observations. These are such data that are
associated with an assay or an experiment, but not stored as attributes to it. For example, the
person who performed an assay is stored directly with the Assay object while the
concentration of an added alkaline earth meta ion would be stored as an bser vati on object
under the assay's Envi ronment . In some respect the Environnent is a description of the
experimenta conditions. However, much of such data (e.g. experimental procedures) should
be stored under Pr ot ocol , which is meant to be a more “standardised” way of describing how
the assay was prepared®'. Most environmental conditions are stored under Assay, but a few
may suit better under Experi nent .

0..*
Assay
0..1

- 1.* 0.*
Environment Observation
0.1

Figure 31. Environments of assays and experiments.

8.4 Binding Assays

Binding assays are a special type of assays where the binding of one or several ligands to one
or severa binding sites (e.g. cell membrane receptors) are studied. We may perform a variety
of different binding experiments with a binding assay, e.g. time binding experiments and
concentration binding experiments. (A brief introduction to these aspects of drug design was
given in section 2.2.)

We may distinguish between time binding assays and concentration binding assays, but thisis
not necessary. Instead we do a clear separation of different kind of experiments (see next
section). Thus, the kind of information we want to store for an assay is how, when, where, and
by whom the assay is performed. In addition to this we store the sample volume, and for a
binding assay we store which binding sites we expect the assay to contain, and for which

21 pPresently, the implementation of Prot ocol is the smplest possible: a name and a description, both
character strings. Future extensions of this relies on possibilities to interface with lab computers and other
dectronic equipment. For example, if an XML or CORBA standard schema for chemical, biochemical, or
pharmacologica laboratory experiments eventually would be agreed upon, the database type Pr ot ocol could
be evolved to follow this standard, and functions for importing such data could be deve oped.
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experiments it was used. Finadly, we aso store an "environment”, which is a collection of
observations or measurement data (see section 8.3). This gives us the EER-diagram of Figure
32, with Figure 33 for additiona details. (The types Bi ndi ngExperi nent and Envi r onnent
will be discussed in other sections.)

S <>

bindin - -
IEnItitg_ ChemicalEntity
prepared ) orepared

Figure 32. The Assay subdomain.

84.1 Revisons

The type Revi si on is intended for information that is obtained after the assay was entered
into the database. This could be if, e.g., it was later found that a preparation procedure does
not accomplish exactly what was believed at the time of preparation, or if some systematic
error has been detected.

8.5 Protocolsand References

At the present stage of the prototype, the type Prot ocol is only a text description, and it is
used in several places, e.g. for describing the preparation of assays and for describing the set-
up of experiments. It is probable that this type could be subtyped, to get better, more
specialised, data structures for these descriptions.

Reference objects should hold information on where data has been published, e.g. in a journa
article, on the Web, or in a database on CD/DVD. Presently, references are just character
strings. There are several alternatives, but probably the modelling solution of some major data
source, e.g. MedLine, should be followed.

8.6 Personsand Laboratories

Persons, laboratories, addresses, and countries may be described by Figure 33.



e e
labContact m

Figure 33. Persons and Laboratories.

8.7 Binding Experiments

As discussed in section 2.2.2, there are different kinds of binding experiments, e.g. time
binding experiments and concentration binding experiments. The thing they have in common
is that the dependent variable is the concentration of bound radioligand. On the other hand,
they have different independent variables. in a time binding experiment the bound ligand
concentration is a function of time (a kinetic experiment), while in a concentration binding
experiment it instead depends on the concentration of some ligand (a thermodynamic
equilibrium has been reached).

With the description of section 2.2 as background, the diagram of Figure 34 may be
constructed.

0.1
data Experiment
0..1 0.*

1.1
BindingExperiment curves BindingAssay
Z§ 0..*
0.1 ‘ l 0.*
> TimeBindingExperiment ’ ConcBindingExperiment I binding
L} entity

SaturationExp

0.1

DissociationExp

CompetitionExp
0.1

AssociationExp

varying_ fixed

ligands

bound_
radioligand

bl

0.*

*

/\
RadiolabelledCE

Figure 34. Conceptua schema of binding experiments.
A few congraints that have been introduced here are:
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There may be several "bound_radioligand" Radi oDat aSeri es for aBi ndi ngExper i ment .
In practice they then refer to parallel experiments, although this is not prescribed by the
schema.

A ConpetitionExperiment normaly has a single "varying_ligand" ConcDat aSeri es,
but severa are possible.

Thereisasingle "added_radioligand” for a Sat ur at i onExper i ment .

ConcBi ndi ngExper i ment's (but not Ti meBi ndi ngExper i ments) may have one or severa
"fixed_ligands’, additional ligands with fixed concentrations.

Each RadioDataSeries and ConcDataSeries refers to a single “ligand"
Cheni cal Entity. Thus, there are not severa radiolabelled ligands giving a compound
signa.

8.7.1 Implementation of Binding Experiments

When we implement binding experiments in the prototype database we will make a few
simplifications:

We do not distinguish between Radi oDat aSeri es and ConcDat aSeri es. Instead we treat
a data series that is measured by beta-counters as any concentration data series (as long as
we know how to convert from DPM to nM), see section 8.2.4.

We do not subtype ConcBi ndi ngExper i ment . The two relationships "added_radioligand”
and "varying_ligand" are substituted by a single relationship "varying'.

We do not subtype Ti meBi ndi ngExper i ment .

We introduce two types TBE_enum and CBE enum to serve as classifiers of time and
concentration binding experiments, respectively (vide infra).

Figure 35 shows the stored functions in the implementation of binding experiments. The
interfaces of the types Experiment, Bi ndi ngExperi ment, Ti meBi ndi ngExperi ment, and
ConcBi ndi ngExperi ment are avallable as supplementary material. Quite a few derived
functions have been implemented in order to help the user to access relevant data, and some
of them will be mentioned in this section.
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Figure 35. Modified schema for experiments, used for implementation.

"Fixed ligands’ are stored as tuples <Chemi cal Entity, Quantity>, where the quantity of
course is the fixed concentration of the chemicd entity. To add such a ligand one should use
add_fi xed_I i gand( ConcBi ndi ngExperi ment, Chemical Entity, real concentration,
Uni t), which will check that the ligand is not already stored as a "fixed ligand” under this
experiment®”. If we want a list of al fixed ligands in an experiment, without their
concentrations we may use the function f i xed_| i gands( Cheni cal Ent i t y) >*

To get the average of all bound data series for a ligand in an experiment the function
aver age_bound( Bi ndi ngExperi nent, Chemical Entity ) -> vector of real may be
used. This function returns the resulting vector in the unit nM.

Finally, a consistency requirement on an experiment is that al its data series should be
equally long. Thisis checked by consi st ent (Experi nent e) -> bool ean.

Views of All Data Series of an Experiment

For an object : exp of type Experi nent it istrivial to find all its data series, we smply follow
the “data’ link: dat a(: exp) ; However, the task is not that trivial if the object’s most specific
type is Bi ndi ngExperi nent or further down in the hierarchy. Consider for example an object
:tbel of type Ti meBi ndi ngExperi nent . This object has at least two data series, exactly one
data series representing time (ti me(: tbel)), and one or severd data series representing
bound radioligand concentrations (bound(: t bel)). Thus, we need to make a union of these,
and any possible other data series (which may be stored asdat a(: t bel) ):

#2 | e, we do not want ligand A to be stored twice, but we do alow several different fixed ligands.

#3 This will be useful when we want to find all ligands involved in an experiment or assay, irrespective of
whether they are fixed or varying. For example, this information is needed when an experiment evaluation is
constructed (section 8.8).
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create function all Data(Ti meBi ndi ngExperi nment t be)
-> DataSeries ds
as
sel ect ds
where ( ds=data(tbe) or ds=time(tbe) or ds=bound(tbe) );

Similarly, we have a function al | Dat a( ConcBi ndi ngExperi ment) returning al data series
for a concentration binding experiment. To adlow for polymorphic calls we aso define
functions al | Dat a with arguments of type Bi ndi ngExper i nent and Experi nent .

Views of Independent and Dependent Data Series

PAQS users will probably not work much with the concept of independent and dependent
variables. If the need should arise we could split the function dat a( Experi ment) in two, or
label it with a flag. For the types further down in the hierarchy the situation is clearer, e.g. we
know that for objects of type ConcBindi ngExperiment independent (varying) and
dependent (bound) variables are easy to distinguish. However, there is no "label” explicitly
telling an application that var yi ng is an independent variable. A situation where the question
of independent and dependent variables will be important is when we try to automate plotting.
E.g., a reasonable extension of the type Exper i ment would be a function which plots its data
series in an xy-diagram®*. Clearly, we are then a bit particular about getting the independent
variable on the x-axis.

Further Classification of Binding Experiments

As we have seen previoudly in section 2.2.2 there are different kinds of concentration binding
experiments, e.g. saturation binding experiments and competition binding experiments. The
same applies for time binding experiments, which can be dissociation experiments or
association experiments. According to Figure 34 there is no difference between the types
Di ssoci ati onExperinent and Associ ationExperinent and their supertype Time-
Bi ndi ngExperi ment (except for the classification itself), and hence there is really no need to
implement them as three different types.

Instead of subtyping the type Ti neBi ndi ngExper i ment as Di ssoci at i onExperi ment and
Associ ati onExperi nent it would be useful to store al time binding experiments as
instances of Ti meBi ndi ngExperi ment, and to have a label indicating if the experiment was
dissociation or association. This is clearly a case where an enumerated type would be useful.
However, enumerated types are presently not available in AmoslI.

The solution chosen in the prototype is to implement the enumeration as a separate type
“TBE_enum”, with one instance for dissociation and one for association experiments. This
has the advantage that, in the future, the type can be extended to include some functionality.
(For example, each object of this type could store which FitMdel objects that are
appropriate to use for curve fit analysis, if this should differ.) Another advantage of
implementing the classification of time binding experiments by a separate type instead of by
inheritance is that if a new kind of time binding experiment (with no additional functions) is
encountered, it can be stored as a new instance of TBE_enum and the type system needs not
be changed*.

24 This could be accomplished by shipping the relevant data series to an external function in the same way as
when data series are averaged.

#5 To hard-code the experimental types (which are part of the domain logic) into the GUI, would be a poor
solution since we would need to change the code and recompile the GUI as soon as we add an experiment type.
This also contradicts the principle that domain constraints should be implemented in the database schema, and
not in application programs.



In the case of the two types of concentration binding experiments, we see that the types
Sat ur at i onExperiment and Conpetiti onExperi nent in Figure 34 differ somewhat from
each other. However, since we presently choose not to distinguish between Radi oDat aSeri es
and ConcDataSeries we may without problems use the schema in Figure 35, with
CBE_enum

8.8 Experiment Evaluations

When we take a competition binding experiment and analyse it with a curve fitting program
to get the affinity constants for all ligand/receptor pairs, we "evaluate” the experiment. This
section discusses how such experiment evaluations can be modelled, and how they actually
could be performed by the database system.

In section 8.8.3 we temporarily depart from object-orientation. An aternative implementation
of the ”Strategy” design pattern will be discussed. This alternative approach is not strictly
object-oriented, but relies on storing the name of afunction as an attribute to a type.

Firg of al we may note that the usual approach to perform an experiment evaluation is to take
one experiment at a time as input to a curve fitting program. Wikberg's fit program BindAid
can take several experiments in a” multi-curve fit”, and the prototype database will be able to
represent this more general case.

Secondly, there are different kind of fit parameters. If we analyse a concentration binding
experiment the main purpose is to get vaues for the affinity constants. However, usualy a
number of other parameters are determined together with the affinity constant. The prototype
will store all these parameters, not only the fitted affinity constants. Different approaches to
representing these different kind of fit parameters are discussed in section 8.8.6.

Thirdly, we should consider how many of the tasks of a fit program the DBMS shall be able
to take over. In section 8.8.1 we will see how the implemented database schema can construct
the an appropriate set of fit parameters for a chosen "fit model", and in section 8.8.2 we will
see how the correct weights can be calculated. Thus, it would be possible to write the fit
algorithms as foreign functions (in Java or C) and start the fits from within the database.
(Even better would be to make the foreign function an interface to an existing fit program, and
not recode the algorithms.) The prototype does, however, not perform the actual fit.
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Figure 36. Experiment evaluations connect fit parameters with experiments and ca cul ation methods.

Figure 36 summarises the introduction above and will serve as starting point for the following
sections. Objects of type Experi ment Eval uat i on thus represent "runs' or executions of a
curve-fitting program®*®. On the other hand, the details about program, fit model, weighting
scheme et cetera are handled by the type Cal cul ati onMet hod (8.8.4).

88.1 Fit Modds

A fit program implements one or several fit models, where a fit model is some equation with
parameters. These parameters are adjusted in the fit in order to make the equation represent
the experimental data as accurately as possible. Section 2.2.2 gave the equations for a few
such fit models (as implemented in the fit program BindAid). However, the number of fit
models used in different laboratories are large. It is not realistic to try to define these models
once and for all, and it must be possible for a user to submit data to the database without
specifying a fit model.

Note that in the approach chosen here, objects of the type Fi t Model represent agorithms for
performing fits, not the results of such fits. Thus, the results of an experiment evaluation are
not kept as attribute valuesin aFi t Model object, but as separate Fi t Par anet er 0Objects.

Most fit models will have a varying number of associated parameters to fit depending on the
number of binding sites and ligands®*’. For example, assume we are analysing a competition
binding experiment which involves two ligands L; and L, and an assay containing one
binding site B. We decide to analyse this experiment by the fit model caled "Bindfit” (see

8 Other types of experiment eva uations are also possible, e.g. the visua inspection of a curve, but we will not
discussthese here.

27 The exceptions are models which simply try to fit the experimenta data to a predefined curve shape, e.g.
exponentia, logarithmic, or sigmoid. Such models, too, can be used in the prototype.



section 2.2.2). There are then five fit parameters. the concentration of B, non-specific binding
constant for L; and L, and the affinity constants for L1/B and L,/B.

The prototype will be able to combine a set of experiments with a fit model, and then
construct the correct number of fit parameters. However, the prototype will not actually
perform the fit. Instead the user may enter the fit results manually. It would be straight-
forward to extend the prototype to perform the fit too, as Amos I foreign functions. However,
this will not be an interesting feature until there are good interfaces both for import of
experimenta dataand for user interaction (graphically).

Creating the Correct FitParameter Objects

The behaviour which differs between Fit Mbdel objects in the prototype is the way fit
parameters are created. The function set upFi t Par anet er s( Exper i ment Eval uati on) will
return a bag with the correct Fi t Par anet er objects for the fit model chosen. This is done in
the following way:

e The Experi ment Eval uati on object (: ee) first collects ligands and binding sites in two
bags. (This information is of course taken from the appropriate Experi nent objects.)
Then : ee cals upon its Cal cul at i onMet hod (: cm) to create fit parameters. cr eat eFi t -
Par anet er s(Cal ul ati onMet hod, bag |igands, bag sites).

e :cm in turn, knows which fit model that shall be used, and calls upon the appropriate
object : fm of some subtype to FitModel : createFitParaneters(FitMdel, bag
i gands, bag sites).

e Findly, : f m knows which fit parameters are needed, and has the appropriate behaviour
implemented in creat eFi t Paranet ers, either as a database procedure or as a foreign
function.

8.8.2 Weighting Models

Many fit programs alow a user to assign different "weights’ to data points. If the fit program
works by minimising the sum of sguared residuas between experimental and calculated
values, then each such resdua may be given a weight to indicate its importance in the target
function. The prototype knows how to calculate these weights for a smal number of
weighting schemes. Since many such schemes take the experimenta data value into account
the algorithms for generating weights take a vector of rea values as input. The output is a
vector consisting of the weights, not the weighted values®®. (It is usually the residuals that are
weighted, not the experimental data.)

The type wei ghti ngodel has the attributes name, description and formula, exactly as
Fi t Model . Each wei ghti ngMbdel object has two sequences. wei ghti ngParaneters and
def aul t Par amet er s. These are simply the names of the parameters and their default values.
The meaning of the parameters may be inferred from the attributes descri pti on and
formul a of the Wi ghti ngMbdel object. A Cal cul ati onMet hod object may also have a
sequence wei ght i ngPar anet er s, these are the actua values used in the calculation. If the
i ghti ngModel does not contain any parameters®® there are no wei ght i ngPar amet ers on

28 The function mul ti ply_vectors(vector v1,vector v2) -> vector of real Will multiply any two vectors
of equal lengths, e ement by el ement.

#9 For example, no weighting parameters are needed when all weights are unity, or equal to the inverses of the
data values.
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the cal cul ati onMbdel object, and the same is true when the default weighting parameters
are used. In the latter case the boolean flag useDef aul t Wps is true®®.

Three weighting schemes were implemented in the prototype, all taken from the fit program
BindAid (Wikberg 2001). Note that the weights should be multiplied to the respective
residuals in the target function. The three weighting models were implemented as subtypes of
the type Wi ght i nghbdel , with different implementations of the function get Wi ght's. In
section 8.8.3 and Appendix E an alternative implementation is discussed.

No Weights: Type NoWeighting

All weights are unity. The two vectors holding names and default values of weighting
parameters are empty. The function get Wi ght s( NoWei ghting, vector y, vector wp)
returns a vector of equal length as the vector y, and with all elements set to 1.0.

Inverse Squares. Type MunsonRodbardWeighting

The variance of the measured data vaue is estimated to be equal to the inverse of the square
of the data vaue (Munson and Rodbard 1980). These variance estimates are used as weights.
The two vectors holding names and default values of weighting parameters are empty. The
function get Wi ght s( MunsonRodbar dWi ght i ng, vect or y, vector wp) returns a vector

with elementsw =1/ y*. (The vector wp isnot used.)

A Three-Parameter Model: Type Del.eanWeighting

A weighting model with three parameters introduced to avoid unreasonably high weighting
factors for data values close to zero (De Lean, Hancock and Lefkowitz 1982). The vectors
holding names and default values are {"a’, "b”, "¢’} and {0.000001, 0.001, 1.5},
respectively. The function get Wi ght s( DeLeanWei ghti ng, vector y, vector wp) returnsa

vector with elements W, =1/(a+bx yic) , where{ab,c} arethe vaues of the vector wp.

8.8.3 Two Approachesfor Implementing the Strategy Pattern in Amosl|

A Fi t Model oObject has state (the values of its attributes nane, descri ption, and f or mul a)
and behaviour (methods to create the correct type and number of Fi t Par amet er objects). The
behaviour is different for the different Fit Model subtypes, and we may consider the types
Exper i ment Eval uation, Cal cul ationMet hod, and FitMdel to constitute a ”Strategy”
design pattern®™®, see Appendix E. The same applies for wei ghtingMbdel , where the
behaviour which differs between subtypes is the way a vector of weightsis caculated.

The implementation described above and in Appendix E does work, but the number of
subtypes will per definition grow linearly with the number of fit models. Thus, there will
eventually be quite many subtypes of Fi t Model , and this will become unsurveyable. Another
major disadvantage with the approach chosen above is that a user who wishes to add a new fit
model needs to add a new subtype to Fi t Model , i.e. change the database schema

%0 Since users will be alowed to manipulate the database by AMOSQL commands it could by accident happen
that the useDef aul t WPs flag set true at the same time as wei ght Par anet er s contains rea values.
However, the method get Wei ght i ngPar anet er s( Cal cul ati onMet hod) will fetch the default
parameters as soon as useDef aul t WPs is set true.

B! Gamma, Helm, Johnson, Vlissides 1995; Grand 1998.
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The weighting models are implemented in the same way, and suffer from the same problems,
athough it is not expected that the total number of weighting models will be as large as the
number of fit models.

An aternative approach would be to store each fit model as an instance of type Fi t Mbdel ,
and each weighting model as an instance of Wi ghti nghbdel . Thus, no subtypes should be
used. This approach is straight-forward if the types should only have state, but no behaviour.
But we want to let each Fi t Model object know which Fi t Par amet er objects to create, and
we also want to let each Wei ghti ngMbdel object know how to calculate the weights for a
given vector of real numbers. Eventually, we might want to let Fi t Model objects be able to
perform the fit too, probably by means of Amos Il foreign functions.

Thus, we want to benefit from the object-oriented approach and include operations, but we
don't want to use inheritance. One way to accomplish this is to use a flag to classify the
Vi ghti ngodel objects as one of the three kinds mentioned above. The type
Wi ght i nghbdel could then implement get Wi ght s by means of i f/t hen/ el se-controlled
conditional execution®™?. This is not a very beautiful solution. A more serious disadvantage is
that a user who wants to add a weighting model needs to change existing code, adding another
el se/if/then clause. (With the inheritance solution the user adds another subtype, but does
not change existing AMOSQL code.) Hence, this procedura approach is rather poor.

A third solution is now possible in Amos 11”3, Amos |1 functions are first-class objects in the
type system, instances of the meta-type f uncti on. With the Amos Il function f uncti on-
named( charstring ) -> function itiseasyto get hold of afunction from its name. Thus,
first we implement a method to caculate the weights for each weighting model, but in
contrary to the OO polymorphism/inheritance solution we give each implemented function a
name of its own. Secondly we store the names of the implemented functions as attributes
get Wi ght sFunct i onNanme of the corresponding Wei ght i ngMbdel objects. Now, al we need
is ameans to apply a function if we have a handle to it**. Thisis accomplished by the foreign
function appl y( function f, vector paraneters) -> vector results, which was
implemented in Lisp by Tore Risch for this project. See Appendix F for a detailed example of
how to use the function apply, and a comparison with the Java method
java.lang.refl ect. Met hod. i nvoke(Cbj ect, Cbject[]).

With this new approach, the functions actually caculating the weights are decoupled from the
i ght i nghbdel type”®. A function for calculating weights takes two vectors as arguments
(values and weighting parameters) and returns another vector (weights). The function thus has
no connection whatsoever to the type Wi ght i nghbdel . However, any sensible name given to
such a function should alude to weighting in general as well as the specific modd. E.g., a
function name may be " getDel_eanWeights'.

Now, what a user needs to do in order to store a new weighting model (or a new fit moddl) is
to create an instance of Wi ght i ngMbdel (Fi t Model ), including a name for the function to do

%2 |n many programming languages a switch/case construct would be used instead of if/then/else.

%3 The approach described here does presently not work with the official Amos Il version available at the Amos
Il web site. The "deve opers’ Amos |l version is needed, where a user can go out to Lisp.

4 Usualy, we apply (or invoke) a function by writing its name in an AMOSQL statement, i.e.
nanme(: donal d); applies the function narme on an object : donal d (presumably of type Per son). In an OO
system a method invocation might look like donal d. name() ; . However, in the functiona language Lisp
higher-order functionssuch as (apply function arg_Iist) areoften quite useful (Haradsson 1993).

%5 In an OO system object behaviour is implemented as methods of a class, and in the Amos Il functional mode
as functions taking the object's type as an argument.



the calculations, and then implement this function. The implementation can be as a foreign
function, in Java, whence the function implementation in Amos Il could be very brief:
create functi on get DeLeanWei ghts( vector val ues,

vector wei ghti ngParanmeters ) -> vector of real
as foreign "JAVA: Prot 1Wi ght i ng/ del ean\Wi ght s";

Thislast " apply function” approach has the advantages that
» therewill not be a plethora of subtypesto Fi t Model ,

* auser needs not introduce new types, and

» the user needs not change any existing AMOSQL code.

One disadvantage may be that the approach is less object-oriented than the normal Amos I
data moddl. However, we have accomplished the same functionality as the OO polymorphic
solution with subtypes, but without using the procedura switch/case Or if/then/ el se
constructs. There ought to be no significant loss of performance since the extra level of
indirection should be considerably less time-consuming than the agorithms used in the
"concrete strategies'.

8.8.4 Calculation Methods

A calculation method represents the way a calculation was performed, not the actual resullt.
For a curve fit this implies that by looking up a calculation method we should be able to
determine which model (section 8.8.1) that was used to fit the experimenta data, which
weighting scheme that was used (section 8.8.2), and the setting of any parameters that
determine the execution of the fit program. We do not expect to find the values of the fitted
parameters here, they should instead be related directly to an Exper i nent Eval uat i on object.

In section 8.8.2 we saw that a weighting model may use a few parameters to calculate the
weights. For each such "weighting parameter” there is presumably a default value, stored
under the corresponding Wi ghti nghbdel object. Under Cal cul ati onMet hod we store a
boolean useDef aul t WPs , and, if useDef aul t WPs iS not true, a vector with the weighting
parameters actually used.

If we apprehend a calculation method as a combination of afit model, a weighting model, and
a st of weighting parameter vaues, then we will often want to use the same combination
over and over again. For agiven fit program, it is likely that only a few such combinations are
ever used. Therefore it is useful to store each Cal cul ati onMet hod object with a specia
name, and also to know who created it and when.

8.8.5 Computer Programs

The schema in Figure 36 has each Fi t Model associated to several Conput er Pr ogr ans, and
vice versa. Clearly a single program may implement several fit models. What is more difficult
to solve, however, is whether a model can be implemented by several programs. Take two
programs from two different origins, e.g. BindAid (Wikberg 2001) and SigmaPlot (SigmaPlot
2001). These two programs may very well implement the same model, under the same name
or under different names, but in dlightly different ways. Here, we take a practical approach: If
the difference is such that one program has an additional fit parameter, then we say that the
two programs implement different models (even though they may clam to implement the
same mode). Furthermore, two implementations may differ in the way they solve the
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numerical optimisation problem. Then, the fit model is still the same, but the fina result could
be quite different”®. We still consider this as one and the same Fi t Model object. That the
implementations may differ is handled by the relationship between Cal cul at i onMet hod and
Conput er Progr ant>’. Thus, we could say that it is the f or mul a attribute of Fit Mdel that

determines it®®,

The type Conput er Pr ogr amshould include attributes on the program’s origin, i.e. by whom it
was written (person + laboratory, or company). Program versions could aso be handled
explicitly instead of having each version as a separate program (the present solution).

8.8.6 Fit Parameters

Assume that we have an assay which contains one binding site B, and that the binding
experiment we are analysing involves two ligands L; and L, The Bi ndfi t fit model then has
five fit parameters. the concentration of B, non-specific binding constant for L, and L,, and
the affinity constants for L;/B and L,/B. The schema to be developed in this section will
represent al these parameters, not only the fitted affinity constants. We have aready in Figure
36 seen that the fit parameters will be represented as Fi t Par anet er 0bjects associated with
an Exper i nent Eval uat i on object. In this section we will look closer & the Fi t Par anet er

type.
Different Kind of Fit Parameters

Conceptualy, the fit parameters in a program such as BindAid differ from another in two
ways (see Figure 37): What property they refer to (i.e. what, in the real world, we try to fit a
vaue to), and under which constraints they are used in the fit program. The constraints
occurring in BindAid are “none” (the parameter is free to float in the fit), constrained to be
equa to another parameter, and held constant®™®. If we use the Bi ndfi t model of BindAid
there are three kind of parameters. one concentration for each binding site (or receptor), one
non-specific binding parameter for each ligand, and one affinity constant for each
ligand/binding site combination.

Thus, in Figure 37 we would like each Fi t Par amet er to be one of the three subtypes at the
bottom, and also to be one of the three subtypes to the right. The two hierarchies are
orthogonal to each other, and to implement this multiple inheritance sSituation as separate
types in Amos 11 would require 9 additional subtypes™®. This is clearly not the way to
proceed, especially when we consider that there are many more alternatives. In the hierarchy
to the right we should include other properties for other types of data analysis, e.g.

%8 For example, the two programs could very well find two different local minima even when they start from the
same point of the optimisation problem hypersurface.

%7 In the implemented prototype no check is made that all Conput er Pr ogr am— Fi t Model links are present.
l.e, a Cal cul ati onMbdel object : cm may very wel be linked to a Fi t Model object :fmand a
Conput er Pr ogr amobject : cp without : f mand : cp being linked. This will not be a problem. The main
benefit of the Conput er Program- Fi t Model relationship will be when the database has been populated
with known programs and models, and it is accessed through a graphica user interface.

%8 1n principle, f or mul a could be declared a key in the Amos Il implementation. However, it will occasionally
be practica to be able to use Fi t Model objects without formulas, and therefore | have chosen not to meke
formulae unique.

%9 Further possibilities for fit constraints exist: proportional to another parameter, the average of severa other
parameters, and so on.

%0 Amos Il alows for multiple inheritance, but an object is required to have a most specific type (3.2.6).
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dissociation rate constant and initial bound concentration for Di ssocFit caculaions. In the
lower hierarchy other types of fit constraints (e.g. averaging) are possible.

0.* 1.1
FittedNonspecificBinding ChemicalEntity
.1 . B

FitParameter Fitted Affinity

JA\

Fitted Site Concentration

| Shared | | Constant | | FloatingFree |

Figure 37. Conceptua schema of different kind of fit parameters (for the Bindfit model of BindAid).
The further modelling and implementation of fit constraints is described in section 8.8.7.

In the ("property") hierarchy to the right of Figure 37 the only difference between the
subtypes is whether they are linked to ligands, receptors, or both®™". If we are willing to give
up the control of this linking we can easily exchange the hierarchy to the right of Figure 37
for something simpler, see Figure 38.

evaluates

MolecularProperty |

1.1
Property

BiMolecularProperty |

Figure 38. How the prototype relates fitted properties and chemical entitiesto fit parameter.

We subtype Property to Mol ecul ar Property and Bi Mol ecul ar Property (See section 8.3),
but never use this information explicitly to control the linking of Fit Paraneter objects.
Instead we rely on the users and the applications to use "factory methods" for creating the
correct Fi t Par anet er s. An example of thisis described in connection to the Fi t Model type
in section 8.8.1. It would also be possible to use triggers in the database to make sure that
only correctly linked Fi t Par anet er s occur. Thus, we have arrived a a situation where we
have subtyped Pr operty instead of Fi t Par anet er .

Limitations of the Suggested Schema

The suggested schema in Figure 38 has the constraint that a Fi t Par anet er may be linked to
at most one receptor and one ligand. This is adequate for binding affinity constants (R + L =
RL), dissociation rate constants (RL — R + L), and, as far as | have been able to see, all other

%1 some fit parameters should have neither receptor nor ligand links, e.g. the P-parameter (or pseudo Hill
coefficient) of the logfit model .
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fit parameters encountered in the BindAid program. However, the schema is obviously not
suited for descriptions of generd chemical kinetics or equilibria

As pointed out above, the schema does not catch the full semarntics. |.e., we know that afitted
binding affinity is valid for exactly one ligand and one binding site, but this is not proscribed
by the schema. This is something | find unfortunate, but one advantage is that we do not need
to create new subtypes of Fi t Par anet er or any other type when a new kind of fit parameter
is introduced. All we need to do is to create a new object of type Property (or one of its
subtypes).

An dternative solution would be to use three generic subtypes to the type Fi t Par aet er , one
for the kind of fit parameters which only should be linked to a ligand, and so on (see top of
Figure 39). Thiswould alow new kind of fit parameters to be added without schema changes.
A second alternative (bottom of Figure 39) would be to have a single function mapping from
Fi t Parameter tO Chemical Entity, but with an additional attribute indicating the "role"
which the chemical entity plays. (This would be similar to an association class in UML). The
first of these alternatives seems quite attractive.

0.* 1.1
FPwithLigand ChemicalEntity

0.* 1.1
FitParameter FPwithSiteAndLigand ligand

0.* 1.1 1.1

FPwithBindingSite

FitParameter

Figure 39. Two aternative schemas for fit parameter, keeping some more of the domain semantics.

A further potentia disadvantage with the solution presented here is that there could be a large
amount of small objects. However, the Fi t Par amet er objects should be stored in externa
data sources, not in the mediator. Thus, even if all experiment evaluations were performed
from the mediator, the Fi t Par anet er objects would be stored externdly (e.g. on XML files)
and deleted from the Amos Il system once a satisfactory fit was accomplished. When need
arises for a parameter, e.g. abinding afffinity it can be accessed from the external source.

The Vector Alternative

Several alternative designs where vectors are used have also been investigated. For example,
an Experinent Eval uation object could have five vector attributes. bindi ngSites,
| i gands, eval uat edProperti es, paranet er Val ues, and fi t Const r ai nt s. Then the vector
indices would couple ligands and receptors with the correct fit parameter values through some
algorithm?®?. However, such schemes will be quite complex and inflexible. Furthermore, the
OO approach of Figure 38 will suit better with import and export of XML data. (An
advantage with most vector approaches is that the user-defined types get more cohesive.)

%2 g ppose we have N ligands and M binding sites. Then, if the "Bindfit" model is used, there will be N*M
binding affinities, N non-specific bindings, and M site concentrations in each of the latter three vectors.
However, if another fit model is used there will be a different number of fit parameters.
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8.8.7 Fit Constraints

There are some important differences between fit parameters which are subject to different fit
constraints (free, constant, shared,, averaged,...). For free-floating parameters we would like
to store the initial value and an estimated error, and for shared parameters a link to another fit
parameter. Constants would need neither of these. (On the other hand, an “average of”
constraint would imply the need to refer to a set of other parameters.) For al constrained
parameters it should be possble to store a textual motivation on why the constraint was
introduced, or from where the value was taken.

Firgt of all, we may discriminate between those fit parameters that are free to float and those
that are constrained in some way. This can be modelled conceptually asin Figure 40:

@ FitParameter «

7
.- [ 1
FloatingFitParameter ‘ ’ConstrainedFitParam eter

[ [ |

Shared ‘ ’ Constant ‘ ’ Average ‘
0.*

Figure 40. A schema which differentiates parameters free to float from others.

Alternatively, we can do as in Figure 41 and in the prototype: We get rid of the constraint
hierarchy of Fi t Par anet er by delegating it to a separate typeFi t Const r ai nt .

constraint

equal_to

FitConstraint

average_of 0.x | |
ParameterShared ParameterAverage | [ParameterConstant| | ParameterFloating

Figure41. Congtraints on fit parameters handled by delegation. This is the gpproach chosen in the prototype.
This solution will make it easy to let the schema evolve to include new fit constraints.

[ 0.
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9 Remaining Issuesfor the I mplemented Prototype

In this section 9.1 the parts of the problem domain that remain to be modelled will be
discussed. Then, section 9.2 will describe some work of a more technical or programming art
which needs to be done in order to make a more interesting prototype of PAQS. In the last
sections afew suggestions to improvements of the Amos Il mediator system will be given.

9.1 Remaining Subdomains

As mentioned above (section7.2), some subdomains are only represented by stubs, and some
have not been modelled at al. In the following subsections a few comments on these
subdomains are given.

9.1.1 References

References can be of many types, e.g. they could refer to printed literature (books, journas),
web sites, compilations in databases, or private communications. In the presented schema dl
references are represented by a single type Ref er ence, which only has a single attribute
description (a character gring). Clearly, the type should have much more structure, and
probably the way to proceed is to model references in the same way as some magjor data
source or integration effort. Since PubMed (5.5.1) is an important resource when it comes to
publications, | believe this would be the choice. Then, integration with BIND (5.4.1) would
also be easy.

9.1.2 Protocols

Protocols are descriptions of some experimental (or caculational) procedure. For example, a
protocol could describe how a sample was prepared. Usually, several (many) samples would
be prepared according to the same protocol. The presented schemas have a type Pr ot ocol
with two attributes, a name and a descri pti on (Character string). The type will have to be
modelled in more detail.

9.1.3 Chemical Entities

Cheni cal Entity is the type used to denote all small organic molecules, large biopolymers
(proteins, DNAS), and inorganic sats. |.e., it is used for ligands, binding sites, and possible
additives in the assay. The type representing these very different kind of chemica species
presently only has the attribute name. Although Cheni cal Entity iS subtyped as Label ed-
Cheni cal Entity, which in turn is subtyped as Radi oLabel edChenical Entity these
subtypes have no additional attributes.

Obvioudly, there should be many more attributes, e.g. representing label position, molecular
structure, and physico-chemical properties. For proteins the amino acid sequences must be
represented, and there should be effective means for searching the underlying data sources for
aparticular amino acid sequence, and for a chemical substructure.

The idea behind using a subtyping hierarchy is the following: Suppose we wish to label a
hormone (caled HormH) by exchanging a specific hydrogen atom (H) for the radioactive
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isotope iodine-125 (**°1). We could then store the hormone (HormH) as a Cheni cal Entity,
the hormone with iodine as a Label edChenical Entity (Horml), and the radioactive
substance we use in the binding experiment as a Radi oLabel edCheni cal Enti ty (Horm™l).
Thus, the position and the atomic number of the label should be attributes of Label ed-
Cheni cal Enti ty, while the radioactive properties should be stored under Radi oLabel ed-
Chenical Entity. In this way, each labelled substance can refer back to a "normal”
(unlabelled) substance. Thus, although Horml is itself a "norma" substance (with a IUPAC

name, a CAS number et cetera), it is easy to store that it "originated” from HormH.

Obvioudly, other design solutions are possible, too, e.g. with aradiolabelled substance being a
composition of a chemica entity and a label. However, | believe it is important to keep the
possibility for polymorphism.

9.14 Descriptors

The one subdomain of Figure 17 which has neither been included in the modelling of chapter
8 nor implemented is the one called "Descriptors”.

In a proteo-chemometric multivariate analysis each Chemical Entity object must be
described by some descriptors. These descriptors will be different for ligands (small organic
molecules) and binding sites (amino acid sequences). They will also be different for different
investigations, and within one and the same investigation some testing of new descriptors will
often be made. Thus, we need a general and flexible way to organise descriptors in the
database.

| have not presented a database schema for descriptors in this Thesis, but | believe the
following two points are important to consider: (1) Descriptors may be stored in the database
as numbers or as bitstrings. (2) There are two dternative kinds of descriptors, depending on
their origin. To elaborate on point (2):

» Some descriptors are generated as part of the investigation. An example is the set of 24
binary descriptors used for 4-piperidyl oxazole derivatives’™. Each of these only has a
meaning as a member of the set, together with the definition. Therefore it seems
appropriate to view a coherent set (e.g. called "DescriptorSet”) as the central type here,
with the descriptors stored as attributes.

e On the other hand, physico-chemical descriptors are more sdf-supported. Take for
example the lipophilicity, the dipole moment, and the van der Waals surface area of a
ligand molecule. These are experimentally or theoretically determined properties, and they
have a meaning without being included in a set of descriptors. However, the values stored
(e.g. in external databases) most certainly have to be transformed or normalised in order to
be used in a multi-variate analysis, and hence it is fair to say that such descriptors too will
be used in coherent descriptor sets.

9.2 Technical topics

There are a range of more "technica" topics which need to be considered to make PAQS
work as intended. Wrappers (9.2.1) will be needed to get access to external data sources and
indexes (9.2.2) will help to get agood performance.

%3 |_apinsh, Prusis, Gutcaits, Lundstedt and Wikberg 2001.
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9.2.1 Wrapping Data Sour ces

An important aspect of the mediator-wrapper architecture of PAQS and similar systemsis the
use of wrappers for importing external data (see sections 4.4.2 and 7.1.2). Such wrappers have
not been implemented in the Thesis work, but a number of potential data sources have been
identified (chapter 5).

From the development described in chapters 5 and 6 | find it likely that three wrapper types
will be needed for PAQS in the near future: (i) A general wrapper to XML data, which can be
customised for specific markup languages, e.g. BSML. (ii) A wrapper for web forms. (iii) A
wrapper for relationa databases®®. All three of these do aready exist, although it is only the
ODBCl/relational wrapper which is currently used "in production”.

9.2.2 Indexing and Clustering

The Amos Il system presently incorporates two aspect of physical database design: indexes
and clustering. As mentioned in section 3.1.2 indexing is important for helping the DBMS
find the correct object fagt. In traditional, disk-based, database systems, clustering is another
means to speed up data access by storing related data together. With Amos 11, amain-memory
DBMS, clustering isinstead used to decrease the database size.

Indexing will certainly be an important topic for the PAQS system, especialy if extended to
the contents of external sources. In this Thesis, indexes have only been used to define
cardinality congtraints. No additional indexes for performance have been added.

In the present Amos Il system hash and B-tree indexes are implemented. It is likely that the
full-scale production PAQS will require some additional index type(s), particularly for
retrieval on protein and chemica substructures.

Clustering will be important only for those functions and types where large volumes of data
are stored locally in the PAQS system. Most of the data will, however, be stored in externa
data sources, and for these clustering is not interesting.

9.2.3 Visualisation

Visudisation is a great help in any data analysis. First of al, it would be quite helpful with a
simple plot routine for data series (8.2). This would aso be rather easy to implement as a
foreign function in Java. A more ambitious project would be to provide for advanced
visualisation of data mining routines, i.e. the proteo-chemometric multivariate analysis. Here,
an aternative to an implementation from scratch would be to wrap an existing visualisation
package by a Java class.

A very useful feature would be if a user could sketch a molecular structure on a canvas and
then search for the structure in PAQS (see the Binding Database, section 5.4.4).

%4 Although no web data source described in chapter 5 actualy alows direct access via ODBC, this wrapper
will be needed for databasesinstaled locally, e.g. for purchased databases of chemical substances.
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9.3 Suggestionsfor Amosl|

To conclude this section of remaining topics a "wish list" of features for the Amos Il system
is presented. These features are not necessary for a successful implementation of PAQS, but
they would smplify the development of the system and/or render the final system more
effective.

9.3.1 Security Matters

Authorisation

The usability of PAQS would be greater if users were allowed to put complex AMOSQL
guestions to the system, and not only use fixed-form queries via a web page. However, if a
command-line interface is provided on the web, one must first make sure users cannot delete
local data of other users, or change the database schema. Most commercid DBMSs have
authorisation mechanisms for this, but no such mechanism yet exists for the Amos 11 system.

Encapsulation

Encapsulation is implemented in OO programming languages (e.g. Java and C++) as visibility
modifiers. For example, if a Java method is declared pri vat e, it can only be used from within
its class. Similar primitives in Amos Il would be useful if users have direct access to the
sysem via AMOSQL. For example, in section 3.2.6 it was described how enforcing more
complicated cardinality constraints is a problem in Amos Il. If the regular creat e statement
could be made non-accessible for users they would be forced to use special "constructor”
functions.

Future revisons of the SQL:1999 gandard will probably contain different levels of

encapsul ation®®.

9.3.2 Vector Operations

The Amos Il datatype vect or makes it possible to store objects (surrogates or literds) in an
ordered sequence. This is particularly useful for scientific and technica databases. However,
there are presently quite few operations available for vectors (creation, access of an element
by index number, concatenation of two vectors). Special-purpose vector manipulations can be
implemented as foreign functions (see Appendix C), but it would be reasonable to include a
larger number of genera-purpose vector functions in the Amos Il distribution, e.g.
substitution of an element.

It is possible to put an index on a vector as a whole, but not on individua vector elements.
This does presently not seem to present a problem for PAQS.

9.3.3 Abstract Types

Two object-oriented features missng in the Amos Il functiona OO data model are
encapsulation (9.3.1) and abstract types.

An abstract class in Java is a class of which one cannot create objects (the class is non-
instantiable). In short, abstract methods of the abstract class are implemented in subclasses,
e

%5 Ejsenberg and Melton 1999a.
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and these subclasses are then "concrete” (i.e. ingtantiable, not abstract). This is a useful
concept both in modelling and implementation of an OO system. A corresponding construct
in Amos Il would be to have abstract types, and abstract functions.

The concept of abstract types has found its way into the new SQL:1999 standard®®, where
types may be specified as "ingantiable”’ or "not instantiable".

9.3.4 Miscellaneous

Comments on One Line

Text enclosed by /* ... */ is treated as a comment in AMOSQL scripts. However, such
comments cannot be nested, and thusit is difficult to temporarily comment out alarge portion
of a script where a small part (e.g. one line) is already commented out. A nice feature would
beto allow a specia one-line comment syntax, too.

Clearer IUT Interface and Documentation

It is far from straight-forward to work with integration union types (IUTs). The implemented
syntax is not the same as in the examples of the relevant publication (Josifovski and Risch
1999), and it seems that not al combinations of types are possible. A better documentation of
this feature is needed, particularly since this information integration aspect of Amos Il is very
important.

Sorting

Standard SQL allows sorting and grouping of query results. At least a sort function would be
useful in AMOSQL, too. This probably applies to most problem domains, not just PAQS.
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10 Conclusions

Integration of life science data sources is a very active research area. Some important trends
which have been described in chapters 5 and 6 are the use of XML and CORBA as media for
information exchange and the use of mediating middleware for integration.

When XML and CORBA are compared, it is obvious that XML has the larger momentum,
especialy the Bioinformatics Sequences Markup Language (BSML, 5.2.4), supported by the
Interoperable Informatics Infrastructure Consortium (13C, 5.3.4). | find it likely that BSML
will dominate the scene for bioinformatics markup languages for the next year or so, and that
its structure will soon be specified by an XML Schema. However, the scope of the Life
Sciences Research group (LSR, 5.3.2) is much wider than that of BSML, and | expect that
LSR will be able to give useful input during the development of XML Schemas in other areas
than sequences. The merging of schemas is especialy likely as many organisations are
participants in several standardisation co-operations simultaneoudy.

Binding affinities are the most important external data for a proteo-chemometric analysis and
query system (PAQS). In this area the Biomolecular Interaction Network Database (BIND,
5.4.1) seems to provide most data. Furthermore, this datais supported by a publicly available
schema. A problem with using BIND as a data source is that the web interface for data access
does not allow advanced queries. A further potential problem is that it seems uncertain to
what extent future upgrades and improvements will be available free of charge over the Web.

The strength of the mediator/wrapper approach for integrating life science data sources has
been shown both by the many projects in academic laboratories (6.1), and by the commercial
product DiscoveryLink from IBM (6.2.1). | expect this trend to become even more
pronounced with the advent of the SQL/Management of External Data standard (4.4.3).

The database schemas presented and discussed in chapter 8 show that the functional data
model of the Amos Il system is well suited for the many fairly complex features of the PAQS
information domain. For example, the combination of subtyping and function overloading
provides a powerful mechanism for polymorphism, which is important both in modelling and
in implementation. Furthermore, the vector data type is suitable for representing data series.

The schemas presented for binding experiments and experiment evaluations have been
modelled in enough detail for a production mediator system, and they will provide a good
basis for the development of a custom markup language. Some important parts of the problem
domain, e.g. assays and descriptors, need further consideration.

The use of foreign functions as a means for performing data analysis has been exemplified by
experiment evaluations (section 8.8). With the database schemas presented, it will be easy to
developed the prototype further in order to alow the complete curve fitting of binding
experiments from within the Amos Il system. A considerably larger project would be to
implement the whole multivariate analyss as foreign functions, and this is not supported by
the presented schemas.
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Appendix A : Abbreviations

The following list includes some abbreviations which occur in severa places in the text,
figures, or code excerpts. Many abbreviations which only occur in a single paragraph or short
section (together with an explanation) are not included.

Amos Active Mediator Object System

API application programming interface

BA, ba binding affinity

BIND Biomolecular Interaction Network Database

BSML Bioinformati c Sequence Markup Language

CBE concentration binding experiment

CDS concentration data series

CE Chemical Entity

CML Chemical Markup Language

conc concentration

DB database

DBMS database management system

DBS database system

DDBS distributed database system

DDL data definition language (with mmCIF: data dictionary language)
DML data manipul ation language

DPM, dpm disintegrations per minute

DS, ds data series (also data source in Appendix G)

DTD data type definition (in connection with XML)

EBI European Bioinformetics Institute

ee experiment evaluation

fm fit model

fp fit parameter(s)

GUI graphical user interface

13C Interoperabl e Informati cs Infrastructure Consortium
JDBC "Java database connectivity", officialy not an abbreviation
m metre

M molar, mol/dm3, a unit for concentrations of solutions
MED Management of External Data (in connection with SQL)
NCBI National Center for Biotechnology Information

nM nanomolar (10-9 M), a unit for concentrations of solutions
ODBC open database connectivity

ODMG Object Data Management Group

oD object identifier

OMG Object Management Group

(0]0) obj ect-oriented, object-orientation

OODBMS obj ect-oriented database management system

OoQL Object Query Language

ORDBMS object-relational database management system
PAQS Proteo-chemometric Analysis and Query System
PDB Protein Data Bank, also apopular file format

PIR Protein Information Resource

RDBMS relational database management system

Sl Systeme International (d'Unités)

SQL Structured Query Language

SRS Sequence Retrieval System

TBE time binding experiment

UML Unified Modeing Language

wm weighting model

wp weighting parameter(s)

XML eXtensible Markup Language
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Appendix B : Examples from the Prototype

In this Appendix a short demonstration of the implemented schema is given. For a larger
demonstration, see the electronic supplementary material: "protl_observationData.amosqgl”
(some binding affinity data from the literature), "load_appendix45.amosgl” (load data of the
BindAid manual, appendices 4 & 5), and "demo_queries appendix45_ part[1-7].amosgl”
(queries over the loaded data).

B.1 A Competition Binding Experiment

Here we will see how a competition binding experiment may be stored in the database. The
data is taken from the BindAid manua (Wikberg 2001), appendix 4. The corresponding
graphical representation of the schemais given in Figure 35.

/* The bi ndi ng assay */
creat e Bi ndi ngAssay(nanme) instances
rapp4_assl ("Assay of BindAi d Appendi x4");
add description(:app4_assl) = "Cerebral cortex nenbranes”;
add bindi ngEntity(:app4_assl) = :alfa2A

/* One concentration binding experinent,
a non- masked conpetition curve */
create ConcBi ndi ngExperi nent (nane, cbeType) instances
capp4_expl ("curve 1, p 57", :conpetition);
set description(:app4_expl) =
"non-masked conpetition curve for BRL44408";
add_fixed_| i gand(: app4_expl, :h3_nk912 , 0.326, "nM);
add curves(: app4_assl)=: app4_expl;

/* Conversion fromdpmunits to nM according to page 57 */
set :tenp = times(div(1l.0, 13486.0), 1.0e-9);
set :dpm 13486 = createUnit("dpm (13486)", :tenp, :molarity);

/* Two dataseries per curve,
one independent (varying) and one dependent (bound) */
create ConcDataSeries(ligand, unit, property) instances
:dslv (:brl44408, :nM :conc);
set val ues(:dslv) =
{ 100000.0, 31645.6, 10014.4, 3169.1, 1002.9, 317.37,
100. 43, 31.783, 10.058, 3.1828, 1.0072, 0.3187 };
create ConcDataSeries(ligand, unit, property ) instances
:dslb (:h3_nk912, :dpm 13486, :conc );
set val ues(:dslb) =
{ 31.0, 31.0, 36.0, 46.0, 55.0, 89.0,
115.0, 137.0, 186.0, 260.0, 305.0, 328.0 };
add varyi ng(: app4_expl) = :dslv;
add bound(: app4_expl) = :dslb
/* Get a handle to the desired binding experinment */
select e into :e4l
from Experinment e where nanme(e) = "curve 1, p 57";

/* Denpb queries with answers */

count (al I Data(:e41)); /* How nmany data series in the experinent? */
answer: 2

consistent(:e4l); /* Al data series are equally long? */

answer: TRUE

name(al | _|igands(:e41)); /* Ligands involved in this experinment */
answer: " 3H MK912"
" BRL44408"
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/* How many data points are there in the bound radioligand
dat aseri es? And how nmany of these are non-valid? */

sel ect length(ds) from DataSeri es ds where ds=bound(:e4l);

answer: 12

count (nonval i ds(bound(: e4l)));

answer: O

name(unit (bound(:e41))); /* Unit of bound data series */

answer: "dpm (13486)"

convert_series(bound(:e4l), get_unit("nM)); /* Series in nM*/

answer: { 0.00229868, O. 00229868, 0.00266943, 0.00341094, 0.0040783,
0. 00659944, 0.00852736, 0.0101587, 0.0137921, 0.0192793,
0. 0226186, 0.0243215 }

B.2 An Experiment Evaluation

The schema for experiment evaluations is described in section 8.8. The following
demonstration is part of "load_appendix45.amosgl”. It certainly is too tedious to type in this
much to store a single curve fit, but if a GUI is used only the numbers need be entered. Two
even better solutions are (i) to read the vaues directly from some output of the fit program,
and (ii) to invoke the fit program directly from the Amos Il system, and let it return the
results.

/* Create an instance of ExperimentEvaluaton and link it to three
bi ndi ng experinents and a fit nethod */

create ExperinentEval uati on instances :app4_expeval 1;

set experinents(:app4_expeval 1) = :appd_expl,;

add experinments(:app4_expeval 1) s app4_exp2

add experinments(:app4_expeval 1) s app4_exp3

set met hod(: app4_expeval 1) = :bindfit_cal c;

set nanme(:app4_expeval 1) =
"Bindfit calculation from Bi ndAid nanual , " +
" Appendi x4, p59 (one binding site)";

/* Create the fit paraneters */
set upFi t Par anet ers( : app4_expeval 1 );
assert Equal s( 7, nunber O Fi t Par anet er s(: app4_expeval 1) );

/* Get hold of paraneters and set constraints/

set :kll = getParaneter(:app4_expeval 1,:affinity,:alfa2A :brl44408);
set : k21 = getParameter(:app4_expeval 1,:affinity, :alfa2A,

: rauwol sci ne) ;
set : k31 = getParaneter(:app4_expeval 1,:affinity,:alfa2A :h3_nk912);
set :nl = getParaneter(:app4_expeval 1, :nonspecbi nd, : brl44408);
set :n2 = getParaneter(:app4_expeval 1, :nonspecbi nd, : rauwol sci ne);
set :n3 = getParaneter(:app4_expeval 1, :nonspechi nd, : h3_nk912);
set :rl = getParaneter(:app4_expeval 1, :conc,: al fa2A);

set FitConstraintFloating(:r1, 0.1);
set Fi t Constrai nt Fl oating(: k11, 0.01);
set Fi t Constrai nt Fl oating(: k21, 0.1);
set Fi t Constrai nt Const ant (: k31, 0.74);
set Fi t Constraint Fl oating(:nl, 0.01);
set Fi t Constrai nt Shared(: n2, :nl);

set Fi t Constraint Shared(:n3, :nl);

/* Fit results */

set sunt¥ Squar edResi dues(: app4_expeval 1) = 31.98;
set Fl oati ngResult( :r1, 0.1150, 0. 004694 );
set Fl oati ngResult( :nl1, 0.008876, 0.0009101 );
set Fl oati ngResul t ( : k11, 0.03448, 0.005875 );
set Fl oati ngResul t ( : k21, 0.4801, 0. 1056) ;

/* Denob queries with answers */
nane(experlnents( app4 expeval 1)); /* Experinents in evaluation */
answer: "curve 3, p 5
"curve 2, p 58"
"curve 1, p 57"
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nanme( nodel (met hod(: app4_expeval 1))); /* Fit nodel used */
answer: "Bindfit"
/* Number of fit paraneters, and distribution over types */
nurber Of Fi t Par anmet er s(: app4_expeval 1) ;
answer: 7
sel ect name(p), count(getParaneter(:app4_expeval 1, p))

from Property p

wher e count (get Par anet er (: app4_expeval 1, p)) > O;
answer: <"affinity constant"”, 3>

<"concentration", 1>
<"ligand non-specific binding paranmeter"”, 3>

/* What were the results of the fitted [floating] affinities?

bi nding site, ligand, value, unit, estimated error */
sel ect nane(bindingSite(fp)), nane(ligand(fp)), value(fp),

name(unit(fp)), error(fp)
fromFitParaneter fp
where isFloating(fp) and fp = getParaneter(:app4_expeval 1,
get _property("affinity constant"));

answer :

<"al fa2A adrenoceptor"”, " Rauwol sci ne", 0. 4801, "(nM~-1", 0. 1056>

<"al fa2A adrenoceptor", "BRL44408", 0. 03448, "(nM ~-1", 0. 005875>

B.3 Search for Binding Affinities

The following demonstration assumes some data has been stored in the database, e.g. through
the scripts "protl_observationData.amosgl”. It is further assumed that some experiment
evaluations are stored, e.g. the one from section B.2.
/* How many binding affinities are stored as observations and
how many are stored as results of experiment evaluations? */

set :aff = get_property("affinity constant");
count( allOos( :aff ) );

answer: 8

count ( getParameters( :aff ) ); /* all: constant, floating, . . . */
answer: 3

count ( isFl oating(getParameters(:aff)) ); /* only floating */
answer: 2

/* Focus on the 'alfa2A adrenoceptor' */
set :a2A = get CE(' al fa2A adrenoceptor');
count( allObs( :aff, :a2A ) );
answer: 4

list_affinities( :a2A);
answer: <"al fa2A adrenoceptor”

"Ri speridone"," 23.0 (nM~"-1 ">
<"al fa2A adrenocept or™ >

"BRL44408"," 5.68 (nM~-1 "
<"al fa2A adrenoceptor", "BDF8933"," 2.0 (nM”"-1 ">
<"al fa2A adrenoceptor”, "3H MK912"," 0.74 (nM~™-1 ">
count( getFittedAffinities( :a2A) );
answer: 2
get Li gandsAndFi ttedAffiniti esForSite( :a2A);
answer: <"Rauwol sci ne", 0.4801,"(nM~"-1", 0. 1056>
<"BRL44408", 0. 03448, " (nM ~- 1", 0. 005875>
/* Where does the al fa2A R speridone value conme fron? */
sel ect description(reference(o))
from Observati on o
where o = data(:aff, :a2a, get CE("Ri speridone"));
answer: "Schotte A, Janssen PF, Gomrmeren W Luyten WH, Van Gonpel P,
Lesage AS, De Loore K, Leysen JE.:
' Ri speridone conpared with new and reference antipsychotic
drugs: in vitro and in vivo receptor binding.'
Psychophar macol ogy (Berl) 1996 Mar; 124(1-2):57-73."
/* Taken from PDSP drug database on the Wb */
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Appendix C : Vector and Bag Manipulations

This Appendix describes a few vector and bag operations implemented as foreign functions.
Only the Amos Il functions and excerpts of the Java code will be given here. For full Java
code, see supplementary material (ProtlVector.java, ProtlBagOperationsjava). For an
explanation of the Amos I1 - Javainterface, see Elin and Risch 2001.

These functions are intended for use with PAQS prototypes only. | believe these operations,
and several more vector and matrix®®® operations should be included in the Amos Il system,
but it would probably be preferably if they were implemented in Lisp or C and integrated into
the Amos I core distribution.

C.1 Vector Arithmetics

A vector of reals may be scaled, i.e. each of its elements multiplied by a real number®®’, by
means of the function scal e_vect or. This operation is used for converting data series from
one unit to another.

create function scale_vector( vector of real v, real sf ) ->

vector of real )
as select scale_vector_foreign( v, sf );

create function scale_vector_foreign( vector of real v, real sf ) ->
vector of real as foreign "JAVA: Prot1Vector/scal eVector";

Two (equa length) vectors of real numbers may be multiplied element by element, and the
result put in anew vector.

create function nultiply_vectors( vector vl, vector v2 ) ->
vector of real
as select multiply_vectors_foreign( vl, v2);

create function nultiply_vectors_foreign( vector vl, vector v2 ) ->
vector as foreign "JAVA: Prot1Vector/mul tiplyVectors";

A bag of vectors may also be averaged, element by element:

create function average_vectors( bag b ) ->
vector of real
as sel ect average_vectors_foreign( vectorof(b) );

create functi on average_vectors_foreign( vector v ) ->
vector as foreign "JAVA: Prot 1Vect or/ aver ageVect or s";

Other vector operations which would be useful in scientific and engineering applications are
the inner product (or dot product) and the cross product (or vector product).

%6 A nice example of the use of matrices for a database system in the domain of finite element analysis is given
by Fodin, Orsborn and Risch (1998). In this work the meatrix operations (e.g. various meatrix-vector
multiplications) were implemented as foreign functions in C. These function definitions are, however, not
included in the Amos Il distribution, and there seems to be no mentioning of them in the documentation.

%7 1n vector calculus terminology thisis the scalar product.
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C.2 BagOperations

Union, intersection, and difference of bags were also implemented as foreign functions in
Java. Bag difference was used in assertions, see Appendix D:
create function bagD fference( bag a, bag b ) -> bject
as select in( foreignBagDifference( vectorof(a), vectorof(b) ) );

create function foreignBagDifference( vector a, vector b ) ->
vector as foreign "JAVA: Prot 1BagOper ati ons/ bagDi f f erence”;

create function bagUnion( bag a, bag b ) -> Object
as select in( foreignBagUni on( vectorof(a), vectorof(b) ) );
create function forei gnBagUni on( vector a, vector b ) -> vector
as foreign "JAVA: Prot 1BagQper at i ons/ baguni on";

create function baglntersection( bag a, bag b ) -> (bject
as select in( foreignBaglntersection(vectorof(a),vectorof(b)) );
create function foreignBaglntersection(vector a,vector b) -> vector
as foreign "JAVA: Prot 1BagQper ati ons/ bagl ntersecti on";

C.3 Data Series Averaging

The averaging of data series was described in section 8.2.5. The operation is complicated by
the fact that a data series may have one or several non-valid data points, which are not to be
included in the averaging. E.g., suppose data series A has the values va={ 1.0, 2.2, 3.0, 44.0,
5.1} and data series B the values vg={ 1.0, 1.8, 3.2, 4.0, 4.9}. Then it is highly likely that the
fourth data point of va isin error, and that the correct average should be {1.0, 2.0, 3.1, 4.0,
5.0} 2%, Such nonvalid points are handled by a bag nonval i ds (see Figure 28).

The vaues for a new (averaged) data series may be obtained with the function
average_dat aseri es(bag b, Unit u) -> vector of real.Eachdataseriesinthebaghb
is converted to the desired unit u, and then the function average vectors_nonval i ds iS
invoked with an argument consisting of a bag of tuples <"vector of converted
val ues","vector of nonvalid point indexes">. Thisbag of tuples is converted to a
vector and the foreign Java function Pr ot 1Vect or . aver ageVal i dVect or s is invoked®®®. The
structure of the vector shipped out to the foreign function thus is the following:
vect or
vector _for_dataseriesl
vector1l_val ues
vector1_nonvalids
vector _for_dataseries2
vector2_val ues
vector2_nonvalids
vect or _for_dat aseries3

vector3_val ues
vector3_nonval i ds

The agorithm in Prot 1Vect or . aver ageVal i dVect or s Will only take the average of the data
series, future enhancements could alow the calculation of variance and other measures of
spread. A very coarse description of Pr ot 1Vect or . aver ageVal i dVect or s isasfollows:

%8 Thus, the fourth element of the result is an "average" of one value only. A peculiarity of the implemented
foreign function is that the result vector will have the value -999.999 in any position where all of the input
vectors have anonvalid e ements. Possibly, it would be better to return null.

%9 This fairly complicated solution was chosen in order to ascertain that the Java method will be able to match
the non-valid indexes to the correct vector. Another constraint is that the Amos Il interface to Java foreign
functions requires a single vector (containing all arguments) to be shipped out.
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1. Read input into |local Java variabl es
2. Check that all vectors are of equal length
3. Sumup all input vectors to a result vector, elenent by el emrent
4. Check that nonvalid points are correctly defined,

and renove themfromthe sum
5. Divide each element of the result vector by nunber of points used
6. Put back into result tuple. Emt

The three basic functions for data series averaging are:

create function average_dat aseries(bag b, Unit u)
-> vector of real
as sel ect average_vectors_nonvalids( sel ect convert_series(ds, u),
vect or of (nonval i ds(ds) )
from Dat aSeries ds
where ds = in(b) );

create function average_vectors_nonvalids( bag b )
-> vector of real ) )
as sel ect average_vectors_nonvalids_foreign( vectorof(b) );

create function average_vectors_nonvalids_foreign( vector v )
-> vector
as foreign "JAVA Prot 1Vector/ averageVal i dVect ors”;

Finally, as described in section 8.2.5 afew of useful utility functions have been implemented:

* Function aver age2nMtakes a bag of Dat aSeri es asargument and calculates their average
innM units:

create function average2nM bag b ) ->
vector of real
as sel ect average_dat aseries(
( select ds from ConcDat aSeries ds where ds = in(b) ),
get_unit("nM) );

* aver age_bound(Bi ndi ngExperi ment, Chenical Entity) averages dal "bound" data
series for a specified Bi ndi ngExperi nent and Chemi cal Entity:

create functi on average_bound( Bi ndi ngExperinent e,
Chemi cal Entity ligand ) ->
vector of real
as sel ect average2nM sel ect ds from ConcDataSeri es ds
where ds=bound(e) and |igand=ligand(ds) );

* average_bound(Bi ndi ngExperi nent) averages all "bound" data series for each distinct
ligand in a specified Bi ndi ngExper i nent :
create functi on average_bound( Bi ndi ngExperinment exp ) ->
<charstring, vector of real>
as sel ect nanme(ligand), average_bound( exp, ligand )

from Chem cal Entity |i gand
where |igand = bound_ligands( exp );
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Appendix D : Testsand Assertions

During the implementation of a growing schema it is important that tests are performed
frequently. Tests help the developer to find out when a feature starts working, and aso when
it stopsworking (e.g. due to unintended side effects).

For example, when the types Quantity, Unit, and Uni t Type are implemented (see sections
8.1.10, 8.1.11), it is necessary to check that the unit conversions and quantity arithmetics give
correct results, and this should preferably be checked after each change affecting these types.
For many types, e.g. Dat aSeri es and Bi ndi ngExper i nent, the main purpose of tests are to
ascertain that more or less complicated sequences of function invocations behave as assumed.

The very simplest tests are those which print out a message or an intermediate result.
However, with this method of visual inspection it soon becomes tedious to go through the
outputs to make sure the results are correct, and in practise only afew tests are run. A better
solution would be a silent and automatic test, which is easy to run and only reports errors.
Such tests exist for application development in programming languages, e.g. the JUnit
framework?™ for development in Java

The tests made during the development of the schemas in this Thesis follows the philosophy
of JUnit, and also have taken over some structure from that package. The JUnit framework as
such is not used, however, and the testing is performed in AMOSQL scripts, not in a Java
class inheriting from JUnit's TestCase class. All test functiondity is implemented in
"protl_assert.amosgl” and "ProtlAssert.java’, which in turn use "prot1_utility.amosgl" and
"Prot1BagOperations.java’.

Let us now return to the types Quantity, Unit, and Unit Type in order to exemplify the
testing. The following (edited) excerpt of "protl_quantityExamples.amosgl" contains severd
kinds of tests.

create Quantity (anount, unit) instances
:gql (2.0, :hours), :g2 (120.0, :mnutes);

assert Equal s( 2.0, anount(:ql) );

assert Equal s( "hours”, name(unit(:ql)) );

/* unit conversion */

assert Equal s( 120.0, convert(:ql, :mnutes) );
assert Equal s( 7200.0, convert(:ql, "seconds") );
/* quantity arithnetics */

assert Equal s( 4.0, anount(plus(:ql,:92,:hours)) );

/* equality tests on bags require another function */
assert BagEqual s( bag(:kelvin,:celsius), units(:tenperatureUnit) );

set :ula = createUnit("ul", 1.1, :massUnit);

/* unnecessary unit creation, instead :u2a is assigned to :ula */
set :u2a = createUnit("u2",1.1,:massUnit);

assertEqual s( 1.1, scal eFactor(:u2a) );

assert Equal s( :ula, :u2a);

/* Al previous assertions are passed */

/* The followi ng woul d throw an AssertionFail edError,
and interrupt the script

assert Equal s( :seconds, :hours ); */

As may be seen in the examples, assert Equal s is overloaded, and can take either two
Obj ect s as argument, or a message string (which is printed if the assertion fails) plus two

20 http:/Awww.junit.org (2001-02-16).
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vj ect s. Actually, there is even more overloading, and there are eight different resolvents to
assert Equal s:

assert Equal s( Obj ect expected, (bject actual ) -> bool ean

assert Equal s( vector expected, vector actual ) -> bool ean

assert Equal s( nunber expected, nunber actual ) -> bool ean

assert Equal s( nunber expected, nunber actual, number delta ) ->

bool ean
+ four functions with additional message strings

assert BagEqual s( bag expected, bag actual ) -> bool ean
+ with additional message string

The reason for overloading with nunber arguments is that this makes it possible to compare
aninteger with areal (i.e type checking is overridden). A test which | belive would be
useful for scientific and technica database implementations is the one which takes three
nunber arguments. The third argument del t a is the maximum allowed difference between
the expect ed and act ual numbers for the assertion to be valid. In this way rounding errors
and approximations can be handled in assertions.

Two vectors pass assert Equal s only if they are equal element by element. This is handled
fully by the Amos Il core. The overloaded function smply is a means to introduce additional
information upon failures. Note however, that the vectors {4,5} and{4.0,5.0} are not equal
since the elements have different data types.

Two bags should be considered equal if the bags contain the same elements, irrespective of
order. This is not handled gracefully by the Amos Il system, which treats bag(1,2,3) and
bag(3,2,1) as unequal. Thus, bag equality was implemented by means of bag differences:

if ( some( bagDifference(actual, expected) ) or

sone( bagDifference(expected, actual) ) )
then fail Equal s(nessage, expected, actual);

Equality tests on bags should use the function asser t BagEqual s. When | implemented this
under the name assert Equal s the Amos Il system was not able to resolve the overloaded
functions correctly.
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Appendix E : TheFi t Model Strategy Pattern

Asdescribed in section 8.8, aFi t Model object has both state (the values of its attributes nane,
descri ption, and f or mul a) and behaviour (methods to create the correct type and number of
Fi t Par anet er objects). This behaviour is different for the different Fi t Model subtypes. The
same applies for Wi ght i ngMbdel , where the behaviour which differs between subtypes is the
way avector of weightsis calculated.

In this Appendix will be shown how the types Experi ment Eval uation, Cal cul ation-
Met hod, and Fi t Model (Or Wi ght i nghbdel ) constitute a ” Strategy” design pattern®’*. In an
object-oriented programming language such as Java, this design pattern consists of an abstract
class’’ (" AbstractStrategy”) with one concrete subclass for each implemented algorithm?”,
see Figure E1.

Client uses AbstractStrategy
* 0.1
operation()
ConcreteStrategyl ConcreteStrategy2 ConcreteStrategy3
operation() operation() operation()

Figure E1. The Strategy design pattern as aUML class diagram. (After Grand 1998.)

This is similar to how Fi t Model (and Wi ghti nghbdel ) are implemented, although Amos Il
does not allow the designer to define abstract types (or to enforce singletons):

/* "Abstract type" FitModel */
create type FitMdel properties (
nane charstring key, description charstring, formula charstring);

/* "abstract” method */ ) ) )
create function createFitParameters(FitMdel, bag |igands, bag sites)
-> FitParaneter;

/* "Concrete subtype" Bindfit of FitMdel */
create type Bindfit under FitModel;

/* "concrete" method */
create function createFitParanmeters(Bindfit, bag |igands, bag sites)
-> FitParaneter as
begi n
I engthy inplenmentation .
end;

/* O her "concrete" subtypes of FitMdel */

S R RPRRERERERRREEEEEEEEEEEE——
21 Gamma, Helm, Johnson, Vlissides 1995; Grand 1998.

22 An abstract class is a class without extent, i.e. no objects can be created of it. Abstract classes may include
both concrete and abstract methods (with and without implementation, respectively). Concrete subclasses of an
abstract class must implement al abstract methods of the superclass.

23 The concrete subclasses are singletons, i.e. thereis only one object of each class.

130



/* One instance of each "concrete" subtype is created,
none of "abstract" supertype FitMdel */

create Bindfit instances :bindfit;

set name(:bindfit) = "Bindfit";

set description(:bindfit) =
"Reversi ble binding of Nligands to Msites";

set formula(:bindfit)= "B i=\sum{b=1}"{n}\I eft(\frac{ {

ht

F_ |R b}"
+ "{1+x\sum {a=1}*{n} K {ab}F _a}\rig i

i b}
) tNLi ;
Figure E2 shows a UML class diagram of the Amos Il types Fi t Model (with subtypes),
Cal cul ati onModel , and Experi ment Eval uation. The diagram is drawn according to an
object-oriented data model, e.g., as if nodel were an attribute of Cal cul ati onMet hod
(instead of afunction which maps acal cul at i onMet hod object onto aFi t Model object). The

type Cal cul ati onMet hod takes the role of A i ent in Figure E1, and Cal cul ati onMet hod iS
inturn called by Experi ment Eval uati on.

model FitModel

1 createFitParameters(bag ligands, bag sites) : bag of FitParameter

Bindfit
CalculationMethod

createFitParameters(bag ligands, bag sites) : bag of FitParameter

createFitParameters(bag ligands, bag sites) : bag of FitParameters

method 1 UnknownFitModel

createFitParameters(bag ligands, bag sites) : bag of FitParameter

ExperimentEvaluation

experiments : bag of Experiment \

parameters : bag of FitParameter other concrete FitModel subtypes can be addedj

setupFitParameters() : boolean
getLigands() : bag of ChemicalEntity
getSites() : bag of ChemicalEntity

Figure E2. UML class diagram of the Fi t Model Strategy pettern.

Similar diagrams could be drawn for Wi ght i ngModel , whereby the Nowei ght i ng subtype of
i ght i ngMbdel would corresponds to a” Null object” pattern®’.

The UML sequence diagram of Figure E3 shows how the appropriate set of Fi t Par anet er
objects are created for an Exper i ment Eval uat i on object (cf. section 8.8.1).

:expEval :calcMethod fitModel

setupFitParameters()
R

getLigands() : bag

getSites() : bag

createFitParameters(bag, bag) bag

createFltParameters(bag bag) : bag

* [needs more] new
; —
. = 7b7a 9 cif E IEP,a rfarﬂeitej — fitParam
bag of FitParameter

S R @PRPRERERERREEEEEEEEEEEEEE———
24 \Woolf 1997; Grand 1998.
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Figure E3. UML sequence diagram for the creation of fit parameter objects.
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Appendix F : Polymorphic Behaviour by Applying Functions

As described in section 8.8.3, the use of the foreign function appl y is an aternative to subtyping
through inheritance when implementing the ”Strategy” pattern. The foreign function is
implemented in Lisp, and is presently not included in the Amos Il core. It cannot be used in the
official Amos Il version, but only in the ”developers version” (camos2), where it is possible to go
out to Lisp and define new functions. The Amos Il foreign function appl y does in turn use the
Lisp function apply.

The foreign function apply was implemented by Tore Risch (Dept of Information Science,
Uppsala University) who is principa investigator in the Amos |l database engine research
project, as well as supervisor for this Thess. The impetus for this implementation was
discussions between Tore and me as to whether AMOSQL allows a user to invoke a function
he/she has a reference to. This was not possible, and the security aspects of including this feature
in Amos Il have not yet been fully investigated.

F.1 HowtoUsetheapply Function

The interface of appl y isappl y(function f, vector parameters) -> vector results,i.e
all arguments to the function f should be packed into a vector, and the results are returned in a
vector. The following code excerpt shows how different weighting models are implemented as
instances of type Wi ghti nghbdel , with an attribute get Wi ght sFuncti onNane. The function
get Vi ght s takes the Wi ghti ngMbdel object as argument, and gets the appropriate function
with f unct i onnamed. This function is then " applied”, and the contents of the result is returned as
a vector of real weights™. (A foreign function is used since Amos Il can not handle
exponentiation.)

create type Wi ghtinghdel properties ( nanme charstring key,
get Wi ght sFuncti onNane charstring );

create Weightinghbdel (nanme, . . . , getWightsFuncti onNane)
i nst ances
:nowei ghts ("No weighting", -
"get Uni t yWei ghts"),
:munsonr odbard ("Minson & Rodbard wei ghting”, . . . ,
" get MunsonRodbar dWi ght s"),
: del ean (" DeLean wei ghting", Co
"get DeLeanWi ght s") ;

create function get DeLeanWei ght s( vect or val ues,
vector wei ghtingParaneters )
-> vector of real
as foreign "JAVA: Prot 1Wi ght i ng/ del eanWi ght s";

create function getWights( Wi ghti ngMbdel wm vector val ues,
vect or wei ghtingParaneters )

I
%> Note that " apply(--)" will give us a vector of results. I.e,, since our result is a vector (of weights) this vector will
be the single element of another vector ({ { 0.01, 0.012, 0.014,...} }). To extract the éements of a collection we use
in. A bugin Amos Il prevents us from using direct addressing to get the first eement of the result vector. If there
had been more that one argument, we could have wrapped the method containing " apply(---)".
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-> vector of rea
as select in( apply( functionnamed( get Wi ghtsFuncti onNane(wmn ),
{val ues, weightingParaneters} ) );

F.2 A Comparison With Java

Usualy, we apply a function by explicitly giving its name in an AMOSQL statement, e.g.
nane(: donal d); applies (or invokes) the function name on an object : donal d (presumably of
type Person). Similarly, in Java we invoke the method get Name() by donal d. get Nane() ;
(where, presumably, the variable donal d is assigned to an object of class Per son) .

The possibility to use the functions f uncti onnamed and appl y together in AMOSQL does at
least partially corresponds to one of to Java's reflection capabilities (see the Java reflection API
(Java.lang.reflect Class Method 2001)).

We saw the implementation in AMOSQL in the previous section, an example of useis:

/* object :delean assunmed setup appropriately */

set :values = {10.0, 11.0, 12.0, 23.0, 29.0, 45.0};

set :weightingparanmeters = {1.0e-6, 1.0e-3, 1.5};

set :weights = get Wi ghts( :del ean, :values, :weightingparaneters );
/* now :weights = {31.6218, 27. 4094, 24. 0557, 9. 06576, 6. 40325, 3. 31268} */

The corresponding pattern implemented in Java:

/* object wmassunmed assumed setup appropriately */
doubl e[] values = {9.0, 11.0, 12.0, 23.0, 29.0, 45.0};
doubl e[] wei ghtingparaneters = {1.0, 1.0, 1.0};

doubl e[] wei ghts;

wei ghts = wm get Wi ght s( val ues, wei ghti ngparaneters );

cl ass Wi ghti nghbdel {

public doubl e[] get Wi ghts( doubl e[] val ues, double[] wp )
{

doubl e[] result = null

C ass ¢ = Wi ghtingMdel . cl ass;

G ass[] paraneterTypes =

new Cl ass[] { double[].class, double[].class };
Met hod wei ght i ngMet hod;
ohj ect[] argunments = new Object[] { values, wp };

try

Met hod wei ghti ngMet hod = c. get Met hod(
getVélghtsFunctlonhbne par anet er Types );
result = (double[]) weightingMethod.invoke( null, argunents );
} catch (NoSuchMet hodException e) {
Systemout.println(e);
} catch (111 egal AccessException e) {
Systemout.println(e);
} catch (lnvocationTarget Exception e) {
Systemout. println(e);

return result;

}
} /] class Wi ghti nghbdel
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There are two major differences. (i) In Java we would expect the class Wi ghti ngvbdel to
implement al weighting methods, and also have an attribute get Wi ght sFuncti onName
discriminating between them. In the Amos II/Lisp solution, the type Wi ght i ngMbdel only has
the discriminating attribute. The functions to calculate weighting methods are implemented
independent of any user-defined type. Similarly, the Java method get Met hod is bound to a
specific class, while the Amos Il functionnanmed is not. (ii) With the Java reflection API the
method get Met hod takes a vector of parameter types as argument to help resolving overloaded
methods. In the Amos I1/Lisp solution this resolution is made dynamically and transparently, with
help of the typesin the vector of argumentsto appl y.

It seems easier to use the "apply function” approach in Amos Il than to use Met hod. i nvoke in
Java. However, the comparison is not altogether fair since the Java reflection API contains a lot
more features than invoking a method.
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Appendix G : Integration of External Data

One of the main purposes of the PAQS project is to create a means for information integration by
defining a common data model in the mediator and wrapping external data sources. Such
wrappers have not been implemented in the prototype developed for this Thesis. However, this
Appendix will demonstrate the use of external data sources with a small example. Furthermore,
the Appendix will give examples of information integration by means of derived types (G.3) and
integration union types (G.4).

The examples are also available from the author (fon@hig.se) in electronic format as four files
("ChemicaDatamdb”, "Register ODBC _data _source.txt", "Externa_demo.amosgl”, and "Exter-
nal_IUT_demo.amosgl™).

G.1 TheRedational Database

As an example of arelational data source we take a very small MS Access database of chemical
data, "ChemicaData.mdb”. We may access the data in the ChemicalData database through an
ODBC?"® wrapper in the Amos Il system?”’. Note that the database of chemical data we will use
is for demonstration purposes only, it has fewer columns than a commercial molecular properties
database would have, and there are very few rows in each of the tables.

Although the database is small, it is representative of how data would be stored in a larger
commercia relational database of chemical properties. The relational database schema for
”ChemicalData.mdb” is the following:

ORGANI C_COVPOUNDS(
Subst ance, Formul a, Ml ecul ar Wi ght, Density, D pol eMonent,
Heat Of Conbusti on )

| NORGANI C_COMPOUNDS(
Subst ance, Formul a, Ml ecul ar Wi ght, Density, D pol eMonent,
Sol ubility, SolubilityCode )

ELEMENTS(
Znuc, El enent, Synbol, Atom cWight, Density, Dom nantl sotope,
Percent ageDl, Radi oactivel sotopel, PercentageRl 1, Radi oacti ve-
| sot ope2, PercentageRl 2, Radi oactivel sotope3, PercentageRl 3 )

The meaning of the various attributes should be clear from their names, and a more detailed
description is given in the MS Access database. Underlined attributes have been declared primary
keys. (These keys, and the unique fields El ement and Synbol in El ement s are indexed inthe MS
Access database. Thisis not necessary for the Amos |1 access.)

e
2" ODBC (Open Database Connectivity) is a standard interface designed to provide interoperability between
relationd products.

277

The Amos Il system wrapper for ODBC data sources is described in (Brandani 1998).
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G.2 Accessthe External Data Source from Amosl|

It is assumed that the external MS Access database has been registered as an ODBC data source
under the Windows operating system, and also within the Amos Il system (see supplementary
material, "Register ODBC_data source.txt").

After having registered the external database under the name 'ds we may investigate the data
source by retrieving metadata, access the data source by executing SQL commands through the
ODBC AP, or access the data source through the ODBC wrapper. Examples are given in the
following sections.

G.21 Query Metadata

tabl es('ds');
columms(' ds', 'ELEMENTS');
primary_keys('ds', 'ELEMENTS');

G.22 Execute SQL Commands through the ODBC API

One way to access the database is by direct SQL statements””® through the ODBC AP

sql (' ds','select znuc, elenent fromelements order by znuc', {}, -1);

set :sql_string = 'select el enent, dominantisotope, percentageD, ' +
‘radi oacti vei sotopel, percentageRI1 fromelenents ' +
"where percentageDl < ? and percentageRI1 > ?';

set :paraneters = {50.0, 10.0};

sgl ("ds', :sql _string, :parameters, -1);

If the external database was not defined as a read-only ODBC data source insertions, updates and
deletions are possible too.

However, this direct use of the ODBC API is not a suitable means for data integration. For
example, we use AMOSQL to access local data, but SQL2 syntax to access the external data.
There is no location transparency, and the impedance mismatch remains.

G.23 Import Tables Through the ODBC Wrapper

The second way to access the external database is through the ODBC wrapper. When atable is
imported into Amos Il the relational table becomes represented by a proxy type of the Amos Il
functional data model. This proxy type can then be queried almost as a stored type?”:

i mport table('ds', ' ELEMENTS );

278Thesyntaxis‘,sql (odbc_ds data_source, charstring sqgl _string, vector paraneters, integer
max_rows) -> bag of vector results. le, thefirst argument 'ds isthe name we have registered the externa
database under, and the last argument is the max number of rows we want the ODBC connection to return. (We
know there cannot be more than a little bit over 100 rows in the El enent s table, but there might be thousands of
small polar molecules stored in the table Or gani ¢_Conpounds.) Sgl strings containing question marks arefilled in
with the elements of the vector of parameters.

%" The datain the external database can be queried, but we cannot insert or update data through the proxy type.
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i mport _table('ds', 'Inorganic_Conmpounds');
import _table('ds', 'O ganic_Conpounds');

sel ect znuc(e), elenent(e) fromel enents@s e;

sel ect oc into :nitnet

from Organi c_Conmpounds@ls oc

wher e substance(oc) = "nitromethane";
di pol e_monent (:nitmet);

It is easy to mix stored types and proxy types in the AMOSQL query, e.g. in the following join
of Or gani c_Conpounds and Cheni cal Ent i t y**°
sel ect substance(oc), dipole_noment (oc)

from Organi c_Conmpounds@ls oc, Chem cal Entity ce
wher e substance(oc) = nane(ce);

G.3 Datalntegration by Derived Types

In the previous section we saw how external data could be incorporated by first importing tables
and then querying these tables in AMOSQL. However, Amos Il has more powerful data
integration primitives. object-oriented views implemented as derived types and integration union
types (Josifovski and Risch 1999).

A derived type (DT) is a subtype of one or several existing (stored or proxy) types while an
integration union type (IUT) is a supertype of several existing types. An example of using
derived typesis given in this section, and one with IUTs in the following.

We continue the example from above and create a derived type (DT) Or gani cs as a subtype of
the user-defined stored type Cheni cal Enti ty and the proxy type O gani ¢c_conpounds@s which
represents an external data source. The extent of Or gani cs is restricted to those instances which
satisfy the wher e clause in the following definition:

create derived type Organics

subt ype of Organi c_conmpounds@ls oc, Chemical Entity ce
wher e nane(ce) = substance(oc);

We may now query the new type Or gani cs transparently, just as an ordinary user-defined Amos
[l data type. The following query example shows that we can use one loca function
(name( Cheni cal Entity)) and one attribute of the relational table (di pol e_nonent) in the same
query transparently:

sel ect nane(0), di pol e_nonent (o) from organi cs o;

For a fuller description of the functions available for the Amos Il odbc_ds data type, see the
Amos Il User's Manual (Flodin et al 2000).

#0In this and the following examples it is assumed that the scripts “protl chemicaentity.amosgl” and
"protl_chemicalentityExamples.amosgl” have been run. Alternatively, the following definitions and instantiations
can been made:

create type Chemical Entity properties ( nane charstring key );

create Chem cal Entity (nane) instances

:met hanol ("nethanol"), :ethanol ("ethanol"), :methane ("methane");
create Chemical Entity (nane) instances
ciodide ("I-"),:triiodide ("(13)-"),:iodine ("12");
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G.4 Data Integration by Integration Union Types

An integration union type (IUT) is a supertype of several existing types. Suppose, for example,
that we wish to import the two external tables O gani ¢c_Conpounds and | nor gani ¢_Conpounds,
and then make a union Conpounds of them. We can then use the latter type, Conpounds,
transparently as an Amos |1 type?®’. This should be fairly simple since we expect no semantic
heterogeneity between them (see, however, footnote 282). It might also be useful to integrate this
type Conpound with the loca type Chenical Entity, but then quite a lot of reconciliation
between the schemas has to be made.

The use of integration union types (IUTs) in Amos Il is technically a bit more complicated than
the use of derived types. At the present status of Amos Il IUTs are mainly intended for
integrating data from two or more externa data sources. The scenario described by Risch and
Josifovski (2001) isthat data from two relational databases should be integrated. Each database is
being wrapped by an Amos Il mediator and a third mediator imports the types of the two
mediators, and integrates them, possibly together with alocally stored type, asan [UT.

The demonstration example given below integrates data from two relational tables of the same
database as one IUT. Thus, only two mediators are used:

* "Mediator_ChemData" wraps the ODBC data source (a "trandator”, cf. Figure 10). This
mediator imports the two tables of organic and inorganic substances from the MS Access
database. When it is running, it listens for clients. The mediator also functions as nameserver.

e "Integrator”" creates an IUT from two proxy types which represent the two wrapped tables.
The "Integrator” first registers with the nameserver, and then imports types from the mediator
of the ChemData database:

i mport _db(' Medi at or _ChenData');
i mport _type(' Organi c_Conpounds_ds', 'Mediator_ChenData');
i mport _type('Ilnorgani c_Conpounds_ds', 'Mediator_ChenData');

We can now create the integration union type. (Only a subset of the columns in the external
database tables were used for this demonstration example.)

create derived type Conpounds
key charstring substance
supertype of
Or gani ¢c_Conpounds_ds@redi at or _ChenDat a oc
I nor gani c_Conpounds_ds@redi at or _ChenDat a i oc
functions
( nane charstring, u_formula charstring,
u_solubility real, u_dipole_nonent real )
case oc:
nane = substance(oc);
u formula = fornul a(oc);
u_solubility = 0.0;
u_di pol e_nmonment = di pol e_nonent (oc) ;
case ioc:
nane = substance(ioc);
u formula = fornul a(ioc);
u_solubility = solubility(ioc);
u_di pol e_nmonment = di pol e_nonent (i oc) ;
case oc, ioc:

%L Since IUTs and DTs are based on Amos | proxy typeit is presently not possible to update the data source.

subst ance(oc),
subst ance(i oc)
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nane = substance(ioc);

u formula = fornul a(i oc);

u solubility = solubility(ioc);

u_di pol e_nmorent = di pol e_norent (i oc) ;
end functions
properties (CAS nr charstring);

Now we can query the two M S Access tables as one single Amos 1 type.

sel ect nane(c), u_formula(c), u_dipole noment(c)
from Conmpounds ¢ where u_dipol e nonent (c¢) > 10. 0;

In the definition of the IUT we first declare two proxy types to use, then list a few functions the
IUT should have, and then give implementations for the functions. (In the present case the two
tables are expected to be non-overlapping, so "case oc, ioc" will likely never occur®®?.)
Finaly, there is a possibility to define new attributes to an IUT, i.e. attributes existing in neither
of the data sources (CAS_nr above).

Note that | have chosen to set the solubility to zero for organic compounds in the example. Since
the table does not list water solubilities for organic compounds an alternative would be to set all
such attributes to nul | . However, then the inorganic and organic compounds would be treated
unequally. The data source for inorganic compounds actually has a lot of nul | values in the
solubility column, but these are set to 0.0 when imported through the ODBC wrapper®®. Hence,
if a missing solubility in the inorganic compounds data source results in 0.0 for the IUT, then so
should all missing organic compound solubilities.

It is worth noting that | have not managed to create an IUT from one proxy type and one (local)
stored type. This seems not possible in the present Amos Il version. |.e, it is not possible to
create an IUT of Cheni cal Entity and Organi ¢_Conpounds_ds@edi at or _ChenDat a. In order
to do that we need to have Cheni cal Enti ty in another mediator. Then, we could import two
types, and construct an IUT of them. Neither isit possible to create an IUT from a stored type and
a proxy type for an imported table (i.e. importing the table directly, and not going via a second
mediator). It is possible, however, to create an integration union type from two stored types. This
is probably of little practical use, since it is easier to use the inheritance primitives of the type
system.

%2 pctually, in the tables that were used to popul ate the database (Aylward and Findley 1994) a few substances exist
as inorganic as well as organic compounds (e.g. CCl,). Interestingly, the data are heterogeneous in two ways. (1)
Some molecular properties are given with a higher precision in the table of organic compounds, and (2) the thermo-
chemicd data refer to the gas phase and to the standard state a 25 °C for organic and inorganic compounds,
respectively. In the terminology of section 4.3.3, case (1) is a "data conflict” (the two data sources have different
vaues), and case (2) is a "semantic conflict" (different meaning of the same concept). Thus, even the task of
integrating data from two tables of the same data source could be quite demanding.

3 When exectiti ng an SQL command through the ODBC API, we have the possibility to exclude null values:
sql 2('ds',"'select substance, formula, solubility from inorganic_conmpounds

where solubility <> null',{},10); A corresponding possibility does not seem to exist when going
through the ODBC wrapper.
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