

IT 09 036

Examensarbete 30 hp
November 2009

Python Integration with a Functional
DBMS

Hanzheng Zou

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Python Integration with a Functional DBMS

Hanzheng Zou

Python is an Object Oriented programming language and widely used nowadays. This
report describes how to extend a functional database system Amos II for integration
with Python. Several possibilities are analyzed to combine the Amos II C external
interfaces with those of Python. Based on these discussions, new functionality has
been added to the Python language by implementing a Python C external module. A
basic API called PyAmos, interfacing Python and Amos II, is proposed and
implemented in this work. To utilize object oriented nature of Python, some new
Python classes are also defined for Amos II database access. The performance of
PyAmos interface is also evaluated. This work shows how Python can be integrated
with a functional DBMS.

Tryckt av: Reprocentralen ITC
IT 09 036
Examinator: Anders Jansson
Ämnesgranskare: Tore Risch
Handledare: Tore Risch

5

Index

1. Introduction .. 7

2. Background ... 8

2.1 Database Management Systems ... 8

2.1.1 Data Model, Schema and Query language. .. 8

2.1.2 Database Interfaces .. 9

2.2 Python ... 9

2.2.1 Python Dynamic Nature ... 10

2.2.2 Using a DBMS in Python ... 10

2.2.3 Python vs. PHP ... 11

2.2.4 Python vs. Java ... 12

2.3 Amos II... 12

3. The PyAmos Interface ... 15

3.1 System Overview ... 15

3.2 Extending Python .. 18

3.3 Passing Database OID .. 22

3.4 Tuples in Amos II and Python .. 23

3.5 Creating New Types in Python .. 24

3.6 Error Mangement and Execptions ... 28

3.7 Integrating the garbage collectors .. 30

3.8 The Python Modules ... 32

4. Performance Measurements ... 34

5. Conclusion and future work .. 39

Acknowledgement .. 40

References ... 41

Appendix 1 PyAmos Function References ... 43

Appendix 2 Test Scripts of Performance Evaluation. ... 48

6

7

1. Introduction

Amos II [25] is a functional database system where functions are used both to represent data,

and to query and update the database. The database queries are expressed in AmosQL [24], a

functional query language similar to the object-oriented (OO) parts of SQL-99. Amos II can be

used as a stand-alone main-memory functional DBMS using AmosQL. The system can

furthermore execute functional queries over federations of other databases distributed over the

internet.

The purpose of this project is to design and implement an API between the programming

language Python and Amos II, called PyAmos. Python is scripting language for building, e.g.,

interactive web pages and scientific applications. Python may, e.g., run inside a Python-enabled

web server but can also run as a stand-alone interpreter. Python can be extended by calling

different kinds of external systems. For example, APIs between Python and various relational

DBMSs have been defined [21]. In this project the ability of Python to call other systems is used

for tightly extending Python with new functionality for calling Amos II functions. The functional

nature of Amos II makes is straight forward to enable transparent calling of Amos II database

functions as Python functions.

There are two kinds of interfaces between Amos II and the programming languages C and Java

called the callin and the callout interfaces [23]. Generally speaking, the callin interface allows

systems written in C or Java to call Amos II, while the callout interface allows the programmer to

define foreign Amos II functions in Java or C. The foreign functions can then be freely used in

database queries. The external interfaces permit the development of access modules to external

data, called wrappers. For example, wrappers to relational databases, web forms, XML

documents, MIDI files, and web browsers have been implemented, and they are all available in

the Amos II project wrapper overview page [1].

The interface between Amos II and other systems can either be based on client-server

communication using TCP-IP or a tight connection where both Amos II and the external system

run in the same address space. The client-server interface is slower since TCP-IP communication

is involved. Similarly, PyAmos allows having either a tight connection between Python and Amos

II, where the Amos II database is running inside the Python engine as a subsystem in the same

address space, or a more conventional client-server connection to a separate Amos II database

server.

Since Amos II is an object-oriented system it possible to pass DBMS managed OIDs between the

Python-based application and the Amos II database. It is investigated how to manage such OIDs

being passed to and from the embedded Amos II system.

The functional nature of Amos II is exposed in Python. The dynamic nature of Python makes it

possible to design an interface on a much higher level than the interface between C or Java and

8

Amos II. For example, functional programming constructs in Python such as lambda expressions

and map functions can be used for operating over large query results from Amos II.

Performance is an issue, in particular when transporting high volumes of data between Python

and Amos II. Careful choice of Python-provided data structures for basic data elements is

important. Measurements are made to evaluate the best performance and how the interface

performance scales when the volume of interchanged data increases.

Both Python and Amos II have automatic garbage collectors that must interoperate so that all

temporary memory used by the embedded Amos II is released when no longer referenced from

Python. Furthermore, the error management of Amos II is integrated with Python’s error

management.

The rest of this report is organized as follows.

In chapter Two, the technical background is discussed, including comparisons of Python and PHP,

Python and Java, and introduction to the Amos II system.

The PyAmos system is presented in Chapter Three. The chapter includes a description of the

architecture of PyAmos, including how to pass OIDs, implement Amos II types as Python types,

handle errors, and integrate the garbage collectors.

Chapter Four is about performance evaluations of the PyAmos interface. Finally chapter Five

summarizes and discusses future work.

2. Background

The technical background is discussed in this chapter, including relevant DBMS technologies, a

Python language introduction, comparison between Python and the similar language PHP, and

the functional DBMS Amos II.

2.1 Database Management Systems

A Database Management System (DBMS) is a set of software programs that are used to store,

update and retrieve a database. Some of the most popular DBMS solutions in the markets are

Microsoft SQL server [13], DB2 [9], Oracle [17], and MySQL [14]. The DBMS Amos II [25] is used in

this project.

2.1.1 Data Model, Schema and Query language.

A data model of a database is a language for describing how a database is structured. The most

9

common data model is the relational data model. In the relational data model data is

represented as tables.

The description of the contents of a database is called the database schema. For a relational

database it is a set of meta-data that describes the tables storing the database. A database

schema is usually specified when the database is designed and it can be changed as the database

evolved. The data model provides the primitives to represent the schema. For example, in

relational databases the data model consists of tables, in the object-oriented data model it

consists of classes and methods, and in the Amos II functional data model it consists of type and

function definitions.

Query languages are very high level computer languages used to make queries to databases. The

most known common query language for relational databases is SQL [6]. Amos II uses the query

language AmosQL [23], which is a functional query language based on OSQL [18] and DAPLEX [5]

with some extensions.

2.1.2 Database Interfaces

Database Application Programming Interfaces (APIs) are used for interfacing application

programs with a DBMS. Examples of DBMS APIs are ODBC [16] and JDBC [10]. Database APIs

provide database connections to let a client program establish a session with the database server.

It is usually specified by a connection string, which is addressing a specific database or server. A

database cursor or a scan comprises a structure for the traversal and processing of records in a

result set from a query sent to the DBMS through the API. User can get, put, and delete database

records by using cursors. Both ODBC and JDBC provide standard software API for using DBMS.

Prepared statements in ODBC and JDBC provide a way to dynamically compile SQL statements to

save query optimization time if the same query is executed repeatedly.

Amos II provides the JavaAmos interface [4] between the programming language Java and Amos

II. Similarly, the PHP-Amos interface [3] provides a simple Amos II API for the PHP language. The

PyAmos system provides a similar API for interfacing Python programs with Amos II databases.

Both the JavaAmos, PHP-Amos, and PyAmos interfaces are based on the C native interface of

Amos II [23]. By making use of the dynamic features and the system libraries of Python, the

PyAmos is as simple as PHP-Amos, more dynamic than JavaAmos, and almost as fast as the C

native interface. The performance of PyAmos compared to the other Amos II APIs will be

elaborated in the coming chapters.

2.2 Python

Python [20] is a general purpose high level programming language. It is quite simple to use, and

the code is easy to read since indentation is used as block delimiters. With a large and

comprehensive standard, Python has become a popular programming language.

10

2.2.1 Python Dynamic Nature

Python is a multi paradigm programming language. The programmers are not forced to adopt a

particular programming style. Not only object-oriented programming and structured

programming are supported, it also permits developers to use functional programming and

aspect-oriented programming. In the present work mainly the functional and object-oriented

Python styles are used.

Python is as simple to use as UNIX shell scripts or Windows batch files, but it is much more

powerful than these primitive scripting languages. It is a complete programming language, which

offers structures, functions, and modularization to support building large programs. Python

furthermore offers as fully dynamic features as a scripting language and dynamic error handling.

As a high level language, some high level data types such as flexible arrays and dictionaries are

built in.

Python is an interpreted language, which saves the programmer considerable development time

since there is no need for compilation and linking. It is quite easy to make experiments with

different features of the language by using the interpreter interactively.

As a high level programming language, Object-Oriented features are also fully supported. Python

classes are used to define new data types matching the real world. All Python symbols are objects

with attributes. All the modules are also objects, which could contain other objects inside; thus

the Python’s namespace is nested. All the Python objects are automatically reclaimed by an

automatic garbage collector when no longer needed, similar with other modern languages like

Java, Perl [11], PHP [19], or Ruby [2].

Each Python code object is documented by a comment string that is placed as the first

non-remark declaration in a module, class or function. The comment string can be accessed at

run time from Python as ‘__doc__’ attributes of objects, modules, classes, or function objects.

An important feature utilized in this project is that Python is quite extensible. New modules and

language extensions can be easily written in C or C++. It makes Python a tool for system

integration and lets Python make use of C and C++ legacy code. Some modules that need

complex algorithms or calculations can be efficiently implemented in C or C++ and then easily

integrated into Python. This will elaborated later in this report, when the PyAmos interface is

described.

2.2.2 Using a DBMS in Python

Python has API modules to interface relational databases [22], the current version called

DBAPI-2.0. Python also has database interfaces modules for some specific relational database

systems, such as IBM DB2, MySQL, Microsoft SQL server, and Oracle.

11

This is an example of using DBAPI-2.0 to call SQL:

>>> import psycopg

>>> conn = psycopg.connect("dbname=test user=test")

>>> curs = conn.cursor("DROP TABLE atable")

>>> conn.commit()

By using the standardized database API, the Python code is more portable across relational

databases. PyAmos provides a similar functional database API utilizing the functional nature of

both Python and Amos II to query and update Amos II databases and data sources accessible

through Amos II.

2.2.3 Python vs. PHP

Compared with PHP, which is a web-oriented programming language that stands for ‘Hypertext

Processor’, Python is a general purpose programming language with fewer web-specific features.

‘Will Python be used instead of PHP in the future?’ This is a much disputed question and has

drawn many developers’ attentions. In principle, we can say ‘yes’ because in most cases where

PHP can be used, Python can be used instead.

Python and PHP have the following in common:

 Both Python and PHP are interpreted languages, usually called ‘scripting languages’. They are

high level languages with dynamic typing. In most cases they can be run in all operating

systems without recompilation.

 Both languages are open source languages supported by large developer communities.

 Both languages are easy to learn.

 Both languages are extensible and the developer can easily extend them using C, C++, or

Java.

 Python is an Object oriented language. OO features have also been recently added to PHP.

When it comes to Web applications, Python still has a long way to go to ‘beat’ PHP:

 Python is not a template language, which means that you cannot easily mix Python code with

HTML, as is easy to do in PHP.

 Up to now, most of the inexpensive web-hosters support PHP, but not Python. This situation

might be solved with the development of new hardware, but still needs time.

 There are many more pre-written Web scripts in PHP than in Python.

Despite of the features stated above, both Python and PHP have low entry barriers and are easy

to learn. One special thing in Python is to use indentations as a form of syntax. This makes the

code look clean and tidy, but the developers from other language like C, C++ or Java might think

Python is kind of ‘neat freak’. Wrong indentations will cause syntax errors or even bugs in the

code. Especially if there are nested loops in the code, wrong code indentations may lead to totally

different execution logic. Therefore Python’s indentation syntax is not as clear as the ‘{}’ used in

C++ or Java code.

12

Python is an OO language and it supports both procedural coding and class definitions. PHP also

has OO support in the new versions, but the big problem is that PHP has quite awful backward

compatibility [15] which is never existed in Python.

Python also have some features that PHP doesn’t have. Python supports namespaces and

modules, which are currently in the PHP development plan. Python has threading support, unlike

PHP. For general purpose development Python is a more powerful language than PHP. The biggest

limitation of using Python in web development is current lack of web-hosters, but this will

perhaps be not a problem with development of hardware and web-hoster technologies.

2.2.4 Python vs. Java

Python and Java do have some features in common. Both Python and Java are general purpose

programming language; both of them support object-oriented features and have large numbers

of useful libraries. The difference is that Java is a static typed language, while Python is dynamic

typed as PHP. Java is called a static typed language, since in Java, all the variables must be

explicitly declared. You can’t declare an integer variable and later assign it a string value.

Exceptions are raised if wrong type assignments occur. By contrast Python is known as dynamic

typed language where the user doesn’t need to declare anything. Any assignment will bind a

variable name to a Python object, and the object could be of any type. You can also assign a

variable to a type and later assign it to some other different object type.

Python also supports variable number of function parameters. It means you can pass a dynamic

number of parameters to a Python function. During run-time, the Python interpreter can check

how many parameters are passed and then interpret them dynamically. This is used in PyAmos to

provide convenient database access. By contrast, in Java the method argument declarations are

static and resolved by the compiler.

Finally, Java doesn’t support lambda functions and a functional programming style, while Python

does, which will be elaborated later.

2.3 Amos II

Amos II (Active Mediator Object System) is a light-weight and extensible database management

system (DBMS) with an object oriented and functional data model. Amos II uses AmosQL, a

relationally complete functional query language, to make queries and views to the database.

Amos II provides an intermediate system level between different kinds of data sources and

applications. A wrapper is a program module that can query data from different classes of

external data sources, such as a Web services [12] or relational databases [8], in terms of the

functional data model in Amos II. There are interfaces between several programming languages

and Amos II, e.g. Lisp [23], C/C++ [23], Java [4] or PHP [3]. In this project the external C interface

13

is mainly used. It allows Python programs query and update Amos II databases.

Amos II can access data stored in a local Amos II database as well as data in wrapped external

data sources. The facilities to access data in wrapped data sources make Amos II extensible.

Through the wrappers new applications oriented data types can easily be accessed.

The basic data model of Amos II provides types, functions, and objects. The model is functional

but supports OO representations such as inheritance, instantiation, dynamic binding and so on.

Types

To match with the object oriented nature, the types in Amos II are similar to the concept of

‘class’ in OO programming languages. The types are organized in a multiple inheritance,

super-type and sub-type hierarchy. Figure 2 illustrates the basic type hierarchy that is offered by

Amos II.

Figure 2.1: Amos II system type hierarchy

Users can define their own types. The user-defined types may have properties represented as

functions, analogous to attributes of class definitions, for example:

create type Person properties (name Charstring,birthyear Integer);

create type Supervisor under Person;

create type Student under Person properties (class Charstring, su Supervisor);

User-defined types like Person, Supervisor and Student are always subtypes of the system type

Userobject.

Functions

Functions model properties of objects, computations over objects, and relationships between

objects. They are instances of system built in type named Function. They provide the basic

primitives in functional queries and views. Basically, there are two parts in a function, the

signature and the implementation. The signature defines the function name, the arguments and

results types; and the implementation specifies how to do the computations of the function.

There are four types of Function in Amos II.

14

 Stored functions, represent properties of objects similar to attributes of a class. For example,

create function name(Student) -> Charstring name as stored;.

 Derived functions are functions defined in terms of functional queries over other functions.

For example,

create function topstudents(Student p) -> Charstring nm
 as select name(p) where grade(p)<90;

 Database procedures are defined by a procedural sublanguage of AmosQL. For example,

create function helloworld (Charstring name)->Boolean as

begin

print(‘Hello world ’); print(name); result true;

end;

 Foreign functions provide the possibility to define Amos II functions in other programming

languages, such as JAVA, C/C++, or Lisp. This also provides the basis for wrapping external

systems. For example,

create function myforeignfunc(Charstring x) -> Real as foreign ‘myforeignfuncbf’;

Amos II functions can furthermore be overloaded on the argument types. Each different

overloaded implementation is called a resolvent.

Objects

Objects model all entities in the database. The object-oriented nature makes Amos objects

fundamental to the system. There are two main types of object in Amos system: literals and

surrogates. Literal objects are system maintained object which have no explicit OIDs while

surrogates are managed by the user using OIDs. All user-define objects, types, and function

entities are surrogates. The instances of types or functions are all surrogate objects.

Queries

Generally speaking, AmosQL queries are formulated through the select statement. The syntax is:

select <result>

from <type extents>

where <condition>

For example:

select name(p), birthyear(p)

from Person p

where birthyear(p) > 1970;

The from keyword specifies the types whose instances you want to make a query to. The

condition of the queries (the where clause) define the search condition as a restriction of the

cartesian product of the extents of the types in the from clause.

15

3. The PyAmos Interface

As a modern interpreted programming language, new built-in modules can be added to Python

by C programming through the Python C APIs [21]. The Python extension modules are quite

powerful: you can implement new built-in object types, call C library functions, or make use of

legend C code. New functionalities can be added to Python by creating interfaces to existing

code.

The Amos II system has analogous C-based callin and callout-interfaces [23], which make it

possible to interface Amos II with Python by calling the Amos II C interfaces in the extension

modules. This is how PyAmos is implemented.

In this chapter, the technical details of PyAmos is discussed, including how to extend Python

using C code, how to pass OIDs between Python and Amos II, how to transform Amos II types like

integers, strings, and vectors into corresponding Python types, how to integrate the error

management, and how to integrate the automatic garbage collectors of Python and Amos II.

3.1 System Overview

Figure 6 shows the architecture of PyAmos:

Figure 3.1: PyAmos system architecture

PyAmos consists of the following components:

 The Amos II kernel works in the backend of the system, and the Python interpreter connects

to Amos II through the PyAmos interface.

Python Modules

PyAmos

Callin

(Amos C interface)

Python

Kernel Python C APIs

Amos II

16

 The callin interface is called by the PyAmos extension module to execute user calls to Amos

II from Python.

 The PyAmos module is the core of the project. It makes use of the Python C APIs to define

an extension module of Python, and calls the Amos C callin interface to interact with Amos II.

The binary file is compiled and built as a dynamic object library ‘amospy.pyd’. It can be called

directly from the Python interpreter.

 The Python modules are a part of PyAmos written in Python to realize some features like

map functions.

 The Python kernel provides the interpreter, compiler, and run time system for Python. Both

the Python modules and the C extension module are executed by the Python kernel.

 The Python C API will be elaborated later.

Basically all the functions from the C callin interface of Amos II are supported by PyAmos. The

following is an example of how to run PyAmos from the Python top loop:

>>> import amospy

>>> conn = amospy.amos_connect("")

>>> scan = amospy.amos_execute(conn,"select name(t) from type t;")

>>> while amospy.amos_eos(scan)!= True :

 row = amospy.amos_getrow(scan)

 print row

 amospy.amos_next(scan)

The above code snippet first loads the ‘.pyd’ extension module into the Python interpreter, then

uses the amos_connect() function to connect to a local Amos II database running in main

memory inside Python. After that a query to get all type names in the local database is executed

by the amos_execute() function. The result is returned as a scan, and then the while loop will

iterate through the scan and print the type names. The following picture shows how the script

runs:

17

Figure 3.2: PyAmos running in the Python top loop IDLE

Table 3.1 shows how Amos II types matches corresponding C, Python, PHP, and Java types in the

corresponding APIs.

Amos II

types

 C interface PyAmos PHP-Amos JavaAmos

Interger INTEGERTYPE(int) Py_Integer ZVAL_LONG Int

Real REALTYPE(double) Py_Double ZVAL_DOUBLE Double

CharString STRINGTYPE(char*) Py_String ZVAL_STRING String

Boolean SYMBOLTYPE

(a_true/a_false)

Py_Ture/Py_False ZVAL_BOOL

(TRUE/FALSE)

Boolean

(TRUE/FALSE)

nil SYMBOLTYPE(NULL) Py_None ZVAL_NULL Null

vector ARRAYTYPE(a_tuple

)

Py_Tuple PHP Array Tuple

(user-define

java class)

OID OIDTYPE(oidtype) AmosOID

(user-define

Python Type)

ZVAL_STRING

(“#[OID <oidnum>]”)

 Oid

(user-define

java class)

Connection a_connnection AmosConn

(user-define

Python Type)

scan_resource Connection

(user-define

java class)

Scan a_scan AmosScan

(user-define

Python Type)

connection_resou

rce

Scan

(user-define

java class)

Table3.1. Amos II type mappings

18

3.2 Extending Python

Developer can make contributions to Python by implementing their own C extensions.

Python C API

The Python C API gives C/C++ programmers access to the Python interpreter at several levels.

Python itself is built internally by using the same API. There are two ways of using the API:

 Write Python extension modules for specific usages.

 Use Python as a component in a large application.

The approach of using Python as a component in a large application is to embed the Python

interpreter in C/C++ code [21] and expose the flexibility of Python in the application. By contrast,

in this project we focus on writing a Python extension module to access and Amos II database.

To illustrate how to extend Python in C, we start with a ‘hello world’ example. Here is Python

Code:

def hello_world(name):

 "say hello world to somebody."

 print "Hello %s!" % name

The corresponding Python C extension Code, hello.c, looks like this:

The three main parts in the extension module besides the necessary include files are:

 The C functions that will be called from Python

 The definition of a method mapping table, which maps Python interface names to the

corresponding C function entries.

 An initialize function for the extension module.

The C function hello_world() will run the actual user extension. In general, the implementations

19

of the C functions can have three formats: functions with arguments, functions with keywords

arguments, and functions with no arguments. They are defined as follows:

static PyObject *TheCFunction(PyObject *self, PyObject *args);

static PyObject *TheCFunctionWithKeywords(PyObject *self, PyObject *args, PyObject *kw);

static PyObject *TheCFunctionWithNoArgs(PyObject *self);

The functions mapping table maps the C function names to the interface name that will be used

in Python. That means that once you imported the extension module, you can call the say_hello

interface, and it will execute the hello_world() function. The PyMethodDef structure is defined as

follows:

struct PyMethodDef {

 char *ml_name;

 PyCFunction ml_meth;

 int ml_flags;

 char *ml_doc;

};

with attributes meaning:

*ml_name: The function name that will be used in the Python code.

*ml_meth: A pointer to the corresponding C function defined in the extension module.

*ml_flags: A set of flags, normally set to METH_VARARGS. If you want to allow keyword

arguments in the function you will need to use METH_KEYWORDS, while you can use

METH_NOARGS if you don’t want to accept any arguments at all.

*ml_doc: A documentation string that describes the function.

The other important part of the extension module is the initialize function. It will initialize the

module. The initialize function is named as ’initModule_Name‘, and thus the hello module will

have a initialize function called ’inithello‘. In the initialize function, the Py_InitModule() will be

called initially to make the module ready to be used in Python.

Passing Parameters from Python to extension functions

In the example we use PyArg_ParseTuple() to parse a Python argument tuple to several C

variables. It acts like the function sscanf() in C. The ‘hello_world’ example uses METH_VARAGRS

in the function mapping table to handle variable number of arguments. The following code

snippet shows how it works:

static PyObject *my_func(PyObject *self, PyObject *args) {

char * name;

int i;

double d;

PObject* p;

if (!PyArg_ParseTuple(args,"sido",&name,&I,&d,&p))

 return NULL;

20

}

In Python the function my_func is called like this:

my_func(‘Derek’,11,20.5,PY_TUPLE)

PY_TUPLE is an Python Tuple object defined as PY_TUPLE=(“string”,1000,”sample”)

The function uses the following system C function to retrieve the actual arguments in the

function call:

int PyArg_ParseTuple(PyObject *args, const char *format, ...)

The format here is a C string that describes the types of the arguments.

Format string Parsing to C type From Python

s char * Convert Python string to char *

c Char Convert Python char to C char

d Double Convert Python double to C

double

f Float Convert Python float type to C

float

i Int Convert Python int to C int

l Long Convert Python long to C long

o PObject * Convert a Python object

reference to a PObject *

pointer in C

Table 3.2 Parse types from Python to C

Return value to Python

In the extension module, we may also want to return a value to Python. In this case, one needs to

convert C types back to Python types. This is done by the C function Py_BuildValue(). It is defined

as:

PyObject* Py_BuildValue(const char *format, ...)

This function does the inverse work of what the PyArg_ParseTuple() function does.

Format string C Type Description

s Char * Uses char * to build a Python

string object, or Py_None will be

built in case of a null pointer.

c Char A C character will be converted

to a string in Python with length

one.

21

d double Convert C double to Python float.

f Float Convert C float to Python float

i Int Convert C int to Python int

l Long Convert C long to Python long

o PObject * Return a Python Object and

increase the reference counter.

N PObject* Return a Python Object without

increasing the reference counter.

Table 3.3 Return Values from C to Python

Here are some examples how you can use the Py_BuildValue() function to create Python objects

of different kinds in C code.

Py_BuildValue("s", "x") --> "x"

Py_BuildValue("i", 17) --> 17

Py_BuildValue("{si,si}", "x", 17, "y", 2) --> {"x":17, "y":2}

Py_BuildValue("(isi)", 17, "x", 23) --> (17, "x", 23)

Py_BuildValue("{si,s(ii)}", "x", 17, "y", 2, 3) --> {"x":17, "y":(2,3)}

Py_BuildValue("") --> None

Py_RETURN_NONE is used when you want to return null value to Python, and this is the same as

the statement return Py_None. It is important to use Py_INCREF to increase the reference

counter before returning a newly created Python object back to Python from C; otherwise the

application will crash. The same holds for Py_None.

How to build the extension

The distutils package is used to distribute both pure Python and C extension modules. You can

build and install the modules by running a setup script called ’setup.py’, e.g.:

from distutils.core import setup, Extension

setup(name='hello', version='1.0', \

 description = ‘This is Hello extension module written in C’

 ext_modules=[Extension('hello', ['hello.c'])])

You also need to compile and link the module by running the following command:

$ python setup.py install

In Linux, this command will make up a module named ‘hello.so’.

In Windows the Microsoft Visual C++ IDE can be used to compile the extension [21] as a file in

the Python Dynamic Module (pyd) format, which is similar to a DLL file.

Running the extension

22

When running the newly built Python extension, you need to change your working directory to

where the file ‘hello.so’ or ‘hello.pyd’ file resides. If you are using Windows, you can also put

‘hello.pyd’ in the ‘Python_BIN/DLLs’ directory (PythonBIN is Python’s installation path). The

module can then be used like:

>>> import hello

>>> hello.say_hello("Derek")

Hello World,Derek!

In a similar way, user defined types can be implemented in extension modules.

3.3 Passing Database OID

The Amos II system supports objects, which means everything in Amos II is represented as either

system or user-defined objects.

Literals and surrogates are two main representations in the system. OIDs are object identifiers

which are associated with surrogate objects. The surrogate types match real-world entities and

are instances of the meta-type named Type in Amos II. The literal objects are self-described

system maintained objects. They usually don’t have explicit OIDs. Numbers and strings are literal

objects. The literals are managed by an automatically garbage collector and will be deleted if they

are no longer referenced in the system.

Here is an example of how to create an object using surrogates:

create Person instances :zou;

The statement returns a new object, e.g. printed as ‘#[OID 1122]’. The OIDs are unique for all

surrogate objects.

When programming in C, all Amos II objects are referenced to through object handles which are

references to any kind of data stored in the Amos II system. The object handles can also refer to

literal objects and collections, which have no OID numbers. An object handle is basically a logical

pointer to a data structure in the Amos II database image. An object handle is represented as a C

type named oidtype declared as ’typedef unsigned int oidtype;’. The unsigned integer holds the

offset from the start of the database image to the C structure representing the Amos II object. A

new object handle obj is declared by dcl_oid. The value of a handle can be initialized using the

macro a_let(). A new value can be assigned to a handle by calling the a_assign(<location>,<new

value>) function. You are suggested to use a_assign() and a_let() instead of the ‘=’ operator so

that proper reference counting is maintained. The object handles must be released by calling the

function ‘free_oid(<location>)’ after which the system will deallocate object handle if no other

object references it. If you don’t call free_oid() when you exit the code block, a memory leak will

happen.

23

To make all kinds of objects available in Python it is needed to represent object handles as Python

objects. Surrogates, literals, and collections have to be passed between Amos II and Python in

some way. One alternative is to pass the surrogate objects as strings in ‘#[OID <oidnum>]’ format.

This approach is used by the PHP-Amos interface [3]. By that approach, a C function first would

translate an object handle referencing a surrogate object into a string ‘#[OID <oidnum>]’, and

would then use Py_buildValue() to return a Python string. When Python wants to pass an OID

back to Amos II, the string would first be checked if it matches the ‘#[OID <oidnum>]’ syntax. If so

the string is parsed to get the OID number. With this solution, the surrogate objects would be a

special string in Python. The user could not use a string with syntax ‘#[OID <oidnum>]’, since it

will be parsed into an Amos II OID. This solution works fine for the PHP-Amos interface, because

PHP is mainly for WEB applications, and passing an OID in a string is easy to handle by a web

client.

Another alternative is to convert Amos II object handles to Python user defined objects. This is

the PyAmos solution. Common literal objects such as numbers, strings, and vectors are

represented using corresponding built-in Python types. We define a new Python type called

AmosOID to represent Amos II objects in Python. The AmosOID class will hold an object handle

(oidtype) value as member. When passing an object handle from Amos to Python, the handle will

be assigned to a member variable of an AmosOID object, and then the object is returned to

Python. In the other direction, Amos II will pick up the oidtype value from the AmosOID object

and send it to C callin interface function. A Python member function toString() is also needed for

the AmosOID class when the Python user want to output an OID value; it formats the object

handle into a string, e.g. ‘#[OID <oidnum>]’ for surrogate objects, and return a Python string.

Here is an example showing how the AmosOID works in PyAmos:

>>> conn = amos_connect("")

>>> fct = amos_getfunction(conn,"plus")

>>> fct

<AmosOID object at 0x00B08190>

>>> fct.toString()

'#[OID 131]'

This solution is definitely better than translating OIDs into strings. The AmosOID objects are

Python objects that will be managed by the Python garbage collector. This allows for PyAmos to

connect the garbage collectors in Python and Amos II so that Amos II object no longer referenced

from Python will be automatically deallocated if they have no other reference. How to create

Python user defined types and how to use connect the garbage collectors will be elaborated next.

3.4 Tuples in Amos II and Python

The Python data structure Tuple holds a sequence of objects indexable by integers. For example:

>>> tup = 12345, 54321, 'hello!'

>>> tup[0]

24

12345

>>> tup

(12345, 54321, 'hello!')

In the Amos II C interface, there is a similar representation of tuples that can be initialized by

using the macro dcl_tuple:

dcl_tuple(tpl);

The macro will declare and initialize the C variable tpl to be a tuple, declared by a structure

named a_tuple. When integrating Python with Amos II, we need to have functions to convert

between Python tuple objects and Amos II a_tuple structures.

PyAmos converts every element in an a_tuple structure, using Py_BuildValue(), into the

corresponding Python data representation. For example, if an element is an Amos II object a

corresponding AmosOID object should be created. If an element is of type Vector in Amos II a

Python tuple is constructed recursively. Thus the Vector type in Amos II is translated to be

Python’s Tuple type.

3.5 Creating New Types in Python

Previously the methods for converting Amos II types like numbers, strings, OIDs, and tuples to

Python types have been discussed. Now we will take a look at how to convert a C structure used

by the Amos II callin interface into a corresponding Python user define type.

In the C callin interface of Amos II, the data structures for interfacing the database are using

connections and scans. The structure a_connection represents a connection to the database, and

the a_scan structure stores results from Amos II function calls and queries as a scan. In the callin

interface connections and scans are declared as followed:

typedef struct a_connection_rec

{

 int hasbeeninitialized;

 char *name;

 oidtype servid;

 oidtype port;

 int status;

 oidtype result;

 a_scan primscan;

} *a_connection;

typedef struct a_scan_rec

{

 int hasbeeninitialized;

25

 oidtype here;

 oidtype row;

 int stopafter;

 int status;

} *a_scan;

When PyAmos passes the a_connection and a_scan structures between the Python interpreter

and Amos II they have to be converted to corresponding Python objects. There are advantages to

create them as two different Python types without worrying about memory leaks by utilizing the

garbage collectors of Python and Amos II. Furthermore, Python types are easy to use and can be

passed as parameters of other functions.

In general, there are five steps to create a user defined Python type in C:

 First, define your corresponding C structure for the Python type.

 Second, make an initialize and deallocate function for the new type.

 Third, write and declare the member functions of the new type.

 Fourth, declare all the components of the type.

 Fifth, make the type ready for the module.

In Pyamos, there are three new C structures for creating correspond Python types:

Py_AmosOIDObject, Py_AmosConnObject, and Py_AmosScanObject. For example, the

Py_AmosConnObject has the name AmosConn in Python. The Py_AmosConnObject structure is

used to represent the structures a_connection in Python. It is created as follows.

Defining the C structure

Since an a_connection is defined as a C data structure we should make the C structure definition

as a Py_AmosConnObject having the same data fields as an a_connection structure. One way is to

copy all the data fields from the a_connection structure to the Py_AmosConnObject structure,

another way is to ‘wrap’ a pointer the a_connection structure, i.e. keep the data in Amos II and

just store references to the Amos II data objects. PyAmos keeps the data in Amos II which is faster

as it requires less copying.

typedef struct {

 PyObject_HEAD

 a_connection _conn;

} Py_AmosConnObject;

The first line inside the Py_AmosConnObject structure definition is a macro called PyObject_HEAD

that defines the initial fields in the structure and makes the structure be usable in Python. Every

Python C structure must have this macro in its definition. The second field is a pointer to an

a_connection structure.

Initialize and deallocate functions

When writing a class in python, you may have an __init__ method do the initialization work for

26

creating new instances of the class and the same holds for the Python C extension, e.g.:

static int AmosConnObject_init(Py_AmosConnObject *self, PyObject *args, PyObject *kwds){

 /* AmosConn object initialize code */

 return 0;

}

The AmosConnObject_init function will initialize the structure members. It will be called when a

new AmosConn object is created. The self pointer associates this function with the new

AmosConnObject.

In Python, in most cases you don’t need to worry about the deallocation function of a class.

However, there is an optional __del__ method that defines customized deallocation functions for

Python class instances, e.g.:

static void AmosConnObject_dealloc

(Py_AmosConnObject* self) { /* deallocate code for AmosConn Object */ }

Later in the definition of AmosConnType, the destructor AmosConnObject_dealloc has been

assigned to the tp_dealloc field and then function AmosConnObject_dealloc is called

automatically when the Python garbage collector wants to deallocate this Python object.

Write the member function and declare the members

Now we can start to write the member function of the new object. As we know the

AmosConnObject is used to handle connections to Amos II databases. The member function

definition of connectTo uses Py_AmosConnObject * instead of PyObject * for the self argument:

static PyObject * AmosConn_connectTo(Py_AmosConnObject *self, PyObject *args){

 char *dbname;

 static int isAmosInitialized = 0;

 if (!PyArg_ParseTuple(args, "s", &dbname)) {

 printf("error: wrong args in funcition amos_connect \n");

 PyErr_BadArgument();

 return NULL;

};

// some other work to do

 return Py_None;

}

You need to declare connectTo and make it a member function of the PyAmosConnObject class:

static PyMethodDef AmosConn_methods[] = {

 { "connectTo", (PyCFunction) AmosConn_connectTo, METH_VARARGS,

 "Connect to The database server with serverName" },

27

 // some other function declarations

 { NULL }

};

Declare all the components of the type

Now we can combine the pieces together and initialize the PyAmosConnObject type structure:

static PyTypeObject AmosConnType = {

 PyObject_HEAD_INIT(NULL)

 0, /* ob_size */

 "AmosConn", /* tp_name */

 sizeof(Py_AmosConnObject), /* tp_basicsize */

 0, /* tp_itemsize */

 (destructor)AmosConnObject_dealloc, /* tp_dealloc */

 0, /* tp_print */

 0, /* tp_getattr */

 0, /* tp_setattr */

 0, /* tp_compare */

 0, /* tp_repr */

 0, /* tp_as_number */

 0, /* tp_as_sequence */

 0, /* tp_as_mapping */

 0, /* tp_hash */

 0, /* tp_call */

 0, /* tp_str */

 0, /* tp_getattro */

 0, /* tp_setattro */

 0, /* tp_as_buffer */

 Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags*/

 "AmosConn object", /* tp_doc */

 0, /* tp_traverse */

 0, /* tp_clear */

 0, /* tp_richcompare */

 0, /* tp_weaklistoffset */

 0, /* tp_iter */

 0, /* tp_iternext */

 AmosConn_methods, /* tp_methods */

 0, /* tp_members */

 0, /* tp_getset */

 0, /* tp_base */

 0, /* tp_dict */

 0, /* tp_descr_get */

 0, /* tp_descr_set */

 0, /* tp_dictoffset */

28

 (initproc)AmosConnObject_init, /* tp_init */

 0, /* tp_alloc */

 0, /* tp_new */

};

As you can see, most the fields of the structure are assigned to 0 and actually omitted by Python.

You just need to fill in the parts you need and provide your own functions. The

PyAmosConnObject structure is defined as the Python class named AmosConn specified by

setting the value of the tp_name field.

Make the type ready for the module

Now the Python type definitions are done. The only thing remaining is to make it available in the

PyAmos extension module:

AmosConnType.tp_new = PyType_GenericNew;

if (PyType_Ready(&AmosConnType) < 0) {

 return;

}

The code snippet should be added to the extension module function. Then this new type can be

used in Python just as other Python classes.

For some special cases in PyAmos, an AmosConnType instance must be available in C. This

happens, e.g., when the user calls amos_connect()in Python code to get an AmosConnType

instance, the following code will run inside the extension module:

Py_AmosConnObject* connObj;

AmosConnType.ob_type = &PyType_Type;

connObj = PyObject_New(Py_AmosConnObject, &AmosConnType);

The connObj will hold a pointer referencing to an AmosConn type instance.

3.6 Error Mangement and Execptions

Amos II and Python have their own error managements and the PyAmos implementation

integrates them.

First let’s take a look at the following functions of the Amos II external interface:

int a_initialize(char *image, int catcherror);

int a_connectto(a_connection c, char *peer, char *hostid, int catcherror);

As these functions, most Amos II C interface functions have the parameter catcherror. When

catcherror is assigned to FALSE(=0), a failure of the call will cause a fatal system error; if the

catcherror is TRUE, the call will return the error number to the calling program.

29

There are three C global variables used to keep track of the returned errors:

int a_errno; /* The Amos II error number, same as the error indication */

char *a_errstr; /* A string explaining the error */

oidtype a_errform; /* A reference to an Amos II object */

If an error occurs during the call, the a_errno will store the error number not equal to 0, and the

error string will be stored in the a_errstr. The a_errform is an object handle holding a reference

to the Amos II object associated with the failure. Then you can call a_print() to print it on

standard output.

if (a errorflag != 0) {

printf("(1) Error %d: %s ",a_errno, a_errstr);

a_print(a_errform);

/* do some error handling here */

}

The functions a_print() and printf() can only print out errors on standard output, but the Python

won’t be aware of the error occurring in Amos II. Thus integration between the Amos error

handling and Python error management is needed.

In Python you need to be aware that errors might occur in either sides of Python’s C extension

[21]. The common case is that when an error occurs in the code, a NULL value should be returned

to flag it. The exceptions are stored in the global static variables for addressing errors, which are

sys.exc_type, sys.exc_value and sys.exc_traceback in Python.

There are several functions in Python’s C API to deal with errors, among which PyErr_SetString()

is the most commonly used. The first argument is the exception type, which is normally one of

the standard exceptions, for instance PyExc_RuntimeError or PyExc_MemoryError. The second

argument is a string containing the error message.

void PyErr_SetString(PyObject *type, const char *message)

You can get the current exception by calling the function PyErr_Occurred(). It will return NULL if

no exceptions occurred. The function PyErr_Format(PyObject *exception, const char *format, ...)

will set the current error indicator and print a string containing format codes. Another important

thing is that if you use malloc() or realloc() to allocate memory in C, you should always throw an

exception when it fails. In this case PyErr_NoMemory() should be called and a NULL value be

returned. The exceptions can also be ignored by using the function PyErr_Clear(), but this only

happens when the errors are handled in C code blocks and the developer don’t want to pass the

exception to the Python interpreter.

In PyAmos we integrate the Amos II and the Python error handling by defining the following

30

macros:

#define ILLEGAL_PARAM PyErr_BadArgument();

#define AMOS_ERROR (a_errform==nil?PyErr_Format(PyExc_RuntimeError, "a_errstr:%s",

a_errstr):PyErr_Format(PyExc_RuntimeError, "%s : %s", a_errstr, a_to_string(a_errform)))

#define AMOS_WARNING (a_errform==nil?PyErr_Format(PyExc_RuntimeError, "a_errstr:%s",

a_errstr):PyErr_Format(E_WARNING, "%s : %s", a_errstr, a_to_string(a_errform)))

#define CHECK_AMOS_ERROR if(a_errorflag) AMOS_ERROR

In the implementation, we check the errors by doing:

// check the error when passing the parameters

if (!PyArg_ParseTuple(args, "s", &dbname)) {

 printf("error: wrong args in funcition amos_connect \n");

 ILLEGAL_PARAM;

 return NULL;

 };

The above code will report bad parameters error by calling PyErr_BadArgument(). To check for

whether an error has occurred in a call to Amos II the macro CHECK_AMOS_ERROR is used, e.g.:

a_commit(self->_conn,TRUE);

CHECK_AMOS_ERROR;

The catcherror parameter should always be set to be TRUE after which the C macro

CHECK_AMOS_ERROR checks if whether errors have occurred. If an error has occurred, the macro

will throw a PyExc_RuntimeError, and print the a_errstr string in Python to provide error

information from the Amos II error handling mechanism.

3.7 Integrating the garbage collectors

Both Python and Amos II have their own automatic garbage collectors, unlike C. In PyAmos the

GCs of Python and Amos II interoperate so that all temporary memory used by the embedded

Amos II is released when no longer referenced from Python.

Like many other garbage collectors, both Python and Amos II uses a reference counting scheme

to keep track of object references. In Python each object has a private member called ‘Py_ssize_t

ob_refcnt’ carrying the number of places where it is referenced. When ob_refcnt equals zero the

Python garbage collector will give this object’s memory space back to the system automatically.

You can get the object reference count in Python by doing:

>>>import sys

>>>sys.getrefcount(conn)

31

3

Normally the garbage collector manages the reference counting behind the scenes, so that you

don’t need to worry about memory leaks when you are using Python. When it comes to the C

extending modules, the C code is responsible for managing the reference counts of the Python

objects it uses. System functions in the Python C-APIs are used to increase or decrease the

reference counting of the Python object. The functions Py_INCREF() and Py_XINCREF() are used

to increment the reference counting, while the Py_DECREF() and Py_XDECREF() are used to

decrement. The difference is Py_XINCREF() and Py_XDECREF() can be used on null pointers, but

the Py_INCREF() and Py_DECREF() can’t.

When Python objects are created in the C code, the reference counter of an object must be

increased before given back to C. In most cases, argument objects and the returned objects don’t

need to change the reference counter.

Similar to the reference counting in Python, Amos II has its own reference counting mechanism.

The a_assign() function will decrease the reference count of the old value stored in a location and

the object will be de-allocated if the reference counter becomes zero, i.e. if no other location

references the old value. The reference counter of the object to assign to the location will be

increased.

In PyAmos, there are two cases needed to be considered in integrating the garbage collectors.

1. The reference counter of an Amos II object handle to be handed over to Python must be

increased so that the object is not deallocated by Amos II. The macro a_let() increases the

the reference counter of an object and is used to initialize the oidtype reference in the

python object. Example as followed:

 Py_AmosOIDObject* py_oid = new_AmosOIDObject();

 a_let(py_oid->_oid,fct);

 return (PyObject*)py_oid;

2. In PyAmos the Python user defined objects AmosOID, AmosConn and AmosScan have

deallocate functions, which are called by the Python garbage collection system to free the

corresponding Amos II interface structures when they are deallocated. For example, for

object handles (OIDs represented by Python type AmosOID), if Python decides to deallocate

an AmosOID object referencing an Amos II object handle, the Amos II system macro a_free()

is called to decrease the Amos II reference counter and deallocate the Amos II object if not

referenced anywhere else.

Now let’s see how an AmosOID object can be destroyed:

static void AmosOIDObject_dealloc(Py_AmosOIDObject* self){

 if(self->_oid)

 a_free(self->_oid);

32

 PyObject_Del(self);

}

When the reference counting of a Python AmosOID object goes to zero, the deallocate function is

called. It will first check if its oidtype member is available. If yes then a_free() is called on the

Amos II object handle to deallocate the Amos object. Later the PyObject_Del(self) will destroy

this Python object itself. The memory deallocation will be managed by Amos II and Python

automatically.

3.8 The Python Modules

This section describes parts of the PyAmos system written in Python, including how to use map

functions and lambda functions.

Python supports anonymous functions at runtime by using lambda functions. A Python lambda

function in principle can be used wherever functions are required, thus we can say the Python

lambda is just an unnamed function definition.

Here is a simple lambda function in Python:

>>> lambda a,b : a+b

Basically, the syntax of a lambda function is as follows:

lambda [parameter_list] : expression .

The parameter_list is a list of parameters that will be used in the expression. However, you can’t

use, e.g., the ‘print’ statement in lambda functions, you must use sys.stdout.write() instead,

because the body of a lambda function has to be an expression, not a statement, while ‘print’ is a

statement. It is important to remember that only expressions are allowed in a lambda function,

which means assigning variables is not allowed.

Python’s map function

Python provides a ‘map’ function, and lambda functions are often used in conjunction with map

functions as callback functions. The function ‘map (fn, seq1, seq2,…)’ applies the function fn on

each items in the sequences seq1… and returns a list of the returned values.

>>> a = range(4)

>>> map(lambda x,y:(x,y) , a, ('one','two','three','four'))

[(0, 'one'), (1, 'two'), (2, 'three'), (3, 'four')]

>>>

I In the example, the lambda expression ‘lambda x,y:(x,y)’ is applied on each element in the two

lists. In PyAmos, you can also make use of lambda expressions and map functions to simplify your

33

coding. For example, you can use a map function to add the scan results with ‘atrName’.

>>> row = scan.getrow()

>>> map(lambda x,y:(x,y), ['atrname1','atrname2','atrname3'] , row)

Mastering how to use the map function can simplify the code. In particular there is a mapCall()

function defined in PyAmos interface using Python, which will call the Python function for each

element of the results of an Amos II function call.

>>> printf = lambda x: sys.stdout.write("%s\n"%x)

>>>amos_mapCall(conn,printf,"iota",0,100)

The mapCall() takes a Python lambda function as the first parameter. The lambda function ‘printf’

will be a callback function called by PyAmos’s map function. Inside the mapCall() function, the

lambda function works on each element of the result list which is returned by calling ‘iota’ in

Amos II. Here the function iota returns each integer from 0 to 100. The map function is applied by

mapCall on each result returned from Amos II. Thus in this case the number 0 to 100 are printed

on Python’s standard output.

The map functions for PyAmos are easily implemented using Python as follows:

def amos_mapCallPy(pyFunc,*tup):

scan = amos_call(*tup)

while amos_eos(scan)!= True:

 row = amos_getrow(scan)

 pyFunc(row)

 amos_next(scan)

def amos_mapQueryPy(pyFunc,*tup):

 scan = amos_execute(*tup)

 while amos_eos(scan)!= True:

 row = amos_getrow(scan)

 pyFunc(row)

 amos_next(scan)

Example of usage:

 conn = amos_connect("")

 printf = lambda x:sys.stdout.write("%s\n"%x)

amos_mapQueryPy(printf,conn,"select name(t) from type t;");

amos_mapCallPy(printf,conn,"iota",0,10)

In the above example, the Python function amos_mapCallPy() and amos_mapQueryPy() apply

Python functions, either a normal Python function or a lambda function, on the elements of the

34

scan returned by calling an Amos II functions or executing an Amos II query.

4. Performance Measurements

What is the performance of the PyAmos interface? How long is the execution time of making an

Amos II call from PyAmos? How long does it take to pass different kinds of primitive data

between Python and Amos II, and how much time is spent to iterate over large sets of different

primitive data? Now we are to find out answers to these questions.

First we declare the PyAmos interface testing environments. The performance were tested by

using:

 Amos II Release 12,v3

 Python 2.6.2

 Window XP professional sp3.

The test machine we used is a personal computer: Lenovo Thinkpad T61, which has 2.0GH Intel

Core 2 Duo CPU and 2GB RAM memory. When investigating the performance of the client-server

interface, the Amos II server runs on the same machine as the Python client.

Time of calling an Amos II function from PyAmos

To check the overhead of a PyAmos call to an Amos II function, a function called ‘dummy’ is

defined in Amos II without arguments and returning a Boolean:

create function dummy()-> Boolean ;

The ‘dummy’ function is not returning any value. We called this function 10000 times, and

compared it with the Amos II interfaces, C callin [23], PHP-Amos [3], and JavaAmos [4].

The code snippets for testing calling the dummy function in C, JavaAmos, PHPAmos, and PyAmos

are as follows:

35

The average time in seconds for 10000 calls to the dummy function is shown in the table 5.1.

Average

seconds for

10000 calls

Dummy call

from PyAmos

Dummy call

from JavaAmos

Dummy call

from PHP-Amos

Dummy call

from C callin

Tight

Connection

0.188000 0.266000 0.220000 0.172000

Client Server 1.406000 1.796000 1.579000 1.359000

Table4.1. Time of calling a dummy function using PyAmos , JavaAmos, PHP-Amos, and C callin

interfaces

Since all interfaces are based on the C callin interface, it can be concluded that the overhead of

PyAmos is 9.3% with the tight connection, and 3.5% with the client-server connection. In

particular, PyAmos is much faster than JavaAmos and PHP-Amos.

Time of passing primitive data between Python and Amos II

In Amos II there are primitive data types such as integers, strings, reals, vectors, and OIDs. It was

investigated how much time is used to pass these data types using PyAmos.

For testing the time of sending and receiving different types of data, the call_1() function is used.

Unlike amos_call(), which returns a scan object, amos_call_1() returns the calling result as a

single value. It is the fast-path for simple calls that return a scan with a single value such as an

// C code using callin interface.

t0 = clock();

f1= a_getfunction(“dummy”,FALSE);

(a_getFunction or something in external.pdf)

for (i= 0; i<10000;i++) {

 a_setarity(argl,0);

a_callfunction(c, s, f1, argl, FALSE);

}

t= clock()-t0;

// Java code using JavaAmos interface

long time3 = System.currentTimeMillis();

f1 = theConnection.getFunction("dummy");

arg1 = new Tuple(0);

for (int i =0;i<10000;i++){

theConnection.callFunction(f1, arg1);

}

time3 = System.currentTimeMillis() - time3;

// PyAmos interface

t0 = time.time()

for i in range(1,10000):

 res = amos_call(conn,"dummy")

t1 = time.time() -t0t= clock()-t0;

// PHP-Amos interface

<?php

$starttime = microtime();

for($counter=1; $counter<=10000; $counter++){

$scan = amos_call($con, "dummy");

} $endtime = microtime();

$duration=$endtime-$starttime;

?>

36

integer, string etc.

Take passing strings as an example. The following Amos II function definitions test sending and

receiving strings, respectively:

create function sendString(Charstring str)->Boolean as select true;

create function receiveString()->Charstring as select 'A receive string';

The ‘sendString’ function is used for measuring the time of PyAmos translating Python strings

into Amos II, and ‘receiveString’ is measuring the time to translate Amos II strings to Python

strings. The two functions are compared with the ‘dummy’ function to calculate the extra cost of

converting strings between Amos II and Python. The Python testing scripts are:

t0 = time.time()

for i in range(1,10000):

 res = conn.call_1("sendstring","A Test String")

t1 = time.time() -t0

print "\n t1 call1 func sendstring :%f\n"%t1

t0 = time.time()

for i in range(1,10000):

 res = conn.call_1("receivestring")

t1 = time.time() -t0

print "\n t1 call1 func receivestring :%f\n"%t1

The time difference of calling ‘sendString’ and ‘dummy’ function is the time of converting the

Python string to an Amos II string. For 10000 calls using the tight connection the measured times

were:

tsend = 0.219 , tdummy = 0.188, tdiff = tsend - tdummy =0.031

Thus the time of transmitting and converting a string from Python to Amos II is 0.031 second for

10000 calls. Analogous measurements were done for the other interfaced data types integers,

reals, vectors and OIDs.

Time in seconds for transmitting

different data types 10000 times

Tight Connection Client Server

String(‘A testing

String’,length

16)

Send 0.031(of 0.219) 0.282(of 1.688)

Receive 0.034(of 0.222) 0.253(of 1.657)

Integer Send 0.031(of 0.219) 0.281(of 1.687)

Receive 0.021(of 0.203) 0.264(of 1.672)

Real Send 0.031(of 0.219) 0.313(of 1.719)

Receive 0.030(of 0.218) 0.312(of 1.718)

37

OID Send 0.046(of 0.234) 0.329(of 1.735)

Receive 0.047(of 0.235) 0.329(of 1.735)

Vector(vector

{0,1,2,3}, size 4,)

Send 0.237(of 0.515) 0.547(of 1.953)

Receive 0.062(of 0.250) 0.266(of 1.672)

Vector

(vector {0…7},

size 8)

Send 0.432(of 0.610) 0.884(of 2.292)

Receive 0.122(of 0.310) 0.744(of 2.150)

Table4.2. Time of transmitting primitive data types between Amos II and Python.

Table 4.2 shows the comparisons between cost of passing different data types through the

PyAmos interface using the tight-connection and the client-server connection. The full Amos II

function definitions and Python test script can be seen in the Appendix 2.

We can see that sending or receiving a ‘vector’ of size eight, converted to a Tuple in Python, will

definitely take more time than other types since it holds several (8) other objects. The time

increases when vector size gets larger. The reason is that before sending and receiving a vector, all

the vector elements are converted into corresponding Python types.

Time of iterating through large result sets

The next measurements will focus on the scalability when the size of results set increases. We will

call an Amos II function that returns a set of results as a scan, and then test the execution time

when the size of the results set increases.

For the tests, Amos II functions are defined to return sets of results for different types. For

example, returning bags of strings and integers are defined as followed:

create function StringResult(Integer size)-> Bag of Charstring nm as

select “the string” from Integer i where i in iota(1,size)

create function IntResult(Integer size)-> Bag of Integer nm as

 select 1 from Integer i where i in iota(1,size);

Analogous functions are defined for reals, vectors, and OIDs. The number of returned objects is

varied by changing the parameter size.

The test focuses on the time of iterating through the results coming back from the Amos II calls.

For example:

amos_execute (conn,"create function IntResult(Integer size)-> Bag of Integer nm as \

 select 1 from Integer i where i in iota(1,size);");

t0= time.time()

scan = amos_call(conn,"IntResult",10000)

38

while amos_eos(scan)!= True :

 row = amos_getrow(scan)

 amos_next(scan)

t1 = time.time() -t0

The previous Python test scripts is testing the time of iterating through result sets of 10000

integers when using the tight connection; the time was t1 = 16 milliseconds on average. Table 4.3

shows the time durations for difference types.

Average

time/Millisecond

10000 20000 30000 60000 80000 100000 200000 400000

Integer(Tight) 16 31 62 140 155 233 437 891

Integer(C/S) 31 62 94 171 234 296 578 1171

Real (Tight) 16 32 62 139 171 219 437 890

Real(C/S) 62 110 156 328 437 593 1093 2171

String(Tight) 15 46 62 141 172 235 485 983

String(C/S) 46 62 125 218 296 391 780 1625

Vector(Tight) 31 62 93 202 265 358 765 1703

Vector(C/S) 62 108 156 344 453 593 1218 2562

OID(Tight) 16 47 78 156 203 266 516 1031

OID(C/S) 63 125 188 360 453 563 1173 2360

Table 4.3 Time of iterating large result sets.

We also compare the tight connection with client-server connection when the results set of

different types increase in size. The client server overhead, Co, is defined as:

Co= (t(client-server) – t (tight))/ t (tight) * 100%

Co measures how much slower the client-server interface is compared with the tight connection.

39

Figure 4.1: Client-server overhead percentage when result set size increases.

In figure 4.1, the client-server overhead percentage is measured. We notice that when the results

set size is small, the client-server overhead is high (up to nearly 300% for OIDs), and it gets lower

for large result sets.

The setup time for the TCP/IP is quite high compared to the tight connection. Thus, when the

number of data elements is small, the setup time for TCP/IP is relatively expensive, so the curves

in figure 4.3 all start from a high percentage. When the number of returned data elements

increases the setup time for TCP/IP gets relatively cheaper so the curves in the figure the just

show the overhead of sending more data elements by using TCP/IP compared to local connection.

5. Conclusion and future work

This report has described the implementation of the PyAmos database interface, which makes

the functional DBMS Amos II callable from Python. By using PyAmos, Python user can make use

of Amos II either by connecting to an embedded database inside Python via a tight connection, or

connecting to database servers running Amos II. The approaches of how to interface Python and

Amos II in C were discussed. The performance of the PyAmos interface for various parameters

were made and compared with other Amos II APIs.

Functions in PyAmos can call Amos II functions and send ad hoc queries to Amos II. The result of

functions and queries are represented as a new Python data type storing scans. There are

furthermore functions used to make conversion between Amos II data types and Python types,

thus the Amos II objects can be easily used in Python.

40

There are some other possibilities to continue working on this project in the future:

 Make it possible to implement Amos II foreign functions in Python. This could be done by

interfacing the Amos II callout interface, as well as using the methods of calling Python from

C code.

 Implement tight type integration between Amos II and Python. Python supports dynamic

type creation. It could be possible to create Python objects dynamically that correspond to

Amos II objects retrieved from the database, including their type names and data fields. If

Amos II has a type named ‘STUDENT’, a corresponding ‘STUDENT’ type would be created in

Python. Creating a ‘STUDENT’ instance in Python will then also create an object in the Amos

II database.

Acknowledgement

I would like to thank Professor Tore Risch for giving me the interesting project. Prof. Tore Risch

was my project supervisor and examiner; he gave me quite a lot of good ideas about the

implementations and testing during the project. I'm grateful for the time he spent in discussing

details of the project for getting me over the obstacles. Under his support, I learned a lot of

things about database technology and enjoyed working on the project.

41

References

[1] AMOS II Wrapper, UDBL whitepaper, Dept. of Information Technology, Uppsala University,

Sweden. http://user.it.uu.se/~udbl/amos/wrappers.html .

[2] B.Pharr: Getting to know Ruby. J. Comput. Small Coll. 21, 5 (May. 2006), 181-182.

[3] C.Werner: PHP Integration with object relational DBMS, UBDL wrapper, Dept. of information

Technology, Uppsala, Uppsala University, Sweden.

http://user.it.uu.se/%7Eudbl/Theses/ChristianWernerMSc.pdf .

[4] D.Elin, T.Risch: Amos II Java Interfaces. UDBL Technical Report, Dept. of Information Technology,

Uppsala University, Sweden, 2000, http://user.it.uu.se/~torer/publ/javaapi.pdf.

[5] D. Shipman: The Functional Data Model and the Data Language DAPLEX. ACM Transactions on

Database Systems, 6(1), 140-173, 1981.

[6] Elmasri, R. A. and Navathe, S. B. 1999 Fundamentals of Database Systems. 3rd. Addison-Wesley

Longman Publishing Co., Inc.

[7] Embedding and extending Python, Python, http://docs.python.org/extending/ , last viewed

2009-10-18.

[8] G. Fahl and T. Risch: Query Processing over Object Views of Relational Data, The VLDB Journal ,

Vol. 6 No. 4, November 1997, pp 261-281.

[9] IBM DB2, IBM cooperation, http://www-01.ibm.com/software/data/db2/ , last viewed

2009-10-09.

[10] Java Database Connectivity (JDBC), Sun Microsystems,

http://java.sun.com/javase/technologies/database/ , last viewed 2009-12-08.

[11] Liang, C. 2004: Programming language concepts and Perl. J. Comput. Small Coll. 19, 5 (May.

2004), 193-204.

[12] M.Sabesan and T.Risch: Web Service Mediation Through Multi-level Views, Proc. International

Workshop on Web Information Systems Modeling (WISM 2007), Trondheim, Norway, June 12,

2007.

[13] Microsoft SQL server, Microsoft, www.microsoft.com/sqlserver/2008/en/us/default.aspx, last

viewed 2009-09-10.

[14] MySQL Database, Sun Microsystems, http://www.mysql.com/ ,last viewed 2009-12-08.

[15] N.Cholakov: On some drawbacks of the PHP platform. ACM International Conference Proceeding

Series, Vol. 374, ISBN 978-954-9641-52-3, 2008.

[16] Open Database Connectivity (ODBC), Microsoft,

http://msdn.microsoft.com/en-us/library/ms710252%28VS.85%29.aspx , last viewed

2009-12-08.

[17] Oracle Database, Oracle, http://www.oracle.com/database/index.html , last view 2009-09-11.

[18] P. Lyngbaek: OSQL: A Language for Object Databases, Tech. Report, HP Labs, HPL-DTD-91-4,

1991.

[19] PHP, OpenSource, http://php.net/index.php , last viewed 2009-12-08

[20] Python, Python Software foundation, http://www.python.org/ , last viewed 2009-10-08.

[21] Python C API document, Python software foundation, http://docs.python.org/c-api/ , last

viewed 2009-10-12.

http://user.it.uu.se/~udbl/amos/wrappers.html
http://user.it.uu.se/~udbl/Theses/ChristianWernerMSc.pdf
http://user.it.uu.se/~torer/publ/javaapi.pdf
http://www-01.ibm.com/software/data/db2/
http://java.sun.com/javase/technologies/database/
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
http://www.mysql.com/
http://msdn.microsoft.com/en-us/library/ms710252%28VS.85%29.aspx
http://www.oracle.com/database/index.html
http://php.net/index.php

42

[22] Python DBAPI-2.0, http://www.python.org/dev/peps/pep-0249/ , last view 2009-09-12.

[23] T.Risch: Amos II External Interfaces. UDBL Technical Report,Dept. of Information Technology,

Uppsala University, Sweden, 2001, http://user.it.uu.se/~torer/publ/external.pdf .

[24] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed Mediator

System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to

Data Management - Modeling, Analyzing and Integrating Heterogeneous Data, Springer, ISBN

3-540-00375-4, 2003.

[25] S.Flodin, M.Hansson, V.Josifovski, T.Katchaounov, T.Risch, and M.Skold: Amos II Release 12

User’s Manual. UDBL Technical Report, Dept. of Information Technology, Uppsala University,

Sweden, Nov 3, 2009, http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html.

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

43

Appendix 1 PyAmos Function References

PyAmos Overview

 amos_call(connection, function, a1,....,an) -> scan

The connection is an AmosII connection object

 The parameter function is the Amos II function to call

 The parameters a1,a2.... are parameters passed to the called Amos II function.

 amos_call() calls an Amos II function and returns the result as an AmosScan object.

 amos_call_1(connection, function, a1,....,an) -> scan

 The connection is an AmosII connection object

 The function is the Amos II function to call

 The parameters a1,a2.... are passed to the called Amos II function

 amos_call_1() calls an Amos II function and returns a single value.

amospy.pyd

Functions

amos_call(...)

amos_call_1(...)

amos_closeScan(...)

amos_commit(...)

amos_connect(...)

amos_createobject(...)

amos_deleteobject(...)

amos_eos(...)

amos_execute(...)

amos_getfunction(...)

amos_getrow(...)

amos_next(...)

amos_openScan(...)

amos_rollback(...)

AmosConn

__del__

AmosScan

__del__

AmosOID

distory()

toString()

Python Module(in .py file)

amos_mapCallPy()

amos_mapQueryPy()

44

 amos_closeScan(scan)-> None

 amos_closeScan() closes an AmosScan Object

 amos_commit(conn) -> None

 Commits the changes

 amos_connect (dbName) -> AmosConn

 dbName : This is a string indicate the Amos II database.

 amos_connect() establishes a connection to an Amos II database.

The tight connection is used if dbName is an empty string.

The function returns an AmosConn object

 amos_createobject(conn,ObjectName) -> AmosOID

 The function will take an AmosConn object and a string representing the name of a type

as parameters, and return a new AmosOID object.

 amos_deleteobject(conn,AmosOID)->None

 The function will take an AmosConn object and AmosOID object as parameter and

delete the corresponding Amos II object.

 amos_disconnect(conn)->None

 Disconnect the session.

 amos_eos(scan)->None

 scan: an AmosScan object

 Return: Will return True or False.

 If the scan point to the end of a scan the function returns True, otherwise False.

 amos_execute(connection,queryString)-> AmosScan

 connection: Reference of AmosConn object created by amos_connect() function.

queryString: string object,the query string that you want to execute

 amos_execute() executes an AmosQL query and returns an AmosScan object.

 amos_getfunction(connection,functionName,errorTrack) -> AmosOID

 connection: a connection object created by amos_connect ()

 functionName: a function name string

 The function returns an AmosOID of Amos II function

 amos_getrow(scan) ->Py_Tuple

 scan: a scan object

 The function returns the current row of the scan as a Python Tuple.

 amos_mapCallPy(pycallbackFunc, conn, amosFunc, a1,a2,……)->None

45

pycallbackFunc: A Python callback function. It can be a normal Python function or a

lambda function.

conn : AmosConn object

amosFunc: Amos II function, e.g. “iota”

a1,a2,…an : parameters that are used by Amos Function.

For example: amos_mapCallPy(printFunc,conn, "iota", 0,15) # printFunc is Python function

 amos_mapQueryPy(pycallbackFunc, conn, amosQueryString)->None

pycallbackFunc: A Python callback function. It can be a normal Python function or a

lambda function.

conn : AmosConn object

amosQueryString: Amos II Query, e.g. “select name(t) from type t; ”

For example: amos_mapQueryPy(printFunc,conn, "select name(t) from type t;")

 amos_next(scan)->None

 scan:the reference of scan object

 This function advances the current element of a scan to the next element.

 amos_rollback(conn)->None

 Rollback the execution.

Setup the PyAmos

The script ‘compile.cmd’ will compile the Python extension module and copy it

to %Python_BIN%DLLs. The file ‘PyAmos.py’ is copied to %Python_BIN%Libs. Then you can try

the system by running the ‘demo.py’ scripts in Python.

PyAmos Demonstration scripts:demo.py

import sys

from PyAmos import *

use amos_connect()

conn = amos_connect("")

use amos_execute()

scan = amos_execute(conn,"select name(t) from type t;")

while amos_eos(scan)!= True :

 row = amos_getrow(scan)

 print row

 amos_next(scan)

print "\n FROM .PY ******while-loop done\n"

use amos_getfunction()

fct = amos_getfunction(conn,"charstring.typenamed->type")

46

use amos_call()

scan1 = amos_call(conn,fct,'FUNCTION')

row1 = amos_getrow(scan1)

print row1

use amos_call_1()

print "\nTest amos_call fucntion PLUS(3,8)\n"

res = amos_call_1(conn,"PLUS",3,8)

print res

amos_execute(conn,"create type newtype1;")

amos_rollback(conn)

amos_execute(conn,"create type newtype2;")

amos_execute(conn,"create type newtype3;")

amos_commit(conn)

amos_execute(conn,"create type newtype4;")

amos_rollback(conn)

scan = amos_execute(conn,"select name(t) from type t;")

while amos_eos(scan)!= True :

 row = amos_getrow(scan)

 print row

 amos_next(scan)

print "\n FROM .PY ******while-loop done\n"

use amos_createobject() and amos_deleteobject()

obj2 = amos_createobject(conn,"newtype2")

print obj2.toString()

obj3 = amos_createobject(conn,"newtype3")

print obj3.toString()

amos_deleteobject(conn,obj2)

print "Testing tuple arguments and results in Amos II functions:\n"

a = (1.1,None,2,"2",3,True,False,obj3,(1,2,obj3))

tpl = amos_getrow(amos_call(conn,'id', a));

print tpl

print "\nTesting OID, true, false, null values:\n"

tpl = amos_getrow(amos_call(conn, 'id', obj3))

print tpl

47

print tpl[0].toString()+ "\n"

tpl = amos_getrow(amos_call(conn, 'id', True));

print tpl

tpl = amos_getrow(amos_call(conn, 'id', False));

print tpl

tpl = amos_getrow(amos_call(conn, 'id', None));

print tpl

printf = lambda x:sys.stdout.write("%s\n"%x)

print "\nTest for amos_mapQueryPy() function\n"

amos_mapQueryPy(printf,conn,"select name(t) from type t;");

print "\nTest for amos_mapCallPy() function\n"

amos_mapCallPy(printf,conn,"iota",0,10)

amos_closeScan(scan)

amos_disconnect(conn)amos_disconnect(conn)

48

Appendix 2 Test Scripts of Performance

Evaluation.

Test2.amosql

create function sendString(Charstring str)->Boolean as select true;

create function receiveString()->Charstring as select 'A receive string';

create function sendInt(Integer i)->Boolean as select true;

create function receiveInt()->Integer as select 11111;

create function sendReal(Real r)->Boolean as select true;

create function receiveReal()->Real as select 12.3456;

create function sendVector(Vector v)->Boolean as select true;

create function receiveVector()->Vector as select {0,1,2,3};

create type Person;

createobject('Person');

create function receiveObject()->Object o as

 select p from Person p;

Test2.py

import sys,time

from amospy import *

conn = amos_connect("")

amos_execute(conn,"< 'test2.amosql';")

t0 = time.time()

for i in range(1,10000):

 res = amos_call_1(conn,"sendstring","A Test String...")

t1 = time.time() -t0

print "\n t1 call1 func sendstring :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res = amos_call_1(conn,"receivestring")

t1 = time.time() -t0

print "\n t1 call1 func receivestring :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res = amos_call_1(conn,"sendInt",11111)

49

t1 = time.time() -t0

print "\n t1 call1 func sendInt :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res = amos_call_1(conn,"receiveInt")

t1 = time.time() -t0

print "\n t1 call1 func receiveInt :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res =amos_call_1(conn,"sendReal",12.3456)

t1 = time.time() -t0

print "\n t1 call1 func sendReal :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res =amos_call_1(conn,"receiveReal")

t1 = time.time() -t0

print "\n t1 call1 func receiveReal :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res =amos_call_1(conn,"sendVector",(0,1,2,3))

t1 = time.time() -t0

print "\n t1 call1 func sendVector length 4:%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res =amos_call_1(conn,"sendVector",(0,1,2,3,4,5,6,7))

t1 = time.time() -t0

print "\n t1 call1 func sendVector length 8 :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res =amos_call_1(conn,"receiveVector")

t1 = time.time() -t0

print "\n t1 call1 func receiveVector :%f\n"%(t1)

oid = amos_createobject(conn,"Person")

print oid.toString()

t0 = time.time()

50

for i in range(1,10000):

 res =amos_call_1(conn,"sendObject",oid)

t1 = time.time() -t0

print "\n t1 call1 func sendObject :%f\n"%(t1)

t0 = time.time()

for i in range(1,10000):

 res = amos_call(conn,"receiveObject")

t1 = time.time() -t0

print "\n t1 call1 func RecieveObject :%f\n"%(t1)

Test3.amosql

create function RealResult(Integer size)-> Bag of Real nm as

select 1.0 from Integer i where i in iota(1,size);

create function StringResult(Integer size)-> Bag of Charstring nm as

select 'A Returning String result' from Integer i where i in iota(1,size);

create function VectorResult(Integer size)-> Bag of Vector nm as

select {1,2,3,4} from Integer i where i in iota(1,size);

