A Scalable Data Structure for
A Parallel Data Server

Jonas S Karlsson

February 11, 1997

Contents

Introduction

1.1 The Need for High Performance Databases
1.2 Conventional Databases
1.3 Distributed Databases
1.4 Multidatabases oL
1.5 Data Servers.
1.6 Parallel Data Servers
1.7 Database Machines
1.8 Overview of Some Data Servers
1.9 Current Trends
1.10 Conclusions e

Properties of Structures for Servers

2.1 The Problem
2.2 Scalability oo
2.3 Distribution L o Lo
2.4 Availability 0 o
2.5 Conclusions

SDDSs
3.1 Related work

LH*

4.1 LH* Addressing Scheme

4.2 LH* File Expansion
4.2.1 Splitting Control Strategies

4.3 Conclusiono

11
11
13
13
14
14
15
17
18
21
21

23
23
24
25
26
26

29
30

CONTENTS

spAMOS: System Arch. Framework

5.1 Conceptual View

52 AMOS

5.3 A Query Example Scenario Discussion
5.3.1 Notes on the query example

54 Conclusions

The LH*LH Algorithm

6.1 Introduction 0oL

6.2 The Server.
6.2.1 The LH Manager
6.2.2 LH* Partitioning of an LH File
6.2.3 Concurrent Request Processing and Splitting . . .
6.2.4 Shippingo

6.3 Notes on LH*LH Communications.

6.3.1 Communication Patterns

Hardware Architecture
7.1 Communication

Performance Measures

8.1 Measure Suite L

8.2 Performance Evaluation
8.2.1 Scalability oo
8.2.2 Efficiency of Concurrent Splitting

83 Curiosity

84 Conclusion

LH*LH Implementation

9.1 The System Initialization

9.2 The Data Client
9.2.1 Function Outline
9.2.2 Image Adjust Messages
9.2.3 Suggested Improvements

9.3 The Server.
9.3.1 Function Overview
9.3.2 Suggested Improvements

39
39
40
42
42
44

45
45
47
47
49
51
32
52
33

57
57

61
61
61
63
70
76
77

79

CONTENTS 3

9.4 Server Mapping 89
9.4.1 Autonomous “randomized” mapping 89

9.4.2 DNS alike mapping (internet) 90

10 Summary and Future Work 91
10.1 Summary 91
10.2 Future Worko oo 91

10.2.1 Host for Scientific Data 92

CONTENTS

List of Figures

1.1
4.1

5.1

5.2

6.1
6.2
6.3
6.4

7.1
7.2

8.1
8.2
8.3

8.4
8.5

8.6

8.7

8.8
8.9

Data and application servers.
LH* File Expansion Scheme.

The spAMOS system; frontend workstation using a back-
end parallel computer. oL,
An example of a possible query evaluation.

The Data Server. L.
The LH-structure.
Pseudo-key usage by LH and LH*.
Partitioning of an LH-file by LH* splitting.

One node on the Parsytec machine

Static routing on a 64 nodes machine between two nodes.

Allocation of servers and clients.
Build time of the file for a varying number of clients.
Global insert time measure at one client, varying the
number of clients.o L
Actual throughput with varying number of clients.
Ideal and actual throughput with respect to the number
of cients.
Comparison between Static and Dynamic splitting strat-
egy,one client. oL
Comparison between Static and Dynamic splitting, with
four clients. oo oo
Efficiency of individual shipping.
Efficiency of bulk shipping.

5

LIST OF FIGURES

8.10 Efficiency of the concurrent splitting. 73
8.11 LH*LH client insert time scalability. 74

Preface

Contents

In this thesis we identify the importance of appropriate data struc-
tures for parallel data servers. We focus on Scalable Distributed Data
Structures for this purpose. In particular LH* [LNS93], and the new
data structure LH*LH [KLLR96]. An overview is given of related work
and systems that have traditionally implicated the need for such da-
ta structures. We begin by discussing high-performance databases, and
this leads us to database machines and parallel data servers. We sketch
an architecture for an LH*LH-based file storage that we plan to use
for a parallell data server. We also show performance measures for the
LH*LH and present its algorithm in detail. The testbed, the Parsytec
switched multicomputer, is described along with experience acquired
during the implementation process.

Parts of the thesis are based on the article on LH*LH [KL.R96]
published in the lecture notes from the 5th International Conference
on Extending Database Technology, in Avignon, France 1996.

Intention

The intention of this thesis is to demonstrate a number of design deci-
sions and also to explain some problems experienced during the devel-
opment of the LH*LH implementation. This will, we hope, provide a
better understanding of LH*LH and experience in implementations of
SDDSs as well as some insight in SDDSs themselves.

8 LIST OF FIGURES

Thesis Overview

Chapter 1 introduces database systems and parallel data servers as
means of achieving high performance.

In Chapter 2 the imporance of data structures is identified. Both
the need of scalability and distribution are discussed.

Chapter 3 then introduces the concept of Scalable Distributed Data
Structures (SDDSs). The LH* algorithm is explained in detail.

In Chapter 5 a framework for using an SDDS (LH*) is then sketched
in the context of the AMOS database system. We then describe the
LH*LH algorithm in Chapter 6.

The Parsytec hardware architecture is presented in Chapter 7. Then,
in Chapter 8 we provide real measurements for our implementation of
LH*LH.

Chapter 9 goes into details of the implementation of LH*LH. Pos-
sible improvements are discussed.

Finally, a discussion and proposals for future work are presented in

Chapter 10.

Financial Suport

This project was supported by NUTEK (The Swedish National Board
for Industrial and Technical Development), and CENIIT (The Center

for Industrial Information Technology).

Acknowledgment

First of all, T would like to thank my advisor, Professor Tore Risch for
introducing me to databases in detail, especially about implementa-
tions. Tore has given much support during my writing of this licentiate
thesis. For that I am grateful. Professor Witold Litwin, in Paris, intro-
duced me at an early stage to SDDSs on which I also base my work. |
thank him for this generous support during my work on LH*LH.
Finally, I would like to thank my former and current colleagues
at EDSLAB for the working environment, especially to Padrone who
writes my name correctly. I am also grateful for the help provided by
Niclas Anderson and Lars Viklund at PELAB on the Parsytec machine.
I am also indebthed to Henrik Nilsson for many interesting discussion
hours over tea, and lively email-discussions on topics in computer sci-
ence. Special thanks goes to our secretary Anne Eskilsson, Ivan Rankin
and Billys”™ 1. The last one I hope to be able to avoid in the future...

Thanks,

Jonas S Karlsson
Linkoping, January 1997

IBillys micro-wave Pan Pizza.

10

LIST OF FIGURES

Chapter 1

Introduction

In this chapter we introduce the reader to various types of database
systems (DBMSs); we then provide examples of the need of high-
performance databases. The main architecture types of databases are
explained. The important issue of scalability is then identified. We dis-
cuss the implicated need for scalable data structures, scalability both
from an accessing and a processing point of view as well as for updates.
In most practical cases, as will be seen, parallellity or distribution is
mostly used as a means for implementing high-performance. The prob-
lem still remaining is that of scalability, i.e., the ability to grow/resize
the application and the database to any unforseen size.

1.1 The Need for High Performance
Databases

Databases, do we need them? There is currently a popular trend that
shows that people want to combine and/or access data using databases.
Many common user applications, e.g. Microsoft products, now permit
databases such as MS SQL to access external data sources, for exam-
ple email-files, diverse database formats, spread-sheet data, and so on.
However, there is another trend, using a different approach, at present
mostly in the database research community, which is to specialize the
DBMS to a specific application. Examples of this can be found in the
area of Engineering Dalabases or Scientific Databases[FJP90], where a

11

12 CHAPTER 1. INTRODUCTION

large amount of data is handled not by the application but a database
engine. For efficiency the database should be extensible with opera-
tions from the application domain and appropriate new types of indices.
Computed Aided Engineering (CAE) systems are applications of inter-
est for merging with databases, since they require advance modeling
capabilities as well as advance queries; this is explored in the FEAMOS
research prototype [Ors96]. It allows matrices to be used in the query
language, and equations can be solved by stating a declarative SQL-
like query. Indications show that application programs become more
efficient and more flexible, also they are easier to build. A popular way
to implement this merge is to embed the DBMS (code) into the ap-
plication as a library. This then lets the application directly traverse
and use the data using a so-called fast path interface. The database
system can then also be extended to use, index, and query application
data. DataBlades [SM96] is the Illustra concept of a packaging a collec-
tion of data types together with access methods, and related functions
and operators into a module. Most other DBMS companies now devel-
op similar concepts, under different names, but the idea is the same,
modularily extensible databases systems that can handle new types of
data.

The trend, to use database for more technical purpose, also draws
interest from the telecommunication industry [Dou90]. Interest in
this area, is currently much concerned with high-performance reliable
DBMSs [Tor95], with down rates of less than a few minutes a year.
There are estimates of the needed rates of insertions, updates and al-
so queries, and the number of such events is in the range of 10 000
per second. This is currently not possible with any of the commercially
available database systems. Possible applications are directory manage-
ment, charging of calls, email-databases, and multi-media repositories.
These application databases are potentially huge in comparison with a
normal databases.

Current database technology does not support these amounts of
data, either with the required high availability or with respect to the
scalability of processing. That is, today’s (database) systems are static
in nature, the ability to give the same per transaction performance
when the amount of data doubles and/or the number of transactions
doubles is missing. The concept of a system being able too, when given

1.2. CONVENTIONAL DATABASES 13

added resources, increase its performance lineary (roughly) is called
scalability. In short a scalable system should when the resources are
doubled double the processing power (performance). Distributed and
parallel (database) systems are the natural means to build systems
that cope with high storage demands. We will now view the principles
of such database systems.

1.2 Conventional Databases

Single-user databases are widely available and can be used on off-the-
shelf hardware, such as single workstations or PCs.

Central Databases are then the most common type of databases
for multi-user environments. They run on single (mainframe) com-
puters. Banking databases, travel agency booking or corporate billing
databases are examples of central databases. Several users can access
the database using either the old style terminals or using client/server
software. SQL is the most widely used and standardized query lan-
guage, OQL (Object Query Language) and QBE (Query By Example)

are other languages which are used.

1.3 Distributed Databases

A Distributed Database System (DDBS) can be defined as “a collection
of multiple, logically interrelated databases distributed over a computer
network” [0\/91]. Further on they also define a Distributed Database
Management System (DDBMS) as “the software system that permits
the management of the DDBS and makes the distribution transparent
to the users.” The important terms here are “logically interconnected”,
“distributed over a computer network” and “transparent”. Then they
give examples of what is not a DDBS:

e a networked node where the whole database resides
e a collection of files

e a multiprocessor system

14 CHAPTER 1. INTRODUCTION

e a shared-nothing multiprocessor system

e a symmetrical multiprocessor system with identical processors
and memory components.

e a system where the OS is shared.

A DDBS is often heterogeneous with respect to hardware and op-
erating systems. The data is physically stored at different sites in com-
ponent databases, and the DDBMS is then the integration of these
data into one virtual “database”. However, the same capabilities and
software are usually part of the individual component database. The
transparency is the most important feature of a DDBMS. The main
difference compared to multidatabase systems, which we will discuss
in the next section, is that a distributed database distributes the data
transparently over a number of nodes where each node uses the same
DB software to manage its local data and where the nodes are coordi-
nated through the DDBMS. Queries are can then be executed jointly
and coordinated to provide efficient execution.

1.4 Multidatabases

By contrast a Multidatabase System (MDBS) is built up from a number
of autonomous DBMSs. Most of problems in the area of DDBMSs have
their counterparts in multidatabase systems, too. However, the design
is bottom-up: individual databases’ already exist, and they have to be
integrated to form one schema. This involves translations of the differ-
ent databases capabilities during query processing and data exchange.
A multidatabase system has to cope with different variants of query
languages, and perform all moves of data itself. It acts as a layer of
software in-between the databases and the user, and the databases do
not communicate with each other. Since multi-database updates are a
problem, they are usually not allowed online. Instead, they are executed
locally, or in batch mode.

1.5. DATA SERVERS 15

1.5 Data Servers

Another trend is to use to the availability of powerful workstations and
parallel computers for managing internal data in a DBMS. Such a com-
puter dedicated for this purpose is called a Data Server. An example
of this approach is shown in Figure 1.1, where several Terminals are
connected to an Application Server that handles user input and data
display, parses the query and calls upon the Data Server to execute it.
The database itself is stored on a secondary storage media (disk). Data
servers also seem to be becoming popular as storage sites of distributed
databases[OV91]. By dedicating the computer for a data server, it is
then easier to tune the memory management algorithms. Usually the
database systems have more knowledge than the operating system as
to how and when it uses what data. In the 1970s the idea of divid-
ing the database management system into two parts, a host computer
part and and a backend computer, appeared [CRDHWT4]. Nowadays
the terms application server and data server are used respectively. Fig-
ure 1.1 shows the main idea.

1.6 Parallel Data Servers

Parallel computers are nowadays becoming more and more widespread.
For such hardware DDBS technology is used in implementing paral-
lel data servers. A parallel data server is essentially implemented on
a parallel computer and makes extensive use of the advantages of the
parallelism in data management that then can be gained. Often, sup-
port for distributed databases is part of the implementation. The data
managed is automatically fragmented or declustered, making the sys-
tem self-balancing. The work on parallel data servers is related to the
work on Database Machines, which will be discussed in the next sec-
tion. However, since special parallel hardware computers are expensive
and current technology is advancing fast, the trend is to use a num-
ber of networked mainstream machines for implementing the parallel
data servers. For the fast interconnect network in building clusters of
machines (network multicomputers) the Scalable Coherent Interface,
SCI [IEE92], is becoming more and more popular.

16 CHAPTER 1. INTRODUCTION

User Interface

Query Parsing

Data Server Interface

Application Server

Data Server

Application Server Interface

Database Functions

Database

Figure 1.1: Data and application servers.

1.7. DATABASE MACHINES 17

1.7 Database Machines

Related to the work on parallel data servers is the earlier work done
in the framework of Database Machines. Below we explain the term
and present a short overview of some selected systems. In the next
chapter we then go further into details of how large amounts of data
are managed in very large systems.

The first mention of a Database Machine was in [CRDHWT74]. The
term Database Machine, or Database Computer, or Data Server which
nowadays is a natural choice in a distributed environment [OV91] is
often used for a DBMS-dedicated machine. In such a machine there is
not an operating system in the ordinary sense. Hence, the DBMS has
specially tailored operating system services; in the simplest example
this means just device drivers and a monitor. This is in contrast to a
more typical DBMS environment on a general-purpose computer with
some operating system. The reason for having a dedicated machine with
more specialized software and hardware is to overcome the 1/O limi-
tations [BD83] of the von Neumann computer architecture and other
restrictions. Another reason is to be able to use technology that is not
yet available off-the-shelf. One way to overcome I/O limitations is to
keep the whole database in stable main memory [LR85] or I/O band-
width can be increased by using parallel 1/O [Du84]. Multiprocessor
computers have been studied for performance and data availability.

There are mainly two types of parallel computer architectures. The
Shared-Everything type of computers provide high performance but are
not scalable to any larger sizes. All the nodes share memory, disks and
all other resources are typically communicated via shared buses. The
Sequent Computers and Sun SPARC/Center machine are other exam-
ples of shared-everything computers. It is widely known that this ar-
chitecture limits the size of an efficient system to around 32 processors.
However, it is relatively easy to program. The alternative, the Shared-
Nothing computer type, requires extensive programming to share any
information, and to perform any kind of work jointly using the avail-
able resources. Often new algorithms have to be engineered, and much
research is concerned with finding algorithms to use the power of the
shared-nothing computers. The benefits are that, if one succeeds in
programming the shared-nothing computer in a scalable way, the ap-

18 CHAPTER 1. INTRODUCTION

plication can scale to many more than just 32 processors.

1.8 Overview of Some Data Servers

In Parallel Database Systems: The Fulure of High Performance
Database Systems [DG92] there is an overview of state of the art com-
mercial parallel systems. Teradatais a shared-nothing parallel SQL sys-
tem that shows near-linear speed-up and scale-up to a hunred proces-
sors. The system acts as a server back-end and the front-end application
programs run on conventional computers. The Tandem NonStop SQL
system uses processor clusters running both server and application soft-
ware on the same operating system and processors. The Gamma system,
too, shows near linear speed-up and scale-up for queries; it runs on In-
tel’s iPSC/2 Hypercube with a disk connected to each node. A recent
implemenation of Oracle runs on a 64-node nCUBE shared nothing,
with good price- performance measures: also it was the first to provide
1000 transactions per second.

Examples of shared-nothing databases are Bubba [BAC*90], Ter-
adata DBC/1012 [Cor88], Gamma [DGG*86] and the Tandem Non-
stop SQL [Tan87]. Examples of shared-memory database systems are
XPRS [SKPO88], and the Sequent machine.

Bubba [BACT90] started out in 1984. The aim was to design a
scalable, high-performance and highly available database system that
would cost less per performance unit than the mainframes in the 1990s.
At the beginning the Bubba project was mostly concerned with par-
allelizing the intermediate language, FAD. FAD was used for LDL
[CGK'90] compilation. The FAD language has complex objects, OIDs,
set- and tuple-oriented data manipulators and control primitives. Both
transient and permanent data are manipulated the same way. The FAD
program was translated into the Parallel FAD language extension, in
combination with the Bubba Operation System (BOS) they built. In the
project data placement, process and dataflow control, interconnection
topology, schema design, locking, safe RAM and recovery were studied.
They later regretted including all these features and functions that lim-
ited the complete study of the complex systems. In their first prototype
they learned quite a few “lessons”, as they say. Parallelity, for exam-

1.8. OVERVIEW OF SOME DATA SERVERS 19

ple, gives rise to extra costs in terms of processes, messages and delays.
Dataflow control was another important issue. Also redesign of the lan-
guage and implementation were carried out. Another problem was their
usage of three different storage formats for objects (disk, memory and
message). They used the C++ environment that did not make things
easier. So in their second system they used the C language. The second,
and perhaps more realistic prototype, was rewritten from scratch. There
were several reasons for this, including C4++, new programmers, and
serious robustness problems. Since this was not to be a commercial sys-
tem, not all important features of the Bubba system were implemented.
In the new system only one type of object representation was used, and
it was the same for disk, memory and messages. For the Bubba Oper-
ating System, the AT&T UNIX was used, with some extensions. Their
conclusions at the end of their final Bubba prototype are that “Shared
nothing is a good idea (but has limitations)”; “dataflow seems better
than remote procedure calls (RPCs) for a shared-nothing architecture”;
“More compilations and less run-time interpretation”, “Uniform object
management”, and that for fault tolerance it is better to replace a
failing node than trying to make the nodes fault tolerant. Apart from
this, they mention that there was some trouble finding a commercally-
available hardware platform for their work. Even though the hardware
and software were bought, there were both software (operating system)
and hardware bugs, but eventually the system functioned properly.
Another system was the PRISMA/DB system [AvdBF*92|, which
was a parallel, memory relational DBMS. It was built from scratch us-
ing easily available hardware at the time. It was built on the POOMA
shared-nothing machine. Each of the 100-nodes (68020) had 16 Mbytes
of memory and they were interconnected in a configurable way. The
Parallel Object Oriented Language (POOL-X) was developed, that fea-
tured processes, dynamic objects, and synchronous as well as asyn-
chronous communication. Some of its specialities were that it could
create tuple types on the fly and conditions on them could be compiled
into routines. This helped to speed up scanning, selections and joins.
The project was not as successful as one might expect from a main-
memory system. It was not really a magnitude better than disk-based
DBMSs. The problems included the facts that the hardware did not

run in full speed, that the hardware was outdated when the project

20 CHAPTER 1. INTRODUCTION

was evaluated, and that the compiler of the experimental programming
language was not fully optimized. But among the positive results they
found that by using their language they managed to build a fully func-
tional DBMS, and the project could then be finished on time.

The XPRS (eXtended Postgress on Raid and Sprite) DBMS
[SKPO88] was aimed at high availability and high performance for com-
plex ad-hoc queries in applications with large objects. It was optimized
for either a single CPU system or a shared-memory multiprocessor sys-
tem. The aim was to show that a general purpose operating system
can also provide high transaction rates and that custom low-level op-
erating systems are not a necessessity. They were much concerned with
removing hot spots in data accesses. This was done by reducing the
time the locks are being held using a new locking schema, and by run-
ning DBMS commands in a transaction in parallel. A fast path schema
was proposed to achieve high performance, as opposed to the common
method of stripping out high-level functionality (such as query opti-
mizations and views) from the DBMS. For better performance when
[/O-ing large objects they built a two-dimensional file system. This
achieved reduction of the mean time to failure (MTTF) then cured by
using RAID [PGKS88] or striping techniques that provides fault toler-
ance. These techniques keep a bit parity block for N disk blocks (on
different disks). This block can be used to reconstruct any of the N +1
blocks from the N other blocks. Thereby the overhead is reduced to
1/N.

DBS3 [BCV91] takes a newer approach, using the assumption that
the success of RISCs lies in simplicity and high performance compilers,
that large main memories will be available, and that one should rely on
advanced OSs. The first implies that a good optimizer and simple basic
DB units are more important than having a complex design and a com-
plex language to program it. Furthermore the whole database can be
entirely stored (cached) in main memory. This simplifies optimization
and cache management. Lastly, portability is now important and most
newer OS include better means for memory management (cache tuning,
virtual memory, mapped I/O) and transactions (threads). Permanent
data is stored apart from temporary data. This two-level storage di-
vides data so that permanent data is stored on disk and temporary
data is managed in (virtual) main memory. It can make use of frag-

1.9. CURRENT TRENDS 21

mented relations, both temporal and permanent. Zero or more indices
can be used for each fragment. The transaction processing is aimed
at online transactions and decision-support queries. Using their paral-
lel execution model, they finally achieved good intra-query parallelism,
using pipelining and declustering.

As part of the Sequoia 2000 Project at the University of Califor-
nia, the Mariposa project [SAPT96] proposes a micro-economic model
for Wide Area Distributed Database Systems. Their system uses terms
from the market economy: sellers, bidders, brokers, budget, purchase,
advertisements, yellow pages, coupons, bulk contracts and the term
“greedy”. The idea is to set up an economy and means for trade and
then let the “invisible hand” guide the actual trading of resources.

1.9 Current Trends

In the beginning of the 80s special hardware was very popular; nowa-
days one tries to use ordinary high-performance workstations. New ex-
tensions in the area of memory management are beginning to emerge in
the operating systems (UNIX, Windows NT) that will allow more and
better control over the system’s resources. And instead of parallel com-
puters the networked parallel computer is becoming more widespread.
Special interconnect, such as SCI [IEE92], is nowadays a setting stan-
dard in high-performance network computers. However, the pioneer
work on database machines has nowadays evolved into parallel data
servers.

1.10 Conclusions

The need for “big” database servers will always be here; distributed
cooperative solutions arise, but nethertheless local solutions will domi-
nate.

My impressions of the experience gained from the projects men-
tioned above can be concluded as follows:

e In a shared-nothing architecture dataflow is a better paradigm
than RPC for query processing.

22

CHAPTER 1. INTRODUCTION

The system should be self-managing and self-balancing.

Fault tolerance is provided by replacement of a faulty node rather
than making a node fault tolerant.

Do not build your own hardware, it will become outdated fast.

New hardware and operating systems are error-prone; move to a
stable platform.

Do not write your own experimental implementation language.
Do not write a compiler, you will not be able to optimize it.

Shared-memory is easier to program than shared nothing; it does,
however, not scale to many more nodes than around 32. Newer
parallel computers are likely to have shared-memory (everything)
processor nodes connected into a shared-nothing multi-computer.

Use the same format for all storage of the same data: on disk, in
memory, in buffers, in messages.

Use fast-path access to data instead of stripping high-level func-
tionalities from the DBMS.

Parallel 1/O-systems give high-performance.

Do not implement all features and functions in all possible vari-
ants.

Chapter 2

Properties of Data
Structures for Parallel Data
Servers

In this Chapter we will give an introduction to required properties of
data structures that are used in distributed data applicatons, such as
Parallel/Distributed Data Servers. The main objectives are Scalability,
Distribution and Availability. As will be noted in the conclusion, a
combination of all these three features is needed.

2.1 The Problem

Modern systems manage high volumes of data, and if they implement
data access paths (indices) at all, they are often hard-coded with the
application’s data. Data is indexed through some key identifying the
data; this can efficiently be implemented by using hashing algorithms
or some tree structure that keeps the data sorted. It is now well-known
that most systems use mainly variants of Linear Hashing [Lit80] or
B(+)-Trees [BMT72] for their access paths. Other examples include R-
trees (spatial), AVL-trees (main memory sorted index) and SpiralStor-
age.

Simple hashing algorithms often require that the number of data
items to be stored is known in advance so that the correct amount of

23

24CHAPTER 2. PROPERTIES OF STRUCTURES FOR SERVERS

memory (i.e. slots) can be allocated for the array. When the amount of
data stored in the structure grows, it eventually reaches the limit of al-
located memory, which is often solved by allocating a bigger array and
rehashing all the elements. Consider an interactive program that stores
large amount of elements; each of them must then be rehashed. This
operation will take a long time, keeping the user waiting. One alterna-
tive is to use buckets where the items are stored in lists. This leads, in
the worst case — when the number of elements is much larger than the
number of buckets employed — to a solution very close to linear search,
thus having search time increasing with the amount of stored data. The
main problems with these simplistic approaches are that during reor-
ganizing the data is not user-accessible for a while, or that search time
increases with the increasing amount of stored data. In other words,
the ability for the (growing) data structure to dynamically adopt itself
smoothly is lacking, which means that the access performance deterio-
rates.

2.2 Scalability

In DBMSs the need for scalable data structures is more obvious than
for specialized programs. Whatever arbitrary upper limit is set on the
amount of data a data structure can handle, it will probably be exceed-
ed at some future time. A scalable data structure can be characterized
by the following:

e Insert and retrieval time is independent of the number of stored
elements (i.e., it is more or less constant).

e It can handle any amount of data, there is no theoretical upper
limit that degrades the performance.

e Furthermore, it is desirable that it grows and shrinks gracefully,
not having to reorganize itself totally (as some hashing structures
do total rehashing of all stored elements), but rather incremen-
tally reorganizes itself during normal processing.

Linear Hashing [Lit80] is an example of a scalable data structure,
which is an algorithm for managing random access data that can dy-

2.3. DISTRIBUTION 25

namically grow or shrink in size. It is based on ordinary hashing schemes
and has therefore the advantage of direct access, but not the limitations
of a fixed array of buckets. The array is allowed to grow when the data
structure reaches a certain saturation limit, or shrink when it decreases
below some limit. This is achieved through splitting and merging of
individual buckets. Other variants include Spiral Storage and Exten-
sible Hashing. The access cost for hashing structures is approximately
constant.

B-trees [BM72] are another example. This algorithm maintains a
set of ordered data. The data is stored in leaf nodes that are allowed
to store a minimum and a maximum number of elements. When the
number of elements exceeds the maximum or is below the minimum, the
leaf 1s either split or merged with other leaves. The index is maintained
in the tree nodes using a similar principle, providing in the end not
linear access cost but logaritmic. Other variants of scalable ordered data
structures are AVL-trees, 2-3-trees, and many other treestructures.

2.3 Distribution

Sometimes the amount of data is larger than what can efficiently be
managed or used by a single workstation. Even if this amount of da-
ta could be connected physically to one workstation, the processing
cababilities of the workstation would not be enough for searching and
processing the data. Then, instead, one can employ a distributed data
structure that distributes the data over a number of nodes, i.e. work-
stations. Such a data structure can then be used to keep very large
amounts of data online. One way to do this is is to apply a hash func-
tion on the keys that partitions the data into fragments. The simplest
idea is that each fragment stores the data of one bucket, one or several
fragments are then stored on each node. Some other schemas require
a central directory that is visited before each retrieval or insertion of
a data item to get the address of the node storing it. This solves the
problem of finding where the data resides if some of it has been moved
(because of reorganization). However, the directory can easily become a
hot spot when many clients are accessing it. Solutions using hierarchies
of distributed directories can then be used, they can then cache results

26CHAPTER 2. PROPERTIES OF STRUCTURES FOR SERVERS

of earlier requests to improve performance. This is a schema similar
to the well-known internet DNS service [Ste94]. Another, simplier dis-
tribution strategy is to store one field of a record for all records in a
file entirely in one node and other fields on other nodes. However, if
the amount of data grows fast, this is no scalable solution. We notice
that these distributed data structures will also have to be scalable over
any number of storage sites. This is a relatively new concept — SDDSs
— Scalable Distributed Data Structures. This will be our topic for the
next chapter.

2.4 Availability

Sometimes distribution is used in combination with some redundancy
to achieve high availability. High availability is necessary, for example
in banking and telecom [Tor95] applications, but also in all other areas
with mostly online transactions, or where the information is of such
importance that the extra down time of reading backups cannot be al-
lowed. Using a high availability schema, disk crashes as well as some
other sources of read or write errors can then be recovered from. The
classical variant here is RAIDs, Redundant Array Independent Disks
[PGKS88] where a number of disks are connected to one or several com-
puters. One of the disks is used for storing a parity page; this page is
calculated by zor-ing a disk-page from each disk and storing the result
on the parity disk. Each time a write is being performed, this page is
updated. If one of the disks fails or a page on one of the disks fails,
it can be recovered (reconstructed) from the other disks. Using more
disks for parity can ensure recovery from more “errors” and thus gives
higher availablity.

2.5 Conclusions

New applications of databases put requirements on the memory man-
agement. Among these requirements we identified that high perfor-
mance requires scalability, distribution and high availability. Data
structure access has to hide the implementation of these above aspects

2.5. CONCLUSIONS 27

and make the access transparant. In this Chapter we discussed these
three (orthogonal) aspects, but not the important joint usage of them.
Scalable solutions will by necessity be distributed and will require high
availability and new data structures are important for achieving this.
We now turn to this area.

28CHAPTER 2. PROPERTIES OF STRUCTURES FOR SERVERS

Chapter 3
SDDSs

SDDSs (Scalable Distributed Data Structures) such as a dis-
tributed variant of Linear Hashing, LH* [LNS96], and others
[Dev93][WBWI4|[LNS94], opens up new areas of storage capacity and
data access. There are three requirements for an SDDS:

e First, it should have no central directory to avoid hot-spots.

e Second, each client should have some approximate image of how
data is distributed. This image should be improved each time a
client makes an addressing error.

e Third, if the client has an outdated image, it is the responsibility
of the SDDS to forward the data to the correct data server and
to adapt the client’s image.

SDDSs are good for distributed computing since they minimize the
communication which minimizes the response time and enables the pro-
cessor time to be used more efficiently.

The data sites termed servers can be used from any number of
autonomous sites termed clients. To avoid a hot-spot, there is no central
directory for the addressing across the current structure of the file.
Each client has its own image of this structure. An image can become
outdated when the file expands. The client may then send a request
to an incorrect server. The servers forward such requests, possibly in
several steps, towards the correct address. The correct server appends

29

30 CHAPTER 3. SDDSS

to the reply a special message to the client, called an Image Adjustment
Message (IAM). The client adjusts its image, avoiding repeation of the
error. A well-designed SDDS should make addressing errors occasional
and forwards few, and should provide for the scalability of the access
performance when the file grows.

3.1 Related work

In traditional distributed files systems, in implementations like NFS or
AFS, a file resides entirely at one specific site. This presents obvious
limitations not only on the size of the file but also on the access per-
formance scalability. To overcome these limitations distributions over
multiple sites have been used. One example of such a scheme is round-
robin [Cor88] where records of a file are evenly distributed by rotating
through the nodes when records are inserted. The hash-declustering
[KTMO84] assigns records to nodes on the basis of a hashing func-
tion. The range-partitioning [DGG*86] divides key values into ranges
and different ranges are assigned to different nodes. All these schemes
are static, which means that the declustering criterion does not change
over time. Hence, updating a directory or declustering function is not
required. The price to pay is that the file cannot expand over more sites
than initially allocated.

To overcome this limitation of static schemes, dynamic partitioning
start to appear. The first such scheme is DLH [SPW90]. This scheme
was designed for a shared-memory system. In DLH, the file is in RAM
and the file parameters are cached in the local memory of each proces-
sor. The caches are refreshed selectively when addressing errors occur
and through atomic updates to all the local memories at some points.
DLH appears impressively efficient for high insertion rates.

SDDSs were proposed for distributing files in a network
multi-computer environment, hence without a shared-memory. The
first scheme was LH* [LNS93]. Distributed Dynamic Hashing
(DDH) [Dev93] is another SDDS, based on Dynamic Hashing [Lar78].
The idea with respect to LH* is that DDH allows greater splitting au-
tonomy by immediately splitting overflowing buckets. One drawback

3.1. RELATED WORK 31

is that while LH* limits the number of forwardings to two' when the
client makes an addressing error, DDH may use O(log, N) forwardings,
where N is the number of buckets in the DDH file.

Another SDDS has been defined in [WBW94]. It extends LH* and
DDH to more efficiently control the load of a file. The main idea is to
manage several buckets of a file per server while LH* and DDH have
basically only one bucket per server. One also controls the server load
as opposed to the bucket load for LH*.

Finally, in [KW94] and in [LNS94] SDDSs for (primary key) ordered
files are proposed. In [KW94] the access computations on the clients
and servers use a distributed binary search tree. The SDDSs in [LNS94],
collectively termed RP*, use broadcast or distributed n-ary trees. It is
shown that both kinds of SDDSs allow for much larger and faster files
than the traditional ones.

In theory, communication delays could trigger more forwarding [WBW94].

32

CHAPTER 3. SDDSS

Chapter 4

LH*

We will now describe the LH* SDDS, and later on we describe LH*LH.

LH* is a data structure that generalizes Linear Hashing to parallel
or distributed RAM and disk files [LNS96]. One benefit of LH* over or-
dinary LH is that it enables autonomous parallel insertion and access.
The number of buckets and the buckets themselves can grow gracefully.
Insertion requires one message in general and three in the worst case.
Retrieval requires at least two messages, possibly three or four. In ex-
periments it has been shown that insertion performance is very close
to one message (+3%) and that retrieval performance is very close to
two messages (+1%). The main advantage is that it does not require a
central directory for managing the global parameters.

4.1 LH* Addressing Scheme

An LH*-client is a process that accesses an LH* file on the behalf
of the application. An LH*-server at a node stores data of LH* files.
An application can use several clients to explore a file. This way of
processing increases the throughput, as will be shown in Section 8.2.
Both clients and servers can be created dynamically.

At a server, one bucket per LH* file contains the stored data. The
bucket management is described in Section 6.2. The file starts at one
server and expands to others when it overloads the buckets already
being used.

33

34 CHAPTER 4. LH*

level of hash function
forward

° DataClient

level =1 i im
pointer =0 Client image

Figure 4.1: LH* File Expansion Scheme.

4.2. LH* FILE EXPANSION 35

The global addressing rule in LH* file is that every key C is inserted
to the server s¢, whose address s = 0,1, ... N —1 is given by the following
LH addressing algorithm [Lit94]:

if s¢ < then s¢ := h;11(C),

where 7 (LH* file level) and n (split pointer address) are file parameters
evolving with splits. The h; functions are basically:

hi(C)=C mod (2" x K),K =1,2,..

and K =1 in what follows. No client of an LLH* file knows the current
» and n of the file. Every client has its own image of these values, let
it be " and n'; typically ¢/ < [LNS93]. The client sends the query, for
example the insert of key C, to the address si (¢, n').

The server s verifies upon query reception whether its own address
Sp is 8¢ = sc¢ using a short algorithm stated in [LNS93]. If so, the
server processes the query. Otherwise, it calculates a forwarding address
sg, using the forwarding algorithm in [LNS93] and sends the query to
server s¢.. Server s¢. acts as s and perhaps resends the query to server
s¢i as shown for Server 1 in Figure 4.1. It is proven in [LNS93] that
then s must be the correct server. In every case of forwarding, the
correct server sends to the client an Image Adjustment Message (IAM)
containing the level ¢ of the correct server. Knowing the ¢ and the s¢
address, the client adjusts its ¢ and n’ (see [LNS93]) and from now on
will send C directly to s¢.

4.2 LH* File Expansion

An LH* file expands through bucket splits as shown in Figure 4.1.
The next bucket to split is generally noted bucket n, n = 0 in the
figure. Each bucket keeps the value of ¢ used (called LH*-bucket level)
in its header starting from ¢ = 0 for bucket 0 when the file is created.
Bucket n splits through the replacement of h; with h; ¢ for every C' it
contains. As a result, typically half of its records move to a new bucket

N, appended to the file with address n + 2°. In Figure 4.1, N = 8.

36 CHAPTER 4. LH*

After the split, n is set to (n + 1) mod 2°. The successive values of n
can thus be seen as a linear move of a split token through the addresses
0,0,1,0,1,2,3,0,...,2 — 1,0, ... The arrows of Figure 4.1 show both the
token moves and a new bucket address for every split, as resulting from
this scheme.

4.2.1 Splitting Control Strategies

There are many strategies, called split control strategies, that one can
use to decide when a bucket should split [LNS96] [Lit94] [WBW94].
The overall goal is to avoid the file overloading. As no LH* bucket
can know the global load, one way to proceed is to fix some threshold
S on a bucket [ILNS96]. Bucket n splits when it gets an insert and
the actual number of objects it stores is at least S. S can be fixed
as a file parameter. A potentially better performance strategy for an
SM environment is to calculate S for bucket n dynamically using the
following formula:
S=MxV x 2 + n,
22

where 7 is the n-th LH*-bucket level, M is a file parameter, and V is
the bucket capacity in number of objects. Typically one sets M to some

value between 0.7 and 0.9.

The intuition behind the formula is as follows. A split to a new server
should occur at each M x V' global insert into the data structure, thus
aiming at keeping the mean load of the buckets constant;

global number of inserts/number of server = constant.

For a server without any knowledge about the other servers it can only
use its own information, that is, its bucket number n and the level 7, to
estimate the global load. It knows that any server < n, server 0..n — 1,
has split into server 2¢.2° 4+ n —1 and both these thus have half the load
of the servers that are not yet split, servers n..2" — 1. The number of
servers can be calculated to 2! + n, which gives us an estimated global

load of
M xV x (2 +n).

4.3. CONCLUSION 37

Servers that were split or new servers have half the load, S/2, of those
that are to split that have the load S. The n new servers come from
n servers, totally 2 x n servers with the load S/2, and 2' +n —2 x n
remaining servers to be split later with a load of S. The total of these
servers can then be expressed as

Lx Sx2xn+8x(2—n).

This can be simplified to S x 2¢. Setting the global estimate equal to
the last expression provides after some simplication

M xVx(2+n)=5x2.

Solving for S’ gives the above expressed formula for S.

The performance analysis in Section 8.2.1 shows indeed that the dy-
namic strategy should be preferred in our context. This is the strategy
adopted for LH*LH.

4.3 Conclusion

LH is well-known for its scalability and the new distributed LH* is also
proven scalable. Both of these hashing algorithms use the actual bit
representation of the hash values; these are given by the keys. Hashing
in general can be seen as a radix sort in an interval where each value
has a bucket where it stores the items. LH can in turn be viewed as
a radix sort using the lower bits of the hash value for the keys. It
furthermore has an extra attribute that tells us the number of bits used,
and a splitting pointer. The splitting pointer allows gradual growth and
shrinkage of the range of values (number of buckets) used for the radix
sort.

LLH* is a variant of LH that enables simultaneous access from sev-
eral clients to data stored on several server nodes. One LLH bucket cor-
responds to the data stored on a server node. In spite of not having a
central directory, the LH* algorithm allows for extremely fast update
of the client’s view so that it will access the right server nodes when
inserting and retrieving data. LH* [LNS93] was one of the first Scal-
able Distributed Data Structure (SDDSs). It generalizes LH [Lit80] to

38 CHAPTER 4. LH*

files distributed over any number of sites. One benefit of LH* over LH
is that it enables autonomous parallel insertion and access. Whereas
the number of buckets in LLH changes gracefully, LH* lets the number
of distribution sites change as gracefully. Any number of clients can
be used; the access network is the only limitation for linear scaleup of
the capacity with the number of servers, for hashed access. In general,
insertion requires one message, and in the worst case three messages
might occur. Retrieval requires one more message. But the main issue
is that no central directory is needed for access to the data.

Chapter 5
spAMOS: System

Architecture Framework

spAMOS is the name of our proposed system architecture where an
extensible DBMS, such as AMOS[FRS93] in this case, runs on an ordi-
nary workstation and uses computing and storage resources on a Paral-
lel Machine!. spAMOS stands for scalable parallel AMOS %. Amos will
be discussed briefly in Section 5.2.

The architecture uses the client-server framework. A client is log-
ically a process that accesses some resource at a server, and a server
has processing or storage capabilities for use by clients. A client can
process data and can, depending on the physical environment, be run
on the same processing element.

5.1 Conceptual View

The main two elements in the client-server view are, the Frontend work-
station and a Backend parallel machine as shown in Figure 5.1. In the
frontend, shown in Figure 5.2, a Transaction client (TC) accesses data
using Transaction Servers (TS) executed in the backend. The transac-
tion server uses a Data Client (DC) to access the physical data stored

'Here we use the term in the general sense, even including a (local) group of
networked workstations.
?Relations to the word spam can also be found.

39

40 CHAPTER 5. SPAMOS: SYSTEM ARCH. FRAMEWORK

in the Data Servers (DS). The latter implements the server part of the
SDDS and the former the client part.

A data client (DC) is a thread of execution which accesses infor-
mation that resides on distributed data servers (DS). The access is
achieved through the Data Client Interface (DCI) which is a layer of
software that hides the distributed access to the distributed data. It
can be extended with more operations that concern the access and ma-
nipulation of the data structure.

A transaction server (TS) implements algorithms such as joins,
query execution and aggregation, by using methods in the DCI. So
the transaction server is actually a data client, since it uses distributed
data. A transaction client (TC) then connects to or initiates to one or
several transaction servers. A transaction server can in its turn con-
nect to other transaction servers, by connecting playing the role of a
transaction client, using a transaction client interface (TCI).

These logical elements can be mapped nicely onto processes on sep-
arate processors in a parallel machine, but sometimes for processing
purposes they could be on the same node. The idea is that transaction
servers should be dynamically created as needed to perform efficient
queries and/or updates of data stored in the data servers. The amount
of data servers used for storing the data will also vary according to the
algorithms used for the data storage (LH*LH for example).

5.2 AMOS

AMOS [FRS93] (Active Mediators Object System) is an Object-
Oriented database system. It is written and optimized with memory
residency in mind. Using the foreign predicates/functions interface it
is easily extended to use data from various application domains. Hints
can be given to the cost-based optimizer about the cost and selectivity
of the defined predicates. The queries are transformed, compiled and
optimized into the internal language ObjectLog, that later is interpret-
ed. The optimizer uses a variety of algorithms to cope with the huge
search space that arises in complex queries. For example randomized
optimization with hill climbing is used [N&s93]. Interfacing can be done
to a variety of different languages, C is the native language, but in-

5.2. AMOS 41

WorkStation
SPAMOS/C

Frontend

Backend

SPAMOS/S

Parallel Machine

Figure 5.1: The spAMOS system; frontend workstation using a backend
parallel computer.

42 CHAPTER 5. SPAMOS: SYSTEM ARCH. FRAMEWORK

terfaces are available from Lisp, Fortran and via a client/server tcpip
interface [Wer94]. Recently AMOS has been extended with (E)CA-
rules [Sk694], multi-database distribution (Query Language [Wer96]).
As we see it, AMOS is a system with the appropriate capabilities
to be used for a prototype implementation of the spAMOS frontend.

5.3 A Query Example Scenario Discus-
sion

As an example of this, we present a possible scenario in figure 5.2. We
have a workstation WS, with an interconnect to a parallel machine PM.
The user at the workstation is issuing a query that needs to scan one
table, T1, stored in data servers DS1-DS5 for matching a predicate,
P1. We assume here that this predicate is cheap to execute and reduces
the output to fractions R1 of the original data stored in T1. Let us say
that we then execute a computationally intense predicate P2 on the
fraction R1 giving the result R2. This is done by TS1-TSn. We assume
then that moving the data is cheap and allows more parallelity than
executing the predicate at DS1-DS5. The results R2 are to be summed;
this summation is performed after sending the data to transaction client
TCO that carries out the addition and then the transaction server TS0
sends it back to WS.

The design and implementation of the data client interface allows for
possible database accesses to the data structure (LH*LH) on a parallel
machine. This means that it allows both multiple files to be accessed
and many clients to access the same files.

5.3.1 Notes on the query example

In this example there are several situations that indicate that there
should be some planning and estimation of the costs for sending the
data and calculating the predicates. We will now present some consider-
ations about this. Since P1 is cheap and reduces the amount of data, it
is cheaper to compute it at the DSs than moving the data. This reduces
communication, thereby saving time. The data is then sent to TS1-TSn.

5.3. A QUERY EXAMPLE SCENARIO DISCUSSION 43

WS (| samosic

TC
PM ([samoss)
TS
Sum
TC
0 1 2 n
TS| | TS| | TS TS| |Ts| | Ts| |Ts| | Ts
PR |P| | P P2
pc| |pc| |DC pc| |pc| |pc| |pc| |pbc
F
e e
T1 I
I l l l l l :
I P1 P1 P1 P1 P1 |
I | bs1 DS 2 DS 3 DS 4 DS 5 I
\ - ______-_-__-_-—-_-_-—-_ 1
. J

Figure 5.2: An example of a possible query evaluation.

44 CHAPTER 5. SPAMOS: SYSTEM ARCH. FRAMEWORK

The number of TSs is not determined but can be dynamically adapt-
ed (to availability and load). There are several possible choices of how
the outgoing tuples are to be distributed: hashing on some key (LH*
could then provide the means for scalability and automatic adjustabil-
ity, by having a “clever” server load definition); a ticket system where
the senders get a number of tickets that tells them where to send the
data; a central “switch” that keeps track of which servers are free and
then forwards the data. As one can see there are a number of possible
alternatives here. The data is then sent from the TSs to the main TCO
that sums and returns the result to TC at WS. An alternative here
is to let the TS1-TSn perform local summing and sending the partial
results to TC0. This again depends on the cost of the communication.
The generation and optimization of such an execution plan is beyond
the scope of this thesis.

5.4 Conclusions

We have now given a sketch for a possible architecture where the re-
sources of a parallel machine are utilized mostly for data storage and
processing. Control, optimization and query initialization and result
display still lie at the frontend workstation initiated by the (online)
user. This, we feel, will let an ordinary workstation use the resources
of a parallel machine without having to limit itself to that type of en-
vironment in the matter of operations.

Chapter 6

The LH*LH Algorithm

In this section we will go further into details about the design and imple-
mentation choices that have been made. The prototype has been made
on the Parsytec machine, but can be used in any threaded (network)
multi-computer.

6.1 Introduction

Below we present the LH*LH design and performance. With respect
to LH* [LNS93], LH*LH is characterized by several original features.
Its overall architecture is geared towards an SM (Switched Multi-
computer) while that of LH* was designed for a network multi-
computer. Furthermore, the design of LH*LH involves local bucket
management while in [LNS93] this aspect of LH* design was left for
further study. In LH*LH one uses for this purpose a modified ver-
sion of main-memory Linear Hashing as defined in [Pet93] on the basis
of [Lar88]. An interesting interaction between LLH and LH* appears, al-
lowing for much more efficient LH* bucket splitting. The reason is that
LH*LH allows the splitting of LH*-buckets without visiting individual
keys.

The average access time is of primary importance for any SDDS
on a network computer or SM. Minimizing the worst case is, however,
probably more important for an SM where processors work more tightly
connected than in a network computer. The worst case for LH* occurs

45

46 CHAPTER 6. THE LH*LH ALGORITHM

when a client accesses a bucket undergoing a split. LH* splits should be
infrequent in practice since buckets should be rather large. In the basic
LH* schema, a client’s request simply waits at the server till the split
ends. In the Parsytec context, performance measurements show that
this approach may easily lead to several seconds per split, e.g. three to
seven seconds in our experience (as compared to 1 —2 msec per request
on the average). Such a variance would be detrimental to many SM
applications.

LH*LH is therefore provided with an enhanced splitting schema,
termed concurrent splitting. 1t is based on ideas sketched in [LLNS96]
allowing for the client’s request to be dealt with while the split is in
progress. Several concurrent splitting schemes were designed and ex-
perimented with. Our performance studies shows superiority of one of
these schemes, termed concurrent splitting with bulk shipping. The
maximal response time of an insert while a split occurs decreases by
a factor of three hundred to a thousand times. As we report in what
follows, it becomes about 7 msec for one active client in our experience
and 25 msec for a file in use by eight clients. The latter value is due to
interference among clients requesting simultaneous access to the server
splitting.

The first implementation of LH* was performed using the Parallel
Virtual Machine software, PVM [MSP93], on a number of HP worksta-
tions. The reason was mainly that the Parsytec machine at that moment
was newly installed and quite unstable, thus unavailable most of the
time. Later, this has partly influenced the implementation in such a way
that library primitives dealing with hardware or environment specifics
have been abstracted in an almost transparant way.

LH*LH allows for scalable RAM files spanning over several CPUs
of an SM and its RAMs. On our testbed machine, a Parsytec
GC/PowerPlus with 64 nodes of 32 MB RAM each, a RAM file can
scale up to almost 2 GBytes with an average load factor of 70%. A
file may be created and searched by several (client) CPUs concurrently.
The access times may be about as fast as the communication network
allows it to be. On our testbed, the average time per insert is as low
as 1.2 ms per client. Eight clients building a file concurrently reach
a throughput of 2500 inserts/second i.e., 400 ps/insert. These access
times are more than an order of magnitude better than the best ones

6.2. THE SERVER 47

using current disk file technology and will probably never be reached
by mechanical devices.

6.2 The Server

Servers & Clients

Communication

LH* Manager

LH* Concurrent Splitter

LH Manager

LH Splitter

Figure 6.1: The Data Server.

The server consists of two layers, as shown in Figure 6.1a. The
LH*-Manager handles communications and concurrent splits. The LH-
Manager manages the objects in the bucket. It uses the Linear Hashing
algorithm [Lit80].

6.2.1 The LH Manager

LH creates files able to grow and shrink gracefully on a site. In our
implementation, the LH-manager stores all data in the main memory.
The LH variant used is a modified implementation of Main Memory

Linear Hashing [Pet93].

48 CHAPTER 6. THE LH*LH ALGORITHM

LH-Buckets ="rows" Linked List of Records
= =1 1= |

e T e I e T e T e T T e I
T e I e T e T e T |

L
I
I
I
I
)
)

o N o o0~ W N P O

Figure 6.2: The LH-structure.

6.2. THE SERVER 49

The LH file in an LH*-bucket (Figure 6.2b) essentially contains (i)
a header with the LH-level, an LH-splitting pointer, and the count x
of objects stored, and (ii) a dynamic array of pointers to LH-buckets,
and (iii) LH-buckets with records. An LH-bucket is implemented as a
linked list of the records. Each record contains the calculated hash value
(pseudo-key), a pointer to the key, and a pointer to a BLOB. Pseudo-
keys make the rehashing faster. An LH-bucket split occurs when L =1,
with:

x

bxm’

where b is the number of buckets in the LH file, and m is a file parameter
being the required mean number of objects in the LLH-buckets (linked
list). Linear search is most efficient up to an m about 10.

6.2.2 LH?* Partitioning of an LH File

The use of LH allows the LH* splitting in a particularly efficient way.
The reason is that individual records of the buckets are not visited for
rehashing. Figure 6.3 and Figure 6.4 illustrate the ideas.

31 0

Before LH* Split — j

. =

After LH* Split T Ty
= =

=

S i
Before next LH* Split< |- -

After next LH* Split | j'i=j-1 l:=l+1

LH-bits LH*-bits

Figure 6.3: Pseudo-key usage by LH and L.H*.

50

CHAPTER 6. THE LH*LH ALGORITHM

Before the Split

LH-Buckets ="rows' Linked List of Objects

...0001
...0010
...0011
...0100
...0101
...0110
..0111
...1000
...1001

After the Split

LH | LH* Stays

...000
...001
...010
..011
...100

O O O o o

LH |LH*

...000
...001
...010
..011
...100

[S

Figure 6.4: Partitioning of an LH-file by LH* splitting.

6.2. THE SERVER o1

LH and LH* share the pseudo-key. The pseudo-key has .J bits as
shown in Figure 6.3; J = 32 at every bucket. LH* uses the lower [bits
(bi—1, bi—2, ...bo). LH uses j bits (bj4i—2,bj4i1-3,...b;), where 5 +1 < J.
During an LH*-split [increases by one, whereas j decreases by one.
The value of the new [th bit determines whether an LLH-bucket is to
be shipped. Only the odd LH-buckets, i.e. with b = 1, are shipped
to the new LH*-bucket N. The array of the remaining LH-buckets is
compacted, the count of objects is adjusted, the LH-bucket level is
decreased by one (LH uses one bit less), and the split pointer is halved.
Figure 6.4 illustrates this process.

Further inserts to the bucket may lead to any number of new LH
splits, increasing j as shown in Figure 6.3 to some j'. The next LH*
split of the bucket will then decrease j' to j' := 3’ — 1, and set [:= [+1
again.

6.2.3 Concurrent Request Processing and Split-
ting

A split is a much longer operation than a search or an insert. The
split should also be atomic for the clients. Basic LH* [LNS93] simply
requires the client to wait till the split finishes. For high-performance
applications on an SM multi-computer it is fundamental that the server
processes a split concurrently with searches and inserts. This is achieved
as follows in LH*LH.

Requests received by the server undergoing a split are processed as
if the server had not started splitting, with one exception: a request
that concerns parts of the local LH structure already shipped is queued
to be processed by the Splitter. The Splitter processes the queue of
requests since these requests concern LH-buckets of objects that have
been or are being shipped. If the request concerns an LLH-bucket that
has already been shipped, the request is forwarded. If the request con-
cerns an LH-bucket not yet shipped, it is processed in the local LH
table as usual. The requests that concern the LH-bucket that currently
is being shipped first search the remaining objects in the LH-bucket.
If not found there, they are forwarded by the Splitter. All forwardings
are serialized within the Splitter task. More detailed information of

52 CHAPTER 6. THE LH*LH ALGORITHM

the algorithm and the possible choices in implementation are given in
Section 9.3.1.

6.2.4 Shipping

Shipping means transferring the objects selected during the LH*-bucket
split to the newly appended bucket N. In LH* [LNS96] the shipping was
assumed basically to be of the bulk type with all the objects packed into
a single message. After shipping has been completed, bucket N sends
back a commil message. In LH*LH there is no need for the commit
message. The Parsytec communication is safe and the sender’s data
cannot be updated before the shipping is entirely received. In particular,
no client can directly access bucket N before the split is complete.

In the LH*LH environment there are several reasons for not shipping
too many objects in a message, especially all the objects in a single
message. Packing and unpacking objects into a message require CPU
time and memory transfers, as objects are not stored contiguously in
memory. One also needs buffers of sizes at least proportional to the
message size, and a longer occupation of the communication subsystem.
Sending objects individually simplifies these aspects but generates more
messages and more overhead time in the dialog with the communication
subsystem. It does not seem that one can decide easily which strategy
is finally more effective in practice.

The performance analysis in Section 8.2.2 motivated the correspond-
ing design choice for LH*LH. The approach is that of bulk shipping but
with a limited message size. At least one object is shipped per message
and at most one LH-bucket. The message size is a parameter allowing
for an application-dependent packing factor. The test data using bulks
of a dozen records per shipment showed to be much more effective than
individual shipping.

6.3 Notes on LH*LH Communications
In the LH*LH implementation on the Parsytec machine a server re-

ceiving a request must have issued the receive call before the client
can do any further processing. This well-known rendezvous technique

6.3. NOTES ON LH*LH COMMUNICATIONS 53

enforces entry flow control on the servers, preventing the clients from
working much faster than the server can accept requests' . There is
no need to make the insert operations provide a specific acknowledge
message, since communication is “safe” and therefore not needed on
the Parsytec machine. [AMs, split messages with the split token, and
general service messages use the asynchronous type of communication
to remove the possibility of deadlocks. We avoid deadlocking by never
letting the servers communicate synchronously with a server having a
lower logical number. When a data client requests data from a data
server, it must receive the answer directly without engaging in any oth-
er communication, since the server otherwise would be blocked. This
is enforced in the data client interface by making look-up operations
atomic.

The choice of synchronous communication for normal communica-
tion, for example not TAMs and similar control messages, does, however,
not mean that the requests on the datastructure client must be syn-
chronous. That is, when a client issues the operation insert, the client
only waits till the message has been delivered to the server, then both
the server and the client can continue the processing. Presumably the
server executes the insert operation internally, but the client does not
wait for any acknowledgement of the completion of the operation.

6.3.1 Communication Patterns

A parallel machine has a communication topology that is inherited from
the hardware interconnect. For example, if a number of nodes are inter-
connected in a ring communicating only in one direction, it is obvious
that problems that communicate in the same manner benefits from
such a topology. In this case, a program that performs pipe-lined ex-
ecution would suit well, but a program where all nodes communicate
with the other nodes in a star pattern would lose. This means that if
a program communicates in such a way that it can directly use the

!The overloaded server can run out of memory space and then send outdated
TAMs; this is a fact when using PVM [MSP93] together with many active clients on
a few servers. There is no flow-control when sending. Messages were stored internally
by PVM, and the receiving process eventually grew out of memory. This indicates
the need for data flow control

54 CHAPTER 6. THE LH*LH ALGORITHM

underlying topology minimizing the number of hops the messages have
to traverse, it will be efficient. Many general-purpose parallel machines
try to mimic different topologies by imposing a virtual topology onto the
real topology. In the case of having a grid-type (mesh) interconnected
multi-computer, a Parsytec for instance, the pipe-topology can easily
be implemented by a clever allocation of the nodes that mimimize the
communication hops. Other types of topologies [LER92] include Star
Network, Toroidal Mesh, Tree Network, Ring Network, Fully Connected
Network, and N-Dimensional Hypercubes.

The question in our case is whether LH*LH would benefit from
any such topology; the answer depends very much on what kind of
operations dominates its use. If a known number of clients access data
at a number of servers, they could be placed in such a way that the total
communication paths were minimized. Also, servers could be placed in a
Tree Network to minimize communication when broadcasting requests,
such as scanning, to an entire LH*LH-file. One interesting fact to take
into account is the way the Parsytec routes messages. It routes them
in a static way, always the same route from one node to another, first
horizontal and then vertical. An unfortunate allocation could place data
clients in such a way that they interfere by using the same static routes
for all communication. We leave this area open for research.

An SDDS internal communication has a fixed pattern for communi-
cation, which stems from the splitting and forwarding strategy; in the
LH* this is a tree-like structure as can be seen in Figure 4.1. There
is, however, no special pattern for the clients accessing the data struc-
ture, and then no natural special static topology that could be used
for the LH* algorithms. However, in the Parsytec environment, static
communication links must be established to use the fastest means of
communication. Therefore, when the program is started, we establish
links from each node to each of the other nodes for the whole machine.
Two links are in fact established — one for data messages and one for
control messages. The latter is given higher priority in the program. The
rationale for this is that, for example, a split message or a token should
not be unnecessarily delayed to the receiver because this could bad-
ly influence operation. Mailbox communication 2, that is semantically

2Sometimes also referred to as store-and-forward.

6.3. NOTES ON LH*LH COMMUNICATIONS 55

better suited for SDDSs was found to be both slower and unreliable in
the Parsytec environment.

Other communication needs arise when applying reduction, such as
summing and scanning implementation. It is then natural to use some
sort of “limited” broadcasting or multicasting. Multicasting sends the
same message to a group of specified machines. It is favourable for ini-
tializing scanning operations. On a Parsytec this has to be implemented
by point-to-point primitives. Simply implementing scanning by just it-
erating over a complete list of all known Data Servers is not feasible
since, among other things, it would require the list and its size to be
known in advance or updated during the messaging. An easy way to
acomplish is to use the hidden tree structure that we discussed earlier
which is formed during the splitting of the LH* nodes, this being a par-
ent node, and new nodes can be seen as children nodes. In this way the
problem is easily distributed and the time complexity decreases from
O(n) to O(log(n)), where n is the number of data servers. Also, this
efficiently takes care of the problems with presplit or merged servers
since the parent knows all about its children.

26

CHAPTER 6. THE LH*LH ALGORITHM

Chapter 7

Hardware Architecture

The Parsytec GC/PowerPlus architecture (Figure 7.1) is massively
parallel with distributed memory, also know as MIMD (Multiple In-
struction Multiple Data). The machine used for the LH*LH implemen-
tation has 128 PowerPC-601 RISC-processors, constituting 64 nodes.
One node is shown in Figure 7.1a. Each node has 32 MB of memo-
ry shared between two PowerPC processors and four T805 Transputer
processors. The latter are used for communication. Each Transputer
has four bidirectional communication links. The nodes are connected
through a bidirectional fat (multiple) grid network with packet message
routing.

LH* was first implemented on an HP workstation in order to test
some aspects of distribution. Then LH*LH was implemented on the
Parsytec GC machine, keeping in mind and reusing parts from the
first LH* implementation. Message-handling is encapsulated to facil-
itate porting to other physical (parallel) architectures. Some experi-
ments have been made on the handling of data stored locally in Data
Servers in order to improve file growth by splitting hash buckets in
background processing.

7.1 Communication

The communication is point-to-point, and the software libraries sup-
ports both the synchronous and asynchronous communication [Par94].

57

28

CHAPTER 7. HARDWARE ARCHITECTURE

MM

| Transniiter
PowerPC Transputer
T805

[cache| cache

9

9

9

9

A
v

Figure 7.1: One node on the Parsytec machine

7.1. COMMUNICATION 59

0-0-60-0-0-0-0-9
D-0-O-O-O-0-0-O
OO0 Qe-9-6-0
ocoodpoffoo
O-0-0-d-0-0-0
o-o-o-Wod-o0o
OO0 b0
O-60-0-0-0-0-0-0

Figure 7.2: Static routing on a 64 nodes machine between two nodes.

Connections can be established using links, optionally on a virtual
topology. Mailbox-communication is also available, which is the most
general form of communication, but is limited due to the store-and-
forward principle used. Broadcasts and global exchange are implement-
ed using the above presented forms of communication presented above.

The number of virtual connections is not limited by the number of
physical connections. The virtual connections can be used to implement
a hand-crafted topology of the processors. There are also predefined
libraries for the most common topologies such as pipe, 2- dimensional,
3-dimensional, 2-; 3-torus, tree and hyper-cube.

The response time of a communication depends on the actual ma-
chine topology. The closer the communicating nodes are, the faster is
the response. Routing is done statically by the hardware as in Fig-
ure 7.2b with the packages first routed in the horizontal direction.

60

CHAPTER 7. HARDWARE ARCHITECTURE

Chapter 8

Performance Measures

8.1 Measure Suite

We performed the tests using 32 nodes since, at the time when the
tests were performed, only 32 nodes were available at our Parsytec
site. The Clients were allocated downwards from node 31, while servers
were allocated from node 0 and upwards, as shown in Figure 8.1. The
Clients read the test data (a random list of words) into main memory
in advance to avoid the 1/O disturbing the measurements. Then the
clients started inserting their data, creating the test LH*LH-file. When
a client sent a request to the server, it continued with the next item
only when the request had been accepted by the server (rendezvous).
Each time, just before the LH*LH file was split, measures were collected
by the splitting server. Some measurements were also collected at some
clients, especially timing values for each of that client’s requests.

8.2 Performance Evaluation

The access performance of our implementation was studied experimen-
tally. The measurements below show elapsed times of various opera-
tions and the scalability of the operations. Each experiment consists of
a series of inserts creating an LH* file. The number of clients, the file
parameters M and m, and the size of the objects are LH*LH parame-
ters.

61

62

CHAPTER 8. PERFORMANCE MEASURES

PP e
P|Pp -
P|Pp |~
OlPIEP e

Servers

PP
PP

28 29 30 31

Figure 8.1: Allocation of servers and clients.

8.2. PERFORMANCE EVALUATION 63
8.2.1 Scalability

350 T T T T

300

250

200

Tb(n) [s]

150

100

& XX
& &
G Y= S
O K SRS
TS A e v

2

50000 100000 150000 200000
n

Figure 8.2: Build time of the file for a varying number of clients.

Figure 8.2 plots the elapsed time taken to constitute the test
LH*LH file through n inserts’; n = 1,2..N and N = 235.000, performed
simultaneously by k clients & = 1,2..8. This time is called build time
and is noted Th(n), or TH*(N) with k as a parameter. In Figure 8.2,
Tb(N) is measured in seconds. Each point in a curve corresponds to
a split. The splits were performed using the concurrent splitting with
the dynamic control and the bulk shipping. The upper curve is T'b"(n).
The next lower curve is Th*(n), and so on until T'6%(n).

The curves show that each T0*(n) scales-up about linearly with the
file size n. This is close to the ideal result. Also, using more clients to
build the file uniformly decreases T'b*, i.e.,

K > E'— > To" (n)<TH (n),

64 CHAPTER 8. PERFORMANCE MEASURES

for every n. Using two clients almost halves T'b, especially T'b(N), from
TH' (N) = 330 sec to Th*(N) = 170 sec. Building the file through eight
clients decreases T'b further, by a factor of four. Th(N) becomes only
TH(N) = 80 sec. While this is in practice an excellent performance, the
ideal scale-up should reach k times, i.e., the build time T6®(N) = 40 sec
only. The difference results from various communication and processing
delays at a server shared by several clients, as discussed in previous
sections and in what follows.

1.6

1.4

1.2 - .

Ti(n) [ms]

0.2 I I I I
50000 100000 150000 200000
n

Figure 8.3: Global insert time measure at one client, varying the number

of clients.
Figure 8.3 plots the curves of the global insert time
Ti*(n) = Tt (n)/n[msec].

T7 measures the average time of an insert from the perspective of the

8.2. PERFORMANCE EVALUATION 65

application building the file on the multi-computer. The internal me-
chanics of the LH*LH file is transparent at this level including the
distribution of the inserts among the & clients and several servers, the
corresponding parallelism of some inserts, the splits and so on. The val-
ues of n, N and k are those shown in Figure 8.2. Increasing k improves
T7 in the same way as for T'h. The curves are also about as linear,
constant in fact, as they should be. Highly interestingly, and perhaps
unexpectedly, each Tb*(n) even decreases when n grows, the gradient
increasing with k. One reason is the increasing number of servers of a
growing file, leading to fewer requests per server. Also, our server and
client node allocation schema decreases the mean distance through the
net between the servers and the clients of the file.

The overall result is that Tt is always under 1.6 msec. Increas-
ing k uniformly decreases T, until Ti*(n) < 0.8 msec for all n, and
Ti¥(N) < 0.4 msec in the end. These values are about ten to twenty
times smaller than access times to a disk file, typically over 10 msec per
insert or search. They are likely to remain forever beyond the reach of
any storage on a mechanical device. On the other hand, a faster net and
a more efficient communication subsystem than the one used should al-
low for even much smaller T'#’s, in the order of dozens of microseconds
[LNS96] [LNS94].

Figure 8.4 plots the global throughput 7%(n) defined as

T*(n) = 1/Ti(n)[i/sec|(insertspersecond).

The curves express again an almost linear scalability with n. For the
reasons discussed above, T* even increases for larger files, up to 2700
i/sec. An increase of k also uniformly increases T' for every n. To see
the throughput scalability more clearly, Figure 8.5 illustrates a plot of
the relative throughput

Tr(k) = T*(n)/T"(n),

for a large n, n = N. One compares T'r to the plot of the ideal scale-up
that is simply 7"r(k) = k. The communication and service delays we
spoke about clearly play an increasing role when k increases. Although
Tr monotonically increases with k, it diverges more and more from T"r.

CHAPTER 8. PERFORMANCE MEASURES

66

Global Insert

<P
<P
- & —
<P
<P
%
<P
b
- o —
)2
<P
&
iv D
| | g |
o o o o o
o o o o o
Lo o Lo o Lo]
N (qV i i

3000

[s/suil] indybnouyL

100000 150000 200000

50000

Figure 8.4: Actual throughput with varying number of clients.

8.2. PERFORMANCE EVALUATION 67

For k = 8, T'r = 4 which is only the half of the ideal scale-up. It means
that the actual throughput per client,

Tck(n) = T*(n)/k,

also comparatively decreases to half of the throughput 7" of a single
client.

8 I I I I I I I
Scalability

relative throughput
N
I

O | | | | | | |
0 1 2 3 4 5 6 7 8
clients

Figure 8.5: Ideal and actual throughput with respect to the number of
clients.

Figure 8.6 and Figure 8.7 show the comparative study of the dynam-
ic and the static split control strategies. The plots show build times,
with T'0'(n) for the static control and T'b(n) for the dynamic one. The
curves correspond to the constitution of our example file, with £ = 1
in Figure 8.6 and £ = 4 in Figure 8.7. The plots T'b are the same as
in Figure 8.2. Figure 8.6 and Figure 8.7 clearly justify our choice of

68 CHAPTER 8. PERFORMANCE MEASURES

450
400
350
300
250

Tb(n) [s]

200
150
100

50

0 T | | | |
50000 100000 150000 200000
n

Figure 8.6: Comparison between Static and Dynamic splitting strategy,
one client.

8.2. PERFORMANCE EVALUATION 69

250 T T T T

Static
Dynamt

200

150

Tb(n) [s]

100

50

50000 100000 150000 200000
n

Figure 8.7: Comparison between Static and Dynamic splitting, with
four clients.

70 CHAPTER 8. PERFORMANCE MEASURES

the dynamic control strategy. Static control uniformly leads to a longer
build time, i.e., for every n and k one has T'0'(n) > Tb(n). The relative
difference (T’ — T'b)/Tb reaches 30% for k =1, e.g. TV (N) = 440 and
Tb(N) = 340. For k = 4 the dynamic strategy more than halves the
build time, namely from 230 to 100 sec.

Note that the dynamic strategy also generates splits generally more
uniformly over the inserts, particularly for & = 1. The static strategy
leads to short periods when a few inserts generate splits of about every
bucket. This creates a heavier load on the communication system and
increases the insert and search times during this period.

8.2.2 Efficiency of Concurrent Splitting

8 | | | | | | | | |
Atomic, Individual shipping ——

[secondssinsert]

Tidt?

8 0 N 8 Y

i o8 188 158 2@ 258 388 350 408 458
t [seconds] elapsed ftime

Figure 8.8: Efficiency of individual shipping.

8.2. PERFORMANCE EVALUATION

b.6 | I I | I
Adtomic, Bulk shipping ——
M @'5 _ =
-+
C
O
0
c B.4 - -
S,
0
2
S ¥.3 1
O
W
0
- @.2 F -
o
= 8.1 :

[<R
o 50 188 158 pag% %] 258 300
t [seconds] elapsed ftime

Figure 8.9: Efficiency of bulk shipping.

72 CHAPTER 8. PERFORMANCE MEASURES

Figure 8.8 shows the study of the comparative efficiency of indi-
vidual and bulk shipping for LH* atomic splitting (non-concurrent), as
described earlier. The curves plot the insert time T'3'(¢) measured at ¢
seconds during the constitution of the test file by a single client. A bulk
message contains at most all the records constituting an LH-bucket to
ship. In this experiment there are 14 records per bulk on the average.
A peak corresponds to a split in progress, when an insert gets blocked
till the split ends.

The average insert time beyond the peaks is 1.3 msec. The corre-
sponding T'’s are barely visible at the bottom of the plots. The indi-
vidual shipping, shown in Figure 9a, leads to a peak of Tt = 7.3 sec.
The bulk shipping plot, Figure 8.9, shows the highest peak of T7 = 0.52
sec, 1.e., 14 times smaller. The overall build time T'b(N) also decreases
by about 1/3, from 450 sec (Figure 8.8), to 320 sec (Figure 8.9). The
figures clearly prove the utility of the bulk shipping.

Observe that the maximal peak size was reduced according to the
bulk size. This means that larger bulks improve the access performance.
However, such bulks also require more storage for themselves as well
as for the intermediate communication buffers and more CPU for the
bulk assembly and disassembly. To choose the best bulk size in practice,
one has to weigh all these factors depending on the application and the
hardware used. However, no bulk message contain more that one LLH-
bucket currently, but the LH*LH algorithm can be extened to ship more
buckets!. A more attractive limit is the size of the buffer to be used,
rather than the number of records.

Figure 8.10 shows the results of the study where the bulk shipping
from Figure 8.9 is finally combined with the concurrent splitting. Each
plot T'4(1) shows the evolution of the insert time at one selected client
among k clients; £ = 1..4, 8, concurrently building the example file with
the same insert rate per client. The peaks at the figures correspond
again to the splits in progress but they are much lower. For & = 1, they
are under 7 msec, and for k& = 8 they reach 25 msec. The worst insert
time with respect to Figure 8.9 improves thus by a factor of 70 for
k =1 and of 20 for k = 4. This result clearly justifies the utility of the

1This might not be so attractive, since the algorithm gets to be slightly more
complicated and the bulk messages too big.

8.2. PERFORMANCE EVALUATION

7 T T
< One client @
6 i
v v
C C
[[
w w
[= [=
S S
w w
£ £
3 3
c c
2] 50 180 150 260 258 300
elapsed time [s]
(a) One active client
16 T £ T T
Three clients @
14 ~
5 12 1 @ ®) v
C
o <@ é
4] 18 < - 4]
[= [=
< o, <
g ® . :
3 3
c c
I I
2] 20 48 4] 80 186
elapsed time [s]
(c) Three active clients
25 T T T
Eight clients ¢
5
C
[
w
[=
5 2
£ =
— 1%}
€
=
b

1 1 1 1 1 1
208 30 40 5a 60 ’a

elapsed time [s]

(e) Eight active clients

12 T T T T T
¢ Two clients ¢
10 A
- S
g+ ¢ E
<
@
©
6 Lo N 4
b [®
4 . S 7
b
% b d
P4

) I
2] 28 40 60 88 1886 128 140
elapsed time [s]
(b) Two active clients
16 T T T T T
© Four clients ¢
14 @ © ~
<
12 F N E
o
10 |- ¢ e ° E
L 8 ¢ i
8 Ssa
6
4 kL

I
2] 19 28 3@ 40 50
elapsed time

I
1] 78 80
[s]

(d) Four active clients

clients

(f) Average, std. deviation

Figure 8.10: Efficiency of the concurrent splitting.

74

[ms/insert]

tidty

[ms/insert]

tidty

[ms/insert]

tidty

CHAPTER 8. PERFORMANCE MEASURES

1.65 T

One client

1.15 I I I I

@

50 160 150 200 250

elapsed time [s]

(a) One active client

3.5 T

300

Three clients

@

I
20 40 60 80
elapsed time [s]

(c) Three active clients

8 T
Eight clients

T
@

10 20 30 40 50 60

elapsed time [s]

(e) Eight active clients

[ms/insert]

tidty

[ms/insert]

tidty

Two clients ¢

20 48 60 8@ 1886 128 140
elapsed time [s]

(b) Two active clients

T T T T
Four clients ¢

I I I
38 46 5a 60 ’a 80
elapsed time [s]

(d) Four active clients

Figure 8.11: LH*LH client insert time scalability.

8.2. PERFORMANCE EVALUATION 75

concurrent splitting and our overall design of the splitting algorithm of
LH*LH.

The plots shown in Figures 8.10a to 8.10e show the tendency to-
wards higher peaks of T, as well as towards higher global average and
variances of T over T'u(t), when more clients build the file. The plot in
Figure 8.10f confirms this tendency for the average and the variance.
Figures 8.10d and 8.10e also show that the insert times become espe-
cially affected when the file is still small, as one can see for ¢ < 10 in
these figures. All these phenomena are due to more clients per server
for a larger k. A client has then to wait longer for the service. A greater
k is nevertheless advantageous for the global throughput as was shown
earlier.

Figure 8.10 hardly illustrates the tendency of the insert time when
the file scales up, as non-peak values are buried in the black areas. Fig-
ure 8.11 plots, therefore, the evolution of the corresponding marginal
client insert time Tm". Tm* is computed as an average over a sliding
window of 500 inserts plotted, as can be seen in Figure 8.10. The av-
eraging smoothes the variability of successive values giving the black
areas in Figure 8.10. The plots T'm*(¢) show that the insert times not
only do not deteriorate when the file grows, but even improve. T'm!
decreases from 1.65 msec to under 1.2 msec, and Tm® from 8 msec to
1.5 msec. This satisfactory behavior is due again to the increase in the
number of servers and to the decreasing distance between the clients
and the servers.

The plots show also that T'm*(¢) uniformly increases with k, i.e.

E' > E—=Tm"(t) > Tm" (1),

for every t. This phenomenon is due to the increased load of each server.
Another point of interest is that the shape of T'm* becomes stepwise,
for greater k’s, with insert times about halving at each new step. A
step corresponds to a split token trip at some level . The drop occurs
when the last bucket of level ¢ splits and the split token comes back to
bucket 0. This tendency seems to show that the serialization of inserts
contributing most to a T'm* value occurs mainly at the buckets that
are not yet split.

The overall conclusion from the behaviour illustrated in Figure 8.11
is that the insert times at a client of a file equally shared among &

76 CHAPTER 8. PERFORMANCE MEASURES

clients is basically either always under 2 msec, for £ = 1, or tends to be
under this time when the file enlarges. Again this performance shows
excellent scale-up behavior of LH*LH. The performance is in particular
greatly superior to the one of a typical disk file used in a similar way.
For k& = 8 clients, for example, the speed-up factor could reach 40 times,
i.e., 2 msec versus 8 * 10 msec.

8.3 Curiosity

To test the performance of LH*LH on the Parsytec machine, we made
a large number of batch runs, where numerous different data sets were
collected. Using advanced scripts, we automatically filtered, calculated
different scaleup curves, and finally plotted them to files. Many of the
plots contain so many measure points that gif-files had to be used in-
stead of postscript drawings, which decreased the size of such a plot
from around 1 MB to 30 KB.

During the process of analyzing the data the AMOS sys-
tem [FRS93] was experimentally used. Data was imported and the
AMOSQL [KLR*94] query language could be used to construct plots
on-the-fly. As an example of such a query, we plot the throughput curve
from 1 server to 8 servers:

create function Speed(Measure m)->real as
select operations(m)/Elapsed(m);

plot((select servers, maxspeed
for each integer servers, real maxspeed
where maxspeed =
maxagg (Speed (FSer(servers,
FQM("W",
FPC(32,
Measures())))))
and servers = iota(1l, 8),
"X-Servers, Y-MaxSpeed, Write, PC=32");

8.4. CONCLUSION 7

First, we declare a derived function Speed(measure) that takes
a measure point and calculates the number of operations(measure)
per second Elapsed(measure). Then we plot (bag of <x,y>, header
string). The actual plotting is done by automatically calling the gnu-
plot program. The bag of tuples <x,y> is constructed through an
AMOSQL query, where server is the number of servers, plotted along
the x-axis, and maxspeed is the maximum Speed for that number of
servers writing “(FQM("W", ...))”, using 32 nodes “(FPC(32, ...))".

8.4 Conclusion

Switched multi-computers such as the Parsytec GC/PowerPlus are
powerful tools for high-performance applications. LH*LH was shown
to be an efficient new data structure for such multi-computers. Per-
formance analysis showed that access times may be in general of the
order of a millisecond, reaching 0.4 msec per insert in our experiments,
and that the throughput may reach thousands of operations per second,
over 2700 in our study, regardless of the file scale-up. An LH*LH file can
scale-up over as much of distributed RAM as available, e.g., 2 Gbytes
on the Parsytec, without any access performance deterioration. The ac-
cess times are in particular an order of magnitude faster than one could
attain using disk files.

Performance analysis also confirmed various design choices made
for LH*LH. In particular, the use of LH for the bucket management, as
well as of the concurrent splitting with the dynamic split control and
the bulk shipping, effectively reduced the peaks of response time. The
improvement reached a thousand times in our experiments, from over
Tsec that would characterize LH*, to under 7 msec for LH*LH. Without
this reduction, LH*LH would likely to be inadequate for many high-
performance applications.

78

CHAPTER 8. PERFORMANCE MEASURES

Chapter 9

LH*LH Implementation

We will now go through the inner workings in the data server and the
data client. This involves how messages are sent, addressed, received
and then dispatched to the actual data structure. We start with the
initialization of the system, and then we describe the client. As far as
the client is concerned we discuss what it does, why and how. Then
we turn to the server continuing the discussion. Communication choic-
es are explained mainly in the Parsytec environment. We will briefly
mention experience from an early implementation in the PVM environ-

ment [MSP93], too.

9.1 The System Initialization

The first thing that is done during the initialization of the system is
that the nodes calculate their logical machine address. This is current-
ly an integer number; in a larger environment this would require a
mapping from this number to a more physical number, for example an
[P-address. In PVM a simple protocol is used to calculate this num-
ber in a negotiating processes with the other nodes, whereas on the
Parsytec the number is given by the operating system. This number is
not directly used by the LH*LH data structure but instead there is a
mapping for each LH*LH file from a logical data server number to a
(machine) node logical number. This is referred to as Server Mapping.
How such mappings can be implemented is discussed in Section 9.4.

79

80 CHAPTER 9. LH*LH IMPLEMENTATION

In the Parsytec environment, during this phase we set up commu-
nication links between all nodes in all directions. This to be able to use
the fastest means of communication. There are actually two links set
up in both directions. One for request and data communication, and
one for control messages. Examples of control messages include forcing
a split to a new server, and counting the servers. The reason for this
is that some messages should have a higher priority, and there is no
way to receive these, in a simple way, on a link without accepting all
messages and then having to store them. The control messages are al-
ways checked and executed first, and they should be sparse compared
to other communication. This also allows us to receive request and data
messages with entry control flow, implemented using a limited receive
buffer. This means that the server node can hold a limited number of
received requests in a queue and process them one by one. It not only
allows smoother operations on the client side if a server at some point of
time happens to receive more requests than usual, but it also prohibits
overloading a server.

Experience shows that, for example the PVM communication pack-
age has no other limit than available memory on the amount of mes-
sages it will receive without the receiver program code asking for any
messages. This 1s not good for several reasons. First, memory overflow
can easily occur at the receiver when clients are sending requests faster
than the server can handle them. Second, the probability that clients
at a node send messages to the wrong server increases since the IAM
will not be sent before the server has handled the request. In the PVM
environment there are no guarantees that any communication blocks';
the PVM communication package may (and so it did) receive messages
till it exhausts memory, even if the program at the receiving end does
not ask for any messages, i.e., executes a receive operation; this also
increased the number of IAMs since requests queued up.

Both of these aspects are implemented in an interchangeable layer
where the specific code for a machine and operating system environment
resides.

It is currently assumed that all the data clients and data servers run

IThat is, the send operation returns only when the data has been received at
the other end, e.g. synchronous communication.

9.2. THE DATA CLIENT 81

on “equal” computers. By this we mean that they form a networked
multi-computer, that is, a homogeneous environment as regards com-
munication software and libraries. However, to be able to work in a
heterogeneous environment is just a matter of changing a well-defined
layer in the software in such a way that it behaves compatibly.

9.2 The Data Client

A data client is an execution thread. It accesses data stored on clusters
of data servers in (LH*LH) files and this can be extended to other dis-
tributed (scalable) datatypes as well. Several data clients can cooperate
in fulfilling the same goal, i.e. a search can be split by a program into
several data clients that use the data client interface that then access,
process and collect the information and then send it to the requester.
There can be several data clients on one node using different threads.
All these can then jointly benefit from the same Image Adjust Messages
that other data clients at the same node received.

The data client uses the Data Client Interface with which it can
access any LH*LH file stored in the network computer. A file is iden-
tified by a TableID and a ServerList; the latter contains the Server
Mapping mentioned earlier, and the former is a unique integer number
that identifies the distributed file. When a file is opened, a pointer to a
handle structure is returned. This handle identifies the file and stores
the current client image state of that file. Thus, if the same handle for
the file is used by more than one client thread, the updates will bene-
fit all of them. This handle is then used in all calls to the data client
interface.

9.2.1 Function Outline

When a client performs an insert operation on a file, the following
operations will occur internally in the data client interface. First, the
pseudo-key is calculated using a hashing function. Using the pseudo-key
and the client image for that file which is stored in the data accessible
through the file handle, the client calculates the logical number of what
it believes is the appropriate data server that should store the data.

82 CHAPTER 9. LH*LH IMPLEMENTATION

This number is then mapped to the machine node number. A message
is then assembled containing the identity number of the file, the key,
the data as a blob of bytes, its associated size in number of bytes, and
the client image?. This message is then directly sent to the calculated
destination server.

In the Parsytec environment the synchronous communication and
our entry flow control ensure that the message will not be transferred
before the server actually issues a receive. After the message has been
received by the calculated destination server, the data client code di-
rectly returns to the caller if it was an insert operation. Otherwise, if
the operation requires an answer from a server, it blocks and awaits the
message. It returns when the answer is received. The client can then
directly issue a new operation on the distributed file. Several client
threads can individually communicate with the file without disturbing
each others’ operations.

9.2.2 Image Adjust Messages

The client image variables should be adjusted when the client makes
an addressing error. It is the responsibility of the LH*LH file servers
to send a message that corrects the client. In LH* this message is sent
by the final receiving server when it identifies the that the message has
been forwarded to it. However, in LH*LH we have chosen to let a server
that forwards the request also send the update message to the client.
There are some advantages and disadvantages with this approach. The
number of image adjust messages (IAMs) will increase for new clients,
since forwarding can occur a couple of times and each of them will yield
anew [AM. On the other hand, since each forwarding takes a while, the
client will get the message back and can then adjust its image before the
final recipient server has processed the request, thus the next request of
a highly active node will use a more appropriate destination. This will
not only reduce the delay before the client gets a more updated image,
it can also increase the throughput of the clients on the same node
when more servers are employed, and thus the whole distributed file
will benefit from this. The individual servers then become less loaded

2 Actually in our case only the level of the LH*LH file is sent.

9.2. THE DATA CLIENT 83

and forwardings can be avoided. A possibly more serious drawback is
that the client has a better image of the file before its previous request
has reached its final destination®. However, the same thing can occur,
even if the IAM is sent only when the request has reached its final
destination®. To avoid this problem, the servers could be required to
always send back an acknowledge message when the operation has been
totally completed, and then requiring the clients to wait for it. This
is, however, an inefficient solution that limits the throughput of the
clients, and still the same problem can occur between different clients
performing joint work.

In LH* it is proposed to send the IAM piggy-backed on the reply mes-
sage, which is not done in LH*LH where we do not use reply messages
when there is no data to be returned®. The TAM message is sent using
asynchronous communication primitives on the Parsytec Machine. This
solves some problems, but can also raise others as discussed below. The
encoding of an TAM also includes the file identity number. This enables
the data to be directed to the appropriate client file image.

Waiting for a message

When using the communication links on the Parsytec, there is no way
when receiving or waiting for messages to choose among messages or
probe messages before they have been received. The link is a communi-
cation channel that works like a pipe in that messages can be sent from
one originator only to the other end, the destination. A client accessing
data on an SDDS will by neccessessity have to expect answers from
any® sender. The result is that it has to listen to all links and receive
all messages to actually get the message it is waiting for. To avoid this,
and to be able to code a message so that it can be selected, one has

3For example, a client inserts some data. This yields an TAM that is sent back
to the client. The client sends a request for the same data, but to a more correct
address, we are now not guaranteed that the data has been inserted at this address.
It could have been delayed, and still be waiting to be forwarded.

*The actual scenario is similar to the previous one, but involves another request.
This request is sent before the search, and triggers an TAM. If the previous insert
still has not reached its destination, the search may produce an unexpected result.

SRemember that the link communication on the Parsytec is safe.

6At least from any server.

84 CHAPTER 9. LH*LH IMPLEMENTATION

either to explicitly code a two-way communication protocol that ne-
gotiates by sending extra information or set up a communication link
especially for this type of messages. The latter was our choice of im-
plementation. Each link requires a certain amount of buffer space and
will thus be associated with some cost. The total number of links to be
established will then be linear with respect to the number of different
message types and quadratic to the number of nodes. One alternative
on the Parsytec is to use the mailbox communication primitives. They
are, however, not guaranteed to be delivered, limited in size and slow.
But they are an alternative when the number of messages is relatively
small, their sizes limited, and when the loss of one individual message
will not cause any real harm. This is the case for the I[AMs.

9.2.3 Suggested Improvements

When a file is opened, the handle returned should be a handle to the
already existing structure, if the file has already been opened. This
is, however, just a matter of programming style since the variables
containing the handles can be shared or copied.

A key is currently limited to be a null-terminated character string.
The hash function calculating the pseudo-key is fixed. It should be
definable per file, the data type of the key and what hashing function
to use.

For efficiency one would like to send the already calculated pseudo-
key in any request having a key. But we choose not to do so, hoping to
keep the interface more general. This makes the interface independent
of the actual data distribution algorithm. A counter-example is an RP*
file that has no “pseudo-key”.

Data flow control is hardware/software dependent. On the Parsytec
this is enforced by the synchronous link messaging primitives, which
probably has a two-way negotiation communication phase, since the
message is not received before the receiver asks for it. Generally, in
environments such as TCP/IP (sockets or using PVM) we would have
to do this ourselves.

The information in the client image that is sent in a request can, as
noted, be reduced in some cases. In the LH* algorithm only the level
is transferred by the client, and in an image adjust message (IAM) the

9.3. THE SERVER 85

logical number of the file server is also included. From this information
the state, as far as the server knows it”, can be reconstructed by the
client.

An alternative to using the asynchronous communication on the
Parsytec machines is to use the control messages link. This should be
relatively safe, since the number of IAMs will be limited. This, however,
requires the receiver code to know of where to store the information
from the IAMs and that it has to keep track of all file handles and their
associated data.

9.3 The Server

The data servers store the distributed files. A subset of the data servers
cooperate in storing one file. That is, there is one subset of nodes for
each file and a specific order of them is called a server mapping that
maps from local logical server numbers to physical numbers.

9.3.1 Function Overview

The data server works on messages initiated by a data client. Messages
in our Parsytec implementation can be received on either of two links.
When a message has been received, an event handler extracts the type of
the message. This type that is represented as a number is then used for
looking up in a table what function is to be called. The given function
is then called. Let us for example assume that we received a Find typed
message. Then the receiver message-handler function is called with the
message buffer as its argument. From this buffer it extracts the key, the
data and its associated length and the client image. First, the handle of
the bucket stored at this server is retrieved. If such a handle is not found,
there is an error in the client addressing mechanism®. Then a check is

“The server in LH* does not know the actual state of the file, it can only assume
that logical servers with a smaller number are of at least the same LH* level as
itself, and servers with a higher number can only be assumed to be of a level no
higher than itself, presplitting not taken into account.

81t might also occur if a distributed file has shrunk and thus the server no longer
stores a part of that file. In this case, forwarding information should have been left
behind at the node to be used to direct the clients and send them a “special”, sort

86 CHAPTER 9. LH*LH IMPLEMENTATION

made as to whether or not the key hashes to this or another server node.
This checks the client’s image and if it is not the correct server, it will
forward the message and send an TAM to the client that requested the
operation; then this request is no longer of concern to the server that
received it. Eventually, the message will reach the appropriate data
server node. When it has been shown that the request concerns the
data server that received the request, processing continues there.

LH*LH Workings

Before data normally would be inserted in LH*LH, the server first has
to check that it is not currently splitting the file that the request is
accessing. If that file 1s being split, the request might have to be sent,
forwarded, to the new server. If so it must be done without updating
the client, since the official image of the file does not yet include the
splitting destination. In a more general perspective this goes well in
hand with the discussion of the presplitting of servers that is presented
in [LNS93]. If the file undergoes a split, the key is then checked for
whether it would need access to that part of the file that has already
been moved. If this is the case, the request is forwarded without ad-
justing the client’s image; nor should the receiving server send an [AM
to the clients image®. Otherwise, if the data concerns L.H-buckets that
have not yet been sent, then this data can then be inserted locally into
the storage structure.

The tricky part here involves requests that concern data in the LH-
bucket currently being moved. If key uniqueness applies, i.e., only one
object can be stored for each key, some operations must be handled
with care. If an object can be found locally using the key, we overwrite
as usual, otherwise we insert it. When this object is shipped to the new
server, the same action will take place!®. Look-ups, however, must first

of reverse, TAM.
°Tt will automatically be updated on the next addressing fault, when the official
image of the file has changed.

10 Actually, data identified by a key could be overwritten several times during the
splitting. Either several clients send their request close in time, or some client sends
a stream of updates. Then the old data will be overwritten first locally, then when it
has been moved, the second insert will not overwrite any data, but it will overwrite
later when it is moved. Which of these overwrite inserts that in the end will survive

9.3. THE SERVER 87

look in the local data; if a matching key is found we return it, otherwise
the request 1s forwarded to the new server. Deletions are special. We
have to delete locally and then forward the request, since we do not
have any knowledge about the existence of the data at the new server.
If several objects can be stored with the same keys, i.e., it is used as
a secondary index, inserts can be made locally; they will be moved
later in any case. Look-ups, on the other side have to perform look-up
first locally and, independently of the result, forward the request to the
new server and then execute it there. Here another complication arises
— both the splitting server and the new server might have matching
data. Then both have to return the answers to the requesting client,
which puts higher demands on the implementation on the client which
has to be able to receive partial answers from several servers! A more
simplistic alternative is to delay the look-up operation until the whole
LH-bucket has been transferred, and thereafter forward the request!!.
Deletions will also have to be executed at both places. When data is
shipped in the non-unique key variant, it may not overwrite any of the
already existing data that matches the key.

It is very important that when forwarding to the new server occurs,
no IAM is sent and that when the reply returns to the client, the client
does not update its image, even if the client could deduce from the
responding server’s number that there is (at least) one more server
that it does not know about. Our clients only update themselves using
information from IAMs. The new server is not allowed to handle any
requests from any client regarding the file that is being expanded onto
that server. This would bypass the LH*LH concurrency algorithm.

Another important aspect during splitting is the order of the opera-
tions and forwardings that we perform. We have to ensure that there is a
linearity in time between the forwarding and the shipping of data. This
means that we have to assume either that messages are handled at the
new server in the order that they arrive and that this is the same order

as they were sent from the splitting server'?, or we do this linearization

depends on the order that they arrive in at the splitting server.

ATl requests should be queued then and forwarded in the correct order. The
success of this method depends heavily on the time 1t takes to transfer one LH-
bucket.

12This means that there has to be full control over or full guarantees on the

88 CHAPTER 9. LH*LH IMPLEMENTATION

ourselves. We take the latter approach. There is a special thread that
does the splitting; this thread processes any waiting requests to the
data server in-between the shipping operations. Thus messages will be
serialized, and sent over the same links. This will guarantee that the
order of the messages we send will be preserved at the new server. This
solution removes any concurrency problems, but relies on a local queue
of requests to be built from requests instead of executing them directly.

9.3.2 Suggested Improvements

When a server receives a request, a check is made as to whether or
not it has reached its destination, according to the server itself. If so
the LH* algorithm normally does not assume this to be an address-
ing problem and therefore does not send any I[AM. However, from the
information given by client image level, it might be deduced that the
client needs updating, and the server could then issue an IAM even if
there was no addressing error. This, however, is not part of the original
LH* algorithm but fits quite well with the LH*LH algorithm and its
updating and forwarding mechanism.

When a request is answered by a new server, that is not yet offi-
cially part of the distributed file, no IAMs are allowed to be sent that
could inform the client to know about this new server. One way to
implement this, is by masquerading the answer, which means making
the server fake its node number to be the same as the server that is
splitting. Another solution is to ensure that the clients do not use this
information. In either case, no client should be able to send requests
to the new server before the shipping is finished at the splitting serv-
er. The third, and probably the most secure implementation, would let
the server that is splitting act as a proxy for the client and send the
request and return the data to the client. This would involve one step
of unnecessary communication.

order that messages are assembled, buffered, stored, sent, transferred, received, and
stored.

9.4. SERVER MAPPING 89

9.4 Server Mapping

The Server List contains the means for mapping the logical server node
number of the SDDS, in this case that of the LH*LH-file, to a physical
machine number. The LH* algorithm does not concern itself with it.
Some ideas are, however, presented in [LNS96]. In LH*LH we currently
use a static table, known by all nodes in the multi computer. But the
management and distribution of this table itself is a problem potentially
of high proportions. Fach client accessing the SDDS and each server
storing the SDDS has to be able to do this mapping. One easy solution
is to state that this mapping table will not grow too large and can
therefore be stored at each participating server. When a client makes
an addressing error, the missing information could be added to the
IAM (Image Adjust Message) and then update the client. This solves
the problem of just having a central node storing and delivering the
map on request, but it would be a non-scalable solution since the actual
allocation of nodes does not scale. This particularly concerns cases when
the clients are many and possibly short-lived.

Changes in the mapping will either have to be distributed to the
affected clients and server, or using an SDDS-like schema be updated by
the (old) server receiving the faulty request. One idea, untested though,
is to add another image variable that somehow is a “unique” id of the
mapping it has (a simple solution would be a checksum of the mapping
data), and if a server detects that the “image” is out of date, it then
adjusts it with an TAM, adding the new mapping. If the client accesses
a server that no longer has any knowledge of the accessed SDDS file,
it can then use a fallback scheme that shrinks the image level by level,
till only, in the end, the logical server 0 is contacted. If this fails the
client has to “Reopen” the file '*. Reopening the file might have to use
a directory service for finding the SDDS file from its ID.

9.4.1 Autonomous “randomized” mapping

Another idea is to not have the server list fully materialized, but in-
stead use a scheme where the mapping is calculated in a stable and

13 Accessing a SDDS file requires knowledge at least of the first server’s physical
address.

90 CHAPTER 9. LH*LH IMPLEMENTATION

reproducible way. This can be done both at the clients and server to-
tally independently. If there are a limited number of machines that can
be used and a large amount of files to be stored, a randomizing schema
could be used for allocation of new server nodes to the file. This might
also provide benefits of randomized load balancing, assuming random
creation and growth of the stored files.

Thus, the server list can be seen as a data structure with operations
that can reproduce the actual mapping. This is especially needed in a
large distributed autonomous environment with many nodes. An exam-
ple of such an algorithm would be a randomizing function with a seed
specific for the distributed file (the id, for example), and with a list of
servers participating that are willing to participate in the distribution.
It is known that most randomizing functions are not really random.
With the same seed the same sequence of numbers can be reproduced;
these numbers (usually between 0 and 1) can then be used to remove
identities of willing (unused) nodes from the list of all nodes. All clients
(and servers) using the same function, seed and so on. will then yield
the same sequence. The possibly unwanted property of this method is
that this list of “willing” servers has to be maintained or allocated.
However, the algorithm does not require a total static list, it can be
allowed to grow in chunks and communication can then be minimized.

9.4.2 DNS alike mapping (internet)

Another, more appealing method for internet distribution can be to
use the internet DNS databases that provide mapping from a logical
name to a physical ip-address. For example, we could register a domain
Ihih.ida.liu.se under which we let each LH*LH-file be identified by, for
example, a unique name, let us say film. We then let the first node (logi-
cal node numbered zero) in this LH*LH-file be 0.film.lhih.ida.liu.se and
the second 1.film.lhlh.ida.liu.se and so on. This provides physical inde-
pendence, it also scales since the DNS servers employ caching. However,
the drawback with this schema is that when the nodes then move, it
may take a rather long time before this information reaches out through
the distributed database'*.

14Tt may take from a few hours to some days depending on the software used.

Chapter 10

Summary and Future Work

10.1 Summary

In this thesis, we started by describing databases and future applica-
tion that will use database technology. We identified the need of high-
performance, scalability and high availabilty, and this led up to parallel
data servers. Dynamic (re-)scalability is achieved by using the new type
of data structures, the Scalable Distributed Data Structures (SDDSs).
We have described a real implementation of an SDDS, the LH*LH. The
behaviour of LH*LH was studied and performance measures were giv-
en. It was shown that the local bucket management is an important
issue for implementation of high-performance SDDSs. Several thoughts
around the implementation and details of problems involved were dis-
cussed. Also, potential areas of problems have been identified.

10.2 Future Work

Future work should concern a deeper performance analysis of
LH*LH under various conditions. The use of SDDSs in a transactional
environment with several interfering autonomous clients working is a
particular interesting area. A formal performance model is also need-
ed. In general such models are not yet available for the SDDSs. The
task seems of even greater complexity than for more traditional data
structures. Also, if the algorithm is to be used for more than one file, a

91

92 CHAPTER 10. SUMMARY AND FUTURE WORK

different physical mapping (e.g. randomization) to the nodes should be
used for each file to distribute the load. Several different solutions could
apply here, but this is an open area. The handling of the list of partici-
pating servers for a SDDS-file also needs to be scalable, and this needs
further investigation. The ideas put into the LH*LH design should also
apply to other known SDDSs. They should allow for the correspond-
ing variants for switched multi-computers. One benefit would be scal-
able high-performance ordered files. The SDDSs in [LNS94], or [KW94]
would seem to be a promising basis on which to aim for this goal.

A particularly promising direction would be the integration of
LH*LH as a component of a DBMS. One may expect important perfor-
mance gains, opening to DBMSs new application perspectives. Video
servers seem to be a favorable axis, as it is well known that major DBMS
manufacturers are already investigating switched multi-computers for
this purpose. The complex real-time switching data management in
telephone networks seems to be another domain of interest.

Having a rich set of modeling capabilities in newer database systems,
such as object-orientation, gives rise to other questions. Are objects and
their attributes to be stored differently depending on their position in
the object-type hierarchies? How do we store what objects in an SDDS
file? How does this relate to object-oriented querying? User defined
predicates? As can be seen there are many interesting issues that will
arise.

10.2.1 Host for Scientific Data

To approach these goals, we plan to make use of the implementation
of LH*LH for high-performance databases. We will interface it with
our research platform, AMOS [FRS93], which is an extensible object-
relational database management system with a complete query lan-
guage [KLR*94]. AMOS would then reside on an ordinary workstation,
whereas some data types, relations or functions would be stored and
searched by the MIMD machine. AMOS will then act as a front-end
system to the parallel stored data. The query optimization of AMOS
will have to be extended to also take into account the communication
time and possible speed-up gained by using distributed parallel pro-
cessing. SDDSs other than LH* are also of interest for evaluation, a

10.2. FUTURE WORK 93

new candidate being the RP* [LNS94] that handles ordered data sets.

94

CHAPTER 10. SUMMARY AND FUTURE WORK

Bibliography

[AvdBF*t92] Peter M. G. Apers, Carel A. van den Berg, Jan Flokstra,

[BAC*90]

[BCVI1]

[BD83]

[BM72]

Paul W. P. J. Grefen, Martin L. Kersten, and Annita N.
Wilschut. PRISMA /DB: A Parallel Main Memory Re-
lational DBMS. [EFEE Transactions on Knowledge and
Data Engineering, 4(1):541-554, February 1992.

H. Boral, W. Alexander, L. Clay, G. Copeland, S. Dan-
forth, M. Franklin, B. Hart, M. Smith, and P. Valduriez.
Prototyping Bubba, A Highly Parallel Database System.

IEEE Transactions on Knowledge and Data Engineering,
2(1):4-24, March 1990.

B. Bergsten, M. Couprie, and P. Valduriez. Prototyping
DBS3, a Shared-Memory Parallel Database System. In
Proceedings of First International Conference on Paral-
lel and Distributed Information Systems, pages 226-234,
Miami Beach, Florida, December 1991.

H. Boral and DeWitt. Database Machines: An Idea
Whose Time Has Passed? A Critique of the Future
of Database Machines. In International Workshop on
Database Machines, volume 3, pages 166-187, Munich,
1983.

Rudolf Bayer and Edward M. McCreight. Organization
and Maintenance of Large Ordered Indices. Acta Infor-
matica, 1:173-189, 1972.

95

96

[CGK*90]

[Cor88|

[CRDHWT74]

[Dev93]

[DG92

[DGG*86]

[Dou90]

[Du84]

[FIP90]

BIBLIOGRAPHY

D. Chimenti, R. Gamboa, R. Krishnamurthy, S. Naqvi,
S. Tsur, and C. Zaniolo. The LDIL System Prototype.

IEEE Transactions on Knowledge and Data Engineering,
2(1):76-89, March 1990.

Teradata Corporation. DBC/1012 data base computer
concepts and facilities. Technical Report Teradata Doc-
ument C02-001-05, Teradata Corporation, 1988.

R. H. Canady, J. L. Rydery R. D. Harrisson, E. L. Ivie,
and L. A. Wehr. A back-end computer for data base
management. Communications of ACM, 17(10):572-582,
October 1974.

R. Devine. Design and implementation of DDH: A dis-
tributed dynamic hashing algorithm. 1In Procedings of
the 4th International Conference on Foundations of Data

Organization and Algorithms (FODO), 1993.

David DeWitt and Jim Gray. Parallel Database Sys-
tems: The Future of High Performance Database Sys-
tems. Communications of the acme, 35(6):85-98, 1992.

D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar,
and M. Muralikrishna. GAMMA: A high performance
dataflow database machine. In Procedings of VLDB, Au-
gust 1986.

B. Dougherty. Telco’s Strategic Importance in Tandem’s
Success. Industry Viewpoint, 1990.

H. C. Du. Distributing a database for parallel process-
ing is np-hard. ACM SIGMOD Rec., 14(1):55-60, March
1984.

J. C. French, A. K. Jones, and J. L. Pfaltz. Summary
of the Final Report of the NSF Workshop on Scientif-
ic Database Management. In SIGMOD Record, volume
19:4, pages 32-40, December 1990.

BIBLIOGRAPHY 97

[FRS93]

[IEE92]

[KLR*94]

[KLRO6]

[KTMOS84]

[KW94]

[Lar78]

[Lar88]

[LER92]

G. Fahl, T. Risch, and M. Skold. AMOS - An Ar-
chitecture for Active Mediators. In [EEE Transactions
on Knowledge and Data Engineering, Haifa, Israel, June

1993.

IEEE. [FEE Standard for Scalable Coherent Interface
(SCI). TEEE, 1992. http://www.SClzzL.com/.

J. S. Karlsson, S. Larsson, T. Risch, M. Skold,
and M. Werner. AMOS User’s Guide. CAE-
LAB, IDA, IDA, Deptartment of Computer Sci-
ence and Information Science, Linkoping University,
Sweden, memo 94-01 edition, March 1994. URL:
http://www.ida.liu.se/labs/edslab/amos/amosdoc.html.

Jonas S Karlsson, Witold Litwin, and Tore Risch.
LH*LH: A Scalable High Performance Data Structure for
Switched Multicomputers. In Advances in Database Tech-
nology — KEDBT 96, pages 573-591, Avignon, France,
March 1996. Springer.

M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Archi-
tecture and performance of relational algebra machine
GRACE. In Procedings of the Intl. Conference on Paral-
lel Processing, Chicago, 1984.

B. Kroll and P. Widmayer. Distributing a Search Tree
Among a Growing Number of Processors. In ACM-
SIGMOD International Conference On Management of
Data, 1994.

P.A. Larson. Dynamic hashing. BIT, 18(2):184-201,
1978.

P.A. Larson. Dynamic hash tables. In Communications

of the ACM, volume 31(4), pages 446-57. April 1988.

Ted G. Lewis and Hesham El-Rewini. [Introduction to
Parallel Computing. Number ISBN 0-13-498916-3. Pren-
tice Hall, 1992.

98

[Lit80]

[Lit94]

[LNS93]

[LNS94]

[LNS96]

[LRS5]

[MSP93]

[N3s93]

[Ors96]

BIBLIOGRAPHY

W. Litwin. Linear Hashing: A new tool for file and ta-
ble addressing. Montreal, Canada, 1980. Procedings of
VLDB.

W. Litwin. Linear Hashing: A new tool for file and table
addressing. In Michael Stonebraker, editor, Readings in
DATABASE SYSTEMS, 2nd edition, pages 96-107. 1994.

W. Litwin, M-A Neimat, and D. Schneider. LH*: Linear
hashing for distributed files. ACM SIGMOD Internation-
al Conference on Management of Data, May 1993.

W. Litwin, M-A Neimat, and D. Schneider. RP*: A Fam-
ily of Order Preserving Scalable Distributed Data Struc-
tures. VLDB Conference, 1994.

W. Litwin, M-A. Neimat, and D. Schneider. LH*: A Scal-
able Distributed Data Structure. ACM-TODS Transac-
tions on Database Systems, Dec. 1996.

M. D. P. Leland and W. D. Roome. The silicon database
machine. In Procedings 4th International Workshop on
Database Machines, pages 169-189, Grand Bahama Is-
land, March 1985.

A. Matrone, P. Schiano, and V. Puotti. LINDA and
PVM: A comparsion between two environments for paral-
lel programming. Parallel Computing, 19:949-957, 1993.

Joakim Nas. Randomized optimization of object-oriented
queries in a main memory database management system.
Master’s thesis, Department of Computer Science and In-
formation Science, Linkoping University, 1993.

Kjell Orsborn. On Fzxtensible And Object-Relational
Database Technology for Finite Element Analysis Appli-
cations. Dissertation no. 452, Department of Computer
Science and Information Science, Linkoping University,

1996.

BIBLIOGRAPHY 99

[OVI1] M. Tamer Ozsu and Patrick Valduriez. Principles of Dis-
tributed Database Systems. Number ISBN 0-13-715681-2.
Prentice Hall, 1991.

[Par94] Parsytec Computer GmbH. Programmers Guide, Parix
1.2-PowerPC; 1994.

[Pet93] M. Pettersson. Main-Memory Linear Hashing - Some
Enhancements of Larson’s Algorithm. Technical Re-
port LiTH-IDA-R-93-04, ISSN-0281-4250, Department of
Computer Science and Information Science, Linkoping
University, 1993.

[PGKSS| David A. Patterson, Garth A. Gibson, and Randy H.
Katz. A Case for Redundant Arrays of Inexpensive Disks
(RAID). In ACM SIGMOD International Conference on

Management of Data, pages 109-116, Chicago, [llinois,
USA, June 1988. SIGMOD.

[SAPT96] M. Stonebraker, P. M. Aoki, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. MARIPOSA: A Wide-Area Dis-
tributed Database System. VLDB Journal, 5(1):48-63,

January 1996.
http://epoch.CS.Berkeley. EDU:8000/mariposa/papers /s2k-
95-63.ps.

[Sko94] Martin Skold. Active Rules based on Object Relational

Queries — Efficient Cange Monitoring. Licentiate thesis
no. 452, Department of Computer Science and Informa-
tion Science, Linkoping University, 1994.

[SKPO88] M. Stonebraker, R. Katz, D. Patterson, and J. Quster-
hout. The Design of XPRS. In VLDB Conference, vol-
ume 14, pages 318-330, Los Angeles, California, 1988.

[SM96] Michael Stonebraker and Dorothy Moore. Object-
Relational DBMSs: The Next Great Wave. Number ISBN
1-55860-397-2. Morgan Kaufmann Publishers, INC., San

Francisco, California, 1996.

100

[SPWOO]

[Ste94]

[Tan87]

[Tor95]

[WBWO4]

[Wer94]

[Wer96]

BIBLIOGRAPHY

C. Severance, S. Pramanik, and P. Wolberg. Distributed
linear hashing and parallel projection in main memory
databases. In Proceedings of the 16th International Con-
ference on VLDB, Brisbane, Australia, 1990.

W. Richard Stevens. TCP/IP lllustrated Volume 1.
Addison-Wesley, 1994.

Tandem. Nonstop sql - a distributed high-performance,
high-availability implementation of sql. In Procedings
International Workshop on High Performance Transac-
tion Systems, pages 337-341, Asilomar, Calif., September
1987.

Dystein Torbjgrnsen. Multi-Site Declustering Strategies
for Very High Database Service Availability. Phd-thesis
1995:16, Department of Computer Systems and Telemat-
ics, Faculty of Electrical Engineering and Computer Sci-
ence, Norwegian Institute of Technology, University of
Trondheim, Norway, 1995.

R. Wingralek, Y. Breitbart, and G. Weikum. Distributed
file organisation with scalable cost/performance. In Proc

of ACM-SIGMOD, May 1994.
Magnus Werner. A Client-Server Interface for AMOS.

Caelab memo, IDA, Department of Computer Science
and Information Science, Linkoping University, 1994.

Magnus Werner. Multidatabase Integeration using Poly-
morphic Queries and Views. Licentitate thesis no 546,
Department of Computer Science and Information Sci-
ence, Linkoping University, 1996.

