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ABSTRACT

In a multidatabase system it is possible to access and update data residing
in multiple databases. The databases may be distributed, heterogeneous,
and autonomous. The first part of the thesis provides an overview of differ-
ent kinds of multidatabase system architectures and discusses their relative
merits. In particular, it presents the AMOS multidatabase system architec-
ture which we have designed with the purpose of combining the advantages
and minimizing the disadvantages of the different kinds of proposed archi-
tectures.

A central problem in multidatabase systems is that of data model heteroge-
neity: the fact that the participating databases may use different conceptual
data models. A common way of dealing with this is to use a canonical data
model (CDM). Object-oriented data models, such as the AMOS data model,
have all the essential properties which make a data model suitable as the
CDM. When a CDM is used, the schemas of the participating databases are
mapped to equivalent schemas in the CDM. This means that the data model
heterogeneity problem in AMOS is equivalent to the problem of defining an
object-oriented view (or object view for short) over each participating data-
base.

We have developed such a view mechanism for relational databases. This is
the topic of the second part of the thesis. We discuss the relationship
between the relational data model and the AMOS data model and show, in
detail, how queries to the object view are processed.

We discuss the key issues when an object view of a relational database is
created, namely: how to provide the concept of object identity in the view;
how to represent relational database access in query plans; how to handle
the fact that the extension of types in the view depends on the state of the
relational database; and how to map relational structures to subtype/super-
type hierarchies in the view.

A special focus is on query optimization.





Preface

The thesis consists of two parts. The first part gives an overview of differ-
ent kinds of multidatabase system architectures and discusses their relative
merits. In particular, it presents the AMOS multidatabase system architec-
ture, which we have designed with the purpose of combining the advan-
tages and minimizing the disadvantages of the different kinds of
architectures.

A central problem in multidatabase systems is that of data model heteroge-
neity; the fact that the participating databases use different conceptual data
models. Most systems use a canonical data model (CDM) to handle this.
When this approach is used, the schemas of the participating databases are
mapped to equivalent schemas in the CDM. These schemas can be seen as
views of the underlying databases.

A view is a logical description of data which is derived from some other
logical description of data. Views are sometimes called virtual databases,
since no data is stored in a view. All commands against a view are trans-
lated into commands against the underlying schema according to some
mapping between the view and the underlying schema. The fact that the
view is a virtual database is transparent from users. It behaves just as if it
had been the conceptual schema of a physical database. There may be sev-
eral layers of views, i.e. views may defined over other views.

The most common usage of views is the external schema level in the ANSI/
SPARC three-level architecture. Here, the purpose of the view is to hide
some information from a user group, and/or to provide them with a trans-
formed view of data which better suits their needs. The data model of the
view is always the same as the data model of the schema it is defined over.

When views are used in multidatabase systems, the data model of the view
may be different from the data model of the underlying schema. The pur-
pose of defining views in the CDM is to give users a common interface to
different kinds of databases.

Traditionally, most multidatabase systems have used the relational data
model as the CDM. Nowadays, it is generally agreed that the CDM should
be semantically richer than the relational data model. Otherwise it may not
be possible to capture all the semantics of the participating databases. The
data model we use as the CDM in AMOS is a functional and object-ori-
ented data model. We will show that it has all the essential properties which
make a data model suitable as the CDM.

When an object-oriented data model is used as the CDM, the data model
heterogeneity problem is equivalent to the problem of defining object-ori-
ented views (or object views for short) over each of the participating data-
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bases.

The current database market is totally dominated by relational databases,
which makes object views of relational data particularly important. This is
the topic of the second part of the thesis.

An object view of a database means that its data can be accessed as if it was
stored in an object-oriented database. The term ’object-oriented database’
has been used for very different things. Commercially available object-ori-
ented databases can usually be characterized as ’persistent C++’. The query
languages of these products are usually very simple, and the basic para-
digm for access to data is navigational. Research prototypes of object-ori-
ented databases have concentrated more on providing query languages that
are at least as powerful as SQL (i.e. ’relationally complete’). When we use
the term ’object-oriented database’ in this thesis, we mean the latter type of
systems, unless otherwise stated.

Contributions
The first part of the thesis gives an overview of multidatabase system archi-
tectures and terminology. It discusses the relative merits of the architecture
alternatives. In a way it also serves as a ’meta-overview’, since it compares
existing overviews of the area and the often confusing conflicts in terminol-
ogy used by different authors. We also introduce the AMOS multidatabase
system architecture, which is not really a new architecture, but rather a
combination of some of the existing ones.

The main contribution of the thesis is the second part, in particular the dis-
cussion on how to process and optimize queries against an object view of
relational data. The relationship between the relational data model and
object-oriented data models is fairly well understood, and quite a lot of
work has been done on how to transform relational schemas into schemas
in an object-oriented data model. However, we are not aware of any work
which discusses query processing and optimization for such view mecha-
nisms.

A normal form for representing subtype/supertype relationships in rela-
tional schemas is introduced. The use of the normal form greatly simplifies
the mapping between the relational database and the object view.

The thesis shows how the concept of object identity can be provided in the
object view. It presents a way to represent relational database access in
query plans which makes it possible for the query optimizer of the object
view mechanism to generate optimal execution strategies. It also shows
how one can handle the fact that the extension of types in the object view
depends on the state of the relational database.

Delimitations
The presentation is kept informal throughout the thesis. We do not attempt
to prove the equality of the semantics of the object view and the relational
database. The purpose has been to present the intuition behind query
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processing techniques in the object view, and we often rely on examples to
do this.

We do not discuss updates to the view, only retrievals. We do not discuss
optimization of recursive queries against the view. And types in the view
can only have one direct supertype, i.e. we do not discuss multiple inherit-
ance in the object view.

Thesis Overview
The dependencies between the sections of the thesis are shown in the figure
below. It should be possible to read the two parts independently of each
other, with one exception: The AMOS data model and query language
which are used in the examples throughout the second part are introduced
in sections 6.1 and 6.2. These sections should be read before part two.
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1 Introduction

A multidatabase system is a system where it is possible to access and
update data from multiple databases. The databases may be distributed, i.e.
they may reside on different nodes in a computer network. They may be
heterogeneous, i.e. different data models and query languages may be used,
and even if this is not the case, they may be semantically heterogeneous.1

And they may be autonomous, i.e. they may be managed independently of
each other by separate organizations who wish to retain complete control
over data and query processing at their site.

Multidatabase systems started to attract attention in the early 80’s, when
the limitations of conventional distributed database systems were realized.
Conventional, homogeneous, distributed database systems are conceivable
if you can build your information system from scratch. However, this is
rarely possible. Most organizations have several existing databases of dif-
ferent kinds which are used by a large number of applications. These appli-
cations are often crucial to the organization’s day-to-day work and it is very
difficult, if not impossible, to replace these old systems with new technol-
ogy without causing major disturbances.

And even if the information system can be built from scratch, you may not
want to run all applications against a single, homogeneous database system.
If the amount of information is large, it may be impractical to organize all
data according to a single schema. And different kinds of database systems
differ in their suitability for different applications. For example, a rela-
tional database may be the best choice for an administrative application, an
object-oriented (OO) database may be best for an engineering application,
and a hard real-time application may require some special data manage-
ment. Still, it is sometimes desirable to use data from these different data
sources together. They must somehow interoperate. This is the motivation
for multidatabase systems.

We will use the term component databases when referring the databases
that participate in a multidatabase system.

The rest of this part (I) of the thesis is organized as follows.

An overview of multidatabase system architectures is given in section 2.
Section 3 discusses terminology and standards in the area of multidatabase

1. Semantic heterogeneity arises because there are always multiple ways to model some
information, even if the same data model is used. For example, identical objects could
have different names, they could be modelled using different schema constructs, there
may be different levels of abstraction, different currencies could be used to represent
prices, etc.
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systems. Section 4 gives a short introduction to the problems of integrating
existing information systems in multidatabase systems and presents state-
of-the-art for commercially available multidatabase systems. Section 5 dis-
cusses the role of the canonical data model (CDM) and what properties a
data model should have to be suitable as a CDM. The AMOS multidatabase
system architecture, the AMOS data model, and the AMOS query language
are presented in section 6. Finally, section 7 gives a summary of this part of
the thesis.



2 Overview of
Architectures

This section gives an overview of possible architectures for multidatabase
systems. Section 2.1 presents the main alternatives. They are all based on a
canonical data model (CDM) and different kinds of non-materialized
views. Section 2.2 discusses the differences and similarities between multi-
database systems and conventional distributed database systems. Snapshots
and materialized views are discussed in section 2.3. Multi-lingual
approaches, i.e. when different languages can be used to access data, are
discussed in section 2.4. Section 2.5 concerns architectures that do not use
a CDM. Finally, section 2.6 discusses combinations of the ’pure’ architec-
ture alternatives.

2.1 Main alternatives
The architectures presented in this section can be regarded as the main
alternatives for multidatabase system architectures. They have all in com-
mon that they use a canonical data model (CDM) to handle the problem of
data model heterogeneity, and that users access the component databases
through different kinds of non-materialized views. Queries and updates
against these views are translated to queries and updates against the under-
lying views/schemas. The difference between the architectures lies in what
kinds of views are provided, and in who is responsible for providing and
maintaining these views.

An overview of the schema architectures of the different approaches is
given in figure 1. It shows the schema architecture in a situation where
users at three sites (A, B, C) access data from three data sources.2 The
terms local schema, component schema, and federated schema follow the
terminology from [56], which is further discussed in section 3.3

2. The sites of the data sources need not be distinct from the sites of the users. The data
sources may be local databases of the users at sites A, B, and C respectively.
Figure 1, as well as all other illustrations of schema or software architectures in this paper,
shows human end-users using the different types of schemas directly (ad hoc usage). In
reality, the direct user of a schema will often be an application program. Human end-users
access data through the user interface of the application program. An application pro-
gramming interface is provided to developers of application programs.
3. For ease of discussion, we do not use the concepts of export schema and external
schema from [56] in this paper. See section 3.
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Figure 1: Schema architectures for the multidatabase system architectures dis-
cussed in section 2.1: (1) Global Schema, (2) Multiple Integrated Schemas, (3) Fed-
erated, and (4) Multidatabase Language. Users at sites A, B, and C access data from
three data sources. The Local Schemas are expressed in different data models. Com-
ponent Schemas and Federated Schemas are expressed using the CDM.

A local schema is the conceptual schema of a component database system.
Since the component database systems may use different data models, the
local schemas may be expressed in different data models.

For each local schema, there is a corresponding component schema. The
component schema represents the same information as the local schema,
but the CDM is used instead of the data model of the component database
system. A query against a component schema is translated to queries
against the underlying local schema. The results of these queries are then
processed to form an answer to the initial query. All component schemas
are expressed in the CDM.

A federated schema is an integration of multiple component schemas [6]. It
makes it possible to access data from multiple databases as if it was stored
in a single database. A query against a federated schema is translated to
queries against the underlying component schemas. The results of these
queries are then processed to form an answer to the initial query. All feder-
ated schemas are expressed in the CDM. We will use the term integrated
schema synonymously with federated schema.

Note that the boundaries between the architectures discussed here are not
completely distinct. To some extent, they can be seen as a continuum from
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relatively tightly coupled systems (the global schema approach) to very
loosely coupled systems (the multidatabase language approach). It is also
attractive to have an architecture that is a combination of some of the
approaches discussed here. Indeed, this is the case of the AMOS architec-
ture which will be described in section 6. However, to discuss the proper-
ties of possible architectures, we have found it useful to distinguish
between four different kinds of architectures.

The terms used in this paper for these approaches are (1) Global Schema,
(2) Multiple Integrated Schemas, (3) Federated, and (4) Multidatabase
Language. Note that the terminology used in the area of multidatabase sys-
tems is rather confused and inconsistent. For example, the term ’federated
database system’ has sometimes been used for a much wider class of sys-
tems than here. Section 3 gives an overview of the terminology used in
other papers for the architecture alternatives discussed here.

Recall that one of the motivations for multidatabase systems was that exist-
ing applications which use a component database must continue to function
without change when that database starts to interoperate with other data-
bases. These applications will access the component databases directly
through a local schema. This kind of access is not represented in figure 1.

2.1.1 Global Schema

In the global schema (or single integrated schema) approach, all compo-
nent schemas are integrated into a single federated schema.4 The federated
schema is maintained by a multidatabase administration.5 The federated
schema is available to all users of the multidatabase system, and all access
to the component schemas must go through the federated schema.

The global schema approach has been criticized, mainly for violating the
autonomy of the component database systems. Its critics have assumed a
tight coupling between the component database systems, which would
make it similar to a conventional distributed database system.

A tight coupling between the component database systems is possible in the
global schema approach, but not necessary. If the multidatabase system
interacts with the component database systems just like any other applica-
tion would, and there are no global integrity constraints, then the autonomy
of the component database systems is preserved. This is done at the
expense of performance and integrity. Conflicts are allowed to exist
between data in the component databases, but this is somehow resolved in

4. ’Global’ here means ’covering all components’, not ’worldwide’.
5. The multidatabase administration plays a role similar to that of a DBA in a conven-
tional database system. It is responsible for defining the federated schema(s) that it has
agreed to provide. It must accomodate the federated schema(s) when the underlying sche-
mas change.
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the federated schema.

A more serious drawback of the global schema approach is that everything
must be integrated. All structural and semantic conflicts between compo-
nent schemas must be resolved, even for information that may never be
used together. The global schema approach becomes totally infeasible
when the number of component databases is very large.

The disadvantages of the global schema approach makes it unrealistic in
most cases. There are however some advantages which makes it attractive
for small-size systems where a tight coupling is wanted. Once the inte-
grated schema is provided, access is simplified for users. They can work
with data as if it was stored in a single database. Also, the integration solu-
tions are shared - conflicts are resolved once and for all. And integrity can
be enforced by global constraints on the integrated schema.6

2.1.2 Multiple Integrated Schemas

In this approach, the multidatabase administration maintains multiple fed-
erated schemas. Different parts of the component schemas are integrated
into different federated schemas. Users access the component databases
through one of the federated schemas. One federated schema is provided
for each user group, i.e. for each type of integration needs. A federated
schema may be shared by users at different sites.

A federated schema here provides an integrated view of those parts of the
component schemas that are of interest to a particular user group, and noth-
ing more. That is, integration solutions must be found only for information
that is known to be used together. This is different from the global schema
approach where everything has to be integrated. Different federated sche-
mas can exist for the same set of component schemas.

What makes the global schema approach something more than a special
case of this approach is that in the global schema approach the possibility
exists to have a more tight coupling between component database systems.
A single federated schema is a prerequisite if global integrity constraints
are to be maintained.

2.1.3 Federated

The term federated database system was introduced by Heimbigner and
McLeod in [30]. This term has later been used for a much wider class of
systems than originally, sometimes as a synonym to ’multidatabase sys-
tem’. In this paper, it is used solely for the kind of architecture described in
[30].

The federated approach is similar to the previous approach (multiple inte-

6. At the expense of the autonomy of component database systems.
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grated schemas), and the difference is more organizational than technical.
A federated database system is more loosely coupled since no multidata-
base administration is involved. It is the responsibility of the users (or the
DBA) at each site to develop and maintain the federated schemas.

Using the terminology of [30], each participating database system provides
an export schema which describes the data it wishes to share with others.
This corresponds to what is called a component schema in this paper. A
user who wishes to access data from foreign databases first has to define an
import schema. The import schema is an integrated view of those parts of
the different export schemas that are of interest to the user. All subsequent
access to the foreign databases goes through the import schema. The import
schema corresponds to what is called a federated schema here.

Since the federated schemas are provided by users or DBAs, rather than by
a global administration, they can not be shared by users at different sites.
They can, however, be shared by users at the same site.

2.1.4 Multidatabase Language

The multidatabase language approach is different from the previous
approaches in that users do not access data through an integrated schema.
They know that they are working against multiple databases (there is no
mechanism which makes this transparent). Instead, the data manipulation
language they use provides constructs to access and combine data from
multiple databases.

Multidatabase languages were originally discussed in a context where all
component databases were relational, i.e. no component schema was
needed since all component databases used the same data model [43]. Some
recent work discusses multidatabase languages where all component data-
bases are object-oriented [46]. The concept of multidatabase languages can
easily be extended to handle data model heterogeneity by adding the layer
of component schemas (as in figure 1).

In the ’pure’ multidatabase language approach, which is the one considered
here, the language does not allow users to create views over multiple data-
bases. If the multidatabase language does provide view definition capabili-
ties, the boundary between this approach and the federated approach starts
blurring. It may even be argued that a (very short-lived) view is created
every time a query in the multidatabase language is formed.

2.1.5 Comparison of architectures

As mentioned above, the boundaries between these architectures are not
completely distinct. The global schema approach is to some extent a special
case of the multiple integrated schemas approach. On the other hand,
depending on the degree of autonomy and heterogeneity of the component
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Table 1: Comparison of multidatabase system architectures. The highest grade is 3,
the lowest grade is 1.

database systems, a global schema system may be very close to a conven-
tional distributed database system. The difference between the federated
and multiple integrated schemas approaches is more organizational than
technical. And if the multidatabase language provides view definition capa-
bilities, the federated approach begins to look like a subset of the multida-
tabase language approach.

A comparison of the architectures is given in table 1. We have listed nine
desirable properties of multidatabase systems and estimated to what extent

a. This is related to the previous aspect - ’conflicts resolved’. By resolving conflicts
between component databases, such as naming conflicts or inconsistent values, some
information is lost in the integrated view. Hence, a high grade for ’conflicts resolved’
gives a low grade here, and vice versa.

(1)

Global
Schema

(2)

Multiple
Integrated
Schemas

(3)

Federated

(4)

Multidata-
base

Language

Integrated schema - sim-
pler access

3 3 3 1

Consistency can be
maintained

3 1 1 1

Sharing of integration
solutions

3 3 2 1

Possible for large sys-
tems

1 3 3 3

Only relevant informa-
tion integrated - integra-
tion needs need not be
decided in advance.

1 2 2 3

Conflicts resolved 3 3 3 1

No information is hid-
den by integrationa

1 1 1 3

No global administration
is needed

1 1 3 3

Flexible 1 2 2 3
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the different approaches hold these properties. The highest grade given is 3,
the lowest is 1. It is not a good idea to calculate the sum of two columns
and come to the conclusion that one of the approaches is better than the
other. The grades should be seen as an illustration of the strengths and
weaknesses of the different approaches. A better idea is to observe that no
approach has higher grades for all aspects, and come to the conclusion that
which approach is the best depends on the circumstances. Or that a combi-
nation of some of the approaches may be attractive.

2.2 Distributed databases
A conventional distributed database system (DDBS) [53] can be seen as a
special case of the Global Schema approach discussed in section 2.1.1.

An important difference between a multidatabase system (MDBS) and a
DDBS is the order in which the integrated schema and the conceptual sche-
mas of the component databases (the local schemas) are created. In a
DDBS, the integrated schema is designed first. This is then split up (frag-
mented) to schemas which will be the conceptual schemas of the compo-
nent databases. In a MDBS, the local schemas are developed first and
independently of each other. They must then undergo a schema integration
process and the resulting integrated schema must be defined as a view over
the local schemas. In other words, DDBSs are developed top-down whereas
MDBSs are developed bottom-up.

DDBSs are homogeneous - the same data model and access language is
used for all component databases. In a MDBS, the component database sys-
tems may use different data models and access languages. Due to the fact
that the component databases are developed independently of each other,
MDBSs must also deal with semantic heterogeneity (see footnote 1 on page
3).

A Global Schema MDBS has two kinds of users; some access data directly
through a local schema and some access data through the federated schema.
In a DDBS, there are no ’local’ users. All access goes through the inte-
grated schema.

The component databases in a Global Schema MDBS may be autonomous -
they may want to retain complete control over data and query processing at
their site. In that case, global integrity constraints and low level coordina-
tion of query processing is not possible the way it is in a DDBS.

2.3 Snapshots and materialized views
A central problem in the architectures described in section 2.1 is how to
transform and optimize commands against the different types of views into
commands against the underlying schemas/views. A query against a feder-
ated schema must be split into multiple queries against the underlying com-
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ponent schemas. A query against a component schema must be translated to
queries in the language of the component database system.

A simple solution to the problem is to use snapshots. Data is copied from
the underlying database(s) and transformed into the target schema once and
for all. Subsequent commands can be processed directly using the copied
and transformed data, without any data or command transformations.

This approach is often taken in real settings today. For example, if data
from a hierarchical database is to be combined with data from a relational
database, the first step is to make a copy of the hierarchical data and trans-
form it to relational structures. These relational structures can then be used
together with data from the relational database.

The obvious problem with this approach is that the copied data will become
obsolete. Changes to data in the component databases are not reflected in
the copies.

Snapshots may still be useful in some situations, especially to improve per-
formance. An interesting idea is to combine snapshots with an active data-
base mechanism [28] [58]. Active rules in the underlying database are
defined to trigger when changes occur that affect data that has been copied.
The snapshot is then automatically updated to reflect these changes. The
usual term for this kind of mechanism is a materialized view [27].

2.4 Multi-lingual approaches
In the architectures in section 2.1.1-2.1.3, users access data through differ-
ent kinds of federated schemas, expressed in the canonical data model. The
language used is that of the canonical data model. It is possible to introduce
an extra schema layer, on top of the federated schema layer, in which the
schemas are expressed in different data models (see figure 2a). Users who
are accustomed to a specific data model could then access data through a
schema expressed in that specific data model, and could use a language that
they are familiar with [13] [31]. They would not have to learn a new lan-
guage (the language of the CDM).

The drawbacks of this approach are that it increases the complexity of the
system (another layer is added), and that some information may be lost. An
important quality of the CDM is that it is expressive enough to capture the
semantics of all the component databases. If the data model of the user’s
choice provides less semantic modelling constructs than the CDM, some
information will be lost.
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Figure 2: Schema architecture of a Multi-lingual system using the Global Schema
approach. Users access data through External Schemas which are described in a
data model of the user’s choice. Different users prefer different data models. (a)
With the use of a CDM. (b) Without the use of a CDM. Compare with figure 1.

2.5 No canonical data model
A central problem in multidatabase systems is how to map data and com-
mands between different data models and languages. The use of a CDM
reduces the complexity of this problem. Assume that there are m source
data models and n target data models in a multilingual system. If a CDM is
used, the number of data-model-to-data-model mappings needed is m+n
(the source data models and the target data models must all be mapped to
the CDM). Without the use of a CDM, the number is m*n (all source data
models must be mapped to all target data models). See figure 2b.

In some sense the absence of a CDM increases the flexibility of a multida-
tabase system, but it comes at the expense of complexity and duplicated
work. The number of data-model-to-data-model mappings increases. Inte-
gration solutions (conflict detection and resolution) can not be shared but
must be worked out again and again, and in different ways for each data
model.
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When the number of component systems is very small, and no new compo-
nents are expected to be added, the use of a CDM may not be needed. A
more ad hoc, point-to-point, mapping solution may be justified.

Some work advocates a very flexible type of architecture, in which no inte-
gration solutions are worked out in advance [52]. In this sense it is similar
to the multidatabase language approach, but here the user does not have to
worry about semantic conflicts between component databases. All integra-
tion is done by the system (at query time). Semantic knowledge available at
query time is used to decide what queries should be sent to what component
systems, and how conflicts should be resolved. This includes both data
model conflicts (no CDM is used) and semantic conflicts. It is not clear to
us how queries are formulated against this type of system. Presumably a
very high-level, data model independent language is used (natural lan-
guage?).

2.6 Combinations
As discussed in section 2.1, there are pros and cons of each of the different
architectures. There is no ’best’ architecture; different architectures will be
best suited for different applications and environments.

By having an architecture that is a combination of some of the ’pure’
approaches discussed here, it is sometimes possible to combine the advan-
tages and minimize the disadvantages of the different approaches. For
example, by having a multidatabase language as the base for access, but
still allowing a multidatabase administration to provide integrated schemas,
the flexibility of multidatabase languages is combined with the possibility
to share integration solutions. Another example is to have the query and
data translation approach as the normal case but complement it with materi-
alized views for applications with high demands on performance.

In a situation where different kinds of multidatabase systems coexist, the
next issue is how to make different types of multidatabase systems interop-
erate. Another problem is how to locate information in very large multida-
tabase systems [10].



3 Terminology and
Standards

Terminology in the area of multidatabase systems is rather confused and
inconsistent. Different terms have been used for similar concepts, and iden-
tical terms have been used with very different meaning.

Several overview articles, which all use different terminology, have been
written [11] [31] [44] [56]. The most comprehensive of these, and the one
most commonly referenced, is the one by Sheth & Larson [56]. We try to
follow the terminology from Sheth & Larson and indicate the differences
otherwise.

The term multidatabase system is starting to become a standard term for the
general concept of a system in which it is possible to access data from mul-
tiple databases, which may be distributed, heterogeneous, and autonomous.
This term is also used here. Other terms that have been used for this general
concept include federated database system, heterogeneous database system
and interoperable database system. Note that the terms multidatabase sys-
tem, federated database system, and interoperable database system have
sometimes been used for much more restricted classes of systems.

Sheth & Larson use the term federated database system for a multidatabase
system where the component database systems are autonomous. We do not
use the term federated database system in this wide sense, since it was orig-
inally used for a much more restricted class of system (and still often is).

Figure 3 gives an overview of terms that have been used in other papers for
the four main architecture alternatives described in section 2.1.

Note that in the terminology of [56], a multidatabase system (or federated
database system in their terminology) may be called tightly coupled and
still retain a great deal of autonomy. ’Tightly coupled’ in [56] means that a
multidatabase administration is responsible for maintaining the integrated
schemas. ’Loosely coupled’ means that no multidatabase administration is
needed, it is the responsibility of the local users (or DBAs) to maintain the
integrated schemas.
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Figure 3: Terminology used by different authors for the four architectures dis-
cussed in section 2.1: (1) Global Schema, (2) Multiple Integrated Schemas, (3) Fed-
erated, (4) Multidatabase Language. (a) Sheth & Larson [56], (b) Bright et al. [11],
(c) Litwin et al. [44], (d) Fankhauser et al. [25]

3.1 Reference schema architecture
Sheth & Larson [56] distinguishes between five levels of schemas in multi-
database systems (see figure 4).

A local schema is the conceptual schema of a component database system.
Since the component database systems may use different data models, the
local schemas may be expressed in different data models.

For each local schema, there is a corresponding component schema. The
component schema represents the same information as the local schema,
but the CDM is used instead of the data model of the component database
system. A query against a component schema is translated into queries
against the underlying local schema. The results of these queries are then
processed to form an answer to the initial query. All component schemas
are expressed in the CDM.

For each component schema, one or more export schemas may be defined.
An export schema represents a subset of the component schema. It defines
what part of the component schema is available to a particular group of
users.
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Figure 4: Five-level schema architecture of multidatabase systems (from [56]).

A federated schema is an integration of multiple export schemas. It makes
it possible to access data from multiple databases as if it was stored in a
single database. A query against a federated schema is translated into que-
ries against the underlying export schemas. The results of these queries are
then processed to form an answer to the initial query. All federated schemas
are expressed in the CDM.

For each federated schema, one or more external schemas can be defined.
An external schema represents a subset of the federated schema, and the
schema may be transformed in some ways to suit the needs of a particular
user group. In many ways, it plays the same role as an external schema
(view) in the standard three-level ANSI/SPARC schema architecture [61].
The external schema, as described in [56], may be expressed in a different
data model than the federated schema.
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4 A Look at the Real World

4.1 Legacy systems
In the discussion of multidatabase system architectures above, it was
assumed that data that was to be accessed was stored in DBMSs, and that it
was described by a schema using some data model. This is the best case
when an existing information system is to be included in a multidatabase
system, and is illustrated in figure 5(a). There is a well-defined interface
between applications and data. The use of a DBMS (hopefully) means that
data is well-structured and easy to understand. The multidatabase system
can be seen as just another application accessing the DBMS.

Unfortunately, this ideal situation is not always the case. Most large organ-
izations use information systems that have evolved during a long period of
time. They are typically large, developed using old technology, and very
complex. They are often critical to the organization’s day-to-day work. The
usual term for such information systems are legacy systems. Recent atten-
tion has been given to the problem of replacing these legacy systems with
modern technology, without causing too much disturbances to the organiza-
tions day-to-day work [12].

Figure 5: Best case (a) and worst case (b) for including data from an existing infor-
mation system in a multidatabase system. (a) There is well-defined interface
between applications and data. Data is well-structured through the use of a DBMS.
(b) There is no clear-cut interface between applications and data. The system has
been incrementally extended during a long period of time and has a complex struc-
ture. Data is stored in special-purpose structures, often created ad hoc. It is poorly
documented.
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Figure 5(b) illustrates the worst case for including a legacy system in a
multidatabase system. There is no modularity in the information system, in
particular there is no well-defined interface between applications and data.
Due to the long and incremental development history of the system, it is
very complex and it is hard to get a complete understanding of all its func-
tionality. It is often poorly documented. No DBMS is used for storage and
manipulation of data, instead special-purpose data structures and manipula-
tion procedures are used.

4.2 Commercial state-of-the-art
During the last few years, commercial software that assists in accessing
data from heterogeneous data sources has started to emerge. The usual term
for such software is middleware or gateways [42]. Currently available com-
mercial multidatabase systems are much simpler, and much less general
than the research systems discussed in previous sections.7 None of the
architectures in section 2.1 applies to current commercial systems, since
they are much poorer in terms of integration. Another difference is that the
commercial market for multidatabase systems is totally dominated by the
relational view of data. The aim of most middleware products is to let
applications use different relational databases together [65] [66].

The most advanced middleware products provide an API (Application Pro-
gramming Interface) which gives programmers a uniform SQL interface to
different relational (and some non-relational) databases. Programmers do
not have to worry about different SQL dialects, different APIs, and differ-
ent network protocols. However, the products give very little help with
integration problems. There are no federated schemas, and no real multida-
tabase language. Typically, queries are not allowed to span multiple data-
bases (no joins between tables from different databases are allowed). All
integration has to be performed in the application program. This is usually
what it means when a supplier of middleware claim that they provide
’seamless access to heterogeneous data sources’.

Another large group of related software are data conversion tools [65].
They perform a translation (once and for all) of data from one format to
another. Data can be converted between spreadsheets, different types of
databases, ASCII files, etc.

Some important acronyms are [63]:

SAG (SQL Access Group). This is a consortium of more than 40 leaders in
the database industry. They have among other things developed a standard
for SQL APIs.

ODBC (Open Database Connectivity). This is an API which is a superset of

7. On the other hand, the commercial systems really exist, something which is not always
the case with research systems.
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the SAG API. It has been developed by Microsoft. The ODBC can be used
for all relational DBMSs (for which an ODBC driver exists). A lot of prod-
ucts use ODBC, also from other vendors than Microsoft.

IDAPI (Integrated Database Application Programming Interface). This is a
competing standard for SQL APIs, which is to be released by Borland. It
contains different extensions to the SAG API.
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5 Canonical Data Model

Different data models are differently suitable as the CDM in multidatabase
systems.8 During the 80’s, the relational data model was very dominantly
used as the CDM, although some projects used the E-R model or a func-
tional data model. As will be shown in this section, the relational data
model is not very suitable as CDM. Recent research often use an object-ori-
ented data model as the CDM, which is much more promising.

The most important property of a CDM is its semantic expressiveness, i.e.
what constructs it provides for modelling data. There are two main reasons
for this:

• It must be possible to capture all of the semantics of the data sources in
the CDM. Ideally, the expressiveness of the CDM should be greater than,
or equal to, the expressiveness of all the data models of the component
database systems. Otherwise, some information will be lost when data is
transformed to the CDM.

• Semantically rich schemas makes interdatabase correspondences easier
to find. If the CDM is semantically richer than the data model of a com-
ponent database system, the transformation of data to the CDM includes
a semantic enrichment process [14]. The more expressive the CDM is,
the more semantics it is possible to capture in a component schema. This
makes it easier to understand the relationship between different compo-
nent schemas, which simplifies subsequent integration.

Different so called semantic data models, data models with great semantic
expressiveness, have been proposed since the 1970’s. They have mainly
been used as a database design tool, not as the conceptual data model of
DBMSs. With object-oriented DBMSs, this is starting to change.

Section 5.1 gives an overview of semantic modelling constructs. Section
5.2 discusses other aspects which concern the suitability of data models as
the CDM.

8. Sometimes the term ’data model’ is used for a schema modelling a specific domain, e.g.
’the marketing data model’. This is not what is meant by a data model in this thesis. Data
model, as the term is used here, means ’a set of concepts that can be used to describe the
structure of a database’ [23]. Examples of data models are ’the relational data model’ and
’the E-R data model’.
Another question is whether the operations operating on data are a part of the data model,
e.g. whether SQL or the relational algebra can be considered part of the relational data
model. Usually, the operations are considered part of the data model, but not a necessary
part. For example, the E-R data model is useful without operations during database
design. This is also the view taken here.
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5.1 Semantic modelling constructs
Providing constructs for conceptual modelling of a domain is central to
both artificial intelligence, databases, and programming languages. Some
semantic modelling constructs keep recurring in all these areas. We have
classified them in two categories; essential and complementary. Essential
constructs are the most important. They are a part of practically all high-
level (semantic) data models [5] [16] [32] [55]. The complementary con-
structs make it possible to capture even more of the semantics of a domain
in the database, but they are not used as extensively as the essential con-
structs.

5.1.1 Essential

Types and instances. Objects which share structure and behaviour (for
example, all documents have a title and an author, and they can be printed)
can be grouped together. The common structure and behaviour is defined
by a type. Objects are instances of types (for example. the thesis you read-
ing right now is an instance of the type document). Sometimes the terms
classes and individuals are used instead of the terms types and instances.9

A related concept is that of object identity. Each object has a unique, immu-
table identifier which can always be used to refer to it. This means that
objects have an existence which is independent of the values of their
attributes, something which is different from value-based data models such
as the relational data model.10

Generalization/specialization. Types can be organized as subtypes/super-
types to each other. For example, the type conference paper is a subtype of
the type document.11 The subtype inherits all the properties of the super-
type, and may have additional properties that the supertype does not have.
For example, conference papers have all the properties that documents
have, but they also have the property ’published in’, which gives the con-
ference proceedings that the paper was published in. A particular confer-
ence paper is an instance of the type conference paper, and it is also
(because of the subtype/supertype relationships) an instance of the type

9. Sometimes the terms ’type’ and ’class’ are used as synonyms, sometimes they are dis-
tinguished from each other (with subtle differences). Often, ’type’ refers to the intension
of a group of objects (much in the same way as an abstract data type in programming lan-
guages), whereas ’class’ refers to the extension.
10. If two tuples in the relational data model have the same value for all attributes, the
tuples are considered identical.
11. And document is a supertype of conference paper. Another way to put it is that confer-
ence paper is a specialization of document, and that document is a generalization of con-
ference paper.
The subtype/supertype relationship between types is often called the is-a relationship (a
conference paper ’is a’ document).
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document (and all of its supertypes).12

Complex objects. Complex objects can be built by applying constructors
to other objects. The two most important ways of building complex objects
are through aggregation and grouping.

Aggregation (also called ’cartesian aggregation’) means that a new type is
created as the cartesian product of other types. For example, the type
’address’ is an aggregation of the types ’city’, ’street’, and ’zip code’.
Complex objects of this kind are created by applying the tuple or record
constructor on existing objects.

Grouping (also called ’collection’, ’association’, or ’cover aggregation’)
means that a set of objects of some existing type are grouped together. For
example, the ’drives’ attribute of a person is a set of objects of the type
’car’. Complex objects of this kind are created by applying the set or bag
constructor on existing objects.

5.1.2 Complementary

Different kinds of generalization/specialization. It is possible to distin-
guish between different kinds of generalizations/specializations [23]. A
generalization/specialization can be disjoint or it can be overlapping. It is
disjoint if all the subtypes are disjoint (an object can be an instance of only
one of the subtypes). Otherwise, it is overlapping. For example, consider a
type employee which has two subtypes - secretary and salesman. The gen-
eralization/specialization is disjoint if it is impossible for an employee to
be both a secretary and a salesman. If it is possible to be a secretary and a
salesman at the same time, then the generalization/specialization is over-
lapping.

A generalization/specialization can also be total or partial (this is orthogo-
nal to the disjoint/overlapping criterion). It is total if every instance of the
supertype must also be an instance of some of the subtypes. Otherwise, it is
partial. For example, if it is impossible to be ’just an employee’ (there are
no direct instances of the type ’employee’), one must be either a secretary
or a technician, then the generalization/specialization is total. If it is possi-
ble to have direct instances of the type employee, then the generalization/
specialization is partial.

Multiple inheritance. Multiple inheritance is supported if a type can have
more than one supertype. For example, the type teaching assistant is a sub-
type of both student and teacher.

Other types of complex objects. By applying other constructors, different
types of complex objects than the ones described above can be created. An

12. These different kinds of instance-of relationships can be distinguished by saying that a
conference paper is a direct instance of the type conference paper, whereas it is an
instance by generalization of the supertypes of conference paper.
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example of this is grouping with order. By applying the list or array con-
structor on existing objects, it is possible to capture the concept of order
between objects.

Part-of semantics. Sometimes when a complex object references another
object, the relationship between the objects may be characterized as a part-
of relationship (the referenced object is ’part of’ the complex object) [37].
An object that is built up from other objects through part-of relationships is
sometimes called a composite object. Part-of references have different
semantics than ’general’ references. For example, two of the attributes of a
car object are ’engine’ (an instance of the type engine) and ’owner’ (an
instance of the type person). The ’engine’ attribute is a part-of reference.
The ’owner’ attribute is a general reference. If the car object is deleted, the
engine object should also be deleted, whereas the person object should not.

5.2 Other aspects
The suitability of different data models as CDM is discussed by Saltor et al.
in [55]. Besides semantic expressiveness, they mention semantic relativism
as an important property of the CDM. By semantic relativism of a data
model they mean ’the power of its operations to derive external sche-
mas’.13 The relational data model is an example of a data model with high
semantic relativism, since a powerful view definition capability is provided
(e.g. in SQL).

If the five-level schema architecture of [56] is used (see section 3), the
view definition capabilities of the CDM must be used for the export sche-
mas and the external schemas. To define a federated schema, it must also be
possible to define a view over multiple export schemas. Note that using a
declarative view definition language (like SQL) is only one of the possible
approaches for this. In [50], a ’step-by-step’ editing process is used to
transform the export schemas into a federated schema. The mapping
between the federated schema and the export schemas is derived from the
editing process. In [59], a semi-automatic process is used, in which the
DBA declares what correspondences exist between objects in different
export schemas. These correspondences are then given as input to a tool
which automatically creates the federated schema and the mappings
between it and the underlying export schemas.14

In the context of semantic relativism, Saltor et al. also mention the advan-
tage of having a single basic modelling construct. The relational data model
is good in this respect, since the relation is the only modelling construct.
The E-R model is bad in this respect, since there are two basic constructs;
entities and relationships. This causes problems during schema integration,

13. The term ’external schema’ is used in the ANSI/SPARC architecture [61] sense.
14. The DBA assists the tool when it faces unresolvable conflicts.
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since an object may be modelled as an entity in one schema and as a rela-
tionship in another schema. We believe that having a single basic modelling
construct is not so important. It may simplify schema integration to a small
extent, but the problems of semantic heterogeneity will always exist. A sin-
gle fact may always be modelled in many different ways, even if there is a
single basic modelling construct. For example, in [35] Kent describes 36
ways to model the simple fact that salesmen serve territories in a relational-
like data model.
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6 The AMOS
Multidatabase System

As discussed in section 2.1, there are advantages and disadvantages of all
the ’pure’ architecture alternatives. The AMOS architecture is an attempt to
combine the advantages of the different approaches while minimizing the
disadvantages.15 Using the terminology from section 2.1, the AMOS archi-
tecture is a combination of the multiple integrated schemas approach, the
federated approach, and the multidatabase language approach.16

The schema architecture and software components of AMOS are described
in section 6.1. The AMOS data model, which is used as the CDM, is a func-
tional and object-oriented data model. Section 6.2 presents the structural
part of the AMOS data model. Operations on data (the AMOSQL language)
is described in section 6.3. Section 6.4 discusses the suitability of the
AMOS data model as a CDM by comparing it to the criterions given in sec-
tion 5.

6.1 Architecture
Figure 6 shows the AMOS schema architecture. The project concentrates
on the two most important types of mappings - the ones providing the com-
ponent schemas (mappings from different data models to the CDM) and the
ones providing the federated schemas (mappings from multiple schemas in
the CDM to an integrated schema in the CDM). Therefore, the export and
external schema levels from Sheth & Larson (see section 3.1) are not
included in the AMOS architecture.

The local schemas are expressed using the data model of the component
database systems. A component schema represents the same information as
the underlying local schema, but the CDM is used instead of the data model
of the component database system. A federated schema is an integration of
multiple component schemas.

15. AMOS (Active Mediators Object System) [24] is an umbrella project for database
research at the University of Linköping. The central parts of the project has so far been
active databases and multidatabase systems. In the descriptions of the AMOS architecture
in this thesis, only the components which have something to do with multidatabase issues
are represented.
16. Using the terminology of Sheth & Larson [56], the AMOS architecture is a combina-
tion of a loosely coupled federated database system and a tightly coupled federated data-
base system (with multiple federations).
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Figure 6: The AMOS multidatabase system schema architecture.

The basic way to access data in AMOS is through a multidatabase lan-
guage. The multidatabase language provides a very flexible way to work
with data from multiple data sources. Any combination of data can be used
together at any time without the need to define an integrated view of data (a
federated schema) in advance.

Federated schemas can be defined to enable sharing and reuse of integra-
tion solutions. The federated schemas can be developed and maintained by
users or by the DBAs at the site of the users. Or they can be maintained by
a multidatabase administration to enable a wider sharing of integration
solutions.

The multidatabase language will have view definition capabilities. This
means that it can be used to define the federated schemas. The relationship
between the federated schema and the underlying component schemas is
defined with declarative view definition statements.

Recall that the CDM used in AMOS is an object-oriented data model. A
completely general view mechanism should be able to map from all kinds
of constructs in the data model to all kinds of constructs in the data model.
Most proposals for object views are somewhat limited in this respect. This
is further discussed in section 6.3.

Figure 7 shows the software components of the AMOS architecture.
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Figure 7: Software components in the AMOS multidatabase system architecture.

Translators implement the mappings between local schemas (expressed in
the data models of the component database systems) and the corresponding
component schemas (expressed in the CDM). There is one kind of Transla-
tor for each kind of data source. A query sent to a Translator is transformed
to calls to the underlying data source. The results of these calls are then
processed to form an answer to the initial query. A Translator can be used
by one or more integrators or directly by users or application programs.

Integrators implement the mappings between component schemas and fed-
erated schemas. A query sent to an Integrator is transformed into several
queries against the underlying Translators.17 The results of these queries
are then processed to form an answer to the initial query.

To access data, it is not necessary to use an Integrator. Queries can be put
directly against Translators using the multidatabase language. The multida-
tabase language is also used to define the mapping between Integrators and
Translators (the mapping between federated and component schemas).

All Translators and Integrators have a local AMOS database with full data-
base management capabilities. Part of the schema that a Translator/Integra-
tor presents to its users is stored directly in the local database and part of it
is a view of data which resides in foreign databases. This will be discussed
further in section 13.

Related work of particular interest are the Multibase [40] and Pegasus [2]
[3] projects.

Multibase has an architecture which is similar to the AMOS architecture,

17. A federated schema may be defined over other federated schemas (not only over com-
ponent schemas). Hence, a query sent to an Integrator may actually result in queries being
sent to other Integrators (not only to Translators).
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DBMS
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although the role of the multidatabase language is somewhat different. The
language which is used for defining the federated schemas can be seen as a
multidatabase language. However, this language can not be used directly by
users or applications to access multiple component schemas. Only the DBA
uses it when the federated schemas are defined. Multibase uses the func-
tional data model in [57] as the CDM and DAPLEX as the data manipula-
tion language. The AMOS data model is a derivative of this data model, but
an important difference is that the AMOS data model is object-oriented;
queries can return OIDs. Another difference is the role of the Translator. In
Multibase, the mapping between the local schema and the component
schema is the simplest possible. All semantic enrichment is performed in
the Integrator.

The Pegasus project uses the IRIS data model [26] [48] as their CDM and
an extension to OSQL as the data manipulation language. The main differ-
ence to AMOS is architectural. A Pegasus server performs both translation
and integration, whereas in AMOS this is separated in two kinds of mod-
ules. Each AMOS Translator only needs to know the data model of one data
source and how to map this to the CDM. The Pegasus server must under-
stand all underlying data models and must have language constructs for
mapping each of these data sources to the CDM.

6.2 The AMOS data model
The AMOS data model is a functional and object-oriented data model
which is based on the IRIS data model [26] [48], which in its turn is based
on the functional data model in [57] (’DAPLEX’).18

There are three basic constructs in the AMOS data model; objects, types
and functions. Objects are used to model entities (concrete or abstract) in
the domain of interest. Types are used to classify objects; an object is an
instance of one or more types. Properties of objects and relationships
between objects are modelled by functions. For example, Sweden and Nor-
way are modelled by objects which are instances of the type country. The
number of people living in each country is modelled by a function inhabit-
ants which takes a country object as argument and returns an integer.19

The set of objects that are instances of a type is called the extension of the
type. Types are divided into literal types and surrogate types.20

18. The AMOS data model is very similar to the IRIS data model as it is described in [48].
19. Types and functions are first class objects. All types are objects that are instances of
the type type. All functions are objects that are instances of the type function.
20. Some authors make the distinction between immutable and mutable objects. They cor-
respond to instances of literal and surrogate types, respectively.



33

Figure 8: Part of the AMOS subtype/supertype graph. Each line represents a sub-
type/supertype relationship. object is the most general type.

The extension of a literal type is fixed (often not enumerable), and
instances of a literal type are self-identifying; no extra object identifier is
needed. Examples of literal types are integers, character strings, and float-
ing-point numbers.

Surrogate types and instances of surrogate types are created by the system
or by users. Instances of surrogate types are identified by a unique, immuta-
ble, system-generated object identifier (OID).21 Examples of surrogate
types are person, document, country etc.

Types are organized in a subtype/supertype graph. Figure 8 shows part of
the type graph of AMOS. The most general type is object; all other types
are subtypes of object. User defined types are subtypes of a special type
called usertypeobject.

All types are instances of the type type. User defined types are also
instances of the type usertype.

Figure 9 shows an example of subtype/supertype relationships between
user defined types. A type inherits all the properties (i.e. functions) of its
supertypes. For example, conference_paper inherits all the properties of
document, which in its turn inherits all the properties of usertypeobject etc.
A type can be a direct subtype of more than one supertype. For example,
teaching_assistant is a direct subtype of both student and teacher, and
therefore inherits the properties of both these types (multiple inherit-
ance).22

21. OIDs can be logical or physical [15]. Logical OIDs do not contain the actual address
of the object. The address of an OID is retrieved using an index. OIDs in AMOS are logi-
cal.
AMOS uses a monotonically increasing counter to produce unique OIDs.
22. We do not discuss the problems of multiple inheritance (e.g., what salary function
should teaching_assistant inherit if it is defined for both student and teacher?) in this the-
sis.

object

type

usertype

function literal

number boolean charstring

integer real

usertypeobject

(user defined types)...

...



34 The AMOS Multidatabase System

Figure 9: Example of user defined types in the AMOS subtype/supertype graph.

An object is a direct instance of one or more types. For example, an object
may be an instance of the types vegetarian and employee at the same
time.23 The object is also (because of the subtype/supertype relationships)
an instance of all supertypes of these types (see footnote 12 on page 25).

Properties of objects and relationships between objects are modelled by
functions. For example, to model the fact that suppliers supply parts to
departments, a function supply may be used. The function takes two argu-
ments; a department object d and a supplier object s. It returns the part
objects that s supplies to d.

The relationship between arguments and results for a function is called the
extension of the function. A function is implemented in one of three differ-
ent ways; it may be stored, derived, or foreign. For stored functions, the
extension is stored directly in the database. A derived function uses the
AMOSQL query language to calculate the extension. A foreign function is
implemented in a general programming language, such as C or LISP.

The signature of a function is the name of the function together with its
argument types and result types. A function can have zero, one, or more
argument types and zero, one, or more result types.

A function that can have multiple results for the same argument(s) is called
a multivalued function. For example, the function XXXXXXXXXXXX
hobby(employee)->charstring is a multivalued function since an employee
can have more than one hobby.

23. In most object-oriented data models, an object can only be a direct instance of one
type. The employee/vegetarian example would be handled by introducing a new type veg-
etarian_employee, which would be a subtype of both vegetarian and employee. Vegetar-
ian employees would then be direct instances of this new type. The main problem with
this approach is that it can lead to a complex type graph with a large number of types that
are not very natural.

usertypeobject

person

student teacher

teaching_assistant

document

conference_paper

...

object

...
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Figure 10: Graphical notation for AMOS schemas. Types are represented by ovals;
single ovals denote literal types, double ovals denote surrogate types. A function is
represented by a thin arrow from its argument type(s) to its result type(s). A hollow
arrow-head denotes a multivalued function. Bold arrows represent subtype/super-
type relationships (is-a relationships).

Figure 11: Simplified graphical notation for AMOS schemas (equivalent with the
schema in figure 10). Literal types are not represented.

Functions can be overloaded - the same name can be given to functions
defined on different types. When an overloaded function name is used, the
right function is chosen by looking at the types of its arguments and results.
This is called function name resolution and the chosen function is called
the resolvent. Functions are not associated to one type (as methods usually
are in object-oriented programming languages). This means that functions
can be overloaded not only on their first argument type, but on all argument
and result types.24

Figures 10 and 11 illustrate the graphical notation for AMOS schemas that
is used in this paper. The schema in these figures will be used as an exam-
ple throughout the paper.

24. In the current implementation of AMOS, however, overloading is only allowed on the
first argument type.
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6.3 The AMOS query language
The data definition and manipulation language of AMOS is called
AMOSQL (AMOS Query Language). AMOSQL is based on OSQL, the
language used in the IRIS DBMS [26] [48].

Functions can be used directly to answer simple queries. Example:25

amos 17>plus(4,7);
<11>
amos 18>sqrt(9);
<3>
<-3>

For more general queries, a construction with a syntax similar to that of
SQL can be used. The syntax is:

select <result>
for each <type declarations for local variables>
where <condition>

Example:

amos 19>select i+5 for each integer i
XXXXXXXXwhere i=sqrt(9) and i>0;
<8>

Functions can be used in the forward direction or in the backward direction.
Here the function hobby is used in the forward direction:26

hobby(:e1);

Here it is used in the backward direction:

select e for each employee e where hobby(e)=’sailing’

A function returns a bag of tuples. The semantics of nested function calls is
as follows (this is called ’DAPLEX semantics’ here, since it is based on the
semantics of the DAPLEX language [57]). When a function is called with a
bag as argument, the function is applied to all the members of the bag (one
at a time). The result of the function call is the union of all the results of
applying the function to the different bag members. An example:

Consider a function parent(person)->person that takes a person object as
input and returns the person objects representing the parents of that person.
An example extension of the function is shown in table 2.

25. ’amos nr>’ is the prompt of the AMOS interpreter. The result of a function call is a
bag of tuples (this is discussed later in this section). The AMOS interpreter displays the
result tuples with one tuple per row.
Arithmetic functions can also be used with infix notation. For example:
XXamos 17>4+7;
XX<11>

26. :e1 is an environment variable that is bound to an employee object. We use the con-
vention that names of environment variables begin with a colon (:).
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Table 2: Example. The extension of a function parent(person p1)->person p2.

Now consider the following nested function call:27

parent(parent(:adam));

The result of applying parent to :adam is a bag of two tuples (each consist-
ing of a single object):

[<:bertil>, <:cecilia>]

When parent is called with this bag as argument, it is applied first to :bertil
which gives the bag [<:david, :edla>] as result, and then to :cecilia which
gives the bag [<:filip>, <:greta>] as result. The final result of the nested
function call therefore is:

[<:david>, <:edla>, <:filip>, <:greta>]

(End of example.)

There is one exception to the DAPLEX semantics, namely aggregation
operators. For example, the sum function, which gives the sum of all mem-
bers of a bag, is applied once on all the members of the bag, not one time
for each member (which would not make much sense). A function is given
this semantics if the type of its only argument is declared as ’bag of ...’. For
example:

create function sum(bag of integer)->integer as ...

New types are created with the ’create type ...’ statement. Example:

create type person;
create type employee subtype of person;

27. The input to functions are also bags of tuples. Function calls like ’parent(:adam)’ can
be seen as a shorthand for ’parent([<:adam>])’. Actually, this ’shorthand’ is the only way
to express function calls in the current implementation... For example, function calls like
’plus([<4,7>,<2,3>])’ (which should return the bag [<11>,<5>]) are not possible.

p1 p2

:adam :bertil

:adam :cecilia

:bertil :david

:bertil :edla

:cecilia :filip

:cecilia :greta
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Instances of a type are created with the ’create <type> instances ...’ state-
ment. Example:

create employee instances :adam, :bertil, :cesar;

The type membership of instances can be changed with the ’add type ...’
and ’remove type ...’ statements. Example:

add type vegetarian to :adam;

New functions are created with the ’create function ...’ statement. Example:

create function foo(integer a)->charstring b as stored;
create function fie(real a, integer b)->real c as stored;
create function fum(charstring a)-><real b, integer c>;

Derived functions are defined in terms of other functions. Example:

create function emp_w_hobby(charstring h)->employee e as
XXselect e for each employee e where hobby(e)=h;

Foreign functions are implemented in a general programming language,
such as C or LISP. This is not discussed further here.

The extension of a stored function is defined with the ’set ...’ command.
Example:

set salary(:adam)=10000;
set hobby(:adam)=’boxing’;

The extension of multivalued stored functions can be changed with the
’addx...’ and ’remove ...’ commands. Example:

add hobby(:adam)=’sewing’;
remove hobby(:adam)=’sewing’;

During function name resolution, AMOS uses variable declarations to
choose the resolvent function (early binding). For example, suppose that
the functions manager(employee)->employee and XXXXXXXXXXXXXX
manager(department)->employee are defined. Consider the AMOSQL
query:

select manager(d) for each department d;

The resolvent function manager(department)->employee is chosen since
the variable d is of the type department.

Sometimes, function name resolution can not be performed at compile-time
but must be delayed until run-time (late binding). For example, suppose
that salary is an overloaded function and that two resolvents exist - XXX
salary(employee)->integer and salary(salesman)->integer. The salary of a
salesman is defined as his/her salary as an employee plus a bonus that
depends on his/her sales. Now consider the definition of the following
derived function:

create function all_salaries()->integer as
XXselect salary(e) for each employee e;

The function salary should be applied to all employee objects. It is not pos-
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sible to replace the salary function with any of its resolvents at compile-
time, since different resolvents should be chosen for different employees. If
the employee is a salesman, the function salary(salesman)->integer should
be chosen, otherwise the function salary(employee)->integer should be
chosen.

AMOS automatically checks the subtype/supertype graph to decide
whether early binding is possible or not. If a resolvent function can be cho-
sen a compile-time, it will be. In the case of conflicts, the resolution of a
function name is delayed until run-time. Sometimes addition or removal of
functions will cause (automatic) recompilation of other functions. For
example, suppose that the function salary(salesman)->integer is deleted.
Now, early binding would be possible in the all_salaries function and it will
therefore be recompiled.

The only view mechanism that the current version of AMOSQL provides is
the concept of derived functions. This is equally powerful as the views pro-
vided in relational databases, but object views should include something
more. A completely general view mechanism should be able to map from
all kinds of constructs in the data model to all kinds of constructs in the
data model. For example, in the AMOS data model it should be possible to
have types in the view which correspond to objects or functions in the base
schema, or vice versa. Most proposals for object views [1] [9] [29] are lim-
ited in this respect. We are only aware of one paper [18] which discusses
these issues. Note that the relational view mechanism is not completely
general either [39] [45]. For example, it is not possible to have relations in
the view which correspond to values in the base schema.

The current version of AMOSQL has no multidatabase language capabili-
ties.

6.4 The AMOS data model as a CDM
The AMOS data model provides all the semantic modelling constructs
characterized as essential in section 5, and some of the complementary.

Types and instances. Objects are classified by types. Objects have a
unique object identity and are instances of one or more types.

Generalization/specialization. Types are organized as subtypes/super-
types and subtypes inherit all functions that are defined on the supertypes.

Complex objects. Aggregation is supported through the notions of types
and functions.

For example, the aggregation address discussed in section 5 is created by
defining a new type address, and the functions city(address)->city,
street(address)->street, and zip_code(address)->zip_code. Explicit crea-
tion of tuple objects is also possible. Grouping is supported through the
notion of multivalued functions. For example, the drives grouping dis-
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cussed in section 5 is created by defining a multivalued function XX
drives(person)->car. Explicit creation of set and bag objects is also possi-
ble.

Different kinds of generalization/specialization. This is not supported by
the AMOS data model.

Multiple inheritance. An AMOS type can have more than one direct
supertype. A related feature of the AMOS data model is that an object can
be a direct instance of more than one type.

Other kinds of complex objects. Order between objects can be captured
with the vector data type.

Special part-of semantics. This is not supported by the AMOS data model.

Semantic relativism. A view mechanism with an expressiveness equiva-
lent to that of relational views is supported through the concept of derived
functions. We are working on a more general view mechanism for the
AMOS data model. See also section 6.3.



7 Summary of Part I

A multidatabase system is a system in which it is possible to access and
update data residing in multiple databases. The databases may be distrib-
uted, heterogeneous, and autonomous.

We gave an overview of different kinds of multidatabase system architec-
tures and discussed their relative merits. We also discussed standards in the
field and contrasted the terminology used by different authors with each
other.

A central problem in multidatabase systems is that of data model heteroge-
neity; the fact that the participating databases use different conceptual data
models. It is common to use a canonical data model (CDM) to handle this.
When a CDM is used, the schemas of the participating databases are
mapped to equivalent schemas in the CDM. We discussed what properties a
data model should have to be suitable as a CDM. Object-oriented data mod-
els are attractive candidates.

We then presented the AMOS multidatabase system architecture, which is
designed with the purpose of combining the advantages and minimizing the
disadvantages of the different kinds of proposed architectures. The AMOS
data model, which is used as the CDM, is a functional and object-oriented
data model.



42 Summary of Part I



Part II Object Views of
Relational Data



44



8 Introduction

The topic of this second part of the thesis is object views of relational data.
Such a view mechanism makes it possible for users (end-users or applica-
tion programs) to transparently work with data in a relational database as if
it was stored in an object-oriented database. Queries against the object
view are translated into queries against the relational database. The results
of these queries are then processed to form an answer to the initial query.
Update commands to the object view result in updates to the relational
database.28 All this is transparent to users of the view. In this thesis, we
concentrate on access to relational databases via object views, not updates.

The context in which object views of relational data is discussed in this the-
sis is that of multidatabase systems. As was discussed in part I, most multi-
database systems use a CDM to deal with the problem of data model
heterogeneity. It is generally agreed that object-oriented data models are
appropriate as the CDM in a multidatabase system (see section 5). If an
object-oriented CDM is used, the different local schemas must be mapped
to object-oriented structures in the component schemas, i.e. object views
must be established for the different types of component databases. Since
relational databases have such a dominating position on the database mar-
ket, techniques for developing object views of relational databases are
especially important.29

Note that the discussion in this part of the thesis is not dependent on the
AMOS architecture. This kind of object view is needed in any multidata-
base system that uses an object-oriented CDM.

The use of object views of relational data is not limited to multidatabase
systems. A semantically richer view of data makes it easier for users to
understand the meaning of data. It also decreases the impedance mismatch
between the database and object-oriented programming languages.

This kind of view will also be useful during legacy system migration [12].
Suppose that a relational database is to be replaced with an object-oriented
database. To ensure a graceful transition, it will be helpful to start by let-
ting the new application work with an object view of the relational data-
base. The environment can then be incrementally changed so that more and

28. Only a certain class of updates to the view can be unambiguously translated to updates
to the relational database. This is a general problem of views [23].
29. Relational databases totally dominate the current database market, but a large part of
the database systems that are running today are old and belong to the first generation of
database systems (hierarchical and network). It has been estimated that approximately 30
% of the database systems running today are relational.
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Figure 12: Processing queries against an object view of a relational database.

more data is stored physically in the object-oriented database and is not
accessed through the view.

In section 6 we mentioned the Pegasus project [2] [3] which has a lot in
common with the multidatabase part of the AMOS project. In the area of
object views of relational data, the Pegasus project has concentrated on
techniques for automatic generation of the schema of the object view [4].
Work of this kind has also been reported in [34] [49] [51] [64]. The focus of
our work is on query processing. We show how queries against the object
view are translated, optimized, and executed. The different query process-
ing steps are illustrated in figure 12.

We will end this introductory chapter by introducing an example (section
8.1) which will run through the rest of the thesis, and with a short introduc-
tion to query processing in object views of relational data (section 8.2). The
rest of this part of the thesis (II) is organized as follows:

Sections 9 and 10 give short overviews of the relational data model and the
central concepts of object-oriented data models. Section 11 concerns the
relationship between the relational data model and object-oriented data
models. It discusses how schemas in an object-oriented data model can be
mapped to schemas in the relational data model, and vice versa. It also
introduces a normal form for representing subtype/supertype relationships
in relational schemas.

To be able to discuss query processing in object views of relational data, we
first give an overview of query processing in object-oriented databases
(section 12). We are then ready for the central part of this thesis; section 13.
This section discusses techniques that are needed to provide object views
of relational data, and shows how this is implemented in AMOS. Section
14, finally, gives a summary of this part of the thesis.

OO query language

query plan

optimized query plan

calls to relational database

OO result

calls to local database
internal processing
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Figure 13: The company database (example of a relational database).

8.1 The company example
Throughout this part of the thesis we will use the same example of a rela-
tional database. We will use this example to show the relationship between
a relational database and the corresponding object view, and to show how
queries against the object view are processed.

The example relational database is shown in figure 13. It stores information
about the employees of a company.30 The employee number (enr), name,
salary, and manager for each employee are stored in the employee table.
Their hobbies are stored in the emp_hobbies table. An employee can have
more than one hobby. The secretary table contains the typingspeed for each
secretary. The salesman table stores which districts the salesmen work in,
together with how much they have sold (sales). A salesman only works in
one district.

Figure 14 shows the schema of the corresponding object view of the com-
pany database.31 There are three types in the view; employee, secretary,
and salesman. secretary and salesman are subtypes of employee. The prop-
erties of employees, secretaries, and salesmen are modelled by functions.

30. The examples were designed to be as simple as possible, while still illustrating the
basic features of relational and object-oriented databases, and the principles of processing
queries against them. This has come at the expense of the examples not being very realis-
tic.
31. We will use the AMOS data model as our example of an object-oriented data model.
The AMOS data model and the notations used to illustrate AMOS schemas and exten-
sions were introduced in section 6.2.

employee emp_hobbies

secretary salesman
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20000
15000
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manager
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314
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159
265
265
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rimforsa
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40
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Figure 14: Schema of the object view of the company database.

Figures 15 and 16 show the extension of the object view (textual and graph-
ical representations, respectively). Note that the extension of the view is
not physically stored anywhere. It is computed every time it is used. How-
ever, to a user of the view, it behaves exactly as if the extension had been
physically stored.

If you examine the extension of the relational database, you will find that it
stores information about four employees. Two of these (’anna’ and ’bertil’)
are salesmen and one (’doris’) is a secretary. One of them (’cesar’) is nei-
ther a salesman nor a secretary, but still an employee. Accordingly, there
should be four objects in the object view (:e1, :e2, :e3, and :e4). Two of
them should be direct instances of salesman, one a direct instance of secre-
tary, and one a direct instance of employee.

Informally, the semantics of the mapping between tuples in the relational
database and objects in the object view is as follows. There is one object
for each tuple in the employee table. The primary key enr is used to define
the correspondence between tuples and objects. For example, the enr 314
corresponds to the object :e1. All objects are instances of the employee
type. An object is also an instance of the type secretary (salesman) if there
is a tuple in the secretary (salesman) table with the enr that corresponds to
the object. For example, the object :e1 is an instance of the type salesman,
since there is a tuple with enr=314 in the salesman table.
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Figure 15: Extension of the object view of the company database (textual represen-
tation).

Figure 16: Extension of the object view of the company database (graphical repre-
sentation).

direct_instance_of(:typeEmployee)=:e3
direct_instance_of(:typeSecretary)=:e4
direct_instance_of(:typeSalesman)=:e2
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8.2 Introduction to query processing
As an introduction, we will now give a brief overview of how an example
query against the object view is processed. The details of this example will
be given in later sections.

Consider the following query (in the AMOSQL language):

select s, salary(manager(s))
for each salesman s
where hobby(s)=’golf’

A natural language formulation of this query would be something like: ’for
each salesman that has golf as a hobby, retrieve that salesman together with
the salary of his/her manager’.

If you look at the extension of the object view, you will see that there are
two objects (:e1 and :e2) that are instances of the salesman type and that
have golf as a hobby. Their managers are :e3 and :e1, respectively, and the
salary of these objects are 25000 and 20000, respectively. Hence, the result
of the query should be a bag of two tuples:

[<:e1,25000>, <:e2,20000>]

Since object identity is a concept of the object view and does not exist in
the relational database, the query against the relational database will
retrieve the employee number of the salesmen that satisfy the condition.
The salesman objects that will be returned are the objects that correspond
to these employee numbers.

The query will be translated into the following SQL query against the rela-
tional database:

select e1.enr, e2.salary
from employee e1 e2, emp_hobbies, salesman
where hobby=’golf’
XXand employee=e1.enr
XXand e1.enr=salesman.enr
XXand e1.manager=e2.enr

The result of the SQL query is a relation with two tuples:

{(314, 25000), (159, 20000)}

Let us assume that this is the first time a query retrieves these employees.
In that case, the employee numbers 314 and 159 will not have any corre-
sponding objects. Two new objects, :e1 and :e2, will be created and the
mapping between these objects and the employee numbers 314 and 159 will
be stored.

The new objects are returned together with the salary of their managers:

[<:e1,25000>, <:e2,20000>]



9 The Relational Data
Model

This section gives a short overview of the relational data model. More thor-
ough descriptions of the relational data model can be found in any basic
database textbook, e.g. [20] [23] [62].

The relational data model was introduced by Codd [19] in 1970. A rela-
tional database is organized as a set of named tables (relations). The rows
(tuples) of a table are not ordered. Each column (attribute) of a table has a
name and an associated data type. Most existing relational databases
require all relations to be in first normal form, i.e. no composite or multi-
valued attributes are allowed.

A relational schema defines the structure of a relation; the name of the rela-
tion and the name and data types of its attributes. A relational database
schema is the set of all relational schemas. A relational schema is also
called the intension of the relation. The actual data that is stored in a rela-
tion is called the extension of the relation.

A set of attributes which can be used to uniquely identify a tuple in a rela-
tion (no two tuples can have the same values for these attributes) is called a
superkey for the relation. A key is a minimal superkey (all attributes of the
key are needed to uniquely identify tuples; no attribute can be removed).
Candidate key is a synonym to key. One of the candidate keys is chosen as
the primary key. A set of attributes FK is a foreign key if: (a) they have the
same domain as the primary key PK of some relation R, and (b) all values
of FK must also exist in PK.

Figure 17 shows the relational database schema for the company example.
The data types for the attributes are not included.

Figure 18 shows the extension of the relation employee in the company
example.

Constraints can be specified on relations to guarantee the integrity of data.
Key constraints are used to guarantee that candidate key values are unique
for all tuples. Referential integrity constraints guarantee that all the values
of a foreign key exist as values of the corresponding primary key.
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Figure 17: Relational database schema (intension) for the company example.
Underlined attributes are part of the primary key for the relation.

Figure 18: Extension of the relation employee in the company example.

An inclusion dependency R[X] ⊆  S[Y] between a set of attributes X of a
relation R and a set of attributes Y of a relation S means that the values of
X must also exist as values of Y. R and S need not be different relations.
The following inclusion dependencies hold in the example in figure 17:

emp_hobbies[employee] ⊆  employee[enr]
secretary[enr] ⊆  employee[enr]
salesman[enr] ⊆  employee[enr]
employee[manager] ⊆  employee[enr]

The two most important ways to manipulate data in a relational database
are through the relational algebra or through the declarative language SQL
(which is based on the relational calculus). The relational algebra is usually
used as an internal representation in DBMSs. SQL is the de facto standard
language for end-users and application programming interfaces.
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10 Object-Oriented Data
Models

Unlike the case with relational databases, there is no single accepted data
model for object-oriented databases. Different object-oriented DBMSs all
use slightly different data models. There are, however, some characteristics
that are common to all object-oriented data models. This section gives an
overview of these characteristics. Note the close correspondence to the
semantic modelling constructs discussed in section 5.1.

Objects. The basic modelling construct is the object. Objects are used to
model entities in the domain of interest. To varying extents in different
object models, everything is an object, including other modelling con-
structs such as types and methods.

State. Each object has a set of attributes. This may be referred to as the
structural part of the object. The value of an attribute may be another object
in which case the attribute models a relationship between objects. The val-
ues of the attributes define the state of the object.

Behaviour. The behaviour of an object is defined by the operations (meth-
ods) which can be carried out on the object.

Encapsulation. In object-oriented programming languages, encapsulation
states that the only way to access an object is through its methods. The
structural part of the object is not directly accessible. In object-oriented
databases, this strict notion of encapsulation is often violated. Many object-
oriented databases allow direct access to the structural part of objects.

Object identity. Each object has a unique, immutable identifier which can
always be used to refer to it. This means that objects have an existence
which is independent of the values of their attributes, something which is
different from value-based data models such as the relational data model.32

Types and instances. Objects are categorized by types. All instances of a
type have the same attributes and behaviour.

Generalization/specialization. Types are organized as subtypes/super-
types to each other. The subtype inherits the attributes and behaviour of the
supertype and may have additional attributes and methods that the super-
type does not have.

Complex objects. Aggregation (see section 5.1) is supported implicitly
since objects have attributes which may take other objects as values. It is

32. See footnote 10 on page 24.
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also possible to create complex objects of this kind explicitly by applying
constructors such as tuple or record on existing objects. Grouping is sup-
ported by constructors such as set and bag. Order between objects is sup-
ported by constructors such as list and array.

In the AMOS data model, functions are used to model both properties of
objects, relationships between objects, and operations on objects.

A consequence of the lack of a standard object-oriented data model is that
there is no standard query language for object-oriented databases. Many
projects use a query language with a syntax similar to SQL, the reason for
this being that SQL is such a wide-spread language.

The ODMG standard [16] is the first attempt from object-oriented DBMS
vendors to define a standard for object-oriented data models and query lan-
guages.

A current trend is to extend relational database systems with object-ori-
ented concepts. These systems are usually called object-relational database
systems. The Montage DBMS is the first commercially available system of
this kind. When the relational data model is extended with object-oriented
concepts, the SQL language has to be extended accordingly. The next revi-
sion of the ANSI SQL standard, SQL3, is expected to contain such exten-
sions [7].



11 Mapping Between the
Relational and an Object-
Oriented Data Model

This section discusses the relationship between the relational data model
and object-oriented data models. We will use the AMOS data model as an
example of an object-oriented data model.

Often, there is a close correspondence between types in the AMOS data
model and relations in the relational data model, between objects and
tuples, and between functions and attributes. Consider for example the
employee relation in the company database. The corresponding AMOS
schema has a type employee, and there are four instances of that type - one
for each tuple of the employee relation. The attributes enr, name, salary,
and manager in the employee relation each correspond to a function defined
on the employee type. This is all illustrated in figure 19.

In reality, there is no one-to-one correspondence between relational model-
ling constructs and AMOS modelling constructs. There are always different
ways to map between constructs in one of the data models to constructs in
the other. In particular, there are some concepts in object-oriented data
models for which there are no corresponding concepts in the relational data
model.

Complex objects are not supported by the relational data model, i.e. no
multivalued or composite attributes are allowed. Multivalued functions in
AMOS require separate relations in a relational database. Composite
attributes must be split up.

Generalization/specialization in object-oriented data models has no corre-
spondence in the relational data model. When subtype/supertype relation-
ships exist between objects in the domain which is modelled, this is only
represented implicitly in relational databases.

The concept of object identity is not present in the relational data model.
However, this is not a problem at the schema level and we will come back
to this in section 13.

The mapping from object-oriented to relational schemas is well understood,
since it is a central part of many database design methodologies [23].33 If
the methodology is followed, the resulting relational schema automatically

33. The database schema is initially expressed in a semantically rich data model (often an
EER data model) and is transformed to a relational schema using some algorithm.
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Figure 19: A relational schema with its extension (top), the corresponding AMOS
schema (middle), and the extension of the AMOS schema (bottom).

has the properties of ’good’ data design.34

In an ideal world, all relational databases would have schemas of this kind.
Unfortunately this is not the case - there are many different ways to model
some information and people will not always choose the ’best’. This may
be due to bad database design, but it may also be due to special require-
ments on the database, such as performance. In particular, there are many
ways to model subtype/supertype relationships in relational schemas. This
is discussed in section 11.1.

Section 11.2 discusses ways to identify semantic modelling constructs in
relational database schemas, and how to transform a relational database
schema to an object-oriented schema.

To make the mapping from relational to object-oriented structures easier,
we have defined a normal form for representing subtype/supertype relation-
ships in relational schemas. If the relational schema is not in the normal
form, a relational view is defined which is. This is the subject of section
11.3.

34. Natural, easy to understand, no redundancy.
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11.1 From object-oriented to relational
As mentioned above, the process of mapping a schema in a semantically
rich data model to a relational database schema is often performed during
database design. We refer to [23] for a complete algorithm for mapping an
EER schema to a relational database schema. A general observation is that
some semantics which were explicitly represented in the EER/OO schema
are only implicitly represented in the relational database schema. The only
thing we will discuss in more detail in this section is different ways to rep-
resent subtype/supertype relationships in the relational data model.

Figure 20 shows four alternative mappings from an AMOS schema to a
relational database schema (adapted from [23]).

Figure 20: Representing subtype/supertype relationships in relational schemas.
Four alternative mappings from the AMOS schema (top) to relational schemas are
given.
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Alternatives (1) and (2) are probably the most common. Note that the
AMOS schema is a subset of the company example used elsewhere in the
thesis.

In alternative (1) all types get their own relation. This representation can be
used for all kinds of specialization (disjoint/overlapping and total/par-
tial).35

In alternative (2) there is no relation for the supertype. The attributes (func-
tions) of the supertype are duplicated in all the relations representing the
subtypes. This can not be used for partial specialization.

Alternative (3) has one relation for all types. The jobtype attribute specifies
the type of the employee (secretary or salesman).36 The relation schema
contains all the attributes of all the subtypes. If an attribute is not applica-
ble (e.g. typingspeed for salesmen) it is given the value null. This represen-
tation can not be used for overlapping specialization.

Alternative (4) also has a single relation for all types. For each subtype
there is a boolean-valued attribute which specifies whether the employee is
an instance of that type or not. The relation schema contains all the
attributes of all the subtypes. If an attribute is not applicable it is given the
value null. This representation can be used for all kinds of specialization.

11.2 From relational to object-oriented
Quite a lot of work has been done on how to identify semantic modelling
constructs in relational database schemas [4] [34] [49] [51] [64]. Most of
the methodologies in these papers are based on classifying relations based
on their primary keys and inclusion dependencies. The methodologies then
automatically transfer the relational schema to an extended entity-relation-
ship (EER) or object-oriented (OO) schema.

As an example, we will show how the relational database schema for the
company database is mapped to an OO schema using the methodology in
[4]. The relational database schema is shown in figure 13 on page 47. The
inclusion dependencies are given on page 52.

The relations employee, secretary, and salesman all have a primary key
consisting of a single attribute, and they are therefore classified as relations
of category A.37 The emp_hobbies relation has a composite primary key,

35. See page 25.
36. Or null, if the employee is neither a secretary nor a salesman (’just’ an employee).
37. Actually, the methodology classifies equivalence classes of relations, rather than sin-
gle relations. This makes it capable of handling vertical partitioning of relations. None of
the relations in our example are vertically partitioned and for ease of discussion we there-
fore only deal with single relations.
The methodology distinguishes between six different categories of equivalence classes of
relations.
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the primary key is not a foreign key, and some, but not all, of the primary
key attributes are foreign keys. The emp_hobbies relation is therefore clas-
sified as a category E relation.

For each relation of category A, a type is created in the OO schema. This is
illustrated in figure 21(a). For each attribute of the relations, a function is
defined on the corresponding type. If the attribute is not a foreign key, then
the return type of the function is the literal type corresponding to the
domain of the attribute. If the attribute is a foreign key, then the return type
is the type corresponding to the relation which the foreign key references.
This is illustrated in figure 21(b).

Figure 21: Mapping the relational database schema of the company database to an
object-oriented schema, according to the methodology in [4].
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Since there is an inclusion dependency where the left side is the primary
key of the secretary relation and the right side is the primary key of the
employee relation, the secretary type is declared as a subtype of the
employee type. Similarly, the salesman type is a subtype of the employee
type. This is illustrated in figure 21(c).

Relations of category E are mapped to multivalued functions in the OO
schema. Since the employee attribute of the emp_hobbies relation is a for-
eign key which references the relation employee, a multivalued function is
defined on the employee type. The range of the function is the literal type
corresponding to the domain of the non-foreign key attribute (hobby) of the
emp_hobbies relation. This gives us the final OO schema, which is illus-
trated in figure 21(d).

We believe that a completely automatic transformation of relational data-
base schemas to EER/OO schemas is not possible. Even if all primary keys
and inclusion dependencies for a relational database schema are given, it is
possible to map this to different EER/OO schemas. An example of this is
that some relations in relational schemas may be mapped to either entities
or relationships in an EER schema. The mapping process must always be
guided by a DBA. The methodologies may be very helpful as tools during
schema mapping, though.

11.3 A normal form for representing subtype/
supertype relationships in relational data-
bases

As could be seen in section 11.1, there are many different ways to represent
subtype/supertype relationships in a relational database schema. We have
defined a normal form, SSNF (Subtype/Supertype Normal Form), for repre-
senting these kinds of structures in relational database schemas. If a rela-
tional database schema is in SSNF, the mapping between the relational
database and the object view is greatly simplified. When an object view is
defined over a relational database that is not in SSNF, the first step is to
define a relational view that is in SSNF.

It is not possible to determine whether a relational database schema is in
SSNF by looking at it in isolation. A relational database schema is (or is
not) in SSNF with respect to an EER/OO schema (or some other schema
which has the notion of subtypes and supertypes).

We define SSNF as follows:

Let OS be an EER/OO schema and RS the corresponding relational data-
base schema. RS is in SSNF if:

For each type T in OS there exists a relation R in RS such that there is a
one-to-one mapping between instances of T and tuples in R.

(End of definition.)
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In figure 20 on page 57, schema (1) is in SSNF whereas schemas (2)-(4) are
not.

The main benefit of having the relational schema in SSNF is that the object
view mechanism does not need to handle all possible cases of relational
database schemas. It only needs to handle one case.

The reason for choosing the particular representation we have chosen is
that it simplifies management of the instance-of relationship. To check
whether an object is an instance of a particular type, or to retrieve all
instances of a particular type, it suffices to examine a single relation.38 This
should become clear in section 13.

When an object view over a relational database that is not in SSNF is going
to be created, the developer must first create a relational view that is in
SSNF.

The following SQL statements can be used to define an SSNF view over
schema (2) in figure 20:

create view employee* as
XX(select enr, name, salary from secretary)
XXunion
XX(select enr, name, salary from salesman)

create view secretary* as
XXselect enr, typingspeed from secretary

create view salesman* as
XXselect enr, district, sales from salesman

An SSNF view over schema (3) in figure 20 could be defined with the fol-
lowing SQL statements:

create view employee* as
XXselect enr, name, salary from employee

create view secretary* as
XXselect enr, typingspeed
XXfrom employee
XXwhere jobtype=’secretary’

create view salesman* as
XXselect enr, district, sales
XXfrom employee
XXwhere jobtype=’salesman’

38. The pivot relation plays a similar role in the PENGUIN system [41]. In PENGUIN, the
extension of the object schema corresponding to a relational database schema is material-
ized once and for all.
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And to define an SSNF view over schema (4) in figure 20, the following
SQL statements could be used:

create view employee* as
XXselect enr, name, salary from employee

create view secretary* as
XXselect enr, typingspeed
XXfrom employee
XXwhere secretary=true

create view salesman* as
XXselect enr, district, sales
XXfrom employee
XXwhere salesman=true

Note that it is not possible to create SSNF views for all kinds of relational
database schemas. For example, the SSNF view over schema (3) in figure
20 could only be created because we assumed that the domain of the job-
type attribute was fixed. Suppose that this assumption could not be made,
i.e. that the domain of the jobtype attribute was character strings in general
rather than the two specific character strings ’secretary’ and ’salesman’. In
that case, the SSNF view should have one relation for each distinct value
that occurred in the jobtype column. In other words, the number of rela-
tions in the view would be dependent on the state of the underlying data-
base. Such views are not possible to create in current relational database
systems. More general view mechanisms for relational databases are dis-
cussed in [39] and [45].



12 Query Processing in
Object-Oriented DBMSs

Access to object-oriented databases [5] [8] [15] can be performed in two
different ways; by following pointers or by declarative queries. An example
of access by following pointers is the following query:

manager(manager(:e2));

The user starts with a handle (pointer) to the object :e2. Retrieving the
manager (:e1) of :e2 can be seen as following a pointer from :e2 to :e1 (see
figure 16 on page 49). The manager of :e1 is retrieved by following a
pointer from :e1 to :e3.

The following is an example of a declarative query:

select name, sales
for each salesman s
where hobby(s)=’golf’
XXand district(s)=’kisa’

An object-oriented DBMS should support efficient execution of both kinds
of queries. It is the second kind of query which makes query optimization
an important issue. There are many different ways to process a query like
this, and the costs of the alternative execution strategies may be very differ-
ent. The task of the query optimizer is to find the most efficient execution
strategy.

We will use AMOS to illustrate query processing in object-oriented
DBMSs.

Most object-oriented DBMSs use expressions in an object algebra as the
internal representation of query plans. Unlike the case of relational algebra,
there is no standard object algebra. Different object algebras have been pro-
posed by different authors [21] [60].

AMOS uses a logical representation for query plans. Since the algebraic
approach is so dominant, we will take some time to describe the relation-
ship between these two approaches. This will be done in section 12.1.

Section 12.2 discusses heuristic and cost-based query optimization tech-
niques.

Finally, section 12.3 gives an overview of query processing in AMOS.
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12.1 Internal representation of query plans
When a query is processed it is first translated into an internal representa-
tion which is easy to optimize.

The most common internal representation of queries is algebraic expres-
sions. For example, in relational database systems, SQL queries are usually
translated to equivalent expressions in relational algebra.

Another approach is to use a logical representation of query plans. The log-
ical language used is usually not a general-purpose programming language,
but rather a subset which makes it more suitable as a database language. An
example of this is the Datalog language [62] [17], which is a subset of Pro-
log. The main difference between Prolog and Datalog is that Datalog predi-
cates can not have function symbols as arguments. All arguments are
constants or variables.

We use the logical approach in the AMOS system.

The expressive power of relational algebra and Datalog is very similar39,
which leads one to suspect that the difference between the two approaches
is mainly syntactical. We will show that this is the case. This has the pleas-
ant consequence that the results in this thesis are equally applicable to sys-
tems where algebraic expressions are used as the internal representation.

We will use relational algebra and Datalog to illustrate the relationship
between the algebraic and the logical approach. Consider the following
SQL query:

select name, sales
from employee, salesman, emp_hobbies
where employee.enr=salesman.enr
XXand employee.enr=emp_hobbies.enr
XXand hobby=’golf’
XXand district=’kisa’

If Datalog is used as the internal representation, the query will be translated
to the following Datalog rule, where temp is a temporary predicate which is
used to hold the result variables:

temp(NAME,SLS) <- employee(ENR,NAME,_,_) & XXXXXXX(1)

emp_hobbies(ENR,’golf’) & XXXXXX(2)

salesman(ENR,’kisa’,SLS) XXXXXXX(3)

There are six possible orderings of the Datalog predicates. Each of these
orderings corresponds to an execution strategy. This is illustrated in figure
22.

39. Relational algebra without negation and Datalog without recursion have the same
expressive power. Datalog is strictly more expressive than relational algebra without
negation. Relational algebra is strictly more expressive than Datalog without recursion
[62] [17].
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Figure 22: Possible execution plans for a Datalog rule with three subgoals.

There are two main alternatives for join processing in relational databases;
pipelining and materialized intermediate relations [38]. Pipelined join
processing is a way to avoid creation of large intermediate relations. Some-
times, however, materialization of intermediate results can improve per-
formance. A combination of the two approaches is often advantageous.

We will use execution plan (2)(3)(1) from figure 22 to illustrate pipelined
join processing and the possible benefits of materializing intermediate rela-
tions. A join processing strategy without materializations will be referred
to as pure pipelining.

The query processor starts by searching the emp_hobbies relation for tuples
where hobby=’golf’. As soon as one such tuple is found, the query proces-
sor moves on to the salesman relation. There, it searches for tuples where
the enr value is equal to the enr value of the emp_hobbies tuple. Let us
assume that there is exactly one such tuple. As soon as this tuple is found,
the query processor moves on to the employee relation. Again, it searches
for tuples where the enr value is equal to the enr value of the emp_hobbies
tuple (and of the salesman tuple). There will be exactly one such tuple, and
the name value of that tuple, together with the sales value of the salesman
tuple, is returned as a result of the query. The query processor then back-
tracks and retrieves the next tuple in the emp_hobbies relation where hob-
by=’golf’. Again, it searches the salesman relation for tuples where the enr
value is equal to the enr value of the current emp_hobbies tuple. And so on.
No intermediate relations are created.

employee(ENR,NAME,_,_) &
emp_hobbies(ENR,’golf’) &
salesman(ENR,’kisa’,SLS)

temp(NAME,SLS) <-(1)(2)(3)

employee(ENR,NAME,_,_) &
salesman(ENR,’kisa’,SLS) &
emp_hobbies(ENR,’golf’)

temp(NAME,SLS) <-(1)(3)(2)

emp_hobbies(ENR,’golf’) &
employee(ENR,NAME,_,_) &
salesman(ENR,’kisa’,SLS)

temp(NAME,SLS) <-(2)(1)(3)

emp_hobbies(ENR,’golf’) &
salesman(ENR,’kisa’,SLS) &
employee(ENR,NAME,_,_)

temp(NAME,SLS) <-(2)(3)(1)

salesman(ENR,’kisa’,SLS) &
employee(ENR,NAME,_,_) &
emp_hobbies(ENR,’golf’)

temp(NAME,SLS) <-(3)(1)(2)

salesman(ENR,’kisa’,SLS) &
emp_hobbies(ENR,’golf’) &
employee(ENR,NAME,_,_)

temp(NAME,SLS) <-(3)(2)(1)
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Figure 23: Relational algebra expressions corresponding to the different Datalog
execution plans in figure 22.

Suppose now that there is no index on the enr attribute of the salesman rela-
tion. This means that every time the query processor searches the salesman
table for a particular value of enr (which it does once for each tuple in
emp_hobbies where hobby=’golf’), it will have to scan the entire relation.
When a matching tuple is found, the query processor checks that XXXX
district=’kisa’. A better strategy would be to create an intermediate relation
which is the subset of the salesman relation where district=’kisa’. This
would reduce the cardinality of the relation that has to be searched repeat-
edly.40

40. Another alternative would be to perform a ’hash join’ [23].

(1)(2)(3)

employee emp_hobbies

salesman

σdistrict=’kisa’

σhobby=’golf’

(1)(3)(2)

employee salesman

emp_hobbies

σdistrict=’kisa’

σhobby=’golf’

σhobby=’golf’

emp_hobbies

employee

σdistrict=’kisa’

salesman

(2)(1)(3)

emp_hobbies

σhobby=’golf’ salesman

σdistrict=’kisa’ employee

(2)(3)(1)

emp_hobbies

σhobby=’golf’

employeeσdistrict=’kisa’

salesman

(3)(1)(2)

employeeσhobby=’golf’

salesman

σdistrict=’kisa’ emp_hobbies

(3)(2)(1)
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Figure 24: Example execution plan represented in relational algebra. The select
operation on the salesman relation results in a materialized intermediate relation.

Figure 25: Datalog execution plan corresponding to the relational algebra expres-
sion in figure 24.

Let us assume that the ’&’ symbol in the execution plans means ’pipelined
join processing’. In that case, the six Datalog execution plans in figure 22
correspond to the relational algebra expressions illustrated in figure 23. The
expressions are represented as tree structures. The project operations are
not included; only the join and the select operations are. When pure pipe-
lining is used, the relational algebra tree must always be a binary tree
where the right branch of every node is a leaf.

Figure 24 illustrates the relational algebra tree for the alternative strategy
for the execution plan (2)(3)(1) discussed above. Here, an intermediate
relation is created which contains the tuples of the salesman relation where
district=’kisa’.

With the Datalog notation we have used so far, there is no corresponding
Datalog execution plan for the relational algebra expression in figure 24.
One possible way to represent join processing with materialization in Data-
log execution plans would be to add a new ’and’ symbol. Let us call this
symbol ’∧ ’. When a ’∧ ’ symbol is encountered in an execution plan it
would mean ’materialize the relation corresponding to the right side of this
expression. The Datalog execution plan corresponding to the relational
algebra expression in figure 24 would then look as in figure 25.

12.2 Heuristic vs cost-based optimization
There are two main alternative techniques for finding an optimal execution
plan; heuristic rules and cost estimation [23].

When heuristic rules are used, the optimizer maintains a set of equivalence-
preserving transformation rules for query plans. The heuristic rules state

emp_hobbies

σhobby=’golf’

employee

(2)(3)(1)*

salesman

σdistrict=’kisa’

(emp_hobbies(ENR,’golf’) ∧
salesman(ENR,’kisa’,SLS)) &
employee(ENR,NAME,_,_)

temp(NAME,SLS) <-(2)(3)(1)*



68 Query Processing in Object-Oriented DBMSs

which of two equivalent query plans is usually the most efficient. An
important heuristic rule for relational algebra expressions is ’selection
pushing’, which states that it is almost always better to perform select oper-
ations before joins. A heuristic rule for Datalog programs is ’bound-is-eas-
ier’ [62], which states that it is usually better to order the subgoals so that
the number of bound arguments during execution is as high as possible.

When the cost estimation approach is used, the optimizer uses information
about access paths, communication costs, processing costs, etc., to system-
atically estimate the cost for the different execution alternatives. The exe-
cution plan with the lowest cost is then chosen. Provided that the input
information is correct, this approach always yields the optimal execution
strategy, but at a much higher cost than the heuristic approach. If the search
space is very large (more than 10 joins in the relational database case), it is
totally infeasible to estimate the cost of all possible execution strategies.
Randomized optimization methods [33] is one way to handle large search
spaces.

The AMOS query optimizer uses the cost estimation approach and provides
three alternatives for investigation of the search space: (1) exhaustive
search, (2) limited search space through greedy heuristics [47], and (3) ran-
domized optimization. A detailed description of the AMOS cost model can
be found in [47].

12.3 Query processing in AMOS
This section gives an overview of query processing in AMOS. We will only
give a cursory introduction, the details can be found in [47].

The different phases of query processing in AMOS are given in figure 26.

AMOS uses the logical language ObjectLog as the internal representation
of queries. Query optimization, then, is the process of finding the optimal
ordering of the ObjectLog subgoals. ObjectLog can be characterized as
’object-oriented Datalog’. ObjectLog predicates are typed and can be over-
loaded on all arguments, they can take object identifiers as arguments, and
they are first-class objects. More on the ObjectLog language can be found
in [47].

To illustrate the query processing steps, we will use the following example
query:

select s, doublesalary(manager(s))
for each salesman s
where hobby(s)=’golf’

For the sake of this example, we assume that doublesalary is defined as a
derived function:

create function doublesalary(employee e)->integer ds as
XXselect salary(e)*2
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Figure 26: Query processing steps in AMOS.

The query processing steps are identical for ad hoc queries and for creation
of derived functions. Therefore, when an ad hoc query is sent to the query
processor, it first creates a temporary function (derived) whose definition is
the ad hoc query. In our example, that function would be defined as fol-
lows:

create function temp()-><salesman,integer> as
XXselect s, doublesalary(manager(s))
XXwhere hobby(s)=’golf’

Flattener
The function is first run through the Flattener. Nested function calls are
removed by introduction of intermediary variables. The flattened function
is:41

create function temp()-><salesman s,integer ds> as
XXselect s, ds
XXfor each employee m, charstring h
XXwhere ds=doublesalary(m)
XXXXand m=manager(s)
XXXXand h=hobby(s)
XXXXand h=’golf’

41. The temporary variables will of course not have names like s, ds, m and h but rather
_v1, _v2, _v3 and _v4 etc. We use names like s, ds, m and h to make the examples easier
to follow.

Function F

ObjectLog Interpreter

ObjectLog Optimizer

TR ObjectLog Program

ObjectLog Generator

Type Adorned Resolvent

Flattened F

Flattener

Type Checker

TBR Optimized ObjectLog Program
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Type Checker
Next, the function passes the Type Checker. Here, the resolvents of the
functions are identified. Each function call is replaced with a call to one of
its type-adorned (TA) resolvents. In the case of late binding, function name
resolution is postponed until run-time.

The type checker also adds dynamic type checks if the function calls are
not enough to guarantee correct type membership. In this example, the type
membership of s needs to be checked since all function calls involving s are
defined on the more general type employee. Without the type check, s could
be bound to employee objects which are not salesmen.

create function temp->salesman,integer()-><s,ds> as
XXselect s,ds
XXwhere ds=doublesalaryemployee->integer(m)
XXXXand m=manageremployee->employee(s)
XXXXand h=hobbyemployee->charstring(s)
XXXXand h=’golf’
XXXXand typesofobject->type(s)=:typeSalesman

Functions and Predicates
The next step of query processing is to transform the TA resolvent function
into the internal representation of queries; ObjectLog. Each TA resolvent
function has a corresponding type resolved (TR) ObjectLog predicate. This
ObjectLog predicate may be stored directly in the database (i.e. a fact) or it
may be defined in terms of other predicates (i.e. a rule).

Stored functions become TR facts. For example, the TA resolvent

manageremployee->employee

has the following corresponding TR fact:

manageremployee,employee(E,M)

Derived functions become TR rules. For example, the TA resolvent

doublesalaryemployee->integer

has the following corresponding TR rule:

doublesalaryemployee,integer(E,DS)

<- salaryemployee,integer(E,S) &

timesinteger,integer,integer(S,2,DS)

ObjectLog Generator
The transformation from TA resolvent functions to ObjectLog is performed
by the ObjectLog Generator.

The temp function is a derived function and is therefore transformed to the
following TR rule:
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tempsalesman,integer(S,DS)

<- salaryemployee,integer(M,SAL) &

timesinteger,integer,integer(SAL,2,DS) &

manageremployee,employee(S,M) &

hobbyemployee,charstring(S,’golf’) &

typesofobject,type(S,:typeSalesman)

ObjectLog Optimizer
The ObjectLog Optimizer decides the execution order of the subgoals of
the TR rule. The output of the optimizer is a type and binding pattern
resolved (TBR) rule. ObjectLog predicates are overloaded both on type and
on binding pattern. For example, there are four TBR predicates for the
typesofobject,type(OBJ,TP) predicate:

typesof (OBJ,TP)

typesof (OBJ,TP)

typesof (OBJ,TP)

typesof (OBJ,TP)

An ’f’ in the binding pattern means that the corresponding variable is free
at the time of execution. A ’b’ in the binding pattern means that the corre-
sponding variable is bound at the time of execution.

Which execution order the optimizer chooses depends on the cost to exe-
cute the different TBR predicates and on the cardinality of the output
(fanout) from them [47]. Estimation of the cost and fanout for stored predi-
cates is based on the cardinality of the predicates and on what indexes are
available. Estimation of the cost and fanout for foreign predicates is per-
formed by special cost hint functions. The cost hint function for a foreign
predicate is supplied to the optimizer by the implementor of the predicate.

Based on what arguments are bound at execution time, each subgoal is
replaced with one of its corresponding TBR predicates. The following TBR
rule seems to be a good candidate for optimal execution order:

temp (S,DS)

<- hobby (S,’golf’) &

typesof (S,:typeSalesman) &

manager (S,M) &

salary (M,SAL) &

times (SAL,2,DS)

ObjectLog Interpreter
The ObjectLog Interpreter executes the TBR program. The interpreter uses
pure pipelining as the join processing strategy (no intermediate results are
materialized).

object,type
ff

object,type
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object,type
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object,type
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salesman,integer
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employee,charstring
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object,type
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employee,employee
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13 Object Views of
Relational Data

The term Translator was introduced in section 6 to denote the software that
implements the mapping between a local schema and a component schema.
It provides a view of a component database where the data models of the
view and the component database may be different.

When the term Translator is used in this section, unless otherwise stated, it
will refer to the specific kind of Translator where the local schema is
expressed in the relational data model and the component schema is
expressed in the AMOS data model.

A Translator provides the functionality of an AMOS DBMS augmented
with the notions of mapped types and mapped objects.

A mapped type is a type for which the extension is defined in terms of the
state of an external database. In our case the external database is relational,
and the extension of a mapped type is defined so that there is a one-to-one
mapping between instances of the mapped type and tuples in some relation
in the external database.42 The instances of mapped types are called
mapped objects.43

Figure 27 shows the subtype/supertype graph for Translators. Mapped
types are subtypes to the type usertypeobject and are instances of the type
mappedtype.

Figure 28 shows how mapped types fit into the subtype/supertype graph.
We use the delimitation that mapped types can not have more than one
direct supertype (no multiple inheritance).

We will use the term most general mapped type (mgmt for short) for
mapped types that are direct subtypes to usertypeobject. In figure 28, the
types MT1 and MT6 are most general mapped types. In the company exam-
ple, the type employee is the only mgmt.

42. Recall the SSNF normal form for relational databases discussed in section 11.3.
43. The notions of mapped types and mapped objects are similar to what is called virtual
classes and imaginary objects in [1]. The main difference is that the object view in [1] is
defined over an object-oriented database, rather than over a relational database. The
extension of a virtual class in [1] is defined in terms of the state of the object-oriented
database.
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Figure 27: Subtype/supertype graph for Translators (compare with figure 8 on page
33).

Figure 28: Mapped Types (MT1-6) and User Defined Types (UDT1-4) in the sub-
type/supertype graph for Translators.

We will also use a function called mgmt. If a mapped type T is given as
argument to the function, it returns the supertype to T which is a mgmt. If a
mapped object (OBJ) is given as argument to the function, it returns
mgmt(TOBJ), where TOBJ is the mapped type that OBJ is a direct instance
of.

The following are examples of the results of applying the mgmt function to
types and objects in the company example.

mgmt(:typeSalesman) = :typeEmployee
mgmt(:typeEmployee) = :typeEmployee
mgmt(:e4) = mgmt(:typeSecretary) = :typeEmployee

The examples in this section presuppose an understanding of the AMOS
data model (section 6.2), the AMOSQL query language (section 6.3), and
query processing techniques in AMOS (section 12.3). The reader should be
familiar with concepts like type-resolved (TR) predicates and type-and-
binding-pattern resolved (TBR) predicates, and their role during query
processing.

We will not discuss how the object-oriented schema is defined in terms of
the relational schema. The mapping between the relational database and the
object view should be defined using a declarative object view definition

object

type

usertype

function literal

number boolean charstring

integer real

usertypeobject

(user defined...

...

mappedtype
and mapped

types)

usertypeobject

object

...

MT1 UDT1
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UDT2 UDT3



75

language (OVDL). In the current prototype, the mapping is established by
handcoding the effects of imagined OVDL statements. See [4] for an exam-
ple of what such a view definition language can look like.

The rest of this section is organized as follows.

Section 13.1 shows how relational database access is represented in query
plans in the Translator. A recurring theme throughout this section (13) is
the importance of representing all relational database access explicitly in
query plans. No predicate should have relational database access embedded
in the code which implements it.

Section 13.2 deals with the concept of object identity. It shows how object
identity can be provided in the object view even though there is no such
concept in the relational database.

Section 13.3 discusses the instance-of relationship in object views. In an
object view of a relational database, the relationship between objects and
types depends on the state of the relational database.

Finally, section 13.4 discusses query optimization techniques in object
views of relational data.
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13.1 Representing relational database access in
query plans

In most cases it is advantageous to translate AMOSQL queries to as few
and as large SQL queries as possible. A naive translation method would
lead to a large number of small queries against the relational database. This
would result in unnecessary communication between the Translator and the
relational database.

To make it possible for the optimizer to generate optimal execution plans, it
is essential that all relational database access is represented explicitly in
query plans. We use a special kind of functions, r-functions, and a special
kind of predicates, r-predicates, for this.

To illustrate the necessity of this, we will start in section 13.1.1 by showing
what the effects of a naive strategy would be. Section 13.1.2 discusses the
use of multi-way foreign functions, which gives more flexibility but which
is not enough to generate optimal execution plans. Section 13.1.3 intro-
duces r-functions and r-predicates and shows how relational database
access is represented in AMOS query plans.

13.1.1 Naive strategy

Consider the following function in the object view:

salary(employee e)->integer sal

When this function is used in a query, the Translator must access the
employee relation in the relational database. This is where the information
about salaries of employees is stored.

The simplest (and most naive) way would be to define the function as a for-
eign function with the following implementation (in pseudo code):44

Let X be the employee number of E. Execute the SQL query
’select salary from employee where enr=X’. Return the
salary that is returned.

This would make it possible to process a query like:

select salary(:e1)

The fact that the salary of :e1 is stored in a relational database would be
transparent to users of the view. However, this simple approach would not
allow much query optimization (as will be discussed later) and the function
could only be used efficiently in the forward direction, i.e. when the
employee is known but the salary is not. For example, to find out which
employees earn 15000, it would be necessary to retrieve the salary for each
employee and then check whether it is equal to 15000. With n employees in

44. The mapping between employees and employee numbers will be discussed in section
13.2.
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the database, n SQL queries would be sent to the relational database.

13.1.2 Multi-way foreign functions

A more flexible, but still naive, way is provided with multi-way foreign
functions [47]. There would be four different TBR predicates for the func-
tion. The following is an informal description of their semantics:

1) Neither the employee nor the salary is known, i.e:

salary (E,SAL)

Execute the SQL query ’select enr, salary from employee’. For each result
tuple <e#,s>, let (e,s) be a result binding to (E,SAL), where e is the
employee object which corresponds to e#.45

2) The salary is known, but the employee is not, i.e:

salary (E,SAL)

Execute the SQL query ’select enr from employee where salary=SAL’. For
each result tuple <e#>, let (e,SAL) be a result binding to (E,SAL), where e
is the employee object which corresponds to e#.

3) The employee is known, but the salary is not, i.e:

salary (E,SAL)

Let E# be the employee number that corresponds to E. Execute the SQL
query ’select salary from employee where enr=E#’. Let (E,s) be a result
binding to (E,SAL), where <s> is the result tuple of the query.

4) Both the employee and the salary are known, i.e:

salary (E,SAL)

Let E# be the employee number of E. Execute the SQL query ’select salary
from employee where enr=E#’. If s=SAL then let (E,SAL) be a result bind-
ing to (E,SAL), where <s> is the result tuple of the query.

(End of description.)

This strategy would allow the salary function to be used in the backward
direction, as in the following query:

select e for each employee e where salary(e)=15000

This would result in the execution of the following TBR predicate:

salary (E,15000)

Which would result in a single SQL query being sent to the relational data-
base:

select enr from employee where salary=15000

However, this strategy still does not allow an effective query optimization.

45. See footnote 44.
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For example, consider the following AMOSQL query:

select name(e)
for each employee e
where salary(e)=15000

This would be translated to the following TR rule:

tempcharstring(N) <- nameemployee,charstring(E,N) &

salaryemployee,integer(E,15000)

Which would be translated to the following optimized TBR rule:

temp (N) <- salary (E,15000) &

name (E,N)

The first predicate would result in the following SQL query being executed:

select enr from employee where salary=15000

For each of the results (say X) of this query, the following SQL query
would be executed:

select name from employee where enr=X

It is obvious that an optimal translation should result in a single query
against the relational database:

select name from employee where salary=15000

The problem is that access to the relational database is embedded in the
code of the TBR predicates. This makes it impossible for the optimizer to
generate optimal execution plans in the general case.

13.1.3 r-functions and r-predicates

For the optimizer to be able to reason about access to the relational data-
base, it is essential that all relational database access is represented explic-
itly in query plans. We use a special kind of functions, r-functions, and a
special kind of ObjectLog predicates, r-predicates, for this.

All functions in the object view which require access to the relational data-
base are defined as derived functions which contain one or more calls to r-
functions. The ObjectLog rules which correspond to these derived func-
tions will contain one or more r-predicates.

For example, the function salary(employee)->integer discussed above is
defined as follows:46

create function salary(employee e)->integer sal as
XXselect sal
XXwhere oidmap(e)=enr
XXXXand r_employee()=<enr,_,sal,_>

46. The oidmap function maps between employee objects and employee numbers. This
will be discussed in section 13.2.
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The function r_employee is an example of an r-function. Logically, an r-
function returns all the tuples of a specific relation in the relational data-
base.47 For example, the r_employee() function call returns all the tuples of
the employee relation.

The salary function will be compiled to the following TR rule:

salaryemployee,integer(E,SAL)

<- oidmapemployee,integer(E,ENR) &

r_employee(ENR,_,SAL,_)

This can be read as ’SAL is the salary of E if ENR is the employee number
of E and there is a tuple in the employee relation in the relational database
where enr=ENR and salary=SAL’.

The predicate r_employee(ENR,_,SAL,_) is an example of an r-predicate. r-
predicates are not executable as they stand. They are used as an intermedi-
ate form which the optimizer manipulates to decide the optimal combina-
tion of queries that are to be sent to the relational database.

As an example of query processing using this technique, consider again the
query:

select name(e)
for each employee e
where salary(e)=15000

The query plan for this query will be:48

tempcharstring(N) <- r_employee(ENR,N,_,_) &

r_employee(ENR,_,15000,_)

Since ENR is the key of the employee relation, the optimizer will unify the
two r_employee predicates into a single one (this kind of compile-time uni-
fication is discussed in section 13.4.1):

tempcharstring(N) <- r_employee(ENR,N,15000,_)

The final step of query optimization is to translate r-predicates into execut-
able predicates that access the relational database (this is discussed in sec-
tion 13.4.3). In this case, the final optimized ObjectLog program will be:

temp (N) <- sql_exec (”select

XXname from employee where

XXsalary=15000”, N)

Which will result in a single SQL query being sent to the relational data-
base.

47. In reality, they are only used as an intermediate form. There are no implementations of
the r-functions.
The variable ’_’ is a special kind of variable which can be read as ”don’t care”.
48. The query plan would also contain oidmap predicates (which map between employee
numbers and OIDs). These predicates would be removed by the optimizer and are not
included here. This is discussed in section 13.2 and section 13.4.2.
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13.2 Object identity
A major difference between relational and object-oriented databases is that
relational databases are value based, whereas object-oriented databases are
identity based. The reason for calling object-oriented databases ’identity
based’ is that objects have an existence independent of the values of their
attributes. Each object is uniquely identified by an object identifier (OID)
which can always be used to refer to it. In contrast, if two tuples in a rela-
tional database have identical values for all attributes, the tuples are con-
sidered identical. This is usually handled by having a set of attributes (the
primary key) whose values are always different for different real world
objects.

In an object view of a relational database, there will be a correspondence
between primary key values in the relational database and OIDs in the
view. The Translator must generate OIDs which correspond to the different
primary key values. It must also guarantee that a primary key value is
mapped to the same OID each time it is accessed. This is a general problem
for object views [1]. Suppose for example that an application issues a query
which returns an OID (let us call this :obj). The application disconnects
from the Translator but maintains the reference to :obj. The next time the
application connects to the Translator, it issues a query which retrieves
some property of :obj. Now, the Translator must map :obj to the same pri-
mary key value as when it was retrieved.49

For ease of presentation, we will only consider primary keys consisting of a
single attribute. This can easily be extended to primary keys consisting of
multiple attributes.

Two different approaches to OID management in object views can be dis-
tinguished; algorithmic generation of OIDs, and the use of OID mapping
tables.

Algorithmic generation of OIDs means that the OID is somehow calculated
based on the value of the primary key. The main benefit of this approach is
that OIDs can be generated again and again, and one can still be sure that
the same OID is generated each time a specific primary key value is acces-
sed. A natural way to calculate the OID is to use a hash table. The problem
with this kind of algorithmic generation is that collisions will occur - dif-
ferent values will sometimes generate identical OIDs. One way to guaran-
tee that different values always generate different OIDs is to represent
OIDs by a concatenation of the relation name and the primary key value.

49. Of course, it is impossible to guarantee that the primary key value is still in the rela-
tional database; some other application may have removed it. To guarantee this, the Trans-
lator would have to lock that tuple in the relational database for the entire lifetime of the
application. This is not realistic. This, however, is a general problem in multi-user data-
base systems.
Deletion semantics are discussed in section 13.2.4.
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This is proposed as a plausible implementation in the Pegasus project [3].
The problem with this approach is that ’normal’ OIDs and OIDs for
mapped objects now have different representations.

In the mapping tables approach, there is no mathematical correspondence
between the OID and the primary key value. There is no way to derive the
primary key value from the OID, or vice versa. OIDs for mapped objects
are generated dynamically the first time they are needed and are thereafter
maintained by the Translator. The mapping between OIDs and primary key
values is stored in internal tables in the Translator. We will refer to these
tables as oidmap tables.

We use the mapping tables approach in AMOS and the rest of this section
describes the principles behind the implementation of this.

Section 13.2.1 gives an introduction to OID management in AMOS Trans-
lators.

The mapping between OIDs and primary key values is modelled with a spe-
cial kind of functions called oidmap functions. The corresponding Object-
Log predicates are called oidmap predicates. Section 13.2.2 describes what
these functions and predicates should do. It also discusses the effects of
implementing the oidmap functions directly as foreign functions. This
would mean that calls to the relational database are embedded within the
code of the oidmap predicates, which would make it impossible for the
optimizer to generate optimal execution plans.

To avoid this, we define the oidmap functions as derived functions. The
relational database access is handled by r-functions and the ’pure’ OID
mapping functionality is handled by another kind of functions which are
called oidmap1 functions. The ObjectLog predicates corresponding to these
functions are called oidmap1 predicates. These functions and predicates are
described in section 13.2.3.

Finally, section 13.2.4 discusses what should happen when primary key
values for which OIDs have been generated are deleted from the relational
database.

13.2.1 oidmap tables

This section gives an introduction to how oidmap tables are used to manage
the mapping between OIDs in AMOS Translators and the corresponding
primary key values in the relational database.50 Our examples will be taken
from the company database.

Recall that we require the relational database schema to be in SSNF. This
means that for each mapped type in the object view there is a relation in the

50. Recall that a Translator contains a complete AMOS database. This makes the oidmap
tables persistent.
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Figure 29: Content of the oidmap table for the type employee at different points in
time. (a) No queries have retrieved any employees. (b) A query has retrieved the
employee with employee number 314. (c) All employees have been retrieved.

relational database such that each tuple in the relation corresponds to an
instance of the mapped type.

Suppose that T is a most general mapped type and that R is the relation that
it is mapped to. Since the RDB schema is in SSNF, R contains the primary
key values for all the instances of T, including the values that also corre-
spond to instances of subtypes to T. This means that it suffices to have one
oidmap table for each most general mapped type. No oidmap tables are
needed for mapped types that are not a most general mapped type.

Since there is only one most general mapped type (employee) in the com-
pany example, there will be only one oidmap table (employee.oidmap).
This table is shown in figure 29a. Before the object view has been used, the
table is empty.

Suppose that the following query is the first one that is sent to the Transla-
tor:

select e for each employee e where salary(e)=20000

To answer this, the Translator will send the query

select enr from employee where salary=20000

to the relational database. The result of this query will be a relation consist-
ing of a single value, the employee number 314. The Translator should now
return the employee object which corresponds to the primary key value
314. Since the oidmap table is empty, a new object (:e1) has to be created.
The fact that the object :e1 corresponds to the primary key value 314 is
stored in the oidmap table (see figure 29b) and :e1 is returned as the answer
to the initial query.

Now suppose that the following query is sent to the Translator:

select e for each employee e

The following query will be sent to the relational database:

select enr from employee

employee.oidmap

oid enr

employee.oidmap

oid enr

:e1 314

employee.oidmap

oid enr

:e1 314
:e2
:e3
:e4

159
265
358

(a) (b) (c)
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The result of this query is the relation {<314>,<159>,<265>,<358>}. The
Translator should now return the employee objects which correspond to
these primary key values. It first searches the oidmap table for the value
314 and finds that it corresponds to the object :e1. Hence, no new object
has to be created for this primary key value. It continues in the same way
with the other values (159, 265, and 358). None of these values are stored
in the oidmap table which means that three new objects (:e2, :e3, and :e4)
have to be created. The mapping between these new objects and their
respective primary key values is stored in the oidmap table (see figure 29c).
The four objects (:e1, :e2, :e3, and :e4) are returned as the answer to the
initial query.

Now consider the following query to the Translator:

select s for each secretary s

This will result in the following query to the relational database:

select enr from secretary

The result of this query will be the relation {<358>}. Since secretary is a
subtype to employee, which is a most general mapped type, the Translator
searches the employee.oidmap table for the value 358 and finds that it cor-
responds to the object :e4. This object is returned as the answer to the ini-
tial query.

Finally, suppose that the following query is sent to the Translator:

select name(:e4)

The Translator will see that the object is a mapped object that belongs in
the type tree having employee as its root.51 It will therefore search the
employee.oidmap table for the object :e4. The corresponding value is 358
which means that the following query will be sent to the relational data-
base:

select name from employee where enr=358

13.2.2 oidmap functions and predicates

The mapping between OIDs and primary key values is implemented with
the oidmap function. The oidmap function is overloaded and there is one
resolvent function for each mapped type. An oidmap function takes a
mapped object as argument and returns the primary key value that the
object is mapped to:

create function oidmap(mt obj)->lt val as ...

51. The instance-of relationship for mapped objects depends on the state of the relational
database. The only thing that is known to the Translator is what subtree of the type graph
the object belongs in. To indicate this, the most general mapped type for the object is
stored together with it. This is discussed in section 13.3.
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For example:

create function oidmap(employee e)->integer enr as ...

All functions in the object view which have a mapped type in their signa-
ture are implemented as derived functions which make a call to the oidmap
function.

For example, the function salary(employee)->integer is defined as the fol-
lowing derived function:

create function salary(employee e)->integer sal as
XXselect sal
XXwhere oidmap(e)=enr
XXXXand r_employee()=<enr,_,sal,_>

Which will be translated to the following TR rule:

salaryemployee,integer(E,SAL)

<- oidmapemployee,integer(E,ENR) &

r_employee(ENR,_,SAL,_)

This can be read as ’SAL is the salary of E if ENR is the employee number
of E and there is a tuple in the relational database where enr=ENR and sal-
ary=SAL’.

The oidmap functions are defined as derived functions, for reasons that will
be explained in this section. To motivate this, we will start by describing
what would have happened if the oidmap functions had been implemented
directly as foreign functions (rather than derived functions).

Semantics of oidmap predicates
The following is an informal description of what the semantics of the dif-
ferent TBR predicates for the oidmap functions would have been if they
had been implemented as foreign functions. mt is the mapped type on
which the oidmap function is defined. rel is the relation that mt is mapped
to. lt is the literal type corresponding to the domain of the primary key
attribute of rel.

1) Neither the mapped object nor the primary key value are known, i.e.:

oidmap (OBJ,VAL)

Get all primary key values from rel. For each of these values (v), check if
there is a tuple <o, v> in the oidmap table for mgmt(mt). If there is, let
(o,v) be a result binding to (OBJ,VAL). If there is not, create a new object
(o_new) of the type mgmt(mt)52, let (o_new,v) be a result binding to
(OBJ,VAL), and add the tuple <o_new, v> to the oidmap table for

52. Since the instance-of relationship for mapped objects depends on the state of the rela-
tional database, only the most general mapped type for a mapped object is stored together
with it (see footnote 51). To create a new object of the type mgmt(mt) means ’to create a
new mapped object and declare that it belongs in the type tree having mgmt(mt) as its
root’.

mt,lt
ff
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mgmt(mt).

2) The primary key value is known but the mapped object is not, i.e.:

oidmap (OBJ,VAL)

Check that VAL is still a primary key value in rel.53 If it is not, stop. Check
if there is a tuple <o, VAL> in the oidmap table for mgmt(mt). If there is,
let (o,VAL) be a result binding to (OBJ,VAL). If there is not, create a new
object (o_new) of the type mgmt(mt), let (o_new,VAL) be a result binding
to (OBJ,VAL), and add the tuple <o_new, VAL> to the oidmap table for
mgmt(mt).

3) The mapped object is known, but the primary key value is not, i.e.:

oidmap (OBJ,VAL)

Get the tuple <OBJ, v> in the oidmap table for mgmt(mt). Check that v is
still a primary key value in rel. If it is not, stop. If it is, let (OBJ,v) be a
result binding to (OBJ,VAL).

4) Both the mapped object and the primary key value are known, i.e.:

oidmap (OBJ,VAL)

Check that there is a tuple <OBJ, VAL> in the oidmap table for mgmt(mt).
If there is not, stop. Check that VAL is still a primary key value in rel. If it
is, let (OBJ,VAL) be a result binding to (OBJ,VAL).

(End of description.)

Note that resolvent predicates 1 and 2 sometimes have side effects (new
objects are created and an oidmap table is updated).

Break out relational database access from oidmap predicates
All the TBR predicates for oidmap require access to the relational data-
base.54 If the TBR predicates were directly implemented according to the
semantics above, it would mean that relational database access would be
embedded in the code of the predicates. As discussed in section 13.1, it is
essential that all relational database access is represented explicitly in
query plans. Otherwise, some queries will be processed in a non-optimal
way.

To illustrate this, we will take the following query as an example:

select salary(:e1)

This would be translated to the following TBR rule:

temp (SAL) <- oidmap (:e1,ENR) &

r_employee(ENR,_,SAL,_)

53. This check could be skipped (in this resolvent predicate as well as in the following),
which would lead to a different semantics for oidmap predicates. In that case, a mapping
(o,v) in the oidmap table would be returned even if v had been deleted from rel.
54. If the alternative semantics discussed in footnote 53 had been chosen, only the first
resolvent predicate (’ff’) would require access to the relational database.

mt,lt
fb

mt,lt
bf

mt,lt
bb

integer
f

employee,integer
bf
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Execution of the oidmap predicate would involve the execution of the fol-
lowing query (to check that 314, the enr of :e1, is still in the relational data-
base):55

select T from employee where enr=314

The r_employee predicate would lead to the execution of the following
query (to retrieve the salary for :e1):

select salary from employee where enr=314

Clearly, the first query is unnecessary, since the second query does the job
of the first query (and more). However, the optimizer has no possibilities to
discover this since the first query is embedded within the code of the oid-
map predicate.

Note that all four resolvent predicates above consist of two parts. One part
deals with the state of the relational database. It sends queries to get all pri-
mary key values for a relation or to check whether a certain value exists in
the database. The other part deals with the mapping between OIDs and val-
ues. It searches and updates the oidmap tables.

This makes it possible to break out the relational database access and have
it explicitly represented in the query plan. The oidmap functions are
defined as derived functions. The relational database access is handled by r-
functions and access to the oidmap tables is handled by the function oid-
map1:

create function oidmap(mt o)->lt val as
XXselect val
XXwhere val=oidmap1(o)
XXXXand r_rel()=<..., val, ...>;

For example:

create function oidmap(employee e)->integer enr as
XXselect enr
XXwhere enr=oidmap1(e)
XXXXand r_employee()=<enr,_,_,_>;

create function oidmap(salesman s)->integer enr as
XXselect enr
XXwhere enr=oidmap1(s)
XXXXand r_salesman()=<enr,_,_>;

The oidmap1 function is the subject of the next section.

13.2.3 oidmap1 functions and predicates

Just like the oidmap functions, an oidmap1 function takes a mapped object

55. Since the query is used only to test whether a certain value is in the database, it does
not matter what it returns, the important thing is that something is returned. Hence ’select
T ...’.
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as argument and returns the primary key value that the object is mapped to.
However, unlike oidmap functions, oidmap1 functions do not involve
access to the relational database. They are only concerned with access to
the oidmap table. The oidmap1 function is overloaded and there is one
resolvent function for each most general mapped type:

create function oidmap1(mgmt obj)->lt val as ...

For example:

create function oidmap1(employee e)->integer enr as ...

There are no resolvents of the oidmap1 function for subtypes to most gen-
eral mapped types. These types inherit the oidmap1 function.

The oidmap functions are compiled to the following kind of TR rules:

oidmapmt,lt(O,VAL)

<- oidmap1mgmt(mt),lt(O,VAL) &

r_rel(...,VAL,...)

For example:

oidmapemployee,integer(E,ENR)

<- oidmap1employee,integer(E,ENR) &

r_employee(ENR,_,_,_)

oidmapsalesman,integer(S,ENR)

<- oidmap1employee,integer(S,ENR) &

r_salesman(ENR,_,_)

When the oidmap function is used together with other functions, the r-pred-
icates will most often be optimized away (unified with other r-predicates).
This is discussed in section 13.4.1.

Semantics of oidmap1 predicates
The following is an informal description of the semantics of the different
TBR predicates for the oidmap1 functions. mt is the (most general) mapped
type on which the oidmap1 function is defined. rel is the relation that mt is
mapped to. lt is the literal type corresponding to the domain of the primary
key attribute of rel.

1) Neither the mapped object nor the primary key value is known, i.e.:

oidmap1 (OBJ,VAL)

These resolvent predicates are not needed. Since oidmap1 predicates are
always accompanied by r-predicates (see above) the optimizer can always
chose to execute the oidmap1 predicate after the r-predicate. This means
that the second argument to oidmap1 is bound and that the resolvent predi-
cate

oidmap1 (OBJ,VAL)

is the one that is executed.

mt,lt
ff

mt,lt
fb
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2) The primary key value is known but the mapped object is not, i.e.:

oidmap1 (OBJ,VAL)

Check if there is a tuple <o, VAL> in the oidmap table for mt. If there is, let
(o,VAL) be a result binding to (OBJ,VAL). If there is not, create a new
object (o_new) of the type mt, let (o_new,VAL) be a result binding to
(OBJ,VAL), and add the tuple <o_new, VAL> to the oidmap table for mt.

3) The mapped object is known, but the primary key value is not, i.e.:

oidmap1 (OBJ,VAL)

Get the tuple <OBJ, v> in the oidmap table for mt. Let (OBJ,v) be a result
binding to (OBJ,VAL).

4) Both the mapped object and the primary key value are known, i.e.:56

oidmap1 (OBJ,VAL)

Check that there is a tuple <OBJ, VAL> in the oidmap table for mt. If there
is, let (OBJ,VAL) be a result binding to (OBJ,VAL).

(End of description.)

Again, consider the example query from section 13.2.2:

select salary(:e1)

The query will be translated to the following TR rule:

tempinteger(SAL) <- oidmapemployee,integer(:e1,ENR) &

r_employee(ENR,_,SAL,_)

Since oidmap is a derived function, this will be further translated to the fol-
lowing (fully expanded) TR rule:

tempinteger(SAL) <- oidmap1employee,integer(:e1,ENR) &

r_employee(ENR,_,_,_) &

r_employee(ENR,_,SAL,_)

The two r_employee predicates can be unified into a single one (this is dis-
cussed in section 13.4.1). Actually, this is what usually happens to the r-
predicates that accompany oidmap1 predicates - they are removed by the
optimizer. This gives the following TR rule:

tempinteger(SAL) <- oidmap1employee,integer(:e1,ENR) &

r_employee(ENR,_,SAL,_)

Which will be translated to the following TBR rule:

temp (SAL) <- oidmap1 (:e1,ENR) &

r_employee(ENR,_,SAL,_)

Execution of the oidmap1 predicate would not involve the execution of any

56. Note that this TBR predicate is not necessary, since it is covered [47] by the third TBR
predicate (’bf’). Instead of executing the ’bb’ predicate, the ’bf’ predicate could be exe-
cuted followed by an equality test that checked the retrieved primary key value.

mt,lt
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mt,lt
bf
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bb
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SQL queries. As before, the r_employee predicate would lead to the execu-
tion of the following query (to retrieve the salary for :e1):

select salary from employee where enr=314

Side effects of oidmap1 predicates
The resolvent predicates

oidmap1 (OBJ,VAL)

sometimes have side effects. This happens when no object corresponding to
VAL is stored in the oidmap table for mt. In this case a new object (o_new)
is created and the tuple <o_new, VAL> is added to the oidmap table.

This could sometimes cause the creation of unnecessary objects and that
unnecessary tuples are added to the oidmap tables. For example, consider
the following query:

select e for each employee e where enr(e)=777

One of the possible TBR alternatives is:

temp (E) <- oidmap1 (E,777) &

r_employee(777,_,_,_)

Suppose that this TBR alternative was chosen by the optimizer. No object
corresponding to 777 would be stored in the employee.oidmap table. This
means that a new object :e5 would be created and that the tuple <:e5, 777>
would be added to the employee.oidmap table. After this, the r_employee
predicate would cause the Translator to check if a tuple with enr=777 exists
in the employee relation. Since no such tuple exists, the query would not
return any employees. Still, the side effect of the oidmap1 predicate has
resulted in the creation of an object and a new tuple in an oidmap table.

The side effects do not affect the semantics of the object view since oid-
map1 predicates are always accompanied by r-predicates that check that
values found in the oidmap table are present in the relational database. For
example, consider a query like

select e for each employee e

This will be translated to the following TR rule:

tempinteger(E) <- oidmap1employee,integer(E,ENR) &

r_employee(ENR,_,_,_)

If the optimizer should choose to execute the oidmap1 predicate first, one
branch of the top-down execution tree will have E bound to :e5 and ENR
bound to 777. However, since the r_employee predicate will check that
there is a tuple in the employee relation with enr=777 (which there is not),
:e5 will not be one of the answers to the query. The only problem with these
side effects is that some extra memory is used. Since queries which result
in unwanted side effects are very rare and artificial, we consider this prob-
lem negligible.

mt,lt
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13.2.4 Deletion semantics

This section discusses possible semantics for the object view when primary
key values in the relational database for which OIDs have been generated
are deleted. In the following discussion, :obj is a mapped object and MT is
the mapped type which :obj is a direct instance of.

Let us first consider the case when the primary key value is deleted from a
relation which is mapped to a type which is not a most general mapped
type. This causes no problems - the only thing that happens is that the type
membership for :obj changes. Instead of being a direct instance of MT, it
will be a direct instance of the supertype of MT. For example, if the tuple
where enr=314 is deleted from the salesman relation, the object :e1 will no
longer be an instance of the type salesman, but it will still be an instance of
the type employee.57

The problems start when (1) MT is a most general mapped type, and (2)
some application has a handle to :obj. Suppose for example that some
application has issued a query against the object view which returned the
object :e1, that the application keeps a reference to this object, and that
later, the tuple where enr=314 is deleted from the employee relation. The
question is what should happen when the application issues a new query
which involves the object :e1, for example:

select salary(:e1)

In the current prototype, a query like this will simply return an empty
result. The query will be translated to the following TBR rule:

temp (SAL) <- oidmap1 (:e1,ENR) &

r_employee(ENR,_,SAL,_)

The oidmap1 predicate will bind the variable ENR to 314, since the map-
ping between :e1 and the primary key value 314 is still stored in the oidmap
table. The r_employee predicate will therefore result in the following query
against the relational database:

select salary where enr=314

Since there is no tuple where enr=314, the initial query will not return any-
thing.

Different semantics are possible for a situation like this. Maybe the Trans-
lator should notify the application that the reference to :obj is obsolete,
rather than just return an empty result for queries like the one above. The
notification could either be performed the first time the application uses
:obj in a query, or as soon as the primary key value is deleted. The latter
case would require an active database mechanism [28] [58] or some kind of
monitoring [54] of the relational database.

A related question is what should happen if the primary key value is added

57. Type membership of mapped objects is discussed in section 13.3.
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to the relational database again. In the current prototype, the primary key
value is mapped to the same OID and applications are unaffected by the
fact the value was deleted for a period of time (unless they tried to use it
while it was absent). Different semantics are possible for this too.
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13.3 The instance-of relationship
Query plans in object-oriented databases often contain tests of the instance-
of relationship, i.e. which objects are instances of which types. We will
refer to these tests as type membership tests. They may, for example, be
used to get the types that an object is an instance of, or to get all objects
that are instances of a specific type.

In AMOS, the instance-of relationship is modelled by the typesof function.
It takes an object as argument and returns the types that the object is an
instance of (direct or by generalization):

typesof(object)->type

When queries are compiled to ObjectLog rules, calls to the typesof function
are replaced with typesof predicates:

typesofobject,type(OBJ,TP)

There are four categories of queries which result in type membership tests
in AMOS query plans:

1) Direct call

select typesof(:e1)

This is translated to the following TR rule:

temptype(T) <- typesofobject,type(:e1,T)

2) Get all instances of a type

select e for each employee e

This is translated to the following TR rule:

tempemployee(E) <- typesofobject,type(E,:typeEmployee)

3) Inherited functions

select salary(s) for each secretary s

This is translated to the following TR rule:

tempinteger(SAL) <- salaryemployee,integer(S,SAL) &

typesofobject,type(S,:typeSecretary)

4) Late binding

Suppose that the function salary is defined not only on the type employee,
but also on the type secretary (salary is an overloaded function). Then the
query

select salary(e) for each employee e

is translated to the following TR rule:

tempinteger(SAL) <- typesofobject,type(E,:typeEmployee) &

apply(:functionSalary,E,SAL)

At execution time, the typesof predicate will retrieve all employee objects.
For each of these objects, the apply predicate will perform another type
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membership test to decide what resolvent of the salary function should be
chosen.

(End of enumeration.)

In an object-oriented database, the relationship between objects and types
(which objects are instances of which types) can be stored directly in the
database. This makes it possible to implement type membership tests very
efficiently.

In an object view of a relational database, the relationship between objects
and types is dependent on the state of the relational database. Type mem-
bership tests require access to the relational database. This makes these
tests very expensive, and it essential that they are removed by the optimizer
whenever possible.

A mapped object OBJ is an instance of a mapped type TP if: (a) OBJ is
mapped to a primary key value that occurs in the relation that TP is mapped
to, and (b) mgmt(TP) is equal to mgmt(OBJ). Condition (b) is necessary to
handle cases where a primary key value occurs in two relations which are
mapped to types with different most general mapped types. For example, an
employee object which is mapped to the primary key value enr=314 is not
an instance of the type department even if there is a department with the
primary key value dnr=314.

Section 13.3.1 discusses the role of the typesof function in AMOS Transla-
tors.

13.3.1 The typesof function

The typesof function is implemented as a foreign function. As will be
shown in this section, all TBR predicates for the function contain calls to
the relational database. It should be clear by now that this causes problems
for the optimizer - it will not have enough information to generate optimal
execution strategies in all cases.58 We will illustrate this and present a solu-
tion to part of the problem. However, first we will give a more detailed
description of the typesof function.

Semantics of typesof predicates
The following is an informal description of the semantics of the different
TBR predicates for the typesof function.

Note that the object (OBJ) may be either a mapped object or a regular
object, and that the type (TP) may be a mapped type or a regular type.
Since our focus is on object views of relational data, we only describe the
cases of mapped objects and types. That is, when OBJ is known, it is bound
to a mapped object, and when TP is known, it is bound to a mapped type. In
general, when the objects/types are not mapped, a standard object-oriented

58. See section 13.1 and section 13.2.
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database implementation of the typesof predicates can be used.59

1) Neither the mapped object nor the primary key value is known, i.e.:

typesof (OBJ,TP)

This resolvent predicate is not needed. It is always possible to choose an
ordering of the query plan predicates so that either the object or the type is
known when the typesof-predicate is executed. A query like

select typesof(o) for each object o

is translated to the following TR rule:

temptype(T) <- typesofobject,type(O,:typeObject) &

typesofobject,type(O,T)

2) The type is known but the object is not, i.e.:

typesof (OBJ,TP)

Let rel be the relation that TP is mapped to. Get all primary key values
from rel. For each of these values (v), check if there is a tuple <o, v> in the
oidmap table for mgmt(TP). If there is, let (o,TP) be a result binding to
(OBJ,TP). If there is not, create a new object (o_new) of the type
mgmt(TP), let (o_new,TP) be a result binding to (OBJ,TP), and add the
tuple <o_new, v> to the oidmap table for mgmt(TP).

3) The object is known but the type is not, i.e.:

typesof (OBJ,TP)

Let t0 be mgmt(OBJ). Get the tuple <OBJ, v> in the oidmap table for t0. Let
T be the subtree of the type tree that has t0 as its root. Traverse T top-down
and for each type t that is a node of T do the following: Let rel be the rela-
tion that t is mapped to. Check if v is a primary key value in rel. If it is, let
(OBJ,t) be a result binding to (OBJ,TP). If it is not, do not traverse the sub-
tree having t as its root any further.

4) Both the object and the type are known, i.e.:

typesof (OBJ,TP)

Let t0 be mgmt(OBJ). Check if TP is either equal to t0 or a subtype to t0. If
it is not, stop. If it is, get the tuple <OBJ, v> in the oidmap table for t0. Let
rel be the relation that TP is mapped to. Check if v is a primary key value in
rel. If it is, let (OBJ,TP) be a result binding to (OBJ,TP).

Break out relational database access from typesof predicates
All the TBR predicates for the typesof function require access to the rela-
tional database. As discussed in section 13.1 and section 13.2, this is a
problem during query optimization. Some queries will be processed in a
non-optimal way.

59. The only tricky case is when the type is a regular type which can have mapped sub-
types. Consider for example the query ’select o for each object o’. The query should return
all objects, both regular and mapped.
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For example, consider the query:

select salary(s) for each secretary s

This would be translated to the following TBR rule:

temp (SAL) <- r_employee(ENR,_,SAL,_) &

oidmap1 (S,ENR) &

typesof (S,:typeSecretary)

The r_employee predicate would lead to the execution of the following
SQL query (to get the employee number and salary for all employees):

select enr, salary from employee

The oidmap1 predicate would search the employee.oidmap table to get the
employee objects (four) that correspond to the employee numbers. This
would result in four executions of the typesof predicate (one execution for
each employee object).

Let us consider execution of the typesof predicate when S is bound to the
object :e1. First, the employee number of :e1 (314) would again be
retrieved from the employee.oidmap table. After this, the following SQL
query would be executed (to check if 314, the enr of :e1, is in the secretary
table):

select T from secretary where enr=314

Since this query would not return anything, the salary of :e1 would not be
an answer to the initial query. The same procedure is repeated for the other
employee objects (and the salary of :e4 is the only thing that is returned).

Clearly, this is a non-optimal execution strategy. An optimal execution
strategy would result in a single SQL query:

select salary
from employee, secretary
where employee.enr=secretary.enr

The problem is that relational database access is embedded in the code of
the typesof TBR predicates. Fortunately, there is a way to overcome some
of these problems.

Recall that a mapped object OBJ is an instance of a mapped type TP if OBJ
is mapped to a primary key value VAL, VAL occurs in the relation that TP
is mapped to, and mgmt(TP) is equal to mgmt(OBJ).

This can be expressed as the following rule, where rel is the relation that
TP is mapped to:60

60. The condition that mgmt(TP) is equal to mgmt(OBJ) is guaranteed by the oidmap1
predicate. If mgmt(TP)≠mgmt(OBJ) then OBJ can never occur in the oidmap table for
mgmt(TP).
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typesofobject,type(OBJ,TP)

<- oidmap1mgmt(TP),lt(OBJ,VAL) &

r_rel(...,VAL,...)

This rule can be used to replace typesof predicates at compile-time in the
cases where TP is a constant.61

For example:

typesofobject,type(E,:typeSecretary)

<- oidmap1employee,integer(E,ENR) &

r_secretary(ENR,_)

Again consider the query

select salary(s) for each secretary s

The TR rule for this query is:

tempinteger(SAL) <- r_employee(ENR,_,SAL,_) &

oidmap1employee,integer(S,ENR) &

typesofobject,type(S,:typeSecretary)

Since the second argument to the typesof-predicate is a constant, the type-
sof substitution rule above can be applied to the rule, which becomes:

tempinteger(SAL) <- r_employee(ENR,_,SAL,_) &

oidmap1employee,integer(S,ENR) &

oidmap1employee,integer(S,ENR2) &

r_secretary(ENR2,_)

Compile-time unification (see section 13.4.1) and removal of unnecessary
oidmap1 predicates (see section 13.4.2) gives:

tempinteger(SAL) <- r_employee(ENR,_,SAL,_) &

r_secretary(ENR,_)

Which will give the following executable TBR rule (see section 13.4.3):

temp (SAL) <- sql_exec (”select salary

XXfrom employee, secretary where

XXemployee.enr=secretary.enr”, SAL)

Remaining problems with type membership tests
The only occasion when typesof predicates can be substituted away is when
the type is known at compile-time. This means that some queries are still
processed in a non-optimal way. Consider for example the following query:

select salary(:e1), typesof(:e1)

This is translated to the following TR rule:

61. This is performed by the typesof Expander (see figure 30 on page 99).

integer
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tempinteger,type(SAL,TP)

<- oidmap1employee,integer(:e1,ENR) &

r_employee(ENR,_,SAL,_) &

typesofobject,type(:e1,TP)

The enr of :e1 is 314. The r_employee predicate will therefore result in the
execution of the following SQL query:

(a) select salary from employee where enr=314

The typesof predicate is used to get all types that :e1 is an instance of, i.e.
the types corresponding to those relations in which 314 is a primary key
value. To do this it will execute the following SQL queries:

(b) select T from employee where enr=314
(c) select T from secretary where enr=314
(d) select T from salesman where enr=314

Clearly, query (b) is unnecessary, since the job of it (and more) has already
been done by query (a).

Our query processing technique is not powerful enough to produce optimal
query plans in all cases. Note however that it can handle queries of type (2)
and (3) in the enumeration on page 92. Our experience is that these types of
queries are, by far, the most common among queries that generate type
membership tests.
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13.4 Query optimization
As discussed in section 12.3, the optimizer reorders the subgoals of TR
rules to the most efficient execution strategy. The estimation of which reor-
dering is optimal is based on the cost model described in [47].

Prior to query optimization, two techniques can be used to simplify the TR
rule. The two techniques, compile-time unification of predicates and
removal of unnecessary oidmap1 predicates, are discussed in section 13.4.1
and section 13.4.2, respectively.

TR rules contain r-predicates, which are not executable as they stand. After
query optimization, they are replaced by executable sql_exec predicates
which make the calls to the relational database. Sometimes, several r-pred-
icates should be combined and replaced by a single sql_exec predicate.
Section 13.4.3 concerns the substitution of r-predicates.

Finally, section 13.4.4 gives a longer example of query processing in object
views of relational data.

Figure 30 gives an overview of the different phases of query processing in
Translators (compare this to query processing in normal AMOS databases
which is illustrated in figure 26 on page 69).

13.4.1 Compile-time unification

It is sometimes possible to unify predicates in a query plan and replace
them with a single predicate. This is the case when two predicates have the
same predicate symbol, have the same constants/variables in the key
attributes, and there are no conflicts between constants in the non-key
attributes.

For example, consider the following TR rule:

tempinteger(SAL1) <- salaryemployee,integer(E,SAL1) &

salaryemployee,integer(E,SAL2) &

foointeger(SAL2)

The first argument of salary predicates is a key since employees can only
have one salary. Since the two salary predicates have the same variable (E)
as their first argument, they can be unified and replaced with a single pred-
icate. The resulting substitution (SAL2 should be replaced by SAL1) is
applied to the rest of the predicates. This gives the following TR rule:

tempinteger(SAL1) <- salaryemployee,integer(E,SAL1) &

foointeger(SAL1)

This type of compile-time unification is important for queries against an
object view of a relational database. Query plans will often contain multi-
ple r-predicates and multiple oidmap1 predicates which can be unified. For
example, consider the following query:

select name(:e1), salary(:e1)
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Figure 30: Query processing steps in Translators.
typesof Expander see section 13.3. Compile-Time Unification see section 13.4.1.
oidmap1 Removal see section 13.4.2. ObjectLog Optimizer see section 12.3 and sec-
tion 13.4.3. SQL Generator see section 13.4.3.

The ObjectLog generator will first transform this to the following (not
final) TR rule:

tempcharstring,integer(N,SAL)

<- nameemployee,charstring(:e1,N) &

salaryemployee,integer(:e1,SAL)
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Since name and salary are derived functions, this will be expanded to the
following TR rule:

tempcharstring,integer(N,SAL)

<- oidmap1employee,integer(:e1,ENR1) &

r_employee(ENR1,N,_,_) &

oidmap1employee,integer(:e1,ENR2) &

r_employee(ENR2,_,SAL,_)

Since both oidmap1 predicates have the same constant (:e1) as their first
argument, which is a key, they can be unified. Each occurrence of the vari-
able ENR2 is replaced with ENR1. This gives the following TR rule:

tempcharstring,integer(N,SAL)

<- oidmap1employee,integer(:e1,ENR1) &

r_employee(ENR1,N,_,_) &

r_employee(ENR1,_,SAL,_)

Now, the two r_employee predicates have the same variable (ENR1) as
their first argument, which is a key. This means that they too can be unified.
The final TR rule therefore looks like this:

tempcharstring,integer(N,SAL)

<- oidmap1employee,integer(:e1,ENR1) &

r_employee(ENR1,N,SAL,_)

13.4.2 Removal of oidmap1 predicates

It is sometimes possible to remove oidmap1 predicates from the query plan
without affecting the semantics of the query. We define the rule for this as
follows:

If: The first argument of an oidmap1 predicate is a variable which does not
occur in any other predicate of the query plan (neither in the head nor in
any subgoal)

Then: The oidmap1 predicate can be removed from the query plan.

Consider for example the following query:

select name(e), salary(e) for each employee e

This will be translated to the following TR rule:

tempcharstring,integer(N,SAL)

<- oidmap1employee,integer(E,ENR1) &

r_employee(ENR1,N,_,_) &

oidmap1employee,integer(E,ENR2) &

r_employee(ENR2,_,SAL,_)

Compile-time unification (see section 13.4.1) gives:



101

tempcharstring,integer(N,SAL)

<- oidmap1employee,integer(E,ENR1) &

r_employee(ENR1,N,SAL,_)

Since the variable E of the oidmap1 predicate does not occur in any other
predicate, the oidmap1 predicate can be removed. This gives the following,
final, TR rule:

tempcharstring,integer(N,SAL)

<- r_employee(ENR1,N,SAL,_)

Of course, this kind of removal of predicates can not be applied to any type
of predicates. Consider for example the following query, which retrieves all
employees that have a hobby:

select e
for each employee e, charstring h
where hobby(e)=h

The final TR rule for this query will be:

tempemployee(E) <- r_emp_hobbies(ENR,H) &

oidmap1employee,integer(E,ENR)

The variable H of the r_emp_hobbies predicate does not occur in any other
predicate. This does not mean that the r_emp_hobbies predicate can be
removed. It serves as a boolean test that the employee does have a hobby.

Before we motivate why the removal can be applied to oidmap1 predicates,
observe that the only case we need to discuss is when the first argument of
oidmap1 (the oid variable) is unbound and the second argument (the pri-
mary key value) is bound, i.e:

oidmap1 (OBJ,VAL)

If the oid variable is bound, it is either a constant, or it has been bound by
some other predicate. In any case, it violates the precondition of the
removal rule; that the first argument should be a variable that does not
occur in any other predicate.

Also recall from section 13.2.3 that oidmap1 predicates where both argu-
ments are unbound never occur.

The reason why oidmap1 predicates can be removed is that they are never
used as boolean tests in the way the r_emp_hobbies predicate was used in
the example above. The only purpose of an oidmap1 predicate is to map
between oid’s and primary key values. If some value does not have a corre-
sponding oid, a new oid is created as a side effect of the oidmap1 predicate.

Another way to look at the removal rule is as follows. Consider the follow-
ing reordering of the subgoals of the first TR rule of this section:

mt,lt
fb



102 Object Views of Relational Data

tempcharstring,integer(N,SAL)

<- r_employee(ENR1,N,_,_) &

oidmap1employee,integer(E,ENR1) &

oidmap1employee,integer(E,ENR2) &

r_employee(ENR2,_,SAL,_)

Suppose that the query was not optimized any further, and that the predi-
cates were executed in this order. The first oidmap1 predicate would then
take a primary key value and retrieve the corresponding oid. The second
oidmap1 predicate would then take this oid and, again, retrieve the corre-
sponding primary key value. Obviously, these two operations are not neces-
sary. Using this viewpoint, the removal rule can be described as follows,
using a functional notation:62

oidmap1(oidmap1-1(OBJ)) <=> OBJ

If we think of the OID of a mapped object as an abstraction of the corre-
sponding primary key value, we can see that the removal rule is actually a
special case of the following, more general, rule:

deabstract(abstract(OBJ)) <=> OBJ

13.4.3 Substitution of r-predicates

TR rules contain r-predicates which represent access to the relational data-
base. These predicates are not executable as they stand. The optimizer sub-
stitutes them into executable sql_exec predicates.

The first argument of an sql_exec predicate is the SQL query that is to be
sent to the relational database. The query may contain variables on the form
!vX, where X=1, 2, 3, etc. After this follows zero, one or more arguments
which are bound. These are substituted into the SQL query at execution
time. The first of these arguments replaces the variable !v1, the second
replaces !v2, etc. Finally follows zero, one or more unbound arguments.
Execution of the SQL query results in these arguments being bound.

For example, consider a query plan that contains the following r-predicate:

r_employee(ENR,NAME,SAL,_)

If the optimizer chooses an execution order where NAME is bound whereas
ENR and SAL are unbound, this will result in the following sql_exec pred-
icate:

sql_exec(”select enr,salary from employee where name=!v1”,
XXNAME,ENR,SAL)

Let us assume that NAME is bound to ’bertil’ at execution time. Then the

62. Actually, if algebraic expressions had been used as the internal representation of query
plans, there would have been a transformation rule of this kind that corresponded to our
removal rule.
oidmap1-1 is the inverse of the oidmap1 function.
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following query will be sent to the relational database:

select enr,salary from employee where name=’bertil’

The query returns the tuple <159, 15000>. This results in ENR being bound
to 159 and SAL being bound to 15000.

A naive substitution algorithm would be to simply replace each r-predicate
with an sql_exec predicate, in the way it was done above. This naive algo-
rithm is actually the one that is implemented in the current prototype. We
will present the details of this algorithm in the next section. In the general
case, the algorithm is not capable of creating optimal query plans. We will
discuss its shortcomings and possible improvements in the sections follow-
ing the next one.

Naive substitution
Each r-predicate

r_rel(W1,...,Wn)

is replaced with an sql_exec predicate:

sql_exec(”select R1,...,Rz from rel where <condition>”,
XXB1,...,By,F1,...,Fz)

B1 to By are those variables of W1 to Wn which are bound. The <condition>
clause is a conjunction of equality tests:

S1=!v1 and ... and Sy=!vy

where S1 to Sy are the names of the attributes in rel which correspond to B1
to By. !v1 to !vy are variables which will be replaced with values at execu-
tion time.

In the example above, there is one bound variable; NAME. The corre-
sponding attribute in the employee relation is name. Hence, the <condi-
tion> clause is

name=!v1

and B1 to By is

NAME

F1 to Fz are those variables of W1 to Wn which are unbound. R1 to Rz are
the names of the attributes in rel which correspond to those variables. In the
example above, there are two unbound variables; ENR and SAL. The corre-
sponding attributes in the employee relation are enr and salary. Hence, R1
to Rz is

enr,salary

and F1 to Fz is

ENR,SAL

Limitations of the naive algorithm
A serious drawback of the naive algorithm is that joins that could be per-
formed in the relational database are performed in the Translator. For
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example, consider the query

select district(s),salary(s) for each salesman s

This will be translated to the following TR rule:

tempcharstring,integer(D,SAL)

<- r_salesman(ENR,D,_) &

r_employee(ENR,_,SAL,_)

If the naive algorithm was used, the executable TBR program would have
two sql_exec predicates:

temp (D,SAL)

<- sql_exec (”select

XXenr,district from salesman”,ENR,D) &

sql_exec (”select

XXsalary from employee where enr=!v1”,

XXENR,SAL)

Since the first query would return two tuples (there are two salesmen in the
database), the second query would be executed two times, for a total of
three calls to the relational database. The join between the salesman and
employee tables is performed in the Translator.

An optimal TBR program should have only one sql_exec predicate:

temp (D,SAL)

<- sql_exec (”select

XXdistrict,salary from salesman,

XXemployee where salesman.enr=

XXemployee.enr”,D,SAL)

This would result in a single query to the relational database. The join
between the salesman and employee tables is performed in the relational
database.

Another problem with the naive algorithm is that some tests that could be
performed in the relational database are performed in the Translator. This
leads to unnecessary shipment of data between the relational database and
the Translator. For example, consider the query:

select name(e)
for each employee e
where salary(e)>18000

This will be translated to the following TR rule:

tempcharstring(N) <- r_employee(_,N,SAL,_) &

>integer,integer(SAL,18000)

If the naive algorithm is used, the executable TBR program would be:

temp (N) <- sql_exec (”select

XXname,salary from employee”,N,SAL) &

> (SAL,18000)
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The query would return all names and salaries. The salaries would then be
checked by the Translator to see what names should be returned.

An optimal TBR program would perform the salary check in the relational
database:

temp (N) <- sql_exec (”select

XXname from employee where

XXsalary>18000”,N)

Since only one employee earns more than 18000, the second query would
return a single tuple whereas the first query would return all four tuples in
the employee table.

Merging r-predicates
Consider again the following TR rule:

tempcharstring,integer(D,SAL)

<- r_salesman(ENR,D,_) &

r_employee(ENR,_,SAL,_)

Three possible execution strategies are possible:

tempcharstring,integer(D,SAL)

<- r_salesman(ENR,D,_) &

r_employee(ENR,_,SAL,_)

tempcharstring,integer(D,SAL)

<- r_employee(ENR,_,SAL,_) &

r_salesman(ENR,D,_)

tempcharstring,integer(D,SAL)

<- { r_salesman(ENR,D,_)

X r_employee(ENR,_,SAL,_) }

The first two strategies result in two sql_exec predicates. In the third strat-
egy the two predicates are merged. Merged predicates are placed within
brackets. This will result in a single sql_exec predicate:

sql_exec (”select district,salary

XXfrom salesman,employee where salesman.enr=employee.enr”,

XXD,SAL)

In this example it is obvious that the third execution strategy (merging the
r-predicates) is optimal. The reason for this is that the variable ENR is
present in both predicates. This means that the resulting SQL query will
involve a join on the enr attributes of the salesman and employee relations.

It is not always optimal to merge all r-predicates. Recall that a Translator is
a complete AMOS DBMS which is extended with the notions of mapped
types and mapped objects. This means that the schema of a Translator will
contain both functions for which the extension is stored directly in the
Translator and functions for which the extension depends on the state of the
relational database. This means that some queries will result in query plans
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where there are r-predicates which have no common variables. Merging
these predicates will result in a ’cartesian product query’ against the rela-
tional database, rather than a ’join query’. This may sometimes be desira-
ble, sometimes not. To illustrate this, we will assume that the Translator
schema in the company example is enriched with the following function:

recreation(charstring)->charstring

The function takes a district as argument and returns the recreational activ-
ities that are possible in that district. The extension is stored directly in the
Translator and is illustrated in table 3.

Table 3: The extension of the function recreation(charstring district)->charstring
activity.

Now suppose that the following query is given to the Translator (’what
salesmen work in a district where the hobby of some employee can be prac-
ticed’):

select s
for each salesman s, employee e
where recreation(district(s))=hobby(e)

The TR rule for this query will be:

tempsalesman(S) <- oidmap1employee,integer(S,ENR) &

r_salesman(ENR,D,_) &

recreationcharstring,charstring(D,A) &

r_emp_hobbies(_,A)

There are 22 ways to execute this ObjectLog program (16 where the r-pred-
icates are not merged and 6 where they are). We will show two representa-
tive examples of these. The execution trees for these examples are shown in
figure 31.

district activity

’kisa’ ’squash’

’kisa’ ’fishing’

’kisa’ ’skiing’

’rimforsa’ ’squash’
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Figure 31: Execution trees for the two example execution plans.

Example 1:

temp (S) <- r_salesman(ENR,D,_) &

recreation (D,A) &

r_emp_hobbies(_,A) &

oidmap1 (S,ENR)

The r_salesman predicate will result in the execution of the SQL query

select enr,district from salesman

which will return two tuples. The recreation predicate will be executed
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twice, once for each district that was returned by the r_salesman predicate.
The r_emp_hobbies predicate will result in execution of queries on the
form

select T from emp_hobbies where hobby=!v1

where !v1 is substituted with the four activities that was returned by the
recreation predicate. This gives a total of five queries against the relational
database.

Example 2:

temp (S) <- { r_salesman(ENR,D,_)

X r_emp_hobbies(_,A) } &

recreation (D,A) &

oidmap1 (S,ENR)

The first predicate will result in execution of the query

select enr,district,hobby from salesman,emp_hobbies

which will return eight tuples (the cartesian product of the salesman and
emp_hobbies relations).63 This means that the recreation predicate is exe-
cuted eight times. However, since the execution plan only involves a single
query to the relational database, it is not obvious that this plan is inferior to
the first one. It depends on the relative cost of computations in the Transla-
tor, transmission costs, and the costs of processing the queries in the rela-
tional database.

To achieve an accurate estimation of the costs of the relational queries, the
cost model of the relational database system will have to be simulated in
the Translator. Note that the statistics and cost model parameters of the
relational database system may not be available. In that case they could be
estimated by running a well-chosen set of test queries [22].

Semantics of the sql_exec predicate
There is only one resolvent predicate for sql_exec:

sql_exec (QUERY,&REST ARGLIST)

The stars (*) used in the signature instead of a binding pattern and a type
list indicate that this resolvent is used for all binding patterns and for all
types of the arguments. The predicate can have a varying number of argu-
ments.64

The semantics of the sql_exec resolvent predicate is as follows:

Let y be the number of arguments that are bound.65 Then, let boundlist (B1,
..., By) be the first y members of ARGLIST, and let freelist (F1, ..., Fz) be

63. In most relational database systems, queries return bags of tuples rather than sets of
tuples (as relational database theory prescribes). If this is the case, the query would return
14 tuples rather than 8.
64. Hence the &REST form of the second argument (CommonLisp style). ARGLIST is a
list of the rest of the arguments.
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the rest of ARGLIST. Substitute each occurrence of !vX in QUERY with
the value of the Xth member of boundlist. Execute the substituted query in
the relational database. For each result tuple <R1, ..., Rz>, let (QUERY, B1,
..., By, R1, ..., Rz) be a result binding to (QUERY, B1, ..., By, F1, ..., Fz).

13.4.4 Example

We conclude this section with an example. The example query is the same
query which was used in section 12.3 to illustrate the query processing
steps for normal AMOS databases. The difference here is that the AMOS
schema is a view of a relational database. The extension is not stored
directly in the AMOS database.

select s, doublesalary(manager(s))
for each salesman s
where hobby(s)=’golf’

The query is translated to a TR rule in the same way as in section 12:

tempsalesman,integer(S,DS)

<- salaryemployee,integer(M,SAL) &

timesinteger,integer,integer(SAL,2,DS) &

manageremployee,employee(S,M) &

hobbyemployee,charstring(S,’golf’) &

typesofobject,type(S,:typeSalesman)

This time, however, salary, manager, and hobby are derived functions. The
TR rules for these functions are:

salaryemployee,integer(E,SAL)

<- oidmap1employee,integer(E,ENR) &

r_employee(ENR,_,SAL,_)

manageremployee,employee(E,M)

<- oidmap1employee,integer(E,ENR) &

oidmap1employee,integer(M,MNR) &

r_employee(ENR,_,_,MNR)

hobbyemployee,charstring(E,H)

<- oidmap1employee,integer(E,ENR) &

r_emp_hobbies(ENR,H)

This means that the expanded TR rule for the query is:

65. This can be derived by looking at the result specification part of the query. If the query
returns tuples of arity n (i.e. the query is ’select R1, ..., Rn from ... where ...’), then the
predicate has n unbound arguments (and hence len-n bound arguments, where len is the
length of ARGLIST). In the actual implementation, the number of bound arguments is
supplied as an extra argument to sql_exec, to avoid calculation of this at run-time.
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tempsalesman,integer(S,DS)

<- oidmap1employee,integer(M,MNR) &

r_employee(MNR,_,SAL,_)

timesinteger,integer,integer(SAL,2,DS) &

oidmap1employee,integer(S,SNR) &

oidmap1employee,integer(M,MNR2) &

r_employee(SNR,_,_,MNR2)

oidmap1employee,integer(S,SNR2) &

r_emp_hobbies(SNR2,’golf’)

typesofobject,type(S,:typeSalesman)

Since the second argument to the typesof predicate is a constant, the fol-
lowing holds:

typesofobject,type(S,:typeSalesman)

<- oidmap1employee,integer(S,SNR) &

r_salesman(SNR,_)

The output of the typesof Expander is:

tempsalesman,integer(S,DS)

<- oidmap1employee,integer(M,MNR) &

r_employee(MNR,_,SAL,_)

timesinteger,integer,integer(SAL,2,DS) &

oidmap1employee,integer(S,SNR) &

oidmap1employee,integer(M,MNR2) &

r_employee(SNR,_,_,MNR2)

oidmap1employee,integer(S,SNR2) &

r_emp_hobbies(SNR2,’golf’)

oidmap1employee,integer(S,SNR3) &

r_salesman(SNR3,_)

Compile-time unification gives:

tempsalesman,integer(S,SAL)

<- oidmap1employee,integer(M,MNR) &

r_employee(MNR,_,SAL,_) &

timesinteger,integer,integer(SAL,2,DS) &

oidmap1employee,integer(S,SNR) &

r_employee(SNR,_,_,MNR) &

r_emp_hobbies(SNR,’golf’) &

r_salesman(SNR,_)

Removal of unnecessary oidmap1 predicates gives the final TR rule:

tempsalesman,integer(S,SAL)

<- r_employee(MNR,_,SAL,_) &

timesinteger,integer,integer(SAL,2,DS) &

oidmap1employee,integer(S,SNR) &

r_employee(SNR,_,_,MNR) &
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r_emp_hobbies(SNR,’golf’) &

r_salesman(SNR,_)

In this case, it is optimal to merge all the r-predicates together with the
times predicate. The optimized TBR rule is:66

temp (S,SAL)

<- { r_employee(MNR,_,SAL,_)

XXtimesinteger,integer,integer(SAL,2,DS)

XXr_employee(SNR,_,_,MNR)

XXr_emp_hobbies(SNR,’golf’)

XXr_salesman(SNR,_) } &

oidmap1 (S,SNR)

The executable TBR rule, where the merged r-predicates and times predi-
cate have been replaced with an sql_exec predicate, is:

temp (S,SAL)

<- sql_exec (”select e1.enr, 2*e2.salary

XXfrom employee e1 e2, emp_hobbies,

XXsalesman where hobby=’golf’ and

XXemployee=e1.enr and e1.enr=

XXsalesman.enr and e1.manager=e2.enr”,

XXSNR,SAL) &

oidmap1 (S,SNR)

66. This is not implemented in the current prototype. The naive algorithm which is used
presently would perform the join as well as the multiplication in the Translator rather than
in the relational database. See section 13.4.3.

salesman,integer
ff

employee,integer
fb

salesman,integer
ff

*
*

employee,integer
fb
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14 Summary of Part II

An object view of relational data makes it possible to transparently work
with data in a relational database as if the data were stored in an object-ori-
ented database. Queries against the object view are translated to queries
against the relational database. The results of these queries are then proc-
essed to form an answer to the initial query. We have developed such a
view mechanism and the second part of thesis described the principles
behind its implementation.

We discussed the relationship between schemas in object-oriented data
models and the corresponding relational schemas. A normal form, SSNF,
for representing subtype/supertype relationships in relational schemas was
introduced. By having the relational database schema in SSNF, the map-
ping between the object view and the relational database is greatly simpli-
fied. When an object view is created over a relational database that is not in
SSNF, the first step is to define a relational view that is.

The term Translator was used for the software which implements object
views of relational data. A Translator is a complete AMOS DBMS aug-
mented with the notions of mapped types and mapped objects. A mapped
type is a type for which the extension is defined in terms of the state of a
relational database. When the relational database is in SSNF, there is a one-
to-one mapping between instances of a mapped type and tuples in some
relation in the relational database. The instances of mapped types are called
mapped objects.

ObjectLog, an object-oriented logical language, is used for the internal rep-
resentation of query plans in Translators. We showed the importance of
having all relational database access explicitly represented in Translator
query plans. The use of r-functions and r-predicates was introduced as a
way to handle this.

Object identity is provided in the view through the use of mapping tables.
OIDs are generated dynamically the first time they are needed and are
thereafter maintained by the Translator. The mapping between OIDs and
primary key values is modelled with special kinds of functions called oid-
map functions. We discussed OID management during query processing
and how it can be performed without embedding relational database access
in the code of the oidmap functions.

In an object view of a relational database, the instance-of relationship
(which objects are instances of which types) is dependent on the state of the
relational database. This means that type membership tests require access
to the relational database. We discussed the role of type membership tests
during query processing and the problems of generating optimal execution
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strategies for queries involving these tests.

The optimizer finds the optimal execution strategy by estimating the cost
for the different reorderings of the predicates in the query plan. The use of
r-predicates requires new query optimization techniques. r-predicates rep-
resent relational database access but are not executable as they stand. After
query optimization, they are replaced by executable sql_exec predicates
which make the calls to the relational database. The current implementation
of Translators uses a naive algorithm for this which replaces each r-predi-
cate with an sql_exec predicate. An optimal algorithm should sometimes
replace multiple r-predicates by a single sql_exec predicate. This depends
on the relative costs of computations in the Translator, transmission costs,
and the cost of processing the queries in the relational database.

Prior to query optimization, two techniques can be used to simplify the
query plan. The technique of compile-time unification uses information
about key attributes to replace multiple predicates with a single one. The
technique of removal of unnecessary predicates can be applied to a certain
class of predicates which only serve as generators of OIDs.



Concluding Remarks

We refer to section 7 and section 14 for summaries of the two parts of the
thesis and to the Preface for a discussion on the contributions of this work.

The survey of multidatabase system architectures and the discussion on the
role of the canonical data model should make it clear that object views of
different kinds of data sources is a central issue in multidatabase systems.
The popularity of the relational data model makes object views of rela-
tional data particularly important.

We have presented the main problems when object views of relational data-
bases are created and have shown how some of them can be solved.

Object views of relational data is a research area where a lot of work
remains to be done. In particular, we are not aware of any research on query
processing techniques for such views prior to this work. The following is a
description of some of the research problems that are not addressed in this
thesis.

Future work

View Definition Language. A formal, simple, and semi-automatic way to
define object views of relational data is needed. A formal Object View Def-
inition Language (OVDL) should be developed for this purpose. In the cur-
rent prototype, the mapping between the relational database and the object
view is established by handcoding the effects of imagined OVDL state-
ments.

Unusual relational schemas. As discussed in section 11.3, the first step of
the mapping procedure is to define a relational view that is in a certain nor-
mal form. Unfortunately, current relational view definition languages are
not general enough to allow all kinds of mappings [39] [45]. Two different
solutions are possible: (a) Extend relational view definition languages so
that a view in the normal form can be defined for all kinds of relational
schemas, or (b) Add constructs to the Object View Definition Language so
that all relational schemas can be directly mapped to the desired object
view, including those for which a relational view in the normal form can
not be defined.

Multiple inheritance. The current prototype only handles simple inherit-
ance - types in the object view can only have one other type as a direct
supertype. Formalisms and algorithms need to be developed to map rela-
tional data to multiple inheritance structures in the object view. The normal
form discussed in section 11.3 must be extended to handle cases of multiple
inheritance.
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Query optimization. More work is needed on the query optimization tech-
niques.

As discussed in section 13.4.3, a rather naive algorithm is used in the cur-
rent prototype for replacing r-predicates with executable sql_exec predi-
cates. Sometimes it is advantageous to replace multiple r-predicates with a
single sql_exec predicate. To find the most effective execution strategy, the
optimizer should consider local processing costs, transmission costs, and
the cost to execute SQL queries in the relational database. This means that
the cost model of the relational database must be simulated in the query
optimizer of the Translator [22].

We have emphasized the importance of having all access to the relational
database explicitly represented in query plans. As discussed in section
13.3.1, our query processing technique can not do this for all kinds of type
membership tests. In rare cases this results in non-optimal execution strate-
gies.
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