
Avdelning, Institution, fakultet
Division, department, faculty

Department of Computer and
Information Science

Institutionen för datavetenskap

Bibliotekets anteckningar

ISBN:

ISSN:

Rapportnr:
Report no:
Upplagans storlek:
Number of copies:
Datum:
Date:

Projekt:
Project:

Titel:
Title:

Författare:
Author:

Uppdragsgivare:
Commissioned by:

Rapporttyp:
Kind of report:

Examensarbete/Final report
Delrapport/Process report
Reserapport/Travel report
Slutrapport/Final report
Övrig rapport/Other kind of report

Svenska/Swedish

Engelska/English

Rapportspråk:
Language:

Sammanfattning (högst 150 ord):
Abstract (150 words)

Dnr:
Call no:

Nyckelord (högst 8):
Keywords (8):

X

LiTH-IDA-Ex-9325

930803

Randomized Optimization of Object Oriented Queries in a Main Memory Database Man-
agement System

Joakim Näs

X

 This thesis investigates the behavior of different algorithms when optimizing Object SQL-queries in an
object oriented database management system called WS-IRIS (WorkStation-IRIS). Query optimization is a
combinatorial optimization problem which makes exhaustive search impossible when the query size
grows. This has led to a new approach to query optimization, namely the use of randomized algorithms. In
this thesis a number of randomized algorithms are applied to optimize queries in WS-IRIS. A comparison
of the algorithms has been done and the combination of the Iterative Improvement algorithm and the Se-
quence Heuristics algorithm showed the best performance. This report also shows the importance of good
cost estimates for query optimization and some improvements to the WS-IRIS cost model are presented.

Query optimization, randomized algorithms, Object Oriented database,
Object SQL

Systemdokument 70

SENIL, PUM-projekt 1992 Version: 0.1
Institution: IDA, LiTH Sida: 70 av 70
Beställare: NLPLAB, Lars Ahrenberg Utskrivet: 8 June 2006

Randomized Optimization of
Object Oriented Queries

in a Main Memory
Database Management System

Joakim Näs

Tel. +46 910 51832
E-mail: Joakim.Nas@sa.erisoft.se

Supervisor and examinant : Tore Risch

Abstract

This thesis investigates the behavior of different algorithms when optimizing
Object SQL-queries in an object oriented database management system called WS-
IRIS (WorkStation-IRIS). Query optimization is a combinatorial optimization
problem which makes exhaustive search impossible when the query size grows.
This has led to a new approach to query optimization, namely the use of rand-
omized algorithms. In this thesis a number of randomized algorithms are applied to
optimize queries in WS-IRIS. A comparison of the algorithms has been done and
the combination of the Iterative Improvement algorithm and the Sequence Heuris-
tics algorithm showed the best performance. This report also shows the importance
of good cost estimates for query optimization and some improvements to the WS-
IRIS cost model are presented.

Keywords:
Query optimization, Randomized algorithms, Object oriented database,
Object SQL.

Contents

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Contents

1 Introduction ... 1
1.1 The work 2
1.2 Background 2
1.3 Outline of the thesis 3

2 Query optimization .. 4
2.1 Join methods 4
2.2 Join processing tree 6

3 WS-IRIS .. 7
3.1 WS-OSQL 7

3.1.1 Features in WS-OSQL 7
3.1.2 WS-OSQL Example 8

3.2 ObjectLog 9
4 Existing optimization algorithms 11

4.1 Exhaustive 11
4.2 Ranksort 12

5 Randomized optimization algorithms 13
5.1 Iterative Improvement 14
5.2 Simulated Annealing 15
5.3 Two phase optimization 16
5.4 Sequence Heuristics 17

6 Implemented query optimization algorithms 18
6.1 Implementation specific parameters 18
6.2 The neighbour function 20

6.2.1 The simplicity of WS-IRIS 21
6.2.2 Join method choice 21
6.2.3 Join commutativity 22
6.2.4 Join associativity 22
6.2.5 Left join exchange 23
6.2.6 Right join exchange 23
6.2.7 Conclusions 24
6.2.8 Invalid neighbours 24

6.3 Random neighbour 24
6.4 Random state 25
6.5 The cost function 25

6.5.1 Cost model 26
6.5.2 Calculation of the cost of a neighbour 27
6.5.3 Improvements of the cost model 29

Contents

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7 Testing the algorithms .. 31
7.1 Building a database 31
7.2 Query generation 33

7.2.1 Standard join 33
7.2.2 Selection 34
7.2.3 Foreign functions 34
7.2.4 WS-OSQL queries 35

7.3 Experiment procedure 35
7.3.1 Optimization time 36
7.3.2 Execution cost 36

7.4 Results 36
7.4.1 The median scaled cost 37
7.4.2 The worst cost 39
7.4.3 The average optimization time 40
7.4.4 Improvements over time 41
7.4.5 Randomized versus Existing algorithms 42

8 Implementation .. 44
9 Summary and future work ... 45
10 References ... 46
Appendix A:The database .. 48
Appendix B:Test results ... 49
Appendix C:Examples.. 51

The need of query optimization 52
When Ranksort performs poorly 53
The need of a good cost model 55

Index .. 57

1

Introduction

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

1 Introduction

Query optimization is a combinatorial optimization problem. It is an expensive
process, mostly because the number of alternative execution plans grow exponen-
tially with the size of the query. The task of a query optimizer is to minimize the
execution time for a given query in a database management system (DBMS). A
query consists of a number of conditions that the result of the query has to satisfy.
The optimization is done by making permutations of the conditions in the query.
For each permutation of the query the execution time can be estimated according to
a cost function. The permutation with the lowest cost is assumed to be optimal.
Facts that effects the execution time (the cost) are the size of the query, the size of
the addressed relations used in the query and the occurrence of indexes. The execu-
tion time of a query is highly dependent on the execution plan used. One plan may
be thousands of times faster than a less optimal plan. A query passes through dif-
ferent phases in a DBMS, figure 1 shows the normal course for a query.

 Figure 1. Translation steps in a DBMS.

The ordinary approach to query optimization has earlier been exhaustive search, a
method that always returns the best solution. Today, when the need of optimizing
large join queries have become high, the exhaustive search is no longer an useful
method because of the time requirement of the algorithm. Examples of applica-
tions that creates large queries are knowledge based systems and object oriented
database systems like WS-IRIS.

The difficulties in optimizing large database queries have led to a new approach,
namely the use of randomized algorithms. This kind of algorithms have earlier suc-
cessfully been used to other combinatorial optimization problems. This thesis
examines the use of randomized algorithms in a main memory based DBMS called
WS-IRIS. A number of randomized algorithms were compared to each other and to
the existing optimizers in WS-IRIS. The outcome of the test shows that the combi-
nation of the Iterative Improvement algorithm and the Sequence Heuristics algo-
rithm is superior to other optimization algorithms.

query

parser

optimizer

execution plan

executor

query result

parse tree

2

Introduction

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

1.1 The work

The work that have done can be divided into four parts.
1. Several randomized algorithms have been implemented for query optimization

in WS-IRIS.
2. A test have been done, comparing the randomized algorithms to each other find-

ing out which one that has the best performance. The best algorithm has been
implemented to be an optional optimization method in WS-IRIS, capable of
optimizing every type of query allowed in WS-IRIS.

3. The best of the randomized algorithms have been compared with the two exist-
ing algorithms Ranksort and Exhaustive.

4. Some improvements to the cost model has also been made. This was not part of
the originally definition of the work, but during the test of the algorithms it was
proved that the current cost estimates in WS-IRIS did not have the precision
needed for query optimization.

1.2 Background

This work was done at CAELAB(the laboratory for Computer Assistance in Engi-
neering), a laboratory that is part of IDA(Department of Computer and Information
Science), a department at Linköpings University. CAELAB has two directions of
research:
• Computer Support for Automation

Incorporating task level programming, realtime architectures for supervisory
control, programming of autonomous manufacturing environments and realtime
systems.

• Engineering Information Management
Incorporates research on basic database technologies for engineering applica-
tions. Important concepts are distribution, heterogeneity, active databases and
databases in realtime systems. Within this area of research the WS-IRIS architec-
ture is used in several subprojects.

The work was done with the database group. At present CAELAB consists of nine
persons and six of them are involved in projects with WS-IRIS. The work was ini-
tiated by professor Tore Risch, the head of the database group and the task was to
implement a new optimization method in WS-IRIS. When the work started, two
optimization methods were already present in WS-IRIS called Ranksort and
Exhaustive. The motivation of a new method is that Ranksort sometimes comes up
with poor solutions and Exhaustive is too slow when the query size grows. The
task was to implement and test a new randomized algorithm called Two-phase opti-
mization [Yann90].

3

Introduction

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

1.3 Outline of the thesis

In this chapter an introduction is given. What have been done and the background
of the work are described.
Chapter two describes the subject of query optimization in depth.
Chapter three describes the WS-IRIS DBMS, the query language WS-OSQL and
the intermediate language ObjectLog, which is the language that the query opti-
mizer works with.
In chapter four the existing algorithms in WS-IRIS are described.
In chapter five the randomized optimization algorithms are presented.
In chapter six the randomized algorithms are adopted for query optimization. The
cost model is described and some improvements to the origin cost model are also
presented.
Chapter seven presents the test of the algorithms. At first a description is given of
how the test database and the test queries are generated. Finally the results are pre-
sented in a number of tables and graphs.
In chapter eight some implementation details of the algorithms are described.
Chapter nine contains a summary of the work and suggestions of future work are
discussed.
Finally a reference list, an index and some appendixes conclude the thesis.

4

Query optimization

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

2 Query optimization

A query optimizer has two tasks. One is to produce a permutation of the query that
has a short execution time. The other task is to make sure that the solution is a per-
mutation that can be executed by the DBMS. The savings in execution time made
by the optimizer is often substansial and appendix C shows an example of the need
of a well performing query optimizer in a DBMS. Since a random query optimizer
cannot guarantee the solution to be optimal some other criteria must be used to
determinate the quality of the optimizer. The common known criteria in query opti-
mization is based on the principle that a query optimization algorithm is considered
to be good in practice if it performs well on the average and very rarely performs
poorly.

2.1 Join methods

The join operator, denoted by , is used to combine related tuples from two rela-
tions into single tuples. This operation is very important because it allows us to
produce relationships among relations. The general form of a join operator on two
relations R(A1,A2,..,An) and S(B1,B2,..,Bm) is:

The result of the join is a relation Q(A1,..,An,B1,..Bm). Q has one tuple for each
combination of tuples, one from R and one from S, whenever the combination sat-
isfies the join condition.

The join operator is one of the most time consuming operations in query process-
ing. The problem of optimizing a query is to select the join order in which the
query is to be executed. Most of the join operators in queries are equi-join (the join
condition is in the form A=B) and it is equi-join that has been used in the test of the
algorithms presented in this thesis.

 Example 1: A two way equi-join

R S<join condition>

45

3

23

12

2

5

10

13
45 2 6

4 69 1

12 1 2

A B C D E

A=C =

A B C D E

2 45 2 6

13 12 1 2

45

12

5

Query optimization

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

The type of join shown in example 1 is a two way equi-join (an equi-join with two
operands). The two way join is the most common used join in database manage-
ment systems including WS-IRIS.
A join can be done in a number of different ways, some of them are presented here.
When the different join methods are described the following are given, two rela-
tions R and S are to be joined with the join columns A and B. The join formula will
be:

• Nested-loop join
For each tupel r in R retrieve every tuple s from S and test whether or not the two
tuples satisfy the join condition r[A]=s[B].

• Access structure
With the use of an access structure to retrieve the matching tuples a more effi-
cient join can be done. If an index or a hash key exists for one of the two join
attributes, say B of relation S, each tuple r in R can be retrieved one at a time and
then use the access structure to retrieve directly all the matching tuples s from S
that satisfy r[A]=s[B].

• Sort-merge join
If the tuples of R and S are physically sorted by value of the join attributes A and
B, the join can be implemented in the most efficient way possible. The two rela-
tions are scanned in order of the join attribute, matching the tuples that have the
same values for A and B. When using this method, the tuples of each relation are
scanned only once, each for matching with the other relation.

• Hash join
The tuples of relation R and relation S are hashed to the same hashtable using the
same hashfunction on the join attributes A of R and B of S as hash keys. A single
pass through each relation hashes the tuples to the hash table buckets. Each
bucket is then examined for tuples from R and S with matching join attribute val-
ues to produce the result of the join operator.

In WS-IRIS the nested-loop join is used, unless there is an index on the join col-
umn in the relation then the access structure method can be used.

R SA=B

6

Query optimization

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

2.2 Join processing tree

In any database system the query optimizer has to come up with a processing strat-
egy in some form. A strategy can be viewed as a Join processing Tree (JT). This is
a tree in which each internal node is a join node and each leaf node is a base rela-
tion. Each join node represents the operation of joining the operand relations and it
also represents the result of the join. The query optimization problem is to find the
JT with the lowest cost. There exist many different kinds of JTs. In query process-
ing the join operator is often thought of as a binary operator. This give us the
Binary Join processing Tree(BJT), which is a JT in which each join operator has
exact two operands. A special kind of BJT is the Linear Join processing Tree
(LJT). In a LJT at most one of the operands can be an intermediate relation. An
intermediate relation is the result of a join and is represented by an internal node in
the tree.

Most join methods distinguish the two operands from each other, one being the
outer relation and the other being the inner relation. The outer relation is the left
child of a node and the inner relation is the right child. An Outer Linear Join
processing Tree (OLJT) or left-deep tree is a LJT which inner relations always are
base relations. Another type of LJT is the Pipelined Join processing Tree (PJT). A
PJT can be thought of as an OLJT where the result is directly generated from the
base relations without creating any intermediate relations. Figure 2 shows the
structure of different JTs.

 Figure 2. Join processing Trees

WS-IRIS has only one kind of JT and that is PJT. The PJT is especially suited for
the nested-loop join method, which is the join method used in WS-IRIS.

A B

C

D

A B

C D E

A

B

C D

A B C D

BJT LJT OLJT

PJT

7

WS-IRIS

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

3 WS-IRIS

WS-IRIS(WorkStation-IRIS) is an object oriented database management system.
WS-IRIS is used as an experimental DBMS by the database group at CAELAB.
One feature in WS-IRIS is that it keeps the entire database in main memory, time
consuming disc accesses can thereby be limited. The query language used in WS-
IRIS is WS-OSQL, an object oriented variant of SQL(Structured Query Lan-
guage). WS-IRIS distinguish three types of functions, stored functions that are
tables in the database, derived functions that are functions compound by other
functions and foreign functions that are functions written in some foreign language
like C or Lisp. The query optimizer works with a language called ObjectLog. In
WS-IRIS WS-OSQL functions compile into ObjectLog programs as described in
section 3.2.

3.1 WS-OSQL

WS-OSQL(WorkStation-Object Structured Query Language) is the query language
in WS-IRIS and it is a superset of OSQL in Iris [Fish89]. WS-OSQL is in detail
described in WS-IRIS User’s Guide [Risc93a] and for the interfaces to C and Lisp
see WS-IRIS Advanced Programmer’s Manual [Risc93b]. In the following sections
some features in WS-OSQL will be described. Some of them will effect the
ObjectLog program and thereby also the query optimizer.

3.1.1 Features in WS-OSQL

• Foreign functions
A foreign function is a function defined in some other language than WS-OSQL
and can be called by WS-OSQL functions. In WS-IRIS a foreign function can be
written in either C or Lisp.

• Late binding
WS-IRIS supports late binding of overloaded functions where the overload reso-
lution is done at run time instead of compile time.

• Nested queries
A select statement can be part of another select statement. The inner select state-
ment is called a subquery and it returns a bag of tuples as the result.

• Recursive functions
WS-IRIS supports a limited class of recursive functions, only recursive functions
that call themselves recursivly with all arguments to the call bound are handled.

• Aggregation operators
An aggregation operator is a function that treats some of its arguments as a bag of
tuples. The operator sum is an example of an aggregation operator.

• Second order functions
Second order functions are allowed in WS-OSQL. This means that a function
symbol can be used as a parameter to other functions.

8

WS-IRIS

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

• Procedures
A procedure is a WS-OSQL function defined as a sequence of WS-OSQL state-
ments that may have side effects. Procedures may also return a result.

• Overloaded functions
An overloaded function is a function that has the same name and result type as
some other function but they have different argument types. This allows generic
functions to apply to several different object types. In WS-IRIS each specific
implementation of an overloaded function is called a resolvent.

3.1.2 WS-OSQL Example

This section shows some WS-OSQL functions that will show some of the con-
structs available in WS-OSQL. In the example two types of objects are defined,
persons and students, the student type is a subtype of type person. A number of
stored functions are defined, age, name, address, car, made_in, scollarship,
income, father and mother. The functions income, ancestor and parent are
examples of derived functions. The income function has two definitions and is
thereby overloaded. An example of a recursive function is the function ancestor
and the foreign function plus is used in one of the income functions. The function
Number_of_persons have a nested query and an aggregation function count. In
the end there is an example of late binding, the function all_income returns the
correct income for students as well as for persons.

create type person;

create type student subtype of person;

create function age(person p) -> integer a as stored;
create function name(person p) -> charstring c as stored;
create function address(person p) -> charstring i as stored;
create function car(person p) -> charstring c as stored;
create function made_in(charstring c) -> charstring d as stored;
create function scollarship(student p) -> integer i as stored;
create function income(person p) -> integer i as stored;
create function income(student s) -> integer i as

select plus(person.income(s),scollarship(s));
create function father(person p) -> person q as stored;
create function mother(person p) -> person q as stored;
create function parent(person p) -> person q
 as select q where q=father(p) or q=mother(p);
create function ancestor(person p) -> person a
 as select a for each person q
 where (a=ancestor(q) and q=parent(p))

or a= parent(p);
create function Number_of_persons()->integer i as
 select count(b) for each bag of person b
 where b=(select p for each person p);
create function all_income()-> integer i as

select i for each person p where i = late(income(p));

9

WS-IRIS

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

3.2 ObjectLog

Queries in WS-OSQL compile into an intermediate language called ObjectLog.
ObjectLog is the language that the optimizer works with. From the creation of the
query to the execution and result, the query passes through several stages that
transforms the query. Figure 3 shows the different steps a function passes through
in WS-IRIS.

 Figure 3. The translation steps of a WS-OSQL function

1. Flattener.
ObjectLog does not allow function symbols to appear as arguments to a func-
tion. In this phase select statements are flatten by introducing a new intermedi-
ate variable for each nested function call. For example the function call g(f(x))
will be exchanged to _G1=f(x), g(_G1) where f, g are functions and x, _G1 are
variables. The flattener also detects and marks recursive functions.

2. Type checker.
This stage is divided into three phases, first the type adornment phase when
function calls are marked with argument and result types. The result is called a
Typed-Adorned(TA) resolvent. If there are calls to overloaded functions the
matching TA resolvents are chosen. Finally, dynamic type checks are added to
the function definition whenever the type of a variable cannot be guaranteed to
be the required one.

ObjectLog interpreter

Flattener

Type checker

ObjectLog generator

ObjectLog Optimizer

Function

Flattened function

Type adorned resolvent

Type resolved ObjectLog program

Type and pattern resolved ObjectLog program

1

2

3

4

5

Query result

10

WS-IRIS

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

3. ObjectLog generator.
The ObjectLog generator transforms TA resolvents into a Type Resolved(TR)
ObjectLog program. Stored functions become TR-facts, derived functions
become TR-rules and foreign functions become TR-foreign predicates.

4. ObjectLog optimizer.
The optimizer changes the execution order of the ObjectLog program. Changing
the execution order can result in a much faster execution of the program. The
output of the optimizer is an optimized ObjectLog program consisting of Type
and Binding pattern Resolved(TBR) predicates.

5. ObjectLog interpreter.
The ObjectLog interpreter executes the optimized ObjectLog program and pro-
duces a result.

Below an example of an ObjectLog program is shown. Functions from the WS-
OSQL example are used and a derived function country is created. The function is
called with a name of a person and returns the name of the country where the per-
son’s car has been made.
WS-OSQL function

create function country(charstring c)-> charstring d as

select made_in(j) for each charstring j where

ch=name(p) and

j=car(p);

The corresponding ObjectLog program looks like:

 ((OID[P_CHARSTRING.MADE_IN:158] J _G2)
 (OID[P_PERSON.NAME:151] P C)
 (OID[P_PERSON.CAR:153] P J))
(C)

The ObjectLog program consists of two parts. The first part is a list containing the
predicates of the program. The order of the predicates specifies the execution order
of the program. The second part is a list of variables that are bound when the pro-
gram is called. The optimizer rearranges the ObjectLog program and produces an
optimized ObjectLog program.
The optimized ObjectLog program:

((OID[P_PERSON.CAR:153] P J)
 (OID[P_PERSON.NAME:151] P C))
 (OID[P_CHARSTRING.MADE_IN:158] J _G2))

The optimizer returns the permutation of the ObjectLog program with the lowest
execution cost the optimizer has found.

11

Existing optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

4 Existing optimization algorithms

Two optimization algorithms were already implemented in WS-IRIS when this
work started. They had both some disadvantages leading to the implementation of
a new optimizer. In this chapter the existing optimization algorithms are described.

4.1 Exhaustive

The Exhaustive algorithm [Seli79] is the classic algorithm for query optimization
used by many database management systems. The algorithm searches through the
complete state space. This means that the algorithm always can produce an optimal
solution i.e. the state with the lowest cost. An algorithm that produces optimal
solutions can be thought of as the obvious choice in a DBMS. But the algorithm
has a worst time complexity of O(2N) where N is the number of predicates in the
query. The algorithm is also implemented in a dynamic programming fashion lead-
ing to an exponential memory requirement. The time complexity and the memory
requirements makes it impossible to use the Exhaustive algorithm with queries that
have ten or more predicates. The algorithm is implemented in WS-IRIS and can be
chosen as an option.

12

Existing optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

4.2 Ranksort

The Ranksort algorithm [Kris86, Litw92] is an example of a heuristic query opti-
mization method. The algorithm is already implemented in WS-IRIS and it is the
default optimization algorithm. For each predicate in the query a rank is computed
and the predicate with the lowest rank is chosen to be the first predicate in the opti-
mized query. The same procedure is repeated again with the remaining predicates
and the predicate with the lowest rank is chosen. This continues until all predicates
in the originally state has been chosen. The algorithm has a time complexity of
O(N2) where N is the number of predicate in the query.

 Figure 4. The rank calculation formula.

The rank calculation formula is showed in figure 4. The formula shows how to
compute the rank of the predicate at position i in the ObjectLog program. Ri is the
computed rank, Fi is the fanout of the predicate and Ci is the execution cost of the
predicate. Fanout and execution cost are described in detail in section 6.5. There is
one problem with this algorithm, it sometimes performs poorly. One example when
the algorithm performs poor is when two relations P(X,Y) and Q(R,S) with some
properties are to be joined.

The relations P and Q have the following properties.
• Relation P is large, and has an index on column Y.
• Relation Q is small.
• X is given when the query is called.
In this example the ObjectLog program has two predicates P and Q. The rank is
computed for the predicates. P will be chosen as the first predicate since the rela-
tion is large and thereby has a high cost. This is not a very smart move since the
entire relation P has to be scanned. It would be smarter to scan the small relation Q,
this would give us a bound variable to the Y column in P and the index on P can be
used. This example contains only one join, so the Exhaustive algorithm could cope
without any time problems. But the problem can be part of a much larger query
when an exhaustive search is impossible. In appendix C a more detailed example
with cost calculation is given. The bound-is-easier heuristics [Ullm89] and selec-
tion pushing [Elma89] in traditional query optimization have the same problem.

Ri =
Fi - 1

Ci

P QY=R

13

Randomized optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

5 Randomized optimization algorithms

Recently it has been proved that the use of a randomized optimization algorithm is
the correct choice for optimizing database queries[Ioan90, Swam88]. This chapter
presents the terminology used by the randomized algorithms and presents the algo-
rithms that were considered to be the new optimization method in WS-IRIS.

Each solution to a combinatorial optimization problem can be thought of as a state
in a state space. In query optimization a state is a join processing tree as described
in chapter 2. Each state has a cost associated with it and the cost is given by a cost
function. The purpose of an optimization algorithm is to find the state with the
lowest cost. The cost is an estimate of the execution time and with a well perform-
ing cost model the state with the lowest cost is also the state with the shortest exe-
cution time.

The randomized algorithms described in this report performs random walks in the
state space by making a series of moves. A move is a permutation of the state
where you have your current position in the state space. The states that can be
reached in one move from a state is called the neighbours of the state. The neigh-
bour function is described in detail in section 6.2. A move which takes you to a
state with a lower cost is called a downhill move and a move to a state with higher
cost is called an uphill move.

A state is a local minimum if all of the neighbours to the state has higher cost. A
state is a global minimum if it has the lowest cost among all states. A state is on a
plateau if it has no lower cost neighbour but the optimizer can still reach lower
cost states without any uphill moves. Using the above terminology several rand-
omized algorithms are presented in this chapter.

14

Randomized optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

5.1 Iterative Improvement

The Iterative Improvement(II) algorithm is based on local optimization and has the
following behavior. The algorithm starts with a randomly chosen state as the initial
state. From the initial state the algorithm moves to neighbour states with lower cost
than the current state, this continues until a local minimum has been reached. After
a local minimum has been reached a new start state is generated at random. This
procedure is repeated until a stop criteria is fulfilled, then the algorithm returns the
local minimum with the lowest cost that has been found. The II algorithm is in fig-
ure 5 described with pseudo code.

 Figure 5. The II algorithm.

Algorithm explanation
The stop criteria is fulfilled when a certain amount of local minimum has been
computed. A randomly chosen state is computed according to the algorithm in sec-
tion 6.4. In the implementation of the algorithm an approximation is used to iden-
tify a local minimum. A state is considered to be a local minimum if none of the
neighbours of the state has a lower cost. To be able to do this the neighbour func-
tion returns the neighbours in a sequential order. Note that a plateau can be mis-
taken as a local minimum. The savings in execution time obtained with this
method are substantial and motivates the approximation. A neighbour is achieved
according to the algorithm in section 6.3. The cost of a state is computed according
to section 6.5.

while not(stop_criteria) do
S=Random_state()
while not(Local_minimum(S)) do

S’=Neighbour(S)
if Cost(S’) < Cost(S) then S=S’

if Cost(S) < minCost then

return(minS)

II()
minCost=Maxreal

minS=S
minCost=Cost(S)

15

Randomized optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

5.2 Simulated Annealing

The Simulated Annealing(SA) algorithm was originally derived by analogy to the
process of annealing of crystals, which explains the terminology in the algorithm.
The SA algorithm is a more complex algorithm than II and has the possibility to
accept moves to a neighbour with a higher cost than the current state, uphill moves.
This to avoid being trapped in a high cost local minimum. The initial state is ran-
domly chosen. A move to a neighbour with lower cost, a downhill move, is always
accepted just like II. But with some probability it can also accept an uphill move.
This probability decreases with time and after a while it becomes harder to accept a
move that largely would increase the cost. The algorithm stops when a stop criteria
called frozen has been reached. Figure 6 shows pseudo code for the SA algorithm.
The algorithm consists of two loops. The inner loop of SA is called a stage. Each
stage is performed under a fixed value of the temperature, which controls the prob-
ability of accepting uphill moves. Each stage ends when the algorithm is consid-
ered to have reached equilibrium.

 Figure 6. The SA algorithm.

Algorithm explanation
The algorithm starts with a random state and the initial temperature is calculated.
The stop criteria, frozen, is fulfilled if the best solution has not changed for 5
stages and the percentage of accepted moves do not exceeds a limit minpercent.
The algorithm is also considered frozen if a timelimit has been exceeded. The stage
ends when the algorithm has reached an equilibrium. The condition of equilibrium
is fulfilled when a certain number of neighbours have been visited. The definition
of a neighbour is stated in section 6.2 so is also the method to chose a random
neighbour. The cost of a state is calculated according to the cost model given in
section 6.5.

SA()
S= Random_State()
T= Initial_Temperature()
MinS=S
While not(frozen) do

While not (equilibrium) do
S’ = Random_Neighbour(S)
∆C = Cost(S’) - Cost(S)
if (∆C ≤ 0) then S = S’

if (∆C > 0) then S = S with probability e-∆C/T

if Cost(S) < Cost(minS) then minS = S
T = T × Tempfactor

return(minS)

16

Randomized optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

5.3 Two phase optimization

The Two phase optimization algorithm(2PO) [Ioan90] was the origin to this work
and was to be implemented in WS-IRIS. The idea of this algorithm is that all the
low cost states are gathered in a small area. The 2PO algorithm is a combination of
II and SA. The algorithm can be divided into two phases. In phase one, II is run for
a small period of time and the outcome is the initial state to phase two. In phase
two SA is run with a low initial temperature. Since the algorithm consists of two
already described algorithms the pseudo code in figure 7 is very short.

 Figure 7. The 2PO algorithm

Algorithm Explanation
The algorithm chooses a good local minimum and searches the area around it. The
low initial temperature in phase two prohibits the algorithm from climbing up very
high hills.

Two-phase()
S=II()
S’=SA(S)
return(S’)

17

Randomized optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

5.4 Sequence Heuristics

The Sequence Heuristics(SH) algorithm is a variation of local optimization just
like II. The initial state is chosen at random and the algorithm moves to a local
minimum in the same way as II does. After the first local minimum has been
reached a new start state is obtained by making a number of random moves away
from the local minimum. When the stop criteria is fulfilled, the algorithm returns
the local minimum with the lowest cost that has been found.

This algorithm will not be used on its own, instead the algorithm is used in a two
phase manner where it is proceeded by the II algorithm. This to get a good initial
state for the SH algorithm. The idea of this algorithm came up when the second
phase in 2PO did not make the number of moves one could expect. With this
method a number of moves away from the local minimum is guaranteed. This
method is intended to give a good result if the states with low cost are gathered in a
rather small area. Figure 8 shows the pseudo code of the SH algorithm.

 Figure 8. The SH algorithm

Algorithm explanation
The SH algorithm do not differ much from the II algorithm. The stop criteria, local
minimum and the cost are computed in the same way as for the II algorithm. The
only thing that differ is the way the algorithm choose new start states. The new
start state is obtained by making random moves to neighbours. In the implementa-
tion the algorithm makes the same number of moves as the number of predicates in
the query.

while not(sto
S=random_moves(minS)
while not(local_minimum(S)) do

S’= Neighbour(S)
if Cost(S’) < Cost(S) then S=S’

if Cost(S) < minCost then

return(minS)

SH()

minS=S
minCost=Cost(S)

p_criteria) do
minCost=Maxreal

18

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6 Implemented query optimization algorithms

The algorithms in chapter 5 are described in a general way and in this chapter some
details are filled in for query optimization. Six different algorithms are presented in
this chapter. There are also some details that are common to all algorithms that
needs to be described, namely the neighbour function and the cost model.

6.1 Implementation specific parameters

In this section the six candidate algorithms for WS-IRIS are presented. The algo-
rithms are defined by setting parameters to the general algorithms. There are these
algorithms that are compared to each other in chapter 7.
• II5

• II10

• SA

parameter value

general algorithm Iterative Improvement

stop criteria 5 local minimum calculated

parameter value

general algorithm Iterative Improvement

stop criteria 10 local minimum calculated

parameter value

general algorithm Simulated Annealing

initial temperature 2×Cost(initial state)

equilibrium 1×(number of predicates in query)

timelimit 0.3×(number of predicates in query)2

minpercent 2

tempfactor 0.9

19

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

• SH37

• SH55

• TWO

parameter value

general algorithm (phase one) Iterative Improvement

general algorithm (phase two) Sequence Heuristics

stop criteria (phase one) 3 local minimum

stop criteria (phase two) 7 local minimum

random_moves Number of predicates in query

parameter value

general algorithm (phase one) Iterative Improvement

general algorithm (phase two) Sequence Heuristics

stop criteria (phase one) 5 local minimum

stop criteria (phase two) 5 local minimum

random_moves Number of predicates in query

parameter value

general algorithm (phase one) Iterative Improvement

general algorithm (phase two) Simulated Annealing

stop criteria (phase one) 5 local minimum

initial temperature 2×Cost(initial state)

equilibrium 1×(number of predicates in query)

timelimit 0.3×(number of predicates in query)2

minpercent 2

tempfactor 0.9

20

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.2 The neighbour function

The randomized algorithms described in chapter 5 improve their solutions by mak-
ing moves in the state space trying to find the global minimum. The algorithms
make two different kind of moves. One is a move to a random state and the other is
a move to a neighbour state. The neighbours of a state S are defined as the states
that can be reached from S in one step. The neighbours of a state is determined by
a set of transformation rules. The same five rules as presented in Randomized
Algorithms for Optimizing large join queries [Ioan90] are used. The five rules are:

Each state can be represented as a join processing tree, see chapter 2. A JT is a tree
which leaves are relations and nodes are join operators.

 Example 2: A join processing tree.

WS-IRIS has some simplifications that causes some of the above presented rules to
be not applicable or that the rules can only be used in some special cases.

1. Join method choice
2. Join commutativity

A B A B*

Formal: (A B) C (A C) B

Formal: A (B C) B (A C)

A B B A
Formal: (A B) C A (B C)3. Join associativity

5. Right join exchange
4. Left join exchange

C

A B

This tree represents the state (A B) C

21

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.2.1 The simplicity of WS-IRIS

WS-IRIS has several simplifications when it comes to the above rules. As stated in
chapter 2, a JT has a certain shape in WS-IRIS. They are all pipelined join process-
ing trees which can be thought of as OLJTs that do not create any intermediate
relations. Example 3 shows the connection between OLJT, PJT and the join opera-
tor.

 Example 3: Join processing Trees

There is one more restriction in WS-IRIS that affect the use of the rules. That is the
possibility to choose join method in WS-IRIS. The one and only join method used
in WS-IRIS is the nested-loop join. In the following sections it will be shown how
the rules are applicable to states in WS-IRIS.

6.2.2 Join method choice

This rule changes the join method of a join operator. A node in the JT will be
replaced with a new node representing another join method.

This rule is not applicable in WS-IRIS. There is only one join method available so
a change is impossible. The join method in WS-IRIS is called nested-loop join.

D
(((A B) C) D)C

A B
A B C D

PJT With the join operatorOLJT

Formal: A B A B

Graphical: * Where and are two

A B A B

*

*

different join methods.

22

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.2.3 Join commutativity

This rule changes the order in which the operators are applied to a node. It makes
the left and the right subtrees of the node to switch places.

This rule can only be used in WS-IRIS with some restrictions. All JTs in WS-IRIS
are OLJTs and if the rule is applied to a node which children are not leaves the new
tree will not be a OLJT, as shown in example 4.

 Example 4: The join commutativity rule applied on the marked node.

The conclusion is that there exists only one case when this rule can be used. That is
when both of the children to the node are leaves. There is only one such node in a
left-deep tree, a join between the first and second relations in the tree.

6.2.4 Join associativity

This rule changes the order in which two join operators are applied to their opera-
tors.

The use of this rule on a node makes a left-deep subtree of the node to become
right-deep. Right-deep subtrees are not allowed in WS-IRIS so this rule cannot be
used.

Formal: A B B A

Graphical:
A B B A

A

B CB C

A

A B

 C

B C

A

Formal: (A B) C A (B C)

Graphical:

23

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.2.5 Left join exchange

This rule is a more complex rule and the result can be obtained using the above
rules in a compound fashion. This rule works as a bypass trying to avoid plateaus
in the state space. The rule swap places of the inner relation of a join with an inter-
mediate relation and the inner operand of the intermediate relation i.e. the switch of
two right operands on different but adjacent levels in a JT.

This rule will not change the structure of the tree and can thereby be used in WS-
IRIS.

6.2.6 Right join exchange

This rule works in the same manner as left join exchange, with the difference that
there are two outer operands that switch places. With this rule two left operands on
different but adjacent levels in a JT can switch places.

This rule cannot be used because there are no subtrees with such a structure in WS-
IRIS.

A B

 C

Formal: (A B) C (A C) B

Graphical:

A C

 B

Formal: A (B C) B (A C)

Graphical:

A

B

CB

A

C

24

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.2.7 Conclusions

It has been shown that only two of the five rules can be applied to states in WS-
IRIS, join commutativity that swap places of two leaves of a node and left-join
exchange to swap places of two leaves on different but adjacent levels in a tree. A
join processing tree in WS-IRIS is simply represented by a list of ObjectLog pred-
icates. Therefore a neighbour to a state is calculated simply by swapping places of
two adjacent elements in the list. Example 5 shows a JT and its corresponding list.
The example also shows the neighbours of the state.

 Example 5: The neighbours of a state

6.2.8 Invalid neighbours

It is not always the fact that a calculated neighbour is a valid state. This happens
when a predicate is swapped to a place where it do not have the number of bound
variables it needs to be executed. It is often foreign functions that requires certain
variables to be bound.

6.3 Random neighbour

With the above reasoning the calculation of a random neighbour is rather simple.
The pseudo code for the algorithm is shows in figure 9. The only thing that require
special handling is to avoid invalid neighbours. Functions for recognizing invalid
states have already been implemented in WS-IRIS.

 Figure 9. The random neighbour algorithm

A B

 C

D

(A B C D)

Neighbours: (B A C D)
(A C B D)
(A B D C)

x=Random(1,y-1)
S’=swap(S,x,x+1)

repeat

until valid_state(S’)
return(S’)

Random_neighbour(S)
y=Size_of(S)

25

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Algorithm explanation
The algorithm is called with the source state S. The number of predicates in S is
calculated. The Random function returns a random number in the range [1..y-1],
this chooses a random neighbour. Then the neighbour is calculated by swapping
places of two predicates in the list. This is repeated until a valid neighbour has
been found.

6.4 Random state

A random state can not be computed just by choosing a random permutation of the
source state. Some of the predicates that the state consists of can be depended on
that certain variables are bound when the predicates are to be executed. This is the
same problem as before when choosing a random neighbour. The algorithm must
take this under consideration. Figure 10 shows the pseudo code of the algorithm
for computing a random state.

 Figure 10. The random state algorithm

Algorithm explanation
The algorithm is called with the source state S. The number of predicates S con-
sists of is calculated. For each position i in S a random predicate that has not yet
been chosen is selected. If the chosen predicate can be executed at position i it is
swapped to position i.

6.5 The cost function

The task of a query optimizer is to minimize the execution time of an ObjectLog
program. As stated in chapter 5 the optimizer searches through the state space try-
ing to find the state with the lowest cost. The cost is an estimate of the execution
time. The reason to use an estimate instead of the real value of time is that the opti-
mizer visits a large number of states and it would be far too time consuming to exe-
cute each state to get the execution time. Functions for cost estimates were already
implemented in WS-IRIS and are used by Ranksort and Exhaustive. The existing
cost estimates proved to be too rough, resulting in that the query optimizer came up
with a state with lower cost than some other state but with longer execution time.

Random_state(S)

for i=1 to x do
repeat

until Valid(i,y)
S=Swap(S,i,y)

return(S)

y=Random(i,x)

x=Size_of(S)

26

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Hence a better cost estimate function was implemented.

Most of the moves made by the randomized optimization algorithms are moves to
neighbour states. With the definition of a neighbour in the previous section the cost
of a neighbour can be incrementally computed. This gives us a more efficient
implementation.

6.5.1 Cost model

The structure of the cost function is primary effected by two things. First the join
method which in WS-IRIS is the nested-loop join. Secondly it is effected by the
fact that the database is entirely in main memory. This means that expensive disc
accesses do not have to be estimated in the cost function. The cost model in WS-
IRIS is the following:

Let P be an ObjectLog program with a corresponding tuple containing the bound
variables. For each TBR-predicate Pi in the ObjectLog program two estimates are
calculated.
1. The execution cost of Pi, called Ci, defined as the number of visited tuples in the

database, given that the variables of the input tuple are bound.
2. The fanout of Pi, called Fi, which is the estimated number of output tuples pro-

duced by Pi for a given input tuple.
The optimizer minimize the total cost of an ObjectLog program with the predicates
P1,P2,...,Pn. The total cost of a program is calculated according to the formula in
figure 11.

 Figure 11. The cost function.

Default values
In a populated database the system estimates Ci and Fi from the cardinality of
stored predicates, join selectivities and the presence of indexes. To get a reasonably
optimization even before the database is populated, the system uses the default
parameters below.
• Fi = 1 if a bound variable has a unique index.
• Fi = 2 if the variable has a non unique index.
• Fi = 4 otherwise.
• The default size of a stored predicate is assumed to be 100 tuples.
• Ci = Fi if the bound variable has an index.

C = Ci i

27

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

• Ci = 100 if the bound variable is unindexed since the system has to scan the entire
table.

• Foreign predicates have default Fi = 1 and Ci = 1, assuming that they are cheap to
execute and return a single tuple.

6.5.2 Calculation of the cost of a neighbour

A neighbour is computed with the simple operation of swapping places of two
adjacent predicates in the ObjectLog program. Ci, Fi and the input tuple with
bound variables are saved for each position in the ObjectLog program. The fact
that a move to a neighbour only locally effects the cost function can be used. The
information is saved when a new initial state is created. The algorithm in figure 12
is used to test whether or not a neighbour has lower cost than the source state. The
algorithm is assuming that it is the i:th neighbour that are to be checked.

 Figure 12. The neighbour cost function

Algorithm explanation
C, F and B are arrays where the values of cost, fanout and bound variables for each
predicate are saved. Pred(i) is the predicate at position i in the ObjectLog program.
1. The new cost for the predicate at position i, C[i]new, is calculated using the pred-

icate at position i+1 and the input tuple for position i.
2. The same goes for F[i]new.
3. The new input tuple for position i+1, B[i+1]new, are calculated. This is done by

using the input tuple for position i and add the variables that the new predicate at
position i will bound.

4. C[i+1]new is calculated using the predicate at position i and the new input tuple
for position i+1.

5. The same goes for F[i+1]new.

C[i]new=Predicatecost(pred(i+1) , B[i])
F[i]new=Fanout(pred(i+1) , B[i])
B[i+1]new=Pred_binds(pred(i+1) , B[i])
C[i+1]new=Predicatecost(pred(i) , B[i+1]new)
F[i+1]new= Fanout(Pred(i),B[i+1]new)

if ∆C’ < 0 then
return(better state)

else
return(worse state)

∆C’=(C[i]new + F[i]new×× C[i+1] new) - (C[i]old + F[i]old
×

 C[i+1]old)

28

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6. According to the cost model the old and the new cost are compared.
7. And last the function return whether or not a move to the neighbour is an

improvement of the cost.
Of the above seven point only the sixth point needs to be motivated a little deeper.
The cost function has the following form.

C1 + F1C2 +...+ F1×...×Fi-1×Ci + F1×...×Fi×Ci+1 +...+ F1×...×Fn-1×Cn

A swap of places between the predicates at position i and i+1 will lead to a new
cost as described below.

C1 + F1C2 +...+ F1×...×Fi-1×Cinew + F1×...×Finew×Ci+1new +...
 ...+ F1×...×Finew×Fi+1new×...×Fn-1×Cn

The first i-1 terms are not effected of the swap. The terms i and i+1 have changed
with the new values that the algorithm has assigned to Ci, Ci+1, Fi and Fi+1. The
rest of the terms have not changed in spite of the new definition of Fi and Fi+1. This
is true because the number of tuples produced by two predicates is the same no
matter the order of the predicates. Also the number of bound variables will be the
same. If the move to the neighbour are chosen the ∆C can be calculated according
to: ∆C=F1×...×Fi-1×∆C’.

29

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

6.5.3 Improvements of the cost model

The estimate of the fanout made by WS-IRIS appeared to be not good enough for
query optimization. The bad estimates could force the optimizer to choose a wrong
solution. In the old version of WS-IRIS the fanout was calculated according to the
algorithm in figure 13.

 Figure 13. The old fanout estimation algorithm.

The returned fanout is the minimum fanout of all columns with bound variables in
the relation. In Appendix C an example is presented that shows the result of a bad
fanout estimation. The reason of the bad behaviour are two things. First the default
value 4, when an index is missing on the current column, can be very wrong. Sec-
ond the way of choosing the minimum fanout of the columns as the fanout should
instead be calculated as the product of all selectivities in the columns.

Fanout=Relation Cardinality
For each column in the relation that has a bound variable do

If there is an unique index then

If there is a nonunique index and the relation is empty then
F=2

F=1

If there is a nonunique index and the relation is not empty then
F=Relation Cardinality / Number of distinct values in column

If index is missing then
F=4

Fanout=min(Fanout , F)
return(Fanout)

30

Implemented query optimization algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

In the new implementation the fanout is calculated by multiplying the individual
selectivities for each column to each other, this assumes independence between
columns. To get a reasonable good estimate when an index is missing on a column,
a part of the relation is scanned and a selectivity is calculated. Figure 14 shows the
new fanout estimation.

 Figure 14. The new fanout estimation algorithm.

The estimated selectivity that is used, when there is no index on the current col-
umn, is a sample of 100 tuples in the relation. A sample of a relation can be done
because the database is in main memory, in a disc based database on the other hand
a sampling would take too long time. The method of sample tuples in a relation to
estimate the selectivity of a column assumes that the sampled column contains of
an uniform distribution of values. If the relation is empty a default value of 0.4 is
used as the selectivity.

Fanout=1
For each column in the relation that has a bound variable do

If there is an unique index then

If there is a nonunique index and the relation is empty then
F = 2 / Relation Cardinality

F = 1 / Relation Cardinality

If there is a nonunique index and the relation is not empty then
F = 1 / Number of distinct values in column

If index is missing and the relation is empty then

F = 1 / Scanned number of distinct values in column
Fanout=Fanout × F

return(Fanout × Relation Cardinality)

F=0.4
If index is missing and the relation is not empty then

31

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7 Testing the algorithms

The test of the algorithms can be divided in three phases, first the database and the
test queries are generated according to sections 7.1 and 7.2. Then the randomized
algorithms that have been implemented are tested against each other. The algo-
rithm with the best performance is chosen to be an optional optimization algorithm
in WS-IRIS. Finally the chosen algorithm is tested against the existing algorithms
in the system, Ranksort and Exhaustive.
• Experimental method
The test has the same structure with some modifications as the method Arun
Swami used when he tested a number of randomized algorithms for query optimi-
zation [Swam88]. The choice of Swami’s method was mainly based on the fact that
he used a main memory database, just like WS-IRIS, in his test. Yannis Ioannidis
[Ioan90] on the other hand used an disc based database which led to a different cost
estimate model.
• Differences with Swami’s test
There are some major differences between this test and Swami’s. Foreign functions
are used as part of the queries in this test. WS-IRIS uses another join method
namely the nested-loop join instead of the hash join method. It has been argued
that the nested-loop join method combined with dynamic index creation is the most
important query processing method for a main memory DBMS [Whan90]. Swami
did not test the two-phase algorithm nor the combination of Iterative Improvement
and Sequence Heuristics. Swami also used another method to calculate the neigh-
bours of a state. WS-IRIS have no sorted indexes this means that comparison func-
tions are treated as foreign functions.
• A standard method
A more standardized test method for the experiment than Swami’s method was
desirable. The benchmark handbook for database and transaction processing sys-
tems [Gray91] describes a number of methods, but there were not any directly
applicable methods for a test on optimizing large join queries in an object oriented
main memory based DBMS.
• Equipment
The test was performed on a SUNsparcstation 1 workstation. The optimization
algorithms were implemented in Lisp and the query language was WS-OSQL.

7.1 Building a database

The database used during the test of the algorithms is generated by a Lisp program.
The database is generated at random with the restriction of a number of parame-
ters. The random number generator is initialized at the beginning of the program.
The same database can thereby be generated again if needed. Below follows a
description of the generated database and in appendix A the contents of the gener-
ated database are presented.

32

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

• Number of relations
The database has 25 relations.

• Relation Cardinality
The cardinality of a relation is the number of tuples that the relation contains of.
The database was generated with the following cardinalities of the relations.
20% of the relations contain 10 - 100 tuples.
64% of the relations contain 100 - 1000 tuples.
16% of the relations contain 1000 - 10000 tuples.
The exact number of tuples is randomly chosen between the upper and lower
limit for each group.

• Number of columns
The number of columns in each relation was randomly chosen with probabilities
taken from the table below.

• Distinct values in join column
To have the possibility for making a join between two arbitrary columns the rela-
tions contain nothing but integers. The first column in the relation is separated
from the other, this because it is often the first column that contains the key ele-
ments in the relation. This leads to a larger amount of distinct values in the first
column. The values that are used for the first column is presented in the follow-
ing table.

An explanation of the table might be appropriate here. The first column in the
above table contains the percentage of distinct values for a column in a relation.
The second column specifies the probability of chosen the value in the first col-
umn. What these values mean are that with a probability of 50% the column is cho-
sen to have
1 × ”the cardinality of the relation”
number of distinct values.The second row has the same probability to be chosen
namely 50%. If the second row is chosen the number of distinct values are ran-
domly chosen to be in 0.85 to 0.95 times the cardinality of the column. The values
that are used for the other columns are the following.

This table is read in the same way as the table for the first column. The values are

Number of columns 1 2 3 4 5 10

Probability 1% 35% 30% 25% 5% 4%

1 50%

0.85-0.95 50%

1 25%

0.2-1 5%

0.001-0.2 75%

33

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

spread with a uniform distribution in the range [0..”the cardinality of the largest
table”]. This makes the values in each column in each relation to be distributed in
the same range.
• Index

There is always an index on the first column in the relation and with a probability
of 10% on the other columns. In an Object Oriented DBMS like WS-IRIS rela-
tions are treated as functions. Functions are normally accessed in a forward
direction, this means that an index on the first argument(column) of the function
is needed. Functions are normally single value functions leading to the choice of
an unique index on the first argument(column).

7.2 Query generation

The OSQL-queries that have been used during the testing of the algorithms were
generated by a Lisp program. With specifications of the number of queries and the
number of predicates in the query, the program generates and writes the queries to
an external file. The predicates in the query are joined in three different ways. The
first way is the standard join method. This method is a join between two columns
in two relations (stored functions). Only equi-join is used in the test. Second there
is selection, a method that works as a filter. In this test the selection predicate is
always a foreign function that checks if a bound variable fulfils some condition.
Finally ordinary foreign functions like plus and times are used in the queries. The
type of predicate used is chosen at random with probabilities taken from the table
below.

The program adds joins to the query until the correct number of predicates have
been received. The random number generator is initialized at the beginning of the
program. The same queries can thereby be regenerated if the test is to be repeated.

7.2.1 Standard join

A standard join means a join where a column in a relation is compared to a bound
variable. The type of join that is used in this test is equi-join. The two columns of
the two relations are compared by using the same variable in the two columns.
For example a join is to be done after the first predicate has been chosen.
The first predicate: R5(I0 , I1)=I2
A relation, a column and a variable are chosen at random: 3, 0, 1
The new predicate in the query gets the following looks: R3(I1 , I3 , I4)=I5
A join between relation R5 and R3 has been done, the join columns are the second
in R5 and the first in R3.

Standard Join 60%

Selection 20%

Foreign function 20%

34

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.2.2 Selection

Selection means that a subset of the values that are assigned to a variable are cho-
sen. The table below shows the selectivities that have been used in the test. For
each selection a random selectivity is fetched from the table.

For example a selectivity of 0.34 means that 34% of the values a variable is
assigned to are chosen. The selectivities 0.34 and 0.5 are dominating the table. This
is an estimate made by many query optimizers including system/R[Seli79]. To be
able to chose the correct number of values when a selection is done, information
about the amount of unique values in a column is used. The values in a column
have an uniform distribution starting with zero as the lower limit and have the
maximum cardinality as the upper limit. The obvious way to choose a subset of
values will be to choose all values higher than some constant
For example, assume that a selectivity of 0.34 has been chosen, the largest relation
has 10000 tuples and the selection is to be done with variable I1. The variable has
an uniform distribution in [0..10000]. To select 34% of the values is done by
selecting all values larger than (1-0.34)×10000=6600. I1 > 6600

7.2.3 Foreign functions

The third way to import predicates to the query is to add foreign functions. In the
test queries five different foreign functions have been used. The actual function is
randomly chosen from the table below.

Variables to be used as parameters to the chosen function are randomly chosen
from the set of already defined variables i.e. variables that have been used in earlier
predicates. A new variable is created for the result.
Example:

PLUS(I1 , I5)=I10

0.001 0.01 0.1 0.2 0.34

0.34 0.34 0.34 0.34 0.5

0.5 0.5 0.67 0.8 1.0

Function name Description

Plus Addition

Times Multiplication

Inc Add with one

Sum3 The sum of 3 integers

Avg The average of 2 integers

35

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.2.4 WS-OSQL queries

This section shows two examples of how the generated queries looks like. The
queries have five and ten predicates.
create function test7()-> integer I1 as

 select I1 for each integer I0,

 integer I1, integer I2, integer I3, integer I4, integer I5

 where

 R24(I0)=I1 and

R13(I2,I0)=I3 and

 I1 > 1999 and

 R10(I4)=I2 and

 PLUS(I0,I3)=I5;

 Example 6: A query with five predicates.

create function test2()-> integer I9 as

 select I9 for each integer I0,

 integer I1, integer I2, integer I3, integer I4, integer I5,

 integer I6, integer I7, integer I8, integer I9, integer I10,

 integer I11, integer I12, integer I13, integer I14 where

 R5(I0,I1)=I2 and

 R13(I3,I4)=I0 and

 R14(I2,I5)=I6 and

 R2(I7,I2)=I8 and

 I0 > 5000 and

 R0(I5)=I9 and

 I4 > 1999 and

 PLUS(I3,I2)=I10 and

 R6(I11,I12,I13)=I6 and

 PLUS(I8,I1)=I14;

 Example 7: A query with ten predicates.

7.3 Experiment procedure

To be able to distinguish the performance of the different algorithms from each
other a number of queries were optimized with the different algorithms. Each
query was optimized with each one of the algorithms. In the test 10 different que-
ries were used for each N=3, 5, 10, 15, 20, 25, 30, 40, 50, 75, 100, where N is the
number of predicates in the query. Each query was generated in the manner
described in the previous section. This give us a total of 110 queries. Ranksort was
used once on each query, so was also the Exhaustive algorithm as long as the opti-
mization time allowed that. The randomized algorithms were used five times on
each query. This because the randomized algorithms do not necessarily generate
the same solution each time the algorithm is run. At each optimization information
about the optimization time and the execution cost were gathered.

36

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.3.1 Optimization time

Optimization time is the CPU-time that the optimization algorithm needs to pro-
duce an optimized query. The CPU-time is read with the UNIX system function
clock. This function returns the amount of CPU-time in microseconds used since
the first call to clock. The time reported is the sum of the user and system times of
the calling process.

7.3.2 Execution cost

The cost of executing a query is an estimate direct associated with the execution
time of the query. The cost model is described in section 6.5. The importance of
minimizing the cost is increasing with the number of executions the query will do.
This means that the cost is the most important factor when optimizing a query that
will be executed more than just a few times.

7.4 Results

The measured results of the algorithms are presented in this section. The execution
cost of different queries need to be expressed on a common scale before they can
be compared to each other. This is done by dividing each cost of a query by the
lowest cost that the optimizers has found for the query. The new cost is called the
scaled cost and the best scaled cost of each query has the value 1. The results are
shown in graphs. Two tables with results are presented in appendix B. In the test
eight different algorithms have been compared to each other. To get readable
graphs the result of the randomized algorithms are presented first. The randomized
algorithm with the best performance is then compared to the results of Ranksort
and Exhaustive.

The results shows that the SH55 algorithm is the best suited optimization algorithm
for WS-IRIS. First the median scaled cost of the output strategies for each query
size are shown for the randomized algorithms. The median cost is used instead of
the average cost because otherwise one very large cost affects the average too
much. Two of the randomized algorithms have better median scaled cost than the
other, SH55 and II10. The SA algorithm proved to be the worst algorithm.

To be able to check if the algorithms fulfils the criteria of a good query optimizer
the median cost of the 10% of the worst optimization results are presented. Again
SH55 and II10 are superior of the other algorithms. The average optimization time
shows that the SH55 algorithm is faster than II10. SH55 and II10 cannot be sepa-
rated from each other by their optimization result. The optimization time has to be
the determinative factor. SH55 has shorter optimization time and is therefore cho-
sen to be the third optimization algorithm in WS-IRIS.

37

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

The SH55 algorithm is then compared with the existing algorithms. The optimiza-
tion time of the Exhaustive algorithm makes it impossible to optimize queries of
size ten and larger. Ranksort is a very fast algorithm, twice as fast as SH55. The
optimization result for Ranksort on the other hand is not very good. The median
scaled cost of the output strategies for Ranksort is never better than for SH55 not
for any query size. The scaled cost is often (24% of the cases) more than 1000
times worse for Ranksort compared to SH55. Of all optimized queries Ranksort
produces a worse result in 72% of the queries compared to SH55 and the algo-
rithms performed equal in 16% of the queries. The SH55 algorithm is superior to
Exhaustive because of the optimization time and superior to Ranksort because of
the optimization result.

7.4.1 The median scaled cost

 Figure 15. The median cost of the output strategies of the randomized algorithms

The graph in figure 15 shows the median scaled cost of the output strategies of the
randomized algorithms and the Ranksort algorithm. The SA algorithm is not very
effective in query optimization and has a very high output cost compared to the
other algorithms, note that the y-axis in the graph has a logarithm scale. The Rank-
sort algorithm has better output than SA but is worse than the rest. To get a closer

Number of predicates

Median scaled cost

SA
II10
II5
SH55
SH37
TWO
RANK

38

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

look at the rest of the algorithms the SA and the Ranksort algorithms are omitted
and the graph is generated again in figure 16 with the same data.

 Figure 16. Median cost of the output strategies of the randomized algorithms.

In figure 16 the median scaled cost of the output strategies of the randomized algo-
rithms at each size of the query are shown. Two algorithms, II10 and SH55 have
better performance than the rest when the query increases in size. The figure also
shows that 5 local minimum is too few to get a good optimization. The TWO and
the SH37 algorithms have their performance somewhere in the middle.

Median Scaled cost

Number of predicates

II10
II5
SH55
SH37
TWO

39

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.4.2 The worst cost

 Figure 17. Worst 10% of the output strategies

As stated before it is more important for a query optimization algorithm to avoid
bad solutions than it is to find the very best. Figure 17 shows the median of the
10% of the worst optimization results made by the randomized algorithms. Again
the II10 and SH55 algorithms shows the best performance. This means that the
result of II5 and SH37 can be improved with longer optimization time. The TWO
algorithm shows no better optimization results than II5, which means that the sec-
ond phase do not improve the optimization result very much.

Number of predicates

Median scaled cost

II5
II10
TWO
SH37
SH55

40

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.4.3 The average optimization time

 Figure 18. Average optimization time II10 and SH55

Since the II10 and SH55 algorithms have almost the same performance, the opti-
mization time has to be the determinative factor. Figure 18 shows the average opti-
mization time and the figure shows that the SH55 algorithm is faster than II10 and
will therefore be chosen as the new optimization method in WS-IRIS.

II10
SH55

Average Time (seconds)

Number of predicates

41

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.4.4 Improvements over time

The behaviour of the randomized algorithms over time are shown in figure 19. The
example contains only results of queries with 50 predicates, but it can give us a
clue of how the algorithms work. In the figure it is again shown that the SA algo-
rithm is not suited for query optimization even if the algorithm is getting more
time. The SA phase in the TWO algorithm do not improve the optimization result
very much.

One important thing to notice is that the SH algorithm improves the solution more
rapidly than the II algorithm when it starts the second phase. After a while when
the SH algorithm has searched through the states nearby the best solution no more
improvements are made. II improves the solution during all the optimization time
and passes the SH algorithm after some time. The above means that with a limited
optimization time the combination of Iterative Improvement and Sequence Heuris-
tics gives the best performance. II improves rapidly at the beginning and then after
a while the Sequence Heuristics algorithm can still improve the solution by search-
ing the states near the best solution. This gives us a good optimization with short
execution time.

 Figure 19. Improvements over time N=50

Time (seconds)

Median scaled cost

SH
II
TWO
SA

42

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

7.4.5 Randomized versus Existing algorithms

 Figure 20. Median cost of the output strategies of Ranksort and SH55.

The SH55 algorithm was chosen to be the third optimization algorithm in WS-
IRIS. Figure 20 shows the median scaled cost of the output strategies of Ranksort
and SH55. Ranksort performs much worse than SH55 and has a much more
unforeseeable behaviour. The difference between the two algorithms is so large
that the Ranksort algorithm often gives a result more than 100 times worse than
SH55.

SH55
RANK

Median scaled cost

Number of predicates

43

Testing the algorithms

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

 Figure 21. Average optimization time

Ranksort has one advantage, figure 21 shows the average optimization time, the
Ranksort algorithm is twice as fast as SH55. The figure also illustrates why it is
impossible to use the Exhaustive algorithm on large queries.

Number of predicates

Time (seconds)

EXHA
RANK
SH55

44

Implementation

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

8 Implementation

The query optimizer is an independent module in WS-IRIS. The integration of the
new optimization algorithm with WS-IRIS went smooth without any problems.

Some special implementation details that improved the optimization time of the
algorithms were:
• A hashtable was used for the cost values, i.e. the cost and fanout for a predicate

with a list of bound variables were cached in a hashtable. This means that the val-
ues only need to be calculated once.

• A state is represented as an array. Many moves made by the randomized algo-
rithms are made by swapping places of two predicates, this is much faster with an
array than with a list.

With the above specified methods the optimization time of the Ranksort algorithm
can also be reduced.

WS-IRIS is extended so that the new randomized optimization algorithm can be
globally chosen with the command:
optmethod(”randomopt”);

in the WS-OSQL interpreter.

The number of iterations the algorithm does is default set to five local minimum
with Iterative Improvement and five local minimum with Sequence Heuristics. The
number of iterations can by the user be chosen with the command:
optlevel(II-number,SH-number);
where II-number is the number of iterations with Iterative Improvement and SH-
number is the number of iterations with Sequence Heuristics.

45

Summary and future work

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

9 Summary and future work

The results in this report shows that the combination of Iterative Improvement and
Sequence Heuristics is the best suited optimization algorithm for the WS-IRIS
DBMS. The existing algorithms Ranksort and Exhaustive have both problems that
lead to a bad behaviour. Ranksort gives far too often very bad solutions and
Exhaustive with its exponentially optimization time and memory requirement is
often unusable. The randomized algorithms have other advantages, in a realtime
database the algorithms can be given a time limit or be interrupted and still have a
solution.

In the test the Simulated Annealing algorithm performed badly. The bad result for
SA and for the Two-phase algorithm can be explained with a simple neighbour
function, defining few neighbours. It is simple because WS-IRIS uses the pipelined
nested-loop join method as the only join method. Few neighbours leads to a high
probability of choosing a move back to a lower cost state after a move to a higher
cost state, instead of making another uphill move. This will also affect the second
phase of the Two-phase algorithm. It gets the rather good performance from phase
one, the Iterative Improvement phase.

The importance of a good cost model has also been shown. In order for the query
optimization to be of any use the optimization algorithm must be able to distin-
guish bad solutions from good ones.

Future work
• The median scaled cost of the output strategies showed not to be an increasing

function with the number of predicates which was expected. This can be
explained that the number of tested queries are too few so a larger amount of que-
ries must be optimized before any certain conclusions can be made.

• The result could have been different with another neighbour function, mainly
because the amount of neighbours to a state became so limited. This could per-
haps effect the SA algorithm positively, making it move around a little bit more.

• The test of the algorithms was done without any use of heuristics. The use of
heuristics can improve the performance of the optimization[Swam 89].

• The cost model can be further improved.
• One approach to a better optimization could be an optimization process in the

background unknown by the user. This would not affect the user much and the
optimizer could be allowed much longer optimization time.

• The Iterative Improvement and Sequence Heuristics algorithms are very suited
for parallel optimization and one way of increasing the speed of the optimization
could be a parallel implementation of the algorithm.

46

References

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

10 References

[Elma89] Elmasri R. and Navathe S. B., (1989), Fundamentals of Database
Systems, The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, California.

[Fish89] Fishman D. H., Annevelink J., Chow E., Connors T., Davis J. W.,
Hasan W., Hoch C. G., Kent W., Leichner S., Lyngbaek P.,
Mahbod B., Neimat M. A., Risch T., Shan M. C. and Wilkinson W.
K., (1989), Overview of the Iris DBMS, Object-Oriented Concepts,
Databases, and Applications, ACM Press, Addison-Wesley.

[Gray91] Gray J., (1991), The benchmark handbook for database
and transaction processing systems, Morgan Kaufmann
Publishers Inc., San Mateo, California.

[Ioan90] Ioannidis Y. E. and Kang Y. C., (1990), Randomized Algorithms for
Optimizing large join queries, Proceedings of the 1990 ACM-
SIGMOD Conference, Atlantic City, pp 312-321.

[Kris86] Krishnamurthy R., Boral H. and Zaniolo C., (1986), Optimization of
Nonrecursive Queries, Proceedings of the 12th International
Conference on Very Large Data Bases, Kyoto, Japan, pp 128-137.

[Litw92] Litwin W. and Risch T.,(1992), Main Memory Oriented Optimization
of OO Queries using Typed Datalog with Foreign Predicates,
Linköping University, Lith-IDA-R-92-24.

[Risc93a] Risch T., (1993), WS-IRIS User’s Guide, Internal report, IDA,
Linköping University.

[Risc93b] Risch T., (1993), WS-IRIS Advanced Programmer’s Manual, Internal
report, IDA, Linköping University.

[Seli79] Selinger P. G., Astrahan M. M., Chamberlin D. D., Lorie R. A. and
Prince T. G., (1979), Access Path Selection in a Relational
Database Management System, Proceedings of the 1979 ACM-
SIGMOD Conference, Boston, pp 23-34.

[Swam88] Swami A. and Gupta A., (1988), Optimization of Large Join Queries,
Proceedings of the 1988 ACM-SIGMOD Conference, Chicago,
pp 8-17.

47

References

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

[Swam89] Swami A., (1989), Optimization of Large Join Queries, Department
of computer Science, Stanford University, STAN-CS-89-1262

[Ullm89] Ullman J. D., (1989), Principles of Database and Knowledge-Base
Systems volume 2, Computer Science Press, Inc., Rockville, USA

[Whan90] Whang K. Y. and Krishnamurthy R., (1990), Query Optimization in a
Memory-Resident Domain Relational Calculus Database System,
acm Transactions on Database Systems, volume 15, number 1,
ACM press, New York.

57

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Index

A
access structure 5
aggregation operator 7
array 44
average optimization time 40, 43

B
base relations 6
binary join processing tree 6
bound variable 26
bound-is-easier 12

C
C 7
cache 44
CAELAB 2, 7
cardinality 32, 34
clock 36
cost 13, 25
cost function 25
cost model 26, 45
cost of a neighbour 27
CPU-time 36

D
database 31
default values 26
disc access 7
disc based database 30
distinct value 32
downhill move 13, 15
dynamic programming 11

E
equi-join 4, 33
equilibrium 15
equipment 31
example 51
execution cost 26, 36
execution time 25, 36, 52
Exhaustive 11
experimental method 31

F
fanout 26, 29
flattener 9
foreign function 7, 24, 31, 33, 34
foreign language 7
forward direction 33
frozen 15
future work 45

G
global minimum 13, 20

H
hash join 5
hashtable 5, 44
heuristic 12, 45

58

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

I
IDA 2
independence 30
index 33
inner relation 6
intermediate language 9
intermediate relation 6, 23
internal node 6
invalid neighbour 24
Iterative Improvement 14

J
join 33
join associativity 20, 22
join commutativity 20, 22
join method 4, 21
join method change 20
join method choice 21
join operator 21
join processing tree 6, 20

L
late binding 7
left join exchange 20, 23
left-deep tree 6
linear join processing tree 6
Lisp 7
list 44
local minimum 13, 14, 17
local optimization 14, 17

M
main memory 7, 26, 30
median scaled cost 36, 37
memory requirement 11
move 13

N
neighbour 13, 14, 15
neighbour function 20, 45
nested query 7
nested-loop join 5, 21, 26

O
ObjectLog 9
ObjectLog generator 10
ObjectLog interpreter 10
ObjectLog optimizer 10
ObjectLog program 10, 26
optimization time 36
OSQL 7
outer linear join processing tree 6
outer relation 6
overloaded function 8

P
parallel optimization 45
pipelined join processing tree 6, 21
plateau 13, 14, 23
procedure 8
processing strategy 6

59

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Q
query generation 33

R
random neighbour 24
random state 20, 25
random walk 13
randomized optimization algorithms 13
Ranksort 12
recursive function 7, 9
result 36
right join exchange 20, 23

S
scan 30
second order function 7
selection 33, 34
selection pushing 12
selectivity 29, 30
Sequence Heuristics 17
Simulated Annealing 15
single value function 33
sort-merge join 5
SQL 7
standard method 31
state 13, 20
state space 13, 20, 23
stop criteria 17
summary 45
SUNsparcstation 31

T
TA-resolvent 9
temperature 15
test 31
test result 49
timelimit 15
transformation rule 20
TR-fact 10
TR-rule 10
Two phase optimization 16
type checker 9

U
uniform distribution 33, 34
uphill move 13, 15

W
WS-IRIS 7
WS-OSQL 7, 31
WS-OSQL queries 35

48

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Appendix A: The database

The generated database described in section 7.1 received the following contents.

Table Cardinality Number of
columns

Distinct values in each column Index on
column

0 86 2 1, 0.02289 0

1 94 2 0.929, 1 0

2 64 3 0.928, 0.808, 1 0

3 59 2 0.929, 0.18607 0

4 15 2 0.859, 0.896 0

5 33 4 0.921, 0.011, 0.031, 0.043 0

6 299 2 0.857, 0.04279 0

7 575 3 0.939, 1, 0.02488 0

8 440 4 1, 1, 0.1204, 1 0, 2

9 766 5 0.881, 0.170, 0.063, 0.816, 0.182 0

10 869 4 1, 0.00697, 0.08259, 0.832 0

11 643 4 1, 0.0408, 0.09254, 1 0

12 149 2 1, 0.1403 0, 1

13 353 3 0.923, 0.17413, 0.14627 0

14 262 2 1, 0.044788 0

15 122 4 1, 1, 0.19005,0.15423 0

16 832 2 1, 0.02687 0

17 500 2 1, 0.01493 0

18 864 4 1, 0.07463, 1, 1 0

19 938 4 0.863, 0.03085, 0.13831, 0.07065 0

20 120 3 0.931, 0.07065, 1 0

21 977 2 1, 1 0

22 7653 10 1, 0.19, 0.14, 1, 0.099, 0.16, 0.083,1, 0.97, 1 0, 6

23 3377 2 0.87, 0.08458 0

24 4045 3 1, 0.05274, 0.05672 0

49

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Appendix B:Test results

This appendix contains a closer look at the test results from the test presented in
chapter 7. The first table shows the result when comparing the randomized algo-
rithms and the Ranksort algorithm to each other and the second is a comparison
between Ranksort and SH55.

In the table below the scaled cost of the output strategy of a query for two algo-
rithms have been compared. In the test 110 queries have been optimized and every
combination of the results produced by the algorithms have been compared. A cell
in the table contains three values. The first value is the number of times the vertical
algorithm is superior, the middle value is the number of times the two algorithms is
considered equal and the last value is the number of times the horizontal algorithm
is superior.

For example, the comparison between the II5 and the SH37 algorithms shows that
II5 is superior 24 times, SH37 is superior 58 times and they have equal results 28
times. The results are considered to be equal if the costs of the result of the two
algorithms do not differ more than 10%.

The randomized algorithms can with the values in the table be ordered by their
results. The order will be SH55, II10, SH37, TWO, II5, RANK and SA with the
best performing algorithm first.

TWO II5 II10 SA SH37 SH55

II5 32-28-50

II10 49-35-26 63-32-15

SA 0-09-101 01-10-99 0-09-101

SH37 47-29-34 58-28-24 31-35-44 100-09-1

SH55 53-31-26 61-30-19 39-35-36 100-10-0 39-37-34

RANK 25-14-71 28-14-68 14-14-82 86-06-18 19-15-76 13-18-79

50

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

In the table below the scaled cost of the Ranksort and the SH55 algorithms have
been compared to each other. The table shows the result for each size of query and
how much the results differ. The values in the table are the number of times the
quotient (cost Ranksort)/(cost SH55) is in the interval for the column. For example
the values in the >10 column are the number of times the quotient are in the inter-
val]100..10]. The results are considered to be equal if the results do not differ
more than 10%.

The Ranksort algorithm is very rarely superior of the SH55 algorithm. The SH55
algorithm are superior in 72% of the queries, Ranksort in 12%. It is notable that in
24% of the cases the Ranksort algorithm produces a result more than 1000 times
worse than the SH55 algorithm. The Ranksort algorithm can thereby not be said to
fulfil the condition of a well performing query optimization algorithm.

N >1000 >100 >10 >1.1 1.1-0.9 < 0.9 < 0.1 < 0.01 < 0.001

3 0 0 3 2 5 0 0 0 0

5 0 1 0 2 6 1 0 0 0

10 0 0 5 4 1 0 0 0 0

15 1 1 1 6 1 0 0 0 0

20 4 0 0 6 0 0 0 0 0

25 1 2 0 4 2 1 0 0 0

30 1 4 0 1 2 1 1 0 0

40 6 2 1 0 0 0 1 0 0

50 3 2 0 2 1 2 0 0 0

75 4 1 2 0 0 0 1 1 1

100 6 0 0 1 0 2 1 0 0

Total 26 13 12 28 18 7 4 1 1

51

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Appendix C:Examples

In this appendix three examples are presented. All of them use the same OSQL
functions and the database is populated in the same way in all examples. It is rec-
ommended for better understanding that chapter 3, in this report, has been read
before you read this appendix.
create type person;

create type student subtype of person;

create type employee subtype of person;

The database consists of 1100 persons, 1000 employees and 100 students in the
examples with the test1 function, when the test2 function is used the database is
populated with ten times more employees and students. Each employee has a
unique name and an income in the range [0..200000]. Five of the employees are
bosses of some department. Each student has a unique name and is attended to a
group. All students attend the same group, the C-group. All student has a father
chosen from the employees. The student type also contains the name and grade of
the courses a student has taken. Each student can have up to ten courses attached to
him.

create function name(person p) -> charstring c as stored;

create function clases(student s nonkey) ->

 <charstring c1, charstring c2> as stored;

create function line(student s) -> charstring c as stored;

create function income(employee p)->integer i as stored;

create function father(person p) -> charstring c as stored;

create function boss(employee e) -> charstring c as stored;

create function who_earn(integer i) -> employee e as select

e where income(e)=i;

Function test1 returns the names of the employees that earns more than 50000
dollars and that is father of a student in C-group that has taken the class databases
with grade A.
create function test1() -> charstring as select

n for each employee p, student s,charstring n where

 group(s)=”C” and

 courses(s)=<”Databases”,”A”> and

 n=father(s) and

 n=name(p) and

 income(p)>50000;

Function test2 returns the name of the department of a boss that has a specific
income.
create function test2(integer i) -> charstring c as select

c for each employee e where

 who_earn(i)=e and

 boss(e)=c

52

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

 The need of query optimization

Without a query optimizer the query will be executed in the order the user has writ-
ten the query. In this example two versions of the test1 function has been exe-
cuted. The query has not been optimized so the execution order will be different in
the two cases. In this example the database contains 1000 employees and 100 stu-
dents.

create function test1() -> charstring as select

n for each employee p, student s,charstring n where

 n=father(s) and

 income(p)> 50000;

 courses(s)=<”Databases”,”A”> and

group(s)=”C” and

 n=name(p);

The CPU time of executing the function was 91.25 seconds.
The reason of the long execution time is that many tuples matches father(s) and
income(p). 100 tuples matches father(s) and 1000 tuples matches income(p).
This has the effect that the rest of the conditions have to be tried many times. For
example the condition directly following the two first has to be checked
100*1000=100000 times. The same functions defined with a new order of the con-
ditions.

create function test1() -> charstring as select

n for each employee p, student s,charstring n where

 courses(s)=<”Databases”,”A”> and

group(s)=”C” and

n=father(s) and

 n=name(p) and

income(p)> 50000;

The execution time in this case was 0.38 seconds, an improvement of 240 times in
speed. In this case the number of matching tuples of the first predicates are much
lower, leading to savings in execution time. The result of the two functions are the
same. The function used in this example is a small function with only five condi-
tions, the differences in execution time between different permutations of a larger
query can be much larger.

53

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

 When Ranksort performs poorly

There is one problem with the Ranksort algorithm, it sometimes performs poorly.
This example shows when the algorithm is not to our satisfaction. The example
contains only one join, so the optimal alternative, the Exhaustive algorithm, would
cope without any time problems. But this problem can occur as part of a much
larger query when an exhaustive search is impossible. In this example function
test2 is used and the database is populated with 10000 employees and 5 of them
are bosses. The function contains two conditions who_earn(i)=e and boss(e)=c.
the first condition is the reverse of function income. This has the effect that the
index is on the variable e instead of the bound variable i.
• An integer i is given to the function.
• The condition who_earn(i)=e can be substituted for income(e)=i that has an

index on variable e. The relation contains 10000 tuples.
• The relation boss contains 5 tuples.

create function test2(integer i) -> charstring c as select

c for each employee e where

 who_earn(i)=e and

 boss(e)=c

The ObjectLog program will be:
((OID[P_EMPLOYEE.INCOME:200] E I)

 (OID[P_EMPLOYEE.BOSS:212] E C))

The Ranksort algorithm works in the following way: For each predicate in the
ObjectLog program calculate a rank and choose the lowest rank.

P1=(OID[P_EMPLOYEE.INCOME:200] E I)
F1=99.0594, C1=20010
R1=(F1-1)/C1=0.00490052

P2=(OID[P_EMPLOYEE.BOSS:212] E C)
F2=5, C2=10
R2=0.4

The algorithm chooses the first predicate. The variable E will be bound and the
second predicate are calculated.

P1=(OID[P_EMPLOYEE.BOSS:212] E C)
F1=1. C1=2
R1=0

54

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

The optimized ObjectLog program will be

 ((OID[P_EMPLOYEE.INCOME:200] E I)
 (OID[P_EMPLOYEE.BOSS:212] E C))

The total cost can now be calculated according to the cost function in section 6.5.

C=C1+F1*C2=20010+99.0594*2=20208.1

The execution time of this ObjectLog program are 0.22 seconds

The test2 function optimized with the Exhaustive algorithm came up with the fol-
lowing ObjectLog program

((OID[P_EMPLOYEE.BOSS:212] E C)
 (OID[P_EMPLOYEE.INCOME:200] E I))

F1=5 C1=10
C2=2

The total cost will be 10+5*2=20.

The execution time was 0.02 seconds, more than 10 times faster than the Object-
Log program Ranksort came up with. This is a small example the same situation
can occur as part of a larger query leading to a much worse result than 10 times
slower. It should be noted that the naive heuristics of the selection-pushing optimi-
zation method [Elma89] and the bound-is-easier method [Ullm89] will generate
the same suboptimal execution strategy.

55

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

 The need of a good cost model

This example shows that even the best query optimizer cannot do a good optimiza-
tion if the cost function is wrong. With the old cost function the test1 function
was optimized with the Exhaustive algorithm.
The optimal execution plan:

((OID[”P_STUDENT.GROUP”:160] S ”C”)
 (OID[”P_PERSON.FATHER”:166] S N)
 (OID[”P_PERSON.NAME”:154] P N)

 (OID[”P_EMPLOYEE.INCOME”:163] P _G3)
 (OID[”OBJECT.>”:64] _G3 50000)
 (OID[”P_STUDENT.COURSES”:157] S ”Databases” ”A”))

cost=9233.79
The ObjectLog program is below shown with one predicate at the time.

(OID[”P_STUDENT.GROUP”:160] S ”C”)
Bound variables=NIL, Cost= 200, Fanout=4 (100)

 (OID[”P_PERSON.FATHER”:166] S N)
Bound variables=(S), Cost=2, Fanout=1

 (OID[”P_PERSON.NAME”:154] P N)
Bound variables=(N S), Cost=2210, Fanout=4 (1)
 (OID[”P_EMPLOYEE.INCOME”:163] P _G3)
Bound variables=(P N S), Cost=2, Fanout=1

 (OID[”OBJECT.>”:64] _G3 50000)
Bound variable=(_G3 P N S), Cost=1, Fanout=1

 (OID[”P_STUDENT.COURSES”:157] S ”Databases” ”A”))
Bound variables=(_G3 P N S), Cost=8.61176, Fanout=4 (0.16)

The execution time with this permutation was 2.75 seconds.

A random state was computed with a much higher cost than the optimal solution.
The execution plan.

((OID[”P_PERSON.FATHER”:166] S N)
 (OID[”P_STUDENT.COURSES”:157] S ”Databases” ”A”)
 (OID[”P_STUDENT.GROUP”:160] S ”C”)
 (OID[”P_PERSON.NAME”:154] P N)
 (OID[”P_EMPLOYEE.INCOME”:163] P _G3)
 (OID[”OBJECT.>”:64] _G3 50000))

cost=890661.

A closer look at each predicate.

((OID[”P_PERSON.FATHER”:166] S N)
Bound variable=NIL, Cost=200, Fanout=100
 (OID[”P_STUDENT.COURSES”:157] S ”Databases” ”A”)

56

Randomized Optimization of Object Oriented Queries in a Main Memory DBMS

Bound variable=(N S), Cost=8.61176, Fanout=4 (0.16)
 (OID[”P_STUDENT.GROUP”:160] S ”C”)
Bound variable= (N S), Cost=2, Fanout=1
 (OID[”P_PERSON.NAME”:154] P N)
Bound variable=(N S), Cost=2210, Fanout=4 (1)
(OID[”P_EMPLOYEE.INCOME”:163] P _G3)
Bound variable=(P N S), Cost=2, Fanout=1
 (OID[”OBJECT.>”:64] _G3 50000))
Bound variable=(_G3 P N S), Cost=1, Fanout=1

With this permutation the execution time was 0.62 seconds. The random state has a
cost almost 100 times higher than the optimal solution, but with an execution time
more than 4 times faster than the state with the lowest cost.

The reason of the bad behaviour of the Exhaustive algorithm is the default value 4
of the fanout when an index is missing. The values 100, 1, 0.16 are the real values
that should have been used instead of a default value. The correct value of the total
cost would then be 222561.

With the new cost function the same function, test1, is optimized again with the
Exhaustive algorithm. The optimal ObjectLog program will be:

((OID[P_STUDENT.COURSES:157] S ”Databases” ”A”)
 (OID[P_STUDENT.GROUP:160] S ”C”)

 (OID[P_PERSON.FATHER:166] S N)
 (OID[P_PERSON.NAME:154] P N)
 (OID[P_EMPLOYEE.INCOME:163] P _G3)
 (CALL OBJECT.>-- OID[OBJECT.>:64] _G3 50000))

The total cost is now 28143.2 and the execution time is 0.60 seconds

The total cost of the random state is calculated again with the new cost function
and the new cost is 36501.

