

IT 11 011

Examensarbete 30 hp
Mars 2011

An Algorithm for Streaming Clustering

Jiaowei Tang

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

An Algorithm for Streaming Clustering

Jiaowei Tang

Abstract
A simple existing data stream clustering algorithm DenStream based on DBScan is
studied. Based on DenStream a modified algorithm called DenStream2 is proposed. It
follows most of the framework and theory of DenStream. Denstream2 is
implemented as a foreign function in an extensible data stream management system
(DSMS), where queries over streams are allowed. The generated clusters inferred
from each window of an input a data stream are emitted as new stream clusters. The
output stream can be stored in database for later queries, or be queried directly.
Keywords: DBScan, DenStream

Tryckt av: Reprocentralen ITC
IT 11 011
Examinator: Anders Jansson
Ämnesgranskare: Tore Risch
Handledare: Kjell Orsborn

Contents
1. Introduction .. 2
2. Background and related work .. 4
 2.1 Database and data stream management systems ... 5

 2.2 Stream clustering .. 5
3. DenStream2 ... 8
 3.1 System overview ... 8
 3.1.1 The StreamMiner function .. 8

 3.1.2 Parameters of StreamMiner .. 9
 3.2 Transferring Clusters to the DSMS and processing .. 10

 3.2.1 Storing clusters into Database ... 10
 3.2.1.1 Creating the Database ... 12

 3.2.1.2 Queries on database .. 12
 3.2.2 Queries directly on stream of clusters .. 12

 3.3 The Denstream2 algorithm .. 12
4. Experiments and Evaluation ... 16
 4.1 Data sets and parameters in DenStream2 ... 17
 4.1.1 Synthetic data set ... 17

 4.1.2 Real data set ... 17
 4.1.3 Other .. 18

 4.2 Clustering quality evaluation ... 21
 4.2.1 Synthetic data stream with noise .. 21

 4.2.2 Stream speed .. 23
 4.2.3 Overlapping .. 24

 4.2.4 Merging priority ... 26
5. Discussion ... 28
6. Conclusion .. 30
7. Reference .. 31

	 2	

1. Introduction

A data stream can be seen as a sequence of time-stamped data records. The

difference between data streams and static data stored in regular databases is that data

records in streams are always time stamp ordered. Another difference is that a data

stream may be very large or continuously evolve and therefore streaming data has to

be processed in one pass. The data records in a stream could be any kind of data from

applications. Examples of data streams are time series data produced by applications

in different areas such as calling and communication records in the

telecommunication and network area, stock exchange and credit card transaction

records in the business area, accident records in city traffic systems, weather records

in climate research, and so on.

Data stream mining is a way to extract knowledge from streams and find the

change or evolution of a stream over time. A number of summarization methods, like

sampling, sketching, load shedding, synopsis data structures, histograms, aggregation,

damped window, and sliding window, can be used to transform streaming data into

specific forms for further data analysis. Further analysis techniques to mine streaming

data can be classification, clustering, frequent pattern counting, and so on [9], which

are variations of similar regular data mining techniques. However, most of the

traditional data mining methods, like K-means [23], hierarchical clustering [17],

DBSCAN [7], and Affinity Propagation [18] developed for static data can’t be used

directly to streaming data in view of its big or indefinite data size [8] and requirement

for single pass evolutionary processing [1]. However, new stream mining methods are

developed based on the traditional data mining methods to address the new

requirements by data stream mining.

This project investigates cluster detection from data streams, i.e. stream

clustering. Because of the huge size and evolving property of data streams, a good

stream clustering algorithm should meet the following requirements

[1,15,4,13,3,10,2]:

I. Single scan of data. This is a natural constraint of streaming data

because of its very large or infinite size. There is no time or may even

be impossible to reread the stream for the computation [1].

	 3	

II. Low memory and CPU usage. The system should be able to process

very large or infinite streams in main memory of limited size.

III. No prior knowledge about clusters, including numbers and shapes. In

clustering, the user often knows very little about how data is clustered

before processing. Additionally, with streaming data the clusters

changes as the processing progresses over time.

IV. Ability to discover arbitrary shaped clusters without prior knowledge.

Not all clustering methods have this ability. In static data clustering,

the DBSCAN algorithm [7] and the soft-constraint affinity propagation

method [11] can determine clusters with arbitrary shape. These

algorithms have been generalized for stream clustering [4].

V. Ability to filter out noise in continuously evolving streams. Random

noise can occur anywhere in the data stream and filtering the noise can

help getting a good clustering result.

VI. Discover and explore clusters in data windows. The data stream is

always evolving over time and the clustering algorithm should

maintain a limited number of clusters over a recent relevant section

(window) of the stream in order to constrain memory usage.

VII. Compactness of representation of clusters. It is not possible to store the

whole clustered data stream in the database as with traditional data

clustering methods [2], since the volume of data is huge or infinite. A

compact memory-limited representation of clusters is needed, which

does not only have the ability to show the current state of the data

stream over time but also uses limited space despite the huge or

unlimited data stream being mined.

Above are some basic requirements to a scalable stream clustering algorithm.

Actually, there are factors to take into account that are valid for data mining in

general. One is the objective function, whose value is used as a measure of when

clusters can be determined sufficiently precise. For example, the K-means algorithm

[23], minimizes the sum of squares of the distances between objects within each

cluster.

	 4	

Other factors that could affect the clustering include the performance of the

clustering algorithm, parameters of the algorithm, and the distribution of data over

time. High-throughput streams will force the algorithm to use a lot of CPU resources

to check and process the stream, and it may be a challenge for the algorithm to have

sufficient performance. Optimizing the parameters in the algorithm is a way to get

both good clustering and process the stream efficiently. The reason is that the data

distribution in a stream, e.g. the data density, cluster shape, or other properties can

affect the chosen parameter values. However, some parameters may be application

dependent. An algorithm that needs not use application dependent parameters will be

easier to use. The idea of parameter free stream clustering algorithms was proposed in

[22]. However, the work in this thesis is based on using application parameters.

In this thesis, a stream mining algorithm called DenStream [4] is used as basic

skeleton. To get better clustering, the original DenStream algorithm is modified in its

online component [4], in particular the method to merge new arriving data points, the

way to merge data points priority between potential core-microcluster and outlier

core-microcluster, and the strategy to merge data points to microclusters between

which there is an overlapping. The new algorithm is called DenStream2.

A prototype implementation of Denstream2 is made in the extended database

management system Amos II [23]. Amos II can be used as a Data Stream

Management System (DSMS) [28, 29], which is a system to make queries directly to

streaming data. The callout interface of Amos II [21] provides a way to implement

streamed foreign functions in some external programming language, such as Java or

C. In the project foreign functions in Java were used to implement Denstream2.

Foreign functions can return an indefinite stream since elements in the result are

returned one-by-one iteratively using an emit method until the processing is stopped.

The implementation is tested over synthetic or some publically available data streams.

The approach enables analyzes about streams by either stating queries directly

on the stream of clusters returned by the foreign stream clustering function or by

computing stream summaries and store them in the database.

2. Background and related work

This section goes through the technologies used in the thesis, namely stream

mining and its relationship to databases.

	 5	

2.1 Database and data stream management systems
A database is a collection of persistent data managed by a DataBase Management

System (DBMS). Compared to a file system a DBMS provides several advantages,

like low redundancy, high data consistency, high integrity, data security, transaction

support, and so on [26]. To manage the data the database administrator must design a

database schema, which is a description of how the data is stored in the DBMS. The

most well known DBMSs are Oracle, Microsoft SQL Server, DB2, and MySQL [27].

In this project the prototype DBMS Amos II is the database management

system used. Amos II is an extensible functional database system. It uses a functional

query language AmosQL to express object-oriented and functional queries [24, 25].

Amos II can be used as a stand-alone main-memory DBMS. Foreign functions are

defined by external subroutines in some regular programming language and is

allowed to be called from Amos II queries. The foreign function implementing the

DenStream2 algorithm for Amos II was written in Java. Foreign functions in Amos II

allow implementing stream interfaces since the result of a foreign function is

continuously returned as a stream through an emit primitive. The foreign function can

be used in queries about the clustering result of a stream per window.

A data stream management system (DSMS) is a system to directly query

streaming data. It is similar to a traditional DBMS, with a few differences. The first

difference is that a DBMS handles explicitly stored data, while a DSMS handles

streaming data. A second difference is that queries in a DBMS return a set of search

result on demand for a given query, while a DSMS also may return streaming query

results as a continuous data flow [28, 29].

In the implementation, the generated clusters from DenStream2 are emitted as

a stream. Summaries of the streaming data can also be stored in the database if so

desired. If the stream is of limited size it can be entirely stored in the database.

2.2 Stream clustering
A stream clustering program reads a stream of data where each record is a data

point in format <time, data points>. The records are read in the order of time. After

clustering, a stream of time stamped clusters will be emitted by the stream clustering

algorithm also as a stream.

Most clustering methods use static data clustering methods. Recently much

research has been done on stream clustering, and quite a few excellent methods were

	 6	

suggested in [10]. Here I will simply discuss some of them and most are related to

density-related clustering.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies)

[12,16] and STREAM [13] are two predecessors of stream clustering. They were

designed to cluster static time series data in a large database in four phases, but it can

be used also for non-evolving data streams of limited size because of their ability to

deal with large size data sets.

Clustream [1] is the first algorithm that supports the evolutionary property of

data stream mining. It discovers clusters in stream windows. The algorithm is

composed of an online and an offline part, and proposes idea of micro clustering and

macro clustering combined into the two parts, respectively.

The known density-based clustering method for static data is DBSCAN [7], C-

DBSCAN [14], GDD [20], and incremental DBSCAN [6]. They all can be extended

to algorithms that mine streaming data. For example, DenStream [7] is a good model

in density-based clustering, being an extension of DBSCAN. It inherits the framework

of Clustream [1], including its online and offline components, and micro/macro

clustering. rDenStream [19] , C-DenStream [18], D-Stream [5], and MR-Stream [15]

are extensions of DenStream. Other methods in static data clustering are AP (affinity

propagation) [18] and SCAP [11]. The stream mining version of AP is StrAP [17].

They are similar to density-based clustering methods and overcome the disadvantage

of density-based algorithm that clustering is bad when data density changes sharply in

different clusters.

In this project, a modified version of the stream clustering algorithm

DenStream [4], DenStream2, is developed as the basic data stream clustering

algorithm. DenStream2 closely follows the theories and concepts in DenStream (all

details will be described in the next section). There are a number of window models

in stream mining, like landmark window, sliding window, damped window, tilted-

time window[30], and so on. Denstream (and Denstream2) is a damped window

model based algorithm with an online and an offline component. In the online part,

Denstream creates a number of microclusters, which have small orbicular shapes and

represent groups of close data points, by merging data points. The microclusters are

represented by its center coordinators, weight, and radius. As time goes on,

	 7	

microclusters will evolve as the stream progresses. A window is an evolving time

interval of data points and defined according to the need of the application. In the

evolving, the center coordinators will be adjusted by merging new data points using

the damped window model; the weight will also be changed at the same time, which

is increased by merging new data points and decreased by the damped window model;

the function of damped window model in this process is to address the importance of

new data and lower the importance of old data. It is easy to see that it is impossible to

search for all historical data points from the existing micro-clusters and the damped

window model successively decreases the importance of old data points. What is

more, the microclusters are classified into potential core-microclusters and outlier

microclusters by a threshold for weight and the type of microclusters is exchangeable

in the evolving. At the end of each window, the offline macro clustering component is

started. In the offline component an algorithm similar to DBSCAN [7] further clusters

the online potential core-microclusters to produce a group of macroclusters

containing microclusters from the online component. Then a window representing a

snapshot of clusters for a time interval in the stream is created.

After offline clustering, the macroclusters will be sent to a DSMS. However,

the idea here is not to send the clusters directly but send the microclusters belonging

to the clusters one by one to the DSMS along with associated features of each

microcluster: the center and average radius of microclusters, the label of its offline

macrocluster, and the time stamp of the window stream. Thus, in the DSMS, each

window is regarded as a specific snapshot of their microclusters. The windows of

generated clusters from the stream clustering algorithm are emitted at the end of each

time period to the DSMS. This allows executing streaming queries over the windows

without storing them in the database. If desired, if the stream is of limited size all

clusters can be stored in the database, which may be useful for later analyses and

further summarization of the data stream. However, it may be impossible to produce

clusters for every time point of a continuously evolving stream. If so, the solution in

this work is setting up a time interval, taking cluster snapshots in the end of every

time interval, storing the clustered data for a time interval in a window, and finally

sending the window to the DSMS. So, the size of the window controls the frequency

of snapshots and how much we want to retrieve from the stream.

	 8	

3. DenStream2

After investigating algorithms such as Clustream [1], DenStream [4], C-

Denstream [18], rDenStream [19], D-Stream [5], IncrementalDBSCAN [6], MR-

Stream [15] and strAP [17], it was found that DenStream is relatively simple in

understanding, easy in implementation, and an excellent example of stream clustering.

So, DenStream was chosen as the basis for the algorithm implemented in this work.

Some changes to the original algorithm were made and define a new version called

DenStream2. DenStream2 is implemented in Java as a foreign function of Amos II.

3. 1 System overview

Fig. 1 The architecture of the implemented system

The architecture of the system is shown in Fig. 1. A foreign function in Java

called StreamMiner implements Denstream2.

3.1.1 The StreamMiner function

create function StreamMiner(data stream, other parameters)-> Stream of <integer windowID, real time, integer clusterID, vector

microCluster> as stream of DenMiner(data stream, other parameters).

Table. 1 Signature of foreign function

The StreamMiner function (Signature in Table. 1) returns representations of a stream

of microclusters. The representation of a microcluster includes the ID of a window in

the stream, the time stamp of the end of the time period for the window, the ID of the

cluster to which the emitted microcluster belongs, and coordinators of center and

	 9	

radius of the microcluster. It is defined a derived function calling another foreign

function, DenMiner implementing Denstream2 in Java. The macroclusters in each

window can be computed by the feature ‘clusterID’ of each microcluster.

3.1.2 Parameters of StreamMiner

Actually in the code, StreamMiner could be represented as StreamMiner(ds ,

!

µ ,

!

" ,

!

" ,

!

" , d, o, h). The parameters are passed to DenStream2 implemented in Java when

StreamMiner is called. The parameter ds is the stream that will be processed, and

four of the parameters (

!

µ ,

!

" ,

!

" ,

!

") are used in the StreamMiner algorithm for

Denstream [4]. Parameter

!

" is used to control the size of microclusters and each

microcluster can’t have radius bigger than

!

" ; another two parameters

!

µ and

!

" are

used to distinguish the core-microcluster (weight

!

" µ), potential core-microcluster

(weight

!

" µ#), outlier microcluster (weight

!

<

!

µ") and deleted outlier microclusters

(weight

!

< "); the last parameter is

!

" which determines how fast the weight of

microcluster should decrease.

The extended algorithm Denstream2 has three more parameters to control the

execution. One is , the dimension of the data in the stream. The other two are

!

" and

!

h and are used to tune clustering. To test their effects some specific experiments were

done for different cases in the evaluation section. Their details follow.

The parameter

!

" specifies the maximum allowed number of microclusters for a

common data point when a new data point arrives for clustering. The value for

!

" can

be 1, 2, or 3. Here the overlapping between microclusters at the same time point are

controlled. If the value is 1, a new arriving data point will be merged into nearest

microcluster. The result is that some microclusters are deleted and some important

information may be lost. These microclusters may be preserved if a big value for

!

" is

used. If

!

" is 2 or 3, the new data points can be possibly assigned to 2 or 3 nearest

microclusters and the weight of each microcluster will grow by one. In this case, more

microclusters are produced and the memory usage will increase. In the DenStream

suggested in [4], a different solution is proposed about how to deal with the

overlapping of potential core-microclusters, but no test about such overlapping was

done. In my opinion, this overlapping can exist not only between potential core-

microclusters, but also between potential core-microcluster and outlier microcluster,

	 10	

or between outlier microclusters. Experiments have been done to test the overlapping

to determine the accuracy of clustering. This is elaborated in the discussion section.

The parameter

!

h is time interval and determines the timed window size. It isn’t

possible for the program itself to decide when to request for offline macro clustering

without such a time interval. The choice of

!

h is critical. If a too small

!

h is chosen, a

lot of offline data will be produced and consume a lot of computing resources; if

!

h is

too large, some important changes might be missed. In [15], a memory sampling

method is used to detect the cluster evolution automatically.

3.2 Transferring Clusters to the DSMS and processing

The microclusters generated by Denstream2 are emitted one by one by the

foreign function StreamMiner calling emit [21]. emit in Table. 2 is a predefined

method in the Amos II foreign function interface, which is called from the Java code

of DenStream2. This emit method will send one window of features of a microcluster

to the DSMS.

emit <windowID, time, clusterID, microCluster >

Table. 2 “emit” method in Java

3.2.1 Storing clusters in the database

The emitted clusters can be explicitly stored in the database. The entity

relationship of stored data is shown in Fig. 2. The macroclusters are generated by

offline clustering at the end of each time periods. In each window represented by

entity type Horizon, there are a number of macroclusters and each of them is

represented by a group of associated microclusters. The three stored tables Offline

Macro-Clustering, Contains and Represented-by are created and the database schema

is shown Table. 3, Table. 4 and Table. 5. In the Offline Macro-Clustering table, the

information of each window is stored; attributes “horizonID” is the primary key and it

has N:1 relationship with attribute “name” and 1:1 relationship with “time”. In the

Contains table, the information of each macrocluster is stored; the attribute

“clusterID” determines one macrocluster and has N:1 relationship with attribute

“horizonID”. In the Represented-by table, composite key for this table consists of

attributes “clusterID” and “center”.

	 11	

 Fig. 2 The ER diagram for storing the macroclusters in the database

Attribute Attribute description

horizonID The id of window where snapshot taken in online micro-clustering

name The name of stream processed.

time The stream time at which snapshot is taken

Table. 3 Offline Macro-Clustering table (the name of attributes in bold is the primary
key)

Attribute Attribute description

clusterID The ID of a macrocluster which the microclusters belong to

horizonID The id of window where representing a cluster

Table. 4 Contains table (the name of attributes in bold is the primary key)

	 12	

Attribute Attribute description

clusterID The ID of a macrocluster which the microclusters belong to

center The coordinates of the microcluster center

Radius The radius of the microcluster

Table. 5 Represented-by table (the name of attributes in bold is the composite key)

3.2.1.1 Creating the Database

Following the schema shown in Table. 3, Table. 4 and Table. 5, three tables Offline

Macro-Clustering, Contains and Represented-by were defined to keep the produced

microclusters in database. The stored procedures loadMicroClusters and

addMicroClusters are used to process the microclusters one by one and add them into

database. Indexes were created on the key in all tables to speed up later queries to the

database. Notice that storing the stream in tables like this has the restriction that the

stream is of limited size.

3.2.1.2 Queries to the database

If the clusters are stored in the database using the above schema, queries can

be done once the database is populated with the clusters computed from the stream.

For example, finding out the number of macroclusters and microclusters in specific

window in one stream, searching the windows to which a data point belongs, finding

the windows which have maximum number of macrocluster, and so on.

3.2.2 Queries directly on stream of clusters

In this case, queries will work on the generated stream directly without storing

all clusters in the database. Queries on the stream are similar to the queries searching

stored data.

3.3 The Denstream2 algorithm

First some basic concepts of the original Denstream will be explained for

better understanding the algorithm. The detail can be found in the original paper [4].

	 13	

• Damped window model

Window model in which the weight of data points or microclusters is

decreased exponentially over time via a fad function. The damped window

model helps the algorithm represent the current state of the stream while

limiting the historical state. There is a question about how long history and

how much historical data should be included. This is adjusted by the value of a

parameter in the fad function [4], and depends on the application.

• Potential core-microclusters

This definition and the next one are useful in online micro clustering.

“Potential” here means it might be a core-microcluster or an outlier at some

time, which depends on the evolution of data stream.

A potential core-microcluster is a microcluster at time

!

t and contains a

number of close data points (

!

x1,x2 ,x3!xn) with time stamp (

!

t1,t2 ,t3!tn).

!

t is

no smaller than data time stamps. The potential core-microcluster is defined

by a feature vector {

!

CF1 ,

!

CF2 ,

!

w} and

!

w is the weight of the microcluster. It

also has some features like real core-microcluster as following:

Weight:

!

w = f (t " ti)i=1

n# where

!

w " µ# (Equation 7)

Center:

!

c =
CF1

w
 (Equation 8)

Radius:

!

r =
|CF2 |
w

" (|CF
1 |

w
)2 where

!

r " # (Equation 9) or

!

r = (CF2(i)
w

" (CF
1(i)
w

)2) /n
i=1

n#
 (Equation 10 suggested in [1]) .

• Potential outlier microcluster

A potential core-microcluster is a microcluster at time

!

t and contains a

number of close data points (

!

x1,x2 ,x3!xn) with data time stamps

(

!

t1,t2 ,t3!tn).

!

t is no smaller than data time stamps. The outlier microcluster is

defined as a feature vector {

!

CF1 ,

!

CF2 ,

!

w ,

!

to}.

!

w is the weight and

!

to (

!

to = t1)

	 14	

is the creation time of the microcluster. It has the same features as the

potential core-microcluster and is calculated in the same way. The only

difference is that

!

w < µ" .

!

µ and

!

" are additional parameters in the DenStream2.

 DenStream2 is a modification of Denstream that inherits most concepts and

theories from the original DenStream [4]. The pseudo code of DenStream2 is

described in Table. 6. There are some important changes to the original Denstream

algorithm,shown in bold in Table. 6. The changes determines if a new point should be

incorporated into a microcluster, as further discussed later. The code in Table. 6

implements DenStream2. Actually, there are further minor changes compared to the

original DenStream and these changes will be discussed more in the experiment and

discussion parts of this report.

DenStream2 can be simply divided into three steps, initialization, online micro

clustering, and offline macro clustering, analogous to DenStream [4].

DenStream2(ds,µ,!,",#,h,o)

/**initialization part**/

1: initial a few potential core-microclusters

/**online part**/

2: for each data point

!

q arrives at t from stream ds

3: if size(potential core-microcluster buffer)

!

> 0 Then

4: find the nearest potential core-microcluster

!

cp ;

5: if

!

dp (distance from

!

q to

!

cp)

!

" # then

6: merge

!

q into

!

cp ;

7: else if size(outlier microcluster buffer)

!

> 0

8: find the nearest potential core-microcluster

!

co ;

9: if

!

do (distance from

!

q to

!

co)

!

" # then

10: merge

!

q into

!

co ;

11: else

12: create a new outlier microcluster and put it into outlier microcluster buffer;

13: end if

14: else

	 15	

15: create a new outlier microcluster and put it into outlier microcluster buffer;

16: end if

17: if (

!

nTp " t < (n+1)Tp) then

18: for each potential core-microcluster

!

cp

19: update the feature vector of

!

cp

20: if

!

w (weight of

!

cp)

!

< µ" then

21: Remove

!

cp from potential core-microcluster buffer and add it into outlier microcluster buffer;

22: end if

23: end for

24: for each potential core-microcluster

!

co

25: update the feature vector of

!

co

26: if

!

w (weight of

!

co)

!

" µ# then

27: delete

!

co from outlier microcluster buffer

28: else if

!

w (weight of

!

co)

!

< "(t,to) =
2#$ (t#to+Tp) #1
2#$Tp #1

 then

29: remove

!

co from outlier microcluster buffer and add it into potential core-microcluster buffer;

30: end if

31: end for

/**offline part**/

32: if

!

mTint er " t < (m +1)Tint er then

33:
offline macro clustering on microclusters in potential core-microcluster buffer ;

34: send data (snapshot number, time, microcluster center, microcluster radius, macro cluster label) to Amos II;

35: end if

36: end for

Table. 6 Pseudo code for DenStream2. Variable n is number of checks in buffers and

m is the number of snapshot taken in online micro clustering.

	 16	

 (a) (b)

 (c) (d)

Fig. 3 Original synthetic data set. (a) Data set ST1 (b) Data set ST2 (c) Data set ST3

(d) Data set ST4

4. Experiments and Evaluation

In this section, a few experiments have been done to test the performance of

DenStream2 by a group of synthetic data set and two real data sets from Internet.

DenStream2 is implemented in Java and executed it on a MacBook pro with Intel

Core 2 Duo 2.2GHZ, 4G memory and Snow Leopard operation system.

	 17	

In the tests, the values of parameters used in [4] are adopted. So the value choice for

parameters are:

!

" = 0.25 ,

!

" =16,

!

µ =10 and

!

" = 0.2 . Other parameters will be varied

in the different tests.

4.1 Data sets and parameters in DenStream2

4.1.1 Synthetic data set

To create a data stream for the testing, four two dimensional test data sets

were created. They are ST1, ST2, ST3, ST4 and each has 20000 data points. The

distribution of data points at each data set in the data space are shown in Fig. 3, and

the order of data points in each data set is random. After clustering by DBSCAN [7]

on each data set, the results are shown in Fig. 4 and the data points in the same cluster

are represented in the same color. An evolving data stream was generated by

combining data sets in order like ST1, ST2, ST3, ST4 and each data point was

assigned a time stamp that grows as the stream evovles.

4.1.2 Real data set

The first real data set is a subset from a network intrusion detection data set

used in KDD-CUP’99. It is also used in [1,4]. This network intrusion detection data

set is about a series of TCP connection records from two weeks of LAN network

traffic managed by MIT Lincoln Labs, around five million connection records. Each

record can either be a normal connection, or an attack. Attacks fall into four big

categories: DOS (denial-of-service), R2L (unauthorized access from a remote

machine), U2R (unauthorized access to local super user ‘root’ privileges), and

probing (surveillance and other probing). There are around 21 attack subtypes. As we

can see, this data set stands for one kind of automatic and real time cyber attack

detection problem. So, it is a good example of a stream clustering test. In the original

network intrusion detection data set, there are total 42 available attributes in each

record. To generate a stream, only 34 numerical attributes of were extracted and each

record in the stream is in similar format as data points in the synthetic stream. The

mining of this real data stream is based on the 22 attack subtypes, not four main attack

types. For

!

v =1000 , the distribution of attack subtypes is displayed in Fig. 5.

	 18	

 (a) (b)

 (c) (d)

Fig. 4 Synthetic data set after clustering. In each data set, each color represents one

cluster. (a) five clusters, (b) five clusters, (c) 4 clusters (d) 5 clusters.

4.1.3 Other

There is one important thing to consider in the experiments, namely. It is the

new data point merging priority. In the DenStream suggested in [4], potential core-

microclusters have higher priority to merge the new arriving data points than the

outlier microclusters. In this way of merging, computing time will become shorter

than with equal priority for merging because the conversion from outlier

	 19	

microclusters to potential core-microclusters is minimized, and this is a bias in online

micro-clustering. I will do some tests on its effect to the clustering quality, compared

with equal priority to merge new data points.

Fig. 5 Attacks distribution in the network intrusion detection data set. Different attack

subtypes are represented by numbers, and the representation list is 0-normal, 1-

buffer_overflow, 2-loadmodule, 3-perl, 4-neptune, 5-smurf, 6-guess_passwd, 7-pod,

8-teardrop, 9-portsweep, 10-ipsweep, 11-land, 12-ftp_write, 13-back, 14-imap, 15-

satan, 16-phf, 17-nmap, 18-multihop, 19-warezmaster, 20-warezclient, 21-spy, 22-

rootkit.

 (a) (b)

	 20	

 (c) (d)

 (e) (f)

 (g)

Fig. 6 Snapshots of stream after macro

clustering with

!

h =1, and

!

o =1, and potential

core-microclusters having higher merging

priority. Each data point here represent one

microcluster and microclusters in the same

macrocluster are in the same color. (a) t=18,

(b) t=22, (c) t=38, (d) t=42, (e) t=58, (f) t=62,

(g) t=78.

	 21	

4.2 Clustering quality evaluation

The clustering quality can be evaluated by the average purity of clusters

resulted from the offline clustering. It is defined as follows:

!

purity =

|Ci
d |

|Ci |i=1

K"
K

where

!

K is number of total macro clusters in one snapshots.

!

|Ci
d | is the number of

data points of the dominant class in the cluster

!

Ci and

!

|Ci | is the total number of data

points in the cluster

!

Ci . Since a damped window model is used in DenStream2, the

purity will be calculated in each window and only the data points that arrives to the

window will be included in the calculation.

In the first test, DenStream2 processed a data stream generated by the

synthetic data sets ST1, ST2, ST3, ST4, having 80000 data points with speed 1000

data point per time unit (

!

v =1000). In the processing, potential core-microclusters

have higher merging priority,

!

h =1, and

!

o =1. Snapshots are taken in the processing

and examples are shown in Fig. 6. Fig. 6a, c, e, g, respectively, display one snapshot

example of different stream parts produced by data set ST1, ST2, ST3, ST4 and

macro-clustering results is the same as static data clustering in Fig. 4. Moreover,

snapshots in Fig. 6b, d, f show the transition state between different stream parts

produced by data set ST1, ST2, ST3, ST4, which clearly show a big evolution in the

stream where it is impossible to define the clusters in these states before the stream

processing is started. In fact, there is relatively smaller evolution during the specific

stream parts produced by the other data sets. The movements of microclusters and the

change in the number of microclusters in the buffers express this evolution.

Therefore, DenStream2 works very well for the synthetic stream.

Further experiments have been done below to test the performance of

DenStream2 with change in some factors, such as noise, window, stream speed,

overlapping between microclusters, and priority in new data points merging.

4.2.1 Synthetic data stream with noise

	 22	

Fig. 7 Clustering quality on stream with different percentage of noise

Fig. 8 Clustering quality when stream speed changes. Other setting in this test: data

streams=synthetic data stream with different noise percentage (0%, 1%, 5%),

!

o =1,

!

v = 500 , and potential mciroclusters have high priority to merge new data points.

 In this test, some random noises are uniformly mixed into the synthetic stream

above in two different percentage levels, 1%, and 5%. These two streams were

processed by DenStream2 and the clustering quality was compared with the synthetic

stream without noise. Fig. 7 shows the results. In this figure, rectangles in the figure

whose edges are represented by suspension points mark the transition states between

	 23	

stream parts generated by data sets ST1, ST2, ST3, ST4, and they are also present in

the following figures for the synthetic data stream. Because the ID of clusters in

transition state is unknown, the purity in transition states is lower than other stream

parts and it means nothing. Hence, the test results on these states aren’t useful. In

periods outside the rectangles, the macro clustering purity is 100% when there is no

noise in the stream, nearly 100% when there is 1% noise and above 95% with 5%

noise. In all, Denstream2 works very well in filtering the noise data points.

Fig. 9 Clustering quality with different overlapping factors. Other settings in this test:

data streams=synthetic data stream with 5% noise,

!

h =1,

!

v =1000 , and potential

mciroclusters have high priority to merge new data points.

4.2.2 Stream speed

 Stream speed is another factor that can change the behavior of stream. It affects

the performance in a similar way as parameter

!

" , through the fade function. When

stream speed decreases from high level to low level, the connection between historical

data and current data will become weak, that is, historical information diminishes

very fast. This effect is very obvious in that the transition state length become shorter

in Fig. 8 than in Fig. 7, but the clustering quality in other parts doesn’t change too

much. This means that each synthetic stream part has weaker relationship with its

succeeding stream.

	 24	

Fig. 10 Number of potential core-microclusters with different overlapping factor.

Other setting are the same as Fig. 9.

4.2.3 Overlapping

 In the online micro clustering, it is very likely that two microclusters have

overlapping area. The data points in this overlapping can be merged in different ways.

One way is to merge it only to the nearest microcluster, and another way is to merge it

to all the microclusters which contain the overlapping area. In the first way, a

microcluster that doesn’t receive a data point in the overlapping area will be possibly

deleted. Sometimes, this is unacceptable because some information of the stream will

be lost. By contrast, the second way saves the life of some microclusters, but the

computing complexity of the algorithm will increase very sharply when the density of

data points in a cluster is high. In DenStream2, this overlapping effect is tuned

through the overlapping factor

!

o . From the experiments of the synthetic stream in

Fig. 9, 10 and real data stream in Fig. 11, 12, including the overlapping factor into

clustering doesn’t change cluster quality much, but the higher the overlapping factor

is, the larger the number of produced potential core-microclusters becomes.

	 25	

 Fig. 11 Clustering Quality with different overlapping factor. Other settings in this

test: data streams=network intrusion detection data stream,

!

h =1 ,

!

v =1000 , and

potential microclusters have high priority to merge new data points.

 Fig. 12 Number of potential microclusters with different overlapping factor. Other

settings are the same as Fig. 11.

	 26	

 Fig. 13 Macro clustering quality with or with merging point priority. Other settings

in this test: data streams=synthetic data stream with 5% noise,

!

h =1,

!

v =1000 , and

!

o =1.

Fig. 14 Number of potential core-microcluster with or with merging point priority.

Other settings are the same as Fig. 13.

4.2.4 Merging priority

	 27	

In the DenStream [4], the new arriving data points are merged to potential

microclusters first and then to the outlier microcluster. In this case, the outlier

microcluster can easily be deleted, and the computing complexity will decrease

somewhat. If there is no priority, the new arriving data point can be assigned to the

nearest microcluster, which may be a potential core-microcluster or outlier

microcluster. To test the effect of priority in clustering, experiments have been done

with DenStream2 for the synthetic data stream and the real data stream, with and

without merging priority. As the results shown in Fig. 13 and Fig. 15, the clustering

quality is nearly the same in the cases with or without merging priority. But without

merging priority, the number of potential core-microclusters (in Fig. 14 and Fig. 16)

will become larger than the one with merging priority. Therefore, equal priority in

merging data points can save some microclusters that will be deleted in the case of

merging priority. So, merging priority has the same situation as the overlapping

factor.

Fig. 15 Clustering quality with or without merging priority. Other settings in this test:

data streams=network intrusion detection data stream,

!

h =1,

!

v =1000 , and

!

o =1.

	 28	

Fig. 16 Number of potential core-microclusters with or without priority. Other

settings are the same as Fig. 15.

5. Discussion

The major difference between the DenStream2 algorithm and DenStream is

the method to incorporate new data points into the existing microclusters (marked by

bold words in Table 8) in the online micro-clustering component. The difference is

that in DenStream, the average radius is

 (a) (b) (c)

Fig. 17 Three possible cases of online microclusters with maximum radius

!

" . (a) all

data points are in a circle with radius

!

" , (b) some data points concentrates around the

center of microclusters and others outside the circle with radius

!

" , (c) the

microcluster is in a very strange shape, not a circle.

	 29	

used to measure if a new data point should be merged into a microcluster and in

DenStream2, the measure is the distance between a new data point and center of a

microcluster. This small change in measurement can make big difference in

microcluster creation. In DenStream, three possible cases can happen because average

radius is used to determine the merging of new data point which case is going to

happen to a microcluster depends on the order of data points in the stream. The cases

for two dimensions are shown in Fig. 17, perfect cyclic microcluster (Fig. 17a), data

point outside of circle with radius

!

" (Fig. 17b), and microclusters in arbitrary shape

(Fig. 17c). Actually, the microcluster in Fig. 17a is the expected microcluster and

DenStream can’t guarantee this. Hence, it will be very hard to determine the region of

each microcluster. Therefore, in DenStream2, the data points in one microcluster are

always in a circle with radius

!

" and this will be very useful in a database query if the

microcluster is stored in a database, compared to using a a random data point.

Overlapping between microclusters is another factor which differentiates the

stream clustering. In Denstream2 a data point can be assigned to 1, 2 or 3 existing

microclusters if the distance between the data point and the microclusters is smaller

than the radius threshold

!

" ; the three cases are shown in Fig. 18. Through the

experiments, we can see that clustering quality doesn’t change much in different

overlapping levels, but a number of microclusters is possibly deleted as

!

o =1 when

data points can be assigned to more than one microcluster. This means that allowing

overlaps between microclusters can save more information of the stream. At the same

 (a) (b) (c)

Fig. 18 Three cases of overlapping between microclusters. (a)

!

o =1 , (b)

!

o = 2 ,

(c)

!

o = 3. The filled black areas are the overlapping area between microclusters

	 30	

time, some redundancy is produced and computing complexity will increase. How

much overlapping is needed can be tuned based on the application.

In DenStream, the data points may be merged into a nearest potential core-

microcluster first, and then the nearest to the outlier-microcluster. This is a

discrimination in clustering that can save computing time if there is a nearest outlier-

microcluster which meets the merging requirement. Without priority in merging, new

data point can cost more in computing time, but new microclusters are detected as

shown in the experiment of DenStream2. Therefore, removing priority is a good way

to detect more useful information of a data stream.

DenStream2 has been used to do some tests on real data sets, and the

clustering quality is satisfactory. As in [1,4], ahead of the stream clustering there is no

normalization done to the data, and this means that the contribution of each dimension

in the distance measure is different. It may be impossible to do such preprocessing of

the data stream before further clustering because lack of global information of the

data stream.

In many data stream mining algorithms, there is the assumption that the speed

of the stream is constant. However, because there is an extra requirement in

DenStream2 that each data record has its own time stamp, DenStream2 could possibly

process data stream with continuously varying speed.

As the clustering results shown in Fig. 6, the stream data are compressed very

much after the processing. So not much secondary memory is needed to save the

summarization of data stream into a database. Actually, DenStream2 can also be used

for static data compression before we save the data into database. What we need to do

is to assume that all data in stream has same time stamp. This is more efficient than

DBSCAN in data clustering because much less data are stored into database after

clustering.

6. Conclusion

	 31	

The experiments show that DenStream2 works very well in evolving data

stream clustering and can detect the change in the stream. It can be used in many

stream-clustering applications.

However, a big effort is needed for a good clustering effect because there are

many parameters to tune in DenStream2. The parameters in the algorithm need to be

adjusted to get the expected clustering result efficiently. Future work could be to

remove some parameters and improve the algorithm; an ultimate goal is an algorithm

free of parameters. In fact, the overlapping between microclusters is avoidable if the

shape of microclusters is square (in 2D) but not round, which could be another

important improvement to the algorithm.

Both DenStream [4] and DenStream2 are density-based algorithms. As we all

know, densitybased algorithms have a common advantage: to identify clusters in

arbitrary shape, and they also have a common problem that the algorithm works badly

if the densities among clusters in same data are very different. Some algorithms are

suggested to solve the disadvantage by decreasing density thresholds [20] in static

data processing or using a hierarchical structure in the stream mining algorithm [15]

in stream mining. Perhaps DenStream2 can be modified to processing data streams

with changing density using these strategies. Actually, a new algorithm, affinity

propagation [18] can be adapted to process streams in an efficient way by releasing

the hard constraints as has been done in [11]. The density problem in DenStream2

could be overcome using this method.

7. References

1. C. C. Aggarwal, J. Han, J. Wang, P. S. Yu. A framework for clustering

evolving data streams. In Proc. of VLDB, 2003.

2. C. C. Aggarwal, J. Han, J. Wang, P. S. Yu. A framework for projected

clustering of high dimensional data streams. In Proc. of VLDB, 2004.

3. D. Barbará. Requirements for Clustering Data Streams. SIGKDD

Explorations, pages 23-27, 2002.

4. F. CAO, M. ESTER, W. QIAN, A. ZHOU. Density-based clustering over

an evolving data stream with noise. In Proc. of SIAM, 2006.

	 32	

5. Y. Chen, L. Tu. Density-based clustering for real-time stream data In

Proc. of the ACM SIGKDD, 2007.

6. M. Ester, H. Kriegal, J. Sander, M. Wimmer, X. Xu. Incremental

clustering and mining in a data warehousing environment. In Proc. of

VLDB, 1998.

7. M. Ester, H. Kriegel, J. Sander, X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proc. of KDD,

1996.

8. S. Guha, A. Meyerson, N. Mishra, R. Motwani. Clustering data streams:

Theory and practice. In IEEE Transactions on Knowledge and Data

Engineering, 2003

9. E. Ikonomovska, S. Loskovska, D. Gjorgjevik. A survey of stream data

mining. In Proc. of ETAI, 2007.

10. M. Khalilian, N. Mustapha. Data Stream Clustering: Challenges and

Issues. In Proc. of IMECS, 2010.

11. M. Leone, Sumedh, M. Weigt. Clustering by soft-constraint affinity

propagation: applications to gene-expression data. Bioinformatics, 2007.

12. L. O'Callaghan, A. Meyerson, R. Motwani, N. Mishra, S. Guha.

Streaming-Data Algorithms for High-Quality Clustering. In Proc. of

ICDE, 2002.

13. C. Ruiz, E. M. Ruiz, M. Spiliopoulou. C-DenStream: Using Domain

Knowledge on a Data Stream. Discovery Science. 2009.

14. C. Ruiz, M. Spiliopoulou, E. M. Ruiz. C-DBSCAN: Density-Based

Clustering with Constraints. RSFDGrC, 2007, 216-223

15. L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, K. Zhang. Density-based

clustering of data streams at multiple resolutions. In Proc. of TKDD, 2009

16. T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: A New Data Clustering

Algorithm and Its Applications. Data Min. Knowl. Discov., 1997.

	 33	

17. X. Zhang, C. Furtlehner, M. Sebag. Data Streaming with Affinity

Propagation. ECML/PKDD, 2008.

18. J. F. Frey, D. Dueck. Clustering by passing messages between data points.

Science, 2007.

19. L. Liu, H. Huang, Y. Guo, F. Chen. rDenStream, A Clustering Algorithm

over an Evolving Data Stream. IEEE, 2009.

20. B. Qiu, X. Zhang, J. Shen. Grid-based clustering algorithm for multi-

density. In Proc. of MLCG, 2005.

21. D. Elin, T. Risch. Amos II Java Interfaces,

http://user.it.uu.se/~torer/publ/javaapi.pdf.

22. P. Kranen, I. Assent, C. Baldauf, T. Seidl. Self-adaptive anytime stream

clustering. In Proc. of ICDM, 2009.

23. J. B. MacQueen. Some Methods for classification and Analysis of

Multivariate Observations. In Proc. of BSMSP, 1967.

24. T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in

a Distributed Mediator System, in P.Gray, L.Kerschberg, P.King, and

A.Poulovassilis (eds.): Functional Approach to Data Management -

Modeling, Analyzing and Integrating Heterogeneous Data, Springer,

ISBN 3-540-00375-4, 2004.

25. S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, M.

Sköld, and E. Zeitler. Amos II Release 12 User's Manual,

http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html.

26. C. J. Date. An introduction to database systems. 8th Edition.

27. http://en.wikipedia.org/wiki/Comparison_of_relational_database_manage

ment_systems

28. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R.

Motwani, U. Srivastava, J. Widom. STREAM:the stanford data stream

management system. Technical report. 2004, Stanford InfoLab.

29. http://en.wikipedia.org/wiki/Data_Stream_Management_System

30. W. Ng, M. Dash. Discovery of Frequent Patterns in Transactional Data

Streams. T. Large-Scale Data- and Knowledge-Centered Systems, Vol. 2

(2010), p. 1-30

	Blank Page
	Blank Page

