Uppsala Master’s Theses in
Computing Science No. 302

An Object-Relational Meta-data Manager for
Picture Files

Jakob Elmiger

23rd October 2005

Information Technology
Computing Science Department
Uppsala University
Box 337
S-751 05 Uppsala
Sweden

Abstract

The Object-Relational Meta-data Manager for Picture Files is an
extension to the Amos IT (Active Mediator Object System) database.
It implements a wrapper for pictures. Meta data, more specifically
a subset of meta data defined by the Exif (Exchangeable Image File
Format) standard, is made accessible. Using AmosQL, a relationally
complete functional query language, the Object-Relational Meta-data
Manager for Picture Files is a powerful tool offering a sophisticated
access to query pictures.

Supervisor: Tore Risch
Examinator: Tore Risch

Passed:

Contents

1 Introduction
1.1 What is a Mediator?
1.2 What is a Wrapper?
1.3 The Amos II Approach
1.4 The Aim of this Work

2 Meta Data for Pictures

3 Data Model and Schema
3.1 The Amos II Data Model
3.2 TheSchema
3.3 The User’s View of the Schema
3.4 The Procedures,
3.4.1 Loading Pictures
3.4.2 Refreshing the Meta Data
3.4.3 Displaying a Picture

4 Implementation of the Procedures
4.1 Basic Overview
4.2 The Representation of the Database Schema within Java . . .
4.3 The Implementation in More Detail
4.4 An Example of How it All Works Together
4.4.1 First Task: Creating the Picture Objects
4.4.2 Second Task: Extracting the Meta Data
4.4.3 Third Task: Saving the Meta Data in Amos II
4.4.4 What is Different When Refreshing Meta Data?
4.4.5 What is Different When Displaying a Picture?
5 Conclusion and Future Work
5.1 Summary
5.2 Conclusion
5.3 Limitations
54 Future Work oo o
References

17
17
17
19
20
20
21
21
22
23

24
24
24
25
25

27

1 Introduction

1.1 What is a Mediator?

The Latin word “mediator” stands for a person who acts as a middleman in
a dispute between two or more parties [4].

In Computer Science a mediator is a design pattern, described in e.g. [9].
Such a mediator also acts in the role of a middleman. The goal of applying
the mediator pattern is to simplify the communication or the interaction
between two or more objects. This is achieved by centralization. In a
system of m objects where there is heavy interaction between the objects,
each object has to know the interfaces of up to m — 1 objects. As a result,
changing the interface of a single object can lead to changes in all other
objects. By adding a mediator that takes control of the communication and
interaction between the objects each object only has to know the mediator’s
interface. The number of communication paths and the interdependency
between the objects can thereby be heavily reduced.

1.2 What is a Wrapper?

A wrapper is another design pattern. It is also known by the name “adapter”
[9]. The goal of a wrapper is to change the interface of an object (without
changing its functionality). This is achieved by linking the commands for
the new interface to the commands of the object’s original interface. The
wrapped object can be easily accessed by a user who only knows the inter-
face provided by the wrapper. Transparently to him!, his request will be
translated and the original commands will be called. When having to pro-
vide a new interface wrapping an existing object is often easier than creating
a new one from scratch.

1.3 The Amos II Approach

Amos IT (Active Mediator Object System) is developed by the UDBL (Upp-
sala DataBase Laboratory) group at the Department of Information Tech-
nology of Uppsala University. It is a database which allows access to hetero-
geneous data. This is achieved by following a mediator/wrapper approach
[15]. It combines the two patterns described in 1.1 and 1.2.

An Amos II peer is a mediator between the user? wanting to access data
and different data sources (e.g. relational databases, XML files, Internet
search engines) providing data. The user only has to know the Amos inter-
face (e.g. AmosQL?) and does not have to know the interfaces of any other

1For language simplicity I assume the user is male.

2The user does not necessarily have to be human. It can also be a program or even
another database.

3AmosQL is a functional query language which is relationally complete.

data sources he transparently accesses.

An Amos II mediator contains wrappers to access external data sources.
A wrapper is a program to translate and process data between Amos II and
the external data source.

1.4 The Aim of this Work

The aim of this work is to extend the functionality of Amos II by providing
a wrapper for picture files, more specifically for pictures taken with a digital
camera and stored as JPEG-files. The meta data should be made accessi-
ble. Additionally, the user should be able to display pictures directly from
Amos II using a simple viewer. The picture files however remain within the
original file system and are not to be stored within Amos II itself.

In order to achieve this goal general considerations about the availability
of meta data for pictures are necessary. Then, a suitable database schema
for the meta data of pictures can be defined. Finally, the wrapper can be
implemented.

2 Meta Data for Pictures

Within the last few years digital cameras have become more and more pop-
ular. There is little doubt digital cameras will eventually replace most tra-
ditional film cameras [17]. One of the biggest advantages of digital cameras
and a main reason for users’ choosing a digital instead of a traditional cam-
era is the fact that they can take almost as many pictures as they want.
Which pictures one wants to keep or even to have developed can be decided
after having taken them and having examined the result. There is no need
“to buy a pig in a poke” as you have the chance to see (and even manipulate)
your pictures before ordering or printing them.

With the widespread use of digital cameras, the extremely low marginal
costs of taking pictures, and the virtually unlimited storage space comes an
accumulation of picture data. It is not unusual for digital camera users to
have thousands — or even tens of thousands — of digital pictures stored on
their computer hard disks or other storage devices. The number of a user’s
stored pictures tends to increase and the picture data can become as hard
to handle as a shoe box stuffed with hard copy pictures. Hence, searching
for a certain picture can be a long and tiring quest.

In order not to have to browse through different folders for hours it
would be much appreciated to have methods to access picture data similar
to those provided for common data stored in a database (e.g. the birth
date of a certain employee within a company’s database). Whereas this
kind of data is usually referred to as structured data, picture data is said
to be unstructured [7]. From a data modeler’s point of view an employee
of a company is much easier to describe than a picture is because of the
nature of the data structure. At first, one might think there is not too much
meta data available which could be of any help for describing a picture (and
thereby structuring the unstructured data) but — in fact — there is quite a
lot.

2.1 What is Exif?

Exif stands for “Exchangeable Image File Format”. It is a standard for the
image file format to be used by digital cameras. It was written by the Japan
Electronic Industry Development Association (JEIDA) and its most current
version (version 2.2) dates from April 2002 [8]. The standard is widely
supported by most digital camera manufacturers. However, the differences
in their implementation of the standard vary considerably.

The meta data tags defined by the Exif standard cover e.g. the original
date and time the picture was taken or digitized, the flash usage, the ex-
posure time, and the focal length. Moreover, there are tags to store Global
Positioning System (GPS) data. However, there are only a few camera
models which support this kind of data at present.

Although initially intended for achieving better printing results, the meta
data defined by the Exif standard can be used for further purposes. In [3]
it is shown that semantic picture classification can be done referring to Exif
meta data. In particular, they demonstrated that the classification of in-
door/outdoor scenes using only the flash information provided by Exif meta
data easily outperforms the traditional approach of accessing a picture’s
raw data in respect to both performance and accuracy. As far as accuracy
is concerned, best results are achieved by combining the two methods and
taking additional meta data into account.

2.2 Other Picture Meta Data

Exif meta data is by far not the only meta data available for digital pic-
tures. However, most other meta data is content related. For instance, the
International Press Telecommunications Council (IPTC), Adobe, and others
agreed on a standard to store content meta data within pictures about, for
instance, its caption, keywords, and copyrights [11]. This meta data can be
viewed and edited by different programs such as [1] or [12].

Besides this standard there are many other ways of assigning content
meta data to a picture. One can think of a (proprietary) schema used by
applications such as a picture database.

A simple form of content meta data lies within the folder structure set
up by any (average) digital camera user to store picture files. Generally,
users put their pictures into folders according to the event they refer to or
the time they were taken.

2.3 Content Related Meta Data

Obtaining content related meta data generally requires a lot more effort by
the user than obtaining non-content related meta data. For instance, the
Exif meta data, which is non-content related, is automatically written to the
picture file when it is created. However, once content meta data is available
it offers more user friendly access methods?.

In order to maximize the user friendliness while minimizing the required
user effort, solutions have been proposed to automatically derive some con-
tent related meta data out of non-content related (Exif) meta data. [5]
describes a sophisticated method for automatic event clustering using the
original date and time stored within the Exif meta data.

4e.g. searching for pictures of a certain birthday party

3 Data Model and Schema

First, this section describes the data model used within Amos II. Second,
the database schema will be presented. Third, how the schema can be
perceived from a user’s point of view® is described. Finally, the procedures
defined within the schema will be discussed.

3.1 The Amos II Data Model

The Amos II data model is a functional data model. It basically consists of
objects, types, and functions.

[15] states “everything in Amos II is represented as objects”. An ob-
ject is either a surrogate or a literal. Whereas surrogates have an object
identity and are explicitly created and deleted by the user, the literals are
“self-described system maintained objects” and are deleted by the garbage
collected as soon as they are are no longer referenced. Literals are e.g.
strings, numbers, or collections (i.e. bags or vectors).

Types are used as a classification of objects. They are organized in a
supertype/subtype hierarchy and multiple inheritance is allowed. A type
inheriting from more than one supertype makes all of its objects (i.e. the
extent of the type) being instances of all of its supertypes as well. (In other
words, the extent of a subtype is a subset of the intersection of the extents of
all of its supertypes.) Types themselves are meta-objects of the meta-type
Type. The extent of the type Userobjects holds all objects of user-defined
types. To support a role concept objects can dynamically change their type.

Functions are used to model both properties of and relationships between
objects. Furthermore, functions can be used for a broad range of computa-
tions. Every function itself is an instance of the system type Function. A
function consists of two parts: the signature and the implementation. The
signature defines the types of the arguments and the result. The implemen-
tation specifies the computation. As in Java, functions (more commonly
called “methods” in Java) can be overloaded (same function name, but dif-
ferent parameters) and overridden (same function name and same parame-
ters, but different implementations in supertype/subtype). As a difference
to overridden functions in Java, the resultant type of overridden functions
in Amos II can be different.

Functions are classified into

e stored functions (stored directly within the Amos II database),

e derived functions (implemented as an AmosQL query without side-
effects),

5This virtual database schema actually is a subset of the complete schema.

e foreign functions (implemented in any other (supported) programming
language)

e database procedures (implemented as an non-side-effect-free AmosQL
procedure)

In addition to this classification and to distinguish between foreign functions
with and without side-effects I will use foreign functions for foreign functions
without any side-effects and foreign procedure for foreign functions with
(intended) side-effects. Similarly, derived procedures and derived functions
shall be used to distinguish between derived functions with and without
side-effects.

3.2 The Schema

Defining an appropriate schema is always a crucial task. It should be reason-
ably stable, so it does not have to be changed too often. The schema must
fulfill the requirements specification and one should even take into account
the needs of (any not yet specified) future features as far as possible and
justifiable. To simplify the writing and maintaining of applications referring
to the database, the main logic should lie within (or even better: be inher-
ent to) the structure of the data (i.e. the schema). Still, simplicity is very
desirable.

During the development of the database schema a critical point was
the fact that the meta data properties could (and should) not be specified
right from the start. Though it was clear that only some out of many
available meta data properties should be included, the design had to be as
open as possible in order to include additional meta data properties at any
later point. In other words, the answer to the question of which meta data
should be included is dynamic. Therefore, the goal of developing the schema
was not to develop a schema for a specific kind of meta data (such as, for
instance, Exif meta data), but to develop a schema for any kind of meta
data. Hence, such a schema could be called “metaschema”. 1 will not use
this terminology but will continue using the simple term “schema” instead.

The central datatype of the schema illustrated in figure 1 on the following
page is PICTURE. It represents a picture which is stored not in the database
but in the file system. The file attribute of PICTURE is a link to the
referred picture file. It is implemented as a stored function with the following
signature:

file (PICTURE key)->CHARSTRING key fileString

This attribute is comparable to a key attribute in a relational database. It
is not possible to store two pictures referring to the same file. Furthermore,
it should not be possible to load a picture with a string pointing to a non-
existing or incorrect file or directory (see 4.4.1 on page 20).

ShTes aabaqur

ANTYATLYITLIR HNTTATLY IV LIR
=T7aq —dIOTLNI

SnTEA URITOOD

SnTEA OUTI3STRUD

INTTATLTITLIR ANTTAYLY TFL IR NTYATLT IV LIR ANTEAYLY ITFLIR INTTATLT IV LIR
—ALISOdHOD —dL¥ T —ONTHLEITHD —dITHON —HNTAT0E

Soep UoTIoeIaxs

M =
» INTEAVIVOYLIN YLV O7LIN

T T T°°0

SSTI9US iR BiSn

"o N T
AYLNIT LY IV LIR T4NLOIAd
i)

PT=1T elep eisu @ e

TTATAYLEIV.LI — nnaTy
T cimare >

the database schema

Figure 1

The logical structuring of the meta data into the four following types
seemed to be a good solution (see figure 1 on the preceding page):

1. METADATA is decoupled from PICTURE and can contain more than one
METADATAENTRY.

2. METADATAENTRY is associated with exactly one METADATAFIELD and
contains exactly one METADATAVALUE. The application building up the
structure (for instance, when a picture is loaded into the database)
has to make sure (the subtype of) the contained METADATAVALUE cor-
responds with the type required by value_type property of the asso-
ciated METADATAFIELD.

3. METADATAFIELD stores information about a meta data property (e.g.
internal_name, unit, description, value_type).

4. METADATAVALUE stores the actual value of the property. The subtypes
define the actual type of the (encapsulated) value (e.g. boolean, string,
date, integer). To allow (more) complex value types (e.g. a bag of
strings for the IPTC attribute “keywords”), the composite pattern
[9] was applied: i.e. a COMPOSITEMETADATAVALUE can consist of other
METADATAVALUES.

Hence, the schema presented follows a property/value approach. Meta
data properties can be added dynamically without having to change the
schema. This increases both stability and maintainability of the application.
The database schema is independent from the actual and specific meta data
it is used for. However, to increase user friendliness some specific meta data
access methods have been implemented. They will be described in 3.3.

As it requires only minimal user effort the main focus of this work is
on non-content related meta data. Still, to take into account some content
related information the schema offers a structure for organizing pictures
within albums (see figure 1 on the preceding page). Between the datatype
ALBUM and PICTURE an m:n relationship called pictures is established. This
means that an an ALBUM can not only contain more than one PICTURE but
also a PICTURE can be part of more than one ALBUM. Within ALBUM a recursive
m:n relationship called albums is defined. It allows an ALBUM to contain (and
be contained in) other ALBUMSs.

3.3 The User’s View of the Schema

As aforementioned, the user’s view of the schema is in fact nothing but a
subset of the full database schema. The objects and functions which do not
belong to the user’s view are not truly hidden from the user. A user still
can see, query, and access them. Nonetheless, they can be considered as

10

PICTURE

specific user functions: JENEric user
functions:

date lash not fired

flash info

distance

focal length
ocal length 3 Smen

EXpoOSure time

Fageae
L

flash fired

Figure 2: the database schema as it can be perceived by the user

system objects and functions. This adds a (virtual) layer of abstraction and
transparency for the user.

The user’s view of the schema is shown in figure 2 on the previous page.
Only the types and functions relevant to the user are shown. In addition
to figure 1 on page 9, the functions implementing specific meta data access
are shown (see box “specific user functions”). Moreover, “generic user func-
tions” (i.e. they are independent from any specific meta data properties)
are also shown in a separate box. Table 1 on the next page and table 2 on
page 14 describe these user functions in more detail.

In order to minimize the “hard coding” of specific meta data structure
the methods to directly access specific meta data values (see table 1 on
the next page) are not implemented as stored (or foreign) functions, but as
derived functions®. These functions are the only functions that require some
specific knowledge about the type of meta data (to be) stored within the
database.

They are implemented using the helper function

get (PICTURE p key,
CHARSTRING internalFieldName key)
->0BJECT value

to get the value of the meta data property as an 0BJECT. Afterwards, this
OBJECT is cast as the appropriate type (logically defined by the METADATA-
FIELD’s value_type property). As an example, the implementation of the
user function date is given:

create function date(PICTURE p key)->TIMEVAL as
select cast(get(p, ’originalDate’) as TIMEVAL);

The underlying helper function get itself is generic and uses yet another
(generic) helper function:

meta_data_matrix(PICTURE p key)
—-><METADATAFIELD nonkey,
METADATAVALUE key>

This latter helper function provides a simplified view of the structure of
the meta data of a picture. Both the get and the meta_data_matrix func-
tions are not intended to be used (directly) by the user. The get func-
tion is primarily intended for the administrator to easily implement new
user functions once new meta data properties have been made accessible.
The meta_data_matrix function is also used for the implementation of the
generic user functions described in table 2 on page 14.

5By the way, the generic user functions (see table 2 on page 14) are also implemented
as derived functions.

12

function name return type | description

date TIMEVAL the date and time the picture was
taken

make CHARSTRING | the name of the manufacturer of the
camera

model CHARSTRING | the name of the camera model

width INTEGER the width of the picture in pixel

height INTEGER the height of the picture in pixel

flash CHARSTRING | answers the question whether or not
the picture has been taken using the
digital camera’s flash with ’yes’ or
J no)

flash_fired BOOLEAN returns TRUE if the picture has been
taken wusing the digital camera’s
flash

flash_not_fired BOOLEAN returns TRUE if the picture has been
taken without the digital camera’s
flash

flash_info CHARSTRING | gives additional information about
the flash settings (e.g. red eye re-
moval, auto-mode)

distance REAL the distance of the subject of the
picture in meter (calculated by fo-
cal length and therefore might not
be very accurate. Note: this method
has not yet been tested!)

focal_length REAL gives the focal length of the lens in
millimeter

focal_length_35mm | REAL the same as focal_length but on a
35mm basis

exposure_time REAL gives the exposure time in seconds

f _number REAL gives the F-Number

Table 1: the specific user functions

13

’ function name return type description

info <CHARSTRING,0BJECT> returns a set of tuples
of all available meta
data properties with the
external name of the
METADATAFIELD and the
value of the METADATA-
VALUE

info_charstring | <CHARSTRING,CHARSTRING> | returns a set of tuples
of all available meta
data properties with
the external name of
the METADATAFIELD and
the value of the META-
DATAVALUE converted to
a CHARSTRING including
the corresponding unit
(if available)

Table 2: the generic user functions

3.4 The Procedures

Within the database schema procedures are defined to execute the following
tasks:

e loading pictures

e refreshing the meta data of a picture (which has already been ex-
tracted)

e displaying a picture by adding it to a simple viewer

The actual implementation of these procedures will be discussed in sec-
tion 4 on page 17. In the following, only the signatures of the procedures
will be given along with some information about their usage.

3.4.1 Loading Pictures
A user can load new pictures into the database by using the procedure

load_picture (CHARSTRING fileOrDirectory)
->Bag of PICTURE pictures

The obvious side-effect of this procedure is to create one (or more) PIC-
TURE object(s) and the corresponding meta data objects described in 3.2 on
page 8.

For adept users the more sophisticated procedure

14

load_picture (CHARSTRING fileOrDirectory,
BOOLEAN refreshExisting,
BOOLEAN includeSubdirectories)
->Bag of PICTURE pictures

provides two more options’. The option refreshExisting indicates whether
or not the meta data of any existing picture(s) should be refreshed or not.
The other option includeSubdirectories will only be taken into account
when fileOrDirectory refers to a directory. If fileOrDirectory does re-
fer to a directory, the option includeSubdirectories indicates whether or
not pictures stored within subfolders should be loaded as well.

In both cases, the procedures return references to the loaded PICTURE
objects.

3.4.2 Refreshing the Meta Data

The meta data objects of an existing picture can explicitly be refreshed using
the foreign procedure

refresh (PICTURE) ->CHARSTRING answer

Unlike the naming pattern of the procedures before this procedure is not
named refresh_picture as the argument makes the function name non-
ambiguous. The implementation of the procedure is quite simple. Without
checking for changes the meta data is extracted once again and the old one
is deleted (see 4.4.4 on page 22 for more details). However, the procedure is
still powerful. Using the queries e.g.

for each picture p
refresh(p);

and

for each picture p where like(file(p),’sample_directory*’)
refresh(p);

all pictures or all pictures within a specific directory respectively can be
refreshed (see [2] for explanation of the 1ike function). The reason for using
for each (instead of select) is to control the order of the execution of the
foreign procedure (see 3.4.3 on the next page).

The returned string informs the user of the procedure’s success in re-
freshing the meta data of the picture.

"In fact, the procedure described before is a derived procedure that calls
this (foreign) procedures with the two additional options (refreshExisting and
includeSubdirectories) both set to TRUE.

15

3.4.3 Displaying a Picture

The function
display (PICTURE)->CHARSTRING feedback

is also a foreign procedure. The side-effect of this function is not to (delete
and) create objects within the database, but to display a picture by a simple
viewer.

It is important to remember that this function has a side-effect (which
is to add a picture to the viewer). For instance, if we have the query

select display(p)
from picture p
where hour(date(p)) < 12;

we cannot be sure that all the pictures displayed within the viewer indeed
satisfy the restriction (i.e. they were taken in the morning). With the query
formulated as above we cannot control the order in which it is executed. If
the procedure display is executed before the restriction, we get a wrong
result within the viewer as all pictures will be added to it (anyway, the
feedback strings are correct). Because this function has a side effect, we
have to make sure the restriction is evaluated before the function. To do so,
we formulate our query as

for each picture p where hour(date(p)) < 12
display(p);

The returned string gives a feedback that the picture has been added to
the viewer.

16

4 Implementation of the Procedures

While section 3 on page 7 discussed the Amos II data model and schema,
this section focuses on the implementation of the foreign procedures. This
implementation is done entirely in Java.

First, a basic overview will be given. Then, the implementation will be
described in more detail. Finally, a step-by-step walk-through shows how
everything works together.

4.1 Basic Overview

[6] describes two interfaces: the Amos II callin and callout interfaces.
The former interface provides access from Java to Amos II and is compara-
ble to ODBC or JDBC. Using this interface within a Java program Amos 11
functions can be called and data can be accessed and manipulated. More-
over, schema definition and manipulation can be done as well. The latter
interface provides access from Amos II to Java. Generally, it allows the
definition of foreign functions with Java, but we can also use this interface
for the implementation of foreign procedures.®

The implementation uses a combination of the two interfaces described
above. The foreign procedures call a Java method through the callout
interface. The Java methods call Amos IT back through the callin interface.
The callin and callout interfaces are encapsulated within the two Java
classes PictureManagerQOut and PictureManagerIn respectively.

Java as the language to implement the foreign procedures has been cho-
sen not only because of the described and already existing interfaces but
also due to its object oriented features and wide range of support. To take
advantage of the benefits object oriented programming offers a good mod-
ularization has to be made, i.e. high coherence within the modules and
low cohesion between them [10]. Careful attention has to be paid to the
interfaces, the information hiding principle and to documentation in order
to write (re)usable and maintainable code and — eventually — to achieve a
good solution.

4.2 The Representation of the Database Schema within Java

The schema presented in section 3 on page 7 has to be represented within
Java as well. For each type of the Amos II schema we define an interface in
Java. The classes which implement these interfaces are separated. Instances
of the classes implementing the interfaces represent database objects? (see
proxy pattern in [9]).

8In contrast to foreign function foreign procedures do have side-effects (see 3.1 on
page 7).

9Furthermore, all interfaces used for representing database objects extend the interface
DatabaseObject, see 4.4.3 on page 21.

17

We have to keep in mind there is an important difference between Amos IT
objects and Java objects. Whereas Amos II objects are persistent (i.e. they
can be saved on disk) Java objects are not. They are transient, which means
they are lost as soon as the system is exited. As a consequence the Java
objects generally do not exist as long as the Amos II objects do. The Java
objects are only created and used when a foreign procedure is called (e.g.
when extracting the meta data from a picture file). As the meta data should
be available persistently we have to save it in Amos II objects.!”

The actual relationship between the Amos II objects and the Java object
is only known to the Java object itself. For instance, the implementation
decides whether it uses a cache or not. If it does, it reads out the status of
an object once, stores it in local fields, and returns their values whenever
it receives a request for such action. By using no cache it has to perform a
database query whenever it receives a request about the status (the value)
of a property.

It was not clear from the beginning which approach might be more ef-
fective, so using interfaces was very suitable. All objects dealing with meta
data objects (including meta data objects that contain or are associated
with other meta data objects) only know their interfaces'!. This makes the
design independent from the actual implementations. Furthermore, one can
have different implementations of the same interface and test them against
each other.

MetaDataFieldImpl is the only class to use direct representation. The
METADATAFIELD objects, which are stored within the database, are extracted
and represented by MetaDataFieldImpl objects (using no cache). All other
meta data objects (MetaDataImpl, MetaDataEntryImpl, MetaDataValue-
Impl) are indirect representations, i.e. they are designed to be first created
as Java objects and saved to the database at some later stage. After being
saved to the database there is no more need for those objects (with indirect
representation) to be represented within the Java environment. The Java
application is only used for extracting or refreshing the meta data of a
picture!? but not for any analytical purposes. Queries (using only side-effect
free functions) only access the picture meta data stored within Amos II and
do not use the Java environment.

Table 3 on the following page gives an overview of the main representa-
tions for the Amos II types and the corresponding Java interfaces and classes.
The Java interfaces and classes representing the subtypes of METADATAVALUE
are not listed in this table but they are defined and named analogously.

How this is done will be explained in 4.3 on the following page.

"'The class ImplementationOracle is an exception and will be discussed in 4.3 on the
next page.

12or to display a picture

18

Amos IT type Java interface Java class

PICTURE Picture PictureImpl
METADATA MetaData MetaDataImpl
METADATAENTRY | MetaDataEntry | MetaDataEntryImpl
METADATAFIELD | MetaDataField | MetaDataFieldImpl
METADATAVALUE | MetaDataValue | MetaDataValueImpl

Table 3: Java interfaces and classes representing the Amos II types

4.3 The Implementation in More Detail

The class PictureManagerIn is the starting point for the Java application.
It encapsulates the callout interface as mentioned in 4.1 on page 17. All
calls from Amos II to Java access a static method within the Picture-
ManagerIn. The PictureManagerIn reads out the arguments of the Amos IT
call. Then it checks whether or not the main objects of the Java application
have already been initialized. If they have not yet been initialized, it calls
the initialization method of the Main class. If the objects have (already)
been created, the environment is set up and ready to be used. Once the
objects are initialized, the PictureManagerIn forwards the request to the
PictureDirector.

The PictureDirector is the logical center of the Java application and in
charge of handling the request(s). The PictureDirector is in a manager’s
position — apart from delegating work, it does not actually do anything.

The ImplementationOracle is the fugleman of the PictureDirector.
Whereas the PictureDirector only knows about the interface of most ob-
jects, the ImplementationOracle knows the actual classes behind them (i.e.
those that implement the requested interfaces).

The class PictureManagerQut encapsulates the callin interface as men-
tioned in 4.1 on page 17. All calls from Java to Amos II must access this
class. It is often necessary for the Java objects to access the Amos II data-
base (reading out the meta data properties, storing new objects, etc.). This
database access is provided by the PictureManagerQOut.

The actual extracting of the meta data from a picture file is done by a
MetaDataHandler. There are many ways to extract the meta data. The class
implementing the MetaDataHandler interface has to decide on the details.
The interface is also separated from its actual implementation as described
in 4.2 on page 17. The MetaDataHandler is the interface, DefaultMeta-
DataHandler and its subclass DrewNoakesMetaDataHandler implement the
MetaDataHandler interface

Sun’s Java API has not yet offered a suitable solution to extract the
(Exif) meta data of a picture file. Therefore, an open source solution pro-
vided by Drew Noakes [14] has been integrated. It is implemented within the
class DrewNoakesMetaDataHandler. Once a suitable solution is available by

19

Sun’s Java API, a JavaMetaDataHandler could be implemented.

4.4 An Example of How it All Works Together

According to 3.4 on page 14 procedures have to be implemented for:
e loading pictures

e refreshing the meta data of a picture (which has already been ex-
tracted)

e displaying a picture by adding it to a simple viewer

The implementation of the first two procedures and some parts of the
third one are quite similar. Therefore, only the first one will be discussed in
detail. For the other two I will only shortly point out the main differences.
This will be done in 4.4.4 on page 22 and 4.4.5 on page 23.

To describe the interactions between the objects and the dynamics within
the Java program we have a look at the following example:

We assume the database schema has been set up properly (according to
section 3 on page 7). The user enters the command

load_picture(’sample. jpg’)

within the Amos IT environment. As seen in 3.4.1 on page 14, load_picture
is a derived procedure which calls a foreign procedure. This foreign pro-
cedure is connected to a corresponding static method in the Java class
PictureManagerIn. The PictureManagerIn forwards the request to load a
picture to the PictureDirector!s.

The tasks that have to be done (or delegated) by the PictureDirector
in order to load a picture are the following three:

1. create a persistent picture within the Amos II database (PICTURE) and
a transient Java representation (Picture) thereof.

2. extract the meta data from the picture file

3. save the meta data to the Amos II database

4.4.1 First Task: Creating the Picture Objects

As mentioned, the PictureDirector only knows the interface of a picture
(Picture). To fulfill the first task, it will therefore ask the Implementation-
Oracle to return an object implementing this interface. The Implementa-
tionOracle knows that PictureImpl implements the Picture interface (see

13Before doing so, the PictureManagerIn has to make sure the main objects are initial-
ized according to 4.3 on the previous page.

20

also table 3 on page 19), so it returns an instance thereof. The constructor
of PictureImpl makes sure to actually save the picture within the Amos II
database. To do so, it calls the PictureManagerOQut'.

The PictureManagerOut will save the picture persistently (i.e. it creates
a PICTURE object within the database) and set the file attribute (see 3.2
on page 8) to the (absolute) pathname. In case of any errors (e.g. file not
found), no picture will be loaded and the PictureDirector will generate
an error message.

4.4.2 Second Task: Extracting the Meta Data

This task is delegated to an object that implements the interface MetaData-
Handler. The PictureDirector asks the ImplementationOracle to pro-
vide him with a MetaDataHandler. The ImplementationOracle returns an
instance of DrewNoakesMetaDataHandler. DrewNoakesMetaDataHandler
uses the open source software of Drew Noakes [14] to extract the meta data.

After having received a MetaDataHandler object the PictureDirector
asks it to extract the meta data. Following the strategy of its super-
class DefaultMetaDataHandler the DrewNoakesMetaDataHandler will go
through all defined meta data properties!>. For the properties it knows (by
their internal name) it extracts out the values. The corresponding Meta-
DataField object encapsulates them into the appropriate subtype of Meta-
DataValue. The MetaDataField and the (newly created) MetaDataValue
will be put together in a MetaDataEntry. All MetaDataEntry objects to-
gether build up the MetaData object that will be returned to the Picture-
Director.

4.4.3 Third Task: Saving the Meta Data in Amos II

The third task is to make the transient data persistent, i.e. to save the meta
data represented by Java objects in the Amos II database. The Picture-
Director initializes this by setting the MetaData object to the Picture, i.e.
the PictureDirector calls the setMetaData method of the Picture. The
PictureImpl has to make sure that all meta data related objects are saved
to the database.

All interfaces representing the types of the database schema inherit from
DatabaseObject. So, the classes implementing those interfaces have to know
how to save themselves to the database. This is usually done by calling the
addToDatabase method of the PictureManagerQut class.

So calling the setMetaData method of the Picture triggers all the meta
data related objects to call their individual save method. The PictureImpl

4The PictureImpl has to ask the ImplementationOracle to get a reference to the
PictureManagerOut
57t receives a MetaDataField array from the ImplementationOracle.

21

first saves the MetaData object. Before saving itself, the MetaData object
(which in fact is a MetaDataImpl object) saves all MetaDataEntry objects
by iterating through them and calling their save method. Every MetaData-
Entry (or actually MetaDataEntryImpl) object calls the save method of
their associated MetaDataField and MetaDataValue object before saving
itself. Whereas the execution of the save method of the MetaDataField-
Impl does not have any effect!%, the save method of the MetaDataValueImpl
saves itself and stores the value it represents in the appropriate property
(which is a stored function, e.g. boolean_value or integer_value, see
figure 1 on page 9).

After all meta data objects have been saved to the database, the Picture-
Impl has to link the METADATA object with the PICTURE within the database.
Since it is a database operation the PictureImpl forwards the request to
the PictureManagerQut. The PictureManagerQOut first deletes all previ-
ously existing meta data objects stored within the database that are related
to the referred picture by calling the Amos II derived procedure

delete_meta_data(PICTURE)->BO0OLEAN

Then, it defines the link to the newly created METADATA object by setting
the stored procedure

meta_data(PICTURE)->METADATA

accordingly. Deleting all existing meta data objects related to the picture
is very important when refreshing the meta data of a picture (see 4.4.4).
However, when we load a new picture to the database, there are no pre-
viously existing meta data objects referring to the picture. So, calling the
delete_meta_data derived procedure will have no effect (i.e. it will not
delete any object).

4.4.4 What is Different When Refreshing Meta Data?

The implementation for refreshing the meta data of a picture is very similar
to the one for loading a new picture. Task two and three (see 4.4.2 on the
previous page and 4.4.3 on the preceding page) are identical. Task one is
slightly different: The PictureManagerIn does not receive a string pointing
to a picture file but, instead, a handle!'” linked to a PICTURE object stored
within the Amos II database. This handle is the parameter that is exchanged
between the PictureManagerIn, the PictureDirector, the Implementa-
tionOracle, and the PictureImpl. The main difference to loading a (new)

16The MetaDataFieldImpl uses the direct representation discussed in 4.2 on page 17
representing an already existing METADATAFIELD.
17an 0id object defined within the callin interface

22

picture is that no persistent PICTURE object has to be created. Nonetheless,
a transient Java Picture object representing the PICTURE must be created!®.

Whether or not the meta data of the picture has changed will not be
checked. The meta data will simply be extracted once again. If the meta
data of the picture is successfully extracted, it will be stored within the
database and any previously existing meta data objects associated with the
picture will be deleted as discussed in 4.4.3 on page 21. In case the meta data
cannot be extracted (e.g. the file string stored within the file property of
the PICTURE has become invalid) any previously existing meta data objects
will not be deleted but kept. The reason for this is that users might have
some of their pictures stored on external storage devices (e.g. CD, DVD).
When trying to refresh the meta data of all pictures deleting those meta
data objects is most probably not intended.

4.4.5 What is Different When Displaying a Picture?

The Java Picture object representing the picture to display is created in
exactly the same way as it is when trying to refresh the meta data. The
PictureManagerIn gets a database handle, forwards it to the Picture-
Director who receives a Picture object by forwarding the handle to the
ImplementationOracle.

Afterwards, the PictureDirector simply calls the display method of
the Picture object. The Picture object, which more specifically is a
PictureImpl object, adds itself to the PictureViewer. It is a very sim-
ple viewer and basically follows the design of [13].

The PictureViewer allows browsing through a composition of pictures.
Internally, this composition is represented as a Vector. Once the Picture-
Viewer is closed the Vector is set to null again. The PictureViewer
reopens itself when a Picture is added to it. There are no methods imple-
mented to preload images or to check that a Picture cannot be added more
than once.

When displaying a picture no meta data has to be extracted, i.e. task
two and three will not be executed.

18 A Java object representing this meta data surely existed before when e.g. the PICTURE
was created. However, when the system exited it was lost again.
19This feature is not yet fully supported. Further adjustments have to be made.

23

5 Conclusion and Future Work

5.1 Summary

Amos II follows a mediator/wrapper approach [15]. It mediates between
a data accessor and the data source. External data sources can be made
accessible using wrappers. This work is about the development of a wrapper
for pictures to make their meta data accessible.

There are different standards for different kinds of meta data of a picture.
The meta data defined by the Exif standard [8] (which is widely applied
within most modern digital cameras) seems suitable. Unlike content related
meta data it does not require a lot of user effort.

After giving an overview of the functional data model of Amos II the
schema is elaborated. The schema is intended to be non meta data specific
but very generic. It follows a property/value approach, where properties
and values are separated and can be dynamically defined without changing
the schema. A (small) part of the schema also deals with content related
data. The composite pattern is applied to allow more complex values. A vir-
tual user layer of the schema abstracts from underlying details and thereby
creates some transparency.

Pictures are loaded into the database using foreign procedures. For-
eign procedures are defined for loading pictures, refreshing the meta data of
pictures, and displaying pictures within a simple viewer. The foreign proce-
dures are written entirely in Java. They use both the Java callin and the
Java callout interface for Amos II which are encapsulated in the classes
PictureManagerOut and PictureManagerIn, respectively. Most types de-
fined within the schema are represented in the Java application. Interfaces
are separated from their actual implementations which makes the imple-
mentations dynamically exchangeable. The class ImplementationOracle is
the only class to know which interfaces are implemented by which classes.
The PictureDirector is at the heart of the application controlling the logic
of the execution. The MetaDataHandler extracts the meta data from the
picture file. A PictureViewer is used for displaying pictures.

5.2 Conclusion

This work extends the functionality of Amos II with a powerful tool to access
the meta data of pictures. The generic structure of the schema allows the
integration of different meta data standards. It also ensures a better main-
tainability for the Java application in charge of implementing the foreign
procedures. New meta data properties can easily be added.

Some meta data (flash usage, exposure time, etc.) that have been made
accessible have high explanatory power for semantic picture classification
[3]. Especially the original date and time a picture was taken are of high

24

significance for approaches dealing with auto sorting of pictures [5]. Provid-
ing an easy and fast access to this meta data might help to improve those
applications as well.

Following the principles of object oriented programming [10] the imple-
mentation of the foreign procedure is well modularized. The software is
intended to be maintainable and extensible.

5.3 Limitations

At the moment, the integrated open source library [14] only provides read
access but no write access to the meta data stored within the picture file.
However, other applications exist that make this meta data editable as well
(e.g. [12]).

The picture viewer is extremely simple. It only covers the very basic
feature of displaying a picture and browsing through a collection. As there
are no sophisticated methods implemented to preload (raw) image data it
is slow for pictures big in size.

Although the composite pattern [9] is defined within the schema and
the Java application, it has not yet been tested. So far, no meta data with
complex value structure have been integrated. Actually, adjustments might
be necessary to make complex meta data accessible.

5.4 Future Work

Generally, this work can be extended by integrating further meta data (other
Exif meta data properties, IPTC meta data, etc.).

Once GPS data is more widely processed by digital cameras a broad
range of interesting extensions are imaginable including, for example, a
graphical representation of the distribution of pictures within a map [16].

Furthermore, algorithms for picture comparison could be implemented,
whereby users could search for similar picture etc. An efficient way to do
this even on the compressed JPEG format is proposed in [18].

To deal with issues mentioned in 5.3 there are the following tasks for
future work:

e implementing methods for writing the meta data within the picture
file

e extending the viewer with more sophisticated features or linking ex-
ternal picture viewing software

e including meta data with a complex value structure?®

20¢.g. the IPTC property “keywords”

25

References

[1]

2]

Adobe Photoshop. http://www.adobe.com/products/photoshop/-
main.html, Oct 2005.

Amos II Release 7 User’s Manual.

http://user.it.uu.se/“udbl/amos/doc/amos_users_guide.html.

Matthew Boutell and Jiebo Luo. Photo Classification by Integrating
Image Content and Camera Metadata. In Proceedings of the 17th Inter-

national Conference on Pattern Recognition. IEEE Computer Society,
2004.

Brockhaus Homepage. http://www.brockhaus.de, Jun 2005.

Matthew Cooper, Jonathan Foote, Andreas Girgensohn, and Lynn
Wilcox. Temporal Event Clustering for Digital Photo Collections. ACM
— Association for Computing Machinery, (1-58113-722-2/03/0011):364—
373, November 2-8 2003.

Daniel Elin and Tore Rish. Amos II Java Interfaces. Technical re-
port, Dept. of Information Science,Uppsala University, Uppsala, Swe-
den, Aug 2000. http://user.it.uu.se/~torer/publ/javaapi.pdf.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Addison-Wesley, third edition, 2000.

Exif and Related Ressources Homepage. http://www.exif.org, Jun
2005.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: FElements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Martin Glinz. Vorlesungsskript zur Kernvorlesung “Software Engineer-
ing”. http://www.ifi.unizh.ch/req/courses/kvse/, SS 2004.

International Press Telecommunications Council Web Page.
http://www.iptc.org, Jun 2005.

Irfan Skiljan. IrfanView. http://www.irfanview.com, Oct 2005.

The Java Tutorial: How to use icons.
http://java.sun.com/docs/books/tutorial /uiswing/misc/icon.html,
Jun 2005.

Drew Noakes. Open Source Library: Metadata Extraction in Java.
http://www.drewnoakes.com/code/exif/, 2003.

26

[15]

Tore Rish, Vanja Josifovski, and Timour Katchaounov. Functional
Data Integration in a Distributed Mediator System. In Peter M.D.
Gray, Larry Kerschberg, Peter J.H. King, and Alexandra Poulovassilis,
editors, Functional Approach to Data Management - Modeling, Ana-
lyzing and Integrating Heterogeneous Data, chapter 9, pages 211-238.
Springer, 2003. http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf.

Kentaro Toyama, Ron Logan, Asta Roseway, and P. Anandan. Geo-
graphic Location Tags on Digital Images. ACM — Association for Com-
puting Machinery, (1-58113-722-2/03/0011):156-166, November 2-8
2003.

Wikipedia - The Free Online Encyclopedia: Digital Camera.
http://en.wikipedia.org/wiki/Digital_camera, Jun 2005.

Hong Heather Yu. Visual image retrieval on compressed domain with
Q-distance. Technical report, Panasonic Information and Networking
Technology Lab.

27

