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1 Introduction 

The amount of data found on the web today and its lack of semantics makes 
it increasingly harder to retrieve a particular piece of information. Free-text 
search engines often return too many and too incorrect results. Another prob-
lem arises when trying to combine the collected pieces of information in a 
meaningful way. For example, applications accessing information from sev-
eral databases with different structure and content has to decide if a column 
‘A’ from one database has the same meaning as some column ‘A’ from an-
other database. This is very challenging due to the lack of semantics in the 
database schema. 

There is clearly a need for a uniform way to provide descriptions of in-
formation that could help facilitate for both searching and combining data. 
With RDF [20][32] every piece of information can be annotated with prop-
erties describing its semantics. Meta-data descriptions such as Dublin Core 
[22], Open Directory [41], RSS 1.0 [49], Uniprot catalog of protein sequence 
and annotation [66], NASA [61], WordNet [69] and GovML [63] use RDF. 

RDF is the basis for most semantic web representations and several 
higher level languages are defined in terms of RDF, e.g. RDF Schema 
(RDFS) [11], OWL [42], and OWL Lite [42]. RDFS provides means to de-
scribe classes of RDF resources and properties defined over these classes. 
The standard query language SPARQL [58] is used for querying RDF data. 

RDF repository systems [12][15][67] offer storage of RDF data and the 
ability to search RDF data using a query language. 

Since the majority of information in the world still resides in relational 
databases it should be investigated how to expose this information as RDF 
queryable with SPARQL. RDFS could provide support for representation of 
both content and schema in relational databases. This would allow for flexi-
ble queries combining content and schema information in the relational da-
tabase as opposed to in SQL. 

One way to expose data in relational databases as RDFS representations is 
by downloading them to RDF repositories. However, this can be very costly 
when the relational database is large. The fact that all data in the relational 
database is duplicated as RDF introduces a lot of data redundancy. Also, 
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when the rate of change in the relational database is high, a lot of time is 
spent on propagating the changes to the RDF repository.  

A better solution, proposed in this Thesis, is to define RDF Schema views 
over existing relational databases and allow database queries in, e.g., 
SPARQL over these RDFS views. This way redundancy and overhead for 
updates is eliminated. 

The RDFS views over relational databases should be defined in a struc-
tured and general way. That is, it should be possible to define an RDFS view 
over any arbitrary relational database. RDFS view definitions should not be 
hard-coded for a specific relational database instance. The definition of gen-
eral and well structured RDF Schema views would increase understandabil-
ity and minimize the introduction of errors compared to in ad-hoc solutions. 
Therefore, RDFS views should be generated in a way that demands a mini-
mum of user input.  

RDFS views over relational databases should enable: 
• Access to all content in the relational database in terms of RDF re-

sources. 
• Access to schema information about tables and columns in the rela-

tional database in terms of RDFS classes and properties. These 
classes and properties are instantiated by the RDF resources repre-
senting the database content. 

Another issue is to retain as much as possible of the semantics of the rela-
tional database in the RDFS view. Relational databases are usually designed 
using the graphical high level conceptual entity relationship (ER) model. 
The designed ER diagrams are then translated to the relational model and 
implemented in a relational DBMS. ER and RDFS both work on the concep-
tual level whereas the relational model is more implementation specific. As a 
reason thereof, ER entities and relationships are implicitly represented in the 
relational model. 

To retain semantics, RDFS views over relational databases should also: 
• Make explicit ER type memberships and relationships in terms of 

RDF Schema constructs.  

RDFS views that fulfil all of this are referred to here as complete RDFS 
views.  

The processing of queries to an RDFS view over a relational database be-
comes challenging for two reasons: First, the flexible representation of data 
with RDF produces queries that involve many self-joins to a large disjunc-
tive view (one disjunct for every viewed column in the relational database) 
where each disjunct in turn is defined as a conjunctive expression. Tradi-
tional processing of such queries produces enormous expressions internally 
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and as a consequence of that unrealistically slow query processing times. 
Second, the queries are posed to RDFS views over relational databases and 
require therefore careful optimization in order to scale over the huge amount 
of data that can be stored in a relational database. 

The two main research questions identified in this Thesis are: 
• How can general and complete RDF Schema views of relational 

databases be automatically generated? 
• How can scalable processing of realistic size SPARQL queries to 

large RDF Schema views of relational databases be achieved? 

To investigate these questions we developed a system, Semantic Web 
Abridged Relational Databases (SWARD) [62][44][45] to enable efficient 
processing of SPARQL queries to RDFS views of relational databases. 
Complete RDFS views are automatically generated specified with a mini-
mum of user input.  

In SWARD, relational database content and schema information is repre-
sented in RDF as a large disjunctive view. We call such a view a universal 
property view or UPV. A UPV is an RDFS mapping of a relational database 
defined as a union of a schema view, representing the database schema, and a 
content view, representing the database content. The content view, in turn, is 
defined as a union of property views, each representing one viewed column 
in the relational database. The UPV is automatically generated by SWARD, 
given that the user specifies for a given relational database a property map-
ping table that declares how RDFS properties (mapped properties) corre-
spond to viewed relational columns in the UPV. The user also specifies a 
class mapping table that declares how RDFS classes (mapped classes) corre-
spond to relational tables in the UPV. 

In other words, an RDFS view over a relational database in SWARD is 
implemented as a UPV that defines an RDFS meta-data description of the 
database where the database schema is encoded as classes and properties in 
the description and the database content is encoded as members of these 
classes and instantiated properties for these members.  

To represent ER entities and relationships in the UPV its definition is 
augmented with special purpose subviews to model class memberships 
(class membership views) and class relationships (class relationship views). 
The definitions of these views are automatically generated by SWARD. 

Composite keys are supported by relational databases but not in RDFS. 
However, since composite primary keys are very common in relational data-
bases it is very important that they are represented in UPVs so that tables 
containing such keys can also be viewed in RDFS. The UPVs are therefore 
generalized to view tables with composite primary keys as well. 
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SPARQL queries to UPVs are very flexible and can mix schema and con-
tent. For example, a query can be expressed that finds the values of all prop-
erties (i.e. attribute values) of a given customer. Meta-data descriptions can 
have many properties (e.g. [61] has 1000s), and this requires efficient proc-
essing of queries involving many self-joins over the UPV. 

A naive implementation is to define the UPV as an SQL view and to do 
all query processing over the UPV in a relational database. We show that 
such an approach scales very badly and is outperformed by the more effi-
cient query processing strategies described in this Thesis. 

A general query reduction algorithm, called PARtial evaluation of Que-
ries (PARQ) for queries to complex views, such as UPVs, has been devel-
oped. The reduction algorithm is based on the program transformation tech-
nique partial evaluation [25][43][29]. Partial evaluation enables the devel-
opment of elegant and clean solutions that are automatically specialized into 
efficient reduced programs. For UPVs, the PARQ algorithm is shown to 
elegantly reduce queries substantially before regular cost-based optimization 
by a back-end relational DBMS. PARQ simplifies the query by iteratively 
evaluating at compile time some application specific predicates until a fix-
point is reached. We show dramatic improvements in query processing time 
for conjunctive SPARQL queries to UPVs, while increasing the query size, 
the size of the database schema over which the UPV is defined, and the da-
tabase content size. 

Queries to the UPV can be of three kinds: i), content queries that access 
the database content ii) schema queries that access relational schema infor-
mation only, and iii) hybrid queries that combine schema and content data. 
SWARD can process queries of all three kinds efficiently. However, it is 
particularly challenging to process content and hybrid queries searching the 
large database contents. We show that partial evaluation substantially im-
proves query processing performance for all three kinds of queries. 

In summary, the following results are presented: 

 
• UPVs are defined as a general method to map any relational database to a 

complete RDF Schema view requiring a minimum of user input. 
• A new partial evaluation algorithm is developed called PARQ for reduc-

ing queries based on controlled partial evaluation of query fragments. 
• The PARQ algorithm is shown to provide elegant and scalable processing 

of conjunctive SPARQL queries to large disjunctive UPVs. In particular, 
new query processing methods, END-P and DVS-P, are developed for ef-
ficient processing of queries to large UPVs, based on applying PARQ on 
straight-forward query processing methods. It is shown that that the appli-
cation of PARQ dramatically improves performance of naïve approaches. 
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• The query processing method END-P is defined as PARQ applied on 
conventional query processing using view Expansion, Normalization, and 
Decomposition (END).  

• The DVS-P method is PARQ applied on another naive method special-
ized for UPVs, DPS (Dynamic Plan Selection), which selects precompiled 
query fragments from a table. 

• The query processing strategies were evaluated for scalability of query 
processing time as i) the database size increases, and ii) the size of the 
query and the size of the UPV definition increase. 

To summarize, in this Thesis, the first research question, regarding auto-
matic generation of general and complete RDFS views of relational data-
bases was thoroughly investigated and answered with the exception of han-
dling of relational tables encoding ER M:N relationships types and relation-
ship types of degree higher than 2, that has yet to be looked into.  

The second research question, regarding scalable processing of realistic 
size queries to RDFS views over relational databases, is fully investigated 
and answered for conjunctive content and schema queries. The research 
question was also investigated and answered for the most common subclass 
of hybrid queries but some work remains to answer the question for all hy-
brid queries and for disjunctive queries. 
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2 Background 

This Chapter describes key technologies used in SWARD. It first gives an 
overview of relational database management systems. Then an introduction 
to the semantic web, its languages and query languages, is provided followed 
by a presentation of RDF repositories. After that an overview of how to view 
relational databases in terms of RDF Schema representations is presented. 
The general purpose program specialization technique called partial evalua-
tion is then presented. After that, an overview of the ER-model is given to-
gether with a discussion of its relationship to RDF Schema and the relational 
model. The Chapter is concluded with a short presentation of the DBMS 
Amos II and how it is used for implementing SWARD. 

2.1 Relational Database Management Systems 
A database is simply a large collection of data managed by a database man-
agement system (DBMS). The DBMS allows for a) creation of new data-
bases and specification of the logical structure of the database called its 
schema b) querying the data c) updating data d) concurrent access of multi-
ple users to data. 

To describe the structure of information in the database, its schema, the 
DBMS utilizes various data models, which provide primitives (meta-
language) for defining a schema. In a paper dated to the beginning of the 
1970s Codd [18] proposed the relational data model where data were mod-
elled as rows, or tuples, in 2-dimensional tables with one or more columns. 
The relational data model gained much in popularity due to a) its simplicity 
and b) closeness to the traditional way of structuring non-digital information 
in companies. It is by far the most common data model used in databases 
today. Notice that, while the user of a relational DBMS sees the data as sim-
ple tables, internally relational DBMSs organize the data using complex data 
structures providing efficient retrieval and manipulation.  
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Figure 1 shows a an example of a small relational database E-government 
with three tables, LIFEEVENT, FORM, and SERVICE representing informa-
tion about life events, forms associated to life events, and services related to 
life events, respectively. Every table in the relational model has one or sev-
eral columns acting as a primary key in that table, i.e. making every row in 
the table unique. In tables LIFEEVENT and FORM columns LID and FID 
are acting as primary keys, respectively. In table SERVICE the key is com-
posed of the two columns LID and SNR. Such keys are called composite 
keys. A foreign key is a column referencing the key column in another table. 
In Figure 1 column LIFEEVENT in FORM is a foreign key referencing key 
column LID in table LIFEEVENT. 
 

LIFEEVENT LID NAME DESCR 
 movinghouse Moving House A citizen intends to move from 

one EU country to another. 
 

FORM FID URL LIFEEVENT 
fid_0 http://www.skatteverket.se/…/7665B5.pdf movinghouse  
fid_1 http://www.workpermit.com/uk/employer_form.htm movinghouse 

 
SERVICE LIFEEVENT SNR TITLE 
 movinghouse 0 Moving Service 

Figure 1: E-government relational database 

In the relational model the user specifies the query in a high-level query 
language, where the Structured Query Language (SQL) being the most 
widely used. Instead of specifying exactly how the information should be 
accessed in terms of traversing low-level data structures and indexes the user 
now can focus on what information should be accessed leading to an increas-
ing productivity in database development.  

The separation of query languages from low-level implementation spe-
cific details is one of the most fundamental aspects of relational DBMSs and 
is referred to as data independence. Data independence exists on a logical 
and on a physical level in a relational DBMS. On a logical level, changes to 
the database schema should not affect application programs accessing the 
schema through queries. On a physical level, changes to the data organiza-
tion should not affect the database schema.  

The technique of efficiently calculating the result from a high-level query 
is called query processing and is performed by the DBMS query processor.  

Figure 2 shows the typical query processing steps in a DBMS [65]. 
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Figure 2: Typical query processing steps in a DBMS 

First, the query is checked for syntactic and semantic correctness by the 
parser and validator, respectively. The semantic analysis involves, for ex-
ample, checking that the query refers to only existing table and column 
names.  

The result of parsing and validating the query is an algebraic representa-
tion of the query in the form of a logical query plan in a relational algebra, 
that is, a sequence of operators to be executed. It is logical in the sense that 
no algorithms have yet been assigned to implement the operators in the 
query plan.  

Because a query often can be executed in numerous ways the task of the 
optimizer is to produce an efficient execution strategy. This is done in two 
steps where 1) the optimizer applies algebraic laws on relational algebra 
expressions to produce a more efficient query plan and 2) algorithms are 
assigned to the logical relational algebra operators of the query plan produc-
ing an algebraic expression in the form of a physical query plan. Each query 
plan has a predefined cost according to some cost model and the cheapest 
plan is picked. The ‘cost’ can for example be approximated by the number of 
disk access performed by the relational database management system when 
executing a specific query plan. The number of disk accesses is in turn af-
fected by factors such as the ordering of similar operations and sizes of in-
termediate results. For the query optimizer to correctly estimate the cost of 
alternative query plans it is therefore important that there exist valid statistics 
about data characteristics such as number of rows in a table and the number 
of different values in table columns. 
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Finally, the resulting physical query plan is interpreted by the execution 
engine producing the result. 

In this Thesis a system for generation and querying RDF views over rela-
tional databases is presented. Queries in the RDF query language SPARQL 
are processed over RDF Schema representations of relational databases. The 
system generates SQL fragments that are sent to the relational database for 
cost-based optimization and execution.  

2.2 Semantic Web 
The semantic web effort aims for more focused and relevant web searches 
and to facilitate for the combination of information by providing internet-
wide standards such as RDF [20][32] and RDF Schema [11], for semanti-
cally enriching and describing web data. The formal meaning of RDF and 
RDF Schema is defined in [28]. 

2.2.1 The Resource Description Framework (RDF) 
The Resource Description Framework (RDF) [20][32] is a W3C standard for 
representation and description of web resources on the World Wide Web. In 
other words, it is a language for stating meta-data about web resources. In 
RDF the concept ‘web resource’ is interpreted as anything that can be identi-
fied on the Web. This is a very broad definition of a web resource that al-
lows for representation of: a) things accessible through a network e.g. a web 
page or a picture, b) things that are not accessible through any network e.g. 
identifiers for human beings or books in a library, and c) abstract concepts 
such as, e.g., a ‘creator’. 

RDF web resources, or RDF resources, are uniquely identified through 
Uniform Resource Identifiers or URIs [32]. A URI reference is formed by a 
URI namespace and a local name. The namespace part of the URI can be a 
rather long string, e.g. http://udbl.it.uu.se/schemas/eGovern#. A more com-
pact way of expressing URIs is by using a shorthand notation assigning a 
prefix to the URI namespace and adding the local name to this prefix. For 
example, in the URI egov:Concern, the prefix egov: is shorthand for 
http://udbl.it.uu.se/schemas/eGovern#. 

With RDF any web resource can be annotated with properties describing 
its semantics. The value of a property for some RDF resource is another 
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RDF resource. This knowledge is represented in RDF as triples or state-
ments of RDF resources <s, p, v>1 where s is called the subject (modeling 
some entity), p is called the predicate (modeling some property of an entity) 
of s, and v is called the object (the value of p). To avoid confusion with ordi-
nary programming terminology this Thesis uses the terms property and value 
instead of predicate and object. The terms RDF triple and statement will be 
used interchangeably throughout the Thesis. 

For example, a statement 

<egov:Form/fid_0, egov:Concern,egov:LifeEvent/movinghouse > 

where s is egov:FormID/fid_0, p is egov:Concern and v is 
egov:LifeEvent/movinghouse expresses the fact that the form identified by 
the URI egov:Form/fid_0 concern the life event identified by the URI 
egov:LifeEvent/movinghouse. The statement is represented in graph notation 
in Figure 3. 
 

 
Figure 3: RDF graph 

Each node in the graph is unique, meaning that if a resource would exist 
in more than one statement the node representing that resource would have 
several property arcs connected to it. RDF statements are exchanged by seri-
alizing them into a dialect of the Extensible Markup Language (XML) called 
RDF/XML [32].  

The RDF/XML serialization of Figure 3 is shown in Example 12. 
<xml version=”1.0”?> 
<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-
ns#” 
  <rdf:Description rdf:about=egov:Form/fid_0> 
    <egov:Concern rdf:resource=egov:LifeEvent/movinghouse> 
  </rdf:Description> 
</rdf:RDF> 

Example 1: RDF/XML serialization of simple RDF graph 

                                                      
 
 
 
1 We use the <.> notation to denote RDF statements, or triples, in text. 
2 By convention rdf: is prefix for http://www.w3.org/1999/02/22-rdf-syntax-ns# 



 20 

The subject and property of an RDF statement are always URIs. How-
ever, the value could be either a URI as in Figure 3 or a literal as in Figure 4. 
Literals can be simple or typed. A simple literal is a string and a typed literal 
is a string adorned with a datatype URI. The statement represented in graph 
notation in Figure 4 expresses that the national tax board of Sweden is the 
creator of the form egov:Form/fid_03. Here the value of the triple is a simple 
literal.  
 

 
Figure 4: RDF graph with literal value 

2.2.2 RDF Schema 
RDF is the basis for representing semantic web data and several higher level 
languages are defined in terms of RDF. One of these higher languages is 
RDF Schema (RDFS) [11], a W3C standard that provides means to describe 
application specific classes of RDF resources and allow properties defined 
over these classes. Usually, RDF data is defined in terms of such an RDFS 
meta-data description. Examples of RDFS descriptions (referred to in this 
Thesis as RDFS descriptions) are RSS 1.0 [49] and WordNet [69]. 

The RDFS meta-classes rdfs:Class and rdf:Property are used to represent 
classes and properties in an RDF Schema description, respectively4. The 
RDFS meta-property rdf:type is used to define the data type of an RDF re-
source by associating each RDF resource with one or several RDFS classes. 
The class for which a property is defined is called the domain of the property 
and is represented by meta-property rdfs:domain. The class of the value of a 
property is called the range of the property and is represented by the meta-
property rdfs:range. Figure 5 shows a small example description of an e-
government portal with information about life events and their related forms. 

The RDFS description contains the two classes; egov:LifeEvent and 
egov:Form modelling life events and forms about life events, respectively. 
The class egov:Form has the properties egov:Concern and govml:Creator, 
where the first one expresses which life event a form concern and the latter 
represents the creator of the form. The domain and range for egov:Concern 

                                                      
 
 
 
3govml: is prefix for namespace http://www.egov_project.org/GovMLSchema# 
4By convention rdfs: is prefix for http://www.w3c.org/2000/01/rdf-schema# 
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are egov:Form and egov:LifeEvent, respectively. The property egov:Creator 
has the domain egov:Form and range rdfs:Literal. The mentioned classes are 
instanced with the RDF resources egov:Form/fid_0 and 
egov:LifeEvent/movinghouse representing a form and its associated life 
event, respectively. 
 

 

Figure 5: An example RDFS description of an e-government portal 

A subset of the RDF triples representing the RDFS description and its 
data in Figure 5 are: 

<egov:LifeEvent,rdf:type,rdfs:Class> 
<egov:Form,rdf:type,rdfs:Class> 
<egov:Concern,rdf:type,rdf:Property> 
<egov:Concern,rdfs:domain,egov:Form> 
<egov:Concern,rdf:range,egov:LifeEvent> 
… 
<egov:Form/fid_0,rdf:type,egov:Form> 
<egov:Form/fid_0,egov:Concern,egov:LifeEvent/movinghouse> 
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The corresponding RDF/XML serialization is shown in Example 2. As il-
lustrated below the format is meant for machines and not for humans to read. 
 

<xml version=”1.0”?> 
<rdf:RDF xmlns:rdf=”http://www.w3.org/ 
                     1999/02/22-rdf-syntax-ns#” 
         xmlns:rdfs=”http://www.w3.org/2000/01/rdf-schema#” 
         xmlns:egov=“http://udbl.it.uu.se/schemas/eGovern#”> 
 
  <rdf:Description rdf:about=egov:LifeEvent> 
    <rdf:type rdf:resource=rdfs:Class> 
  </rdf:Description> 
  <rdf:Description rdf:about=egov:Form> 
    <rdf:type rdf:resource=rdfs:Class> 
  </rdf:Description> 
  <rdf:Description rdf:about=egov:Concern> 
    <rdf:type rdf:resource=rdf:Property> 
    <rdf:domain rdf:resource=rdfs:Form> 
    <rdf:range rdf:resource=rdfs:LifeEvent> 
  </rdf:Description> 
... 
  <rdf:Description rdf:about=egov:Form/fid_0> 
    <rdf:type rdf:resource=egov:Form> 
    <egov:Concern rdf:resource=egov:LifeEvent/movinghouse> 
  </rdf:Description> 
</rdf:RDF> 

Example 2: RDF/XML serialization for e-government portal 

Another high level language for the description of RDF data is the OWL 
Web Ontology Language [42]. It is more powerful than RDFS in that it pro-
vides vocabulary for describing among other things disjointness between 
classes and cardinality constraints for properties. Unfortunately the language 
is computationally undecidable [42]. OWL Lite [42] is a simplified version 
of OWL, guaranteed to be computable, that supports classification hierar-
chies and simple cardinality constraints. 

In this Thesis only basic RDF and RDF Schema languages are used for 
representing RDF Schema views of relational databases. 

2.2.3 RDF Query Languages 
Access to semantic web data is enabled through the development of RDF 
query languages. Several languages have been proposed e.g. SPARQL [58], 
RDQL [50], RQL [30], SeRQL [12], and QEL [40] where SPARQL is W3C 
standard. 

SPARQL is an extension of the query language RDQL designed in accor-
dance to the requirements described in the W3C RDF Data Group document 
‘RDF Data Access Use Cases and Requirements’ [48]. SPARQL supports 
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features such as a) generalized triple patterns i.e. a syntax for navigating 
RDF graphs where the user defines input graph patterns (queries) expressed 
as a conjunction/disjunction of RDF statements that are matched against the 
underlying RDF graph (data), b) comparison of values and support for data 
types, including arithmetic operations, c) closure i.e. the ability to construct 
a new RDF graph out of the result of a query, and d) optional values i.e. the 
possibility to partially match RDF graphs. An example of a simple SPARQL 
query that returns the creator of the RDF resource egov:FormID/fid_0 is 
shown in Example 3.  
 

SELECT ?v  
WHERE {egov:FormID/fid_0 govml:Creator ?v .} 

Example 3: SPARQL query 

The result of the query is the literal ‘National Tax Board of Sweden’. 

In SPARQL variables are prefixed with ‘?’. The SELECT clause specifies 
the result. The WHERE clause specifies a selection condition over the RDF 
graph. The selections in a WHERE clause are specified using triple patterns 
[58] with syntax:  

 s p v .  

In each triple pattern s (subject), p (property), and v (value) are constants 
or variables. A period, ‘.’, denotes the end of a triple patterns. If more than 
one triple pattern is specified they are conjuncted. An optional FROM clause 
specifies the source to query. A SPARQL query with no FROM clause, like 
the one in Example 3, is executed against some default data source defined 
by the system processing the query. Value constraints can be defined with 
the FILTER keyword. They are conjuncted with the triple patterns. 

Example 4 shows a SPARQL query that contains a pattern matching filter 
REGEX and returns all forms being created by tax boards. 
 

SELECT ?v  
WHERE {egov:FormID/fid_0 govml:Creator ?v . 
       FILTER REGEX(?v, ‘.*tax board.*’) .} 

Example 4: SPARQL query with FILTER operator 

The result of the query is the same as for the query in Example 3, i.e. ‘Na-
tional Tax Board of Sweden’. 

This Thesis is about the generation and querying of RDFS representations 
of relational databases in terms of RDF views. For simplicity, the language 
RDFS is chosen before OWL Lite to describe RDF data. The RDFS repre-
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sentations are queried in the standard semantic web query language 
SPARQL. 

2.3 RDF Repository Systems 
RDF repository systems offer support for storage of RDF data in special 
repositories designed for RDF and the ability to search RDF data using a 
query language. Examples of RDF repository systems are Jena2 [67], Ses-
ame [12], Oracle [15], and AllegroGraph [4] where the first three are based 
on relational databases and the last one is a native RDF repository.  

In relational RDF repositories, the main idea is to internally store all RDF 
triples in a table with three columns, S, P, and V, representing the subject, 
property and value of an RDF triple, respectively. URIs can be mapped to 
integer identifiers [15][12] to save space producing one table containing all 
the triples and another table with all URIs to identifier mappings. Many re-
positories (including [15][12][67]) implement a multi-layered approach 
where all RDF-specific processing (such as query translation) is done at the 
RDF layer above the back-end relational DBMS.  

An example relational RDF repository with only one table, TRIPLES, 
storing all the triples that contain a subset of the data from Figure 5 is shown 
in Figure 6. Here URIs and literal values are represented as strings in the 
repository. For readability quotations are omitted. 

 
Figure 6: RDF repository 

A semantic web query is first translated to SQL in the RDF layer and then 
passed to the relational DBMS for optimization and execution over the table 
storing the RDF statements.  
 

SELECT ?creator, ?lifeevent 
WHERE {?form govml:Creator ?creator . 
       ?form egov:Concern ?lifeevent .} 

Example 5: SPARQL query with two triple patterns 
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For example, the query returning the creator and the life event for all 
forms would be converted to the following SQL executed over the triple 
table, TRIPLES, in Figure 6: 
   SELECT T1.V, T2.V 
   FROM T1 TRIPLES, T2 TRIPLES 
   WHERE T1.S = T2.S           AND 
         T1.P = govml:Creator  AND 
         T2.P = egov:Concern 

The query result variables ?creator and ?concern are bound to the RDF 
resources ‘National Tax Board of Sweden’ and egov:LifeEvent/movinghouse 
respectively. 

Notice that the SQL produced from the SPARQL query in Example 5 is a 
self-join over the table storing all triples, a triple table join. In general, every 
two triple patterns in the semantic web query will be translated into a triple 
table join in SQL.  

SPARQL queries over relational RDF repositories with one table storing 
all the triples, like in Figure 6, can be very slow to execute since when the 
number of triples in the table is increased the triple table may not fit in main 
memory any more, meaning that each triple table join in the SPARQL query 
requires a disk access.  

Another problem is that it is hard to access proper information about the 
distribution of values for different properties in an RDF repository with only 
one table storing all the triples. Insufficient statistics about the data will pre-
vent the cost-based optimizer of doing a good job during query processing. 

Furthermore, it is difficult to cluster data and decide which indexes to 
create since the repository is offered no information about the characteristics 
of data needed by the applications. Typically there will be indexes on each 
three columns of the table storing all the triples in the repository (e.g. col-
umns S, P, V in Figure 6). 

To speed up queries over relational RDF repositories, Jena 2 [67] and 
Oracle [15] allow non-triple representation of RDF properties. Properties 
that are often accessed together are clustered using so called property tables 
eliminating the need for triple table joins when the queries can be answered 
from a single property table.  

However, in reality queries often need to combine data from many prop-
erty tables. It is very unlikely that one property table holds all data and there-
fore the produced SQL gets complicated. Another problem is the unstruc-
tured nature of RDF data resulting in a lot of NULL values in property ta-
bles.  
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An alternative way of storing RDF data is to use one table for each prop-
erty, i.e. column tables [1]. This way the size of the triple store can be kept 
smaller when data is highly unstructured. The column-based approach will 
require more SQL joins compared to the property-table based one but effi-
cient merge join algorithms can be used for this [1].  

In AllegroGraph [4] RDF triples are stored as objects in a store. Indices 
are used to speed up access of the triples. 

This Thesis is about the processing of SPARQL queries. However, in-
stead of queries to special purpose RDF repositories this work focus on que-
rying views defined in terms of RDFS classes and properties that describes 
both structure and content of data stored in the relational databases This is 
important since most existing information still resides in relational data-
bases, which are optimized for handling very large data volumes. By defin-
ing RDF views over relational databases they are made queryable with 
SPARQL without having to be copied to some RDF repository. Furthermore, 
a view will always reflect any changes in the relational database. 

2.4 Mapping Relational Data to RDF 
An RDF repository offers persistent storage of RDF data. There is a vast 
amount of additional high quality information stored in databases accessible 
from the web but not as RDF. This information should be exposed to the 
semantic web too. Two different approaches here referred to as RDF materi-
alization and RDF views, have emerged for mapping data in relational data-
bases to RDF. Whereas RDF materialization means loading relational data 
into large RDF repositories for persistent storage, the RDF view approach 
keeps the data in the source and instead provides RDF views over the data 
that can be queried with, e.g., SPARQL. 

2.4.1 RDF Materialization 
The RDF materialization approach for publishing relational data as RDF 
consists of two phases.  

First, the relational database is materialized and duplicated as RDF data in 
some RDF repository such as for example [15].  

In the next phase the RDF repository can be queried using some semantic 
web query language. Figure 7 illustrates the approach.  

NASA for example uses the RDF materialization approach in their POPS 
project [27]. 
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Figure 7: RDF materialization 

The difference between the approach in Figure 7 and ordinary RDF re-
positories (Figure 6) is that when materializing relational data as RDF the 
data first has to be converted to RDF. This is done by the materializer taking 
the data in the relational database and a set of relational to RDF mappings as 
input and returning the materialized RDF data as output.  

The mappings can be generic or separate user defined scripts to define the 
details. Generic mappings has to be specified by the user once only, scripts 
require separate user defined mapping files for each new RDF view. User 
defined mapping scripts are important because they provide the user with the 
possibility to define application specific mappings. 

The RDF materialization approach can be very costly when the relational 
database is large. The fact that all data in the relational database is duplicated 
as RDF introduces a lot of data redundancy. Also, when the rate of change in 
the relational database is high, a lot of time is spent on propagating the 
changes to the RDF repository. 

2.4.2 RDF Views 
Rather that materializing all the contents of a relational database as RDF, 
with the RDF view approach data is streamed through the system when the 
RDF view of a relational database is queried. Retrieved data is not perma-
nently materialized and stored in an RDF repository and the view will al-
ways reflect any changes in the wrapped relational database. Only meta-data 
describing the viewed relational database is stored in the RDF layer. Figure 8 
illustrates exposing relational data as RDF using the RDF view approach.  

Notice that only the result of a query has to be mapped to RDF as op-
posed to the RDF materialization approach where the whole relational data-
base is converted and duplicated to an RDF representation.  
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Figure 8: RDF view 

Processing queries over RDF views in general is more demanding than 
processing queries over RDF repositories since a query stated in terms of 
several RDF triple patterns is translated into one SQL query fragment for 
each RDF triple pattern. These SQL query fragments then has to be com-
bined to complete SQL queries over one or more relational tables. 

In RDFS views over relational databases relational tables and columns are 
usually mapped to classes and properties in some RDFS description. The 
domain of a column is converted to the domain of its corresponding prop-
erty. The range of a property is either a typed or a simple literal. The RDFS 
classes and properties describing the relational database schema are then 
instanciated in the RDF layer based on the corresponding schema meta-data 
in the relational database.  

This Thesis is about generation and querying of RDFS views over rela-
tional databases i.e. the RDF view approach. No data is materialized as in an 
RDF repository. Each view is generated automatically given very simple 
user defined mappings between relational database tables and columns and 
RDFS classes and properties. The RDFS views are defined in a general way 
and are then specialized by partial evaluation (Section 2.6) during query 
processing. SWARD leverages on the Amos II system [51] for query proc-
essing and utilizes its facility for transparent access to external data sources 
to access the back-end relational database. No explicit user specification of 
SQL code is needed but the SQL queries are dynamically generated during 
query processing. 

2.5 The Entity-Relationship (ER) Model 
The Entity-Relationship model [14] is a high level conceptual data model 
used to graphically describe structure and constraints in a database. Such a 
high level model of information in the database has the advantage that it is 
easier to understand for non-technicians since it does not include implemen-
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tation specific details. Furthermore it avoids misconceptions and multiple 
interpretations and it is implementation independent. The ER-model is used 
during the conceptual database design and is then translated to the relational 
model.  

 
Figure 9:ER diagram of E-government database 

Figure 9 shows an example of an ER diagram representing the E-
government relational database presented in Figure 1. 

With ER, entity types are used to describe a physical or abstract concept. 
In Figure 9 they are used to describe life events and their associated forms 
and services corresponding to the tables LIFEVENT, FORM, and SERVICE 
in the E-government relational database respectively.  

Attributes are defined over entity types to describe their characteristics. 
For example, attributes LID, NAME and DESCR are defined over entity type 
LIFEEVENT. Attributes can be simple or composite. Each simple attribute is 
associated with a value set which specifies the set of allowable values for an 
attribute to take. For example, the domain of the DESCR attribute is the set 
of strings of alphabetic characters separated by blank characters. The do-
mains are not explicitly declared in the ER diagram. Composite attributes 
can be broken up into smaller more basic subparts. 

An entity is an individual instance of an entity type. Entities are not part 
of the ER-model, which describes meta-data only, and entities would corre-
spond to the rows in a relational table. For example, an entity of the LIFE-
VEVENT entity type would be a row in the LIFEVENT table shown in Figure 
1. 
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A key is an attribute that has unique value for every entity of the entity 
type it is defined over. For example, the attribute FID is a key for entity type 
FORM. A key composed out of several columns is called a composite key. 

Entity types can be associated through relationship types. In Figure 9 the 
relationship type CONCERNS represent the relationship between life events 
and their associated forms i.e. a form concern a particular life event.  

Cardinality constraints are defined over relationships. In Figure 9 the 
constraint 1:N between a form and a life event specifies that a life event can 
have several associated forms but a form can only concern one specific life 
event. Other cardinality constraints are 1:1 for one-to-one or M:N for many-
to-many constraints over relationship types. 

Sometimes an entity type does not have a key attribute of its own. For ex-
ample, entity type SERVICE does not have any attribute uniquely identifying 
its entities. Entities belonging to such weak entity types are identified by 
being related to entities from a strong entity type with a key attribute. More 
specifically, the key of a weak entity type is formed by combining the key of 
its strong entity type with one or several attributes of its own (its partial 
key). The relationship type RELATED_TO representing the relationship be-
tween life events and services is an example of such an identifying relation-
ship. Attribute SNR is partial key of RELATED_TO. 

When an ER diagram is translated into the relational model, entity types 
with their attributes are represented as relations with columns. Attribute 
value sets define the domains of the columns. Key attributes defines primary 
keys in their respective table. ER relationship types are supported in modern 
relational DBMSs through the use of foreign keys. Cardinality constraints are 
used to guide the mapping of ER relationships to relational foreign keys. For 
an 1:N relationship like CONSERN in Figure 9 the primary key column in 
the table representing the entity type LIFEVENT is placed as foreign key in 
the table representing the entity type FORMS as illustrated in Figure 1. 
Figure 1 shows the resulting relations and columns from translating the ER 
diagram in Figure 9 to the relational model. 

In Figure 9 relationship type CONCERNS is encoded as the foreign key 
column LIFEVENT in table FORM referencing the primary key column LID 
in table LIFEVENT. The identifying relationship type, RELATED_TO is 
encoded by augmenting the partial key of SNR, with the key of the LIFE-
VENT table forming the composite key (LIFEVENT, SNR) of table SER-
VICE. 

Similar to the ER-model RDFS is also a high-level data model used for 
the description of information. In Figure 10 a summary of the correspon-
dence between elements in ER, the relational model, and RDF Schema, is 
presented. 
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ER model Relational model RDF Schema 
Entity type Table Class 
Entity Row URI 
Attribute Column Property 
Value set Domain of column Range of property 
Entity type of attribute Table of column Domain of property 
Key attribute Primary key - 
Binary 1:1 or 1:N rela-
tionship type 

Foreign Key Properties associating classes 

Figure 10:Correspondence between ER, the relational model, and RDF Schema 

For example, ER relationships, which are represented implicitly in the re-
lational model through foreign keys, should be made explicit again as prop-
erties associating classes in an RDFS description. 

Inheritance in RDF Schema could be modelled also using an Enhanced 
ER-model [23] supporting class inheritance. Since this work focus on how to 
query RDFS views over pure relational databases not supporting inheritance 
there is no need for support for EER constructs in the RDFS view provided 
by SWARD. 

2.6 Partial Evaluation 
Partial evaluation [25][43][29] is a technique for optimization of programs 
by specialization, given that some input data is known. Partial evaluation is 
illustrated in Figure 11. 
 

 

Figure 11: Partial evaluator M 

A partial evaluator [29] (or specializer) is a function M that takes two ar-
guments, the source of a program P and its static input I, and produces a 
specialized and more efficient program PS: 

   M(P,I) = PS 

This is done by performing all calculations in P that depends only on 
known input data I.  
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Partial evaluation enables the programmer to develop ‘well-structured and 
cleanly written software’ [29]. The program is then specialized to a more 
efficient (faster and simpler) program producing the same output as the 
original program.  

Application of partial evaluation can be found in several areas such as for 
example automatic compiler generation [6][7], operating systems [46], pro-
gramming languages [6][7][33][53] and computer graphics [5]. 

In [6][7] partial evaluation is used to automatically generate compilers 
from interpreters. In [46] a commercial operating system is optimized by 
specializing the kernel code for system states that are likely to occur. In [5] a 
ray tracer, a method used in computer graphics to produce a good picture 
rendition of a scene, is specialized with respect to objects and light sources 
in the scene. In [6][7][33][53] partial evaluation of imperative, functional 
and logical programming languages is shown to produce faster specialized 
programs.  

In this Thesis a new algorithm for partial evaluation of query fragments is 
presented called PARtial evaluation of Queries (PARQ). It is shown that 
PARQ provides scalable processing of real world semantic web queries to 
RDF Schema views of relational databases. In contrast to the query process-
ing approach where the programmer introduces ad-hoc optimizations bound 
to introduce errors, partial evaluation is driven by well defined rules that 
reduce the query the to a much faster and simpler query producing the same 
output as the original one. 

2.7 The Amos II System, Data Model and Query 
Language 

AMOS II is a main memory functional DBMS [52]. The DBMS contains 
functionality for processing and executing queries over data stored locally 
but also external data sources, such as relational databases [24]. AMOS II 
provides transparent access to and hides the details of the data sources from 
users and application programmers.  

AMOSQL is the declarative query language of AMOS II and can be de-
scribed as an extended subset of the object-oriented parts of SQL:99. It is 
relationally complete. AMOSQL is based on the functional query languages 
OSQL [37] and DAPLEX [57]. AMOSQL queries are internally represented 
as ObjectLog [36] expressions. ObjectLog is an extension of Datalog [36] 
with disjunctions, objects, types, and external predicates. 



 

  33

The data model of Amos II is an object-oriented extension of the 
DAPLEX functional data model. It is founded on the three concepts; objects, 
types and functions.  

All entities in the database are represented as objects and managed by the 
system. An object is either a literal or a surrogate. Literals are self-described 
objects that have no explicit object identifier (OID). They are maintained by 
the system and automatically garbage collected when no longer needed. Sur-
rogates have associated OIDs and are explicitly created and deleted by the 
user. 

Objects are classified into instances of types. Types are organized in a su-
pertype/subtype hierarchy with multiple inheritance.  

Functions model the semantics of objects e.g. properties of objects, com-
putations over objects, and the relationship between objects. Basic functions 
can be classified into four different categories namely, stored functions, de-
rived functions, foreign functions, and database procedures. 

Stored functions represent properties (attributes) of objects in the data-
base. For example, common properties of an object of type person are name 
and age. Stored functions also model relationships between objects. 

Derived functions are defined in terms of other predefined functions or 
queries. They cannot have any side effects, e.g. they are not allowed to ma-
nipulate the database, and are compiled and optimized for later use. 

Foreign functions are defined as external predicates in ObjectLog. The 
external predicates can have their inverses associated with them and this 
enables for multi-directional foreign functions in Amos II, which are invert-
ible functions implemented in some external programming language. Han-
dling of multi-directional foreign functions is an integral part of the query 
processing facilities of Amos II [52]. 

Database procedures correspond to methods with side effects and are de-
fined using procedural AMOSQL statements. 

The functional data model of Amos II is well suited for representing 
RDFS classes, properties and their instances [51] in terms of types and prop-
erties and objects. The system described in this Thesis, SWARD, utilizes the 
data model, query language and query execution of the Amos II system. 
However, is does not utilize object oriented aspects such as OIDs or inheri-
tance. In SWARD, all RDFS data is represented as literals and is streamed 
through the system when the RDFS view of a relational database is queried. 
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SWARD extends and utilizes the Amos II system in the following ways: 
• SWARD implements functionality in Amos II for automatic gen-

eration of RDFS views of large relational databases.  
• SPARQL queries are first parsed into the internal ObjectLog lan-

guage of Amos II before being transformed into a query plan by the 
Amos II query processor.  

• SWARD extends the Amos II query processing facilities with gen-
eral partial evaluation of query fragments expressed in ObjectLog. 
The technique of partial evaluating ObjectLog query fragments is 
shown to be critical for scalability reasons when processing queries 
over RDFS views. 
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3 The SWARD System 

In this Chapter an overview of the SWARD system is presented. The system 
enables efficient processing of SPARQL queries over an automatically gen-
erated RDFS view, a universal property view (UPV), of the relational data-
base. An example scenario is used to illustrate how a UPV is automatically 
generated, given user specifications of mappings between classes and prop-
erties in an RDF Schema description and corresponding tables and columns 
from an example relational database, Company. 

The same scenario is used throughout the Thesis to demonstrate the proc-
essing of SPARQL queries to UPVs. 

3.1 Overview 
Figure 12 shows the SWARD system architecture.  
 

 
Figure 12: SWARD system overview 

The system enables the user to query any relational database using 
SPARQL. The user could be a person sitting at a terminal or a program con-
taining embedded SPARQL statements as strings.  
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A UPV is an RDFS representation of the content and schema in the 
viewed relational database. SWARD automatically generates a UPV over a 
relational database given a user defined set of mappings between tables and 
columns in the relational database and classes and properties in an RDFS 
meta-data description. Such mappings are provided by the SWARD system 
administrator upon UPV definition.  

The SPARQL queries are simplified and translated into SQL fragments 
by the query processor. The SQL is dynamically generated after query sim-
plification (reduction) based on the mappings between elements in the RDFS 
description and relational database schema constructs that are provided by 
the SWARD administrator. The generated SQL queries are sent to the rela-
tional database for cost-based optimization and execution. The results of the 
SQL queries are post-processed by SWARD to evaluate those query frag-
ments that cannot be handled by the relational back-end, e.g. construction of 
URIs uniquely identifying RDF resources based on the provided mappings.  

3.2 Scenario 
Here an example scenario is presented to demonstrate the generation and 
querying of UPVs in SWARD. 

A small ER diagram is presented in Figure 13. It is used during the design 
of the Company database to model customers (entity type CUSTOMER), 
orders (entity type ORDERS) and the relationship between them 
(PLACED_BY) denoting that an order is placed by a customer.  
 

 
Figure 13: ER diagram of Company database. 

The relationship between customer and an order is 1:N meaning that a 
customer can place more than one order but an order can only be placed by 
one customer. A customer has two attributes, an identifier (CUSTID) 
uniquely identifying a customer and a market segment (MKTSEGMENT). 
An order also has two attributes, a unique identifier (ORDERID) and the 
name of the person that filed the order (CLERK). 
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The ER diagram is translated to the relational model and is implemented 
in a relational DBMS as the database Company having the following two 
tables populated with one customer and two orders: 
 

CUSTOMER CUSTID MKTSEGMENT 
 120 AUTOMOBILE 
 
ORDERS ORDERID OCUSTID CLERK 
 1 120 Wesson 
 2 120 Doe 

Figure 14: Company database 

The columns CUSTID and ORDERID are primary keys in tables CUS-
TOMER and ORDERS, respectively. The relationship between entity types 
CUSTOMER and ORDERS is represented by the column OCUSTID in table 
ORDERS that is foreign key for CUSTID of CUSTOMER. All values in the 
relational tables are strings but for readability quotation marks are omitted. 

In SWARD relational databases are searched by SPARQL queries to a 
UPV. Before generating a UPV in SWARD a data source must be defined. 
Such a data source represents properties that SWARD needs in order to ac-
cess the back-end relational database. In our example these properties are the 
database URL, which particular JDBC5 driver to use, along with a username 
and a password to be used by SWARD when accessing the database. 
SWARD also needs specification of the catalog and schema used in the da-
tabase. The following command stores in SWARD the properties of a UPV 
data source where the argument DSName is the name of the data source: 
   defineDS(DSName, URL, Driver, Catalog, Schema, UserName, 
    PassWord); 

For example, 
   defineDS(‘COMPANYDS’, 
 ‘jdbc:microsoft:sqlserver://localhost;DatabaseName=COMPANY’, 
 ‘com.microsoft.jdbc.sqlserver.SQLServerDriver’ 
 ’COMPANYCATALOG’, 
 ‘COMPANYSCHEMA’, 
 ‘COMPANYMGR’, 
 ‘12345’); 

Other properties may be needed to access other database management 
systems. A data source has to be defined only once for every viewed rela-

                                                      
 
 
 
5 SWARD uses JDBC to connect to back-end relational databases. 
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tional database and the information is stored in a table in SWARD. This is 
done by the administrator of the SWARD system. 

When the data source is defined, the administrator declares to the system 
the name of the UPV and its URI to be used when accessing the RDF view 
in SPARQL queries. This is done by calling a procedure: 
   defineUPV(DSName, UPVName, URL); 

For example: 
   defineUPV(‘COMPANYDS’, ‘Comp’, 
    ‘http://udbl.it.uu.se/upv/comp/’); 

The URL argument is used in the FROM clause in SPARQL queries to 
uniquely identify the RDFS graph represented by the UPV named 
UPVName. A default UPV name can be specified for SPARQL queries with 
no FROM clauses: 
   defineUPV(‘COMPANYDS’, ‘Comp’,‘’); 

Through the rest of this Thesis the UPV named, Comp, represented by the 
URL http://udbl.it.uu.se/upv/comp/ is default in SPARQL queries. 

SWARD can contain several data source definitions and each data source 
can be used by different UPVs to access a viewed relational database. In our 
example, for simplicity, we limit the number of UPVs and data sources to 
one.  

To generate a UPV for the database, SWARD requires the user to provide 
two tables that specify what tables and columns in the relational schema to 
view in RDFS data, the class mapping table, cMap, and the property map-
ping table, pMap.  

The class mapping table, cMap(Table,UPV,ClassID), maps 1:1 between a 
relational table name (Table), a UPV, and a class identifier (ClassID), repre-
senting a class in the UPV mapped to a table in the relational database. Such 
classes are referred to as mapped classes (Figure 15)6. A class identifier is a 
special purpose URI constructed out of a prefix and a local name where the 
local name is the name of the mapped class in the UPV. In Figure 15 the 
name of the class mapped to relational table CUSTOMER given the prefix 
co: is Customer. The rows in tables represented by mapped classes become 
mapped instances of that class. 

                                                      
 
 
 
6 We use co: as prefix for namespace http://udbl.it.uu.se/schemas/company#. 
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Table UPV ClassID 
CUSTOMER Comp co:Customer 
ORDERS Comp co:Orders 

Figure 15: Class mapping table cMap 

The property mapping table, pMap(Table,Column,UPV,PropID), (Figure 
16) maps 1:1 between a viewed relational column (Column) in a table and a 
property identifier (PropID) representing properties in the UPV of the rela-
tional database. Such properties are called mapped properties. 
 

Table Column UPV PropID 
CUSTOMER CUSTID Comp co:CustID 
CUSTOMER MKTSEGMENT Comp co:Market 
ORDERS ORDERID Comp co:OrderID 
ORDERS OCUSTID Comp co:OrderCustomer 
ORDERS CLERK Comp co:Clerk 

Figure 16: Property mapping table pMap 

Analogous to class identifiers, property identifiers also have a local name. 
In Figure 16 the local name of the mapped property associated to relational 
column CUSTID given the prefix co: is CustID. 

The UPV itself is an RDFS description of the back-end relational data-
base in terms of mapped classes and properties in cMap and pMap. Here the 
UPV, Comp, represented by the URL http://udbl.it.uu.se/upv/comp/ identi-
fies an RDFS description of the CUSTOMER and ORDERS tables in the 
example relational database Company. 

Given cMap and pMap, the following command in SWARD automati-
cally generates the UPV for the database: 
   ViewRDB(‘Comp’) 

Here, the procedure ViewRDB generates a UPV named Comp for the da-
tabase named Company. 

A generated UPV U, is defined as a union of two subviews, one repre-
senting the schema of the relational database, the schema view S, and one 
representing its contents, the content view C, i.e. U=S ∪  C. 

Given the above property mapping table, the extent of the content view C 
of the UPV Comp, will contain the triples in Figure 17. All values in the 
UPV are strings but for readability quotation marks are omitted. 
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S P V 
co:Customer/120 co:CustID 120 
co:Customer/120 co:Market AUTOMOBILE 
co:Orders/1 co:OrderID 1 
co:Orders/1 co:OrderCustomer 120 
co:Orders/1 co:Clerk Wesson 
co:Orders/2 co:OrderID 2 
co:Orders/2 co:OrderCustomer 120 
co:Orders/2 co:Clerk Doe 

Figure 17: Content view for Company database 

The schema view of a UPV, S, views relational database tables and col-
umns as mapped classes and properties, respectively. Mapped classes are 
represented as instances of the RDFS meta-class rdfs:Class while mapped 
properties belong to meta-class rdf:Property. In SWARD the range of a 
mapped property is always a simple RDFS literal (RDFS class rdfs:Literal). 
URIs are treated as strings.  

Given the property and class mapping tables in the example, Figure 18 
shows the extent of the schema view S for table CUSTOMER.  
 

S P V 
co:Customer rdf:type rdfs:Class 
co:CustID rdf:type rdf:Property 
co:CustID rdfs:domain co:Customer 
co:CustID rdfs:range rdfs:Literal 
co:Market rdf:type rdf:Property 
co:Market rdf:domain co:Customer 
co:Market rdfs:range rdfs:Literal 

Figure 18: Schema view for the CUSTOMER table in the Company database 

The meta-properties needed in the schema view to define mapped classes 
and properties with their domains and ranges are rdf:type, rdfs:domain, and 
rdfs:range. In this Thesis they are referred to as schema property identifiers 
representing schema properties.  

There are several other meta-classes and meta-properties in the RDFS 
specification [11] which are not needed for the mapping of relational data-
bases to complete RDFS views. For example, the RDFS meta-properties 
rdfs:subClassOf and rdfs:subPropertyOf used to represent subsumption rela-
tionships between ontology classes and properties are not used in SWARD 
since there is no natural representation of such relationships in a relational 
database. 

Notice that the user has to specify only the class and property mapping 
tables; the schema view is automatically generated in terms of these tables. 



 

  41

The user-defined tables cMap and pMap are small and stored in the main 
memory of SWARD. Furthermore, the view S is also small and is material-
ized in main memory to speed up query processing. Our partial evaluation 
algorithm will access these main memory tables intensively. It does not ac-
cess the physical database at all. 

Figure 19 shows how the elements of the relational data model are repre-
sented in UPVs. The handling of foreign keys through class relationship 
properties is explained later in Chapter 9. 
 

Relational database element UPV representation 
Table Mapped class 
Column Mapped property 
Row Mapped instance 
Domain Range of mapped property 
Key Mapped property 
Foreign key Class relationship property 

Figure 19:Representation of RDF Schema elements in UPVs 

3.3 Query Processor 
SWARD transforms SPARQL queries into algebra expressions containing 
one or several calls to SQL for retrieving data from the relational database. 
Figure 20 illustrates the SWARD system query processing architecture. 
 

 

Figure 20: SWARD query processor  

The user accesses SWARD through its query interface. The parser first 
translates the SPARQL query into ObjectLog [36]. 
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The view expander recursively substitutes view references (ObjectLog 
rules/views cannot be recursive) with their definitions. 

The steps PARQ1 and PARQ2 reduce the ObjectLog query by partial 
evaluation accessing the main memory tables cMap, pMap, and S. Depend-
ing on the strategy used PARQ1 and/or PARQ2 may not be executed. 

The normalizer transforms the query to disjunctive normal form [3] (i.e., 
a union of conjunctive query fragments). Normalization improves query 
execution by combining in the same conjunctive query fragment predicates 
from the query and predicates from the property view definitions. Normali-
zation produces efficient query execution plans but the cost for rewriting the 
resulting large expressions can be very high.  

Finally, the SQL generator translates conjunctive query fragments in the 
normalized predicate into an algebra expression containing calls to SQL. The 
SQL calls are optionally preconditioned by a pre-filter, which is a predicate 
interpreted by SWARD that determines whether the SQL query should be 
selected for execution based on information stored in main memory system 
tables (cMap, pMap, and S) in SWARD. The SQL calls are shipped via 
JDBC to a commercial back-end relational database for cost-based optimiza-
tion by its optimizer and evaluation by its execution engine. The algebra 
expression also contains a post-processor where such query fragments are 
evaluated by SWARD that cannot be handled by the relational back-end, e.g. 
construction of identifiers for mapped instances representing rows in rela-
tional tables.  

The query optimization phase is defined as query rewriting (Step 3) plus 
the step to run the relational database optimizer (Step 5) in Figure 20. The 
query execution phase is defined as pre-filtering (Step 4), relational database 
query execution (Step 6), and doing post-processing (Step 7). 

3.4 Universal Property View 
The data handled by SWARD is the union of content data stored in the rela-
tional database and schema data that describe the contents of the relational 
database. 

Assumption 1: The schema data and the content data do not overlap. 

Assumption 1 is natural because of the separation of schema and data in 
relational databases. 

We use ObjectLog to internally represent the UPV U, schema view S and 
content view C. As U=S ∪  C it has the definition 
   U(s,p,v) :- S(s,p,v) OR C(s,p,v) 
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3.4.1 Schema View 
The schema view S in a UPV is defined as: 
   S(s,p,v) :- Classes(s,p,v) OR  
               Domains(s,p,v) OR  
               Ranges(s,p,v) 

The class view, Classes(s,p,v), defines the mapped classes and properties 
in the UPV. The domain view, Domains(s,p,v) specifies for every mapped 
property as its domain the mapped class associated to the table owning the 
column associated to the mapped property. The range view, Ranges(s,p,v), 
specifies the values of mapped properties as always being literals.  

Example 6 shows the class view definition for the example database. 
Lines 1-3 define all mapped classes for all viewed relational tables (table) in 
the class mapping table cMap. Lines 4-6 define all mapped properties for all 
viewed relational columns (column) in the property mapping table pMap. 
Classes(s,p,v):- 
1.(cMap(table,‘Comp’,s)        AND    
2. p = rdf:type                AND    
3. v = rdfs:Class)                 OR 
4.(pMap(table,column,‘Comp’,s) AND    
5. p = rdf:type                AND    
6. v = rdf:Property)                

Example 6: Class view definition 

The domain view is defined as: 
   Domains(s,p,v):- pMap(table,column,’Comp’,s) AND 
                    p=rdfs:domain               AND 
                    cMap(table,’Comp’,v)   

It states that the domain of a mapped property is the mapped class associ-
ated with the table in which the column associated to the mapped property 
exists. 

Finally, the range of any property mapped to a relational database column 
is always a literal, i.e.: 
   Ranges(s,p,v):- pMap(table,column,’Comp’,s) AND 
                   p = rdfs:range              AND 
                   v = rdfs:Literal 

The views defined above (Classes, Domains, and Ranges) are small, and 
do not access the back-end relational database. Furthermore, they do not 
change during the lifetime of the UPV. Therefore, they are materialized in 
SWARD during UPV generation into the main memory table S representing 
the schema view of the UPV. 
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3.4.2 Content View 
The content view C of a relational database for a UPV is defined as a union 
of internal property views PVp where one property view is generated for each 
mapped property p i.e. 

 C=
p
∪ PVp. 

Example 7 shows the generated definition of U for the example UPV with 
C expanded on lines 3-7. Notice that the number of mapped properties will 
be large, since real-world relational databases contain many columns, so the 
disjunctive expression will be very large. The schema view is referenced on 
line 2. By convention, here, all property views are prefixed with ‘P_’. 
1.U(s,p,v):- 
2.S(s,p,v)                     OR     
3.P_CustID(s,p,v)              OR     
4.P_MktSegment(s,p,v)          OR     
5.P_OrderID(s,p,v)             OR     
6.P_OCustID(s,p,v)             OR     
7.P_Clerk(s,p,v)                      

Example 7: UPV definition 

Example 8 shows the definition of the property view P_MktSegment. 
 

1.P_MktSegment(s,p,v) :- 
2.customer(custid,v)                       AND 
3.cMap('CUSTOMER','Comp',cid)              AND 
4.iMap(cid,custid,s)                       AND 
5.pMap('CUSTOMER','MKTSEGMENT','Comp',p)       

Example 8: Property view P_MktSegment 

Line 2 accesses the relational table CUSTOMER. Line 3 accesses the class 
mapping table to get the class identifier cid for the mapped class associated 
to the table CUSTOMER and the UPV Comp. The external predicate iMap 
on line 4 generates a unique URI, s, representing a row in the table by string 
concatenation of the class identifier cid and a key custid, e.g. 
co:Customer/120. Such instance identifiers represent instances of mapped 
classes in the UPV. Line 5 retrieves the property identifier p representing the 
property named Market in pMap that is mapped to the column MKTSEG-
MENT.  

An instance identifier is a special purpose URI constructed out of a prefix 
and a local name where the local name is the name of the mapped instance in 
the UPV, given the prefix. For example, the name of the mapped instance 
associated with the row in table CUSTOMER with primary key value ‘120’ 
is given the prefix co: is Customer/120. 
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The external iMap predicate is invertible to be able to as well obtain the 
key for a given mapped instance identifier by parsing the identifier string. 

In general, a property view has the structure in Figure 21 where variable k 

is bound to the primary key value of the relational table (table) and variable 
v is bound to values from the relational column (column) mapped by the 
property identifier p in the pMap table. Brackets [] are used to represent 
names substituted by the UPV generator. On line 2 the predicate [table] ac-
cesses the relational table to relate the value v of the table column represent-
ing property p to the primary key k. Table names substituted for predicate 
[table] accessing a relational database are always lowercased before substitu-
tion (line 2 Example 8). 
 

1.P_[column](s,p,v) :- 
2.[table](k,v)                                       AND  
3.cMap([table],[upv],cid)                            AND  
4.iMap(cid,k,s)                                      AND    
5.pMap([table],[column],[upv],p)         

Figure 21: Property view definition 
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4 Query Classes 

In this Chapter three classes of SPARQL queries to UPVs are defined to-
gether with examples of queries from each class. Content queries access 
only the database contents. Schema queries retrieve schema data without 
accessing the database contents. A hybrid query combines schema and con-
tent data. Queries that access data outside the relational database are not 
covered. 

4.1 Content Queries 
Definition 1: A content query is a query where the properties in all triple 
patterns are constant URIs that identifies mapped properties in the UPV. 
Such triple patterns are called mapped property patterns. 

Content queries search the relational database contents. For example, the 
SPARQL query Q1 in Example 9 selects from the UPV for order number ‘1’ 
the market segment mkt of the customer cust placing the order. 
 

SELECT ?cust ?mkt 
WHERE {?order co:OrderID ‘1’ . 
       ?order co:OrderCustomer ?ocust . 
       ?cust co:CustID ?ocust . 
       ?cust co:Market ?mkt .} 

Example 9: Content query Q1 

Query Q1 is a content query because all properties in the WHERE clauses 
are bound to constant identifiers of mapped properties. It will return the fol-
lowing result tuple when executed: 
   (co:Customer/120, ’AUTOMOBILE’) 

co:Customer/120 is a system generated identifier (URI) representing a 
mapped instance of the mapped class named Customer by concatenating its 
class identifier co:Customer with the key value ‘120’ in table CUSTOMER. 

SWARD answers content queries by generating SQL queries that 
searches the relational database. 
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4.2 Schema Queries 
Definition 2: A schema query is a query where the properties in all triple 
patterns are constants that identify schema-properties in the UPV. Such triple 
patterns are called schema property patterns. 

For example, SPARQL query Q2 in Example 10 is a schema query that 
selects from the UPV all mapped properties prop whose domains are 
co:Customer, except the property co:CustID. That is, Q1 finds the mapped 
property identifiers for the non-key columns in table CUSTOMER. It is a 
schema query because the only property identifier rdfs:domain in the 
WHERE clause is a schema property identifier.  
 

SELECT ?prop 
WHERE {?prop rdfs:domain co:Customer . 
       FILTER (?prop != co:CustID) .} 

Example 10: Schema query Q2 

In SPARQL value constraints enclosed by ‘(’ and ‘)’ can be defined with 
the FILTER keyword. Q2 contains the filter != (not equal). 

The query returns the tuple: 
   (co:Market) 

Since the schema property identifiers of schema queries do not represent 
any mapped property (Assumption 1), they can be answered by accessing 
only the small main memory table S representing the materialized schema 
view. We will show that partial evaluation removes the access to the content 
view C in the UPV definition. 

4.3 Hybrid Queries 
Definition 3: A hybrid query combines database schema and contents i.e. 
mixes schema property and mapped property patterns.  

In this Thesis a large subclass of hybrid queries is investigated that dy-
namically selects some mapped properties from a class and access their val-
ues. Such queries are important since i) they allows for the user to query the 
viewed database without complete knowledge of the mapped classes and 
properties in the UPV and ii) they can be stated in a more compact way than 
their content queries counterparts. For example, query Q3 retrieves for a 
specific order all the mapped properties, prop, and values, val, of the cus-
tomer placing the order except for the property co:CustID. 
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SELECT ?cust ?prop ?val                                     
WHERE {?prop rdfs:domain co:Customer .                         
       ?order co:OrderID ‘1’.      
       ?order co:OrderCustomer ?ocust .    
       ?cust co:CustID ?ocust .      
       ?cust ?prop ?val .         
       FILTER (?prop != co:CustID) .} 

Example 11: Hybrid query Q3 

Query Q3 returns the tuple: 
   (co:Customer/120, co:Market, ‘AUTOMOBILE’) 

Notice that, given that the user has sufficient knowledge of the classes 
and properties in the UPV, query Q3 could also be stated as a content query 
but with additional triple patterns to get all mapped properties and their val-
ues from the mapped class Customer. 

In Chapter 9 it is described how UPVs are augmented with class member-
ship views to retain semantics from the relational database. Another subclass 
of hybrid queries dynamically selects mapped classes and accesses their 
mapped instances. Such hybrid queries are not investigated in this Thesis. 
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5 The PARQ Algorithm 

A central technology used in the query processing of SWARD is partial 
evaluation. We have developed a new partial evaluation algorithm named 
PARtial evaluation of Queries (PARQ) based on evaluation of query frag-
ments expressed in ObjectLog [36]. Our algorithm guarantees that the query 
never grows by partial evaluation but is often reduced in size. It is iterative 
and in each iteration it tries to reduce the query by compile evaluation of 
pre-specified primitive predicates. A primitive predicate can be a logical 
variable or constant, a table reference, or an external predicate reference. 
PARQ will stop when there are no more pre-specified primitive predicates 
left in the query to evaluate at compile time.  

In the next chapters we illustrate how the algorithm enables efficient 
processing of queries to large disjunctive UPVs by applying it on conjunc-
tive SPARQL queries parsed into ObjectLog. It is shown that PARQ reduces 
query expressions produced during the processing into much simpler expres-
sions, which can be handled efficiently by a regular relational query opti-
mizer. The algorithm is generally applicable on any query, but conjunctive 
SPARQL queries to UPVs are particularly suited since they are very com-
plex with many embedded disjunctions that in turn contain further conjunc-
tions. Furthermore, most subexpressions referenced in a query to a UPV can 
be eliminated by the partial evaluation of PARQ. 

Recall that, in general, a partial evaluator [29] (or specializer) is a func-
tion M that takes two arguments, the source of a program P and a static 
(known) subset of the input I, and produces a specialized and more efficient 
program PS: 

   M(P,I) = PS 

In the PARQ algorithm, P is a query fragment expressed as an ObjectLog 
predicate and I is a system table specifying the names of the primitive predi-
cates that are candidates for evaluation at compile time. Initially P is the 
original query. In addition to P and I we provide as an extra argument to 
PARQ a list of the output (project) variables of the original query, OV, i.e: 

   PARQ(P,I,OV) = PS 
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If OV and P define a query to a UPV we will show that PS is substantially 
faster to evaluate than P.  

PARQ specializes P by partial evaluating iteratively query fragments at 
compile time until no more reduction is possible. In SWARD, by evaluating 
at compile time only system predicates stored in main memory, the back-end 
relational database is not accessed during partial evaluation, so partial 
evaluation incur no extra disk accesses.  

Figure 22 shows the pseudo code for the top level of PARQ. The algo-
rithm is applied on an ObjectLog predicate P, which is a conjunction that 
can contain disjunctive expressions. The function PC(P,I,OV) partially 
evaluates conjunctions, while PD(P,I,OV) handles disjunctions. Line 1 in 
Figure 22 handles the case when P is an atom (logical variable or constant), 
line 2 when P is a conjunction, line 3 when P is a disjunction, and finally 
line 4 when P is a primitive (simple) predicate, other than a logical variable 
or constant, which is treated as a conjunction with one element. 
 

function PARQ(P, S, OV)->PS 
Input: P: a predicate 
          I: a set of primitive predicate names being candidates  
              for compile time evaluation. 
          OV: output variables of the original query.  
                  These variables must remain in PS.  
Output: Partially evaluated query PS 
1. if P is atomic then return P 
2. else if P is a conjunction then return PC(P, I, OV) 
3. else if P is a disjunction  then return PD(P, I, OV) 
4. else return PC(AND(P), I, OV) (a primitive predicate P is treated as a conjunction 

                                                      with one predicate) 

Figure 22: PARQ algorithm 

The pseudo code of the central iterative function PC is shown in Figure 
23.  
 

function PC(P, I, OV)->PS 
Input: P: a conjunction 
          I: a set of primitive predicates being candidates for  
              compile time evaluation. 
          OV: output variables of the conjunction  
Output: Partially evaluated conjunction PS 
1. CHFLG := true  
2. while CHFLG is true 
3. do if P is empty then return true  
4.  CHFLG := false /* will be set to true if reduction made */ 
5.  for each conjunct C in P  
6.  do if C is a primitive predicate c(a1,…,an) and C ∈ I 
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7.   then if all arguments a1,…,an are constants c1,…,cn 
8.    then R := evaluate c(c1,…,cn) 
9.     if R = false then return false 
10.     else remove C from P 
11.    else if some u1,…uk among a1,…,an are unknown . 
12.     then try to execute the probe query { u1,…uk | c(a1,…,an)} 
13.      if the probe query succeeds  
14.      then  if no result is returned 
15.       then return false 
16.       else if the query returns 
17.        exactly one tuple v1,…,vk 
18.        then remove C from P 
19.         substitute in P all ui with vi 
20.         if ui ∈ OV  
21.         then add to P predicate ui=vi 

22.        CHFLG := true 
23.   else if C is a primitive predicate c(a1,…,an) and there is another  

predicate Q in P, c(b1,…,bn), with equal key 
24.    then  substitute in P all non-key bi with ai 
25.     remove Q from P  
26.     if bi ∈ OV then add to P predicate bi=ai 
27.     CHFLG = true 
28.   else if C is equality, c1=c2 where c1 and c2 are constants 
29.    then if  c1≡c2  
30.     then remove C from P 
31.      CHFLG = true 
32.     else return false 
33.   else  if C is a disjunction 
34.    then C’ := PD(C, I, OV’) where OV’ is  

            OV ∪ (freevars(C) ∩ freevars(P−C)) 
35.     if C’ = false then return false 
36.     else if C’ =/= C 
37.      then replace C with C’ 
38.       CHFLG := true 
39.   if CHFLG = true then leave for each /* reduction made */ 
40. return P 

Figure 23: Partial evaluation of conjunctions 

The entire conjunction is replaced with symbol false if one of its predi-
cates evaluates to false (line 9). The probe query on line 12 tries to evaluate 
at compile time a primitive predicate C where name(C) ∈ I. It fails if there 
are not enough known parameters to evaluate it (happens only for external 
predicates), in which case C cannot be compile time evaluated in the current 
iteration. If the probe query succeeds but returns no result (line 14) it means 
that the entire conjunctive predicate is false. If it returns exactly one result 
tuple (lines 16-17) the probe query is reduced by removing C (line 18) and 
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substituting the variables in the probe result tuple (line 19). However, output 
variable assignments from the probe query are retained (lines 20-21). Impor-
tant is that probe queries yielding more than one result tuple are not elimi-
nated. This guarantees that the query is reduced in size in each round of the 
while loop on line 2, except for assigning the limited number of output vari-
ables in OV. 

Lines 23-37 apply the following key rewrite rule [24]: 

Key rewrite rule: In a conjunction P, two predicates C and Q with the 
same name and the same key parameters are equivalent. Therefore, they can 
be unified making all parameters of C and Q equal and Q can be removed 
from P. 

On lines 28-32 equality predicates with both arguments bound to con-
stants are specially treated. Equality is specially treated by SPARQ and 
equality cannot be in I. 
 

Disjunctive subexpressions in a conjunction (lines 33-38) are handled by 
calling PD (Figure 24). When calling PD, the result variables in OV are 
augmented with the intersection of those free (unbound) variables in the 
disjunctive subexpression to partial evaluate, freevars(C), that also exist in 
the rest of the query (freevars (P-C)). This is for avoiding elimination, by 
substitution, of variables that needs to be retained to produce the query re-
sult.  

function PD(P, I, OV)->PS 
Input: P: a disjunction 
          I: a set of primitive predicates being candidates for partial        
             evaluation. 
          OV: output variables of the disjunction 
Output: Partially evaluated disjunction PS 
1. for each disjunct D in P 
2. do D’: = PARQ(D, I, OV) 
3.  if D’=true then return true 
4.  if D’= false then remove D from P 
5.  else if D’ =/= D 
6.   then replace D with D’ 
7.  if P empty then return false 
8. return P 

Figure 24: Partial evaluation of disjunctions 

Figure 24 shows the pseudo code for PD. The elements of the disjunc-
tions are each partially evaluated by recursively invoking PARQ (line 2). If 
an element is partially evaluated to true the entire disjunction is reduced to 
true; if an element is reduced to false, it is removed from P (line 3-4). If an 
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element is reduced to some other expression than true or false, it is replaced 
(lines 5-6). 

The algorithm guarantees that the query never grows by compile time 
evaluating only primitive predicates producing no more than one result tuple. 
The execution is controlled by I to avoid compile time probing of expensive 
primitive predicates. The number of predicates that are tried for compile 
time evaluation by PARQ is therefore at most O(N2), where N is the number 
of primitive predicates in P whose names are in I. This is because the itera-
tion on line 5 in PC is restarted for every primitive predicate in I that is 
compile time evaluated and removed from P. Since compile time evaluation 
of primitive predicates in P never produces any new primitive predicates that 
are in I the number of predicates that are in I is reduced for each new itera-
tion on line 5. In worst case every primitive predicate in P whose name is in 
I is compile time evaluated.  
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6 Query Processing 

In this Chapter the need for partial evaluation when processing SPARQL 
queries to UPVs is demonstrated with a small example. This is followed by 
an overview of five different query processing strategies for answering 
SPARQL queries to UPVs. 

6.1 Processing an Example Query 
Example 12 shows how query Q1 in Example 9 is represented in ObjectLog.  
 

1.query(cust,mkt) :- 
2.U(order,co:OrderID,’1’)           AND 
3.U(order,co:OrderCustomer,ocust)   AND 
4.U(cust,co:CustID,ocust)           AND 
5.U(cust,co:Market,mkt) 

Example 12: ObjectLog expression for Q1 

Lines 5-10 in Example 13 show how line 5 in Example 12 is view ex-
panded using the definition of U in Example 7. 
 

1.query(cust,mkt) :-  
2.U(order,co:OrderID,’1’)             AND 
3.U(order,co:OrderCustomer,ocust)     AND 
4.U(cust,co:CustID,ocust)             AND 
5.(S(cust,co:Market,mkt)            OR 
6. P_CustID(cust,co:Market,mkt)     OR     
7. P_MktSegment(cust,co:Market,mkt) OR     
8. P_OrderID(cust,co:Market,mkt)    OR     
9. P_OCustID(cust,co:Market,mkt)    OR     
10.P_Clerk(cust,co:Market,mkt) 

Example 13: Query Q1 after view expansion 

After expanding the other three clauses in Q1 there will be 24 clauses, i.e. 
20 references to property views and 4 references to the schema view. Ex-
panding the property views generates 80 primitive predicates. With the 4 
schema view references the total number of primitive predicates adds up to 
84. 
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The SWARD query processor (Figure 20) then normalizes the view ex-
panded queries before they are translated into algebra expressions by the 
SQL generator. Traditionally in database systems, normalization of queries 
is performed to simplify and make query processing more efficient 
[8][31][68][54]. A query could be normalized to either a disjunction of con-
junctions (disjunctive normal form, or DNF) or a conjunction of disjunctions 
[3] (conjunctive formal form, or CNF). It will be shown that after view ex-
panding and normalizing queries to UPVs, the number of primitive predi-
cates is huge. Elimination of normalization is thus very important and is will 
be shown how partial evaluation by PARQ achieves this. 

The normal form used in SWARD is DNF. Normalization of queries in 
SWARD, by combining in the same conjunctive query fragment predicates 
from the query and predicates from the property view definitions, improves 
query execution performance significantly, as will be shown. The reason is 
that DNF normalization enables only the relevant combined query fragment 
to be sent to the back-end relational DBMS.  

Furthermore, when processing conjunctive SPARQL queries over dis-
junctive UPVs, normalization to DNF produces substantially smaller expres-
sions than CNF, as explained below. Consider a conjunctive SPARQL query 
to a disjunctive UPV where Q is the number of clauses in the SPARQL 
query, UP is the number of property views in the UPV definition and CP is 
the number of primitive predicates in each property view. To simplify, the 
one reference to the primitive predicate S in each UPV definition is ignored 
(line 5 in Example 13). After view expansion an expression is produced on 
the following format: 

K1 AND K2,…,Kq where 

Ki=P1 OR P2,…,Pup and  
Pj=C1 AND C2,…,Ccp 

Here, Ki is a clause in the query, Pj is a property view, and Cn is a primi-
tive predicate. 

The number of primitive predicates in the query after normalization to 
DNF is: 

UPQ*CP*UP 

UPQ is the number of conjuncts inside the generated disjunction and each 
conjunct contains CP*UP primitive predicates. 
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The number of primitive predicates after normalization to CNF is: 

CPUP*Q*UP 

CPUP*Q is the number of disjuncts inside the generated conjunctive ex-
pression and UP is the number of primitive predicates in each disjunct. 

The expression on CNF thus grows exponentially over the number of 
property views in the UPV definition while the expression on DNF grows 
exponentially over the number of clauses in the query. Since the number of 
clauses in the query is normally much smaller than the number of relational 
columns viewed in RDF, normalization to DNF is a better strategy than 
transforming the query to CNF. 

For example, normalization to DNF of query Q1 without partial evalua-
tion, to the UPV in Example 7 (including the schema view S), produces 
18144 primitive predicates while normalization to CNF would produce 
24576 primitive predicates. Q1 is a very simple query, so normalization 
makes it impossible to process most real-world queries to large UPVs. We 
will next investigate query processing performance further and show that 
PARQ applied on straight-forward query processing methods achieves scal-
ability. 

6.2 BE: Naive Back End 
The naive Back-End (BE) strategy represents the UPV entirely in the back-
end relational database as an SQL view. All query optimization is done by 
the back-end DBMS and SWARD is not used. With BE cMap, pMap and S 
are tables in the relational database: 
   CMAP(TABLE,UPV,CLASSID) 
   PMAP(TABLE,COLUMN,UPV,PROPID) 
   S(S,P,V) 

The columns {TABLE,UPV} and {UPV,CLASSID} are primary and sec-
ondary keys in cMap. In pMap {TABLE,COLUMN,UPV} and 
{UPV,PROPID} are primary and secondary keys. In S the primary key is 
made up of {S,P,V}. 
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Example 14 shows the definition in SQL of UPV U over the example da-
tabase. 
 

CREATE VIEW CUSTIDV(S,P,V)  
 AS SELECT CM.CLASSID + '/' +  
     CAST(C.C_CUSTKEY AS VARCHAR(25)), 
      PM.PROPID, CAST(C.C_CUSTKEY AS VARCHAR(25))  
    FROM CUSTOMER C, CMAP CM, PMAP PM  
    WHERE PM.TABLE = 'CUSTOMER'   AND  
          PM.COLUMN = 'C_CUSTKEY' AND  
          PM.UPV = 'COMP'         AND  
          CM.TABLE = 'CUSTOMER'   AND  
          CM.UPV = 'COMP' 
… 
CREATE VIEW CLERKV(S,P,V) 
  AS SELECT CM.CLASSID + '/' +  
      CAST(O.O_ORDERKEY AS VARCHAR(25)),  
       PM.PROPID, CAST(O.O_CLERK AS VARCHAR(25)) 
     FROM ORDERS O, CMAP CM, PMAP PM 
     WHERE PM.TABLE = 'ORDERS'   AND  
           PM.COLUMN = 'O_CLERK' AND  
           PM.UPV = 'COMP'       AND  
           CM.TABLE= 'ORDERS'    AND  
           CM.UPV = 'COMP' 

CREATE VIEW U(S,P,V) 
  AS (SELECT * FROM CUSTID)     UNION ALL 
     (SELECT * FROM MKTSEGMENT) UNION ALL 
     (SELECT * FROM ORDERID)    UNION ALL 
     (SELECT * FROM OCUSTID)    UNION ALL 
     (SELECT * FROM CLERK)      UNION ALL 
     (SELECT * FROM S)  

Example 14: UPV in SQL 

Our performance measurements will show that the BE strategy, using the 
commercial DBMS, does not scale when the size of the database grows. This 
is because no normalization is done during query processing resulting in 
very poor execution plans containing SQL joins of unions of many subplans 
for each property view. 

6.3 END: Expand-Normalize-Decompose 
The straight-forward END strategy uses SWARD to pre-process the queries 
before sending SQL statements to the relational database for cost-based 
query optimization. As classical query processing, the END strategy does 
view expansion and normalization before generating SQL expressions. No 
predicate is partially evaluated.  
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The major problem here is that the normalized query becomes huge even 
for this simple example. Real world databases will have large UPVs and the 
SPARQL queries will contain many self joins over these UPVs, UPV joins, 
so END will have unacceptable performance.  

However, each disjunct in the expression on DNF contains a pre-filter 
executed in SWARD that use cMap, pMap, and S and therefore, after nor-
malization to DNF, only the single SQL expression (shown below) is sent to 
the relational DBMS: 
   SELECT C.CUSTID,C.MKTSEGMENT  
   FROM ORDERS O,CUSTOMER C 
   WHERE O.ORDERID = '1'       AND  
         C.CUSTID = O.OCUSTID 

All filtered-out SQL expressions select combinations of the query triple 
patterns and mapped properties not relevant to answer the query and are 
therefore not sent to the back-end DBMS.  

Since this is the only SQL query executed by the back-end relational da-
tabase, the produced plans actually scale with the size of the database, unlike 
BE. Thus END produces a scalable plan but with very high query processing 
cost that grows exponentially with the size of the query because of normali-
zation to DNF.  

Next, we show that by applying PARQ on END the query is substantially 
reduced and normalization always eliminated for conjunctive content que-
ries, which dramatically improves the query processing time. 

6.4 END-P: END with Partial Evaluation 
As will be shown, by applying PARQ on END with I = {cMap,pMap,S} the 
size of the UPV is dramatically reduced as no normalization is needed for 
conjunctive content queries. Since these predicates are stored in main mem-
ory, PARQ processing is very fast. We illustrate this by going through how 
PARQ reduces query Q1. 

First, consider the view expansion of line 9 in Example 13 (P_OCustID) 
producing the expression in Example 15 (_ denotes dummy variables). 
 

1.orders(orderid,mkt,_)                AND 
2.cMap(‘ORDERS’,’Comp’,cid)            AND 
3.iMap(cid,orderid,cust)               AND 
4.pMap(‘ORDERS’,’OCUSTID’,’Comp’,co:Market) 

Example 15: Expanded property view P_OCustID 
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Partial evaluation by step PARQ1 of predicate pMap on line 4 will yield 
false. Thus, the entire view expanded expression on line 9 in Example 13 is 
eliminated (line 9 of the PARQ algorithm in Figure 23). Analogously lines 6, 
8, and 10 in Example 13 will be eliminated by PARQ since the property 
identifier co:Market does not represent those columns and therefore pMap in 
the expanded column view definitions will be compile time evaluated to 
false. The schema view reference S (line 5 in Example 13) is also compile 
time evaluated to false (Assumption 1). Thus, step PARQ1 replaces the en-
tire disjunction on lines 5-10 in Example 13 with the conjunction from view 
expanding line 7, i.e. the query fragment in Example 16 representing column 
MKTSEGMENT in table CUSTOMER. 
 

1.customer(custid,mkt)                AND 
2.cMap(‘CUSTOMER’,’Comp’,cid)         AND 
3.iMap(cid,custid,cust)               AND 
4.pMap(‘CUSTOMER’,’MKTSEGMENT’,’Comp’,co:Market) 

Example 16: Expanded property view P_MktSegment 

Here the call to pMap on line 4 is evaluated at compile time to true and 
can be eliminated (line 10 Figure 23). Furthermore, compile time evaluation 
of the call to cMap on line 2 in Example 16 substitutes variable cid with 
co:Customer (lines 16-19 in Figure 23). Since cid is not among the output 
variables of Q1, the test on line 20 in Figure 23 is false. Thus PARQ replaces 
the disjunctive expression in the expanded U on line 5 in Example 12 with 
the following expression producing the desired property identifier 
(co:Market): 
customer(custid,mkt)         AND  
iMap(co:Customer,custid,cust) 

Analogously, lines 2-4 in Example 12 are also view expanded and par-
tially evaluated to different conjunctive single property view expressions, 
producing the query in Example 17. 
1. query(cust,mkt) :- 
2. orders('1',_,_)                          AND 
3. iMap(co:Orders,'1',order)                AND 
4. orders(orderid,ocust,_)                  AND 
5. iMap(co:Orders,orderid,order)            AND 
6. customer(ocust,_)                        AND  
7. iMap(co:Customer,ocust,cust)             AND    
8. customer(custid,mkt)                     AND  
9. iMap(co:Customer,custid,cust) 

Example 17: Expanded and partially evaluated Q1 

We see that there are four references to predicates representing relational 
tables, ORDERS and CUSTOMER, one for each conjunct in query Q1. Since 
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iMap generates a unique mapped instance for each row in the relational table 
(i.e. the last parameter of iMap is a key) the system can infer from lines 7 
and 9 that ocust = custid and then, using the key rewrite rule (lines 23-25 in 
Figure 23), substitute custid with ocust in the query and remove line 9 in 
Example 17. This makes ocust be the key in both calls to customer on lines 6 
and 8, so these calls have equal keys and can be combined into a single cus-
tomer(ocust,mkt). 

Analogously, the calls to iMap on lines 3 and 5 implies that orderid = '1' 
so orders on lines 2 and 4 can be combined into one call, orders('1',ocust,_).  

The key rewrite rule combines iMap and relational database calls to the 
same table before generating the SQL. It produces the fully reduced query in 
Example 18: 
 

1. query(cust,mkt) :- 
2. orders('1',ocust,_)               AND 
3. iMap(co:Orders,'1',order)         AND 
4. customer(ocust,mkt)               AND 
5. iMap(co:Customer,ocust,cust) 

Example 18: Fully reduced query Q1. 

Finally, the SQL generator produces the following single SQL statement 
from lines 2 and 4 in the reduced query. The statement is sent to the back-
end relational DBMS for cost-based optimization and execution. Notice that 
this is the same SQL statement as produced with the END strategy. 
  SELECT C.CUSTID,C.MKTSEGMENT  
  FROM ORDERS O,CUSTOMER C 
  WHERE O.ORDERID = '1'       AND  
        C.CUSTID = O.OCUSTID 

In this example, there is no pre-filter after PARQ has reduced the query. 
The execution plan will contain post-processing to construct two instance 
identifiers from the result of the SQL query (lines 3 and 5 in Example 18). 
The call to iMap on line 3 is actually not needed here and could be removed 
as explained in [24], but the cost of constructing instance identifiers is very 
cheap so the current implementation keeps this in the post-filter.  

The example shows that PARQ applied on END significantly reduces the 
query and eliminates normalization. A single SQL statement is sent to the 
back-end database. 

In general the following holds for END-P: 

Theorem: For conjunctive content queries, the content view C is always 
reduced to a single conjunction after applying PARQ on C after view expan-
sion. 
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Proof: All identifiers pi in a conjunctive content query with condition 
AND (C(si,pi,vi)) are constants representing mapped properties. Every prop-
erty view PVp in the content view C contains a test to decide if pi is identifier 
for the mapped property p. This test is made by calling pMap to see if pi is 
mapped to the relational column viewed by PVp (e.g. line 4 in Example 15). 
After view expansion and partial evaluation by PARQ (step PARQ1 in 
Figure 20) of each query clause C(si,pi,vi), C is thus replaced with the single 
conjunctive view expanded property view PVp(si,pi,vi) where pi is an identi-
fier for mapped property p (e.g. Example 16).  

Corollary: For conjunctive content queries, each UPV reference, U, is 
always replaced by END-P with a single conjunction after applying PARQ 
on view expanded U. 

Proof: Follows directly from Theorem and Assumption 1. 

Disjunctive SPARQL queries are treated in SWARD as unions of con-
junctive subqueries where END-P is applied on each subquery. This is not 
covered by this Thesis. 

6.5 DPS: Dynamic Plan Selection 
END-P becomes slower when the number of mapped properties increases 
because of the cost of view expansion and partial evaluation of the larger 
expanded query. The naive DPS (Dynamic Plan Selection) strategy elimi-
nates view expansion by defining the UPV as selecting from a system table 
pView precompiled subplans for each property view: 
U(s,p,v):- pView(p,‘Comp’,pvd) AND 
           applyView(pvd,s,p,v) 

The system table pView(PropID,UPV,PropViewDef) stores, for a given 
mapped property identifier (PropID), and UPV, the definition of the corre-
sponding property view definition (PropViewDef) including a precompiled 
execution plan to retrieve the extent of PropViewDef from the database. To 
handle schema and hybrid queries, precompiled subplans are stored also for 
the RDF Schema meta-property identifiers rdf:type, rdfs:domain, and 
rdfs:range. Such subplans are defined in terms of the materialized schema 
view, S, and does not access the back-end relational database. These prop-
erty views are referred to as meta-property views. 

The system predicate applyView(PropViewDef,S,P,V) dynamically in-
vokes the precompiled view definition PropViewDef yielding the RDF tri-
ples <S,P,V>. 
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After view expansion of the reference to co:Market in line 5 in Example 
12 we get the expanded query in Example 19. 

On line 5 the external predicate pView retrieves the property view defini-
tion pvd for the property identifier co:Market and the UPV Comp. Then ap-
plyView invokes the precompiled query plan pvd to retrieve the entire prop-
erty view extent. Analogously the other references to U in Example 12 also 
retrieve entire property view extents. All selections are done as post-
processing in SWARD after all referenced property views are downloaded, 
clearly a very inefficient execution strategy. 
 

1.query(cust,mkt) :-  
2.U(order,co:OrderID,'1')              AND 
3.U(order,co:OrderCustomer,ocust)      AND 
4.U(cust,co:CustID,ocust)              AND 
5.pView(co:Market,’Comp’,pvd)          AND 
6.applyView(pvd,cust,co:Market,mkt) 

Example 19: View expanded Q1 using DPS 

DPS decreases the query processing time by dynamically selecting at exe-
cution time only those precompiled property views used in the query. No 
normalization is needed but query execution is very slow since entire extents 
of all property views referenced in the query are shipped to SWARD and 
joined there. No predicates are partially evaluated. 

6.6 DVS-P: Dynamic View Selection with Partial 
Evaluation 

View expansion cannot be done with DPS since the actual property views 
are retrieved at run time. DVS-P (Dynamic View Selection with Partial 
evaluation) applies PARQ on DPS to select and expand those (meta-) prop-
erty views referenced in the query. Normalization is not needed here either 
since the view expanded query is always conjunctive.  

DVS-P is defined as DPS partially evaluated with  
I = {cMap,pMap,S,pView}. Furthermore, PARQ is extended with a special 
rule to handle delayed expansion of views, as will be explained. 

Partial evaluation of pView in step PARQ1 first selects the (meta-) prop-
erty view. For example, on line 12 in Example 20 PARQ will probe pView to 
retrieve the property view P_MktSegment denoted pView:MktSegment  in 
Example 20. 
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1.query(cust,mkt) :- 
2.U(order,co:OrderID,'1')                       AND 
3.U(order,co:OrderCustomer,ocust)               AND 
4.U(cust,co:CustID,ocust)                       AND 
5.applyView(pView:MktSegment,cust,co:Market,mkt) 

Example 20: Partially evaluated Q1 using DVS-P 

Here the first argument of applyView (line 5) is the picked property view 
definition. If the first parameter of applyView is known at compile time, as in 
this case, the view could be expanded by the query processor. We therefore 
add to PARQ the following rule for applyView expansion after line 32 in 
Figure 23:  

View expansion rule: If predicate C is  
applyView(PropViewDef,S,P,V) and PropViewDef is a constant then replace 
applyView(PropViewDef,S,P,V) with view expanded PropViewDef(S,P,V). 

Line 5 in Example 12 is thus replaced with the predicate 
P_MktSegment(cust,co:Market,mkt), producing exactly the same query 
fragment as in Example 16 after view expansion. 

The same substitutions of applyView are done for the other query clauses. 
The final steps, i.e. further query reduction and SQL generation are the same 
as for END-P. The difference between END-P and DVS-P is that with END-
P we first view expand a large UPV definition and then apply PARQ to re-
duce it. With DVS-P we apply PARQ to pick and view expand only the 
pieces of the UPV referenced in the query before reducing it. 

Our performance measurements verify that DVS-P scales excellently for 
content queries both with the size of the relational database, as well as with 
the size of the SPARQL query and the UPV definition. The back-end rela-
tional DBMS will execute the same single SQL query as END and END-P. 
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7 Performance Measurements 

We measured the performance of BE, END, END-P, DPS, and DVS-P for 
content queries while scaling database size as well as query and UPV sizes.  

The query optimization time is defined as the time to rewrite the query 
(Step 3 in Figure 20) plus the time to run the relational database optimizer 
(Step 5). The query execution time is the time for doing pre-filtering (Step 
4), relational database query execution (Step 6), and executing the post-
processing (Step 7). 

The experiments were run on a DELL Optiplex GX270 with 2.2 GHz 
CPU, 512 MB main memory, and Windows XP Professional OS. We used a 
commercial relational database with 100 MB buffer size and the TPC-H [64] 
benchmark database generator for the data scalability tests. The profiling 
tool of the DBMS was used to measure how much time was spent in back-
end query optimization and execution, respectively. 

7.1 Scaling the Database Size 
Figure 25 shows the times to execute query Q1 for the different strategies 
and a cold database while scaling the database size according to the TPC-H 
benchmark. 

The execution plan produced by the relational DBMS in the BE strategy 
was examined using the query inspection tool of the commercial DBMS. It 
revealed that no normalization at all had been made and the large plan con-
tained SQL joins of unions of a subplan for each property view in the UPV. 
Such an approach does not scale when the database size is increased (notice 
the logarithmic scale for the y-axis) since all property view extents are re-
trieved. However, it avoids the high cost of normalization so it will be able 
to handle large queries.  

With END, the execution time scales, as expected. However, the query 
optimization time with END was 30 sec compared to only about 0.3 sec with 
BE. END-P and DVS-P send exactly the same SQL query as END to the 
back-end relational DBMS, with the same execution times.  



 68 

DPS scales somewhat better than BE. The reason is that the execution 
plan of BE was very complex containing 48 joins accessing all property 
views, while DPS contains only 13 joins executed in SWARD to access only 
those property view extents required to answer the query. However, DPS 
still does not scale well as it retrieves entire property view extents, like BE. 
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Figure 25: Execution times up to 2 GB (logarithmic scale) 

7.2 Scaling the Query and Schema Sizes 
In general, a SPARQL query in SWARD referencing N properties (in terms 
of N triple patterns) will have N-1 self joins to the UPV. Since the UPV 
definition will usually contain a large number of mapped properties (rela-
tional databases usually have many columns), realistic size SPARQL queries 
will have many self joins of a complex UPV, and the system must be able to 
handle this efficiently. We measured the query optimization times as the 
sizes of the SPARQL query and the UPV definition were increased. 

In order to scale the UPV, the size of a synthetic relational database 
schema was scaled by using a table generator function createTbls(nt,nc), 
where nt is the number of generated tables and nc is the number of generated 
columns in each table. All tables Ti, 1≤i≤nt, have identical column names Cj, 
1≤j≤nc where C1 is primary key.  
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For example, createTbls(3,4) generates these tables: 
   T1(C1,C2,C3,C4) 
   T2(C1,C2,C3,C4) 
   T3(C1,C2,C3,C4) 

Every relational table Ti and column Cj is associated with a mapped class 
ci and mapped property pj in cMap and pMap, respectively. 

The generated SPARQL queries are scaled by adding more triple patterns 
that retrieve an increasing number of properties from each mapped class.  
 

SELECT ?v1,1,…,?v1,ppt,?v2,1,?v2,3,…, 
        ?v2,ppt,?v3,1,?v3,3,…,?vnt,ppt                             
WHERE {?s1 <p1,1> ?v1,1 . 
             …   
       ?s1 <p1,ppt> ?v1,ppt . 
       ?s2 <p2,1> ?v2,1 . 
       ?s2 <p2,2> ?v1,1 . 
       ?s2 <p2,3> ?v2,3 . 
             …  
       ?s2 <p2,ppt> ?v2,ppt . 
       ?s3 <p3,1> ?v3,1 . 
       ?s3 <p3,2> ?v2,1 . 
       ?s3 <p3,3> ?v3,3 . 
             … 
       ?snt <pnt,ppt> ?vnt,ppt .} 

Example 21: Scaling the SPARQL query size 

ppt properties are extracted per mapped class ci where ppt ≤ nc. The prop-
erty identifiers pj,1 … pj,ppt represent properties pj,1 … pj,ppt mapped to col-
umns C1 … Cppt of table Ti were vi,1 is the value for each mapped property. 
The variable si holds mapped instances for the mapped class ci. Identifiers 
for mapped properties are constants and enclosed with <...>. The scaled syn-
thetic queries have the shape shown in Example 21.  

Each table Ti+1 is joined with table Ti with column C2 in Ti+1 equal to C1 
in Ti. Hence, our query is scaled up to nt*ppt SPARQL triple patterns pro-
ducing nt*ppt-1 UPV joins and nt-1 SQL joins in the relational database 
extracting nt*(ppt-1)+1 mapped property values. 

For example, createTbls(2,4) and ppt=3 generates the SPARQL query: 
   SELECT ?v1_1, ?v1_2, ?v1_3, ?v2_1, ?v2_3 
   WHERE {?s1 <p1_1> ?v1_1 . 
          ?s1 <p1_2> ?v1_2 . 
          ?s1 <p1_3> ?v1_3 . 
          ?s2 <p2_1> ?v2_1 . 
          ?s2 <p2_2> ?v1_1 . 
          ?s2 <p2_3> ?v2_3 .}  
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Figure 26 compares the optimization times for an increasing number of 
SPARQL triple patterns in the WHERE clause for a UPV over a single rela-
tional table with eight mapped properties (nt=1, nc=8, ppt varies from 1 to 
8). The optimization time for the BE strategy was measured by scaling the 
number of SQL self joins over a UPV definition of equal size in a synthetic 
SQL query constructed analogously to the SPARQL query in Example 21.  

The SQL analogue using the BE strategy for the synthetic SPARQL query 
above is: 
   SELECT C1.V,C2.V,C3.V,C4.V,C6.V 
   FROM U C1, 
        U C2, 
        U C3, 
        U C4, 
        U C5, 
        U C6 
   WHERE C1.P = <p1_1> AND 
         C2.P = <p1_2> AND 
         C3.P = <p1_3> AND        
         C4.P = <p2_1> AND 
         C5.P = <p2_2> AND 
         C6.P = <p2_3> AND   
         C1.S = C2.S   AND 
         C2.S = C3.S   AND 
         C4.S = C5.S   AND 
         C5.V = C1.V   AND 
         C5.S = C6.S 

As expected, the optimization time with END deteriorates very fast with 
the number of triple patterns in the query.  
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Figure 26: Optimization times up to 7 UPV joins in query 
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SWARD ran out of memory after four triple patterns i.e. three UPV joins. 
Logarithmic scale is used to be able to compare END and BE with the other 
strategies in the same diagram. END-P scales dramatically better than END 
since normalization is eliminated. DVS-P and DPS are faster than END-P by 
selective view expansion. The BE strategy scales better than END but is 
slower than the strategies based on PARQ. 

To conclude, Figure 26 clearly shows that END produces unacceptable 
processing times for SPARQL queries of even very modest size (three UPV 
joins). However, by applying PARQ on END (END-P) the query processing 
scales well when the SPARQL query size is increased. Both DVS-P and 
DPS scale even better, but DPS has unacceptable execution performance. 
The END-P and DVS-P strategies outperform the naive BE with respect to 
both optimization and execution times.  
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Figure 27: Optimization times up to 31UPV joins in query 

To investigate query optimization performance for a very large UPV, 
Figure 27 compares END-P, DPS, and DVS-P for a database with nt=8 and 
nc=10 (i.e. 80 mapped properties). The query retrieves four mapped proper-
ties per mapped class (ppt=4) while scaling the number of joined tables in 
the back-end relational database to 8. Thus, there are up to 31 UPV joins in 
the WHERE clause of the SPARQL query. 

The reason DVS-P is slower than DPS is the increasing cost of expanding 
many property views, while DPS simply selects precompiled execution plans 
without view expansion and application of PARQ. 
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In summary, our evaluations show that END-P and DVS-P produce effi-
cient reduced conjunctive content queries while BE, END, and DPS do not 
scale. For content queries DVS-P scales best, since it further improves the 
query optimization time compared to END-P as the size of the query in-
creases.  

However, DVS-P requires PARQ to be able to infer exactly what views to 
expand, which is always possible for content queries where the properties in 
all triple patterns are constant URIs that identify mapped properties in the 
UPV (Definition 1), but not for hybrid queries, as will be shown in the next 
Chapter. There it is presented how END-P provides scalable query process-
ing also for hybrid queries. 

In Figure 28 a summary of all evaluated query processing strategies for 
content queries is presented. The optimization time of content queries for a 
strategy is characterized relatively to the other strategies. The execution of 
content queries is described as scalable or non scalable depending on the 
nature of the algebra expression produced in Step 3.5 in the SWARD query 
processor (Figure 20). 
 

Strategy Optimization Execution Compile time candidates I 
BE Fast Non scalable {} 
END Very slow Scales {} 
END-P Fast Scales {cMap,pMap,S} 
DPS Very fast. Non scalable {} 
DVS-P Very fast Scales {cMap,pMap,S,pView} 

Figure 28: Evaluation of query processing strategies for content queries 
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8 Processing Schema and Hybrid Queries 

The processing of hybrid queries relies on how schema queries are proc-
essed. In this Chapter therefore, partial evaluation of schema queries is first 
described followed by how partial evaluation also improves processing hy-
brid queries dramatically. 

8.1 Schema Queries 
Expanding the WHERE clause of Q2 in Example 10 with the definition of U 
produces the following ObjectLog query: 
   query(prop):-  
   (S(prop,rdfs:domain,co:Customer) OR 
    C(prop,rdfs:domain,co:Customer)     ) AND  
   prop != co:CustID 

In this case C is eliminated by partial evaluation because for a schema 
query the meta-property identifier does not exist in pMap (Assumption 1) 
and therefore every property view PVp in C evaluates to false. 

The final query thus becomes: 
   query(prop) :-  
   S(prop,rdfs:domain,co:Customer) AND  
   prop != co:CustID} 

Notice that S is not compile time evaluated here by PARQ since the mapped 
class identified by co:Customer has many properties and thus S yields more 
than one result binding for prop. The reduced query accesses only the mate-
rialized table S and does not access the back-end database at all. 

8.2 Hybrid Queries 
A hybrid query combines database schema and contents i.e. mix schema 
property and mapped property patterns (Definition 3).  

Example 11 shows an example hybrid query Q3 that dynamically re-
trieves mapped properties from a class. Example 22 shows query Q3 in Ob-
jectLog.  
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1.query(cust,prop,val) :-                                     
2.U(prop,rdfs:domain,co:Customer)    AND 
3.U(order,co:OrderID,’1’)            AND 
4.U(order,co:OrderCustomer,ocust)    AND 
5.U(cust,co:CustID,ocust)            AND 
6.U(cust,prop,val)                   AND 
7.prop != co:CustID 

Example 22: Hybrid query Q3 in ObjectLog 

This is the kind of hybrid queries studied in this Thesis. Such a hybrid 
query is a conjunction between schema clauses selecting and binding vari-
ables to relational schema information (line 2), content clauses (lines 3-5) 
selecting content from the database, and hybrid clauses (line 6) dynamically 
retrieving mapped properties from a class by joining the schema and con-
tents clauses.  

Recall that content queries are defined to have all properties in the query 
bound to constant identifiers of mapped properties, and this is not the case 
for hybrid clauses. For example, on line 6 of Example 22, the variable prop 
is unknown. This prevents the reduction of U(cust,prop,val) to a conjunctive 
expression by PARQ.  

However, as for query Q1, the schema clause on line 1 in Example 22 
will be partial evaluated by step PARQ1 into the single clause: 
   S(prop,rdfs:domain,co:Customer) 

With the END-P strategy and I = {cMap,pMap,S} the content clauses on 
lines 3-5 in Example 22 are reduced by PARQ to simple conjunctive expres-
sions (Corollary) and need no further discussion. 

The hybrid clause on line 6 is view expanded in Example 23, lines 3-8, 
into a disjunction representing the entire UPV. 
 

1.S(prop,rdfs:domain,co:Customer)     AND 
2.//conjunctive expression from content clauses 
3.(S(cust,prop,val)            OR 
4. P_CustId(cust,prop,val)     OR 
5. P_MktSegment(cust,prop,val) OR 
6. P_OrderID(cust,prop,val)    OR 
7. P_OCustID(cust,prop,val)    OR 
8. P_Clerk(cust,prop,val)           ) AND 
9. prop != co:CustID 

Example 23: Expanded hybrid clause 

Notice that property view definitions always contain a call to pMap that 
bind its property identifier. For example, in Example 8 that defines the prop-
erty view P_MktSegment, line 5 binds p to co:Market. Therefore, every par-
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tial evaluation in step PARQ1 of a property view in a hybrid clause explicitly 
binds prop. 

We also notice that normalization combines the schema clause with the 
elements in expanded hybrid clauses. In particular, the schema clause of line 
1 in Example 23 is conjuncted with each of the clauses on lines 4-8. Fur-
thermore, the schema clause restricts the property identifier to those repre-
senting mapped properties from the class Customer. 

The above observations implies that partial evaluation in step PARQ2 
eliminates the clauses on lines 4-8 that are not accessing mapped properties 
of class Customer, i.e. lines 6-8. The remaining clauses in the normalized 
expression are formed by combining lines 1, 2, and 9 with lines 3, 4, and 5.  

At run time the conjunctive pre-filter formed by lines 1 and 3 evaluates to 
false since prop cannot be both a schema property identifier and a property 
identifier (Assumption 1). Also the pre-filter formed by lines 4 and 9 evalu-
ates to false since the property identifier co:CustID should be excluded. The 
only executed SQL query is the one produced by lines 2 and 5: 
   SELECT C.MKTSEGMENT 
   FROM CUSTOMER C, ORDERS O 
   WHERE O.ORDERID = ‘1’       AND  
         O.OCUSTID = C.CUSTID 

In general, for such hybrid queries that dynamically retrieve mapped 
properties of a given class partial evaluation substantially reduces the queries 
by removing at compile time all query fragments for properties of other 
classes. The final expression is a disjunction if more than one mapped prop-
erty is retrieved. 

The reductions apply also for selecting properties from more than one 
class since such a query can be expressed as a union of queries accessing 
properties from single classes. This is not investigated in this Thesis.  

8.3 Performance Measurements 
We evaluated the query optimization time of the hybrid query Q3 by scaling 
the size of the UPV over the number of mapped properties of the class Cus-
tomer extended with six more properties, starting with only one property and 
then successively increasing the number up to eight properties.  

The optimization time of BE, END-P, DPS, and DVS-P for UPVs with 
increasing numbers of mapped properties in pMap is illustrated by Figure 
29. Without partial evaluation (END) the SWARD optimizer runs out of 
memory even for the smallest UPV. The behaviour of the other strategies is 
similar as for content query Q1.  
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Figure 29: Optimization time for hybrid query 

We also evaluated the query execution time for the hybrid query using 
TPC-H.  
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Figure 30: Execution time for hybrid query. 
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Figure 30 compares the performance of BE, END-P, DPS, and DVS-P for 
a UPV with 8 mapped properties and an increasing database size. 

As expected BE and DPS proved to have the same bad performance as for 
content query Q1. For hybrid queries DVS-P does not scale because the par-
tial evaluator is not able to uniquely identify the argument to applyView re-
quired by DVS-P so no view expansion of applyView can be made at com-
pile time. DVS-P is faster than DPS with a factor two since partial evalua-
tion by step PARQ1 avoids selecting entire property views from ORDERS.  

END-P is the only strategy that shows good performance for both content 
queries and hybrid queries. To conclude, this experiment shows that partial 
evaluation with strategy END-P enables transformation of hybrid queries 
into efficient SQL queries while DVS-P does not scale with the size of the 
database.  

In Figure 31 a summary of all evaluated query processing strategies for 
hybrid queries is presented. The performance of the different strategies in 
terms of optimization and execution of hybrid queries are characterized the 
same way as for content queries. Since strategy END-P shows good per-
formance for all three query classes it is chosen as default when processing 
SPARQL queries to UPVs in SWARD.  
 

Strategy Optimization Execution Compile time candidates I 
BE Fast Non scalable {} 
END Very slow Scales {} 
END-P Fast Scales {cMap,pMap,S} 
DPS Very fast. Non scalable {} 
DVS-P Very fast Non scalable {cMap,pMap,S,pView} 

Figure 31: Evaluation of query processing strategies for hybrid queries 
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9 Augmented UPVs 

So far it has been described how UPVs provide access to content and schema 
information in relational databases. However, for three reasons the UPVs 
described so far do not yet qualify as complete RDFS views over relational 
databases: 

• Every ER entity must be associated with an entity type. It should be 
possible to find all instances of a mapped class or the class of a 
mapped instance. However, so far, it has not been described how to 
encode class memberships of mapped instances. 

• ER relationship types that model relationships between entity types 
should be defined in the UPV. ER relationships between mapped 
classes should be represented in the UPV. This is important for the 
same reasons as with class memberships. As of yet, it has not been 
described how to make ER relationships explicit in UPVs.  

• So far, it has not been described how to define mapped properties 
over columns in relational tables with composite primary keys. 
This must be allowed in order to generate UPVs over arbitrary rela-
tional databases. 

This Chapter extends the basic UPVs in order to represent the above three 
kinds of semantic information. Section 9.1 presents how mapped instances 
are associated with their mapped classes in the UPV. Section 9.2 shows how 
ER relationships implicitly represented by foreign keys in the relational 
model are made explicit in the UPV by encoding them as RDF properties 
relating mapped classes. Section 9.3 shows how relational tables with com-
posite primary keys are represented in a UPV. Finally, in Section 9.4 it is 
proven that conjunctive content queries to augmented UPVs always are re-
duced to a simple conjunction by PARQ. 

9.1 Class Membership 
So far, the content view in a UPV has been defined as the union of property 
views that define values of mapped properties for mapped instances. How-
ever, there is so far nothing in the UPV that states explicitly the class mem-
bership of a mapped instance. This means that queries, such as, give me all 
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instances of the class co:Customer, must be written as illustrated by query 
Q4 in Example 24.  
 

SELECT ?cust 
WHERE {?cust co:CustID ?custid .} 

Example 24: Content query Q4 finding the instances of a class. 

The result of Q4 is: 
(co:Customer/120) 

The result is correct since it is here assumed that a mapped property de-
fined over a mapped class is instanciated for every member of that class. 
However, it is quite unnatural to state the query to find all instances of a 
class as finding all the mapped instances of some property in pMap such that 
the domain of the property is that particular class. 

The RDFS meta-property rdf:type defines the class to which a URI be-
longs. So far we have used it (in Chapter 3) only to define the mapped class 
and mapped property meta-objects themselves. Thus, the meta-property 
rdf:type has not been used to state the class of a mapped instance as is re-
quired for complete RDFS views over relational databases. Because of this 
one cannot directly find all members of a class by using the rdf:type meta-
property as in Example 25, and instead one has to use the unnatural query in 
Example 24. Query triple patterns that retrieve for a given mapped class its 
instances as in Example 25 are called class membership patterns. 
 

SELECT ?cust 
WHERE {?cust rdf:type co:Customer .} 

Example 25: Content query Q5, finding all instances of a class. 

To incorporate statements that define the classes of mapped instances in 
the UPV the definition of the content view is augmented to include also a 
class membership view, CMc, for each mapped class in cMap that represents 
the extent of class c.  

C = 
p
∪ PVp OR 

c
∪  CMc 

In the example Company database the following three RDF triples encode 
the class membership of the mapped instances in Figure 17: 

<co:Customer/120,rdf:type,co:Customer> 
<co:Orders/1,rdf:type,co:Orders> 
<co:Orders/2,rdf:type,co:Orders>  
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The augmented UPV definition with class membership views is shown in 
Example 26.  
 

1.U(s,p,v):- 
2.S(s,p,v)                   OR 
3.P_CustID(s,p,v)            OR 
4.P_MktSegment(s,p,v)        OR 
5.P_OrderID(s,p,v)           OR 
6.P_OCustID(s,p,v)           OR 
7.P_Clerk(s,p,v)             OR 
8.CM_Customer(s,p,v)         OR 
9.CM_Orders(s,p,v) 

Example 26: UPV definition with class membership view. 

The class membership views CM_Customer and CM_Orders classify the 
mapped instances from relational tables CUSTOMER and ORDERS as mem-
bers of the mapped classes Customer and Orders, respectively. By conven-
tion, here, all class membership views are prefixed with ‘CM_’. 

Example 27 shows the definition of the class membership view 
CM_Customer. 
 

1.CM_Customer(s,p,v):- 
2.customer(custid,_)                          AND 
3.cMap(‘CUSTOMER','Comp',v)                   AND 
4.iMap(v,custid,s)                            AND 
5.p = rdf:type 

Example 27: Definition of class membership view CM_Customer. 

Class membership views associate mapped instances from a relational ta-
ble with mapped classes and access cMap to do so.  

In general, a class membership view in a UPV has the structure in Figure 
32 where variables k is bound to the primary key value of the relational table 
(table). The predicate on line 2 accesses the table to bind k. 
 

1.CM_[table](s,p,v) :- 
2.[table](k)                          AND  
3.cMap([table],[upv],v)               AND  
4.iMap(v,k,s)                         AND    
5.p = rdf:type         

Figure 32: Definition of class membership view 

Even though query Q5 in Example 25 accesses values from the CUSTID 
column in table CUSTOMER Q5 is not categorized as a content query by 
Definition 1 where a content query is defined to be a query where all proper-
ties are constants and bound to identifiers for mapped properties. Therefore, 
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a more general definition of content queries is needed, extended content que-
ries. 

The RDFS meta-property rdf:type in a UPV defines either i) the meta-
class of a mapped property (class rdf:Property) or the meta-class of a 
mapped class (class rdfs:Class) or ii) the class of a mapped instance. A 
query using rdf:type to reference a meta-class (i.e. the first role) is a schema 
query while a extended content query may use rdf:type in the second role. 
Since class membership patterns define the class of only mapped instances 
we get the following definition:  

Definition 4: An extended content query is a conjunctive query where all 
triple patterns are either mapped property patterns, or class membership pat-
terns. 

It is now shown that applying PARQ on END with I = {cMap,pMap,S} 
for a extended conjunctive content query substantially reduces the query 
expression sizes and no normalization is needed for such queries either.  

In Example 28 the extended content query Q5 is presented in ObjectLog. 
 

1.query(cust):- 
2.U(cust,rdf:type,co:Customer) 

Example 28: ObjectLog expression for Q5. 

Example 29 shows how line 2 is view expanded using the UPV definition 
from Example 26. 
 

1.query(cust):- 
2.S(cust,rdf:type,co:Customer)             OR 
3.P_CustID(cust,rdf:type,co:Customer)      OR 
4.P_MktSegment(cust,rdf:type,co:Customer)  OR 
5.P_OrderID(cust,rdf:type,co:Customer)     OR 
6.P_OCustID(cust,rdf:type,co:Customer)     OR 
7.P_Clerk(cust,rdf:type,co:Customer)       OR 
8.CM_Customer(cust,rdf:type,co:Customer)   OR 
9.CM_Orders(cust,rdf:type,co:Customer) 

Example 29: Query Q5 after view expansion. 

By Assumption 1 line 2 is compile time evaluated to false and eliminated. 
Lines 3-7 are also eliminated by partial evaluation because of Assumption 1 
since no mapped property identifier can be named rdf:type. Example 30 
shows the expanded class member view CM_Orders from line 9 in Example 
29. 
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1.orders(custid,_,_)                  AND 
2.iMap(co:Customer,custid,cust)       AND 
3.cMap(‘ORDERS’,’Comp’,co:Customer)   AND 
4.rdf:type=rdf:type 

Example 30: Expanded class membership view CM_Orders. 

The call to cMap on line 3 is compile time evaluated to false and the en-
tire view expanded expression on line 9 in Example 29 is therefore elimi-
nated by PARQ. 

Thus, after partial evaluation only line 8 remains in Example 29. After 
view expansion it becomes the expression in Example 31. 
 

1.customer(custid,_)                   AND 
2.iMap(co:Customer,custid,cust)        AND 
3.cMap(‘CUSTOMER’,’Comp’,co:Customer)  AND 
4.rdf:type=rdf:type 

Example 31: Expanded class membership view CM_Customer. 

The call to cMap on line 3 is compile time evaluated to true and removed. 
Line 4 is removed by line 30 in Figure 23. Example 32 shows the fully re-
duced query Q5. 
 

1.query(cust) :- 
2.customer(custid,_)              AND 
3.iMap(co:CustID,custid,cust) 

Example 32 Fully reduced query Q5. 

Finally, the SQL generator produces the following single SQL statement 
from line 2 of the reduced query. The statement is sent to the back-end rela-
tional DBMS for cost-based optimization and execution. 
   SELECT C.CUSTID  
   FROM CUSTOMER C 

The same SQL is generated also from query Q4 that finds all members of 
a mapped class by accessing all mapped instances with a property that has as 
domain that particular class. 

So far it was shown how to find the extent of a mapped class by queries to 
UPVs using the property rdf:type. The same property rdf:type can also be 
used for finding the type of a given mapped instance.  
 

SELECT ?class 
WHERE {co:Customer/120 rdf:type ?class .} 

Example 33: Content query Q6, finding the class membership of an instance. 
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For example, query Q6 in Example 33 retrieves the class for a given in-
stance of that class, co:Customer/120.  

The result of Q6 is: 
(co:Customer) 

PARQ applied on query Q6 with I = {cMap,pMap,S,iMap} will be shown 
to reduce the query to a simple conjunctive expression before SQL genera-
tion. 

In Example 34 the extended content query Q6 is presented in ObjectLog. 
 

1.query(class):- 
2.U(co:Customer/120,rdf:type,class) 

Example 34: ObjectLog expression for Q6. 

Example 35 shows how line 2 is view expanded using the UPV definition 
from Example 26. 
 

1.query(class):- 
2.S(co:Customer/120,rdf:type,class)             OR 
3.P_CustID(co:Customer/120,rdf:type,class)      OR 
4.P_MktSegment(co:Customer/120,rdf:type,class)  OR 
5.P_OrderID(co:Customer/120,rdf:type,class)     OR 
6.P_OCustID(co:Customer/120,rdf:type,class)     OR 
7.P_Clerk(co:Customer/120,rdf:type,class)       OR 
8.CM_Customer(co:Customer/120,rdf:type,class)   OR 
9.CM_Orders(co:Customer/120,rdf:type,class) 

Example 35: Query Q6 after view expansion. 

Analogously to Example 29 lines 2-7 are eliminated by partial evaluation. 
The expanded class membership view CM_Orders is shown in Example 36. 
 

1.orders(custid,_,_)                           AND 
2.iMap(cid,custid,co:Customer/120)             AND 
3.cMap(‘ORDERS’,’Comp’,cid)                    AND 
4.rdf:type=rdf:type 

Example 36: Expanded class membership view CM_Orders revisited. 

The call to cMap on line 3 is compile time evaluated and the class mem-
bership view in Example 36 is partial evaluated by binding variable cid to 
the constant mapped class identifier co:Orders. Line 4 is removed by line 30 
in Figure 23.  
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The reduced expression is shown in Example 37. 
 

1.orders(custid,_,_)                           AND 
2.iMap(co:Orders,custid,co:Customer/120) 

Example 37: Reduced class membership view CM_Orders. 

Recall that the external iMap predicate is invertible (Chapter 3) to be able 
to obtain the key for a given mapped instance identifier by parsing the identi-
fier string. In order to eliminate the class membership view CM_Orders 
from the expanded query the external predicate iMap is here compile time 
evaluated in the backward direction to false.  

Thus, lines 2-9 are replaced with the expression produced from line 8 in 
Example 35 with the calls to cMap and iMap compile time evaluated.  
customer(‘120’,_) 

After SQL generation the following statement is sent to the back-end rela-
tional database for cost-based optimization and execution. 
   SELECT 1  
   FROM CUSTOMER C  
   WHERE C.CUSTID = ‘120’ 

The SQL statement is an existence check for the primary key value ‘120’ 
in the column CUSTID in table CUSTOMER.  

The external predicate iMap is cheap since it does not access the back-end 
relational but does only do simple string handling. 

The possibility to define inverses of an external predicates is critical for 
the query processing performance in SWARD. Consider a scenario when 
iMap was not invertible. Instead of the SQL statement above, the code in 
Example 37 would remain and the following two statements would be sent 
to the back-end DBMS for execution. 
   SELECT C.CUSTID  
   FROM CUSTOMER C  

   SELECT O.ORDERID  
   FROM ORDERS O  

Since here the key for the given mapped instance in query Q6 cannot be 
obtained by compile time evaluation the whole table CUSTOMER in the 
back-end relational DBMS is scanned. Also, the code in Example 37 would 
remain, since the class identifier for the mapped instance in query Q6 cannot 
be accessed, which produces an additional scan of the ORDERS table. This 
is clearly a non-scalable strategy for evaluating query Q6. 
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With the introduction of class membership properties in UPVs queries 
could be stated that dynamically selects mapped classes and accesses their 
members. Such a subclass of hybrid queries is not investigated in this Thesis. 

In summary, in this Section it was shown by examples how ER entity in-
formation was preserved in UPVs through the class membership views. It 
was also shown how class membership views where eliminated from the 
extended content queries (Definition 4) using partial evaluation in the same 
manor as for ordinary content queries. 

Next, it is shown how to further augment UPVs to encode relationships 
between mapped classes using foreign key information in the relational da-
tabase. This is required in order to explicitly model relationships among 
mapped classes, which in turn enables more natural queries to the UPV. 

9.2 Class Relationships 
Binary ER relationships are supported implicitly in relational databases 
through foreign keys. Such relationships are modeled in UPVs as special 
mapped properties that relate mapped instances from two mapped classes. 

For example, in the relational database, Company, the relationship be-
tween entity types ORDERS and CUSTOMER in Figure 13 is represented by 
the fact that column OCUSTID is a foreign key in table ORDERS that refer-
ences column CUSTID in table CUSTOMER. 

In the basic UPV, this is encoded implicitly by the three RDF triples: 

<co:Orders/1,co:OrderCustomer,120> 
<co:Orders/2,co:OrderCustomer,120> 
<co:Customer/120,co:CustID,120> 

To get the market segment of a customer placing an order and the clerk 
filing the order, one has to join the values of the foreign keys on lines 3 and 
4 in Example 38. 
1.SELECT ?cust ?mkt ?clerk 
2.WHERE {?order co:Clerk ?clerk . 
3.       ?order co:OrderCust ?ocust . 
4.       ?cust co:CustID ?ocust . 
5.       ?cust co:Market ?mkt .} 

Example 38: Content query Q7 

By including these additional two triples in the UPV the class relationship 
is made explicit through a new property co:OrderedBy. 
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<co:Orders/1,co:OrderedBy,co:Customer/120> 
<co:Orders/2,co:OrderedBy,co:Customer/120> 

Here, co:Orders/1 is a mapped instance of the class co:Orders and 
co:Customer/120 is a mapped instance of the class co:Customer. Properties 
that relate instances from the two mapped classes, such as co:OrderedBy, are 
called class relationship properties. Triple patterns where the property is 
constant and identifies a class relationship property are called class relation-
ship patterns. Example 39 shows a SPARQL query with a class relationship 
pattern. The definition of a extended content query is genralized even further 
to incorporate also class relationship patterns. 

Definition 5: A generalized content query is a conjunctive query where 
all triple patterns are either mapped property patterns, class membership 
patterns, or class relationship patterns. 
 

SELECT ?cust ?mkt ?clerk 
WHERE {?order co:Clerk ?clerk . 
       ?order co:OrderedBy ?cust . 
       ?cust co:Market ?mkt .} 

Example 39: Generalized content query Q7 

Using class relationship patterns, retrieving the market segment of a cus-
tomer placing an order can be expressed in a more natural and simple way as 
shown in Example 39. 
 

Table OTable FkColumn UPV CRID 
ORDERS CUSTOMER ORDERID Comp co:OrderedBy 

Figure 33: Relationship mapping table for Company 

To represent mapped class relationships in the UPV SWARD requires a 
user-defined relationship mapping table, 
 rMap(Table,OTable,FkColumn,UPV,CRID) (Figure 33), that maps 1:1 for a 
given UPV between a foreign key column (FkColumn) in a table (Table) that 
refers to the primary key column in some other table (OTable) into a class 
relationship identifier (CRID).  

SWARD handles class relationships by generating additional views, class 
relationship views CRcrid, for the class relationships identifiers in rMap. The 
content view definition is generalized to the union of property views, class 
membership views, and class relationship views:  

C = 
p
∪ PVp OR

c
∪CMc OR

crid
∪ CRcrid 
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The further augmented UPV definition with class relationship views is 
shown in Example 40. By convention, here, all class relationship view 
names are prefixed with ‘CR_’. 
 

1.U(s,p,v):- 
2.S(s,p,v)                   OR 
3.P_CustID(s,p,v)            OR 
4.P_MktSegment(s,p,v)        OR 
5.P_OrderID(s,p,v)           OR 
6.P_OCustID(s,p,v)           OR 
7.P_Clerk(s,p,v)             OR 
8.CM_Customer(s,p,v)         OR 
9.CM_Orders(s,p,v)           OR 
10.CR_OcustID(s,p,v) 

Example 40: UPV definition with class relationship view 

Example 41 shows the class relationship view definition for the class rela-
tionship identifier co:OrderedBy in Figure 33 (line 10 in Example 40).  
 

1.CR_OCustID(s,p,v) :- 
2.orders(orderid,ocustid,_)                       AND 
3.iMap(cid,orderid,s)                             AND 
4.cMap(‘CUSTOMER’,’Comp’,otcid)                   AND 
5.iMap(otcid,ocustid,v)                           AND 
6.cMap(‘ORDERS’,‘Comp’,cid)                       AND 
7.rMap(‘ORDERS’,’CUSTOMER’,‘OCUSTID’,‘Comp’,p) 

Example 41: Class relationship view CR_OcustID 

Notice how additional calls to cMap and iMap on lines 4 and 5, respec-
tively, are needed to construct the mapped instance co:Customer/120. On 
line 7 rMap is accessed to get the class relationship identifier. 

In general, a class relationship view in a UPV has the structure in Figure 
34 where variable k is bound to values from the primary key column of the 
relational table (table) and fv is bound to values from the foreign key column 
(column) of the table mapped by the class relationship identifier p in rMap, 
referencing the relational table (otable).  
1.CR_[column](s,p,v) :- 
2.[table](k,fv)                          AND  
3.iMap(cid,k,s)                          AND 
3.cMap([otable],[upv],otcid)             AND  
4.iMap(otcid,fv,v)                       AND    
6.cMap([table],[upv],cid)                AND 
7.rMap([table],[otable],[column],[upv],p)          

Figure 34: Class relationship view definition 
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In addition, the class view (Example 6), domain view, and range view, 
which define the schema view S, are extended to define the class relationship 
property co:OrderedBy along with its domain and range through the triples 
below: 

<co:OrderedBy, rdf:type,rdfs:Property> 
<co:OrderedBy, rdfs:domain,co:Orders> 
<co:OrderedBy,rdfs:range,co:Customer> 

The extended class, domain and range view are presented in Example 42. 
 

Classes(s,p,v):- (cMap(table,‘Comp’,s)              AND    
                  p = rdf:type                      AND    
                  v = rdfs:Class)                        OR 
                 (pMap(table,column,‘Comp’,s)       AND    
                  p = rdf:type                      AND    
                  v = rdf:Property)                      OR 
                 (rMap(table,otable,column,‘Comp’,s)AND    
                  p = rdf:type                      AND    
                  v = rdf:Property) 

Domains(s,p,v):- (pMap(table,column,’Comp’,s)       AND 
                  p=rdfs:domain                     AND 
                  cMap(table,’Comp’,v))                  OR 
                 (rMap(table,otable,column,’Comp’,s)AND 
                  p=rdfs:domain                     AND 
                  cMap(table,’Comp’,v)) 

Ranges(s,p,v):- (pMap(table,column,’Comp’,s)        AND 
                 p = rdfs:range                     AND 
                 v = rdfs:Literal)                       OR 
                (rMap(table,otable,column,’Comp’,s) AND 
                 p = rdfs:range                     AND 
                 cmap(otable,’Comp’,v))   

Example 42: Extended schema view definition 

Now the market segment of a customer placing an order can be selected 
in a more natural and simple way by using the class relationship identifier 
co:OrderedBy as shown in Example 43.  
 

SELECT ?cust ?mkt ?clerk 
WHERE {?order co:Clerk ?clerk . 
       ?order co:OrderedBy ?cust . 
       ?cust co:Market ?mkt .} 

Example 43: Content query Q8 

Query Q8 produces the result: 
   (co:Customer/120,‘AUTOMOBLE’,’Doe’) 
   (co:Customer/120,‘AUTOMOBILE’,’Wesson’) 



 90 

Next it is shown how applying PARQ on END with 
I = {cMap,pMap,S,rMap} the size of UPVs with class relationship views are 
substantially reduced and no normalization is needed for conjunctive content 
queries. Analogous to cMap, pMap and S the primitive predicate rMap is 
also small and stored in main memory of SWARD. It does not access the 
back-end relational database. 

Example 44 shows query Q7 in ObjectLog. 
 

1.query(cust,mkt,clerk) :- 
2.U(order,co:Clerk,clerk)             AND 
3.U(order,co:OrderedBy,cust)          AND 
4.U(cust,co:Market,mkt) 

Example 44: ObjectLog expression for Q8 

Example 45 shows how line 2 in Example 44 is view expanded using the 
UPV definition augmented with class membership views and relationship 
views. 
 

1.query(cust,mkt,clerk) :-  
2.(S(order,co:Clerk,clerk)              OR 
3. P_CustID(order,co:Clerk,clerk)       OR     
4. P_MktSegment(order,co:Clerk,clerk)   OR     
5. P_OrderID(order,co:Clerk,clerk)      OR     
6. P_OCustID(order,co:Clerk,clerk)      OR     
7. P_Clerk(order,co:Clerk,clerk)        OR 
8. CM_Orders(order,co:Clerk,clerk)      OR 
9. CM_Customer(order,co:Clerk,clerk)    OR          
10.CR_OCustID(order,co:Clerk,clerk))           AND 
11.U(order,co:OrderedBy,cust)                  AND 
12.U(cust,co:Market,mkt) 

Example 45: Query Q8 after view expansion 

Notice how the UPV definition is augmented with the relationship view 
CR_OCustID on line 10 and class membership views CM_Orders and 
CM_Customer on lines 8 and 9, respectively. Example 46 shows the ex-
panded relationship view CR_OCustID. 
 

1.orders(orderid,ocustid,_)                          AND 
2.iMap(cid,orderid,order)                            AND 
3.cMap(‘CUSTOMER’,’Comp’,otcid)                      AND 
4.iMap(otcid,ocustid,clerk)                          AND 
5.cMap(‘ORDERS’,’Comp’,cid)                          AND 
6.rMap(‘ORDERS’,’CUSTOMER’,’OCUSTID’,’Comp’,co:Clerk) 

Example 46: Expanded relationship view CR_OCustID. 
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In the example, compile time evaluation of rMap (in step PARQ1) on line 
6 is evaluated to false and the entire view expanded expression on line 10 in 
Example 45 is eliminated. 

Lines 2-6 and 8-9 in Example 45 are also partial evaluated to false and 
removed reducing the disjunction to the conjunctive query fragment repre-
senting the property view P_Clerk shown in Example 47. 
 

1.orders(orderid,_,clerk)                         AND 
2.iMap(cid,orderid,order)                         AND 
3.cMap(‘ORDERS’,’Comp’,cid)                       AND 
4.pMap(‘ORDERS’,’CLERK’,’Comp’,co:Clerk) 

Example 47: Expanded property view P_Clerk. 

The call to pMap on line 4 is compile time evaluated to true and removed. 
On line 3 compile time evaluation of cMap partial evaluates the property 
view P_Clerk in Example 47 by substituting variable cid for co:Orders. 

Thus partial evaluation replaces the disjunctive expression in the ex-
panded U on line 2 in Example 44 with the following expression represent-
ing the desired property identifier (co:Clerk): 
   orders(orderid,_,clerk)               AND 
   iMap(co:Orders,orderid,order) 

Analogously, line 4 in Example 44 is replaced with the conjunctive ex-
pression representing the property identifier co:Market: 
   customer(custid,mkt) 
   iMap(co:Customer,custid,cust) 

The UPV call on line 3 in Example 44 is view expanded producing the 
disjunction in Example 48. 
 

1.S(order,co:OrderedBy,cust)              OR 
2.P_CustID(order,co:OrderedBy,cust)       OR 
3.P_MktSegment(order,co:OrderedBy,cust)   OR 
4.P_OrderID(order,co:OrderedBy,cust)      OR 
5.P_OCustID(order,co:OrderedBy,cust)      OR 
6.P_Clerk(order,co:OrderedBy,cust)        OR 
7.CM_Orders(order,co:OrderedBy,cust)      OR 
8.CM_Customer(order,co:OrderedBy,cust)    OR 
9.CR_OCustID(order,co:OrderedBy,cust)     OR 

Example 48: Expanded UPV call 

Lines 1-6 are eliminated by partial evaluation.  
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Example 49 shows the expanded class membership view CM_Customer. 
 

1.customer(custid,_)                     AND 
2.cMap(‘CUSTOMER’,’Comp’,cust)           AND 
3.iMap(cust,custid,order)                AND 
4.co:OrderedBy=rdf:type 

Example 49: Expanded class membership view CM_Customer 

In the example, the equality on line 4 is replaced with false (line 32 in 
Figure 23) and the entire view expanded expression on line 8 in Example 48 
is eliminated. Analogously line 7 in Example 48 is also eliminated by partial 
evaluation reducing the disjunction the conjunctive query fragment repre-
senting the property view CR_OCustID shown in Example 50. 
 

1.orders(orderid,ocustid,_)                              AND 
2.iMap(cid,orderid,order)                                AND 
3.cMap(‘CUSTOMER’,’Comp’,otcid)                          AND 
4.iMap(otcid,ocustid,cust)                               AND 
5.cMap(‘ORDERS’,’Comp’,cid)                              AND 
6.rMap(‘ORDERS’,’CUSTOMER’,’OCUSTID’,’Comp’,co:OrderedBy) 

Example 50: Expanded relationship view CR_OCustID. 

The call to rMap on line 6 is compile time evaluated to true and removed. 
On lines 3 and 5 evaluation of cMap substitutes variables otcid and cid for 
property identifiers co:Customer and co:Orders, respectively 

Thus partial evaluation replaces the disjunctive expression in the ex-
panded U on line 3 in Example 44 with the following expression represent-
ing the desired property identifier (co:OrderedBy): 
   orders(orderid,ocustid,_)               AND 
   iMap(co:Orders,orderid,order)           AND 
   iMap(co:Customer,ocustid,cust) 

The key rewrite rule (Figure 23) combines the produced iMap and rela-
tional database calls to the same table before generating the SQL. It produces 
the fully reduced query as shown in Example 51: 
 

1.query(cust,mkt,clerk) :- 
2.orders(orderid,ocustid,clerk)           AND 
3.iMap(co:Orders,orderid,order)           AND 
4.customer(ocustid,mkt)                   AND 
5.iMap(co:Customer,ocustid,cust) 

Example 51: Fully reduced query Q6. 

Finally, the SQL generator produces the following single SQL statement 
from the reduced query. The statement is sent to the back-end relational 
DBMS for cost-based optimization and execution:  
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   SELECT O.ORDERID,O.OCUSTID,O.CLERK,C.MKTSEGMENT 
   FROM ORDERS O,CUSTOMER C  
   WHERE C.CUSTID = O.OCUSTID 

In this section ER relationships, implicitly represented by foreign keys in 
the relational model, where defined explicitly by augmenting the UPV defi-
nition with class relationship views. It was also exemplified how relationship 
views where eliminated from the generalized content query (Definition 5) 
using partial evaluation in the same manor as ordinary property views. 

Handling of binary M:N ER relationship types and N-ary ER relationship 
types is not investigated in this Thesis. 

9.3 Representation of Composite Keys in RDF Schema 
Since composite primary keys are common in relational databases it is very 
important that they are handled in UPVs so that columns in tables containing 
such keys can also be viewed in RDF. 

For example, consider the addition of the weak entity type LINEITEM to 
the ER diagram in Figure 13 as shown in Figure 35. 
 

 
Figure 35: ER diagram of extended Company database. 

The weak entity type LINEITEM is translated to the additional LINEITEM 
table in our example Company database, providing information about the 
quantity of parts from a product line in an order placed by a customer. The 
columns LINENUMBER and LORDERID are the composite primary key in 
LINEITEM. 
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LINEITEM LINENUMBER LORDERID PARTID QUANTITY 
 12345 2 Semiconductor 150 

In a UPV identifiers are constructed to represent mapped instances of 
classes in cMap. An instance identifier consists of the identifier representing 
the class in cMap mapped to the table concatenated with a key value from its 
primary key (Section 3.3) and corresponds to a row in that table. For a table 
with a composite primary key the instance identifier must contain key values 
from all the primary key columns. Such instance identifiers are called com-
posite instance identifiers. 

Figure 36 shows the class mapping for table LINEITEM. 
 

Table UPV ClassID 
LINEITEM Comp co:LineItem 

Figure 36: Additional class mappings for LINEITEM table 

Figure 37 shows the property mappings in pMap for the columns in table 
LINEITEM. 
 

Table Column UPV PropID 
LINEITEM LINENUMBER Comp co:LineNumber 
LINEITEM LORDERID Comp co:LineNumberOrderID 
LINEITEM PARTID Comp co:PartID 
LINEITEM QUANTITY Comp co:Amount 

Figure 37: Additional property mappings for LINEITEM table 

Since column LORDERID in table LINEITEM is a foreign key referenc-
ing column ORDERID in table ORDERS the relationship mapping table 
rMap contains the mapping shown in Figure 38. 
 

Table OTable Column UPV CRID 
LINEITEM ORDERS LORDERID Comp co:BelongsTo 

Figure 38: Additional relationship mappings for LINEITEM table 

Given the above class relationship and property mapping tables the con-
tent view of the UPV Comp over the extended Company database will con-
tain the additional triples shown in Figure 39. The composite instance identi-
fiers are constructed by concatenating the primary key values in a row. We 
use the separator ‘@’ when concatenating the primary key values in compos-
ite instance identifiers to make it possible to inversely reconstruct the keys 
from the instance identifier. 
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S P V 
co:LineItem/12345@2 co:LineNumber 12345 
co:LineItem/12345@2 co:LineNumberOrderID 2 
co:LineItem/12345@2 co:PartID Semiconductor 
co:LineItem/12345@2 co:Amount 150 
co:LineItem/12345@2 co:BelongsTo co:Orders/2 
co:LineItem/12345@2 rdf:type co:LineItem 

Figure 39: Content view for LINEITEM table  

Example 52 shows the UPV definition generated by SWARD for the ex-
tended Company database where P, CR, and CM on lines 3-5 are the unions 
of property, class membership, and class relationship views, respectively. 
Lines 6-9 show the property views over composite primary key table 
LINEITEM.  
 

1.U(s,p,v):- 
2.S(s,p,v)                      OR     
3.P(s,p,v)                      OR 
4.CR(s,p,v)                     OR 
5.CM(s,p,v)                     OR 
6.P_LineNumID(s,p,v)            OR 
7.P_LOrderID(s,p,v)             OR 
8.P_PartID(s,p,v)               OR 
9.P_Quantity(s,p,v) 

Example 52: UPV definition over extended Company database with support for 
property views over columns in tables with composite primary keys. 

Example 53 shows the property view P_Quantity representing column 
QUANTITY in table LINEITEM. 
 

1.P_Quantity(s,p,v) :- 
2.lineitem(lorderid,linenumber,lpartid,v)          AND  
3.cMap('LINEITEM','Comp',cid)                      AND  
4.pMap('LINEITEM','QUANTITY','Comp',p)             AND  
5.KC_LineItem(linenumber,lorderid,ck)              AND 
6.iMap(cid,ck,s) 

Example 53: Property view P_Quantity 

In order to concatenate composite primary key values to construct com-
posite mapped instance identifiers, the general definition of a property view 
in Figure 21 is augmented with a predicate generated by SWARD for each 
table associated with a class in cMap, the key constructor, prefixed with 
'KC_', KC_LineItem in Example 53. A key constructor takes as its first ar-
guments the primary keys values of a row and returns the concatenated key 
string of a composite instance identifier as the last argument. For example, 
on line 5 in Example 53 the key constructor KC_LineItem takes as input 
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values from the composite primary key columns LINENUMBER and LOR-
DERID and concatenates them into a key string. If LINENUMBER is 
‘12345’ and LORDERID is ‘2’ the concatenated key string becomes 
‘12345@2’. With the addition of the key constructor, property views are 
generalized to view columns in relational tables with composite primary 
keys.  

In general, a generalized property view in a UPV able to represent com-
posite primary keys has the structure in Figure 34 where variables k1,…,kn 
are bound to key values in a composite primary key of the relational table 
(table) and v is a row value from the relational column (column) represented 
by the mapped property identifier p in pMap.  
 

1.P_[column](s,p,v) :- 
2.[table](k1,…,kp,v)                  AND  
3.cMap([table],[upv],cid)             AND  
4.pMap([table],[column],[upv],p)      AND  
5.KC_[table](k1,…,kp,ck)               AND 
6.iMap(cid,ck,s) 

Figure 40: Composite property view definition 

The key constructors are implemented as external predicates with variable 
number of arguments to be able to construct a compound instance identifier 
from several key values. The predicate is invertible to be able to obtain the 
keys for a given composite mapped instance identifier by parsing the identi-
fier string. 

Templates for generalized class membership views and relationship views 
able to handle composite primary keys are shown in Figure 41 and Figure 
42, respectively.  
 

1.CM_[table](s,p,v) :- 
2.[table](k1,…,kn)                     AND  
3.cMap([table],[upv],v)               AND  
4.KC_[table](k1,…,kn,ck)               AND 
5.iMap(v,ck,s)                        AND    
6.p = rdf:type         

Figure 41: Generalized definition of class membership view 

Variables k1,…,kn are bound to key values in a composite primary key of 
the relational table (table).  
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1.CR_[column](s,p,v) :- 
2.[table]_[column](k1,…,kn,v)           AND  
3.iMap(cid,ck,s)                        AND 
4.cMap([otable],[upv],otcid)            AND  
5.iMap(otcid,v,v)                       AND 
6.cMap([table],[upv],cid)               AND 
7.KC_[table](k1,…,kn,ck)                 AND 
8.rMap([table],[otable],[column],[upv],p)          

Figure 42:Generalized definition of class relationship view 

Notice how calls to the key constructors are added on lines 4 and 7 in 
Figure 41 and Figure 42, respectively, to construct compound instance iden-
tifiers from key values.  

It is now shown by an example that by applying PARQ on END with 
I = {cMap,pMap,S,rMap} the size of UPVs able to handle composite pri-
mary keys are substantially reduced without need for normalization for con-
junctive content queries.  

Example 54 shows the content query Q9 that returns the quantity of every 
part in each order and the name of the clerk handling that order. 
 

SELECT ?part ?qty ?clerk 
WHERE {?lineitem co:PartID ?part . 
       ?lineitem co:Amount ?qty . 
       ?lineitem co:BelongsTo ?order . 
       ?order co:Clerk ?clerk .} 

Example 54: Content query Q9 

Query Q9 produces the result: 
(‘Semiconductors’,’150’,’Doe’) 

Example 55 shows query Q9 in ObjectLog. 
 

1.query(part,qty,clerk) :- 
2.U(lineitem,co:PartID,part)              AND 
3.U(lineitem,co:Amount,qty)               AND 
4.U(lineitem,co:BelongsTo,order)          AND 
5.U(order,co:Clerk,clerk) 

Example 55: ObjectLog expression for Q9 

Example 56 shows how line 3 in Example 55 is view expanded using the 
UPV definition in Example 52. 
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U(lineitem,co:Amount,qty):- 
S(lineitem,co:Amount,qty)                      OR     
P(lineitem,co:Amount,qty)                      OR 
CR(lineitem,co:Amount,qty)                     OR 
CM(lineitem,co:Amount,qty)                     OR 
P_LineNumID(lineitem,co:Amount,qty)            OR 
P_LOrderID(lineitem,co:Amount,qty)             OR 
P_PartID(lineitem,co:Amount,qty)               OR 
P_Quantity(lineitem,co:Amount,qty) 

Example 56: UPV definition over extended Company with generalized property 
views 

Example 57 shows the view expanded composite property view 
P_Quantity. 
 

1.lineitem(linenumber,lorderid,_,qty)            AND 
2.cMap(‘LINEITEM’,’Comp’,cid)                    AND 
3.pMap(‘LINEITEM’,’QUANTITY’,’Comp’,co:Amount)   AND 
4.KC_LineItem(linenumber,lorderid,ck)            AND 
5.iMap(cid,ck,lineitem) 

Example 57: View expanded generalized property view P_Quantity 

On line 2 the call to cMap is compile time evaluated and cid is substituted 
for co:LineItem. The call to pMap on line 3 is evaluated to true and is elimi-
nated. The reduced query fragment is shown in Example 58. 
 

1.lineitem(linenumber,lorderid,_,qty)    AND 
2.KC_LineItem(linenumber,lorderid,ck)    AND 
3.iMap(co:LineItem,ck,lineitem)               

Example 58: View expanded and partial evaluated generalized property view 
P_Quantity 

The following SQL query is generated (lines 2-5 in Example 55) and sent 
to the back-end relational DBMS for cost-based optimization and execution. 
   SELECT .LORDERID,L.LPARTID,L.LINENUMBER,L.QUANTITY,O.CLERK  
   FROM LINEITEM L,ORDERS O 
   WHERE O.ORDERID = L.LORDERID 

Calls to the external predicates KC_LineItem and iMap are post-processed 
in SWARD to construct the result of the query. 

Handling of relational composite foreign keys in UPVs is not investigated 
in this Thesis. 
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9.4 Proving Reduction of Generalized Content Queries 
In the previous sections it was shown how generalized content queries to 
augmented UPVs were reduced to simple conjunctions. A generalized con-
tent query is a query where all triple patterns can be (Definition 5) i) a 
mapped property pattern, ii) a class membership pattern, or iii) a class rela-
tionship pattern. It will now be proven that generalized content queries al-
ways are reduced to a simple conjunction by PARQ. 

To prove this the following definition is needed: 

Assumption 2: A property can never identify both a mapped property and 
a class relationship property. 

Assumption 2 is natural because no row identifiers are stored in the back-
end relational database. 

Example 59 shows a content query, Q10, to the augmented UPV U of the 
Company relational database, containing all three types of triple patterns. 
The query fetches, for every order, the parts that constitute the order. Notice 
that the class membership pattern on line 2 could be omitted here but is re-
tained since it is necessary for general applicability of the discussion. 
 

1.query(order,part) :- 
2.U(lineitem,rdf:type,co:LineItem)         AND 
3.U(lineitem,co:PartID,part)               AND 
4.U(lineitem,co:BelongsTo,order) 

Example 59: ObjectLog expression for Q10 

In order to prove that generalized content queries to augmented UPVs by 
application of PARQ always are reduced to simple conjunctions, it is suffi-
cient to show that each type of triple pattern referenced in the query is re-
duced to a simple conjunction.  

Recall from Section 9.2 that an augmented UPV is defined as the union of 
a schema view, property views, class membership views, and class relation-
ship views. 

9.4.1 Mapped Property Patterns  
Consider the mapped property pattern on line 3 in Example 59. In general 
such a pattern has the form: 

U(s,p,v) 

Variable p is a constant and bound to an identifier for a mapped property 
in the UPV and s and v are variables representing the subject and value of 
the triple, respectively. 
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Example 60 shows the view expanded line 3 from Example 59. 
 

1.U(lineitem,co:PartID,part) :- 
2.S(lineitem,co:PartID,part)                      OR 
3.P(lineitem,co:PartID,part)                      OR 
4.CR(lineitem,co:PartID,part)                     OR 
5.CM(lineitem,co:PartID,part) 

Example 60: View expanded property pattern UPV reference  

For the union of property views (line 3) and the schema view (line 2) it 
has already been shown that only one property view remains after view ex-
pansion and partial evaluation (Corollary in Chapter 6). What remains for 
mapped property patterns is to prove that all expanded class membership 
views (line 5) and class relationship views (line 4) are eliminated during 
partial evaluation. 

Class membership views are eliminated because an identifier can never 
represent both a mapped property and a schema property (Assumption 1). In 
general, compile time evaluation of the equality predicate in line 5 in Figure 
32 will eliminate all class membership views from a view expanded property 
pattern UPV reference. In Example 60 line 5 is eliminated. 

Class relationship views are eliminated because an identifier can never 
represent both a mapped property and a class relationship property (Assump-
tion 2). In general, compile time evaluation of rMap in line 7 in Figure 34 
will eliminate all class relationship views from the view expanded property 
pattern UPV reference. In Example 60 line 4 is eliminated. 

Thus, with I = {pMap,S,rMap}, mapped property patterns are always re-
duced to a simple conjunction after view expansion and partial evaluation. 

9.4.2 Class Membership Patterns 
Consider the class membership pattern on line 2 in Example 59. Such a pat-
tern has the general form: 

U(s,membership,v) 

Variable membership is constant and bound to the schema property iden-
tifier rdf:type and either s is constant and bound to an identifier for a mapped 
instance identifier or v is constant and bound to an identifier for a mapped 
class. 

First, assume that v is bound to a mapped class identifier. Example 61 
shows the view expanded line 2 from Example 59. 
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1.U(lineitem,rdf:type,co:LineItem) :- 
1.S(lineitem,rdf:type,co:LineItem)                      OR 
2.P(lineitem,rdf:type,co:LineItem)                      OR 
3.CR(lineitem,rdf:type,co:LineItem)                     OR 
4.CM(lineitem,rdf:type,co:LineItem) 

Example 61: View expanded class membership pattern UPV reference  

Schema views are eliminated because of Assumption 1 and line 2 in 
Example 61 is removed. 

Property views are eliminated because of Assumption 1. In general, com-
pile time evaluating the pMap predicate on line 5 in Figure 21 will eliminate 
all property views from a view expanded class membership pattern UPV 
reference. For example, in Example 61 line 3 is removed. 

Class relationship views are eliminated because of Assumption 1. In gen-
eral, compile time evaluating the rMap predicate on line 7 in Figure 34 will 
eliminate all class relationship views from a view expanded class member-
ship pattern UPV reference. For example, in Example 61 line 4 is removed. 

In general, for a UPV with more than one class membership view the in-
verse call to iMap on line 4 in Figure 32 will evaluate to false in every class 
membership view except for the class membership producing mapped in-
stances from the searched mapped class. 

Now assume that v is unbound and s is bound to a mapped instance iden-
tifier. Analogously to the case when v was bound to a mapped class identi-
fier the schema, property, and class relationship views are eliminated. 

For UPVs with more than one class membership view the call to cMap on 
line 3 in Figure 32 will evaluate to false in every class membership view 
except for the class membership producing mapped instances from the 
mapped class identified by v. 

Thus, with I = {cMap,pMap,S,rMap,iMap}, class membership patterns 
are always reduced to a simple conjunction after view expansion and partial 
evaluation. 

9.4.3 Class Relationship Patterns 
Consider the class relationship pattern on line 4 in Example 59. Such a pat-
tern has the general form: 

U(s,relationship,v) 

The variable relationship is a constant bound to a class relationship iden-
tifier in the UPV. 
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Example 62 shows the view expanded line 4 from Example 59. 
 

1.U(lineitem,co:BelongsTo,order) :- 
1.S(lineitem,co:BelongsTo,order)                      OR 
2.P(lineitem,co:BelongsTo,order)                      OR 
3.CR(lineitem,co:BelongsTo,order)                     OR 
4.CM(lineitem,co:BelongsTo,order) 

Example 62: View expanded class relationship UPV reference  

Schema views are eliminated because of Assumption 1. In Example 62 
line 2 is removed. 

Property views are eliminated because of Assumption 2. In general, com-
pile time evaluation of pMap on line5 in Figure 21 will eliminate all property 
views in the view expanded triple pattern. In Example 62 line 3 is removed. 

Class membership views are eliminated because of Assumption 1. In gen-
eral, compile time evaluation of the equality predicate in line 5 in Figure 32 
will eliminate all class membership views from the view expanded triple 
pattern. In Example 62, line 5 is removed. 

In general, for a given UPV with more than one class relationship view 
the call to rMap on line 7 in Figure 34 will evaluate to false in all class rela-
tionship views except for the single one represented by the relationship pa-
rameter. 

Thus, with I = {pMap,S,rMap}, class relationship patterns are always re-
duced to a simple conjunction after view expansion and partial evaluation. 

Since all three types of patterns are shown to be reduced to simple con-
junctions it can be concluded that content queries to augmented UPVs, with  
I = {cMap,pMap,S,rMap,iMap}, are always are reduced to simple conjunc-
tions by application of the partial evaluation algorithm PARQ. 
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10 Related Work 

This Chapter presents an overview of research projects and techniques re-
lated to this Thesis. 

10.1 RDF Repository Systems 
RDF repository systems [4][12][15][67] are systems for storing and search-
ing large volumes of RDF statements. Most RDF repository systems 
[12][15][67] use relational databases internally. Data in the repository can be 
either directly stored RDF statements or statements downloaded and con-
verted to RDF from some relational database. The internal database is fully 
managed by the repository system. 

For RDF repositories with a single table storing all the triples such as in 
[15][67], in general, every two path expressions in the semantic web query 
will be translated into a triple table join in SQL. This means that SPARQL 
queries over such relational RDF repositories can be very slow to execute 
since when the number of triples in the triple table is increased the table may 
not fit in main memory any more meaning that each triple table join in the 
SPARQL query requires several disk accesses.  

Another problem is that it is hard to access proper information about the 
distribution of values for different properties in an RDF repository with only 
one table storing all the triples. Not having enough information about the 
data will prevent the cost-based optimizer of doing a good job during query 
processing. 

Because of no information about the characteristics of data needed by the 
applications it is difficult for the administrator of the repository to know how 
to cluster data and which indexes to create since. Usually indexes are defined 
on all three columns of the triple table. 

To improve performance the RDF repositories [15][67] use property ta-
bles to cluster properties often accessed together. However, the generated 
SQL queries to search these property tables become complex when data has 
to be combined from several tables. Another problem is the many NULL 
values in property tables because of the unstructured nature of RDF data. 
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A better alternative is to use column databases such as e.g. [1][60][38] as 
back-ends for RDF repositories. This way the size of the triple store can be 
kept smaller when data is highly unstructured. The column-based approach 
will require more SQL joins compared to the property-table based one but 
efficient join algorithms can be used for this [1]. 

The AllegroGraph RDF repository [4] uses a native object store for stor-
age of RDF. 

Rather than storing RDF data in dedicated RDF-repositories SWARD 
automatically generates general UPV views over any relational database, 
given information how to perform the mappings between RDFS classes and 
properties and relational database tables and columns, respectively. By keep-
ing the data in the relational database SWARD utilizes that relational data-
bases are optimized for handling very large data volumes. Furthermore, by 
defining RDF views over relational databases they are queryable without 
having to be copied to some RDF repository and the UPV will always reflect 
any changes in the relational database. 

10.2 RDF View Systems 
SWIM [16] provides RDF views over relational databases. In SWIM, RQL 
[16] queries are internally represented as Datalog programs similar to 
SWARD. Partial evaluation is there also proposed as a way to reduce the 
size of RQL queries but we are not aware of any results or application of the 
technique to relational databases. RQL queries in SWIM are minimized us-
ing the Chase and BackChase algorithm [56][55] from [21] where a query is 
chased to a universal query plan, which is then minimized.  

In SWARD this corresponds to the view expansion of UPV references in 
the query producing an analog to the universal query plan in [21], followed 
by reduction of the query by partial evaluation. However, the work in [56] is 
theoretical and we are not aware of any implementation thereof. Further-
more, the proposed BackChase algorithm is NP-complete [56] while PARQ 
reduces the query fast. 

D2R Server [10] also provides RDF views over relational databases. In 
D2R Server the user explicitly specifies SQL fragments to fetch values of 
RDF properties from the underlying relational database, using user defined 
mappings between RDFS ontology elements and SQL fragments in the 
D2RQ mapping language [9]. D2R Server then combines the SQL fragments 
into complete queries. The user is responsible for the specialization of que-
ries in the D2R Server i.e. the user must write a new specialized translator 
for each RDFS description to be used to map the relational database to RDF. 
Optionally, the D2R Server can automatically produce the D2RQ mappings 
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needed according to some default scheme provided by the system. However, 
such automatic generation of mappings is inflexible and prevents the user 
from specifying mappings needed by a particular application. 

By contrast, SWARD provides a general representation of RDF views 
over relational databases, UPVs, given two very simple user provided map-
ping tables. The user does not have to spend time learning a new language 
(D2RQ) and manually specializing the system, which is bound to introduce 
errors, but can instead focus on defining the proper mappings between RDFS 
elements and relational database constructs on a high level. Queries to the 
generated UPV are automatically specialized i.e. substantially reduced and 
dynamically translated to SQL during query processing using partial evalua-
tion. Furthermore, we are not aware of any scalability experiments con-
ducted with D2R Server. 

SquirrelRDF [59] is a tool that enables relational databases to be queried 
in SPARQL through RDF views. This is done by translating SPARQL que-
ries, given some user defined mappings between RDFS elements and rela-
tional database constructs, to SQL statements sent to the underlying rela-
tional database for execution. 

However, in contrast to SWARD, SquirrelRDF does not support querying 
the RDFS ontology data such as for example the classes or properties in the 
relational database. Also, no information about relationships among RDFS 
classes is revealed. As opposed to in SWARD, domains and ranges for prop-
erties have to be manually added by the administrator. Furthermore, we are 
not aware of any scalability experiments conducted or any optimization at all 
being done during query processing in SquirrelRDF. 

10.3 Partial Evaluation 

Application of partial evaluation can be found in several areas such as for 
example automatic compiler generation [6][7], operating systems [46], pro-
gramming languages [6][7][33][53] and computer graphics [5]. 

In this Thesis partial evaluation is applied on database queries by the 
PARQ algorithm. For database queries partial evaluation has been used 
mainly for optimizing queries over SQL views [26], optimizing distributed 
XPath queries [13] and translating object queries to SQL [47]. 

In [26] the authors propose a mechanism to avoid evaluating parts of SQL 
queries stated in terms of previously defined and materialized views, the 
motivation for this being improved performance in terms of reduced execu-
tion time or security reasons. 



 106 

In contrast to the work in [26], application of the PARQ algorithm on en-
tire SPARQL queries to UPVs reduce these queries to much simple expres-
sions during compile time and provides substantial improvement of both 
optimization time and execution time.  

In [13] XPath queries are executed over an XML trees fragmented over a 
number of sites on the web. To minimize the response time of a query no 
more computation than what is strictly necessary at each site to answer the 
query should be done. The main idea is to divide the query into pieces and 
send each piece of the query independently and in parallel to each site where 
the original query is partially answered and then let a coordinator site com-
bine these partial results to the final result. Each XML tree fragment is vis-
ited only once. 

In contrast to [13], that use partial evaluation in the sense of executing 
pieces of the query in parallel, the PARQ algorithm in SWARD reduces 
(specializes) queries to general UPVs during compile time into smaller and 
faster queries producing substantial improvements in optimization as well as 
query execution time. 

In [47] an algorithm for translation of object queries to SQL is presented. 
An application of the algorithm could be object-oriented interfaces to rela-
tional databases. Object queries are first transformed into canonical queries 
expressed in a deductive database. These queries can contain class variables 
and attribute variables. Since schema information is usually not accessible in 
SQL, partial evaluation is used to instanciate class and attribute variables in 
the object queries before translation of them to SQL. 

Similar to in [47], partial evaluation in SWARD also access schema in-
formation for translation of SPARQL queries to SQL. However, in SWARD 
schema information is used to reduce the size of the query shown to make 
queries to UPVs significantly more efficient. 

10.4 Preservation of Foreign Key Information in RDF 
Schema 

In [35] the authors propose a way to explicitly state foreign key information 
in RDFS. This is done by extending the RDFS standard with a new meta-
class for representing foreign keys. The work is purely theoretical.  

SWARD makes foreign key information in the back-end DBMS explicit 
in UPVs by representing them as properties that relate instances of classes in 
an RDFS description. Instead of introducing new RDFS meta-classes that are 
not a part of the current RDFS standard, as in [35] SWARD use existing 
RDFS meta-classes for representing foreign key information. 



 

  107

10.5 Disjunctive Query Optimization 
In SWARD view expansion of UPVs produces conjunctions of large dis-
junctions. SWARD thus processes a class of very large disjunctive queries. 

In [39][17] special approaches for dealing with disjunctions in queries are 
proposed. In [39], the query is first transformed to an expression on DNF. 
Multiple selection conditions on the same table, but perhaps in different 
branches of the disjunction, are combined and then optimized together re-
ducing the number of SQL table scans and joins in the produced query plan. 
In [17], instead of normalizing the query, the characteristic of the given 
query is utilized for it to be optimized for better performance by using spe-
cial purpose algebraic operators. 

In contrast to [39] [17], in SWARD partial evaluation of declarative query 
fragments is used to systematically reduce disjunctive expressions to simple 
conjunctions, thus totally eliminating the need for normalisation. This reduc-
tion dramatically improves total query processing times for SPARQL queries 
to UPVs. 

10.6 Property Table Representation of Data 
In [2] it is demonstrated that relational databases where data is stored in a 
conventional horizontal scheme is not a realistic alternative for storage of 
constantly evolving, sparsely populated data, such as e-commerce data.  

Instead a new vertical scheme for storage of e-commerce data is proposed 
where each row in the horizontal table is divided into several rows (one for 
each column in the horizontal table) on the format: 
<Oid(object identifier), Key(column name), Val(column value)> 

The object identifier is the value of the key column of the horizontal table 
and is used for associating rows in the vertical table representation with each 
other. The only schema information stored in the vertical table is column 
names. This is similar to the storage schemes used in column oriented data-
bases [60]. 

UPVs in SWARD can be seen as a property table view of the entire rela-
tional database contents including its schema. Unlike [2], SWARD addresses 
the challenges to efficiently optimize queries over very large property tables 
that also include schema data. PARQ significantly improve query processing 
for such queries without modifying the DBMS kernel. 

The unpivot algebra operator in [19] transforms a regular horizontal table 
into a property table by removing a number of columns. Extra rows are 
added to preserve the column names and values from the wide representa-
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tion. By unpivoting a wide table on the primary key column a property table 
similar to the vertical table in [2] is produced. Property tables may or may 
not store their result depending how they are used in queries. 

In [19], the unpivot and pivot operators are used for data modelling and 
data analysis while UPVs in SWARD view entire relational databases as 
RDF. Unlike in SWARD that acts like a pre-processor to SQL, the approach 
proposed in [19] is intrusive in that the unpivot and pivot operators are de-
veloped for use inside the relational RDBM. Also, all optimizations pre-
sented are applied on the algebraic level to improve only execution time of 
queries. For queries to UPVs it is necessary to also optimize the optimization 
time itself and this is done by SWARD through systematic partial evaluation 
of query fragments before cost based optimization of the produced SQL in 
the back-end DBMS. 

10.7 SchemaSQL Server 
The work on SchemaSQL [34] supports querying both data and meta-data in 
a relational database by providing special syntax to query the schema rather 
than our uniform UPV. They do not use partial evaluation but an ad-hoc 
special implementation of the query processor. Meta-data is not stored in a 
main memory database as in SWARD but in a special purpose relational 
database internal to the SchemaSQL Server. SchemaSQL queries are cost 
based optimized first during rewriting of SchemaSQL to SQL in the Sche-
maSQL Server and later on again optimized in the local data source. In con-
trast, SWARD acts as a pre-processor of SQL queries leaving all the cost 
based optimization to the back-end relational database. Both schema and 
content are defined by the general UPV definition. Partial evaluation is used 
during query processing for systematic specialization of the general UPV to 
substantially reduce the query size before cost-based query optimization by 
the back-end relational database. PARQ enables clean query processing 
without any special purpose query transformations. 
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11 Summary and Future Work 

A system, SWARD, has been implemented for scalable processing of con-
junctive SPARQL queries over general RDF Schema based views of rela-
tional databases. Relational databases are viewed in terms of RDF Schema 
based universal property views (UPVs) representing both relational schema 
and data. A UPV is automatically generated, given a relational database and 
two mapping tables, cMap and pMap, specifying how to map tables and 
columns to RDF Schema classes and properties, respectively. For augmented 
UPVs a third table, rMap, also has to be specified to map special relationship 
identifiers to foreign key columns. A UPV definition is a large disjunctive 
view which requires substantial reduction for efficient query processing. 

To speed up query processing of queries to UPVs a new general partial 
evaluation algorithm, the PARQ algorithm, was presented that does system-
atic compile time evaluation of specific primitive predicates to produce a 
reduced query. The algorithm is simple and efficient, but is yet a very pow-
erful technique for reduction of any query. To guarantee that the query size 
is never increased by PARQ, the algorithm evaluates at compile time only 
primitive predicates that produce empty or single tuple results. In this Thesis 
PARQ was applied on conjunctive SPARQL queries over large disjunctive 
UPVs it was shown that application of PARQ on such queries guarantees to 
reduce them into conjunctions without need for normalization. PARQ thus 
provides simple and scalable processing of SPARQL queries to large UPVs 
without need for ad hoc optimization tricks.  

The names of the primitive predicates to evaluate at compile time by 
PARQ are explicitly pre-specified to avoid evaluating expensive predicates 
at compile time. When optimizing SPARQL queries to the UPVs only predi-
cates stored in main memory and the external predicate iMap are evaluated 
at compile time, so PARQ is not accessing the database.  

Furthermore, it was also demonstrated how the PARQ algorithm enables 
the programmer to develop elegant and clean query processing mechanisms, 
which are automatically specialized by partial evaluation for efficiency. 

It was shown that query processing based on traditional view expansion 
followed by normalization, END (Expand – Normalize – Decompose), gen-
erates scalable execution plans for queries to UPVs. However, the plans 
become huge when the size of the query or the UPV increases, due to gen-
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eration of unreasonable large normalized expressions. The END strategy is 
therefore infeasible for real-world SPARQL queries and UPVs. 

To improve the query processing scalability we applied the PARQ algo-
rithm on END; the modified algorithm is called END-P (END with Partial 
Evaluation). It was shown that PARQ substantially reduces the query opti-
mization time in END-P, since a conjunctive query over the large disjunctive 
UPV is reduced to a simple conjunctive query and no normalization is 
needed.  

An alternative strategy DVS-P (Dynamic View Selection with Partial 
Evaluation) was defined by applying PARQ on a query to a UPV definition 
where precompiled property views are dynamically selected. In this case, 
PARQ determines at compile time all property views that must be selected to 
answer content queries. DVS-P produces the same reduced queries as END-
P without any normalization. The difference between END-P and DVS-P is 
that DVS-P applies PARQ to select the views in the UPV definitions to ex-
pand, while END-P applies PARQ after full view expansion. Therefore, for 
realistic content queries to large UPV definitions, query processing with 
DVS-P is faster than END-P.  

In this Thesis it was further presented how the basic UPV framework is 
generalized in SWARD to preserve information about primary as well as 
foreign and composite keys in the generated UPVs. ER relationships are 
made implicit when translated to the relational model using foreign keys. 
When relational data is viewed in RDFS these relationships are made ex-
plicit again through the addition of so called class membership views to the 
content view of the UPV. Composite keys are not supported by RDFS but 
needs to be handled since they are supported by the relational model. They 
are represented by concatenation of composite primary key attribute values.  

Furthermore, it was demonstrated how to incorporate class memberships 
of mapped instances by adding class membership views to the of the UPV 
definition, which express the class memberships of all mapped instances 
from the back-end DBMS. 

It this work, it was presented that END-P produces scalable query proc-
essing also for the important subclass of hybrid queries that dynamically 
retrieve mapped properties from a class, while DVS-P is less suitable there.  

In the future it should be investigated for what further class of SPARQL 
queries the presented techniques are applicable, such as handling of hybrid 
queries dynamically selecting mapped classes and their mapped instances, 
disjunctive SPARQL queries, and SPARQL queries with OPTIONAL triple 
patterns. 
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It should also be investigated how an object representation of RDF data, 
where RDF resources become instances of type Resource, could be used to 
represent RDF Schema typed literals in UPVs. 

The current implementation of SWARD runs as a pre-processor to SQL in 
the back-end relational DBMS. If the system was part of the database server, 
relational algebra could directly be generated from the reduced query.  

An interesting issue is also how to provide mediation by combining UPVs 
over different databases.  

Finally, we believe that there are many other opportunities for using par-
tial evaluation in complex query processing. The PARQ algorithm is guaran-
teed to converge fast and offers many opportunities for substantial query 
reduction in a systematic and controlled fashion. 
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Summary in Swedish 

Informationutsökning i RDF Schema vyer  
av relationsdatabaser 
Mängden data på Internet idag och dess brist på semantik gör att det blir allt 
svårare att komma åt önskad information. Sökmotorer baserade på fritextut-
sökning av data genererar för många och irrelevanta resultat.  

Ett annat problem uppstår då information skall kombineras på ett me-
ningsfullt sätt. Till exempel, en applikation som hämtar data från databaser 
med olika struktur och innehåll måste kunna avgöra om data från en kolumn 
’A’ i en databas har samma mening som data från en kolumn ’A’ i en annan 
databas. Detta är något som är utmanande då sådan information saknas i 
databasschemat. 

Det är tydligt att det behövs ett entydigt sätt att beskriva information för 
att underlätta utsökning och kombinering av denna. M.h.a. Resource Desc-
ription Framework (RDF) märks information upp med egenskaper (meta-
data) som beskriver dess mening.  

RDF Schema (RDFS) är definerat i termer av RDF och används för att 
klassificera information och definiera egenskaper hos dessa klasser. Fråge-
språket SPARQL är standard för utsökning av RDF-data.  

RDFS-data lagras och görs sökbart i speciella lagringssystem för RDF. 
Då stora mängder data idag fortfarande är lagrad i relationsdatabaser är det 
viktigt att den också görs sökbar i SPARQL. Detta sker genom att informa-
tionen i relationsdatabasen konverteras till RDF data och laddas ner till ett 
lagringssystem för RDF. Då stora mängder information lagras på flera stäl-
len blir detta dock en kostsam lösning m.a.p. lagringsutrymme och hantering 
av data. 

Ett bättre sätt att göra relationsdatabaser sökbara i SPARQL är att tillhan-
dahålla ickematerialiserade RDFS-baserade representationer, s.k. RDFS-
vyer av relationsdatabaser. En RDFS-vy genererar vid utsökningstillfället en 
tillfällig RDFS representation av en relationsdatabas. Denna RDFS mapp-
ning lagras inte i något system utan används bara för att bevara en given 
fråga. På så sätt lagras inte samma information på flera ställen.  
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RDFS-vyer bör vara generella och strukturerade för att kunna defineras 
över godtycklig relationsdatabas samt undvika fel som annars vanligen in-
troduceras i ad-hoc lösningar. 

Relationsdatabaser designas ofta med Entity Relationship (ER) modellen. 
ER modellen är ett högnivåspråk för att på en konceptuell nivå skapa ett 
diagram som specificerar en relationsdatabas m.h.a typer och relationer mel-
lan dessa typer. ER diagrammet översätts sedan till ett relationsdatabas-
schema. Då ett sådant schema är mer implementationsspecifikt än ett ER 
diagram är vissa element i ER modellen, som exempelvis relationer mellan 
typer, implicit representerade i relationsdatabasschemat. Kompletta RDFS-
vyer av relationsdatabaser gör sådana element explicita igen.  

Att processera frågor mot RDFS-vyer är utmanande av två anledningar.  
För det första leder sättet att representera data i RDF till stora frågor mot 
komplexa vyer. Traditionell processering av sådana frågor genererar enorma 
uttryck internt och leder därför till orealistiskt långa processeringstider. För 
det andra är det av största vikt att frågor mot RDFS-vyer av relationsdataba-
ser noggrant optimeras innan exekvering, då frågorna körs över stora data-
mängder. 

För att utreda dessa frågor har vi utvecklat systemet Semantic Web Ab-
ridged Relational Databases (SWARD) för effektiv processering av 
SPARQL-frågor mot kompletta RDFS-vyer av relationsdatabaser. Sådana 
vyer genereras automatiskt av SWARD med ett minimum av information 
från användaren. 

I SWARD representeras både innehåll och schemainformation i en rela-
tionsdatabas som en enda stor disjunktiv vy. En sådan vy kallas en universi-
ell egenskapsvy, eller UPV. En UPV är en RDFS-mappning av en relations-
databas. Den definieras som unionen av en schemavy (schemainformationen 
i databasen) och en datavy (innehållet i databasen). 

En UPV genereras automatisk av SWARD givet att användaren anger hur 
tabeller och kolumner mappas mot RDFS-klasser samt egenskaper hos dessa 
klasser. Under frågeprocesseringen i SWARD översätts SPARQL-frågor till 
interna uttryck. Sådana uttryck innehåller SQL-fragment som används för att 
hämta data från den underliggande relationsdatabasen. 

SPARQL-frågor mot UPVer hämtar antingen schemainformation, inne-
håll eller både och från den underliggande relationsdatabasen. SWARD han-
terar effektivt samtliga typer av SPARQL-frågor mot UPVer. Det är dock 
speciellt utmanande att processera frågor mot relationsdatabasens innehåll då 
detta ofta är väldigt stort. 

Vi har utvecklat en allmän algoritm, PARtial evaluation of Queries 
(PARQ) för att förenkla frågor mot komplexa vyer. Algoritmen är baserad 
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på en teknik som kallas partialevaluering. Partialevaluering möjliggör ut-
veckling av eleganta och enkla program som sedan automatiskt specialiseras 
till effektiva (snabbare och/eller mindre) program. PARQ reducerar frågan 
genom att iterativt utvärdera delar av frågan till dess att uttrycket inte går att 
förenkla mer.  

Våra experiment visar att partialevaluering av frågor mot UPVer leder till 
avsevärt enklare och mindre frågor som går betydligt snabbare att processera 
än orginalfrågan.  
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Appendix: SWARD Query Interfaces 

SWARD can be queried by application programs and users using the seman-
tic web query languages SPARQL, RDQL, or a subset of SQL. Figure 43 
shows the query interface of the SWARD system.  
 

 
Figure 43: SWARD system query interface 

SWARD provides a PHP interface allowing users to query SWARD 
through their web browser. SWARD can also be installed as a web service 
on a Windows server computer and called from clients through a web ser-
vice based interface. A Java API is provided as a separate Java JAR file for 
transparently calling SWARD as a web service from Java applications. 
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The following interface classes are provided by the SWARD Java API: 
class SWARD { 

// Constructors 
  public SWARD(String URL){}  

// Execute SPARQL query over a UPV  
  public RDFScan SPARQL(String SPARQLString){}  

// Execute RDQL query over a UPV 
  public RDFScan RDQL(String RDQLString){}  

// Execute SQL query over a UPV 
  public RDFScan SQL(String SQLString){} 

}  

class RDFScan { 

//Get next result in RDFScan 
  public Vector Next(Scan); 

//Check for end of RDFScan 
  public Boolean EOF(Scan); 

} 

A new instance of the class SWARD is constructed with the argument 
URL as the URL of an SWARD web service.  

Once an SWARD object is constructed the application or user can issue 
queries in SPARQL, RDQL, or SQL through methods named SPARQL, 
RDQL or SQL, respectively.  

The result of a query is an instance of class RDFScan. One can iterate 
through the scan by the method Next and test for end of scan with method 
EOF. Each call to Next returns a Java Vector object with structure 
{{VAR1,VAL1},…{VARn,VALn}} 

where n is the width of the result tuples, VARi is the name of the i:th result 
variable, and VALi is its corresponding value. 

In Example 63 the content query Q2 is presented in RDQL. 
 

SELECT ?cust,?mkt 
WHERE (?order,co:OrderID,'1'), 
      (?order,co:OrderCustomer,?ocust), 
      (?cust,co:CustID,?ocust), 
      (?cust,co:Market, ?mkt) 

Example 63: Content query Q1 in RDQL. 
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The triple patterns are specified in RDQL using the notation (s,p,v) where 
s (subject), p (property), and v (value) are constants or variables. In Example 
64 the same query is expressed in SQL. 
 

SELECT C4.S,C4.V 
FROM COMP C1, 
     COMP C2, 
     COMP C3, 
     COMP C4 
WHERE C1.P = co:OrderID       AND 
      C2.P = co:OrderCustomer AND 
      C3.P = co:CustID        AND 
      C4.P = co:Market        AND 
      C1.V = '1'              AND 
      C1.S = C2.S             AND 
      C2.V = C3.V             AND 
      C3.S = C4.S 

Example 64: Content query Q1 in SQL. 

The FROM clause in the SQL query specifies an identifier for the UPV to 
query. With SQL syntax, the UPV Comp is simply treated as a regular rela-
tional table and the FROM clause can not be omitted as in RDQL and 
SPARQL queries. 

Notice the awkward form of the SQL (Example 64) query compared to 
the same query expressed in RDQL (Example 63) and in SPARQL (Example 
9). The reason for this is that RDQL and SPARQL bear a resemblance to 
domain calculus [23], with all variables in the query implicitly existentially 
quantified and with variables substituted when possible. This enables a more 
compact representation of queries to UPVs with SPARQL and RDQL than 
with SQL which is based on tuple calculus [23] suited for queries to rela-
tional tables. In practice this means that an SQL query to a UPV will make 
self joins over many aliased row variables (c1, c2, c3 and c4). In Example 64 
the conditions on variables are defined in terms of one comparison with a 
constant and three UPV joins. 


