

ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

75

Johan Petrini

Querying RDF Schema Views
of Relational Databases

Dissertation presented at Uppsala University to be publicly examined in 2446, Polacksbacken,
hus 2, Lägerhyddsvägen 2, Uppsala, Monday, May 26, 2008 at 13:15 for the degree of Doctor
of Philosophy. The examination will be conducted in English.

Abstract
Petrini, J. 2008. Querying RDF Schema Views of Relational Databases. Acta Universitatis
Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 75. 117 pp.
Uppsala. ISBN 978-91-554-7202-3.

The amount of data found on the web today and its lack of semantics makes it increasingly
harder to retrieve a particular piece of information. With the Resource Description Framework
(RDF) every piece of information can be annotated with properties describing its semantics.
The higher level language RDF Schema (RDFS) is defined in terms of RDF and provides
means to describe classes of RDF resources and properties defined over these classes. Queries
over RDFS data can be specified using the standard query language SPARQL. Since the
majority of information in the world still resides in relational databases it should be investi-
gated how to view and query their contents as views defined in terms of RDFS meta-data
descriptions. However, processing of queries to general RDFS views over relational databases
is challenging since the queries and view definitions are complex and the amount of data often
is huge. A system, Semantic Web Abridged Relational Databases (SWARD), is developed to
enable efficient processing of SPARQL queries to RDFS views of data in existing relational
databases. The RDFS views, called universal property views (UPVs), are automatically gen-
erated provided a minimum of user input. A UPV is a general RDFS view of a relational
database representing both its schema and data. Special attention is devoted to making the
UPV represent as much of the relational database semantics as possible, including foreign and
composite keys. A general query reduction algorithm, called PARtial evaluation of Queries
(PARQ), for queries over complex views, such as UPVs, has been developed. The reduction
algorithm is based on the program transformation technique partial evaluation. For UPVs, the
PARQ algorithm is shown to elegantly reduce queries dramatically before regular cost-based
optimization by a back-end relational DBMS. The results are verified by performance meas-
urements of SPARQL queries to a commercial relational database.

Keywords: query processing, partial evaluation, rdf, rdf schema, view, relational databases,
semantic web

Johan Petrini, Department of Information Technology, Box 337, Uppsala University, SE-
75105 Uppsala, Sweden

© Johan Petrini 2008

ISSN 1104-2516
ISBN 978-91-554-7202-3
urn:nbn:se:uu:diva-8740 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8740)

Printed in Sweden by Universitetstryckeriet, Uppsala 2008
Distributor: Uppsala University Library, Box 510, SE-751 20 Uppsala
www.uu.se, acta@ub.uu.se

Contents

1 Introduction ...9

2 Background..15
2.1 Relational Database Management Systems................................15
2.2 Semantic Web...18

2.2.1 The Resource Description Framework (RDF).......................18
2.2.2 RDF Schema..20
2.2.3 RDF Query Languages ..22

2.3 RDF Repository Systems ...24
2.4 Mapping Relational Data to RDF...26

2.4.1 RDF Materialization ..26
2.4.2 RDF Views ..27

2.5 The Entity-Relationship (ER) Model ...28
2.6 Partial Evaluation ...31
2.7 The Amos II System, Data Model and Query Language32

3 The SWARD System...35
3.1 Overview ..35
3.2 Scenario ..36
3.3 Query Processor ...41
3.4 Universal Property View ..42

3.4.1 Schema View ...43
3.4.2 Content View ...44

4 Query Classes ..47
4.1 Content Queries ..47
4.2 Schema Queries ..48
4.3 Hybrid Queries ...48

5 The PARQ Algorithm..51

6 Query Processing ...57
6.1 Processing an Example Query..57
6.2 BE: Naive Back End...59
6.3 END: Expand-Normalize-Decompose60
6.4 END-P: END with Partial Evaluation ..61
6.5 DPS: Dynamic Plan Selection ..64

6.6 DVS-P: Dynamic View Selection with Partial Evaluation65

7 Performance Measurements...67
7.1 Scaling the Database Size...67
7.2 Scaling the Query and Schema Sizes ...68

8 Processing Schema and Hybrid Queries..73
8.1 Schema Queries ..73
8.2 Hybrid Queries ...73
8.3 Performance Measurements ...75

9 Augmented UPVs ..79
9.1 Class Membership ..79
9.2 Class Relationships...86
9.3 Representation of Composite Keys in RDF Schema..................93
9.4 Proving Reduction of Generalized Content Queries99

9.4.1 Mapped Property Patterns..99
9.4.2 Class Membership Patterns..100
9.4.3 Class Relationship Patterns..101

10 Related Work...103
10.1 RDF Repository Systems ...103
10.2 RDF View Systems ..104
10.3 Partial Evaluation ...105
10.4 Preservation of Foreign Key Information in RDF Schema106
10.5 Disjunctive Query Optimization...107
10.6 Property Table Representation of Data107
10.7 SchemaSQL Server ..108

11 Summary and Future Work ...109

Summary in Swedish ..113

Acknowledgement ..117

References...119

Appendix: SWARD Query Interfaces...123

Abbreviations

DBMS Database Management System
JDBC Java Database Connectivity
RDF Resource Description Framework
RDFS RDF Schema
SQL Structured Query Language
SWARD Semantic Web Abridged Relational

Databases
URI Uniform Resource Identifier
URL Uniform Resource Locator

 9

1 Introduction

The amount of data found on the web today and its lack of semantics makes
it increasingly harder to retrieve a particular piece of information. Free-text
search engines often return too many and too incorrect results. Another prob-
lem arises when trying to combine the collected pieces of information in a
meaningful way. For example, applications accessing information from sev-
eral databases with different structure and content has to decide if a column
‘A’ from one database has the same meaning as some column ‘A’ from an-
other database. This is very challenging due to the lack of semantics in the
database schema.

There is clearly a need for a uniform way to provide descriptions of in-
formation that could help facilitate for both searching and combining data.
With RDF [20][32] every piece of information can be annotated with prop-
erties describing its semantics. Meta-data descriptions such as Dublin Core
[22], Open Directory [41], RSS 1.0 [49], Uniprot catalog of protein sequence
and annotation [66], NASA [61], WordNet [69] and GovML [63] use RDF.

RDF is the basis for most semantic web representations and several
higher level languages are defined in terms of RDF, e.g. RDF Schema
(RDFS) [11], OWL [42], and OWL Lite [42]. RDFS provides means to de-
scribe classes of RDF resources and properties defined over these classes.
The standard query language SPARQL [58] is used for querying RDF data.

RDF repository systems [12][15][67] offer storage of RDF data and the
ability to search RDF data using a query language.

Since the majority of information in the world still resides in relational
databases it should be investigated how to expose this information as RDF
queryable with SPARQL. RDFS could provide support for representation of
both content and schema in relational databases. This would allow for flexi-
ble queries combining content and schema information in the relational da-
tabase as opposed to in SQL.

One way to expose data in relational databases as RDFS representations is
by downloading them to RDF repositories. However, this can be very costly
when the relational database is large. The fact that all data in the relational
database is duplicated as RDF introduces a lot of data redundancy. Also,

 10

when the rate of change in the relational database is high, a lot of time is
spent on propagating the changes to the RDF repository.

A better solution, proposed in this Thesis, is to define RDF Schema views
over existing relational databases and allow database queries in, e.g.,
SPARQL over these RDFS views. This way redundancy and overhead for
updates is eliminated.

The RDFS views over relational databases should be defined in a struc-
tured and general way. That is, it should be possible to define an RDFS view
over any arbitrary relational database. RDFS view definitions should not be
hard-coded for a specific relational database instance. The definition of gen-
eral and well structured RDF Schema views would increase understandabil-
ity and minimize the introduction of errors compared to in ad-hoc solutions.
Therefore, RDFS views should be generated in a way that demands a mini-
mum of user input.

RDFS views over relational databases should enable:
• Access to all content in the relational database in terms of RDF re-

sources.
• Access to schema information about tables and columns in the rela-

tional database in terms of RDFS classes and properties. These
classes and properties are instantiated by the RDF resources repre-
senting the database content.

Another issue is to retain as much as possible of the semantics of the rela-
tional database in the RDFS view. Relational databases are usually designed
using the graphical high level conceptual entity relationship (ER) model.
The designed ER diagrams are then translated to the relational model and
implemented in a relational DBMS. ER and RDFS both work on the concep-
tual level whereas the relational model is more implementation specific. As a
reason thereof, ER entities and relationships are implicitly represented in the
relational model.

To retain semantics, RDFS views over relational databases should also:
• Make explicit ER type memberships and relationships in terms of

RDF Schema constructs.

RDFS views that fulfil all of this are referred to here as complete RDFS
views.

The processing of queries to an RDFS view over a relational database be-
comes challenging for two reasons: First, the flexible representation of data
with RDF produces queries that involve many self-joins to a large disjunc-
tive view (one disjunct for every viewed column in the relational database)
where each disjunct in turn is defined as a conjunctive expression. Tradi-
tional processing of such queries produces enormous expressions internally

 11

and as a consequence of that unrealistically slow query processing times.
Second, the queries are posed to RDFS views over relational databases and
require therefore careful optimization in order to scale over the huge amount
of data that can be stored in a relational database.

The two main research questions identified in this Thesis are:
• How can general and complete RDF Schema views of relational

databases be automatically generated?
• How can scalable processing of realistic size SPARQL queries to

large RDF Schema views of relational databases be achieved?

To investigate these questions we developed a system, Semantic Web
Abridged Relational Databases (SWARD) [62][44][45] to enable efficient
processing of SPARQL queries to RDFS views of relational databases.
Complete RDFS views are automatically generated specified with a mini-
mum of user input.

In SWARD, relational database content and schema information is repre-
sented in RDF as a large disjunctive view. We call such a view a universal
property view or UPV. A UPV is an RDFS mapping of a relational database
defined as a union of a schema view, representing the database schema, and a
content view, representing the database content. The content view, in turn, is
defined as a union of property views, each representing one viewed column
in the relational database. The UPV is automatically generated by SWARD,
given that the user specifies for a given relational database a property map-
ping table that declares how RDFS properties (mapped properties) corre-
spond to viewed relational columns in the UPV. The user also specifies a
class mapping table that declares how RDFS classes (mapped classes) corre-
spond to relational tables in the UPV.

In other words, an RDFS view over a relational database in SWARD is
implemented as a UPV that defines an RDFS meta-data description of the
database where the database schema is encoded as classes and properties in
the description and the database content is encoded as members of these
classes and instantiated properties for these members.

To represent ER entities and relationships in the UPV its definition is
augmented with special purpose subviews to model class memberships
(class membership views) and class relationships (class relationship views).
The definitions of these views are automatically generated by SWARD.

Composite keys are supported by relational databases but not in RDFS.
However, since composite primary keys are very common in relational data-
bases it is very important that they are represented in UPVs so that tables
containing such keys can also be viewed in RDFS. The UPVs are therefore
generalized to view tables with composite primary keys as well.

 12

SPARQL queries to UPVs are very flexible and can mix schema and con-
tent. For example, a query can be expressed that finds the values of all prop-
erties (i.e. attribute values) of a given customer. Meta-data descriptions can
have many properties (e.g. [61] has 1000s), and this requires efficient proc-
essing of queries involving many self-joins over the UPV.

A naive implementation is to define the UPV as an SQL view and to do
all query processing over the UPV in a relational database. We show that
such an approach scales very badly and is outperformed by the more effi-
cient query processing strategies described in this Thesis.

A general query reduction algorithm, called PARtial evaluation of Que-
ries (PARQ) for queries to complex views, such as UPVs, has been devel-
oped. The reduction algorithm is based on the program transformation tech-
nique partial evaluation [25][43][29]. Partial evaluation enables the devel-
opment of elegant and clean solutions that are automatically specialized into
efficient reduced programs. For UPVs, the PARQ algorithm is shown to
elegantly reduce queries substantially before regular cost-based optimization
by a back-end relational DBMS. PARQ simplifies the query by iteratively
evaluating at compile time some application specific predicates until a fix-
point is reached. We show dramatic improvements in query processing time
for conjunctive SPARQL queries to UPVs, while increasing the query size,
the size of the database schema over which the UPV is defined, and the da-
tabase content size.

Queries to the UPV can be of three kinds: i), content queries that access
the database content ii) schema queries that access relational schema infor-
mation only, and iii) hybrid queries that combine schema and content data.
SWARD can process queries of all three kinds efficiently. However, it is
particularly challenging to process content and hybrid queries searching the
large database contents. We show that partial evaluation substantially im-
proves query processing performance for all three kinds of queries.

In summary, the following results are presented:

• UPVs are defined as a general method to map any relational database to a

complete RDF Schema view requiring a minimum of user input.
• A new partial evaluation algorithm is developed called PARQ for reduc-

ing queries based on controlled partial evaluation of query fragments.
• The PARQ algorithm is shown to provide elegant and scalable processing

of conjunctive SPARQL queries to large disjunctive UPVs. In particular,
new query processing methods, END-P and DVS-P, are developed for ef-
ficient processing of queries to large UPVs, based on applying PARQ on
straight-forward query processing methods. It is shown that that the appli-
cation of PARQ dramatically improves performance of naïve approaches.

 13

• The query processing method END-P is defined as PARQ applied on
conventional query processing using view Expansion, Normalization, and
Decomposition (END).

• The DVS-P method is PARQ applied on another naive method special-
ized for UPVs, DPS (Dynamic Plan Selection), which selects precompiled
query fragments from a table.

• The query processing strategies were evaluated for scalability of query
processing time as i) the database size increases, and ii) the size of the
query and the size of the UPV definition increase.

To summarize, in this Thesis, the first research question, regarding auto-
matic generation of general and complete RDFS views of relational data-
bases was thoroughly investigated and answered with the exception of han-
dling of relational tables encoding ER M:N relationships types and relation-
ship types of degree higher than 2, that has yet to be looked into.

The second research question, regarding scalable processing of realistic
size queries to RDFS views over relational databases, is fully investigated
and answered for conjunctive content and schema queries. The research
question was also investigated and answered for the most common subclass
of hybrid queries but some work remains to answer the question for all hy-
brid queries and for disjunctive queries.

 15

2 Background

This Chapter describes key technologies used in SWARD. It first gives an
overview of relational database management systems. Then an introduction
to the semantic web, its languages and query languages, is provided followed
by a presentation of RDF repositories. After that an overview of how to view
relational databases in terms of RDF Schema representations is presented.
The general purpose program specialization technique called partial evalua-
tion is then presented. After that, an overview of the ER-model is given to-
gether with a discussion of its relationship to RDF Schema and the relational
model. The Chapter is concluded with a short presentation of the DBMS
Amos II and how it is used for implementing SWARD.

2.1 Relational Database Management Systems
A database is simply a large collection of data managed by a database man-
agement system (DBMS). The DBMS allows for a) creation of new data-
bases and specification of the logical structure of the database called its
schema b) querying the data c) updating data d) concurrent access of multi-
ple users to data.

To describe the structure of information in the database, its schema, the
DBMS utilizes various data models, which provide primitives (meta-
language) for defining a schema. In a paper dated to the beginning of the
1970s Codd [18] proposed the relational data model where data were mod-
elled as rows, or tuples, in 2-dimensional tables with one or more columns.
The relational data model gained much in popularity due to a) its simplicity
and b) closeness to the traditional way of structuring non-digital information
in companies. It is by far the most common data model used in databases
today. Notice that, while the user of a relational DBMS sees the data as sim-
ple tables, internally relational DBMSs organize the data using complex data
structures providing efficient retrieval and manipulation.

 16

Figure 1 shows a an example of a small relational database E-government
with three tables, LIFEEVENT, FORM, and SERVICE representing informa-
tion about life events, forms associated to life events, and services related to
life events, respectively. Every table in the relational model has one or sev-
eral columns acting as a primary key in that table, i.e. making every row in
the table unique. In tables LIFEEVENT and FORM columns LID and FID
are acting as primary keys, respectively. In table SERVICE the key is com-
posed of the two columns LID and SNR. Such keys are called composite
keys. A foreign key is a column referencing the key column in another table.
In Figure 1 column LIFEEVENT in FORM is a foreign key referencing key
column LID in table LIFEEVENT.

LIFEEVENT LID NAME DESCR
 movinghouse Moving House A citizen intends to move from

one EU country to another.

FORM FID URL LIFEEVENT
fid_0 http://www.skatteverket.se/…/7665B5.pdf movinghouse
fid_1 http://www.workpermit.com/uk/employer_form.htm movinghouse

SERVICE LIFEEVENT SNR TITLE
 movinghouse 0 Moving Service

Figure 1: E-government relational database

In the relational model the user specifies the query in a high-level query
language, where the Structured Query Language (SQL) being the most
widely used. Instead of specifying exactly how the information should be
accessed in terms of traversing low-level data structures and indexes the user
now can focus on what information should be accessed leading to an increas-
ing productivity in database development.

The separation of query languages from low-level implementation spe-
cific details is one of the most fundamental aspects of relational DBMSs and
is referred to as data independence. Data independence exists on a logical
and on a physical level in a relational DBMS. On a logical level, changes to
the database schema should not affect application programs accessing the
schema through queries. On a physical level, changes to the data organiza-
tion should not affect the database schema.

The technique of efficiently calculating the result from a high-level query
is called query processing and is performed by the DBMS query processor.

Figure 2 shows the typical query processing steps in a DBMS [65].

 17

Figure 2: Typical query processing steps in a DBMS

First, the query is checked for syntactic and semantic correctness by the
parser and validator, respectively. The semantic analysis involves, for ex-
ample, checking that the query refers to only existing table and column
names.

The result of parsing and validating the query is an algebraic representa-
tion of the query in the form of a logical query plan in a relational algebra,
that is, a sequence of operators to be executed. It is logical in the sense that
no algorithms have yet been assigned to implement the operators in the
query plan.

Because a query often can be executed in numerous ways the task of the
optimizer is to produce an efficient execution strategy. This is done in two
steps where 1) the optimizer applies algebraic laws on relational algebra
expressions to produce a more efficient query plan and 2) algorithms are
assigned to the logical relational algebra operators of the query plan produc-
ing an algebraic expression in the form of a physical query plan. Each query
plan has a predefined cost according to some cost model and the cheapest
plan is picked. The ‘cost’ can for example be approximated by the number of
disk access performed by the relational database management system when
executing a specific query plan. The number of disk accesses is in turn af-
fected by factors such as the ordering of similar operations and sizes of in-
termediate results. For the query optimizer to correctly estimate the cost of
alternative query plans it is therefore important that there exist valid statistics
about data characteristics such as number of rows in a table and the number
of different values in table columns.

 18

Finally, the resulting physical query plan is interpreted by the execution
engine producing the result.

In this Thesis a system for generation and querying RDF views over rela-
tional databases is presented. Queries in the RDF query language SPARQL
are processed over RDF Schema representations of relational databases. The
system generates SQL fragments that are sent to the relational database for
cost-based optimization and execution.

2.2 Semantic Web
The semantic web effort aims for more focused and relevant web searches
and to facilitate for the combination of information by providing internet-
wide standards such as RDF [20][32] and RDF Schema [11], for semanti-
cally enriching and describing web data. The formal meaning of RDF and
RDF Schema is defined in [28].

2.2.1 The Resource Description Framework (RDF)
The Resource Description Framework (RDF) [20][32] is a W3C standard for
representation and description of web resources on the World Wide Web. In
other words, it is a language for stating meta-data about web resources. In
RDF the concept ‘web resource’ is interpreted as anything that can be identi-
fied on the Web. This is a very broad definition of a web resource that al-
lows for representation of: a) things accessible through a network e.g. a web
page or a picture, b) things that are not accessible through any network e.g.
identifiers for human beings or books in a library, and c) abstract concepts
such as, e.g., a ‘creator’.

RDF web resources, or RDF resources, are uniquely identified through
Uniform Resource Identifiers or URIs [32]. A URI reference is formed by a
URI namespace and a local name. The namespace part of the URI can be a
rather long string, e.g. http://udbl.it.uu.se/schemas/eGovern#. A more com-
pact way of expressing URIs is by using a shorthand notation assigning a
prefix to the URI namespace and adding the local name to this prefix. For
example, in the URI egov:Concern, the prefix egov: is shorthand for
http://udbl.it.uu.se/schemas/eGovern#.

With RDF any web resource can be annotated with properties describing
its semantics. The value of a property for some RDF resource is another

 19

RDF resource. This knowledge is represented in RDF as triples or state-
ments of RDF resources <s, p, v>1 where s is called the subject (modeling
some entity), p is called the predicate (modeling some property of an entity)
of s, and v is called the object (the value of p). To avoid confusion with ordi-
nary programming terminology this Thesis uses the terms property and value
instead of predicate and object. The terms RDF triple and statement will be
used interchangeably throughout the Thesis.

For example, a statement

<egov:Form/fid_0, egov:Concern,egov:LifeEvent/movinghouse >

where s is egov:FormID/fid_0, p is egov:Concern and v is
egov:LifeEvent/movinghouse expresses the fact that the form identified by
the URI egov:Form/fid_0 concern the life event identified by the URI
egov:LifeEvent/movinghouse. The statement is represented in graph notation
in Figure 3.

Figure 3: RDF graph

Each node in the graph is unique, meaning that if a resource would exist
in more than one statement the node representing that resource would have
several property arcs connected to it. RDF statements are exchanged by seri-
alizing them into a dialect of the Extensible Markup Language (XML) called
RDF/XML [32].

The RDF/XML serialization of Figure 3 is shown in Example 12.
<xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-
ns#”
 <rdf:Description rdf:about=egov:Form/fid_0>
 <egov:Concern rdf:resource=egov:LifeEvent/movinghouse>
 </rdf:Description>
</rdf:RDF>

Example 1: RDF/XML serialization of simple RDF graph

1 We use the <.> notation to denote RDF statements, or triples, in text.
2 By convention rdf: is prefix for http://www.w3.org/1999/02/22-rdf-syntax-ns#

 20

The subject and property of an RDF statement are always URIs. How-
ever, the value could be either a URI as in Figure 3 or a literal as in Figure 4.
Literals can be simple or typed. A simple literal is a string and a typed literal
is a string adorned with a datatype URI. The statement represented in graph
notation in Figure 4 expresses that the national tax board of Sweden is the
creator of the form egov:Form/fid_03. Here the value of the triple is a simple
literal.

Figure 4: RDF graph with literal value

2.2.2 RDF Schema
RDF is the basis for representing semantic web data and several higher level
languages are defined in terms of RDF. One of these higher languages is
RDF Schema (RDFS) [11], a W3C standard that provides means to describe
application specific classes of RDF resources and allow properties defined
over these classes. Usually, RDF data is defined in terms of such an RDFS
meta-data description. Examples of RDFS descriptions (referred to in this
Thesis as RDFS descriptions) are RSS 1.0 [49] and WordNet [69].

The RDFS meta-classes rdfs:Class and rdf:Property are used to represent
classes and properties in an RDF Schema description, respectively4. The
RDFS meta-property rdf:type is used to define the data type of an RDF re-
source by associating each RDF resource with one or several RDFS classes.
The class for which a property is defined is called the domain of the property
and is represented by meta-property rdfs:domain. The class of the value of a
property is called the range of the property and is represented by the meta-
property rdfs:range. Figure 5 shows a small example description of an e-
government portal with information about life events and their related forms.

The RDFS description contains the two classes; egov:LifeEvent and
egov:Form modelling life events and forms about life events, respectively.
The class egov:Form has the properties egov:Concern and govml:Creator,
where the first one expresses which life event a form concern and the latter
represents the creator of the form. The domain and range for egov:Concern

3govml: is prefix for namespace http://www.egov_project.org/GovMLSchema#
4By convention rdfs: is prefix for http://www.w3c.org/2000/01/rdf-schema#

 21

are egov:Form and egov:LifeEvent, respectively. The property egov:Creator
has the domain egov:Form and range rdfs:Literal. The mentioned classes are
instanced with the RDF resources egov:Form/fid_0 and
egov:LifeEvent/movinghouse representing a form and its associated life
event, respectively.

Figure 5: An example RDFS description of an e-government portal

A subset of the RDF triples representing the RDFS description and its
data in Figure 5 are:

<egov:LifeEvent,rdf:type,rdfs:Class>
<egov:Form,rdf:type,rdfs:Class>
<egov:Concern,rdf:type,rdf:Property>
<egov:Concern,rdfs:domain,egov:Form>
<egov:Concern,rdf:range,egov:LifeEvent>
…
<egov:Form/fid_0,rdf:type,egov:Form>
<egov:Form/fid_0,egov:Concern,egov:LifeEvent/movinghouse>

 22

The corresponding RDF/XML serialization is shown in Example 2. As il-
lustrated below the format is meant for machines and not for humans to read.

<xml version=”1.0”?>
<rdf:RDF xmlns:rdf=”http://www.w3.org/
 1999/02/22-rdf-syntax-ns#”
 xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#”
 xmlns:egov=“http://udbl.it.uu.se/schemas/eGovern#”>

 <rdf:Description rdf:about=egov:LifeEvent>
 <rdf:type rdf:resource=rdfs:Class>
 </rdf:Description>
 <rdf:Description rdf:about=egov:Form>
 <rdf:type rdf:resource=rdfs:Class>
 </rdf:Description>
 <rdf:Description rdf:about=egov:Concern>
 <rdf:type rdf:resource=rdf:Property>
 <rdf:domain rdf:resource=rdfs:Form>
 <rdf:range rdf:resource=rdfs:LifeEvent>
 </rdf:Description>
...
 <rdf:Description rdf:about=egov:Form/fid_0>
 <rdf:type rdf:resource=egov:Form>
 <egov:Concern rdf:resource=egov:LifeEvent/movinghouse>
 </rdf:Description>
</rdf:RDF>

Example 2: RDF/XML serialization for e-government portal

Another high level language for the description of RDF data is the OWL
Web Ontology Language [42]. It is more powerful than RDFS in that it pro-
vides vocabulary for describing among other things disjointness between
classes and cardinality constraints for properties. Unfortunately the language
is computationally undecidable [42]. OWL Lite [42] is a simplified version
of OWL, guaranteed to be computable, that supports classification hierar-
chies and simple cardinality constraints.

In this Thesis only basic RDF and RDF Schema languages are used for
representing RDF Schema views of relational databases.

2.2.3 RDF Query Languages
Access to semantic web data is enabled through the development of RDF
query languages. Several languages have been proposed e.g. SPARQL [58],
RDQL [50], RQL [30], SeRQL [12], and QEL [40] where SPARQL is W3C
standard.

SPARQL is an extension of the query language RDQL designed in accor-
dance to the requirements described in the W3C RDF Data Group document
‘RDF Data Access Use Cases and Requirements’ [48]. SPARQL supports

 23

features such as a) generalized triple patterns i.e. a syntax for navigating
RDF graphs where the user defines input graph patterns (queries) expressed
as a conjunction/disjunction of RDF statements that are matched against the
underlying RDF graph (data), b) comparison of values and support for data
types, including arithmetic operations, c) closure i.e. the ability to construct
a new RDF graph out of the result of a query, and d) optional values i.e. the
possibility to partially match RDF graphs. An example of a simple SPARQL
query that returns the creator of the RDF resource egov:FormID/fid_0 is
shown in Example 3.

SELECT ?v
WHERE {egov:FormID/fid_0 govml:Creator ?v .}

Example 3: SPARQL query

The result of the query is the literal ‘National Tax Board of Sweden’.

In SPARQL variables are prefixed with ‘?’. The SELECT clause specifies
the result. The WHERE clause specifies a selection condition over the RDF
graph. The selections in a WHERE clause are specified using triple patterns
[58] with syntax:

 s p v .

In each triple pattern s (subject), p (property), and v (value) are constants
or variables. A period, ‘.’, denotes the end of a triple patterns. If more than
one triple pattern is specified they are conjuncted. An optional FROM clause
specifies the source to query. A SPARQL query with no FROM clause, like
the one in Example 3, is executed against some default data source defined
by the system processing the query. Value constraints can be defined with
the FILTER keyword. They are conjuncted with the triple patterns.

Example 4 shows a SPARQL query that contains a pattern matching filter
REGEX and returns all forms being created by tax boards.

SELECT ?v
WHERE {egov:FormID/fid_0 govml:Creator ?v .
 FILTER REGEX(?v, ‘.*tax board.*’) .}

Example 4: SPARQL query with FILTER operator

The result of the query is the same as for the query in Example 3, i.e. ‘Na-
tional Tax Board of Sweden’.

This Thesis is about the generation and querying of RDFS representations
of relational databases in terms of RDF views. For simplicity, the language
RDFS is chosen before OWL Lite to describe RDF data. The RDFS repre-

 24

sentations are queried in the standard semantic web query language
SPARQL.

2.3 RDF Repository Systems
RDF repository systems offer support for storage of RDF data in special
repositories designed for RDF and the ability to search RDF data using a
query language. Examples of RDF repository systems are Jena2 [67], Ses-
ame [12], Oracle [15], and AllegroGraph [4] where the first three are based
on relational databases and the last one is a native RDF repository.

In relational RDF repositories, the main idea is to internally store all RDF
triples in a table with three columns, S, P, and V, representing the subject,
property and value of an RDF triple, respectively. URIs can be mapped to
integer identifiers [15][12] to save space producing one table containing all
the triples and another table with all URIs to identifier mappings. Many re-
positories (including [15][12][67]) implement a multi-layered approach
where all RDF-specific processing (such as query translation) is done at the
RDF layer above the back-end relational DBMS.

An example relational RDF repository with only one table, TRIPLES,
storing all the triples that contain a subset of the data from Figure 5 is shown
in Figure 6. Here URIs and literal values are represented as strings in the
repository. For readability quotations are omitted.

Figure 6: RDF repository

A semantic web query is first translated to SQL in the RDF layer and then
passed to the relational DBMS for optimization and execution over the table
storing the RDF statements.

SELECT ?creator, ?lifeevent
WHERE {?form govml:Creator ?creator .
 ?form egov:Concern ?lifeevent .}

Example 5: SPARQL query with two triple patterns

 25

For example, the query returning the creator and the life event for all
forms would be converted to the following SQL executed over the triple
table, TRIPLES, in Figure 6:
 SELECT T1.V, T2.V
 FROM T1 TRIPLES, T2 TRIPLES
 WHERE T1.S = T2.S AND
 T1.P = govml:Creator AND
 T2.P = egov:Concern

The query result variables ?creator and ?concern are bound to the RDF
resources ‘National Tax Board of Sweden’ and egov:LifeEvent/movinghouse
respectively.

Notice that the SQL produced from the SPARQL query in Example 5 is a
self-join over the table storing all triples, a triple table join. In general, every
two triple patterns in the semantic web query will be translated into a triple
table join in SQL.

SPARQL queries over relational RDF repositories with one table storing
all the triples, like in Figure 6, can be very slow to execute since when the
number of triples in the table is increased the triple table may not fit in main
memory any more, meaning that each triple table join in the SPARQL query
requires a disk access.

Another problem is that it is hard to access proper information about the
distribution of values for different properties in an RDF repository with only
one table storing all the triples. Insufficient statistics about the data will pre-
vent the cost-based optimizer of doing a good job during query processing.

Furthermore, it is difficult to cluster data and decide which indexes to
create since the repository is offered no information about the characteristics
of data needed by the applications. Typically there will be indexes on each
three columns of the table storing all the triples in the repository (e.g. col-
umns S, P, V in Figure 6).

To speed up queries over relational RDF repositories, Jena 2 [67] and
Oracle [15] allow non-triple representation of RDF properties. Properties
that are often accessed together are clustered using so called property tables
eliminating the need for triple table joins when the queries can be answered
from a single property table.

However, in reality queries often need to combine data from many prop-
erty tables. It is very unlikely that one property table holds all data and there-
fore the produced SQL gets complicated. Another problem is the unstruc-
tured nature of RDF data resulting in a lot of NULL values in property ta-
bles.

 26

An alternative way of storing RDF data is to use one table for each prop-
erty, i.e. column tables [1]. This way the size of the triple store can be kept
smaller when data is highly unstructured. The column-based approach will
require more SQL joins compared to the property-table based one but effi-
cient merge join algorithms can be used for this [1].

In AllegroGraph [4] RDF triples are stored as objects in a store. Indices
are used to speed up access of the triples.

This Thesis is about the processing of SPARQL queries. However, in-
stead of queries to special purpose RDF repositories this work focus on que-
rying views defined in terms of RDFS classes and properties that describes
both structure and content of data stored in the relational databases This is
important since most existing information still resides in relational data-
bases, which are optimized for handling very large data volumes. By defin-
ing RDF views over relational databases they are made queryable with
SPARQL without having to be copied to some RDF repository. Furthermore,
a view will always reflect any changes in the relational database.

2.4 Mapping Relational Data to RDF
An RDF repository offers persistent storage of RDF data. There is a vast
amount of additional high quality information stored in databases accessible
from the web but not as RDF. This information should be exposed to the
semantic web too. Two different approaches here referred to as RDF materi-
alization and RDF views, have emerged for mapping data in relational data-
bases to RDF. Whereas RDF materialization means loading relational data
into large RDF repositories for persistent storage, the RDF view approach
keeps the data in the source and instead provides RDF views over the data
that can be queried with, e.g., SPARQL.

2.4.1 RDF Materialization
The RDF materialization approach for publishing relational data as RDF
consists of two phases.

First, the relational database is materialized and duplicated as RDF data in
some RDF repository such as for example [15].

In the next phase the RDF repository can be queried using some semantic
web query language. Figure 7 illustrates the approach.

NASA for example uses the RDF materialization approach in their POPS
project [27].

 27

Figure 7: RDF materialization

The difference between the approach in Figure 7 and ordinary RDF re-
positories (Figure 6) is that when materializing relational data as RDF the
data first has to be converted to RDF. This is done by the materializer taking
the data in the relational database and a set of relational to RDF mappings as
input and returning the materialized RDF data as output.

The mappings can be generic or separate user defined scripts to define the
details. Generic mappings has to be specified by the user once only, scripts
require separate user defined mapping files for each new RDF view. User
defined mapping scripts are important because they provide the user with the
possibility to define application specific mappings.

The RDF materialization approach can be very costly when the relational
database is large. The fact that all data in the relational database is duplicated
as RDF introduces a lot of data redundancy. Also, when the rate of change in
the relational database is high, a lot of time is spent on propagating the
changes to the RDF repository.

2.4.2 RDF Views
Rather that materializing all the contents of a relational database as RDF,
with the RDF view approach data is streamed through the system when the
RDF view of a relational database is queried. Retrieved data is not perma-
nently materialized and stored in an RDF repository and the view will al-
ways reflect any changes in the wrapped relational database. Only meta-data
describing the viewed relational database is stored in the RDF layer. Figure 8
illustrates exposing relational data as RDF using the RDF view approach.

Notice that only the result of a query has to be mapped to RDF as op-
posed to the RDF materialization approach where the whole relational data-
base is converted and duplicated to an RDF representation.

 28

Figure 8: RDF view

Processing queries over RDF views in general is more demanding than
processing queries over RDF repositories since a query stated in terms of
several RDF triple patterns is translated into one SQL query fragment for
each RDF triple pattern. These SQL query fragments then has to be com-
bined to complete SQL queries over one or more relational tables.

In RDFS views over relational databases relational tables and columns are
usually mapped to classes and properties in some RDFS description. The
domain of a column is converted to the domain of its corresponding prop-
erty. The range of a property is either a typed or a simple literal. The RDFS
classes and properties describing the relational database schema are then
instanciated in the RDF layer based on the corresponding schema meta-data
in the relational database.

This Thesis is about generation and querying of RDFS views over rela-
tional databases i.e. the RDF view approach. No data is materialized as in an
RDF repository. Each view is generated automatically given very simple
user defined mappings between relational database tables and columns and
RDFS classes and properties. The RDFS views are defined in a general way
and are then specialized by partial evaluation (Section 2.6) during query
processing. SWARD leverages on the Amos II system [51] for query proc-
essing and utilizes its facility for transparent access to external data sources
to access the back-end relational database. No explicit user specification of
SQL code is needed but the SQL queries are dynamically generated during
query processing.

2.5 The Entity-Relationship (ER) Model
The Entity-Relationship model [14] is a high level conceptual data model
used to graphically describe structure and constraints in a database. Such a
high level model of information in the database has the advantage that it is
easier to understand for non-technicians since it does not include implemen-

 29

tation specific details. Furthermore it avoids misconceptions and multiple
interpretations and it is implementation independent. The ER-model is used
during the conceptual database design and is then translated to the relational
model.

Figure 9:ER diagram of E-government database

Figure 9 shows an example of an ER diagram representing the E-
government relational database presented in Figure 1.

With ER, entity types are used to describe a physical or abstract concept.
In Figure 9 they are used to describe life events and their associated forms
and services corresponding to the tables LIFEVENT, FORM, and SERVICE
in the E-government relational database respectively.

Attributes are defined over entity types to describe their characteristics.
For example, attributes LID, NAME and DESCR are defined over entity type
LIFEEVENT. Attributes can be simple or composite. Each simple attribute is
associated with a value set which specifies the set of allowable values for an
attribute to take. For example, the domain of the DESCR attribute is the set
of strings of alphabetic characters separated by blank characters. The do-
mains are not explicitly declared in the ER diagram. Composite attributes
can be broken up into smaller more basic subparts.

An entity is an individual instance of an entity type. Entities are not part
of the ER-model, which describes meta-data only, and entities would corre-
spond to the rows in a relational table. For example, an entity of the LIFE-
VEVENT entity type would be a row in the LIFEVENT table shown in Figure
1.

 30

A key is an attribute that has unique value for every entity of the entity
type it is defined over. For example, the attribute FID is a key for entity type
FORM. A key composed out of several columns is called a composite key.

Entity types can be associated through relationship types. In Figure 9 the
relationship type CONCERNS represent the relationship between life events
and their associated forms i.e. a form concern a particular life event.

Cardinality constraints are defined over relationships. In Figure 9 the
constraint 1:N between a form and a life event specifies that a life event can
have several associated forms but a form can only concern one specific life
event. Other cardinality constraints are 1:1 for one-to-one or M:N for many-
to-many constraints over relationship types.

Sometimes an entity type does not have a key attribute of its own. For ex-
ample, entity type SERVICE does not have any attribute uniquely identifying
its entities. Entities belonging to such weak entity types are identified by
being related to entities from a strong entity type with a key attribute. More
specifically, the key of a weak entity type is formed by combining the key of
its strong entity type with one or several attributes of its own (its partial
key). The relationship type RELATED_TO representing the relationship be-
tween life events and services is an example of such an identifying relation-
ship. Attribute SNR is partial key of RELATED_TO.

When an ER diagram is translated into the relational model, entity types
with their attributes are represented as relations with columns. Attribute
value sets define the domains of the columns. Key attributes defines primary
keys in their respective table. ER relationship types are supported in modern
relational DBMSs through the use of foreign keys. Cardinality constraints are
used to guide the mapping of ER relationships to relational foreign keys. For
an 1:N relationship like CONSERN in Figure 9 the primary key column in
the table representing the entity type LIFEVENT is placed as foreign key in
the table representing the entity type FORMS as illustrated in Figure 1.
Figure 1 shows the resulting relations and columns from translating the ER
diagram in Figure 9 to the relational model.

In Figure 9 relationship type CONCERNS is encoded as the foreign key
column LIFEVENT in table FORM referencing the primary key column LID
in table LIFEVENT. The identifying relationship type, RELATED_TO is
encoded by augmenting the partial key of SNR, with the key of the LIFE-
VENT table forming the composite key (LIFEVENT, SNR) of table SER-
VICE.

Similar to the ER-model RDFS is also a high-level data model used for
the description of information. In Figure 10 a summary of the correspon-
dence between elements in ER, the relational model, and RDF Schema, is
presented.

 31

ER model Relational model RDF Schema
Entity type Table Class
Entity Row URI
Attribute Column Property
Value set Domain of column Range of property
Entity type of attribute Table of column Domain of property
Key attribute Primary key -
Binary 1:1 or 1:N rela-
tionship type

Foreign Key Properties associating classes

Figure 10:Correspondence between ER, the relational model, and RDF Schema

For example, ER relationships, which are represented implicitly in the re-
lational model through foreign keys, should be made explicit again as prop-
erties associating classes in an RDFS description.

Inheritance in RDF Schema could be modelled also using an Enhanced
ER-model [23] supporting class inheritance. Since this work focus on how to
query RDFS views over pure relational databases not supporting inheritance
there is no need for support for EER constructs in the RDFS view provided
by SWARD.

2.6 Partial Evaluation
Partial evaluation [25][43][29] is a technique for optimization of programs
by specialization, given that some input data is known. Partial evaluation is
illustrated in Figure 11.

Figure 11: Partial evaluator M

A partial evaluator [29] (or specializer) is a function M that takes two ar-
guments, the source of a program P and its static input I, and produces a
specialized and more efficient program PS:

 M(P,I) = PS

This is done by performing all calculations in P that depends only on
known input data I.

 32

Partial evaluation enables the programmer to develop ‘well-structured and
cleanly written software’ [29]. The program is then specialized to a more
efficient (faster and simpler) program producing the same output as the
original program.

Application of partial evaluation can be found in several areas such as for
example automatic compiler generation [6][7], operating systems [46], pro-
gramming languages [6][7][33][53] and computer graphics [5].

In [6][7] partial evaluation is used to automatically generate compilers
from interpreters. In [46] a commercial operating system is optimized by
specializing the kernel code for system states that are likely to occur. In [5] a
ray tracer, a method used in computer graphics to produce a good picture
rendition of a scene, is specialized with respect to objects and light sources
in the scene. In [6][7][33][53] partial evaluation of imperative, functional
and logical programming languages is shown to produce faster specialized
programs.

In this Thesis a new algorithm for partial evaluation of query fragments is
presented called PARtial evaluation of Queries (PARQ). It is shown that
PARQ provides scalable processing of real world semantic web queries to
RDF Schema views of relational databases. In contrast to the query process-
ing approach where the programmer introduces ad-hoc optimizations bound
to introduce errors, partial evaluation is driven by well defined rules that
reduce the query the to a much faster and simpler query producing the same
output as the original one.

2.7 The Amos II System, Data Model and Query
Language

AMOS II is a main memory functional DBMS [52]. The DBMS contains
functionality for processing and executing queries over data stored locally
but also external data sources, such as relational databases [24]. AMOS II
provides transparent access to and hides the details of the data sources from
users and application programmers.

AMOSQL is the declarative query language of AMOS II and can be de-
scribed as an extended subset of the object-oriented parts of SQL:99. It is
relationally complete. AMOSQL is based on the functional query languages
OSQL [37] and DAPLEX [57]. AMOSQL queries are internally represented
as ObjectLog [36] expressions. ObjectLog is an extension of Datalog [36]
with disjunctions, objects, types, and external predicates.

 33

The data model of Amos II is an object-oriented extension of the
DAPLEX functional data model. It is founded on the three concepts; objects,
types and functions.

All entities in the database are represented as objects and managed by the
system. An object is either a literal or a surrogate. Literals are self-described
objects that have no explicit object identifier (OID). They are maintained by
the system and automatically garbage collected when no longer needed. Sur-
rogates have associated OIDs and are explicitly created and deleted by the
user.

Objects are classified into instances of types. Types are organized in a su-
pertype/subtype hierarchy with multiple inheritance.

Functions model the semantics of objects e.g. properties of objects, com-
putations over objects, and the relationship between objects. Basic functions
can be classified into four different categories namely, stored functions, de-
rived functions, foreign functions, and database procedures.

Stored functions represent properties (attributes) of objects in the data-
base. For example, common properties of an object of type person are name
and age. Stored functions also model relationships between objects.

Derived functions are defined in terms of other predefined functions or
queries. They cannot have any side effects, e.g. they are not allowed to ma-
nipulate the database, and are compiled and optimized for later use.

Foreign functions are defined as external predicates in ObjectLog. The
external predicates can have their inverses associated with them and this
enables for multi-directional foreign functions in Amos II, which are invert-
ible functions implemented in some external programming language. Han-
dling of multi-directional foreign functions is an integral part of the query
processing facilities of Amos II [52].

Database procedures correspond to methods with side effects and are de-
fined using procedural AMOSQL statements.

The functional data model of Amos II is well suited for representing
RDFS classes, properties and their instances [51] in terms of types and prop-
erties and objects. The system described in this Thesis, SWARD, utilizes the
data model, query language and query execution of the Amos II system.
However, is does not utilize object oriented aspects such as OIDs or inheri-
tance. In SWARD, all RDFS data is represented as literals and is streamed
through the system when the RDFS view of a relational database is queried.

 34

SWARD extends and utilizes the Amos II system in the following ways:
• SWARD implements functionality in Amos II for automatic gen-

eration of RDFS views of large relational databases.
• SPARQL queries are first parsed into the internal ObjectLog lan-

guage of Amos II before being transformed into a query plan by the
Amos II query processor.

• SWARD extends the Amos II query processing facilities with gen-
eral partial evaluation of query fragments expressed in ObjectLog.
The technique of partial evaluating ObjectLog query fragments is
shown to be critical for scalability reasons when processing queries
over RDFS views.

 35

3 The SWARD System

In this Chapter an overview of the SWARD system is presented. The system
enables efficient processing of SPARQL queries over an automatically gen-
erated RDFS view, a universal property view (UPV), of the relational data-
base. An example scenario is used to illustrate how a UPV is automatically
generated, given user specifications of mappings between classes and prop-
erties in an RDF Schema description and corresponding tables and columns
from an example relational database, Company.

The same scenario is used throughout the Thesis to demonstrate the proc-
essing of SPARQL queries to UPVs.

3.1 Overview
Figure 12 shows the SWARD system architecture.

Figure 12: SWARD system overview

The system enables the user to query any relational database using
SPARQL. The user could be a person sitting at a terminal or a program con-
taining embedded SPARQL statements as strings.

 36

A UPV is an RDFS representation of the content and schema in the
viewed relational database. SWARD automatically generates a UPV over a
relational database given a user defined set of mappings between tables and
columns in the relational database and classes and properties in an RDFS
meta-data description. Such mappings are provided by the SWARD system
administrator upon UPV definition.

The SPARQL queries are simplified and translated into SQL fragments
by the query processor. The SQL is dynamically generated after query sim-
plification (reduction) based on the mappings between elements in the RDFS
description and relational database schema constructs that are provided by
the SWARD administrator. The generated SQL queries are sent to the rela-
tional database for cost-based optimization and execution. The results of the
SQL queries are post-processed by SWARD to evaluate those query frag-
ments that cannot be handled by the relational back-end, e.g. construction of
URIs uniquely identifying RDF resources based on the provided mappings.

3.2 Scenario
Here an example scenario is presented to demonstrate the generation and
querying of UPVs in SWARD.

A small ER diagram is presented in Figure 13. It is used during the design
of the Company database to model customers (entity type CUSTOMER),
orders (entity type ORDERS) and the relationship between them
(PLACED_BY) denoting that an order is placed by a customer.

Figure 13: ER diagram of Company database.

The relationship between customer and an order is 1:N meaning that a
customer can place more than one order but an order can only be placed by
one customer. A customer has two attributes, an identifier (CUSTID)
uniquely identifying a customer and a market segment (MKTSEGMENT).
An order also has two attributes, a unique identifier (ORDERID) and the
name of the person that filed the order (CLERK).

 37

The ER diagram is translated to the relational model and is implemented
in a relational DBMS as the database Company having the following two
tables populated with one customer and two orders:

CUSTOMER CUSTID MKTSEGMENT
 120 AUTOMOBILE

ORDERS ORDERID OCUSTID CLERK
 1 120 Wesson
 2 120 Doe

Figure 14: Company database

The columns CUSTID and ORDERID are primary keys in tables CUS-
TOMER and ORDERS, respectively. The relationship between entity types
CUSTOMER and ORDERS is represented by the column OCUSTID in table
ORDERS that is foreign key for CUSTID of CUSTOMER. All values in the
relational tables are strings but for readability quotation marks are omitted.

In SWARD relational databases are searched by SPARQL queries to a
UPV. Before generating a UPV in SWARD a data source must be defined.
Such a data source represents properties that SWARD needs in order to ac-
cess the back-end relational database. In our example these properties are the
database URL, which particular JDBC5 driver to use, along with a username
and a password to be used by SWARD when accessing the database.
SWARD also needs specification of the catalog and schema used in the da-
tabase. The following command stores in SWARD the properties of a UPV
data source where the argument DSName is the name of the data source:
 defineDS(DSName, URL, Driver, Catalog, Schema, UserName,
 PassWord);

For example,
 defineDS(‘COMPANYDS’,
 ‘jdbc:microsoft:sqlserver://localhost;DatabaseName=COMPANY’,
 ‘com.microsoft.jdbc.sqlserver.SQLServerDriver’
 ’COMPANYCATALOG’,
 ‘COMPANYSCHEMA’,
 ‘COMPANYMGR’,
 ‘12345’);

Other properties may be needed to access other database management
systems. A data source has to be defined only once for every viewed rela-

5 SWARD uses JDBC to connect to back-end relational databases.

 38

tional database and the information is stored in a table in SWARD. This is
done by the administrator of the SWARD system.

When the data source is defined, the administrator declares to the system
the name of the UPV and its URI to be used when accessing the RDF view
in SPARQL queries. This is done by calling a procedure:
 defineUPV(DSName, UPVName, URL);

For example:
 defineUPV(‘COMPANYDS’, ‘Comp’,
 ‘http://udbl.it.uu.se/upv/comp/’);

The URL argument is used in the FROM clause in SPARQL queries to
uniquely identify the RDFS graph represented by the UPV named
UPVName. A default UPV name can be specified for SPARQL queries with
no FROM clauses:
 defineUPV(‘COMPANYDS’, ‘Comp’,‘’);

Through the rest of this Thesis the UPV named, Comp, represented by the
URL http://udbl.it.uu.se/upv/comp/ is default in SPARQL queries.

SWARD can contain several data source definitions and each data source
can be used by different UPVs to access a viewed relational database. In our
example, for simplicity, we limit the number of UPVs and data sources to
one.

To generate a UPV for the database, SWARD requires the user to provide
two tables that specify what tables and columns in the relational schema to
view in RDFS data, the class mapping table, cMap, and the property map-
ping table, pMap.

The class mapping table, cMap(Table,UPV,ClassID), maps 1:1 between a
relational table name (Table), a UPV, and a class identifier (ClassID), repre-
senting a class in the UPV mapped to a table in the relational database. Such
classes are referred to as mapped classes (Figure 15)6. A class identifier is a
special purpose URI constructed out of a prefix and a local name where the
local name is the name of the mapped class in the UPV. In Figure 15 the
name of the class mapped to relational table CUSTOMER given the prefix
co: is Customer. The rows in tables represented by mapped classes become
mapped instances of that class.

6 We use co: as prefix for namespace http://udbl.it.uu.se/schemas/company#.

 39

Table UPV ClassID
CUSTOMER Comp co:Customer
ORDERS Comp co:Orders

Figure 15: Class mapping table cMap

The property mapping table, pMap(Table,Column,UPV,PropID), (Figure
16) maps 1:1 between a viewed relational column (Column) in a table and a
property identifier (PropID) representing properties in the UPV of the rela-
tional database. Such properties are called mapped properties.

Table Column UPV PropID
CUSTOMER CUSTID Comp co:CustID
CUSTOMER MKTSEGMENT Comp co:Market
ORDERS ORDERID Comp co:OrderID
ORDERS OCUSTID Comp co:OrderCustomer
ORDERS CLERK Comp co:Clerk

Figure 16: Property mapping table pMap

Analogous to class identifiers, property identifiers also have a local name.
In Figure 16 the local name of the mapped property associated to relational
column CUSTID given the prefix co: is CustID.

The UPV itself is an RDFS description of the back-end relational data-
base in terms of mapped classes and properties in cMap and pMap. Here the
UPV, Comp, represented by the URL http://udbl.it.uu.se/upv/comp/ identi-
fies an RDFS description of the CUSTOMER and ORDERS tables in the
example relational database Company.

Given cMap and pMap, the following command in SWARD automati-
cally generates the UPV for the database:
 ViewRDB(‘Comp’)

Here, the procedure ViewRDB generates a UPV named Comp for the da-
tabase named Company.

A generated UPV U, is defined as a union of two subviews, one repre-
senting the schema of the relational database, the schema view S, and one
representing its contents, the content view C, i.e. U=S ∪ C.

Given the above property mapping table, the extent of the content view C
of the UPV Comp, will contain the triples in Figure 17. All values in the
UPV are strings but for readability quotation marks are omitted.

 40

S P V
co:Customer/120 co:CustID 120
co:Customer/120 co:Market AUTOMOBILE
co:Orders/1 co:OrderID 1
co:Orders/1 co:OrderCustomer 120
co:Orders/1 co:Clerk Wesson
co:Orders/2 co:OrderID 2
co:Orders/2 co:OrderCustomer 120
co:Orders/2 co:Clerk Doe

Figure 17: Content view for Company database

The schema view of a UPV, S, views relational database tables and col-
umns as mapped classes and properties, respectively. Mapped classes are
represented as instances of the RDFS meta-class rdfs:Class while mapped
properties belong to meta-class rdf:Property. In SWARD the range of a
mapped property is always a simple RDFS literal (RDFS class rdfs:Literal).
URIs are treated as strings.

Given the property and class mapping tables in the example, Figure 18
shows the extent of the schema view S for table CUSTOMER.

S P V
co:Customer rdf:type rdfs:Class
co:CustID rdf:type rdf:Property
co:CustID rdfs:domain co:Customer
co:CustID rdfs:range rdfs:Literal
co:Market rdf:type rdf:Property
co:Market rdf:domain co:Customer
co:Market rdfs:range rdfs:Literal

Figure 18: Schema view for the CUSTOMER table in the Company database

The meta-properties needed in the schema view to define mapped classes
and properties with their domains and ranges are rdf:type, rdfs:domain, and
rdfs:range. In this Thesis they are referred to as schema property identifiers
representing schema properties.

There are several other meta-classes and meta-properties in the RDFS
specification [11] which are not needed for the mapping of relational data-
bases to complete RDFS views. For example, the RDFS meta-properties
rdfs:subClassOf and rdfs:subPropertyOf used to represent subsumption rela-
tionships between ontology classes and properties are not used in SWARD
since there is no natural representation of such relationships in a relational
database.

Notice that the user has to specify only the class and property mapping
tables; the schema view is automatically generated in terms of these tables.

 41

The user-defined tables cMap and pMap are small and stored in the main
memory of SWARD. Furthermore, the view S is also small and is material-
ized in main memory to speed up query processing. Our partial evaluation
algorithm will access these main memory tables intensively. It does not ac-
cess the physical database at all.

Figure 19 shows how the elements of the relational data model are repre-
sented in UPVs. The handling of foreign keys through class relationship
properties is explained later in Chapter 9.

Relational database element UPV representation
Table Mapped class
Column Mapped property
Row Mapped instance
Domain Range of mapped property
Key Mapped property
Foreign key Class relationship property

Figure 19:Representation of RDF Schema elements in UPVs

3.3 Query Processor
SWARD transforms SPARQL queries into algebra expressions containing
one or several calls to SQL for retrieving data from the relational database.
Figure 20 illustrates the SWARD system query processing architecture.

Figure 20: SWARD query processor

The user accesses SWARD through its query interface. The parser first
translates the SPARQL query into ObjectLog [36].

 42

The view expander recursively substitutes view references (ObjectLog
rules/views cannot be recursive) with their definitions.

The steps PARQ1 and PARQ2 reduce the ObjectLog query by partial
evaluation accessing the main memory tables cMap, pMap, and S. Depend-
ing on the strategy used PARQ1 and/or PARQ2 may not be executed.

The normalizer transforms the query to disjunctive normal form [3] (i.e.,
a union of conjunctive query fragments). Normalization improves query
execution by combining in the same conjunctive query fragment predicates
from the query and predicates from the property view definitions. Normali-
zation produces efficient query execution plans but the cost for rewriting the
resulting large expressions can be very high.

Finally, the SQL generator translates conjunctive query fragments in the
normalized predicate into an algebra expression containing calls to SQL. The
SQL calls are optionally preconditioned by a pre-filter, which is a predicate
interpreted by SWARD that determines whether the SQL query should be
selected for execution based on information stored in main memory system
tables (cMap, pMap, and S) in SWARD. The SQL calls are shipped via
JDBC to a commercial back-end relational database for cost-based optimiza-
tion by its optimizer and evaluation by its execution engine. The algebra
expression also contains a post-processor where such query fragments are
evaluated by SWARD that cannot be handled by the relational back-end, e.g.
construction of identifiers for mapped instances representing rows in rela-
tional tables.

The query optimization phase is defined as query rewriting (Step 3) plus
the step to run the relational database optimizer (Step 5) in Figure 20. The
query execution phase is defined as pre-filtering (Step 4), relational database
query execution (Step 6), and doing post-processing (Step 7).

3.4 Universal Property View
The data handled by SWARD is the union of content data stored in the rela-
tional database and schema data that describe the contents of the relational
database.

Assumption 1: The schema data and the content data do not overlap.

Assumption 1 is natural because of the separation of schema and data in
relational databases.

We use ObjectLog to internally represent the UPV U, schema view S and
content view C. As U=S ∪ C it has the definition
 U(s,p,v) :- S(s,p,v) OR C(s,p,v)

 43

3.4.1 Schema View
The schema view S in a UPV is defined as:
 S(s,p,v) :- Classes(s,p,v) OR
 Domains(s,p,v) OR
 Ranges(s,p,v)

The class view, Classes(s,p,v), defines the mapped classes and properties
in the UPV. The domain view, Domains(s,p,v) specifies for every mapped
property as its domain the mapped class associated to the table owning the
column associated to the mapped property. The range view, Ranges(s,p,v),
specifies the values of mapped properties as always being literals.

Example 6 shows the class view definition for the example database.
Lines 1-3 define all mapped classes for all viewed relational tables (table) in
the class mapping table cMap. Lines 4-6 define all mapped properties for all
viewed relational columns (column) in the property mapping table pMap.
Classes(s,p,v):-
1.(cMap(table,‘Comp’,s) AND
2. p = rdf:type AND
3. v = rdfs:Class) OR
4.(pMap(table,column,‘Comp’,s) AND
5. p = rdf:type AND
6. v = rdf:Property)

Example 6: Class view definition

The domain view is defined as:
 Domains(s,p,v):- pMap(table,column,’Comp’,s) AND
 p=rdfs:domain AND
 cMap(table,’Comp’,v)

It states that the domain of a mapped property is the mapped class associ-
ated with the table in which the column associated to the mapped property
exists.

Finally, the range of any property mapped to a relational database column
is always a literal, i.e.:
 Ranges(s,p,v):- pMap(table,column,’Comp’,s) AND
 p = rdfs:range AND
 v = rdfs:Literal

The views defined above (Classes, Domains, and Ranges) are small, and
do not access the back-end relational database. Furthermore, they do not
change during the lifetime of the UPV. Therefore, they are materialized in
SWARD during UPV generation into the main memory table S representing
the schema view of the UPV.

 44

3.4.2 Content View
The content view C of a relational database for a UPV is defined as a union
of internal property views PVp where one property view is generated for each
mapped property p i.e.

 C=
p
∪ PVp.

Example 7 shows the generated definition of U for the example UPV with
C expanded on lines 3-7. Notice that the number of mapped properties will
be large, since real-world relational databases contain many columns, so the
disjunctive expression will be very large. The schema view is referenced on
line 2. By convention, here, all property views are prefixed with ‘P_’.
1.U(s,p,v):-
2.S(s,p,v) OR
3.P_CustID(s,p,v) OR
4.P_MktSegment(s,p,v) OR
5.P_OrderID(s,p,v) OR
6.P_OCustID(s,p,v) OR
7.P_Clerk(s,p,v)

Example 7: UPV definition

Example 8 shows the definition of the property view P_MktSegment.

1.P_MktSegment(s,p,v) :-
2.customer(custid,v) AND
3.cMap('CUSTOMER','Comp',cid) AND
4.iMap(cid,custid,s) AND
5.pMap('CUSTOMER','MKTSEGMENT','Comp',p)

Example 8: Property view P_MktSegment

Line 2 accesses the relational table CUSTOMER. Line 3 accesses the class
mapping table to get the class identifier cid for the mapped class associated
to the table CUSTOMER and the UPV Comp. The external predicate iMap
on line 4 generates a unique URI, s, representing a row in the table by string
concatenation of the class identifier cid and a key custid, e.g.
co:Customer/120. Such instance identifiers represent instances of mapped
classes in the UPV. Line 5 retrieves the property identifier p representing the
property named Market in pMap that is mapped to the column MKTSEG-
MENT.

An instance identifier is a special purpose URI constructed out of a prefix
and a local name where the local name is the name of the mapped instance in
the UPV, given the prefix. For example, the name of the mapped instance
associated with the row in table CUSTOMER with primary key value ‘120’
is given the prefix co: is Customer/120.

 45

The external iMap predicate is invertible to be able to as well obtain the
key for a given mapped instance identifier by parsing the identifier string.

In general, a property view has the structure in Figure 21 where variable k

is bound to the primary key value of the relational table (table) and variable
v is bound to values from the relational column (column) mapped by the
property identifier p in the pMap table. Brackets [] are used to represent
names substituted by the UPV generator. On line 2 the predicate [table] ac-
cesses the relational table to relate the value v of the table column represent-
ing property p to the primary key k. Table names substituted for predicate
[table] accessing a relational database are always lowercased before substitu-
tion (line 2 Example 8).

1.P_[column](s,p,v) :-
2.[table](k,v) AND
3.cMap([table],[upv],cid) AND
4.iMap(cid,k,s) AND
5.pMap([table],[column],[upv],p)

Figure 21: Property view definition

 47

4 Query Classes

In this Chapter three classes of SPARQL queries to UPVs are defined to-
gether with examples of queries from each class. Content queries access
only the database contents. Schema queries retrieve schema data without
accessing the database contents. A hybrid query combines schema and con-
tent data. Queries that access data outside the relational database are not
covered.

4.1 Content Queries
Definition 1: A content query is a query where the properties in all triple
patterns are constant URIs that identifies mapped properties in the UPV.
Such triple patterns are called mapped property patterns.

Content queries search the relational database contents. For example, the
SPARQL query Q1 in Example 9 selects from the UPV for order number ‘1’
the market segment mkt of the customer cust placing the order.

SELECT ?cust ?mkt
WHERE {?order co:OrderID ‘1’ .
 ?order co:OrderCustomer ?ocust .
 ?cust co:CustID ?ocust .
 ?cust co:Market ?mkt .}

Example 9: Content query Q1

Query Q1 is a content query because all properties in the WHERE clauses
are bound to constant identifiers of mapped properties. It will return the fol-
lowing result tuple when executed:
 (co:Customer/120, ’AUTOMOBILE’)

co:Customer/120 is a system generated identifier (URI) representing a
mapped instance of the mapped class named Customer by concatenating its
class identifier co:Customer with the key value ‘120’ in table CUSTOMER.

SWARD answers content queries by generating SQL queries that
searches the relational database.

 48

4.2 Schema Queries
Definition 2: A schema query is a query where the properties in all triple
patterns are constants that identify schema-properties in the UPV. Such triple
patterns are called schema property patterns.

For example, SPARQL query Q2 in Example 10 is a schema query that
selects from the UPV all mapped properties prop whose domains are
co:Customer, except the property co:CustID. That is, Q1 finds the mapped
property identifiers for the non-key columns in table CUSTOMER. It is a
schema query because the only property identifier rdfs:domain in the
WHERE clause is a schema property identifier.

SELECT ?prop
WHERE {?prop rdfs:domain co:Customer .
 FILTER (?prop != co:CustID) .}

Example 10: Schema query Q2

In SPARQL value constraints enclosed by ‘(’ and ‘)’ can be defined with
the FILTER keyword. Q2 contains the filter != (not equal).

The query returns the tuple:
 (co:Market)

Since the schema property identifiers of schema queries do not represent
any mapped property (Assumption 1), they can be answered by accessing
only the small main memory table S representing the materialized schema
view. We will show that partial evaluation removes the access to the content
view C in the UPV definition.

4.3 Hybrid Queries
Definition 3: A hybrid query combines database schema and contents i.e.
mixes schema property and mapped property patterns.

In this Thesis a large subclass of hybrid queries is investigated that dy-
namically selects some mapped properties from a class and access their val-
ues. Such queries are important since i) they allows for the user to query the
viewed database without complete knowledge of the mapped classes and
properties in the UPV and ii) they can be stated in a more compact way than
their content queries counterparts. For example, query Q3 retrieves for a
specific order all the mapped properties, prop, and values, val, of the cus-
tomer placing the order except for the property co:CustID.

 49

SELECT ?cust ?prop ?val
WHERE {?prop rdfs:domain co:Customer .
 ?order co:OrderID ‘1’.
 ?order co:OrderCustomer ?ocust .
 ?cust co:CustID ?ocust .
 ?cust ?prop ?val .
 FILTER (?prop != co:CustID) .}

Example 11: Hybrid query Q3

Query Q3 returns the tuple:
 (co:Customer/120, co:Market, ‘AUTOMOBILE’)

Notice that, given that the user has sufficient knowledge of the classes
and properties in the UPV, query Q3 could also be stated as a content query
but with additional triple patterns to get all mapped properties and their val-
ues from the mapped class Customer.

In Chapter 9 it is described how UPVs are augmented with class member-
ship views to retain semantics from the relational database. Another subclass
of hybrid queries dynamically selects mapped classes and accesses their
mapped instances. Such hybrid queries are not investigated in this Thesis.

 51

5 The PARQ Algorithm

A central technology used in the query processing of SWARD is partial
evaluation. We have developed a new partial evaluation algorithm named
PARtial evaluation of Queries (PARQ) based on evaluation of query frag-
ments expressed in ObjectLog [36]. Our algorithm guarantees that the query
never grows by partial evaluation but is often reduced in size. It is iterative
and in each iteration it tries to reduce the query by compile evaluation of
pre-specified primitive predicates. A primitive predicate can be a logical
variable or constant, a table reference, or an external predicate reference.
PARQ will stop when there are no more pre-specified primitive predicates
left in the query to evaluate at compile time.

In the next chapters we illustrate how the algorithm enables efficient
processing of queries to large disjunctive UPVs by applying it on conjunc-
tive SPARQL queries parsed into ObjectLog. It is shown that PARQ reduces
query expressions produced during the processing into much simpler expres-
sions, which can be handled efficiently by a regular relational query opti-
mizer. The algorithm is generally applicable on any query, but conjunctive
SPARQL queries to UPVs are particularly suited since they are very com-
plex with many embedded disjunctions that in turn contain further conjunc-
tions. Furthermore, most subexpressions referenced in a query to a UPV can
be eliminated by the partial evaluation of PARQ.

Recall that, in general, a partial evaluator [29] (or specializer) is a func-
tion M that takes two arguments, the source of a program P and a static
(known) subset of the input I, and produces a specialized and more efficient
program PS:

 M(P,I) = PS

In the PARQ algorithm, P is a query fragment expressed as an ObjectLog
predicate and I is a system table specifying the names of the primitive predi-
cates that are candidates for evaluation at compile time. Initially P is the
original query. In addition to P and I we provide as an extra argument to
PARQ a list of the output (project) variables of the original query, OV, i.e:

 PARQ(P,I,OV) = PS

 52

If OV and P define a query to a UPV we will show that PS is substantially
faster to evaluate than P.

PARQ specializes P by partial evaluating iteratively query fragments at
compile time until no more reduction is possible. In SWARD, by evaluating
at compile time only system predicates stored in main memory, the back-end
relational database is not accessed during partial evaluation, so partial
evaluation incur no extra disk accesses.

Figure 22 shows the pseudo code for the top level of PARQ. The algo-
rithm is applied on an ObjectLog predicate P, which is a conjunction that
can contain disjunctive expressions. The function PC(P,I,OV) partially
evaluates conjunctions, while PD(P,I,OV) handles disjunctions. Line 1 in
Figure 22 handles the case when P is an atom (logical variable or constant),
line 2 when P is a conjunction, line 3 when P is a disjunction, and finally
line 4 when P is a primitive (simple) predicate, other than a logical variable
or constant, which is treated as a conjunction with one element.

function PARQ(P, S, OV)->PS
Input: P: a predicate
 I: a set of primitive predicate names being candidates
 for compile time evaluation.
 OV: output variables of the original query.
 These variables must remain in PS.
Output: Partially evaluated query PS
1. if P is atomic then return P
2. else if P is a conjunction then return PC(P, I, OV)
3. else if P is a disjunction then return PD(P, I, OV)
4. else return PC(AND(P), I, OV) (a primitive predicate P is treated as a conjunction

 with one predicate)

Figure 22: PARQ algorithm

The pseudo code of the central iterative function PC is shown in Figure
23.

function PC(P, I, OV)->PS
Input: P: a conjunction
 I: a set of primitive predicates being candidates for
 compile time evaluation.
 OV: output variables of the conjunction
Output: Partially evaluated conjunction PS
1. CHFLG := true
2. while CHFLG is true
3. do if P is empty then return true
4. CHFLG := false /* will be set to true if reduction made */
5. for each conjunct C in P
6. do if C is a primitive predicate c(a1,…,an) and C ∈ I

 53

7. then if all arguments a1,…,an are constants c1,…,cn
8. then R := evaluate c(c1,…,cn)
9. if R = false then return false
10. else remove C from P
11. else if some u1,…uk among a1,…,an are unknown .
12. then try to execute the probe query { u1,…uk | c(a1,…,an)}
13. if the probe query succeeds
14. then if no result is returned
15. then return false
16. else if the query returns
17. exactly one tuple v1,…,vk
18. then remove C from P
19. substitute in P all ui with vi
20. if ui ∈ OV
21. then add to P predicate ui=vi

22. CHFLG := true
23. else if C is a primitive predicate c(a1,…,an) and there is another

predicate Q in P, c(b1,…,bn), with equal key
24. then substitute in P all non-key bi with ai
25. remove Q from P
26. if bi ∈ OV then add to P predicate bi=ai
27. CHFLG = true
28. else if C is equality, c1=c2 where c1 and c2 are constants
29. then if c1≡c2
30. then remove C from P
31. CHFLG = true
32. else return false
33. else if C is a disjunction
34. then C’ := PD(C, I, OV’) where OV’ is

 OV ∪ (freevars(C) ∩ freevars(P−C))
35. if C’ = false then return false
36. else if C’ =/= C
37. then replace C with C’
38. CHFLG := true
39. if CHFLG = true then leave for each /* reduction made */
40. return P

Figure 23: Partial evaluation of conjunctions

The entire conjunction is replaced with symbol false if one of its predi-
cates evaluates to false (line 9). The probe query on line 12 tries to evaluate
at compile time a primitive predicate C where name(C) ∈ I. It fails if there
are not enough known parameters to evaluate it (happens only for external
predicates), in which case C cannot be compile time evaluated in the current
iteration. If the probe query succeeds but returns no result (line 14) it means
that the entire conjunctive predicate is false. If it returns exactly one result
tuple (lines 16-17) the probe query is reduced by removing C (line 18) and

 54

substituting the variables in the probe result tuple (line 19). However, output
variable assignments from the probe query are retained (lines 20-21). Impor-
tant is that probe queries yielding more than one result tuple are not elimi-
nated. This guarantees that the query is reduced in size in each round of the
while loop on line 2, except for assigning the limited number of output vari-
ables in OV.

Lines 23-37 apply the following key rewrite rule [24]:

Key rewrite rule: In a conjunction P, two predicates C and Q with the
same name and the same key parameters are equivalent. Therefore, they can
be unified making all parameters of C and Q equal and Q can be removed
from P.

On lines 28-32 equality predicates with both arguments bound to con-
stants are specially treated. Equality is specially treated by SPARQ and
equality cannot be in I.

Disjunctive subexpressions in a conjunction (lines 33-38) are handled by
calling PD (Figure 24). When calling PD, the result variables in OV are
augmented with the intersection of those free (unbound) variables in the
disjunctive subexpression to partial evaluate, freevars(C), that also exist in
the rest of the query (freevars (P-C)). This is for avoiding elimination, by
substitution, of variables that needs to be retained to produce the query re-
sult.

function PD(P, I, OV)->PS
Input: P: a disjunction
 I: a set of primitive predicates being candidates for partial
 evaluation.
 OV: output variables of the disjunction
Output: Partially evaluated disjunction PS
1. for each disjunct D in P
2. do D’: = PARQ(D, I, OV)
3. if D’=true then return true
4. if D’= false then remove D from P
5. else if D’ =/= D
6. then replace D with D’
7. if P empty then return false
8. return P

Figure 24: Partial evaluation of disjunctions

Figure 24 shows the pseudo code for PD. The elements of the disjunc-
tions are each partially evaluated by recursively invoking PARQ (line 2). If
an element is partially evaluated to true the entire disjunction is reduced to
true; if an element is reduced to false, it is removed from P (line 3-4). If an

 55

element is reduced to some other expression than true or false, it is replaced
(lines 5-6).

The algorithm guarantees that the query never grows by compile time
evaluating only primitive predicates producing no more than one result tuple.
The execution is controlled by I to avoid compile time probing of expensive
primitive predicates. The number of predicates that are tried for compile
time evaluation by PARQ is therefore at most O(N2), where N is the number
of primitive predicates in P whose names are in I. This is because the itera-
tion on line 5 in PC is restarted for every primitive predicate in I that is
compile time evaluated and removed from P. Since compile time evaluation
of primitive predicates in P never produces any new primitive predicates that
are in I the number of predicates that are in I is reduced for each new itera-
tion on line 5. In worst case every primitive predicate in P whose name is in
I is compile time evaluated.

 57

6 Query Processing

In this Chapter the need for partial evaluation when processing SPARQL
queries to UPVs is demonstrated with a small example. This is followed by
an overview of five different query processing strategies for answering
SPARQL queries to UPVs.

6.1 Processing an Example Query
Example 12 shows how query Q1 in Example 9 is represented in ObjectLog.

1.query(cust,mkt) :-
2.U(order,co:OrderID,’1’) AND
3.U(order,co:OrderCustomer,ocust) AND
4.U(cust,co:CustID,ocust) AND
5.U(cust,co:Market,mkt)

Example 12: ObjectLog expression for Q1

Lines 5-10 in Example 13 show how line 5 in Example 12 is view ex-
panded using the definition of U in Example 7.

1.query(cust,mkt) :-
2.U(order,co:OrderID,’1’) AND
3.U(order,co:OrderCustomer,ocust) AND
4.U(cust,co:CustID,ocust) AND
5.(S(cust,co:Market,mkt) OR
6. P_CustID(cust,co:Market,mkt) OR
7. P_MktSegment(cust,co:Market,mkt) OR
8. P_OrderID(cust,co:Market,mkt) OR
9. P_OCustID(cust,co:Market,mkt) OR
10.P_Clerk(cust,co:Market,mkt)

Example 13: Query Q1 after view expansion

After expanding the other three clauses in Q1 there will be 24 clauses, i.e.
20 references to property views and 4 references to the schema view. Ex-
panding the property views generates 80 primitive predicates. With the 4
schema view references the total number of primitive predicates adds up to
84.

 58

The SWARD query processor (Figure 20) then normalizes the view ex-
panded queries before they are translated into algebra expressions by the
SQL generator. Traditionally in database systems, normalization of queries
is performed to simplify and make query processing more efficient
[8][31][68][54]. A query could be normalized to either a disjunction of con-
junctions (disjunctive normal form, or DNF) or a conjunction of disjunctions
[3] (conjunctive formal form, or CNF). It will be shown that after view ex-
panding and normalizing queries to UPVs, the number of primitive predi-
cates is huge. Elimination of normalization is thus very important and is will
be shown how partial evaluation by PARQ achieves this.

The normal form used in SWARD is DNF. Normalization of queries in
SWARD, by combining in the same conjunctive query fragment predicates
from the query and predicates from the property view definitions, improves
query execution performance significantly, as will be shown. The reason is
that DNF normalization enables only the relevant combined query fragment
to be sent to the back-end relational DBMS.

Furthermore, when processing conjunctive SPARQL queries over dis-
junctive UPVs, normalization to DNF produces substantially smaller expres-
sions than CNF, as explained below. Consider a conjunctive SPARQL query
to a disjunctive UPV where Q is the number of clauses in the SPARQL
query, UP is the number of property views in the UPV definition and CP is
the number of primitive predicates in each property view. To simplify, the
one reference to the primitive predicate S in each UPV definition is ignored
(line 5 in Example 13). After view expansion an expression is produced on
the following format:

K1 AND K2,…,Kq where

Ki=P1 OR P2,…,Pup and
Pj=C1 AND C2,…,Ccp

Here, Ki is a clause in the query, Pj is a property view, and Cn is a primi-
tive predicate.

The number of primitive predicates in the query after normalization to
DNF is:

UPQ*CP*UP

UPQ is the number of conjuncts inside the generated disjunction and each
conjunct contains CP*UP primitive predicates.

 59

The number of primitive predicates after normalization to CNF is:

CPUP*Q*UP

CPUP*Q is the number of disjuncts inside the generated conjunctive ex-
pression and UP is the number of primitive predicates in each disjunct.

The expression on CNF thus grows exponentially over the number of
property views in the UPV definition while the expression on DNF grows
exponentially over the number of clauses in the query. Since the number of
clauses in the query is normally much smaller than the number of relational
columns viewed in RDF, normalization to DNF is a better strategy than
transforming the query to CNF.

For example, normalization to DNF of query Q1 without partial evalua-
tion, to the UPV in Example 7 (including the schema view S), produces
18144 primitive predicates while normalization to CNF would produce
24576 primitive predicates. Q1 is a very simple query, so normalization
makes it impossible to process most real-world queries to large UPVs. We
will next investigate query processing performance further and show that
PARQ applied on straight-forward query processing methods achieves scal-
ability.

6.2 BE: Naive Back End
The naive Back-End (BE) strategy represents the UPV entirely in the back-
end relational database as an SQL view. All query optimization is done by
the back-end DBMS and SWARD is not used. With BE cMap, pMap and S
are tables in the relational database:
 CMAP(TABLE,UPV,CLASSID)
 PMAP(TABLE,COLUMN,UPV,PROPID)
 S(S,P,V)

The columns {TABLE,UPV} and {UPV,CLASSID} are primary and sec-
ondary keys in cMap. In pMap {TABLE,COLUMN,UPV} and
{UPV,PROPID} are primary and secondary keys. In S the primary key is
made up of {S,P,V}.

 60

Example 14 shows the definition in SQL of UPV U over the example da-
tabase.

CREATE VIEW CUSTIDV(S,P,V)
 AS SELECT CM.CLASSID + '/' +
 CAST(C.C_CUSTKEY AS VARCHAR(25)),
 PM.PROPID, CAST(C.C_CUSTKEY AS VARCHAR(25))
 FROM CUSTOMER C, CMAP CM, PMAP PM
 WHERE PM.TABLE = 'CUSTOMER' AND
 PM.COLUMN = 'C_CUSTKEY' AND
 PM.UPV = 'COMP' AND
 CM.TABLE = 'CUSTOMER' AND
 CM.UPV = 'COMP'
…
CREATE VIEW CLERKV(S,P,V)
 AS SELECT CM.CLASSID + '/' +
 CAST(O.O_ORDERKEY AS VARCHAR(25)),
 PM.PROPID, CAST(O.O_CLERK AS VARCHAR(25))
 FROM ORDERS O, CMAP CM, PMAP PM
 WHERE PM.TABLE = 'ORDERS' AND
 PM.COLUMN = 'O_CLERK' AND
 PM.UPV = 'COMP' AND
 CM.TABLE= 'ORDERS' AND
 CM.UPV = 'COMP'

CREATE VIEW U(S,P,V)
 AS (SELECT * FROM CUSTID) UNION ALL
 (SELECT * FROM MKTSEGMENT) UNION ALL
 (SELECT * FROM ORDERID) UNION ALL
 (SELECT * FROM OCUSTID) UNION ALL
 (SELECT * FROM CLERK) UNION ALL
 (SELECT * FROM S)

Example 14: UPV in SQL

Our performance measurements will show that the BE strategy, using the
commercial DBMS, does not scale when the size of the database grows. This
is because no normalization is done during query processing resulting in
very poor execution plans containing SQL joins of unions of many subplans
for each property view.

6.3 END: Expand-Normalize-Decompose
The straight-forward END strategy uses SWARD to pre-process the queries
before sending SQL statements to the relational database for cost-based
query optimization. As classical query processing, the END strategy does
view expansion and normalization before generating SQL expressions. No
predicate is partially evaluated.

 61

The major problem here is that the normalized query becomes huge even
for this simple example. Real world databases will have large UPVs and the
SPARQL queries will contain many self joins over these UPVs, UPV joins,
so END will have unacceptable performance.

However, each disjunct in the expression on DNF contains a pre-filter
executed in SWARD that use cMap, pMap, and S and therefore, after nor-
malization to DNF, only the single SQL expression (shown below) is sent to
the relational DBMS:
 SELECT C.CUSTID,C.MKTSEGMENT
 FROM ORDERS O,CUSTOMER C
 WHERE O.ORDERID = '1' AND
 C.CUSTID = O.OCUSTID

All filtered-out SQL expressions select combinations of the query triple
patterns and mapped properties not relevant to answer the query and are
therefore not sent to the back-end DBMS.

Since this is the only SQL query executed by the back-end relational da-
tabase, the produced plans actually scale with the size of the database, unlike
BE. Thus END produces a scalable plan but with very high query processing
cost that grows exponentially with the size of the query because of normali-
zation to DNF.

Next, we show that by applying PARQ on END the query is substantially
reduced and normalization always eliminated for conjunctive content que-
ries, which dramatically improves the query processing time.

6.4 END-P: END with Partial Evaluation
As will be shown, by applying PARQ on END with I = {cMap,pMap,S} the
size of the UPV is dramatically reduced as no normalization is needed for
conjunctive content queries. Since these predicates are stored in main mem-
ory, PARQ processing is very fast. We illustrate this by going through how
PARQ reduces query Q1.

First, consider the view expansion of line 9 in Example 13 (P_OCustID)
producing the expression in Example 15 (_ denotes dummy variables).

1.orders(orderid,mkt,_) AND
2.cMap(‘ORDERS’,’Comp’,cid) AND
3.iMap(cid,orderid,cust) AND
4.pMap(‘ORDERS’,’OCUSTID’,’Comp’,co:Market)

Example 15: Expanded property view P_OCustID

 62

Partial evaluation by step PARQ1 of predicate pMap on line 4 will yield
false. Thus, the entire view expanded expression on line 9 in Example 13 is
eliminated (line 9 of the PARQ algorithm in Figure 23). Analogously lines 6,
8, and 10 in Example 13 will be eliminated by PARQ since the property
identifier co:Market does not represent those columns and therefore pMap in
the expanded column view definitions will be compile time evaluated to
false. The schema view reference S (line 5 in Example 13) is also compile
time evaluated to false (Assumption 1). Thus, step PARQ1 replaces the en-
tire disjunction on lines 5-10 in Example 13 with the conjunction from view
expanding line 7, i.e. the query fragment in Example 16 representing column
MKTSEGMENT in table CUSTOMER.

1.customer(custid,mkt) AND
2.cMap(‘CUSTOMER’,’Comp’,cid) AND
3.iMap(cid,custid,cust) AND
4.pMap(‘CUSTOMER’,’MKTSEGMENT’,’Comp’,co:Market)

Example 16: Expanded property view P_MktSegment

Here the call to pMap on line 4 is evaluated at compile time to true and
can be eliminated (line 10 Figure 23). Furthermore, compile time evaluation
of the call to cMap on line 2 in Example 16 substitutes variable cid with
co:Customer (lines 16-19 in Figure 23). Since cid is not among the output
variables of Q1, the test on line 20 in Figure 23 is false. Thus PARQ replaces
the disjunctive expression in the expanded U on line 5 in Example 12 with
the following expression producing the desired property identifier
(co:Market):
customer(custid,mkt) AND
iMap(co:Customer,custid,cust)

Analogously, lines 2-4 in Example 12 are also view expanded and par-
tially evaluated to different conjunctive single property view expressions,
producing the query in Example 17.
1. query(cust,mkt) :-
2. orders('1',_,_) AND
3. iMap(co:Orders,'1',order) AND
4. orders(orderid,ocust,_) AND
5. iMap(co:Orders,orderid,order) AND
6. customer(ocust,_) AND
7. iMap(co:Customer,ocust,cust) AND
8. customer(custid,mkt) AND
9. iMap(co:Customer,custid,cust)

Example 17: Expanded and partially evaluated Q1

We see that there are four references to predicates representing relational
tables, ORDERS and CUSTOMER, one for each conjunct in query Q1. Since

 63

iMap generates a unique mapped instance for each row in the relational table
(i.e. the last parameter of iMap is a key) the system can infer from lines 7
and 9 that ocust = custid and then, using the key rewrite rule (lines 23-25 in
Figure 23), substitute custid with ocust in the query and remove line 9 in
Example 17. This makes ocust be the key in both calls to customer on lines 6
and 8, so these calls have equal keys and can be combined into a single cus-
tomer(ocust,mkt).

Analogously, the calls to iMap on lines 3 and 5 implies that orderid = '1'
so orders on lines 2 and 4 can be combined into one call, orders('1',ocust,_).

The key rewrite rule combines iMap and relational database calls to the
same table before generating the SQL. It produces the fully reduced query in
Example 18:

1. query(cust,mkt) :-
2. orders('1',ocust,_) AND
3. iMap(co:Orders,'1',order) AND
4. customer(ocust,mkt) AND
5. iMap(co:Customer,ocust,cust)

Example 18: Fully reduced query Q1.

Finally, the SQL generator produces the following single SQL statement
from lines 2 and 4 in the reduced query. The statement is sent to the back-
end relational DBMS for cost-based optimization and execution. Notice that
this is the same SQL statement as produced with the END strategy.
 SELECT C.CUSTID,C.MKTSEGMENT
 FROM ORDERS O,CUSTOMER C
 WHERE O.ORDERID = '1' AND
 C.CUSTID = O.OCUSTID

In this example, there is no pre-filter after PARQ has reduced the query.
The execution plan will contain post-processing to construct two instance
identifiers from the result of the SQL query (lines 3 and 5 in Example 18).
The call to iMap on line 3 is actually not needed here and could be removed
as explained in [24], but the cost of constructing instance identifiers is very
cheap so the current implementation keeps this in the post-filter.

The example shows that PARQ applied on END significantly reduces the
query and eliminates normalization. A single SQL statement is sent to the
back-end database.

In general the following holds for END-P:

Theorem: For conjunctive content queries, the content view C is always
reduced to a single conjunction after applying PARQ on C after view expan-
sion.

 64

Proof: All identifiers pi in a conjunctive content query with condition
AND (C(si,pi,vi)) are constants representing mapped properties. Every prop-
erty view PVp in the content view C contains a test to decide if pi is identifier
for the mapped property p. This test is made by calling pMap to see if pi is
mapped to the relational column viewed by PVp (e.g. line 4 in Example 15).
After view expansion and partial evaluation by PARQ (step PARQ1 in
Figure 20) of each query clause C(si,pi,vi), C is thus replaced with the single
conjunctive view expanded property view PVp(si,pi,vi) where pi is an identi-
fier for mapped property p (e.g. Example 16).

Corollary: For conjunctive content queries, each UPV reference, U, is
always replaced by END-P with a single conjunction after applying PARQ
on view expanded U.

Proof: Follows directly from Theorem and Assumption 1.

Disjunctive SPARQL queries are treated in SWARD as unions of con-
junctive subqueries where END-P is applied on each subquery. This is not
covered by this Thesis.

6.5 DPS: Dynamic Plan Selection
END-P becomes slower when the number of mapped properties increases
because of the cost of view expansion and partial evaluation of the larger
expanded query. The naive DPS (Dynamic Plan Selection) strategy elimi-
nates view expansion by defining the UPV as selecting from a system table
pView precompiled subplans for each property view:
U(s,p,v):- pView(p,‘Comp’,pvd) AND
 applyView(pvd,s,p,v)

The system table pView(PropID,UPV,PropViewDef) stores, for a given
mapped property identifier (PropID), and UPV, the definition of the corre-
sponding property view definition (PropViewDef) including a precompiled
execution plan to retrieve the extent of PropViewDef from the database. To
handle schema and hybrid queries, precompiled subplans are stored also for
the RDF Schema meta-property identifiers rdf:type, rdfs:domain, and
rdfs:range. Such subplans are defined in terms of the materialized schema
view, S, and does not access the back-end relational database. These prop-
erty views are referred to as meta-property views.

The system predicate applyView(PropViewDef,S,P,V) dynamically in-
vokes the precompiled view definition PropViewDef yielding the RDF tri-
ples <S,P,V>.

 65

After view expansion of the reference to co:Market in line 5 in Example
12 we get the expanded query in Example 19.

On line 5 the external predicate pView retrieves the property view defini-
tion pvd for the property identifier co:Market and the UPV Comp. Then ap-
plyView invokes the precompiled query plan pvd to retrieve the entire prop-
erty view extent. Analogously the other references to U in Example 12 also
retrieve entire property view extents. All selections are done as post-
processing in SWARD after all referenced property views are downloaded,
clearly a very inefficient execution strategy.

1.query(cust,mkt) :-
2.U(order,co:OrderID,'1') AND
3.U(order,co:OrderCustomer,ocust) AND
4.U(cust,co:CustID,ocust) AND
5.pView(co:Market,’Comp’,pvd) AND
6.applyView(pvd,cust,co:Market,mkt)

Example 19: View expanded Q1 using DPS

DPS decreases the query processing time by dynamically selecting at exe-
cution time only those precompiled property views used in the query. No
normalization is needed but query execution is very slow since entire extents
of all property views referenced in the query are shipped to SWARD and
joined there. No predicates are partially evaluated.

6.6 DVS-P: Dynamic View Selection with Partial
Evaluation

View expansion cannot be done with DPS since the actual property views
are retrieved at run time. DVS-P (Dynamic View Selection with Partial
evaluation) applies PARQ on DPS to select and expand those (meta-) prop-
erty views referenced in the query. Normalization is not needed here either
since the view expanded query is always conjunctive.

DVS-P is defined as DPS partially evaluated with
I = {cMap,pMap,S,pView}. Furthermore, PARQ is extended with a special
rule to handle delayed expansion of views, as will be explained.

Partial evaluation of pView in step PARQ1 first selects the (meta-) prop-
erty view. For example, on line 12 in Example 20 PARQ will probe pView to
retrieve the property view P_MktSegment denoted pView:MktSegment in
Example 20.

 66

1.query(cust,mkt) :-
2.U(order,co:OrderID,'1') AND
3.U(order,co:OrderCustomer,ocust) AND
4.U(cust,co:CustID,ocust) AND
5.applyView(pView:MktSegment,cust,co:Market,mkt)

Example 20: Partially evaluated Q1 using DVS-P

Here the first argument of applyView (line 5) is the picked property view
definition. If the first parameter of applyView is known at compile time, as in
this case, the view could be expanded by the query processor. We therefore
add to PARQ the following rule for applyView expansion after line 32 in
Figure 23:

View expansion rule: If predicate C is
applyView(PropViewDef,S,P,V) and PropViewDef is a constant then replace
applyView(PropViewDef,S,P,V) with view expanded PropViewDef(S,P,V).

Line 5 in Example 12 is thus replaced with the predicate
P_MktSegment(cust,co:Market,mkt), producing exactly the same query
fragment as in Example 16 after view expansion.

The same substitutions of applyView are done for the other query clauses.
The final steps, i.e. further query reduction and SQL generation are the same
as for END-P. The difference between END-P and DVS-P is that with END-
P we first view expand a large UPV definition and then apply PARQ to re-
duce it. With DVS-P we apply PARQ to pick and view expand only the
pieces of the UPV referenced in the query before reducing it.

Our performance measurements verify that DVS-P scales excellently for
content queries both with the size of the relational database, as well as with
the size of the SPARQL query and the UPV definition. The back-end rela-
tional DBMS will execute the same single SQL query as END and END-P.

 67

7 Performance Measurements

We measured the performance of BE, END, END-P, DPS, and DVS-P for
content queries while scaling database size as well as query and UPV sizes.

The query optimization time is defined as the time to rewrite the query
(Step 3 in Figure 20) plus the time to run the relational database optimizer
(Step 5). The query execution time is the time for doing pre-filtering (Step
4), relational database query execution (Step 6), and executing the post-
processing (Step 7).

The experiments were run on a DELL Optiplex GX270 with 2.2 GHz
CPU, 512 MB main memory, and Windows XP Professional OS. We used a
commercial relational database with 100 MB buffer size and the TPC-H [64]
benchmark database generator for the data scalability tests. The profiling
tool of the DBMS was used to measure how much time was spent in back-
end query optimization and execution, respectively.

7.1 Scaling the Database Size
Figure 25 shows the times to execute query Q1 for the different strategies
and a cold database while scaling the database size according to the TPC-H
benchmark.

The execution plan produced by the relational DBMS in the BE strategy
was examined using the query inspection tool of the commercial DBMS. It
revealed that no normalization at all had been made and the large plan con-
tained SQL joins of unions of a subplan for each property view in the UPV.
Such an approach does not scale when the database size is increased (notice
the logarithmic scale for the y-axis) since all property view extents are re-
trieved. However, it avoids the high cost of normalization so it will be able
to handle large queries.

With END, the execution time scales, as expected. However, the query
optimization time with END was 30 sec compared to only about 0.3 sec with
BE. END-P and DVS-P send exactly the same SQL query as END to the
back-end relational DBMS, with the same execution times.

 68

DPS scales somewhat better than BE. The reason is that the execution
plan of BE was very complex containing 48 joins accessing all property
views, while DPS contains only 13 joins executed in SWARD to access only
those property view extents required to answer the query. However, DPS
still does not scale well as it retrieves entire property view extents, like BE.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Database size in GB

Ex
ec

ut
io

n
tim

e
in

 m
s

 END, END-P, DVS-P
BE
DPS

Figure 25: Execution times up to 2 GB (logarithmic scale)

7.2 Scaling the Query and Schema Sizes
In general, a SPARQL query in SWARD referencing N properties (in terms
of N triple patterns) will have N-1 self joins to the UPV. Since the UPV
definition will usually contain a large number of mapped properties (rela-
tional databases usually have many columns), realistic size SPARQL queries
will have many self joins of a complex UPV, and the system must be able to
handle this efficiently. We measured the query optimization times as the
sizes of the SPARQL query and the UPV definition were increased.

In order to scale the UPV, the size of a synthetic relational database
schema was scaled by using a table generator function createTbls(nt,nc),
where nt is the number of generated tables and nc is the number of generated
columns in each table. All tables Ti, 1≤i≤nt, have identical column names Cj,
1≤j≤nc where C1 is primary key.

 69

For example, createTbls(3,4) generates these tables:
 T1(C1,C2,C3,C4)
 T2(C1,C2,C3,C4)
 T3(C1,C2,C3,C4)

Every relational table Ti and column Cj is associated with a mapped class
ci and mapped property pj in cMap and pMap, respectively.

The generated SPARQL queries are scaled by adding more triple patterns
that retrieve an increasing number of properties from each mapped class.

SELECT ?v1,1,…,?v1,ppt,?v2,1,?v2,3,…,
 ?v2,ppt,?v3,1,?v3,3,…,?vnt,ppt
WHERE {?s1 <p1,1> ?v1,1 .
 …
 ?s1 <p1,ppt> ?v1,ppt .
 ?s2 <p2,1> ?v2,1 .
 ?s2 <p2,2> ?v1,1 .
 ?s2 <p2,3> ?v2,3 .
 …
 ?s2 <p2,ppt> ?v2,ppt .
 ?s3 <p3,1> ?v3,1 .
 ?s3 <p3,2> ?v2,1 .
 ?s3 <p3,3> ?v3,3 .
 …
 ?snt <pnt,ppt> ?vnt,ppt .}

Example 21: Scaling the SPARQL query size

ppt properties are extracted per mapped class ci where ppt ≤ nc. The prop-
erty identifiers pj,1 … pj,ppt represent properties pj,1 … pj,ppt mapped to col-
umns C1 … Cppt of table Ti were vi,1 is the value for each mapped property.
The variable si holds mapped instances for the mapped class ci. Identifiers
for mapped properties are constants and enclosed with <...>. The scaled syn-
thetic queries have the shape shown in Example 21.

Each table Ti+1 is joined with table Ti with column C2 in Ti+1 equal to C1
in Ti. Hence, our query is scaled up to nt*ppt SPARQL triple patterns pro-
ducing nt*ppt-1 UPV joins and nt-1 SQL joins in the relational database
extracting nt*(ppt-1)+1 mapped property values.

For example, createTbls(2,4) and ppt=3 generates the SPARQL query:
 SELECT ?v1_1, ?v1_2, ?v1_3, ?v2_1, ?v2_3
 WHERE {?s1 <p1_1> ?v1_1 .
 ?s1 <p1_2> ?v1_2 .
 ?s1 <p1_3> ?v1_3 .
 ?s2 <p2_1> ?v2_1 .
 ?s2 <p2_2> ?v1_1 .
 ?s2 <p2_3> ?v2_3 .}

 70

Figure 26 compares the optimization times for an increasing number of
SPARQL triple patterns in the WHERE clause for a UPV over a single rela-
tional table with eight mapped properties (nt=1, nc=8, ppt varies from 1 to
8). The optimization time for the BE strategy was measured by scaling the
number of SQL self joins over a UPV definition of equal size in a synthetic
SQL query constructed analogously to the SPARQL query in Example 21.

The SQL analogue using the BE strategy for the synthetic SPARQL query
above is:
 SELECT C1.V,C2.V,C3.V,C4.V,C6.V
 FROM U C1,
 U C2,
 U C3,
 U C4,
 U C5,
 U C6
 WHERE C1.P = <p1_1> AND
 C2.P = <p1_2> AND
 C3.P = <p1_3> AND
 C4.P = <p2_1> AND
 C5.P = <p2_2> AND
 C6.P = <p2_3> AND
 C1.S = C2.S AND
 C2.S = C3.S AND
 C4.S = C5.S AND
 C5.V = C1.V AND
 C5.S = C6.S

As expected, the optimization time with END deteriorates very fast with
the number of triple patterns in the query.

1

10

100

1,000

10,000

100,000

1,000,000

0 1 2 3 4 5 6 7

Number of joins in query

O
pt

im
iz

at
io

n
tim

e
in

 m
s

 END
 END-P
 DPS
DVS-P
BE

Figure 26: Optimization times up to 7 UPV joins in query

 71

SWARD ran out of memory after four triple patterns i.e. three UPV joins.
Logarithmic scale is used to be able to compare END and BE with the other
strategies in the same diagram. END-P scales dramatically better than END
since normalization is eliminated. DVS-P and DPS are faster than END-P by
selective view expansion. The BE strategy scales better than END but is
slower than the strategies based on PARQ.

To conclude, Figure 26 clearly shows that END produces unacceptable
processing times for SPARQL queries of even very modest size (three UPV
joins). However, by applying PARQ on END (END-P) the query processing
scales well when the SPARQL query size is increased. Both DVS-P and
DPS scale even better, but DPS has unacceptable execution performance.
The END-P and DVS-P strategies outperform the naive BE with respect to
both optimization and execution times.

0

2000

4000

6000

8000

10000

3 7 11 15 19 23 27 31

Number of joins in query

O
pt

im
iz

at
io

n
tim

e
in

 m
s

 END-P
 DPS
DVS-P

Figure 27: Optimization times up to 31UPV joins in query

To investigate query optimization performance for a very large UPV,
Figure 27 compares END-P, DPS, and DVS-P for a database with nt=8 and
nc=10 (i.e. 80 mapped properties). The query retrieves four mapped proper-
ties per mapped class (ppt=4) while scaling the number of joined tables in
the back-end relational database to 8. Thus, there are up to 31 UPV joins in
the WHERE clause of the SPARQL query.

The reason DVS-P is slower than DPS is the increasing cost of expanding
many property views, while DPS simply selects precompiled execution plans
without view expansion and application of PARQ.

 72

In summary, our evaluations show that END-P and DVS-P produce effi-
cient reduced conjunctive content queries while BE, END, and DPS do not
scale. For content queries DVS-P scales best, since it further improves the
query optimization time compared to END-P as the size of the query in-
creases.

However, DVS-P requires PARQ to be able to infer exactly what views to
expand, which is always possible for content queries where the properties in
all triple patterns are constant URIs that identify mapped properties in the
UPV (Definition 1), but not for hybrid queries, as will be shown in the next
Chapter. There it is presented how END-P provides scalable query process-
ing also for hybrid queries.

In Figure 28 a summary of all evaluated query processing strategies for
content queries is presented. The optimization time of content queries for a
strategy is characterized relatively to the other strategies. The execution of
content queries is described as scalable or non scalable depending on the
nature of the algebra expression produced in Step 3.5 in the SWARD query
processor (Figure 20).

Strategy Optimization Execution Compile time candidates I
BE Fast Non scalable {}
END Very slow Scales {}
END-P Fast Scales {cMap,pMap,S}
DPS Very fast. Non scalable {}
DVS-P Very fast Scales {cMap,pMap,S,pView}

Figure 28: Evaluation of query processing strategies for content queries

 73

8 Processing Schema and Hybrid Queries

The processing of hybrid queries relies on how schema queries are proc-
essed. In this Chapter therefore, partial evaluation of schema queries is first
described followed by how partial evaluation also improves processing hy-
brid queries dramatically.

8.1 Schema Queries
Expanding the WHERE clause of Q2 in Example 10 with the definition of U
produces the following ObjectLog query:
 query(prop):-
 (S(prop,rdfs:domain,co:Customer) OR
 C(prop,rdfs:domain,co:Customer)) AND
 prop != co:CustID

In this case C is eliminated by partial evaluation because for a schema
query the meta-property identifier does not exist in pMap (Assumption 1)
and therefore every property view PVp in C evaluates to false.

The final query thus becomes:
 query(prop) :-
 S(prop,rdfs:domain,co:Customer) AND
 prop != co:CustID}

Notice that S is not compile time evaluated here by PARQ since the mapped
class identified by co:Customer has many properties and thus S yields more
than one result binding for prop. The reduced query accesses only the mate-
rialized table S and does not access the back-end database at all.

8.2 Hybrid Queries
A hybrid query combines database schema and contents i.e. mix schema
property and mapped property patterns (Definition 3).

Example 11 shows an example hybrid query Q3 that dynamically re-
trieves mapped properties from a class. Example 22 shows query Q3 in Ob-
jectLog.

 74

1.query(cust,prop,val) :-
2.U(prop,rdfs:domain,co:Customer) AND
3.U(order,co:OrderID,’1’) AND
4.U(order,co:OrderCustomer,ocust) AND
5.U(cust,co:CustID,ocust) AND
6.U(cust,prop,val) AND
7.prop != co:CustID

Example 22: Hybrid query Q3 in ObjectLog

This is the kind of hybrid queries studied in this Thesis. Such a hybrid
query is a conjunction between schema clauses selecting and binding vari-
ables to relational schema information (line 2), content clauses (lines 3-5)
selecting content from the database, and hybrid clauses (line 6) dynamically
retrieving mapped properties from a class by joining the schema and con-
tents clauses.

Recall that content queries are defined to have all properties in the query
bound to constant identifiers of mapped properties, and this is not the case
for hybrid clauses. For example, on line 6 of Example 22, the variable prop
is unknown. This prevents the reduction of U(cust,prop,val) to a conjunctive
expression by PARQ.

However, as for query Q1, the schema clause on line 1 in Example 22
will be partial evaluated by step PARQ1 into the single clause:
 S(prop,rdfs:domain,co:Customer)

With the END-P strategy and I = {cMap,pMap,S} the content clauses on
lines 3-5 in Example 22 are reduced by PARQ to simple conjunctive expres-
sions (Corollary) and need no further discussion.

The hybrid clause on line 6 is view expanded in Example 23, lines 3-8,
into a disjunction representing the entire UPV.

1.S(prop,rdfs:domain,co:Customer) AND
2.//conjunctive expression from content clauses
3.(S(cust,prop,val) OR
4. P_CustId(cust,prop,val) OR
5. P_MktSegment(cust,prop,val) OR
6. P_OrderID(cust,prop,val) OR
7. P_OCustID(cust,prop,val) OR
8. P_Clerk(cust,prop,val)) AND
9. prop != co:CustID

Example 23: Expanded hybrid clause

Notice that property view definitions always contain a call to pMap that
bind its property identifier. For example, in Example 8 that defines the prop-
erty view P_MktSegment, line 5 binds p to co:Market. Therefore, every par-

 75

tial evaluation in step PARQ1 of a property view in a hybrid clause explicitly
binds prop.

We also notice that normalization combines the schema clause with the
elements in expanded hybrid clauses. In particular, the schema clause of line
1 in Example 23 is conjuncted with each of the clauses on lines 4-8. Fur-
thermore, the schema clause restricts the property identifier to those repre-
senting mapped properties from the class Customer.

The above observations implies that partial evaluation in step PARQ2
eliminates the clauses on lines 4-8 that are not accessing mapped properties
of class Customer, i.e. lines 6-8. The remaining clauses in the normalized
expression are formed by combining lines 1, 2, and 9 with lines 3, 4, and 5.

At run time the conjunctive pre-filter formed by lines 1 and 3 evaluates to
false since prop cannot be both a schema property identifier and a property
identifier (Assumption 1). Also the pre-filter formed by lines 4 and 9 evalu-
ates to false since the property identifier co:CustID should be excluded. The
only executed SQL query is the one produced by lines 2 and 5:
 SELECT C.MKTSEGMENT
 FROM CUSTOMER C, ORDERS O
 WHERE O.ORDERID = ‘1’ AND
 O.OCUSTID = C.CUSTID

In general, for such hybrid queries that dynamically retrieve mapped
properties of a given class partial evaluation substantially reduces the queries
by removing at compile time all query fragments for properties of other
classes. The final expression is a disjunction if more than one mapped prop-
erty is retrieved.

The reductions apply also for selecting properties from more than one
class since such a query can be expressed as a union of queries accessing
properties from single classes. This is not investigated in this Thesis.

8.3 Performance Measurements
We evaluated the query optimization time of the hybrid query Q3 by scaling
the size of the UPV over the number of mapped properties of the class Cus-
tomer extended with six more properties, starting with only one property and
then successively increasing the number up to eight properties.

The optimization time of BE, END-P, DPS, and DVS-P for UPVs with
increasing numbers of mapped properties in pMap is illustrated by Figure
29. Without partial evaluation (END) the SWARD optimizer runs out of
memory even for the smallest UPV. The behaviour of the other strategies is
similar as for content query Q1.

 76

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

Number of columns extracted from Customer

O
pt

im
iz

at
io

n
tim

e
in

 m
s

 END-P
DVS-P
DPS
BE

Figure 29: Optimization time for hybrid query

We also evaluated the query execution time for the hybrid query using
TPC-H.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Database size in GB

Ex
ec

ut
io

n
tim

e
in

 m
s

END-P
BE
DVS-P
DPS

Figure 30: Execution time for hybrid query.

 77

Figure 30 compares the performance of BE, END-P, DPS, and DVS-P for
a UPV with 8 mapped properties and an increasing database size.

As expected BE and DPS proved to have the same bad performance as for
content query Q1. For hybrid queries DVS-P does not scale because the par-
tial evaluator is not able to uniquely identify the argument to applyView re-
quired by DVS-P so no view expansion of applyView can be made at com-
pile time. DVS-P is faster than DPS with a factor two since partial evalua-
tion by step PARQ1 avoids selecting entire property views from ORDERS.

END-P is the only strategy that shows good performance for both content
queries and hybrid queries. To conclude, this experiment shows that partial
evaluation with strategy END-P enables transformation of hybrid queries
into efficient SQL queries while DVS-P does not scale with the size of the
database.

In Figure 31 a summary of all evaluated query processing strategies for
hybrid queries is presented. The performance of the different strategies in
terms of optimization and execution of hybrid queries are characterized the
same way as for content queries. Since strategy END-P shows good per-
formance for all three query classes it is chosen as default when processing
SPARQL queries to UPVs in SWARD.

Strategy Optimization Execution Compile time candidates I
BE Fast Non scalable {}
END Very slow Scales {}
END-P Fast Scales {cMap,pMap,S}
DPS Very fast. Non scalable {}
DVS-P Very fast Non scalable {cMap,pMap,S,pView}

Figure 31: Evaluation of query processing strategies for hybrid queries

 79

9 Augmented UPVs

So far it has been described how UPVs provide access to content and schema
information in relational databases. However, for three reasons the UPVs
described so far do not yet qualify as complete RDFS views over relational
databases:

• Every ER entity must be associated with an entity type. It should be
possible to find all instances of a mapped class or the class of a
mapped instance. However, so far, it has not been described how to
encode class memberships of mapped instances.

• ER relationship types that model relationships between entity types
should be defined in the UPV. ER relationships between mapped
classes should be represented in the UPV. This is important for the
same reasons as with class memberships. As of yet, it has not been
described how to make ER relationships explicit in UPVs.

• So far, it has not been described how to define mapped properties
over columns in relational tables with composite primary keys.
This must be allowed in order to generate UPVs over arbitrary rela-
tional databases.

This Chapter extends the basic UPVs in order to represent the above three
kinds of semantic information. Section 9.1 presents how mapped instances
are associated with their mapped classes in the UPV. Section 9.2 shows how
ER relationships implicitly represented by foreign keys in the relational
model are made explicit in the UPV by encoding them as RDF properties
relating mapped classes. Section 9.3 shows how relational tables with com-
posite primary keys are represented in a UPV. Finally, in Section 9.4 it is
proven that conjunctive content queries to augmented UPVs always are re-
duced to a simple conjunction by PARQ.

9.1 Class Membership
So far, the content view in a UPV has been defined as the union of property
views that define values of mapped properties for mapped instances. How-
ever, there is so far nothing in the UPV that states explicitly the class mem-
bership of a mapped instance. This means that queries, such as, give me all

 80

instances of the class co:Customer, must be written as illustrated by query
Q4 in Example 24.

SELECT ?cust
WHERE {?cust co:CustID ?custid .}

Example 24: Content query Q4 finding the instances of a class.

The result of Q4 is:
(co:Customer/120)

The result is correct since it is here assumed that a mapped property de-
fined over a mapped class is instanciated for every member of that class.
However, it is quite unnatural to state the query to find all instances of a
class as finding all the mapped instances of some property in pMap such that
the domain of the property is that particular class.

The RDFS meta-property rdf:type defines the class to which a URI be-
longs. So far we have used it (in Chapter 3) only to define the mapped class
and mapped property meta-objects themselves. Thus, the meta-property
rdf:type has not been used to state the class of a mapped instance as is re-
quired for complete RDFS views over relational databases. Because of this
one cannot directly find all members of a class by using the rdf:type meta-
property as in Example 25, and instead one has to use the unnatural query in
Example 24. Query triple patterns that retrieve for a given mapped class its
instances as in Example 25 are called class membership patterns.

SELECT ?cust
WHERE {?cust rdf:type co:Customer .}

Example 25: Content query Q5, finding all instances of a class.

To incorporate statements that define the classes of mapped instances in
the UPV the definition of the content view is augmented to include also a
class membership view, CMc, for each mapped class in cMap that represents
the extent of class c.

C =
p
∪ PVp OR

c
∪ CMc

In the example Company database the following three RDF triples encode
the class membership of the mapped instances in Figure 17:

<co:Customer/120,rdf:type,co:Customer>
<co:Orders/1,rdf:type,co:Orders>
<co:Orders/2,rdf:type,co:Orders>

 81

The augmented UPV definition with class membership views is shown in
Example 26.

1.U(s,p,v):-
2.S(s,p,v) OR
3.P_CustID(s,p,v) OR
4.P_MktSegment(s,p,v) OR
5.P_OrderID(s,p,v) OR
6.P_OCustID(s,p,v) OR
7.P_Clerk(s,p,v) OR
8.CM_Customer(s,p,v) OR
9.CM_Orders(s,p,v)

Example 26: UPV definition with class membership view.

The class membership views CM_Customer and CM_Orders classify the
mapped instances from relational tables CUSTOMER and ORDERS as mem-
bers of the mapped classes Customer and Orders, respectively. By conven-
tion, here, all class membership views are prefixed with ‘CM_’.

Example 27 shows the definition of the class membership view
CM_Customer.

1.CM_Customer(s,p,v):-
2.customer(custid,_) AND
3.cMap(‘CUSTOMER','Comp',v) AND
4.iMap(v,custid,s) AND
5.p = rdf:type

Example 27: Definition of class membership view CM_Customer.

Class membership views associate mapped instances from a relational ta-
ble with mapped classes and access cMap to do so.

In general, a class membership view in a UPV has the structure in Figure
32 where variables k is bound to the primary key value of the relational table
(table). The predicate on line 2 accesses the table to bind k.

1.CM_[table](s,p,v) :-
2.[table](k) AND
3.cMap([table],[upv],v) AND
4.iMap(v,k,s) AND
5.p = rdf:type

Figure 32: Definition of class membership view

Even though query Q5 in Example 25 accesses values from the CUSTID
column in table CUSTOMER Q5 is not categorized as a content query by
Definition 1 where a content query is defined to be a query where all proper-
ties are constants and bound to identifiers for mapped properties. Therefore,

 82

a more general definition of content queries is needed, extended content que-
ries.

The RDFS meta-property rdf:type in a UPV defines either i) the meta-
class of a mapped property (class rdf:Property) or the meta-class of a
mapped class (class rdfs:Class) or ii) the class of a mapped instance. A
query using rdf:type to reference a meta-class (i.e. the first role) is a schema
query while a extended content query may use rdf:type in the second role.
Since class membership patterns define the class of only mapped instances
we get the following definition:

Definition 4: An extended content query is a conjunctive query where all
triple patterns are either mapped property patterns, or class membership pat-
terns.

It is now shown that applying PARQ on END with I = {cMap,pMap,S}
for a extended conjunctive content query substantially reduces the query
expression sizes and no normalization is needed for such queries either.

In Example 28 the extended content query Q5 is presented in ObjectLog.

1.query(cust):-
2.U(cust,rdf:type,co:Customer)

Example 28: ObjectLog expression for Q5.

Example 29 shows how line 2 is view expanded using the UPV definition
from Example 26.

1.query(cust):-
2.S(cust,rdf:type,co:Customer) OR
3.P_CustID(cust,rdf:type,co:Customer) OR
4.P_MktSegment(cust,rdf:type,co:Customer) OR
5.P_OrderID(cust,rdf:type,co:Customer) OR
6.P_OCustID(cust,rdf:type,co:Customer) OR
7.P_Clerk(cust,rdf:type,co:Customer) OR
8.CM_Customer(cust,rdf:type,co:Customer) OR
9.CM_Orders(cust,rdf:type,co:Customer)

Example 29: Query Q5 after view expansion.

By Assumption 1 line 2 is compile time evaluated to false and eliminated.
Lines 3-7 are also eliminated by partial evaluation because of Assumption 1
since no mapped property identifier can be named rdf:type. Example 30
shows the expanded class member view CM_Orders from line 9 in Example
29.

 83

1.orders(custid,_,_) AND
2.iMap(co:Customer,custid,cust) AND
3.cMap(‘ORDERS’,’Comp’,co:Customer) AND
4.rdf:type=rdf:type

Example 30: Expanded class membership view CM_Orders.

The call to cMap on line 3 is compile time evaluated to false and the en-
tire view expanded expression on line 9 in Example 29 is therefore elimi-
nated by PARQ.

Thus, after partial evaluation only line 8 remains in Example 29. After
view expansion it becomes the expression in Example 31.

1.customer(custid,_) AND
2.iMap(co:Customer,custid,cust) AND
3.cMap(‘CUSTOMER’,’Comp’,co:Customer) AND
4.rdf:type=rdf:type

Example 31: Expanded class membership view CM_Customer.

The call to cMap on line 3 is compile time evaluated to true and removed.
Line 4 is removed by line 30 in Figure 23. Example 32 shows the fully re-
duced query Q5.

1.query(cust) :-
2.customer(custid,_) AND
3.iMap(co:CustID,custid,cust)

Example 32 Fully reduced query Q5.

Finally, the SQL generator produces the following single SQL statement
from line 2 of the reduced query. The statement is sent to the back-end rela-
tional DBMS for cost-based optimization and execution.
 SELECT C.CUSTID
 FROM CUSTOMER C

The same SQL is generated also from query Q4 that finds all members of
a mapped class by accessing all mapped instances with a property that has as
domain that particular class.

So far it was shown how to find the extent of a mapped class by queries to
UPVs using the property rdf:type. The same property rdf:type can also be
used for finding the type of a given mapped instance.

SELECT ?class
WHERE {co:Customer/120 rdf:type ?class .}

Example 33: Content query Q6, finding the class membership of an instance.

 84

For example, query Q6 in Example 33 retrieves the class for a given in-
stance of that class, co:Customer/120.

The result of Q6 is:
(co:Customer)

PARQ applied on query Q6 with I = {cMap,pMap,S,iMap} will be shown
to reduce the query to a simple conjunctive expression before SQL genera-
tion.

In Example 34 the extended content query Q6 is presented in ObjectLog.

1.query(class):-
2.U(co:Customer/120,rdf:type,class)

Example 34: ObjectLog expression for Q6.

Example 35 shows how line 2 is view expanded using the UPV definition
from Example 26.

1.query(class):-
2.S(co:Customer/120,rdf:type,class) OR
3.P_CustID(co:Customer/120,rdf:type,class) OR
4.P_MktSegment(co:Customer/120,rdf:type,class) OR
5.P_OrderID(co:Customer/120,rdf:type,class) OR
6.P_OCustID(co:Customer/120,rdf:type,class) OR
7.P_Clerk(co:Customer/120,rdf:type,class) OR
8.CM_Customer(co:Customer/120,rdf:type,class) OR
9.CM_Orders(co:Customer/120,rdf:type,class)

Example 35: Query Q6 after view expansion.

Analogously to Example 29 lines 2-7 are eliminated by partial evaluation.
The expanded class membership view CM_Orders is shown in Example 36.

1.orders(custid,_,_) AND
2.iMap(cid,custid,co:Customer/120) AND
3.cMap(‘ORDERS’,’Comp’,cid) AND
4.rdf:type=rdf:type

Example 36: Expanded class membership view CM_Orders revisited.

The call to cMap on line 3 is compile time evaluated and the class mem-
bership view in Example 36 is partial evaluated by binding variable cid to
the constant mapped class identifier co:Orders. Line 4 is removed by line 30
in Figure 23.

 85

The reduced expression is shown in Example 37.

1.orders(custid,_,_) AND
2.iMap(co:Orders,custid,co:Customer/120)

Example 37: Reduced class membership view CM_Orders.

Recall that the external iMap predicate is invertible (Chapter 3) to be able
to obtain the key for a given mapped instance identifier by parsing the identi-
fier string. In order to eliminate the class membership view CM_Orders
from the expanded query the external predicate iMap is here compile time
evaluated in the backward direction to false.

Thus, lines 2-9 are replaced with the expression produced from line 8 in
Example 35 with the calls to cMap and iMap compile time evaluated.
customer(‘120’,_)

After SQL generation the following statement is sent to the back-end rela-
tional database for cost-based optimization and execution.
 SELECT 1
 FROM CUSTOMER C
 WHERE C.CUSTID = ‘120’

The SQL statement is an existence check for the primary key value ‘120’
in the column CUSTID in table CUSTOMER.

The external predicate iMap is cheap since it does not access the back-end
relational but does only do simple string handling.

The possibility to define inverses of an external predicates is critical for
the query processing performance in SWARD. Consider a scenario when
iMap was not invertible. Instead of the SQL statement above, the code in
Example 37 would remain and the following two statements would be sent
to the back-end DBMS for execution.
 SELECT C.CUSTID
 FROM CUSTOMER C

 SELECT O.ORDERID
 FROM ORDERS O

Since here the key for the given mapped instance in query Q6 cannot be
obtained by compile time evaluation the whole table CUSTOMER in the
back-end relational DBMS is scanned. Also, the code in Example 37 would
remain, since the class identifier for the mapped instance in query Q6 cannot
be accessed, which produces an additional scan of the ORDERS table. This
is clearly a non-scalable strategy for evaluating query Q6.

 86

With the introduction of class membership properties in UPVs queries
could be stated that dynamically selects mapped classes and accesses their
members. Such a subclass of hybrid queries is not investigated in this Thesis.

In summary, in this Section it was shown by examples how ER entity in-
formation was preserved in UPVs through the class membership views. It
was also shown how class membership views where eliminated from the
extended content queries (Definition 4) using partial evaluation in the same
manor as for ordinary content queries.

Next, it is shown how to further augment UPVs to encode relationships
between mapped classes using foreign key information in the relational da-
tabase. This is required in order to explicitly model relationships among
mapped classes, which in turn enables more natural queries to the UPV.

9.2 Class Relationships
Binary ER relationships are supported implicitly in relational databases
through foreign keys. Such relationships are modeled in UPVs as special
mapped properties that relate mapped instances from two mapped classes.

For example, in the relational database, Company, the relationship be-
tween entity types ORDERS and CUSTOMER in Figure 13 is represented by
the fact that column OCUSTID is a foreign key in table ORDERS that refer-
ences column CUSTID in table CUSTOMER.

In the basic UPV, this is encoded implicitly by the three RDF triples:

<co:Orders/1,co:OrderCustomer,120>
<co:Orders/2,co:OrderCustomer,120>
<co:Customer/120,co:CustID,120>

To get the market segment of a customer placing an order and the clerk
filing the order, one has to join the values of the foreign keys on lines 3 and
4 in Example 38.
1.SELECT ?cust ?mkt ?clerk
2.WHERE {?order co:Clerk ?clerk .
3. ?order co:OrderCust ?ocust .
4. ?cust co:CustID ?ocust .
5. ?cust co:Market ?mkt .}

Example 38: Content query Q7

By including these additional two triples in the UPV the class relationship
is made explicit through a new property co:OrderedBy.

 87

<co:Orders/1,co:OrderedBy,co:Customer/120>
<co:Orders/2,co:OrderedBy,co:Customer/120>

Here, co:Orders/1 is a mapped instance of the class co:Orders and
co:Customer/120 is a mapped instance of the class co:Customer. Properties
that relate instances from the two mapped classes, such as co:OrderedBy, are
called class relationship properties. Triple patterns where the property is
constant and identifies a class relationship property are called class relation-
ship patterns. Example 39 shows a SPARQL query with a class relationship
pattern. The definition of a extended content query is genralized even further
to incorporate also class relationship patterns.

Definition 5: A generalized content query is a conjunctive query where
all triple patterns are either mapped property patterns, class membership
patterns, or class relationship patterns.

SELECT ?cust ?mkt ?clerk
WHERE {?order co:Clerk ?clerk .
 ?order co:OrderedBy ?cust .
 ?cust co:Market ?mkt .}

Example 39: Generalized content query Q7

Using class relationship patterns, retrieving the market segment of a cus-
tomer placing an order can be expressed in a more natural and simple way as
shown in Example 39.

Table OTable FkColumn UPV CRID
ORDERS CUSTOMER ORDERID Comp co:OrderedBy

Figure 33: Relationship mapping table for Company

To represent mapped class relationships in the UPV SWARD requires a
user-defined relationship mapping table,
 rMap(Table,OTable,FkColumn,UPV,CRID) (Figure 33), that maps 1:1 for a
given UPV between a foreign key column (FkColumn) in a table (Table) that
refers to the primary key column in some other table (OTable) into a class
relationship identifier (CRID).

SWARD handles class relationships by generating additional views, class
relationship views CRcrid, for the class relationships identifiers in rMap. The
content view definition is generalized to the union of property views, class
membership views, and class relationship views:

C =
p
∪ PVp OR

c
∪CMc OR

crid
∪ CRcrid

 88

The further augmented UPV definition with class relationship views is
shown in Example 40. By convention, here, all class relationship view
names are prefixed with ‘CR_’.

1.U(s,p,v):-
2.S(s,p,v) OR
3.P_CustID(s,p,v) OR
4.P_MktSegment(s,p,v) OR
5.P_OrderID(s,p,v) OR
6.P_OCustID(s,p,v) OR
7.P_Clerk(s,p,v) OR
8.CM_Customer(s,p,v) OR
9.CM_Orders(s,p,v) OR
10.CR_OcustID(s,p,v)

Example 40: UPV definition with class relationship view

Example 41 shows the class relationship view definition for the class rela-
tionship identifier co:OrderedBy in Figure 33 (line 10 in Example 40).

1.CR_OCustID(s,p,v) :-
2.orders(orderid,ocustid,_) AND
3.iMap(cid,orderid,s) AND
4.cMap(‘CUSTOMER’,’Comp’,otcid) AND
5.iMap(otcid,ocustid,v) AND
6.cMap(‘ORDERS’,‘Comp’,cid) AND
7.rMap(‘ORDERS’,’CUSTOMER’,‘OCUSTID’,‘Comp’,p)

Example 41: Class relationship view CR_OcustID

Notice how additional calls to cMap and iMap on lines 4 and 5, respec-
tively, are needed to construct the mapped instance co:Customer/120. On
line 7 rMap is accessed to get the class relationship identifier.

In general, a class relationship view in a UPV has the structure in Figure
34 where variable k is bound to values from the primary key column of the
relational table (table) and fv is bound to values from the foreign key column
(column) of the table mapped by the class relationship identifier p in rMap,
referencing the relational table (otable).
1.CR_[column](s,p,v) :-
2.[table](k,fv) AND
3.iMap(cid,k,s) AND
3.cMap([otable],[upv],otcid) AND
4.iMap(otcid,fv,v) AND
6.cMap([table],[upv],cid) AND
7.rMap([table],[otable],[column],[upv],p)

Figure 34: Class relationship view definition

 89

In addition, the class view (Example 6), domain view, and range view,
which define the schema view S, are extended to define the class relationship
property co:OrderedBy along with its domain and range through the triples
below:

<co:OrderedBy, rdf:type,rdfs:Property>
<co:OrderedBy, rdfs:domain,co:Orders>
<co:OrderedBy,rdfs:range,co:Customer>

The extended class, domain and range view are presented in Example 42.

Classes(s,p,v):- (cMap(table,‘Comp’,s) AND
 p = rdf:type AND
 v = rdfs:Class) OR
 (pMap(table,column,‘Comp’,s) AND
 p = rdf:type AND
 v = rdf:Property) OR
 (rMap(table,otable,column,‘Comp’,s)AND
 p = rdf:type AND
 v = rdf:Property)

Domains(s,p,v):- (pMap(table,column,’Comp’,s) AND
 p=rdfs:domain AND
 cMap(table,’Comp’,v)) OR
 (rMap(table,otable,column,’Comp’,s)AND
 p=rdfs:domain AND
 cMap(table,’Comp’,v))

Ranges(s,p,v):- (pMap(table,column,’Comp’,s) AND
 p = rdfs:range AND
 v = rdfs:Literal) OR
 (rMap(table,otable,column,’Comp’,s) AND
 p = rdfs:range AND
 cmap(otable,’Comp’,v))

Example 42: Extended schema view definition

Now the market segment of a customer placing an order can be selected
in a more natural and simple way by using the class relationship identifier
co:OrderedBy as shown in Example 43.

SELECT ?cust ?mkt ?clerk
WHERE {?order co:Clerk ?clerk .
 ?order co:OrderedBy ?cust .
 ?cust co:Market ?mkt .}

Example 43: Content query Q8

Query Q8 produces the result:
 (co:Customer/120,‘AUTOMOBLE’,’Doe’)
 (co:Customer/120,‘AUTOMOBILE’,’Wesson’)

 90

Next it is shown how applying PARQ on END with
I = {cMap,pMap,S,rMap} the size of UPVs with class relationship views are
substantially reduced and no normalization is needed for conjunctive content
queries. Analogous to cMap, pMap and S the primitive predicate rMap is
also small and stored in main memory of SWARD. It does not access the
back-end relational database.

Example 44 shows query Q7 in ObjectLog.

1.query(cust,mkt,clerk) :-
2.U(order,co:Clerk,clerk) AND
3.U(order,co:OrderedBy,cust) AND
4.U(cust,co:Market,mkt)

Example 44: ObjectLog expression for Q8

Example 45 shows how line 2 in Example 44 is view expanded using the
UPV definition augmented with class membership views and relationship
views.

1.query(cust,mkt,clerk) :-
2.(S(order,co:Clerk,clerk) OR
3. P_CustID(order,co:Clerk,clerk) OR
4. P_MktSegment(order,co:Clerk,clerk) OR
5. P_OrderID(order,co:Clerk,clerk) OR
6. P_OCustID(order,co:Clerk,clerk) OR
7. P_Clerk(order,co:Clerk,clerk) OR
8. CM_Orders(order,co:Clerk,clerk) OR
9. CM_Customer(order,co:Clerk,clerk) OR
10.CR_OCustID(order,co:Clerk,clerk)) AND
11.U(order,co:OrderedBy,cust) AND
12.U(cust,co:Market,mkt)

Example 45: Query Q8 after view expansion

Notice how the UPV definition is augmented with the relationship view
CR_OCustID on line 10 and class membership views CM_Orders and
CM_Customer on lines 8 and 9, respectively. Example 46 shows the ex-
panded relationship view CR_OCustID.

1.orders(orderid,ocustid,_) AND
2.iMap(cid,orderid,order) AND
3.cMap(‘CUSTOMER’,’Comp’,otcid) AND
4.iMap(otcid,ocustid,clerk) AND
5.cMap(‘ORDERS’,’Comp’,cid) AND
6.rMap(‘ORDERS’,’CUSTOMER’,’OCUSTID’,’Comp’,co:Clerk)

Example 46: Expanded relationship view CR_OCustID.

 91

In the example, compile time evaluation of rMap (in step PARQ1) on line
6 is evaluated to false and the entire view expanded expression on line 10 in
Example 45 is eliminated.

Lines 2-6 and 8-9 in Example 45 are also partial evaluated to false and
removed reducing the disjunction to the conjunctive query fragment repre-
senting the property view P_Clerk shown in Example 47.

1.orders(orderid,_,clerk) AND
2.iMap(cid,orderid,order) AND
3.cMap(‘ORDERS’,’Comp’,cid) AND
4.pMap(‘ORDERS’,’CLERK’,’Comp’,co:Clerk)

Example 47: Expanded property view P_Clerk.

The call to pMap on line 4 is compile time evaluated to true and removed.
On line 3 compile time evaluation of cMap partial evaluates the property
view P_Clerk in Example 47 by substituting variable cid for co:Orders.

Thus partial evaluation replaces the disjunctive expression in the ex-
panded U on line 2 in Example 44 with the following expression represent-
ing the desired property identifier (co:Clerk):
 orders(orderid,_,clerk) AND
 iMap(co:Orders,orderid,order)

Analogously, line 4 in Example 44 is replaced with the conjunctive ex-
pression representing the property identifier co:Market:
 customer(custid,mkt)
 iMap(co:Customer,custid,cust)

The UPV call on line 3 in Example 44 is view expanded producing the
disjunction in Example 48.

1.S(order,co:OrderedBy,cust) OR
2.P_CustID(order,co:OrderedBy,cust) OR
3.P_MktSegment(order,co:OrderedBy,cust) OR
4.P_OrderID(order,co:OrderedBy,cust) OR
5.P_OCustID(order,co:OrderedBy,cust) OR
6.P_Clerk(order,co:OrderedBy,cust) OR
7.CM_Orders(order,co:OrderedBy,cust) OR
8.CM_Customer(order,co:OrderedBy,cust) OR
9.CR_OCustID(order,co:OrderedBy,cust) OR

Example 48: Expanded UPV call

Lines 1-6 are eliminated by partial evaluation.

 92

Example 49 shows the expanded class membership view CM_Customer.

1.customer(custid,_) AND
2.cMap(‘CUSTOMER’,’Comp’,cust) AND
3.iMap(cust,custid,order) AND
4.co:OrderedBy=rdf:type

Example 49: Expanded class membership view CM_Customer

In the example, the equality on line 4 is replaced with false (line 32 in
Figure 23) and the entire view expanded expression on line 8 in Example 48
is eliminated. Analogously line 7 in Example 48 is also eliminated by partial
evaluation reducing the disjunction the conjunctive query fragment repre-
senting the property view CR_OCustID shown in Example 50.

1.orders(orderid,ocustid,_) AND
2.iMap(cid,orderid,order) AND
3.cMap(‘CUSTOMER’,’Comp’,otcid) AND
4.iMap(otcid,ocustid,cust) AND
5.cMap(‘ORDERS’,’Comp’,cid) AND
6.rMap(‘ORDERS’,’CUSTOMER’,’OCUSTID’,’Comp’,co:OrderedBy)

Example 50: Expanded relationship view CR_OCustID.

The call to rMap on line 6 is compile time evaluated to true and removed.
On lines 3 and 5 evaluation of cMap substitutes variables otcid and cid for
property identifiers co:Customer and co:Orders, respectively

Thus partial evaluation replaces the disjunctive expression in the ex-
panded U on line 3 in Example 44 with the following expression represent-
ing the desired property identifier (co:OrderedBy):
 orders(orderid,ocustid,_) AND
 iMap(co:Orders,orderid,order) AND
 iMap(co:Customer,ocustid,cust)

The key rewrite rule (Figure 23) combines the produced iMap and rela-
tional database calls to the same table before generating the SQL. It produces
the fully reduced query as shown in Example 51:

1.query(cust,mkt,clerk) :-
2.orders(orderid,ocustid,clerk) AND
3.iMap(co:Orders,orderid,order) AND
4.customer(ocustid,mkt) AND
5.iMap(co:Customer,ocustid,cust)

Example 51: Fully reduced query Q6.

Finally, the SQL generator produces the following single SQL statement
from the reduced query. The statement is sent to the back-end relational
DBMS for cost-based optimization and execution:

 93

 SELECT O.ORDERID,O.OCUSTID,O.CLERK,C.MKTSEGMENT
 FROM ORDERS O,CUSTOMER C
 WHERE C.CUSTID = O.OCUSTID

In this section ER relationships, implicitly represented by foreign keys in
the relational model, where defined explicitly by augmenting the UPV defi-
nition with class relationship views. It was also exemplified how relationship
views where eliminated from the generalized content query (Definition 5)
using partial evaluation in the same manor as ordinary property views.

Handling of binary M:N ER relationship types and N-ary ER relationship
types is not investigated in this Thesis.

9.3 Representation of Composite Keys in RDF Schema
Since composite primary keys are common in relational databases it is very
important that they are handled in UPVs so that columns in tables containing
such keys can also be viewed in RDF.

For example, consider the addition of the weak entity type LINEITEM to
the ER diagram in Figure 13 as shown in Figure 35.

Figure 35: ER diagram of extended Company database.

The weak entity type LINEITEM is translated to the additional LINEITEM
table in our example Company database, providing information about the
quantity of parts from a product line in an order placed by a customer. The
columns LINENUMBER and LORDERID are the composite primary key in
LINEITEM.

 94

LINEITEM LINENUMBER LORDERID PARTID QUANTITY
 12345 2 Semiconductor 150

In a UPV identifiers are constructed to represent mapped instances of
classes in cMap. An instance identifier consists of the identifier representing
the class in cMap mapped to the table concatenated with a key value from its
primary key (Section 3.3) and corresponds to a row in that table. For a table
with a composite primary key the instance identifier must contain key values
from all the primary key columns. Such instance identifiers are called com-
posite instance identifiers.

Figure 36 shows the class mapping for table LINEITEM.

Table UPV ClassID
LINEITEM Comp co:LineItem

Figure 36: Additional class mappings for LINEITEM table

Figure 37 shows the property mappings in pMap for the columns in table
LINEITEM.

Table Column UPV PropID
LINEITEM LINENUMBER Comp co:LineNumber
LINEITEM LORDERID Comp co:LineNumberOrderID
LINEITEM PARTID Comp co:PartID
LINEITEM QUANTITY Comp co:Amount

Figure 37: Additional property mappings for LINEITEM table

Since column LORDERID in table LINEITEM is a foreign key referenc-
ing column ORDERID in table ORDERS the relationship mapping table
rMap contains the mapping shown in Figure 38.

Table OTable Column UPV CRID
LINEITEM ORDERS LORDERID Comp co:BelongsTo

Figure 38: Additional relationship mappings for LINEITEM table

Given the above class relationship and property mapping tables the con-
tent view of the UPV Comp over the extended Company database will con-
tain the additional triples shown in Figure 39. The composite instance identi-
fiers are constructed by concatenating the primary key values in a row. We
use the separator ‘@’ when concatenating the primary key values in compos-
ite instance identifiers to make it possible to inversely reconstruct the keys
from the instance identifier.

 95

S P V
co:LineItem/12345@2 co:LineNumber 12345
co:LineItem/12345@2 co:LineNumberOrderID 2
co:LineItem/12345@2 co:PartID Semiconductor
co:LineItem/12345@2 co:Amount 150
co:LineItem/12345@2 co:BelongsTo co:Orders/2
co:LineItem/12345@2 rdf:type co:LineItem

Figure 39: Content view for LINEITEM table

Example 52 shows the UPV definition generated by SWARD for the ex-
tended Company database where P, CR, and CM on lines 3-5 are the unions
of property, class membership, and class relationship views, respectively.
Lines 6-9 show the property views over composite primary key table
LINEITEM.

1.U(s,p,v):-
2.S(s,p,v) OR
3.P(s,p,v) OR
4.CR(s,p,v) OR
5.CM(s,p,v) OR
6.P_LineNumID(s,p,v) OR
7.P_LOrderID(s,p,v) OR
8.P_PartID(s,p,v) OR
9.P_Quantity(s,p,v)

Example 52: UPV definition over extended Company database with support for
property views over columns in tables with composite primary keys.

Example 53 shows the property view P_Quantity representing column
QUANTITY in table LINEITEM.

1.P_Quantity(s,p,v) :-
2.lineitem(lorderid,linenumber,lpartid,v) AND
3.cMap('LINEITEM','Comp',cid) AND
4.pMap('LINEITEM','QUANTITY','Comp',p) AND
5.KC_LineItem(linenumber,lorderid,ck) AND
6.iMap(cid,ck,s)

Example 53: Property view P_Quantity

In order to concatenate composite primary key values to construct com-
posite mapped instance identifiers, the general definition of a property view
in Figure 21 is augmented with a predicate generated by SWARD for each
table associated with a class in cMap, the key constructor, prefixed with
'KC_', KC_LineItem in Example 53. A key constructor takes as its first ar-
guments the primary keys values of a row and returns the concatenated key
string of a composite instance identifier as the last argument. For example,
on line 5 in Example 53 the key constructor KC_LineItem takes as input

 96

values from the composite primary key columns LINENUMBER and LOR-
DERID and concatenates them into a key string. If LINENUMBER is
‘12345’ and LORDERID is ‘2’ the concatenated key string becomes
‘12345@2’. With the addition of the key constructor, property views are
generalized to view columns in relational tables with composite primary
keys.

In general, a generalized property view in a UPV able to represent com-
posite primary keys has the structure in Figure 34 where variables k1,…,kn
are bound to key values in a composite primary key of the relational table
(table) and v is a row value from the relational column (column) represented
by the mapped property identifier p in pMap.

1.P_[column](s,p,v) :-
2.[table](k1,…,kp,v) AND
3.cMap([table],[upv],cid) AND
4.pMap([table],[column],[upv],p) AND
5.KC_[table](k1,…,kp,ck) AND
6.iMap(cid,ck,s)

Figure 40: Composite property view definition

The key constructors are implemented as external predicates with variable
number of arguments to be able to construct a compound instance identifier
from several key values. The predicate is invertible to be able to obtain the
keys for a given composite mapped instance identifier by parsing the identi-
fier string.

Templates for generalized class membership views and relationship views
able to handle composite primary keys are shown in Figure 41 and Figure
42, respectively.

1.CM_[table](s,p,v) :-
2.[table](k1,…,kn) AND
3.cMap([table],[upv],v) AND
4.KC_[table](k1,…,kn,ck) AND
5.iMap(v,ck,s) AND
6.p = rdf:type

Figure 41: Generalized definition of class membership view

Variables k1,…,kn are bound to key values in a composite primary key of
the relational table (table).

 97

1.CR_[column](s,p,v) :-
2.[table]_[column](k1,…,kn,v) AND
3.iMap(cid,ck,s) AND
4.cMap([otable],[upv],otcid) AND
5.iMap(otcid,v,v) AND
6.cMap([table],[upv],cid) AND
7.KC_[table](k1,…,kn,ck) AND
8.rMap([table],[otable],[column],[upv],p)

Figure 42:Generalized definition of class relationship view

Notice how calls to the key constructors are added on lines 4 and 7 in
Figure 41 and Figure 42, respectively, to construct compound instance iden-
tifiers from key values.

It is now shown by an example that by applying PARQ on END with
I = {cMap,pMap,S,rMap} the size of UPVs able to handle composite pri-
mary keys are substantially reduced without need for normalization for con-
junctive content queries.

Example 54 shows the content query Q9 that returns the quantity of every
part in each order and the name of the clerk handling that order.

SELECT ?part ?qty ?clerk
WHERE {?lineitem co:PartID ?part .
 ?lineitem co:Amount ?qty .
 ?lineitem co:BelongsTo ?order .
 ?order co:Clerk ?clerk .}

Example 54: Content query Q9

Query Q9 produces the result:
(‘Semiconductors’,’150’,’Doe’)

Example 55 shows query Q9 in ObjectLog.

1.query(part,qty,clerk) :-
2.U(lineitem,co:PartID,part) AND
3.U(lineitem,co:Amount,qty) AND
4.U(lineitem,co:BelongsTo,order) AND
5.U(order,co:Clerk,clerk)

Example 55: ObjectLog expression for Q9

Example 56 shows how line 3 in Example 55 is view expanded using the
UPV definition in Example 52.

 98

U(lineitem,co:Amount,qty):-
S(lineitem,co:Amount,qty) OR
P(lineitem,co:Amount,qty) OR
CR(lineitem,co:Amount,qty) OR
CM(lineitem,co:Amount,qty) OR
P_LineNumID(lineitem,co:Amount,qty) OR
P_LOrderID(lineitem,co:Amount,qty) OR
P_PartID(lineitem,co:Amount,qty) OR
P_Quantity(lineitem,co:Amount,qty)

Example 56: UPV definition over extended Company with generalized property
views

Example 57 shows the view expanded composite property view
P_Quantity.

1.lineitem(linenumber,lorderid,_,qty) AND
2.cMap(‘LINEITEM’,’Comp’,cid) AND
3.pMap(‘LINEITEM’,’QUANTITY’,’Comp’,co:Amount) AND
4.KC_LineItem(linenumber,lorderid,ck) AND
5.iMap(cid,ck,lineitem)

Example 57: View expanded generalized property view P_Quantity

On line 2 the call to cMap is compile time evaluated and cid is substituted
for co:LineItem. The call to pMap on line 3 is evaluated to true and is elimi-
nated. The reduced query fragment is shown in Example 58.

1.lineitem(linenumber,lorderid,_,qty) AND
2.KC_LineItem(linenumber,lorderid,ck) AND
3.iMap(co:LineItem,ck,lineitem)

Example 58: View expanded and partial evaluated generalized property view
P_Quantity

The following SQL query is generated (lines 2-5 in Example 55) and sent
to the back-end relational DBMS for cost-based optimization and execution.
 SELECT .LORDERID,L.LPARTID,L.LINENUMBER,L.QUANTITY,O.CLERK
 FROM LINEITEM L,ORDERS O
 WHERE O.ORDERID = L.LORDERID

Calls to the external predicates KC_LineItem and iMap are post-processed
in SWARD to construct the result of the query.

Handling of relational composite foreign keys in UPVs is not investigated
in this Thesis.

 99

9.4 Proving Reduction of Generalized Content Queries
In the previous sections it was shown how generalized content queries to
augmented UPVs were reduced to simple conjunctions. A generalized con-
tent query is a query where all triple patterns can be (Definition 5) i) a
mapped property pattern, ii) a class membership pattern, or iii) a class rela-
tionship pattern. It will now be proven that generalized content queries al-
ways are reduced to a simple conjunction by PARQ.

To prove this the following definition is needed:

Assumption 2: A property can never identify both a mapped property and
a class relationship property.

Assumption 2 is natural because no row identifiers are stored in the back-
end relational database.

Example 59 shows a content query, Q10, to the augmented UPV U of the
Company relational database, containing all three types of triple patterns.
The query fetches, for every order, the parts that constitute the order. Notice
that the class membership pattern on line 2 could be omitted here but is re-
tained since it is necessary for general applicability of the discussion.

1.query(order,part) :-
2.U(lineitem,rdf:type,co:LineItem) AND
3.U(lineitem,co:PartID,part) AND
4.U(lineitem,co:BelongsTo,order)

Example 59: ObjectLog expression for Q10

In order to prove that generalized content queries to augmented UPVs by
application of PARQ always are reduced to simple conjunctions, it is suffi-
cient to show that each type of triple pattern referenced in the query is re-
duced to a simple conjunction.

Recall from Section 9.2 that an augmented UPV is defined as the union of
a schema view, property views, class membership views, and class relation-
ship views.

9.4.1 Mapped Property Patterns
Consider the mapped property pattern on line 3 in Example 59. In general
such a pattern has the form:

U(s,p,v)

Variable p is a constant and bound to an identifier for a mapped property
in the UPV and s and v are variables representing the subject and value of
the triple, respectively.

 100

Example 60 shows the view expanded line 3 from Example 59.

1.U(lineitem,co:PartID,part) :-
2.S(lineitem,co:PartID,part) OR
3.P(lineitem,co:PartID,part) OR
4.CR(lineitem,co:PartID,part) OR
5.CM(lineitem,co:PartID,part)

Example 60: View expanded property pattern UPV reference

For the union of property views (line 3) and the schema view (line 2) it
has already been shown that only one property view remains after view ex-
pansion and partial evaluation (Corollary in Chapter 6). What remains for
mapped property patterns is to prove that all expanded class membership
views (line 5) and class relationship views (line 4) are eliminated during
partial evaluation.

Class membership views are eliminated because an identifier can never
represent both a mapped property and a schema property (Assumption 1). In
general, compile time evaluation of the equality predicate in line 5 in Figure
32 will eliminate all class membership views from a view expanded property
pattern UPV reference. In Example 60 line 5 is eliminated.

Class relationship views are eliminated because an identifier can never
represent both a mapped property and a class relationship property (Assump-
tion 2). In general, compile time evaluation of rMap in line 7 in Figure 34
will eliminate all class relationship views from the view expanded property
pattern UPV reference. In Example 60 line 4 is eliminated.

Thus, with I = {pMap,S,rMap}, mapped property patterns are always re-
duced to a simple conjunction after view expansion and partial evaluation.

9.4.2 Class Membership Patterns
Consider the class membership pattern on line 2 in Example 59. Such a pat-
tern has the general form:

U(s,membership,v)

Variable membership is constant and bound to the schema property iden-
tifier rdf:type and either s is constant and bound to an identifier for a mapped
instance identifier or v is constant and bound to an identifier for a mapped
class.

First, assume that v is bound to a mapped class identifier. Example 61
shows the view expanded line 2 from Example 59.

 101

1.U(lineitem,rdf:type,co:LineItem) :-
1.S(lineitem,rdf:type,co:LineItem) OR
2.P(lineitem,rdf:type,co:LineItem) OR
3.CR(lineitem,rdf:type,co:LineItem) OR
4.CM(lineitem,rdf:type,co:LineItem)

Example 61: View expanded class membership pattern UPV reference

Schema views are eliminated because of Assumption 1 and line 2 in
Example 61 is removed.

Property views are eliminated because of Assumption 1. In general, com-
pile time evaluating the pMap predicate on line 5 in Figure 21 will eliminate
all property views from a view expanded class membership pattern UPV
reference. For example, in Example 61 line 3 is removed.

Class relationship views are eliminated because of Assumption 1. In gen-
eral, compile time evaluating the rMap predicate on line 7 in Figure 34 will
eliminate all class relationship views from a view expanded class member-
ship pattern UPV reference. For example, in Example 61 line 4 is removed.

In general, for a UPV with more than one class membership view the in-
verse call to iMap on line 4 in Figure 32 will evaluate to false in every class
membership view except for the class membership producing mapped in-
stances from the searched mapped class.

Now assume that v is unbound and s is bound to a mapped instance iden-
tifier. Analogously to the case when v was bound to a mapped class identi-
fier the schema, property, and class relationship views are eliminated.

For UPVs with more than one class membership view the call to cMap on
line 3 in Figure 32 will evaluate to false in every class membership view
except for the class membership producing mapped instances from the
mapped class identified by v.

Thus, with I = {cMap,pMap,S,rMap,iMap}, class membership patterns
are always reduced to a simple conjunction after view expansion and partial
evaluation.

9.4.3 Class Relationship Patterns
Consider the class relationship pattern on line 4 in Example 59. Such a pat-
tern has the general form:

U(s,relationship,v)

The variable relationship is a constant bound to a class relationship iden-
tifier in the UPV.

 102

Example 62 shows the view expanded line 4 from Example 59.

1.U(lineitem,co:BelongsTo,order) :-
1.S(lineitem,co:BelongsTo,order) OR
2.P(lineitem,co:BelongsTo,order) OR
3.CR(lineitem,co:BelongsTo,order) OR
4.CM(lineitem,co:BelongsTo,order)

Example 62: View expanded class relationship UPV reference

Schema views are eliminated because of Assumption 1. In Example 62
line 2 is removed.

Property views are eliminated because of Assumption 2. In general, com-
pile time evaluation of pMap on line5 in Figure 21 will eliminate all property
views in the view expanded triple pattern. In Example 62 line 3 is removed.

Class membership views are eliminated because of Assumption 1. In gen-
eral, compile time evaluation of the equality predicate in line 5 in Figure 32
will eliminate all class membership views from the view expanded triple
pattern. In Example 62, line 5 is removed.

In general, for a given UPV with more than one class relationship view
the call to rMap on line 7 in Figure 34 will evaluate to false in all class rela-
tionship views except for the single one represented by the relationship pa-
rameter.

Thus, with I = {pMap,S,rMap}, class relationship patterns are always re-
duced to a simple conjunction after view expansion and partial evaluation.

Since all three types of patterns are shown to be reduced to simple con-
junctions it can be concluded that content queries to augmented UPVs, with
I = {cMap,pMap,S,rMap,iMap}, are always are reduced to simple conjunc-
tions by application of the partial evaluation algorithm PARQ.

 103

10 Related Work

This Chapter presents an overview of research projects and techniques re-
lated to this Thesis.

10.1 RDF Repository Systems
RDF repository systems [4][12][15][67] are systems for storing and search-
ing large volumes of RDF statements. Most RDF repository systems
[12][15][67] use relational databases internally. Data in the repository can be
either directly stored RDF statements or statements downloaded and con-
verted to RDF from some relational database. The internal database is fully
managed by the repository system.

For RDF repositories with a single table storing all the triples such as in
[15][67], in general, every two path expressions in the semantic web query
will be translated into a triple table join in SQL. This means that SPARQL
queries over such relational RDF repositories can be very slow to execute
since when the number of triples in the triple table is increased the table may
not fit in main memory any more meaning that each triple table join in the
SPARQL query requires several disk accesses.

Another problem is that it is hard to access proper information about the
distribution of values for different properties in an RDF repository with only
one table storing all the triples. Not having enough information about the
data will prevent the cost-based optimizer of doing a good job during query
processing.

Because of no information about the characteristics of data needed by the
applications it is difficult for the administrator of the repository to know how
to cluster data and which indexes to create since. Usually indexes are defined
on all three columns of the triple table.

To improve performance the RDF repositories [15][67] use property ta-
bles to cluster properties often accessed together. However, the generated
SQL queries to search these property tables become complex when data has
to be combined from several tables. Another problem is the many NULL
values in property tables because of the unstructured nature of RDF data.

 104

A better alternative is to use column databases such as e.g. [1][60][38] as
back-ends for RDF repositories. This way the size of the triple store can be
kept smaller when data is highly unstructured. The column-based approach
will require more SQL joins compared to the property-table based one but
efficient join algorithms can be used for this [1].

The AllegroGraph RDF repository [4] uses a native object store for stor-
age of RDF.

Rather than storing RDF data in dedicated RDF-repositories SWARD
automatically generates general UPV views over any relational database,
given information how to perform the mappings between RDFS classes and
properties and relational database tables and columns, respectively. By keep-
ing the data in the relational database SWARD utilizes that relational data-
bases are optimized for handling very large data volumes. Furthermore, by
defining RDF views over relational databases they are queryable without
having to be copied to some RDF repository and the UPV will always reflect
any changes in the relational database.

10.2 RDF View Systems
SWIM [16] provides RDF views over relational databases. In SWIM, RQL
[16] queries are internally represented as Datalog programs similar to
SWARD. Partial evaluation is there also proposed as a way to reduce the
size of RQL queries but we are not aware of any results or application of the
technique to relational databases. RQL queries in SWIM are minimized us-
ing the Chase and BackChase algorithm [56][55] from [21] where a query is
chased to a universal query plan, which is then minimized.

In SWARD this corresponds to the view expansion of UPV references in
the query producing an analog to the universal query plan in [21], followed
by reduction of the query by partial evaluation. However, the work in [56] is
theoretical and we are not aware of any implementation thereof. Further-
more, the proposed BackChase algorithm is NP-complete [56] while PARQ
reduces the query fast.

D2R Server [10] also provides RDF views over relational databases. In
D2R Server the user explicitly specifies SQL fragments to fetch values of
RDF properties from the underlying relational database, using user defined
mappings between RDFS ontology elements and SQL fragments in the
D2RQ mapping language [9]. D2R Server then combines the SQL fragments
into complete queries. The user is responsible for the specialization of que-
ries in the D2R Server i.e. the user must write a new specialized translator
for each RDFS description to be used to map the relational database to RDF.
Optionally, the D2R Server can automatically produce the D2RQ mappings

 105

needed according to some default scheme provided by the system. However,
such automatic generation of mappings is inflexible and prevents the user
from specifying mappings needed by a particular application.

By contrast, SWARD provides a general representation of RDF views
over relational databases, UPVs, given two very simple user provided map-
ping tables. The user does not have to spend time learning a new language
(D2RQ) and manually specializing the system, which is bound to introduce
errors, but can instead focus on defining the proper mappings between RDFS
elements and relational database constructs on a high level. Queries to the
generated UPV are automatically specialized i.e. substantially reduced and
dynamically translated to SQL during query processing using partial evalua-
tion. Furthermore, we are not aware of any scalability experiments con-
ducted with D2R Server.

SquirrelRDF [59] is a tool that enables relational databases to be queried
in SPARQL through RDF views. This is done by translating SPARQL que-
ries, given some user defined mappings between RDFS elements and rela-
tional database constructs, to SQL statements sent to the underlying rela-
tional database for execution.

However, in contrast to SWARD, SquirrelRDF does not support querying
the RDFS ontology data such as for example the classes or properties in the
relational database. Also, no information about relationships among RDFS
classes is revealed. As opposed to in SWARD, domains and ranges for prop-
erties have to be manually added by the administrator. Furthermore, we are
not aware of any scalability experiments conducted or any optimization at all
being done during query processing in SquirrelRDF.

10.3 Partial Evaluation

Application of partial evaluation can be found in several areas such as for
example automatic compiler generation [6][7], operating systems [46], pro-
gramming languages [6][7][33][53] and computer graphics [5].

In this Thesis partial evaluation is applied on database queries by the
PARQ algorithm. For database queries partial evaluation has been used
mainly for optimizing queries over SQL views [26], optimizing distributed
XPath queries [13] and translating object queries to SQL [47].

In [26] the authors propose a mechanism to avoid evaluating parts of SQL
queries stated in terms of previously defined and materialized views, the
motivation for this being improved performance in terms of reduced execu-
tion time or security reasons.

 106

In contrast to the work in [26], application of the PARQ algorithm on en-
tire SPARQL queries to UPVs reduce these queries to much simple expres-
sions during compile time and provides substantial improvement of both
optimization time and execution time.

In [13] XPath queries are executed over an XML trees fragmented over a
number of sites on the web. To minimize the response time of a query no
more computation than what is strictly necessary at each site to answer the
query should be done. The main idea is to divide the query into pieces and
send each piece of the query independently and in parallel to each site where
the original query is partially answered and then let a coordinator site com-
bine these partial results to the final result. Each XML tree fragment is vis-
ited only once.

In contrast to [13], that use partial evaluation in the sense of executing
pieces of the query in parallel, the PARQ algorithm in SWARD reduces
(specializes) queries to general UPVs during compile time into smaller and
faster queries producing substantial improvements in optimization as well as
query execution time.

In [47] an algorithm for translation of object queries to SQL is presented.
An application of the algorithm could be object-oriented interfaces to rela-
tional databases. Object queries are first transformed into canonical queries
expressed in a deductive database. These queries can contain class variables
and attribute variables. Since schema information is usually not accessible in
SQL, partial evaluation is used to instanciate class and attribute variables in
the object queries before translation of them to SQL.

Similar to in [47], partial evaluation in SWARD also access schema in-
formation for translation of SPARQL queries to SQL. However, in SWARD
schema information is used to reduce the size of the query shown to make
queries to UPVs significantly more efficient.

10.4 Preservation of Foreign Key Information in RDF
Schema

In [35] the authors propose a way to explicitly state foreign key information
in RDFS. This is done by extending the RDFS standard with a new meta-
class for representing foreign keys. The work is purely theoretical.

SWARD makes foreign key information in the back-end DBMS explicit
in UPVs by representing them as properties that relate instances of classes in
an RDFS description. Instead of introducing new RDFS meta-classes that are
not a part of the current RDFS standard, as in [35] SWARD use existing
RDFS meta-classes for representing foreign key information.

 107

10.5 Disjunctive Query Optimization
In SWARD view expansion of UPVs produces conjunctions of large dis-
junctions. SWARD thus processes a class of very large disjunctive queries.

In [39][17] special approaches for dealing with disjunctions in queries are
proposed. In [39], the query is first transformed to an expression on DNF.
Multiple selection conditions on the same table, but perhaps in different
branches of the disjunction, are combined and then optimized together re-
ducing the number of SQL table scans and joins in the produced query plan.
In [17], instead of normalizing the query, the characteristic of the given
query is utilized for it to be optimized for better performance by using spe-
cial purpose algebraic operators.

In contrast to [39] [17], in SWARD partial evaluation of declarative query
fragments is used to systematically reduce disjunctive expressions to simple
conjunctions, thus totally eliminating the need for normalisation. This reduc-
tion dramatically improves total query processing times for SPARQL queries
to UPVs.

10.6 Property Table Representation of Data
In [2] it is demonstrated that relational databases where data is stored in a
conventional horizontal scheme is not a realistic alternative for storage of
constantly evolving, sparsely populated data, such as e-commerce data.

Instead a new vertical scheme for storage of e-commerce data is proposed
where each row in the horizontal table is divided into several rows (one for
each column in the horizontal table) on the format:
<Oid(object identifier), Key(column name), Val(column value)>

The object identifier is the value of the key column of the horizontal table
and is used for associating rows in the vertical table representation with each
other. The only schema information stored in the vertical table is column
names. This is similar to the storage schemes used in column oriented data-
bases [60].

UPVs in SWARD can be seen as a property table view of the entire rela-
tional database contents including its schema. Unlike [2], SWARD addresses
the challenges to efficiently optimize queries over very large property tables
that also include schema data. PARQ significantly improve query processing
for such queries without modifying the DBMS kernel.

The unpivot algebra operator in [19] transforms a regular horizontal table
into a property table by removing a number of columns. Extra rows are
added to preserve the column names and values from the wide representa-

 108

tion. By unpivoting a wide table on the primary key column a property table
similar to the vertical table in [2] is produced. Property tables may or may
not store their result depending how they are used in queries.

In [19], the unpivot and pivot operators are used for data modelling and
data analysis while UPVs in SWARD view entire relational databases as
RDF. Unlike in SWARD that acts like a pre-processor to SQL, the approach
proposed in [19] is intrusive in that the unpivot and pivot operators are de-
veloped for use inside the relational RDBM. Also, all optimizations pre-
sented are applied on the algebraic level to improve only execution time of
queries. For queries to UPVs it is necessary to also optimize the optimization
time itself and this is done by SWARD through systematic partial evaluation
of query fragments before cost based optimization of the produced SQL in
the back-end DBMS.

10.7 SchemaSQL Server
The work on SchemaSQL [34] supports querying both data and meta-data in
a relational database by providing special syntax to query the schema rather
than our uniform UPV. They do not use partial evaluation but an ad-hoc
special implementation of the query processor. Meta-data is not stored in a
main memory database as in SWARD but in a special purpose relational
database internal to the SchemaSQL Server. SchemaSQL queries are cost
based optimized first during rewriting of SchemaSQL to SQL in the Sche-
maSQL Server and later on again optimized in the local data source. In con-
trast, SWARD acts as a pre-processor of SQL queries leaving all the cost
based optimization to the back-end relational database. Both schema and
content are defined by the general UPV definition. Partial evaluation is used
during query processing for systematic specialization of the general UPV to
substantially reduce the query size before cost-based query optimization by
the back-end relational database. PARQ enables clean query processing
without any special purpose query transformations.

 109

11 Summary and Future Work

A system, SWARD, has been implemented for scalable processing of con-
junctive SPARQL queries over general RDF Schema based views of rela-
tional databases. Relational databases are viewed in terms of RDF Schema
based universal property views (UPVs) representing both relational schema
and data. A UPV is automatically generated, given a relational database and
two mapping tables, cMap and pMap, specifying how to map tables and
columns to RDF Schema classes and properties, respectively. For augmented
UPVs a third table, rMap, also has to be specified to map special relationship
identifiers to foreign key columns. A UPV definition is a large disjunctive
view which requires substantial reduction for efficient query processing.

To speed up query processing of queries to UPVs a new general partial
evaluation algorithm, the PARQ algorithm, was presented that does system-
atic compile time evaluation of specific primitive predicates to produce a
reduced query. The algorithm is simple and efficient, but is yet a very pow-
erful technique for reduction of any query. To guarantee that the query size
is never increased by PARQ, the algorithm evaluates at compile time only
primitive predicates that produce empty or single tuple results. In this Thesis
PARQ was applied on conjunctive SPARQL queries over large disjunctive
UPVs it was shown that application of PARQ on such queries guarantees to
reduce them into conjunctions without need for normalization. PARQ thus
provides simple and scalable processing of SPARQL queries to large UPVs
without need for ad hoc optimization tricks.

The names of the primitive predicates to evaluate at compile time by
PARQ are explicitly pre-specified to avoid evaluating expensive predicates
at compile time. When optimizing SPARQL queries to the UPVs only predi-
cates stored in main memory and the external predicate iMap are evaluated
at compile time, so PARQ is not accessing the database.

Furthermore, it was also demonstrated how the PARQ algorithm enables
the programmer to develop elegant and clean query processing mechanisms,
which are automatically specialized by partial evaluation for efficiency.

It was shown that query processing based on traditional view expansion
followed by normalization, END (Expand – Normalize – Decompose), gen-
erates scalable execution plans for queries to UPVs. However, the plans
become huge when the size of the query or the UPV increases, due to gen-

 110

eration of unreasonable large normalized expressions. The END strategy is
therefore infeasible for real-world SPARQL queries and UPVs.

To improve the query processing scalability we applied the PARQ algo-
rithm on END; the modified algorithm is called END-P (END with Partial
Evaluation). It was shown that PARQ substantially reduces the query opti-
mization time in END-P, since a conjunctive query over the large disjunctive
UPV is reduced to a simple conjunctive query and no normalization is
needed.

An alternative strategy DVS-P (Dynamic View Selection with Partial
Evaluation) was defined by applying PARQ on a query to a UPV definition
where precompiled property views are dynamically selected. In this case,
PARQ determines at compile time all property views that must be selected to
answer content queries. DVS-P produces the same reduced queries as END-
P without any normalization. The difference between END-P and DVS-P is
that DVS-P applies PARQ to select the views in the UPV definitions to ex-
pand, while END-P applies PARQ after full view expansion. Therefore, for
realistic content queries to large UPV definitions, query processing with
DVS-P is faster than END-P.

In this Thesis it was further presented how the basic UPV framework is
generalized in SWARD to preserve information about primary as well as
foreign and composite keys in the generated UPVs. ER relationships are
made implicit when translated to the relational model using foreign keys.
When relational data is viewed in RDFS these relationships are made ex-
plicit again through the addition of so called class membership views to the
content view of the UPV. Composite keys are not supported by RDFS but
needs to be handled since they are supported by the relational model. They
are represented by concatenation of composite primary key attribute values.

Furthermore, it was demonstrated how to incorporate class memberships
of mapped instances by adding class membership views to the of the UPV
definition, which express the class memberships of all mapped instances
from the back-end DBMS.

It this work, it was presented that END-P produces scalable query proc-
essing also for the important subclass of hybrid queries that dynamically
retrieve mapped properties from a class, while DVS-P is less suitable there.

In the future it should be investigated for what further class of SPARQL
queries the presented techniques are applicable, such as handling of hybrid
queries dynamically selecting mapped classes and their mapped instances,
disjunctive SPARQL queries, and SPARQL queries with OPTIONAL triple
patterns.

 111

It should also be investigated how an object representation of RDF data,
where RDF resources become instances of type Resource, could be used to
represent RDF Schema typed literals in UPVs.

The current implementation of SWARD runs as a pre-processor to SQL in
the back-end relational DBMS. If the system was part of the database server,
relational algebra could directly be generated from the reduced query.

An interesting issue is also how to provide mediation by combining UPVs
over different databases.

Finally, we believe that there are many other opportunities for using par-
tial evaluation in complex query processing. The PARQ algorithm is guaran-
teed to converge fast and offers many opportunities for substantial query
reduction in a systematic and controlled fashion.

 113

Summary in Swedish

Informationutsökning i RDF Schema vyer
av relationsdatabaser
Mängden data på Internet idag och dess brist på semantik gör att det blir allt
svårare att komma åt önskad information. Sökmotorer baserade på fritextut-
sökning av data genererar för många och irrelevanta resultat.

Ett annat problem uppstår då information skall kombineras på ett me-
ningsfullt sätt. Till exempel, en applikation som hämtar data från databaser
med olika struktur och innehåll måste kunna avgöra om data från en kolumn
’A’ i en databas har samma mening som data från en kolumn ’A’ i en annan
databas. Detta är något som är utmanande då sådan information saknas i
databasschemat.

Det är tydligt att det behövs ett entydigt sätt att beskriva information för
att underlätta utsökning och kombinering av denna. M.h.a. Resource Desc-
ription Framework (RDF) märks information upp med egenskaper (meta-
data) som beskriver dess mening.

RDF Schema (RDFS) är definerat i termer av RDF och används för att
klassificera information och definiera egenskaper hos dessa klasser. Fråge-
språket SPARQL är standard för utsökning av RDF-data.

RDFS-data lagras och görs sökbart i speciella lagringssystem för RDF.
Då stora mängder data idag fortfarande är lagrad i relationsdatabaser är det
viktigt att den också görs sökbar i SPARQL. Detta sker genom att informa-
tionen i relationsdatabasen konverteras till RDF data och laddas ner till ett
lagringssystem för RDF. Då stora mängder information lagras på flera stäl-
len blir detta dock en kostsam lösning m.a.p. lagringsutrymme och hantering
av data.

Ett bättre sätt att göra relationsdatabaser sökbara i SPARQL är att tillhan-
dahålla ickematerialiserade RDFS-baserade representationer, s.k. RDFS-
vyer av relationsdatabaser. En RDFS-vy genererar vid utsökningstillfället en
tillfällig RDFS representation av en relationsdatabas. Denna RDFS mapp-
ning lagras inte i något system utan används bara för att bevara en given
fråga. På så sätt lagras inte samma information på flera ställen.

 114

RDFS-vyer bör vara generella och strukturerade för att kunna defineras
över godtycklig relationsdatabas samt undvika fel som annars vanligen in-
troduceras i ad-hoc lösningar.

Relationsdatabaser designas ofta med Entity Relationship (ER) modellen.
ER modellen är ett högnivåspråk för att på en konceptuell nivå skapa ett
diagram som specificerar en relationsdatabas m.h.a typer och relationer mel-
lan dessa typer. ER diagrammet översätts sedan till ett relationsdatabas-
schema. Då ett sådant schema är mer implementationsspecifikt än ett ER
diagram är vissa element i ER modellen, som exempelvis relationer mellan
typer, implicit representerade i relationsdatabasschemat. Kompletta RDFS-
vyer av relationsdatabaser gör sådana element explicita igen.

Att processera frågor mot RDFS-vyer är utmanande av två anledningar.
För det första leder sättet att representera data i RDF till stora frågor mot
komplexa vyer. Traditionell processering av sådana frågor genererar enorma
uttryck internt och leder därför till orealistiskt långa processeringstider. För
det andra är det av största vikt att frågor mot RDFS-vyer av relationsdataba-
ser noggrant optimeras innan exekvering, då frågorna körs över stora data-
mängder.

För att utreda dessa frågor har vi utvecklat systemet Semantic Web Ab-
ridged Relational Databases (SWARD) för effektiv processering av
SPARQL-frågor mot kompletta RDFS-vyer av relationsdatabaser. Sådana
vyer genereras automatiskt av SWARD med ett minimum av information
från användaren.

I SWARD representeras både innehåll och schemainformation i en rela-
tionsdatabas som en enda stor disjunktiv vy. En sådan vy kallas en universi-
ell egenskapsvy, eller UPV. En UPV är en RDFS-mappning av en relations-
databas. Den definieras som unionen av en schemavy (schemainformationen
i databasen) och en datavy (innehållet i databasen).

En UPV genereras automatisk av SWARD givet att användaren anger hur
tabeller och kolumner mappas mot RDFS-klasser samt egenskaper hos dessa
klasser. Under frågeprocesseringen i SWARD översätts SPARQL-frågor till
interna uttryck. Sådana uttryck innehåller SQL-fragment som används för att
hämta data från den underliggande relationsdatabasen.

SPARQL-frågor mot UPVer hämtar antingen schemainformation, inne-
håll eller både och från den underliggande relationsdatabasen. SWARD han-
terar effektivt samtliga typer av SPARQL-frågor mot UPVer. Det är dock
speciellt utmanande att processera frågor mot relationsdatabasens innehåll då
detta ofta är väldigt stort.

Vi har utvecklat en allmän algoritm, PARtial evaluation of Queries
(PARQ) för att förenkla frågor mot komplexa vyer. Algoritmen är baserad

 115

på en teknik som kallas partialevaluering. Partialevaluering möjliggör ut-
veckling av eleganta och enkla program som sedan automatiskt specialiseras
till effektiva (snabbare och/eller mindre) program. PARQ reducerar frågan
genom att iterativt utvärdera delar av frågan till dess att uttrycket inte går att
förenkla mer.

Våra experiment visar att partialevaluering av frågor mot UPVer leder till
avsevärt enklare och mindre frågor som går betydligt snabbare att processera
än orginalfrågan.

 117

Acknowledgement

First and foremost I would like to thank my supervisor Tore Risch for shar-
ing his knowledge and enthusiasm.

I would also like to thank my former and current colleagues Kjell,
Timour, Milena, Ruslan, Sabesan, Erik, and Silvia for their support.

Finally, I would like to thank my friends and family for their great pa-
tience and for always being there to support me.

This work was supported in part by the EU project Advanced eGovern-
ment Information Service Bus, FP6-IST-2004-26727.

 119

References

[1] D. J. Abadi, A. Marcus S. R. Madden, and K. Hollenbach , Scalable Semantic
Web Data Management Using Vertical Partitioning, Proc. 33rd Intl. Conf. on
Very Large Databases (VLDB 2007), pp. 411-422, 2007.

[2] R. Agrawal, A. Somani, and Y. Xu: Storage and Querying of E-Commerce
Data, Proc. 27th Intl. Conf. on Very Large Databases (VLDB 2001), pp 149-158,
2001.

[3] A. V. Aho and J. D. Ullman, Foundations of Computer Science, W. H. Freeman
and Co., New York, USA, 1995.

[4] AllegroGraph, http://agraph.franz.com/allegrograph/.
[5] P. H. Andersen: Partial Evaluation Applied to Ray Tracing, Software Engineer-

ing in Scientific Computing, 1996,
http://repository.readscheme.org/ftp/papers/topps/D-289.pdf.

[6] L. Andersen: Partial Evaluation of C and Automatic Compiler Generation (ex-
tended abstract), Proc. 4th Intl. Conf. of Compiler Constructions (CC 1992), pp.
251-257, 1992.

[7] L. Beckman, A. Haraldson, O. Oskarsson, and E. Sandewall: A Partial Evalua-
tor, and Its Use as a Programming Tool, Artificial Intelligence, 7(4):319-357,
1976.

[8] P. A Bernstein, N. Goodman, E. Wong, C. Reeve, and J. B. Rothnie: Query
Processing in a System for Distributed Databases (SDD-1), ACM Trans. on Da-
tabase Systems, 6(4), 1981.

[9] C. Bizer and A. Seaborne: D2RQ -Treating Non-RDF Databases as Virtual
RDF Graphs (Poster). Proc. 3rd Intl. Semantic Web Conf. (ISWC 2004), 2004.

[10] C. Bizer and R. Cyganiak: D2R Server - Publishing Relational Databases on the
Semantic Web (Poster). Proc. 5th Intl. Semantic Web Conf. (ISWC 2006), 2006.

[11] D. Brickley and R. V. Guha: RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation 10 February 2004, http://www.w3.org/TR/rdf-
schema/.

[12] J. Broekstra, A. Kampman, and F. van Harmelen: Sesame: A generic Architec-
ture for Storing and Querying RDF and RDF Schema. Proc. 1st Intl. Semantic
Web Conf. (ISWC 2002), 2002.

[13] P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis: Using Partial Evalua-
tion in Distributed Query Evaluation, Proc. 32nd Intl. Conf. on Very Large Da-
tabases (VLDB 2006), pp 211-222, 2006.

[14] P. P. S. Chen: The entity-relationship model: towards a unified view of data,
ACM TODS, 1(1): 9-36, 1976.

[15] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan: An Efficient SQL-based RDF
Querying Scheme, Proc. 31st Intl. Conf. on Very Large Databases (VLDB 2005),
pp 1216-1227, 2005.

[16] V. Christophides, G. Karvounarakis, A. Magkanaraki, D. Plexousakis, and V.
Tannen: The ICS-FORTH Semantic Web Integration Middleware (SWIM),
IEEE Data Engineering Bulletin, 26(4), 2003.

 120

[17] J. Claußen, A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn: Optimi-
zation and Evaluation of Disjunctive Queries, IEEE Trans. Knowledge and
Data Eng. 12(2): 238-260, 2000

[18] E. F. Codd, A relational model of data for large shared data banks, Communica-
tions of the ACM, 13(6):377-387, 1970.

[19] C. Cunningham, C. A.Galindo-Legaria, and G. Graefe: PIVOT and UNPIVOT:
Optimization and Execution Strategies in an RDBMS, Proc. 30th Intl. Conf. on
Very Large Databases (VLDB 2004), pp 998-1009, 2004.

[20] S. Decker, F. van Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks,
M. Klein, and S. Melnik: The Semantic Web - on the Roles of XML and RDF,
IEEE Internet Computing, Sept./Oct. 2000.

[21] A. Deutsch, A. Popa and V. Tannen: Physical Data Independence, Constraints
and Optimization with Universal Plans. Proc. 25th Intl. Conf. on Very Large Da-
tabases (VLDB 1999), pp 459-470, 1999.

[22] Dublin Core Meta-data Initiative, Dublin Core Metadata Element Set, V 1.1,
http://dublincore.org/documents/dces/.

[23] R. Elmasri and S. B. Navathe: Fundamentals of Database Systems, Addison-
Wesley, 5th edition, 2007.

[24] G. Fahl and T. Risch: Query Processing over Object Views of Relational Data,
VLDB Journal, 6(4):261-281, 1997.

[25] Y. Futamura: Partial evaluation of Computation Process - an Approach to a
Compiler-Compiler, Systems Comput. Controls. 25:45-50, 1971.

[26] P. Godfrey and J. Gryz: Partial Evaluation of Views, Journal of Intelligent In-
formation Systems, 16(1): 21-39, 2001.

[27] K. Grant Clark, A. Schain, and B. Parsia: Semantic Web @ NASA,
http://xtech06.usefulinc.com/schedule/paper/147.

[28] P. Hayes: RDF Semantics, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-mt/.

[29] N. D. Jones: An Introduction to Partial Evaluation, ACM Computing Surveys,
28(3), 1996.

[30] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl:
RQL: A Declarative Query Language for RDF, Proc. Intl. World Wide Web
Conf. (WWW 2002), 2002.

[31] L. Kerschberg, P. D. Ting, and S. B. Yao: Query optimization in a star com-
puter network, ACM Trans on Database Systems, 7(4), 1982.

[32] G. Klyne and J. J. Carroll: Resource Description Framework (RDF): Concepts
and Abstract Syntax, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-concepts/.

[33] H. J. Komorowski: Partial Evaluation as a Means for Inferencing Data Struc-
tures in an Applicative Language: a Theory and Implementation in the Case of
Prolog, Proc. 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 1982), 1982.

[34] L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian: SchemaSQL – A Lan-
guage for Interoperability in Relational Multi-database Systems, Proc. 22nd Intl.
Conf. on Very Large Database (VLDB 1996), pp 239-250, 1996.

[35] G. Lausen, M. Meier, and S. Schmidt: SPARQling Constraints for RDF, Proc.
11 th Int. Conf. on Extending Database Technology (EDBT 2008), 2008.

[36] W. Litwin and T. Risch: Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates. In IEEE Transactions on Knowl-
edge and Data Engineering, 4(6):517-528, 1992.

[37] P. Lyngbaek: OSQL: A Language for Object Databases, Tech. Report, HP Labs,
HP-DTD-91-4, 1997.

 121

[38] S. Manegold, P. A. Boncz, and M. L. Kersten: Optimizing database architecture
for the new bottleneck: memory access. VLDB Journal, 9(3):231-246, 2000.

[39] M. Muralikrishna: Optimization of Multiple-Disjunct Queries in a Relational
Database System, Technical Report no. 750, Univ. of Wisconsin-Madison, Feb.
1988, http://www.cs.wisc.edu/techreports/1988/TR750.pdf.

[40] W. Neidl, B. Wolf, C. Qu, S. Decker, M. Sinek, A. Naeve, M. Nilsson, M.
Palmér, and T. Risch: EDUTELLA: A P2P Networking Infrastructure Based on
RDF. Proc. 11th Intl. World Wide Web Conference (WWW 2002),
http://user.it.uu.se/~torer/publ/WWW-Edutella.pdf, 2002.

[41] Open Directory RDF Dump, http://rdf.dmoz.org/
[42] OWL Web Ontology Language, http://www.w3.org/TR/owl-features/
[43] Partial Evaluation: http://partial-eval.org/.
[44] J. Petrini and T. Risch: SWARD: Semantic Web Abridged Relational Data-

bases, Proc. 6th Intl. Workshop on Web Semantics (WEBS 2007),
http://user.it.uu.se/~udbl/publ/WEBS07.pdf, 2007.

[45] J. Petrini and T. Risch: Processing Queries over RDF views of Wrapped Rela-
tional Databases, Proc. 1st Intl. Workshop on Wrapper Techniques for Legacy
Systems (WRAP 2004), http://user.it.uu.se/~udbl/publ/WRAP04.pdf, 2004.

[46] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye, L. Kethana, J.
Walpole, and K. Zhang: Optimistic Incremental Specialization Streamlining a
Commercial Operating System, Proc. 15th ACM Symposium on Operating Sys-
tem Principles, 1995

[47] X. Qian and L. Raschid: Query Interoperation Among Object-Oriented and
Relational Databases, Proc. 11th Intl. Conf. on Data Engineering (ICDE 1995),
pp 271-278, 1995.

[48] RDF Data Access Use Cases and Requirements, W3C Working Draft 25 March
2005, 2005, http://www.w3.org/TR/rdf-dawg-uc/.

[49] RDF Site Summary 1.0, http://web.resource.org/rss/1.0/
[50] RDQL - A Query Language for RDF, W3C Member Submission 9 January

2004, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.
[51] T. Risch: Functional Queries to Wrapped Educational Semantic Web Meta-

Data, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional
Approach to Data Management - Modeling, Analyzing and Integrating Hetero-
geneous Data, Springer, ISBN 3-540-00375-4, 2003.

[52] T. Risch, V. Josifovski, and T. Katchaounov: Functional Data Integration in a
Distributed Mediator System, in P.Gray, L.Kerschberg, P.King, and
A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-
4, 2003.

[53] D. Sahlin: An Automatic Partial Evaluator for Full Prolog. PhD thesis, Swedish
Institute of Computer Science, 1991,
http://citeseer.ist.psu.edu/sahlin91automatic.html.

[54] P. Sellinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price: Access Path
Selection in a Relational Database Management System, Proc. ACM SIGMOD
Conf. Management of Data, pp. 23-34, 1979.

[55] G.Serfiotis: Optimizing and Reformulating RQL Queries on the Semantic Web.
Master Thesis, university of Crete, 2005,
http://139.91.183.30:9090/RDF/publications/serfiotis.pdf.

[56] G.Serfiotis, I.Koffina, V.Christophides and V.Tannen: Containment and Mini-
mization of RDF/S Query Patterns, Proc. 4th Intl. Semantic Web Conf (ISWC
2005), 2005.

 122

[57] D. Shipman: The Functional Data Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, 6(1):140-173, 1981.

[58] SPARQL Query Language for RDF, W3C Recommendation 15 January 2008,
http://www.w3.org/TR/rdf-sparql-query/.

[59] SquirrelRDF, http://jena.sourceforge.net/SquirrelRDF/.
[60] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E.

Lau, A. Lin, S. Madden, E. J. O'Neil, P. E. O'Neil, A. Rasin, N. Tran, and S. B.
Zdonik: C-Store: A Column-oriented DBMS, Proc. 31st Intl. Conf. on Very
large Databases (VLDB 2005), pp 553-564, 2005.

[61] Semantic Web for Earth and Environmental Terminology,
http://sweet.jpl.nasa.gov/ontology/.

[62] SWARD, http://user.it.uu.se/~udbl/sward.html.
[63] E. Tambouris, G. Kavadias, and E. Spanos: The Government Markup Language

(GovML), Journal of E.Government 1(2), 2004.
[64] TPC-H benchmark, http://www.tpc.org/tpch/.
[65] J. D. Ullman, H. Garcia-Molina and J. Widom: Database Systems: The Com-

plete Book, Prentice Hall, Upper Saddle River, NJ, USA, 2001.
[66] Uniprot RDF dataset , http://dev.isb-sib.ch/projects/uniprot-rdf/.
[67] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds: Efficient RDF Storage

and Retrieval in Jena 2, Proc. VLDB Workshop on Semantic Web and Databases
(SWDB 2003), pp 131-150, 2003.

[68] E. Wong, K Youssefi: Decomposition – A Strategy for Query Optimization,
ACM Trans. on Database Systems, 1(3):223-241, 1976.

[69] Wordnet RDF dataset, http://wordnet.princeton.edu/~agraves/index.htm.

 123

Appendix: SWARD Query Interfaces

SWARD can be queried by application programs and users using the seman-
tic web query languages SPARQL, RDQL, or a subset of SQL. Figure 43
shows the query interface of the SWARD system.

Figure 43: SWARD system query interface

SWARD provides a PHP interface allowing users to query SWARD
through their web browser. SWARD can also be installed as a web service
on a Windows server computer and called from clients through a web ser-
vice based interface. A Java API is provided as a separate Java JAR file for
transparently calling SWARD as a web service from Java applications.

 124

The following interface classes are provided by the SWARD Java API:
class SWARD {

// Constructors
 public SWARD(String URL){}

// Execute SPARQL query over a UPV
 public RDFScan SPARQL(String SPARQLString){}

// Execute RDQL query over a UPV
 public RDFScan RDQL(String RDQLString){}

// Execute SQL query over a UPV
 public RDFScan SQL(String SQLString){}

}

class RDFScan {

//Get next result in RDFScan
 public Vector Next(Scan);

//Check for end of RDFScan
 public Boolean EOF(Scan);

}

A new instance of the class SWARD is constructed with the argument
URL as the URL of an SWARD web service.

Once an SWARD object is constructed the application or user can issue
queries in SPARQL, RDQL, or SQL through methods named SPARQL,
RDQL or SQL, respectively.

The result of a query is an instance of class RDFScan. One can iterate
through the scan by the method Next and test for end of scan with method
EOF. Each call to Next returns a Java Vector object with structure
{{VAR1,VAL1},…{VARn,VALn}}

where n is the width of the result tuples, VARi is the name of the i:th result
variable, and VALi is its corresponding value.

In Example 63 the content query Q2 is presented in RDQL.

SELECT ?cust,?mkt
WHERE (?order,co:OrderID,'1'),
 (?order,co:OrderCustomer,?ocust),
 (?cust,co:CustID,?ocust),
 (?cust,co:Market, ?mkt)

Example 63: Content query Q1 in RDQL.

 125

The triple patterns are specified in RDQL using the notation (s,p,v) where
s (subject), p (property), and v (value) are constants or variables. In Example
64 the same query is expressed in SQL.

SELECT C4.S,C4.V
FROM COMP C1,
 COMP C2,
 COMP C3,
 COMP C4
WHERE C1.P = co:OrderID AND
 C2.P = co:OrderCustomer AND
 C3.P = co:CustID AND
 C4.P = co:Market AND
 C1.V = '1' AND
 C1.S = C2.S AND
 C2.V = C3.V AND
 C3.S = C4.S

Example 64: Content query Q1 in SQL.

The FROM clause in the SQL query specifies an identifier for the UPV to
query. With SQL syntax, the UPV Comp is simply treated as a regular rela-
tional table and the FROM clause can not be omitted as in RDQL and
SPARQL queries.

Notice the awkward form of the SQL (Example 64) query compared to
the same query expressed in RDQL (Example 63) and in SPARQL (Example
9). The reason for this is that RDQL and SPARQL bear a resemblance to
domain calculus [23], with all variables in the query implicitly existentially
quantified and with variables substituted when possible. This enables a more
compact representation of queries to UPVs with SPARQL and RDQL than
with SQL which is based on tuple calculus [23] suited for queries to rela-
tional tables. In practice this means that an SQL query to a UPV will make
self joins over many aliased row variables (c1, c2, c3 and c4). In Example 64
the conditions on variables are defined in terms of one comparison with a
constant and three UPV joins.

