
Integration of Heterogeneous Data Sources with

Limited Capabilities in the Object-Oriented

Mediator Engine AMOS II

Jörn Gebhardt
Laboratory for Engineering Databases, Linköping University, Sweden

September 1999

Abstract

Information becomes a more and more valuable asset in today’s organiza-
tions. Therefore the need of creating an integrated view over all available
data sources arises. Several technical problems must be overcome in the de-
sign and implementation of a system for integrating different data sources. To
the main obstacles count autonomy, data heterogeneity and different query
capabilities of the repositories.

This thesis presents the data integration system AMOS II , which is based
on the wrapper-mediator approach. The main focus of this work lies on data
model transformation and query processing. The following extensions to the
AMOS II system are described in this thesis:

• A framework for transforming various data models into the object-
oriented model of AMOS II is presented.

• The roles and tasks of wrappers are described. In particular their par-
ticipation in query processing and query optimization is discussed.

• A way for describing and utilizing the query capabilities of the different
data sources is proposed.

• Two different approaches to query processing over external data
sources are developed and analyzed.

All the proposed techniques are implemented in the AMOS II system, which
runs on a Windows NT platform.

i

ii

Acknowledgments

Foremost, I would like to thank my supervisor, Professor Tore Risch, for
all the fruitful discussions and all his support. He always had time for me
when I needed his help and his enthusiasm gave me a lot of motivation. He
created an atmosphere of trust and openness in the laboratory that helped
me to succeed with my work and to enjoy doing it. I am also grateful to
all the other members of the EDSLAB research group. Especially I want
to thank Timour Katchaounov for all his patience and support. He was
always willing to answer all my annoying questions and got never angry
about my disruptions. Furthermore, I want to thank Vanja Josifovski for
great discussions during all times of the day. Those conversations usually
inspired me to develop new theories.

Furthermore, I want to thank Professor Peter Lockemann and Jutta
Mülle, both from the University of Karlsruhe, who enabled my stay in Swe-
den in the first place.

And last but not least I want to thank my closest family for the generous
support and gentle care during my six years of studies. They let me go my
own ways, and I always knew that they were there for me when I needed
them. I also thank my father Dr. Friedrich Gebhardt for the careful proof-
reading of the second and third chapter.

iii

iv

Contents

1 Introduction 1

2 Overview of the AMOS II System 5
2.1 System Structure . 5
2.2 Data Model . 7

2.2.1 Objects . 7
2.2.2 Types . 7
2.2.3 Functions . 8

2.3 Query Language . 10
2.4 Query Processing in AMOS II 11

2.4.1 Object Calculus Generation 13
2.4.2 Object View Resolution 13
2.4.3 Calculus Optimization 14
2.4.4 Query Decomposition 15
2.4.5 Single Site Algebraic Optimizer 21
2.4.6 Algebra Execution . 21

3 Integration of External Data Sources 25
3.1 Wrappers in AMOS II . 26
3.2 Using a B+-tree as an External Data Source 28

3.2.1 Data Stored in Example B+-tree 29
3.2.2 Capabilities of the B+-tree 29

3.3 Interface to External Data Sources 30
3.4 Data Model Transformation 31
3.5 Schema Integration . 37
3.6 Query Processing over External Data Sources 37

3.6.1 Decomposer Push Approach 39
3.6.2 Cost-based Pick Approach 43

v

vi Contents

4 Evaluation of the Presented Work 49
4.1 Data Model Integration . 49
4.2 Comparison Between the Decomposer Push Approach and the

Cost-Based Pick Approach . 50
4.3 Experimental Results . 53

4.3.1 Comparison Between the Decomposer Push Approach
and the Cost-Based Pick Approach 54

4.3.2 The Effects of Wrapper Involvement During Cost-
Based Optimization 56

5 Related Work 61
5.1 The Garlic System . 61
5.2 The TSIMMIS System . 64
5.3 Other Relevant Research Projects 65

6 Summary and Future Work 69
6.1 Summary and Conclusions . 69
6.2 Future Work . 70

A Abbreviations 73

References 75

List of Figures

2.1 An example of a distributed AMOS II system. 6
2.2 Part of the AMOS II type hierarchy. 8
2.3 Query Processing in AMOS II 12
2.4 Query Decomposition Phases. 16
2.5 Data flow cycle described by a DcT node. 19
2.6 Two object algebra representations of the example query. . . 22

3.1 Wrappers in AMOS II . 27
3.2 An example of a B+-tree . 29
3.3 Query processing over external data sources in the decom-

poser push approach. As compared to the original query pro-
cessor, the Single Site Algebraic Optimizer is extended by a
new Rewriting and Translation phase that is performed by a
wrapper. 40

3.4 Query processing over external data sources in the cost-based
pick approach. The steps performed by the wrappers are
marked in grey. 43

3.5 The ranksort algorithm for queries not involving external data
sources. 44

3.6 The modified ranksort algorithm for queries over external data
sources. The added steps are marked in grey. 46

4.1 Comparison between the query optimization times. 54
4.2 Comparison between query optimization times. 57

vii

Chapter 1

Introduction

Information becomes a more and more valuable asset in today’s organiza-
tions. Nowadays it is very important to have information from the whole
company available in every department for making good business decisions.
The organizational structure of enterprises is changing towards a more inte-
grated and interdependent system. In former days companies usually used a
horizontal differentiation, often referred to as departmentalization. The de-
partments were organized either by function (production, finance, personnel
etc), by work process, by location, by product or by some combinations of
the those four. Communication between the different departments was kept
to a minimum and often took place on the managerial level only. However, a
rapid changing environment, shorter product life cycles and a higher depen-
dency between the departments lead to two changes. Firstly, cross-functional
teams were often created and, secondly, responsibility was pushed down the
hierarchy.

This new way of doing business increased the requirements requested
from information systems. Information concerning the whole enterprise is
needed for day to day activities as well as for long-term decision making.
In former days every department has had its own isolated information sys-
tem with very specialized applications, but now the information stored in
these systems is also needed outside the particular department. The develop-
ment in network technology bridged the physical gap between these systems,
however, the data integration problem remained.

1

2 Introduction

A lot of research was spent on integrating different data sources, and two
solutions became very popular. The concept of datawarehousing was used to
store all data in a new database system and extract the needed information
out of these very huge centralized databases. However, this concept does not
allow to make updates in the original data sources and can only be used
for data retrieval or data mining. That is why Wiederhold [31] proposed
another approach, namely the wrapper-mediator approach, that divides the
data integration system in two functional units. The wrappers provide access
to the data sources and transform the data model into a common data model.
The mediator provides an integrated view over the different data sources and
a query language for accessing the data. The user does not know where the
data originates from but is able to retrieve and update all data by using a
common query language.

During the early research stages of data integration the main focus was
kept on contents of the sources and their relationship to the integrated views
provided to the users. But now it becomes more and more important to keep
also track of the capabilities of the sources, as the diversity of integrated data
increases. This leads to both, the integration of data and the introduction of
new operators in the mediator. Not knowing the capabilities of the sources
can lead to the creation of non-executable or very inefficient plans.

This thesis presents the data integration framework for data sources
with limited capabilities as implemented in the mediator database system
AMOS II . AMOS II is an object-oriented mediator system that has been
developed in the EDSLAB at the University of Linköping, Sweden.

The main contributions of this work to the AMOS II system are:

• A mechanism for integrating data from sources with diverse data mod-
els is introduced.

• The role of a wrapper and its interface to the AMOS II mediator sys-
tem is clearly defined.

• A solution for handling diverse query capabilities is proposed and im-
plemented.

• The problem of query optimization over heterogeneous data sources is
discussed and two different approaches to query processing are imple-
mented and evaluated.

The rest of this thesis is organized as follows. Chapter 2 provides an
overview of the AMOS II system. It describes the state of the system before

3

the work of this thesis was done and focuses mainly on the query processing
part of AMOS II . In Chapter 3 my work carried out in the context of this
thesis is presented. The data model integration framework is explained, the
way of handling different query capabilities is described and the modifica-
tions in query processing system are presented. The proposed mechanisms
are evaluated in Chapter 4. In Chapter 5 a comparison to related research
projects is given. A summary of the work and future work is described in
Chapter 6. In Appendix A a list of the used abbreviations can be found.

4 Introduction

Chapter 2

Overview of the AMOS II
System

2.1 System Structure

AMOS II (Active Mediator Object System) is an object-oriented, open,
light-weight, and extensible database management system (DBMS). It has
its roots in the workstation WS-Iris system [18, 7]. To achieve good perfor-
mance AMOS II is designed as a main-memory DBMS.

AMOS II is both a DBMS of its own and a distributed mediator system
[31]. Therefore AMOS II contains all the traditional database facilities, such
as a storage manager, a recovery manager, a transaction manager, and an OO
query language, named AMOSQL. Acting as a mediator AMOS II has fa-
cilities for translating, combining, reconciling, and abstracting data through
OO views as well as over other mediators and external data sources.

Figure 2.1 shows an example of a distributed AMOS II system. The fol-
lowing AMOS II terminology is used in this thesis:

Mediator The term mediator was introduced by G. Wiederhold [31] who
defines a mediator as “a software module that exploits encoded knowl-
edge about certain sets or subsets of data to create information for
a higher layer of applications”. Mediators provide a common data
model to applications and hide the heterogeneity of the underlying
data sources. Another commonly used term for mediators is database
middleware [24, 12].

5

6 Overview of the AMOS II System

Application Application

Wrapper WrapperWrapper

Mediator

Mediator

ODBC

OODBB-Tree STEP
file

AMOS II
Database

XML
file

MediatorMediator

Mediator

Wrapper Wrapper

Application

Figure 2.1: An example of a distributed AMOS II system.

Extensible Mediator An extensible mediator is a mediator whose knowl-
edge and functionality can be extended by dynamically integrating
wrappers (see below) for new kinds of external data sources. In the rest
of this thesis the term mediator is used in the meaning of an extensible
mediator. AMOS II is an extensible mediator system that appear a a
virtual database and we will refer to the non extended AMOS II system
as the core mediator system. Furthermore, AMOS II mediators are
composable since a mediator server can regard other mediator servers
as data sources.

Wrapper A wrapper is an interface between a mediator and an external
data source type and encapsulates the knowledge about the query ca-
pabilities of that data source. A wrapper is an embedded subsystem
in an AMOS II mediator. Wrappers are described in more detail in
Chapter 3.

Different interconnecting topologies can be used for connecting
AMOS II servers depending on the integration requirements of the environ-
ment. A single AMOS II server can perform more than one task and serve

2.2 Data Model 7

more than one application simultaneously.
AMOS II is implemented on the Windows NT/95/98 platform whereby

AMOS II servers communicate over TCP/IP.

2.2 Data Model

AMOS II ’s data model in an OO extension of the DAPLEX [26] functional
data model. There exist three basic constructs: objects, types and functions.

2.2.1 Objects

Objects model every entity in the database. There exist two kinds of object
representation, surrogates and literals. The surrogate objects have associated
object identifiers (OIDs) which are explicitly created and deleted by the user
or the system. Examples of surrogates are “real-world” objects such as per-
sons, and meta-objects such as functions. Literal objects are self-describing
system maintained objects without explicit OIDs. Examples of literal objects
are numbers and strings. Literal objects can also be collections of other ob-
jects. Vectors (one-dimensional arrays of objects) and bags (unordered sets
with duplicates) are the collections supported by AMOS II .

Surrogate objects persist in the database until they are no longer ref-
erenced from any other object or from external systems. The removal of
unreferenced objects is done through an automatic garbage collector.

2.2.2 Types

Objects are classified into types (i.e. classes) making each object an instance
of some types. The set of all stored instances of a type is called the extent of
the type. The types are organized in a type hierarchy. The AMOS II data
model supports multiple inheritance, but requires an object to have a single
most specific type. If an object is an instance of a type, then it is also an
instance of all the supertypes of that type.

There exist five categories of surrogate types:

Stored types have their instances stored in the local AMOS II server. The
instances are created by the user.

Derived types are specified through a declarative query over their super-
types. Their extent is a subset of the extents of one or more constituent

8 Overview of the AMOS II System

Object

Type Function Collection Literal

Stored

Proxy

Mapped Derived

Bag Vector

Charstring Number

Integer Real

IUT

UserObject

Figure 2.2: Part of the AMOS II type hierarchy.

supertypes [14].

Mapped types represent views on the state of an external data source (see
Chapter 3).

Proxy types represent objects stored in other AMOS II servers.

Integration Union Types provide a mechanism for schema integration of
multiple data sources.

Figure 2.2 shows parts of the AMOS II type hierarchy. Note that this hierar-
chy describes the meta types. The types created by the user such as Person
and Student are instances of the meta type Type and their hierarchy has
the type UserObject as root.

2.2.3 Functions

Functions model properties of objects, computations over objects, and
relationships between objects. Functions are instances of the meta-type
function.

A function consists of two parts, the signature and the implementation.
The signature defines the types of the arguments and the results of a func-
tion. For example, the signature of the function modeling the attribute name
of type person could have the signature name(person)->charstring. The
implementation specifies how to compute the result of a function given a tu-
ple of argument values. For example name(p) obtains the name of a person
by accessing the database.

2.2 Data Model 9

AMOS II functions are, furthermore, often multi-directional, meaning
that the system is able to inversely compute one or several argument val-
ues if (some part of) the expected result value is known [18]. This means
that there exist different implementations of the same function depending
on which variables are bound. Inverses of multi-directional functions can
be used in database queries and are important for specifying general queries
with function calls over the database. For example, the following query, which
finds the age of the person named ’Tore’, uses the inverse of function name():

select age(p)
from person p
where name(p)=’Tore’;

Depending on their implementation the basic functions can be classified into
stored, derived, foreign, mapped functions, and database procedures:

Stored functions represent properties (attributes) of objects stored in the
database. Stored functions correspond to attributes in OO databases
and tables in relational databases.

Derived functions are functions defined in terms of OO queries over other
AMOSQL functions. Derived functions cannot have side effects and
the query optimizer is applied when they are defined. Derived func-
tions correspond to side-effect free methods in OO models and views
in relational databases. AMOSQL has an SQL-like select statement
for defining derived functions.

Foreign functions are implemented through an external programming lan-
guage. Currently there exist interfaces between AMOS II and the pro-
gramming languages Lisp, C and Java. Multi-directional foreign func-
tions correspond to methods in OO databases and provide access to
external storage structures similar to data ’blades’, ’cartridges’, or ’ex-
tenders’ in object-relational databases. To help the query processor,
a multidirectional foreign function can have several associated access
path implementations with cost and selectivity functions.

Mapped functions represent functions in other databases.

Database procedures are functions defined using a procedural sublan-
guage of AMOSQL. They correspond to methods with side effects in
OO models.

10 Overview of the AMOS II System

Functions can furthermore be overloaded meaning that they can have dif-
ferent implementations, called resolvents, depending on the type(s) of their
argument(s).

2.3 Query Language

The query language AMOSQL is based on OSQL [20] with extensions of
overloading, mediation primitives, multi-directional foreign functions [18],
late binding [8] and active rules [27]. Furthermore, AMOSQL has aggre-
gation operators, nested subqueries, disjunctive queries, quantifiers, and is
relationally complete. It is both, a data definition language (DDL) as well
as a data manipulation language (DML). The following example illustrates
data definition constructs, defining the type Person with three stored func-
tions name(), age() and SSN()1 representing the type’s properties. The
result of a function is always a bag of objects and the keyword key, e.g. in
the declaration of SSN(Person), is used to guarantee the uniqueness of the
result.

create type Person;
create function name(Person) -> Charstring as stored;
create function SSN(Person) -> Integer key as stored;
create function profession(Person) -> Charstring as stored;
create function parent(Person) -> Person as stored;

Queries have the following syntax:

select <result>
from <type declaration for local variables>
where <condition>

Here is an example of creating a functional view on type Person using a
derived function. The from clause refers to the extent of type Person:

create function teenagers() -> Charstring as
select name(t)

from Person t
where age(t) >= 13 and

age(t) <= 19;

1SSN stands for Social Security Number.

2.4 Query Processing in AMOS II 11

A more detailed description of the data model and of the query language
AMOSQL can be found in AMOS II user’s guide [9].

2.4 Query Processing in AMOS II

As AMOSQL is a high-level query language the queries must be optimized
before execution for achieve reasonable execution times. The query compiler
translates AMOSQL statements first into object calculus expressions, then
optimizes and rewrites them before they get finally translated into executable
algebra expressions. These calculus and algebra expressions are internally
represented in a simple logic based language called ObjectLog [18], which is
an OO dialect of Datalog [29]. The optimization takes place in a series of
different steps. The calculus generator translates the query into a number of
predicates. Then view resolution takes place followed by optimization steps
for reducing the number of computations. For distributed multi-database
queries the query decomposer distributes each object calculus query into
local queries to be executed in the different distributed AMOS II servers and
data sources. A cost-based optimizer on each site determines the execution
order of the local predicates based on statistical cost estimates and translates
the predicates into procedural execution plans. The query interpreter finally
interprets the optimized algebra to produce the result of a query.

The different steps of the query processing mentioned above are shown
in Figure 2.3. The following subsections will describe these steps in more
detail by using an example query that retrieves all students and the names
of their parents:

select p, name(parent(p))
from Person p
where profession(p) = ’student’;

AMOSQL treats ad hoc queries as functions without arguments, therefore
an ad hoc query is transformed into an anonymous derived function query()
without any arguments. This function is then optimized, executed and dis-
carded. For our example the function query() looks like this:

create function query() -> <Person, String>
as select p, name(parent(p))

from Person p
where profession(p) = ’student’;

12 Overview of the AMOS II System

Calculus Generator

Calculus Optimization

Algebra Execution

object calculus
expression

object calculus
expression

object algebra
expression

query result

Query Decomposition

AMOSQL query

object calculus
expression

(flattening, type checking)

Object View Resolution

Predicate Grouping

MIF Predicate Placement

Cost-based Scheduling

Tree Distribution

Algebra Generation

Single Site Algebraic
Optimizer

Cost-based Optimization

Algebra Generation

Figure 2.3: Query Processing in AMOS II .

2.4 Query Processing in AMOS II 13

2.4.1 Object Calculus Generation

The AMOSQL query is translated into a flattened and type resolved object
calculus expression. Flattened means that there remain neither functions in
the result list nor any nested function calls. This is achieved by introduc-
ing intermediate variables for each nested function call. Consequently, the
calculus expression consists of a set of equality and inequality predicates,
where the left hand side is either a variable or a constant and the right hand
side is either an unnested function call, a variable, or a constant. The object
calculus query representation does not impose any evaluation order of the
calculus predicates.

As AMOS II supports overriding and overloading, the correct resolvent
of a function has to be determined. This is done by the type checker that
annotates the signature to every function call. In those cases where due to
polymorphism late-bound function calls are needed, type resolution must
be done during runtime [8]. Whenever the type of a variable cannot be
guaranteed to be of the desired type (e.g. when the input of a function must
be a specific subtype of the type returned by another function), the type
checker adds dynamic type checks to the function definition.

The following object calculus is generated for our example query:

{p, nm|
p = Personnil→person() ∧
pa = parentperson→person(p) ∧
nm = nameperson→string(pa) ∧
′student′ = professionperson→string(p)}

The type check predicate in the first line is added by the system to ensure
that the variable p is bound to an object of the extent of the type person.
The Person() is an extent fucntion that returns all stored instances of its
type.

2.4.2 Object View Resolution

AMOS II allows to create object-oriented views by creating derived types.
These can be both subtypes and supertypes. During the object view resolu-
tion phase queries over derived types are expanded by including predicates
for resolving the views and guaranteeing consistency. For a detailed descrip-
tion of derived types and object view resolution refer to [14].

14 Overview of the AMOS II System

2.4.3 Calculus Optimization

During the calculus optimization phase the optimizer tries to reduce the
number of predicates by applying rewrite rules for removing unnecessary
computations. Optimization utilizes the declarative unordered format of the
object calculus expression. There exist two different types of rewrite rules:

Type Check Removal: The referential integrity system guarantees that
the arguments and results of stored function are of the declared type.
Consequently, type checking is only needed to assure that derived func-
tions return the correct type [18].

In our example query the type check predicate p = Personnil→person()
can be removed, as p is an argument in the stored function parent(p).
The new calculus expression looks like this:

{p, nm|
pa = parentperson→person(p) ∧
nm = nameperson→string(pa) ∧
′student′ = professionperson→string(p)}

In case that the argument types of name(p) and age(p) were super-
types of person the type check would have remained to ensure that the
anonymous function query() returns the correct type person and not a
supertype of it.

Predicate Unification Rule: When two predicates have the same predi-
cate symbols, the same constants/variables in the key attributes, and
there are no conflicts between the constants of the non-key attributes,
then these two predicates can be combined into one [6]. Consider the
following example:

{nm1|
nm1 = nameperson→string(p) ∧
nm2 = nameperson→string(p) ∧
fstring→boolean(nm1) ∧
gstring→boolean(nm2)}

The argument p of name(p) is the key value, therefore the first two
predicates can be unified and nm2 is substituted by nm1 in all other

2.4 Query Processing in AMOS II 15

predicates:

{nm1|
nm1 = nameperson→string(p) ∧
fstring→boolean(nm1) ∧
gstring→boolean(nm1)}

Note that this unification can only be done when the function name(p)
has no side-effects. That is why all functions that cause side-effects (i.e.
database procedures) are tagged with a flag to prevent the optimizer
from applying this rule.

2.4.4 Query Decomposition

The query decomposition phase determines an execution schedule and as-
signs every predicate to a site where it is executed. The goal of this phase
is to choose a low-cost execution plan. This is achieved by applying heuris-
tics, which reduces the search space for possible plans in order to cut down
calculation costs. However, by using heuristics it is not guaranteed that the
cheapest of all possible plans will be generated.

Our running example is not a multi database-query and does not need
any decomposition. Therefore it goes directly to the single-site algebraic
optimizer described in the next subsection.

Before the query decomposition process is briefly described, a classifi-
cation for the AMOS II functions will be introduced. This classification is
based on the number of places where a function is defined and executable.
There exist two different categories [15]:

1. single implementation functions (SIFs)

2. multiple implementations functions (MIFs)

The functions of the first category can only be executed at exactly one site.
For example all stored functions are only defined at the site that stores
the data. In contrast, the functions of the second class are defined at more
than one data source. They are executable at all sites that run the same
data source system. For example comparison operators (<, >, =, etc.) are
defined in every AMOS II and relational database server.

The query decomposition process runs through the following five steps
[15] (see Figure 2.4):

16 Overview of the AMOS II System

Predicate Grouping

Execution Site Assignment

Cost-based Scheduling

Tree Distrubution

Algebra Generation

object calculus

query graph

query graph

decomposition tree

decomposition tree

algebra program

Determination of
Execution Site

Determination of
Execution Order

Translation

Figure 2.4: Query Decomposition Phases.

1. Predicate grouping

2. MIF predicate execution site assignment

3. Cost-based scheduling

4. Decomposition tree distribution

5. Object algebra generation

The first two steps determine the execution site of a predicate. The following
two steps consider the predicate execution order, and finally, the last step
translates the chosen execution plan into an object algebra expression. Each
of these steps will be described now.

The Predicate Grouping Phase

A calculus expression can be represented as an undirected so called query
graph, where the nodes represent the query predicates and edges connect
those nodes that contain a common variable. Those variables that connect
a node with the rest of the graph are called node arguments.

2.4 Query Processing in AMOS II 17

As the SIF-nodes can only be executed at the one site they are imple-
mented at, obviously, this site is going to be their execution site. However,
MIF-nodes can be executed at more than one site. But before the MIF-nodes
site assignment takes place some nodes of the query graph are fused. Two
nodes are fused when the following conditions apply:

1. Both nodes are of the same data source type (e.g. AMOS II or rela-
tional database).

2. Both nodes are assigned the same execution site.

3. The underlying data source type has join capabilities, so that it can
handle the grouped predicates.

The fused predicates will be regarded by the system as a single predicate
that is represented by a derived function, named subquery function (SF).

This predicate grouping has two effects. Firstly, the optimization problem
is getting reduced, as there remain less nodes that have to be ordered for
execution. Secondly, whenever possible are joins pushed down to the data
sources2.

MIF Predicate Execution Site Assignment

By an effective placing of the MIF predicates the query processing time
can be dramatically reduced. However, calculating the costs for all possible
choices is not feasible, as an exponential number of possibilities has to be
examined. Therefore the following heuristics are applied:

• The introduction of additional cross-site dependencies among nodes is
avoided. That is to reduce the transfer of intermediate results. Conse-
quently, only those sites that produce intermediate results for a MIF
predicate are considered as possible execution sites.

• The systems tries to combine MIF-predicates with SIF predicates so
that the costs of accessing a data source and the intermediate result
size can be reduced. In some cases the MIF predicate is even executed
in more than one site, for example when a selection predicate is cheap

2At the current state of implementation AMOS II does not consider to perform a join
locally, when it can be done remotely. Although this can lead to higher communication
costs the the query optimization problem is reduced.

18 Overview of the AMOS II System

to execute and reduces considerably the number of tuples in two or
more sites.

Based on these heuristics Josifovski [15] analyzes the different cases of the
MIF predicate placement that can occur. The result of the MIF predicate
execution site assignment phase is a query graph where every predicate is as-
signed to a site and the edges represent equi-joins over the values of common
variables.

Cost-based Scheduling

The next step is to translate the query graph into an executable query plan.
Therefore the query processor must determine the execution order of the
graph nodes and the direction of the data shipping between the nodes. For
these tasks cooperation with the single site algebraic optimizers (described
in the next subsection) is needed, as they determine the execution order of
the predicates and return the execution time estimates of a node for different
binding patterns as well as an assessment about the number of result tuples.

As mentioned before, the grouped predicates of one node are repre-
sented by a subquery function (SF). If the assigned site of the node is an
AMOS II server, then the SF is defined there. Otherwise, that is when the
site has another data source type, the subquery function is defined in the
mediator itself and is generated by the wrapper (see Section 3.6.1. The gen-
erated SF usually contains foreign function calls to access the data source.
For example, the relational wrapper of AMOS II creates an SQL statement
from the object calculus predicates and then invokes the foreign function
SQL() that passes the SQL statement to the assigned data source.

The generated execution schedules for the entire query are represented
by decomposition trees (DcTs). Each node of a DcT describes one data cycle
through the mediator, as will be explained below. All children of a node
have to be processed before the node itself can be executed, so the tree is
processed bottom up. Note that edges between tree nodes do not represent
any data flow but determine only the execution order. The data cycle through
the mediator is described by two steps, the ship and execute operator and
the post processing list (PPL) (see Figure 2.5). If a subquery function (SF)
is defined in another AMOS II system then the ship and execute operator
consists of the following three steps:

1. The client mediator ships the needed intermediate results to the server
site where they are materialized (i.e. temporarily stored).

2.4 Query Processing in AMOS II 19

Client Mediator

Server Mediator

1.

2.

3.

4.

Ship intermediate results

Execute remote SF

Ship results back

Execute SFs of PPL

Steps of the ship and
execute operator

Processing the post
processing list

Figure 2.5: Data flow cycle described by a DcT node.

2. The remote AMOS II server executes the subquery function.

3. The results are being shipped back to the client and are materialized
there.

If the subquery function (SF) is defined locally, the ship and execute op-
erator is empty and no data shipping will take place. In that case the SF
is included in the post processing list (PPL). In general the post process-
ing list contains all subquery functions (i.e. query graph nodes) that are
executed locally in the client mediator after the ship and execute operator
has been accomplished (step 4). This list can be empty as well. Note, that
intermediate results are always materialized in the AMOS II mediator.

To minimize the optimization problem, the system considers only left-
deep decomposition trees, i.e. trees that have only one child. Therefore a
total order for executing the subquery functions (SFs) is achieved. But even
with this simplification there remains still an exponential number of possible
decomposition trees. A variation of the dynamic programming approach is
used to determine the optimal plan [15]. Note that the execution cost and
the selectivity of every node depends on the binding patterns and the size
of the intermediate results.

20 Overview of the AMOS II System

Decomposition Tree Distribution

During this query processing phase some nodes are merged and by doing
so the tree is distributed over different AMOS II servers. By now, every
data shipment passes through the mediator, which can be very inefficient.
In order to avoid this, cross-communication between two AMOS II servers is
introduced in those cases, where the mediator’s role is only to forward data
but not to do any processing in-between. This is the case when the following
conditions for two consecutive nodes apply:

1. The child node performs a ship and execute operation to an
AMOS II server A.

2. The child node has an empty post processing list (PPL).

3. The father node performs a ship and execute operation to an
AMOS II server B.

In this case the execution costs for pushing the ship and execute operation
of the father node down to site A are calculated. If this option is cheaper,
all needed data is send to server A, where the ship and execute operation
to server B is performed. By doing so, the original decomposition tree is
distributed over many AMOS II servers. Refer to [16] for examples and per-
formance measurements.

Object Algebra Generation

Next, the decomposition trees are translated into object algebra plans which
then will be executed. More precisely, the algebra plan for each DcT node
describes the following tasks:

• Materialize the intermediate results produced by the child DcT nodes.

• If there is a ship and execute operation then ship the needed data to
the remote AMOS II system and execute the subquery function (SF)
there.

• Execute the subquery functions (SFs) in the post processing list (PPL).

2.4 Query Processing in AMOS II 21

2.4.5 Single Site Algebraic Optimizer

The single site algebraic optimizer determines the execution order of the
predicates and translates them into executable object algebra expressions.
This optimization step is based on estimates about execution cost and fanout
of the predicates with different binding patterns.

The query algebra used in AMOS II has the six operators {π,×,∪,∩,�
, γ}. The first five operators have the same semantics as their relational
counterparts with the difference that input and output are bags rather than
sets. The γ operator (generate operator) performs function application, i.e.
a stored or foreign function is called and by doing so new elements are added
to the tuples. A formal definition of the operators can be found in [6]. Note
that the explicit selection operator σ is missing. It is modeled by the function
application operator γ where some arguments are bound to constants.

Three different algorithms for cost-based optimization are implemented
within AMOS II . Dynamic programming is used for an exhaustive search,
rank sort [18] is used for a greedy approach with a quadratic runtime, and
random sort, based on dynamic programming with a set of random starting
points, is a compromise between an exhaustive search and greedy approaches.
Refer to [13] for an overview of randomized algorithms for query optimiza-
tion and to [3] for an introduction to dynamic and greedy programming
techniques.

Figure 2.6 shows two different execution plans for the example query.
Plan 1 is a straight forward, unoptimized translation of the object calculus.
First, for all persons p, all parents pa are retrieved. The superscripts “ff”
indicate that both parameters p and pa are free arguments in contrast to
bound arguments represented by the superscript “b”. Next, the name nm of
all parents is retrieved. The third operator performs a selection based on the
person’s profession to find all students, and finally the required variables are
projected from the selected tuples. Plan 2 is the optimized plan. It selects
first all students before it finds their parents and gets the parents’ name.
Finally, a projection to the required variables takes place.

2.4.6 Algebra Execution

The interpreter uses a top-down interpretation method that corresponds
to the nested-loop method in relational databases [18]. During the algebra
execution phase every function is invoked with the correct binding pattern.
In order to reduce data shipment overhead an advanced protocol for inter

22 Overview of the AMOS II System

[parent (p) = pa]γ ff

[name (pa) = nm]γ bf

[profession (p) = 'student']γ bb

(p, nm)π

< >

< p, pa >

< p, pa, nm >

< p, pa, nm >

< p, nm >

[parent (p) = pa]γ bf

[name (pa) = nm]γ bf

[profession (p) = 'student']γ fb

(p, nm)π

< >

< p >

< p, pa, nm >

< p, nm >

< p, pa >

Plan 1: Plan 2:

Figure 2.6: Two object algebra representations of the example query.

2.4 Query Processing in AMOS II 23

AMOS II communication is used. Data is shipped in bulks, semi-joins are
applied, and in order to prohibit the sending of duplicates temporary indices
are used. A more thorough description can be found in [15].

24 Overview of the AMOS II System

Chapter 3

Integration of External Data
Sources

The aim of a mediator system like AMOS II is to integrate many different
data sources. In difference to distributed database systems or data ware-
houses, the problems are more complex and diverse. Mediators try to inte-
grate different data sources that were originally not designed and developed
for being a part or subsystem of a larger database. Many challenges arise due
to the heterogeneity and remaining autonomy of the underlying data sources.
Mediators try to hide this diversity from the user by creating transparent
views on top of them.

In order to transparently use an external data source, also called reposi-
tory, the following problems have to be addressed in AMOS II :

• How to access the foreign data source?

• How to express the capabilities of the repository?

• How to transform the repository’s data model into the AMOS II data
model?

• How to integrate the schema of the repository into an existing
AMOS II schema?

• How to optimize the query processing?

• How to get cost estimates about the execution time?

25

26 Integration of External Data Sources

The solution to the above problems should meet a couple of requirements.
The challenge is to achieve the following goals:

• There should be an easy and generic way to hook up new data sources.

• The full range of the repository’s capabilities should be utilized.

• Adding new types of data sources should not need any form of modi-
fication to the query processor in the core-mediator system. It should
only get extended with a new wrapper that encapsulates the needed
knowledge.

• The computation time for generating the query execution plan should
not grow disproportionately when new data sources are added.

• The usage of external data sources should be transparent to the user.

This chapter describes the approach developed in the context of this
thesis to data integration and query processing over external data sources.
The proposed methods are fully implemented and running in AMOS II . An
evaluation of this work is presented in the next chapter and a comparison to
other approaches can be found in Chapter 5.

3.1 Wrappers in AMOS II

There exists a wrapper for every data source type (e.g. ODBC, XML or
B+-tree) that encapsulates all the knowledge and functionality needed for
integrating external data sources of that type. The functionality provided by
a wrapper can be divided into three different components (see Figure 3.1):

1. The meta-data manager supplies the needed information for integrat-
ing external data models.

2. The wrapper’s query participator participates in query processing and
encapsulates the knowledge about the repository’s capabilities.

3. Finally, the wrapper provides an interface for communicating with the
external data source. Communication can include the retrieval and
update of some data and the execution of some external operations.

3.1 Wrappers in AMOS II 27

External
Data

Source

AMOS II Mediator

Wrapper

Meta-Data Manager

Query Participator

Interface to External DS

Capabilities

key information
property names
property types
core property cluster
operators

foreign functions

grouper

rewriter + translator

cost functions

Integrator

Query

Processor

Algebra
Executor

 mapped type
 core cluster fct
 property fcts
 extent fct
 mapped operators

creates:

list of predicates

groups of preds

a group of preds

rewritten group of preds

foreign function call

result tuples

Meta Data

Data Flow

send information

Figure 3.1: Wrappers in AMOS II .

28 Integration of External Data Sources

An AMOS II mediator can be extended with any number of different wrap-
pers to enlarge the range of repositories being accessible from the mediator.
To introduce the concept of different data sources, AMOS II ’s meta type
hierarchy is extended with a new type Datasource, which is a subtype of
Object. As there is a well defined interface between the AMOS II mediator
and the wrapper, there are no changes in the core mediator system needed
when integrating external data sources.

The following sections describe the three components of a wrapper and
how they interact with the AMOS II mediator system. For illustration pur-
poses we will first introduce a B+-tree as an example for an external data
source.

3.2 Using a B+-tree as an External Data Source

We chose to use a B+-tree as an example of an external data source to be
accessed from AMOS II , and employed the ISAM Manager [21] for imple-
mentation purposes. For a description of B+-trees refer for example to [4]. A
B+-tree is one of the simplest examples addressing the main problems that
occur by including external data sources:

• The data stored in B+-trees have a data model different from the one
used in AMOS II . The problem of converting the B+-tree data model
into the AMOS II data model is addressed.

• B+-trees have limited capabilities. Therefore the problem of how to
define a repository’s capabilities comes up.

• B+-trees can handle range queries very effectively. Rewrite rules have
to be applied in order to group and transform the object calculus
predicates into range predicates when possible. The problem of query
optimization is addressed.

• B+-trees represent uni-directional functions. The inverse function can
only be calculated by scanning the entire tree content and selecting the
correct tuples afterwards. Therefore the problem of defining adequate
cost models to be used during query optimization has to be solved.

3.2 Using a B+-tree as an External Data Source 29

4800

3200 4500

3200 4100 4500 4800

5300

5100 5300 6100

Max
3200

67104

Hans
4100

58126

Peter
4500
54021

Lars
4800
51062

Jan
5100
48013

Klaus
5300
46066

John
6100
38090

Figure 3.2: An example of a B+-tree

3.2.1 Data Stored in Example B+-tree

Our B+-tree stores the properties name, SSN1 and income of persons (see
Figure 3.2). There exists an index on income only, and SSN is a unique
number and can therefore be regarded as key value. The B+-tree consists of
1000 records.

3.2.2 Capabilities of the B+-tree

The B+-tree has the following capabilities:

• Selection of all tuples stored in the B+-tree by scanning it.

• Selection on the indexed properties (e.g. income). However, the B+-
tree understands only the selectors =, ≤ and ≥. It does not understand
< and > as the range query returns always closed intervals. The > and
< selections have eventually to be rewritten into a ≥, or ≤ respectively,
in conjunction with a �= selection.

• Projections.

Further, the B+-tree is not able to handle the following requests:

• Selections on non-indexed properties.

1SSN stands for Social Security Number.

30 Integration of External Data Sources

• Joins.

These latter tasks must be performed by the AMOS II mediator containing
the B+-tree wrapper. However, as the B+-tree can always return its entire
content, every further processing can be done within AMOS II . Therefore
arbitrary queries on the B+-tree can be processed. This is not always the case
for external data sources. For example imagine a search engine on persons
that needs a person’s SSN as input in order to return its name and income
and that has no other way for retrieving the stored SSNs. In this case it
would be virtually impossible to answer a query like

select income(p)
from person p
where name(p)= ’Tore’;

3.3 Interface to External Data Sources

The interface between an extended AMOS II mediator and an external data
source is completely based on foreign functions (see Section 2.2.3). It is up
to the developer of the wrapper to provide an “adequate” set of foreign func-
tions. What an adequate set is depends on the foreign data model and on
the capabilities of the external data source. However, there exist a couple of
mechanisms for achieving data integration and they require some standard-
ized foreign functions (see next section).

The interface for retrieving data from our B+-tree consists of three for-
eign functions. The exact-search and the range-search utilize the index and
perform a selection on an indexed property, whereas the content function re-
turns all records stored in the B+-tree2. The access methods to the B+-tree
are wrapped in the following three foreign AMOS II functions:

function BT retrieve exact(BT-type, Index-name, Value,
Projection-vector)

-> bag of tuples;

function BT retrieve range(BT-type, Index-name, Lower,
Upper, Projection-vector)3

2Notice that all functions in AMOS II return their results in a streamed way.
3A lower boundary of -inf represents minus infinity and an upper boundary of +inf

represents plus infinity.

3.4 Data Model Transformation 31

-> bag of tuples;

function BT retrieve all(BT-type, Projection-vector)
-> bag of tuples;

Index-name is the name of the indexed property the exact-search and range-
search queries work on. The Projection-vector contains the names of the
properties that are returned, and BT-type is a Mapped Type object, as ex-
plained below.

Here is an example for retrieving the name and the SSN of all persons
stored in the type :BTPerson whose income lies between 4000 and 6000:

BT_retrieve_range(:BTPerson, ’Income’, 4000, 6000,
vector(’Name’, ’SSN’));

Given the income, a person can be found quite easily by utilizing the existing
index with the B+-tree function BT retrieve exact. However, to find a
person by its name or SSN, the entire B+-tree must be scanned by using the
function BT retrieve all followed by a select statement on the intermediate
results, as these properties are not indexed.

Each of the above functions has a cost. Cost is defined in terms of the
actual calculation cost of the function and its fanout, i.e. the expected number
of records returned. Accessing the memory has a calculation cost of two.
However, the B+-tree retrieves its data from the disk, which is about a 1000
times slower than memory access. That is why we set the calculation cost
to 2000 per record retrieved4. The fanout uses some statistics about the
number of records stored and the interval range of the indexed attribute.
Consequently, the exact search function is normally cheaper than the range
query, and the content function is the most expensive operation.

Note that the B+-tree access functions are not meant to get called directly
by the user but that the B+-tree wrapper translates parts of a query into
these function calls.

3.4 Data Model Transformation

External data sources can have all kinds of different data models. The data
can be structured, semistructured or totally unstructured, and it is the

4We assume that the data is not clustered. Otherwise a more elaborate cost model must
be defined based on the average number of records stored in a cluster.

32 Integration of External Data Sources

wrapper’s task to translate the foreign data model into the data model of
AMOS II . OO views are created on external schemas by using the wrapper’s
data model transformations.

For creating OO views on foreign data models, AMOS II provides three
basic concepts: mapped types, mapped objects and mapped functions. Fahl
and Risch [6] define a mapped type as “a type for which the extension is
defined in terms of the state of an external database”. Correspondingly, we
define a mapped object as an object whose state is defined in terms of the
state of the repository, and a mapped function as an operation that is defined
in an external data source and has a mapped type as one of its arguments.

Furthermore, we divide the group of mapped functions into two classes.
A directly mapped function has always a one-to-one mapping to a multi-
directional foreign function call and the system replaces every mapped type
in its argument list by the primary keys of the mapped type. For all the
other arguments there exists a one to one mapping between the mapped
function and the foreign function. More formally spoken, let DMF be a di-
rectly mapped function that is mapped to the foreign function FF and has the
arguments {MO1, . . . ,MOn, a1, . . . , am} and the results {r1, . . . , rl}, where
MOx is a mapped object with the key values kx1, . . . , kxjx . Then during query
processing a call of DMF(MO1, . . . ,MOn, a1, . . . , am) will get replaced by
the foreign function call FF(k11, . . . , k1j1 , . . . , kn1, . . . , knjn , a1, . . . , am) which
returns the same results r1, . . . , rl as DMF .

For clarification consider the following example. contains(File,
String) is a directly mapped function that checks whether a File contains a
String. File is a mapped type and has name and path as key values. contains
is directly mapped to the foreign function ffcontains(name, path, expr)
that has the name and path of the file and the string expression as ar-
guments. If f is a mapped object that represents the file with the name
test.txt and the path C:\documents then the AMOS II system replaces
a function call contains(f, ’wrapper’) by ffcontains(’text.txt’,
C:\documents, ’wrapper’).

An indirectly mapped function is sent to the wrapper where it gets trans-
lated into foreign function calls. Which foreign functions are called with
which parameters depends on the context of the mapped function. It is the
wrapper’s query participator that encapsulates this knowledge.

Using these concepts an OO view over external data is created in the
following way:

3.4 Data Model Transformation 33

1. Group a set of attributes together to a new mapped type and declare
the type of every attribute. The attributes are called the properties of
the mapped type.

In our B+-tree example we group the three attributes SSN, name and
income together to a mapped type called BTPerson. SSN and income
are of type Integer and name is a String. Another example of an external
data source could be a text file manager, where the attributes name,
path, date, size and content are grouped together to a mapped type
TextFile.

2. Declare which properties form the primary key of the mapped type5.

SSN is the primary key for BTPerson, and the conjunction of name and
path is the primary key for TextFile.

3. Divide the properties into different groups. The core cluster contains
the key properties and all the other properties that are “cheap to re-
trieve”. “Cheap to retrieve” means that it is not worthwhile to retrieve
them in separated foreign function calls as it would be more expensive
to invoke these additional function calls than to retrieve eventually not
further needed data. The properties of this core cluster are called core
properties. All the remaining properties, i.e. the non-core properties,
are unclustered and get individually retrieved.

For clarification consider the following query over TextFile, where the
function substring is implemented in AMOS II and checks whether
the second argument is a substring of the first argument:

select path(f) from TextFile f
where substring(name(f), ’wrapper’);

To find the required results the names of all existing files must be
examined if they contain the substring wrapper. Here, it is cheaper to
retrieve name and path of all files in one call rather than to get first only
all file names and then invoke an individual function call for retrieving
the pathname of every matching file. However, if the contents of the
matching files were also required, it would not be advisable to always
retrieve them together with the name and the path.

5The key values are needed for identification. In case of integrating an OO database
the unique remote OIDs are used as identifying attribute.

34 Integration of External Data Sources

For our B+-tree we create only the core cluster containing all three
properties. However, for the file manager we group name, path, date
and size together in the core property cluster and content forms a
cluster of its own.

4. Finally, there may exist some operators on the mapped type that are
not defined in the core mediator system. These operators with their
argument and result types must also be declared to the mediator sys-
tem.

For example there might exist the operator contains on the mapped
type TextFile that takes in a mapped file object and a string ex-
pression returns true if the file contains the string expression and false
otherwise.

It is the task of the wrapper’s meta-data manager to provide the
AMOS II mediator system with all the above information. Based on this in-
formation the AMOS II integrator creates automatically a couple of mapped
and derived functions.

First of all a new mapped type is created. This mapped type is a
subtype of UserObject and has a Datasource it originates from. As men-
tioned above are the instances of this mapped type called mapped ob-
jects. Each mapped object needs an OID. To assure that a mapped
object always represents the same record, a multi-directional function
coid MappedType(KeyValues)->OID is introduced, which creates dynami-
cally an OID the first time it is needed. AMOS II uses mapping tables, which
are stored and maintained in the mediator, for mapping OIDs to primary key
values. These tables are validated during query execution if necessary [6]. An
alternative way would be to have a mathematical correspondence between
an OID and the key values.

Next, a mapped function named ccluster MappedType is created that
returns the content, i.e. a bag of tuples, of the core properties. We will refer
to this function as the core-cluster function. This function is an indirectly
mapped function for most data sources. Only if the data source has no other
capabilities than just returning its content, this function will be directly
mapped to the content returning foreign function. Furthermore, the core-
cluster function might be unexecutable for some binding patterns. E.g. in
the example further above, where a person’s name or income can only be
retrieved when its SSN is provided, the core-cluster function is unexecutable
for all cases where SSN is unbound.

3.4 Data Model Transformation 35

Next, for every property in the core cluster a core property function is
derived. A property function has a mapped object as argument and returns
the value of the property. The core property functions perform a projection
from the core-cluster content to the desired property. For example, the core
property function name(p) for the mapped type BTPerson looks like this:

create function name(BTPerson p) -> Charstring as
select name
from Integer SSN, Charstring name, Integer income
where ccluster_BTPerson() = <SSN, name, income>
and COID_BTPerson(SSN) = p;

Utilizing the core-cluster function and the key property functions an extent
function, which returns all OIDs of the mapped type, is created. For the
mapped type BTPerson the derived extent function looks like this:

create function extent_BTPerson() -> BTPerson as
select p
from BTPerson p, Integer ssn
where ssn = SSN(p)
and coid_BTPerson(ssn) = p;

Next, for every non-core property a directly mapped function is created.
The property function content(f) which is directly mapped to a foreign
function ffcontent would look like this:

create function content(TextFile f) -> String as
select text
from String text
where ffcontent(name(f), path(f)) = text;

Finally, if the newly introduced operators have a mapped type in their
argument list, a directly or indirectly mapped function is created. Otherwise
the operators are introduced as foreign functions.

For clarification consider the following three alternative capabilities of
the text file manager:

1. The file manager can test whether a string is contained in an-
other string. Then the wrapper would provide the foreign function
contains(string expr, string subexpr) -> Boolean.

36 Integration of External Data Sources

2. The file manager can test if a string is contained in a file. Then the
following directly mapped function would be created:

create function contains(TextFile f, String str)
-> Boolean as

select res
from Boolean res
where ffcontains(name(f), path(f), str) = res;

where ffcontains is a foreign function provided by the wrapper.

3. The file manager can search for patterns in a text file using the UNIX
command grep. In this case the wrapper would provide an indirectly
mapped function contains(TestFile f, String str) -> Boolean.
If then the user states the following query:

select name(f)
from TextFile f
where contains(f, ’capabilities’) and

contains(f, ’repository’) and
not contains (f, ’Garlic’);

the conjunction of the three contains function calls would get trans-
lated by the wrapper into the appropriate grep function call.

Note that the B+-tree does not introduce any new operators as the five
selection operators {<,≤,=,≥, >} are already defined in the core mediator
system.

For this way of data model integration a number of foreign functions must
be implemented in the wrapper as interfaces to the external data source. The
following listing summarizes which foreign functions are needed.

1. The mapped core-cluster function is either directly or indirectly
mapped to some foreign functions that return the content of the core
properties. These foreign functions must be provided by the wrapper.

2. A foreign function is needed for every property that does not belong
to the core property cluster. Its arguments are the key values and its
result type is the property type.

3.5 Schema Integration 37

3. Finally, all operators introduced by the wrapper must have a corre-
sponding foreign function.

3.5 Schema Integration

The OO views on external data sources can now be used for what is known
as schema integration. AMOS II provides a couple of mechanisms based on
sub- and supertyping for integrating different types. Conflicts and overlaps
between similar real-world entities being modeled differently in different data
sources can be reconciled through the mediation primitives of AMOSQL.

For example the user might want to integrate the type BT Person with an
already existing type amos person to a new type person. This can be done
by introducing integration union types. These types “provide a mechanism
for defining OO views capable of resolving semantic heterogeneity among
meta-data and data from multiple data sources.” (Josifovski [15], p. 65).
Another way of schema integration is the usage of derived types as also
described in [15].

3.6 Query Processing over External Data Sources

Integrating external data sources requires the introduction of three new steps
during query processing in comparison to using AMOS II user types only.
These phases are grouping, rewriting and translating. In the grouping phase
it is determined which predicates are handled by the wrapper and which are
left over to the AMOS II mediator. Rewriting is in some queries necessary
for a better utilization of the repository’s capabilities. The translating phase
is used to translate the indirectly mapped functions into appropriate foreign
function calls.

We implemented two different approaches to the expanded query pro-
cessing as shown in Figure 3.3 and Figure 3.4. We will refer to the first one
as the decomposer push approach and to the second one as the cost-based pick
approach. Before these approaches are described in detail, conceive what is
happening during the first three query processing phases calculus generation,
object view resolution and calculus optimization.

Consider the following query that retrieves the social security number of
all persons that have an income in the interval [3000, 5000[and whose name
is Charlie:

38 Integration of External Data Sources

select ssn(p) from BTPerson p
where income(p) >= 3000

and income(p) < 5000
and name(p) = ’Charlie’;

The calculus genarator will create the following object calculus expression:

{ssn|
〈ssn,−,−〉 = ccluster BTPersonnil→Int,String,Int() ∧
p = coid BTPersoninteger→BTPerson(ssn) ∧
〈ssn2,−, inc〉 = ccluster BTPersonnil→Int,String,Int() ∧
p = coid BTPersoninteger→BTPerson(ssn2) ∧
inc ≥ 3000 ∧
〈ssn3,−, inc2〉 = ccluster BTPersonnil→Int,String,Int() ∧
p = coid BTPersoninteger→BTPerson(ssn3) ∧
inc2 < 5000 ∧
〈ssn4, nm,−〉 = ccluster BTPersonnil→Int,String,Int() ∧
p = coid BTPersoninteger→BTPerson(ssn4) ∧
nm = ’Charlie’}

For readability reasons, the elements not further used and returned by cclus-
ter BTPerson are marked with ’–’.

Recall from section 2.4.3 that there exist two different calculus optimiza-
tion rules, namely the Type Check Removal and the Predicate Unification
rule. Especially the second one is applied frequently in queries on mapped
types.

Since the four coid BTPerson function calls have the same variable p as
result and coid BTPerson is a bi-directional function, the calculus optimizer
unifies them to one predicate. ssn2, ssn3 and ssn4 are replaced by ssn:

{ssn|
p = coid BTPersoninteger→BTPerson(ssn) ∧
〈ssn,−,−〉 = ccluster BTPersonnil→Int,String,Int() ∧
〈ssn,−, inc〉 = ccluster BTPersonnil→Int,String,Int() ∧
inc ≥ 3000 ∧
〈ssn,−, inc2〉 = ccluster BTPersonnil→Int,String,Int() ∧

3.6 Query Processing over External Data Sources 39

inc2 < 5000 ∧
〈ssn, nm,−〉 = ccluster BTPersonnil→Int,String,Int() ∧
nm = ’Charlie’}

As the ccluster BTPerson predicates return the same variable ssn in the
key position, they can also be unified and inc2 is replaced by inc:

{ssn|
p = coid BTPersoninteger→BTPerson(ssn) ∧
〈ssn, nm, inc〉 = ccluster BTPersonnil→Int,String,Int() ∧
inc ≥ 3000 ∧
inc < 5000 ∧
nm = ’Charlie’}

Finally, the coid BTPerson predicate can be completely removed, as the
variable p is not used anywhere. The following object calculus expression
remains after the calculus optimization phase:

{ssn|
〈ssn, nm, inc〉 = ccluster BTPersonnil→Int,String,Int() ∧
inc ≥ 3000 ∧
inc < 5000 ∧
nm = ’Charlie’}

The following subsections describe the further processing into interval
operators of the B+-tree in the decomposer push approach and the cost-based
pick approach. A comparison between these two approaches including per-
formance measurements can be found in the next chapter and a comparison
to related work is presented in Chapter 5.

3.6.1 Decomposer Push Approach

In the decomposer push approach the decomposer does a pre-grouping of the
predicates and pushes the predicates that concern external data sources to
the corresponding wrappers (which gives this approach its name). Next, the
cost-based scheduling of the joins between the different groups takes place.
The rewrite and translation phase are performed in the wrapper and split
each group into a conjunction of subqueries:

40 Integration of External Data Sources

Query Decomposition

MIF Predicate Placement

Cost-based Scheduling

Tree Distribution

Algebra Generation

Single Site Algebraic Optimizer

Predicate Grouping

Cost-based Optimization

Algebra Generation

object calculus

Calculus Generator

Calculus Optimization

object calculus
expression

AMOSQL query
(flattening, type checking)

Object View Resolution

Algebra Execution

object algebra
expression

query result

Rewriting, Translation

object calculus

object calculus
expression

object calculus
expression

Figure 3.3: Query processing over external data sources in the decomposer
push approach. As compared to the original query processor, the Single Site
Algebraic Optimizer is extended by a new Rewriting and Translation phase
that is performed by a wrapper.

3.6 Query Processing over External Data Sources 41

1. Subqueries fully executable in the external data source.

2. Subqueries post-processed in the mediator.

Grouping Phase

The grouping phase, which determines the execution site for every predicate,
is located in the query decomposer (see Figure 3.3). Recall from Section 2.4.4
that the predicate grouping phase is used to place the single implementa-
tion functions (SIF) to the sole site where they are defined and that the
MIF predicate placement phase determines the execution site of the multi
implementation functions (MIFs) based on some heuristics.

In order to use this mechanism not only for other AMOS II servers but
for external data sources, too, the decomposer has to know about the repos-
itory’s capabilities, so that only executable predicates are pushed to the
wrapper. And, additionally, the decomposer has to know about the perfor-
mance of the executable operations in the external data source. For example
it could be the case that an external data source is capable of performing
some operations but that it would be much faster if these operations were
executed in the mediator instead.

As discussed in the literature (e.g. [24], [30]), it is very difficult to exactly
specify the capabilities of a repository in a declarative way. These difficulties
show up already in the case of our B+-tree example. The B+-tree is capable of
processing ≤ selections on indexed properties only. Another question is how
to handle < selections. The B+-tree cannot process them directly, however,
when rewritten into ≤ in conjunction with �= selections, it can process the
≤ part.

To avoid these problems we have taken a different way in AMOS II ,
which is similar to the Garlic approach [24]6. The external data sources do
not declare what they are exactly capable of, but which operations they might
be able to handle. It is then the wrapper’s task to decide which predicates
can be executed in the external data source, and which ones are left over
to be executed within the mediator. In other words, the mediator does a
pre-grouping by creating subquery functions (SFs) and asks the wrapper to
perform as much work of the SF in the external data source as possible. The
MIF predicates that cannot be handled by the external data source will get
executed in the AMOS II mediator.

6A comparison between Garlic and AMOS II can be found in Section 5.1.

42 Integration of External Data Sources

For example, the B+-tree declares that it might be able to perform <, ≤,
=, ≥ and > selections. However, it can actually only perform ≤, = and ≥
selections on indexed properties. So if the wrapper receives some selections on
non-indexed properties it will leave them to be performed by the surrounding
AMOS II mediator system.

Consider the above query. The first predicate is a single implementation
function, only implemented in the B+-tree, and is consequently pushed down
to the B+-tree wrapper. As the last three selection predicates work on the
B+-tree properties and ≥, < and = might be executable operations in the
B+-tree, the MIF predicate placement phase will send these three predicates
to the wrapper as well. Therefore the decomposer creates only one subquery
function (SF) containing all four predicates and sends it to the B+-tree
wrapper.

Rewrite and Translation Phase

The rewrite and translation phase is performed within the wrapper. Given a
subquery function (SF), i.e. a set of predicates, the wrapper might rewrite the
predicates into a semantically equivalent set and translate all the predicates
executed in the external data source into new predicates for accessing the
repository. The execution order of this new set of predicates is determined
afterwards during the cost-based optimization phase.

In the example query the B+-tree wrapper discovers that the ≥ and <
selection are applied on an indexed property. It rewrites the < predicate
into two new predicates containing a ≤ and a �= selection. The predicate
nm = ’Charly’ cannot be handled by the B+-tree as there is no index on the
property name. The core-cluster, ≥ and ≤ predicates are translated into a
range-query and the following predicate list remains:

{ssn|
〈ssn, nm, inc〉 =

BT retrieve rangeBT type,string,literal,literal,vector→vector

(BTPerson, ’Income’, 3000, 5000,
〈’SSN’, ’Name’, ’Income’〉) ∧

inc �= 5000 ∧
nm = ’Charlie’}

The first predicate will be executed in the B+-tree, whereas the last two

3.6 Query Processing over External Data Sources 43

Calculus Generator

Calculus Optimization

Algebra Execution

object calculus
expression

object algebra
expression

query result

Query Decomposition

AMOSQL query
(flattening, type checking)

Object View Resolution

Predicate Grouping

MIF Predicate Placement

Cost-based Scheduling

Tree Distribution

Algebra Generation

Single Site Algebraic Optimizer

Grouping,
Rewriting, Translation

Cost-based Optimization

Algebra Generation

object calculus
expression

object calculus
expression

object calculus
expression

Figure 3.4: Query processing over external data sources in the cost-based
pick approach. The steps performed by the wrappers are marked in grey.

predicates are post-processed in the AMOS II mediator system.

3.6.2 Cost-based Pick Approach

In the cost-based pick approach the decomposer is only used for distributing
the query over different AMOS II mediators, but not for sending subqueries
to the wrappers within the mediator system. During (and not before) the
cost-based optimization phase the wrappers pick themselves a group of pred-
icates out of the local (sub)query which they are willing to perform (see Fig-
ure 3.4). This has the effect that the MIFs are grouped dynamically rather
than being statically pre-grouped in the decomposer. This means that the
placements of the MIFs is determined by the costs of different join orders of
the single implementation function (SIF) groups. With the decomposer push
approach this join order is partially constrained by the pre-placement of the
MIFs. For a direct comparison of the two approaches refer to Chapter 4.

44 Integration of External Data Sources

select lowest-cost predicate

place it next in execution list

determine variables getting
bound by executing this
predicate

ranksort remaining preds

predicate list, bound vars

ordered predicate list

for all predicates do:

calculate cost for given binding
pattern

pick predicate with lowest cost
predicate list,
 bound vars

Rank Sort:

Figure 3.5: The ranksort algorithm for queries not involving external data
sources.

Recall from Section 2.4.5 that AMOS II has three different algorithms for
cost-based optimization, namely ranksort, dynamic programming and ran-
dom sort.

Figure 3.5 describes how the ranksort algorithm works when no external
data sources are involved. Ranksort is a greedy algorithm for creating an
execution list, i.e. a list of predicates in their execution order. It calculates
the expected cost for every predicate, picks the cheapest one to be executed
next, and does the same procedure for all remaining predicates. Note that
after every predicate placement more variables get bound. This leads for
some of the remaining predicates to new binding patterns resulting in lower
costs.

The remainder of this section describes how the cost-based pick approach
is embedded in ranksort.

Consider the following query that retrieves the social security number of
all persons whose income is greater than the budget of any department and
also returns the department’s name:

select ssn(p), name(d)
from BTPerson p, BTDep d
where income(p) > budget(d);

Both, BTPerson and BTDep are mapped types stored in a B+-tree. BTDep has

3.6 Query Processing over External Data Sources 45

the core properties name, budget and manager, where name is the key value,
and consists of 10 records. After calculus optimization we have the following
predicate list:

{ssn, nm|
〈ssn,−, inc〉 = ccluster BTPersonnil→Int,String,Int() ∧
〈nm, bud,−〉 = ccluster BTDepnil→String,Int,String() ∧
inc > bud}

Because no remote AMOS II server is involved in this query, the query de-
composition phase is not needed and the above predicates go directly to the
singe-site algebraic optimizer.

Figure 3.6 shows at what stages grouping, rewriting and translating is
performed in the modified ranksort algorithm.

Grouping Phase

The grouping phase in the cost-based pick approach is different from the one
performed during query decomposition in the decomposer push approach.
Here, the wrappers decide which predicates belong together as these predi-
cates will result in the same foreign function call. Every wrapper involved in
the query receives all predicates and returns a list of predicate groups which
it is willing to handle and which are regarded as a unit. Every predicate that
does not belong to any group, i.e. that must be handled by the mediator,
forms a singleton group. Additionally, for every multi-implementation func-
tion (MIF) contained in any wrapper group a singleton group is also created,
as it might be cheaper to execute the MIF predicate in the mediator instead.
Note that the groups are not necessarily disjunctive, i.e. a single predicate
can belong to more than one group.

In our example we will get three groups in the first pass of the ranksort
loop. Every predicate forms a group of its own. The greater-than selection
predicate cannot be included in any of the first two groups, because both
variables inc and bud are unbound in the given context and are therefore
not suitable as an upper or lower boundary in a range query.

Rewrite and Translation Phase

The next step in the ranksort algorithm is to calculate the execution cost for
every group. In order to get the costs for the groups created by the wrappers,

46 Integration of External Data Sources

select lowest-cost predicate
group

place it next in execution list

determine variables getting
bound by executing this pred
group

ranksort remaining preds

predicate list, bound vars

ordered predicate list

for all predicate groups do:

calculate cost for given binding
pattern

pick group with lowest cost

predicate list,
 bound vars

group predicates

rewrite and translate group if
necessary

Rank Sort:

Figure 3.6: The modified ranksort algorithm for queries over external data
sources. The added steps are marked in grey.

a rewrite and translation phase has to be introduced. The wrappers rewrite
these groups into executable predicates for which execution costs are defined.
The least expensive group is then chosen to be placed next in the execution
list.

In our example the first two groups, containing only an indirectly mapped
core-cluster function, will be translated into BT retrieve all predicates
that return the SSN and income of all persons and the name and budget of all
departments, respectively. Retrieving the information about the departments
is the cheapest option, as the greater-than selection is unexecutable in the
given context and there exist fewer departments than persons.

In the next pass through the ranksort loop the B+-tree wrapper will
group the two remaining predicates (i.e. the first and third) together, because
this time bud is bound and can therefore be used as the lower boundary in a
range query. Being a MIF predicate, the greater-than selection forms also a
group of its own. However, as the bigger predicate is still unexecutable, the
first group containing both predicates will be rewritten into a range query
in conjunction with a not-equal predicate. No predicates remain and the
ordered predicate list looks like this:

{ssn, nm|
〈nm, bud〉 =

3.6 Query Processing over External Data Sources 47

BT rerieve allBT type,vector→vector

(BT Dep, 〈’Name’, ’Budget’〉)
〈ssn, inc〉 =

BT rerieve rangeBT type,literal,literal,literal,vector→vector

(BT Person, ’Income’, bud, ’ +inf ’,
〈’SSN’, ’Income’〉) ∧

inc �= bud}

Next, this object calculus expression gets translated into object algebra,
which is then executed and the required results are returned.

48 Integration of External Data Sources

Chapter 4

Evaluation of the Presented
Work

This chapter evaluates the data integration framework presented in the pre-
vious chapter. The concepts of mapped types and mapped functions are
analyzed, the decomposer push approach and the cost-based pick approach
are compared and, finally, experimental results are presented.

4.1 Data Model Integration

The main characteristics of the data model integration are:

1. Mapped objects are used to represent an entity of the external data
source.

2. The mapped objects are classified in mapped types.

3. The attributes of a type are clustered. The keys and all inexpensive
attributes are grouped together in the core cluster, whereas each ex-
pensive attribute forms a cluster of its own.

4. Operators on mapped objects are modeled as foreign, directly or indi-
rectly mapped functions.

This way of data model transformation has advantages as well as some draw-
backs. I will now discuss some of the strengths and weaknesses:

49

50 Evaluation of the Presented Work

1. The OIDs are created by the mediator system based on the provided
key information. While this simplifies the creation of unique OIDs,
these OIDs are meaningless to the wrappers. However, the system pro-
vides a function that returns the key values for a given OID. If needed,
this function can be used by the wrappers to extract the key values of
objects during the translation process.

2. The clustering of the properties is done statically when a new mapped
type is imported. In some cases it might be better to dynamically
declusterize the core cluster at run-time, for achieving a better per-
formance. On the other hand, we do achieve some simplifications by
introducing the concept of core clusters. Firstly, fewer foreign func-
tions are needed, as all core property functions are derived from the
core cluster function. Secondly, the grouping of the core cluster is done
automatically. This simplifies the tasks of the wrappers as they do not
have to this grouping. And thirdly, the number of created predicates
during query optimization is reduced, which simplifies the optimization
problem.

3. The expensive properties are individually mapped and can therefore be
retrieved after some selections and joins took place. This characteristic
is essential for mediators, as there exist very expensive properties for
example in object-oriented or multimedia databases.

4. The concept of indirectly mapped functions gives the wrappers the
possibility to fully exploit all capabilities of the data sources.

5. New operators can be added to the mediator system by either using
foreign, directly or indirectly mapped functions. With these three op-
tions it is relatively easy to introduce the whole range from very simple
to very complex operators.

4.2 Comparison Between the Decomposer Push
Approach and the Cost-Based Pick Approach

There exist two major differences between the decomposer push approach
and the cost-based pick approach. These are:

Comparison Between the Approaches 51

1. The stage during query processing when the grouping, trans-
lation and rewriting is done.

In the decomposer push approach the grouping, rewrite and trans-
lation phases take place before the cost-based optimization, whereas
in the cost-based pick approach they are done during the cost-based
optimization phase.

2. The location where the grouping is performed.

In the decomposer push approach the grouping is done by the decom-
poser that has some knowledge about the processing capabilities of the
external data sources. In the cost-based pick approach, on the contrary,
is the grouping done by the wrappers.

It follows a discussion of the consequences arising from these differences.
In the decomposer push approach the decomposer sends a subquery to

the wrappers, and the wrappers try to execute as much of the subquery
as possible in the external data sources. The wrappers first translate the
predicates into one or more foreign function calls, before the foreign func-
tion calls receive an execution order during cost-based optimization. As this
approach works fine for data sources with fully fledged query processors like
relational databases, it can lead to suboptimal plans for data sources with
limited capabilities. The following example demonstrates this.

Consider the query from Section 3.6.2 that retrieves all persons whose
income is higher than the budget of any department. This query looks like
follows:

select ssn(p), name(d)
from Person p, Dep d
where income(p) > budget(d);

After the calculus optimization these predicates remain:

{ssn, nm|
〈ssn,−, inc〉 = ccluster Personnil→Int,String,Int() ∧
〈nm, bud,−〉 = ccluster Depnil→String,Int,String() ∧
inc > bud}

When Person and Dep are stored as two mapped types in a B+-tree, each of
the first two predicates gets translated into a function call that retrieves the

52 Evaluation of the Presented Work

entire content of the type. As the order of the predicates is undetermined
at this stage, the third selection predicate cannot be utilized as an upper or
lower boundary. Later, during query execution, are either for all persons all
departments retrieved or for all departments all persons, before the greater
selection is tested within the AMOS II mediator system. When Person con-
sists of 1000 tuples and Dep of 10 tuples and the salary of 45 persons is
higher than the budget of one department, 10000 tuples are retrieved from
the B+-tree1.

In the cost-based pick approach, on the contrary, translation is done
during cost-based optimization. Here the grouping of the predicates is done
dynamically by the wrapper. The core cluster predicate retrieving all depart-
ments will get placed first, as its fanout is lower than that of Person. Next,
the greater-than multi implementation function predicate (MIF predicate)
is grouped together with ccluster Person as bud is now bound and can be
utilized as lower boundary for a range search. This leads to a much better
query execution performance of the above query. First, the 10 departments
will be retrieved and then the budget of each department is used as the lower
boundary for a range search over the persons. The number of retrieved tuples
adds up to 55, i.e. the 10 departments plus the 45 persons whose income is
high enough. Furthermore, the post-processing of the greater-than predicate
is not needed any more.

However, consider that Person and Dep are tables in a relational
database. Then in both approaches the entire query is processed in the rela-
tional database by using the foreign SQL function. The relational database op-
timizes the query by utilizing eventually existing indices and returns only the
correct 15 results. No post-processing in the AMOS II mediator is needed.

The differences arise because the grouping of the predicates can be bind-
ing pattern dependent. In the B+-tree case it is not possible to translate the
entire subquery into one B+-tree call, as the B+-tree has no join capabilities.
Therefore the wrapper must build two subgroups. In the decomposer push
approach, where the grouping and translation is done before the predicate
scheduling, the greater-than selection cannot be added to any group, as the
execution order of the other two predicates is undetermined. In the cost-
based pick approach, in contrast, the greater-than selection can be used as
upper or lower boundary after one of the core-cluster predicates is placed.

1This holds because materialization (caching) of intermediate results is only imple-
mented for inter-AMOS II communication. Therefore for every person are all departments
retrieved or vice versa.

4.3 Experimental Results 53

In the decomposer push approach the decomposer performs a pre-
grouping of the predicates and requests the wrappers to perform some
tasks based on the a-priori knowledge about the processing capabilities. This
means that the decomposer has some control over the execution places of the
different predicates2. In the cost-based pick approach, in comparison, does
the core mediator system have no control at all over the grouping process.
The wrappers are completely in charge of forming the groups. This has two
effects. Firstly, it becomes more complicated to write a wrapper as a group-
ing logic must be added. The wrapper must decide how many groups are
created and which predicates belong to which group. Secondly, the query
optimizer does not have the chance to try different join orders and methods.
These two problems with the cost-based pick approach arise mainly in those
cases where the external data source is capable of performing joins.

To summarize the above discussion we realize that the cost-based pick
approach can lead to better execution plans but increases the search space
and therefore query optimization time. However, in the decomposer push
approach the AMOS II query optimizer has more control over execution plan
generation. A compromise could be to use the decomposer push approach for
data sources with join and full query processing capabilities (e.g. relational
and OO databases) and the cost-based pick approach for data sources with
limited capabilities (e.g. the B+-tree).

4.3 Experimental Results

The experiments were set up to compare the decomposer push approach
and the cost-based pick approach. Furthermore, the effects of the wrapper
involvement in the cost-based pick approach during cost-based optimization
is analyzed. The results of these experiments confirm the expectation that
the cost-based pick approach will lead to better results when the data is
stored in a B+-tree.

The experiments were performed on a Compaq Professional Workstation
5000 with a 200 MHz Pentium processor and 64 MB main memory.

2It does not have total control as a wrapper might refuse to handle some predicates
due to limited query capabilities.

54 Evaluation of the Presented Work

0.1

0.2

0.05

0.15

0.25

T
im

e
in

 s
ec

o
n

d
s

Overall Optimi-
zation Time

Time Spent in
Ranksort

Decomposer Push
Approach

Cost-Based Pick
Approach

Time Spent in
Wrapper

Figure 4.1: Comparison between the query optimization times.

4.3.1 Comparison Between the Decomposer Push Approach
and the Cost-Based Pick Approach

This comparison concerns both the query optimization time and the query
execution time. For comparison I used the query already discussed in the
last section:

select ssn(p), name(d)
from Person p, Dep d
where income(p) > budget(d);

Person and Dep are stored in the B+-tree and there exists an index on
income and budget, respectively. Figure 4.1 shows the different optimiza-
tion times needed for creating the execution plans. There exist two striking
characteristics in this figure:

4.3 Experimental Results 55

Number of Persons 100 1000 5000 10000
Number of Results 4 9 16 30
Execution time DP Approach 1.16s 12.5s 65.1s 127.3s
Execution time CBP Approach 0.019s 0.044s 0.057s 0.107s

Table 4.1: Comparison between the query execution times.

1. The overall time spent on query optimization is higher for the de-
composer push approach, although less time is needed for cost-based
optimization using ranksort.

In the decomposer push approach 0.235 seconds were needed for query
optimization. Out of this time 0.016 seconds, i.e. 6.8 per cent, were
spent in ranksort. In the cost-based pick approach, on the contrary,
0.168 seconds were needed for query compilation and 0.057 seconds,
which is about one third of the time, are spent on cost-based optimiza-
tion. Even though this cost-based optimization time is higher than in
the decomposer push approach, the overall execution plan generation
time is lower. This is due to the time overhead produced by the invo-
cation of the decomposer.

2. In the decomposer push approach 0.005 seconds are spent in the wrap-
per, compared to 0.017 second in the cost-based pick approach.

While in the decomposer push approach the wrapper is called only
once, it is invoked three times in the cost-based pick approach. In the
case of a complex query, where the order of much more than three pred-
icates must be determined during cost-based optimization, the over-
head produced by wrapper invocation can get much more severe. This
is analyzed in the next section.

Next, I analyzed the query execution time for the above query, once the
execution plans were created. The type Dep contained always 10 objects and
the number of persons stored in the B+-tree was varied between 100 and
10000. The results shown in Table 4.1 demonstrate the huge differences be-
tween the decomposer push approach (DP Approach) and the cost-based
pick approach (CBP Approach). The much shorter execution times for the
cost-based pick approach arise due the utilization of the index on the prop-
erty income.

56 Evaluation of the Presented Work

The results show how important good query optimization is. Creating
a bad plan can easily lead to execution times that are several orders of
magnitude slower than the optimal plan. For example, utilizing the index in
the above query increases the execution time for 10000 persons by a factor
of 1000.

4.3.2 The Effects of Wrapper Involvement During Cost-
Based Optimization

In the above query we already discovered that the invocation of the wrappers
during cost-based optimization produces some time overhead. To determine
the magnitude of this involvement we compared the query optimization times
for a complex query with and without the involvement of an external data
source.

A second point of interest are the changes done in the ranksort algorithm.
The modified ranksort algorithm has to check whether an external data
source is involved and it uses a different data structure than the original
algorithm. This data structure shows the binding patterns for all variables
of every predicate to provide the wrappers with all required information. To
measure the costs of these changes the original and the modified ranksort
algorithm are compared to each other.

The following query was used for test purposes3:

select matchinfo(m)
from Match m, Person p
where spectators(m) < income(p)
and year(played_in(m)) = 1990;

Match is a type, matchinfo a complex derived function and spectators,
year and played in are stored functions in a database modeling football
worldcups. income is either a mapped function, when the extent of type
Person is stored in a B+-tree or a locally stored function for the case of
no external data source involvement. After the calculus optimization phase
remain 17 predicates that have to get sorted during ranksort.

Figure 4.2 shows the optimization times for the three different scenarios
described above. In the first case, when Person is stored in the B+-tree,
the B+-tree wrapper was called 14 times during cost-based optimization

3Note that this is not a meaningful query and that the returned query results are of no
interest.

4.3 Experimental Results 57

0.2

0.4

0.1

0.3

T
im

e
in

 s
ec

o
n

d
s

Overall Optimi-
zation Time

Time Spent in
Ranksort

Time Spent in
Wrapper

External DS
Involvement

Modified Rankort
Algorithm without

External DS

Original
Ranksort
Algorithm

Figure 4.2: Comparison between query optimization times.

and 0.047 seconds were spent in the wrapper, which accounts to 20% of
the overall time spent in ranksort. In the second case where only types
stored in the local AMOS II mediator were used, the time spent in ranksort
decreased from 0.234 seconds to 0.156 seconds, which is a decrease of 33%.
And, finally, when using the original ranksort algorithm 0.11 seconds were
needed for cost-based optimization. This is a decrease of 30% compared to
the modified algorithm.

Two conclusions can be drawn out of these results. Firstly, the changes of
the data sturucture in the ranksort algorithm lead to significantly higher cal-
culation costs. As these changes occur in a very time critical part of the pro-
gram, the implementation should be reviewed and optimized. Secondly, the
wrapper involvement produces a considerable increase in calculation time.
In the above query only one wrapper gets called. In the case of a query over
many different data sources the time overhead for grouping and translation
in every loop of ranksort gets even more severe. Moreover, for join-capable
data sources efficient grouping is much more sophisticated than in the B+-
tree case, which leads to even higher calculation costs.

Table 4.2 summarizes the advantages and disadvantages of the decom-
poser push approach and the cost based pick approach. These results sup-

58 Evaluation of the Presented Work

Positive Negative
DPA AMOS II has control over pred-

icate grouping and predicate
placement.

The search space is reduced by
applying heuristics.

The join grouping logic is cen-
tralized and encapsulated in the
AMOS II decomposer.

The placement of the MIFs is
binding pattern independent.

The join-order is partially con-
strained by the MIF predicate
placement.

MIF predicates can be misplaced
as they might not be executable
in the external data source in
the given context. Then post-
processing in the mediator sys-
tem is needed.

CBPA Dynamic grouping of the MIF
predicates depending on the
binding patterns.

Better plans can be generated.

Wrappers have exact knowledge
which MIF predicates they are
able to process. No misplacing
can occur.

The AMOS II query processor
has no control over the grouping
process.

Every wrapper must contain a
full grouping logic.

Increased query optimization
time due to frequent wrapper in-
volvement.

Table 4.2: Comparison between the decomposer push approach (DPA) and
the cost-based pick approach (CBPA).

4.3 Experimental Results 59

port the supposition stated above that the cost-based pick approach should
only be used for data sources with very limited capabilities, whereas the
decomposer push approach is suited for databases having their own query
processor. This differentiation between data sources captures the advantages
of both approaches. Firstly, the grouping logic for fully fledged databases is
encapsulated in the decomposer and does not have to be implemented within
every wrapper. This simplifies the task of writing new wrappers. Secondly,
the pre-grouping in the decomposer reduces the number of predicates that
have to get ordered in the cost-based optimizer. This can lead to lower op-
timization times, as the cost-based optimization time grows quadratically
to the number of predicates when using ranksort and exponentially when
using exhaustive algorithms. And finally, the AMOS II query optimizer is
used for data sources that do not have their own optimizer. This allows the
best utilization of eventually existing indices.

60 Evaluation of the Presented Work

Chapter 5

Related Work

This chapter describes other research projects that are in some ways related
to our work. The main issues that were addressed in this thesis concern data
model transformation, query processing over heterogeneous data sources,
diverse data source capabilities, and semantic rewriting.

The next section describes the Garlic System [24] which is very similar
to the AMOS II system. The TSIMMIS project [10] uses a declarative spec-
ification language for describing a repository’s capabilities, as explained in
Section 5.2. Finally, Section 5.3 presents other relevant research projects.

5.1 The Garlic System

The Garlic system [2, 11, 12, 25] for multi-database integration is being de-
veloped at the IBM Almaden Research Center. Garlic uses an object-oriented
data model to uniformly represent data from various data sources, and an
object-extended dialect of SQL as a query language. The query processing
is performed by a “middleware” layer that interprets object queries, creates
execution plans in cooperation with the underlying wrappers, sends pieces
of queries to the appropriate data servers, and assembles the query results.

Similar to the AMOS II system uses Garlic also wrappers to encapsulate
all the knowledge about external data sources. More precisely do wrappers
provide four services to the Garlic middleware system. They are utilized to
model legacy data as objects, to participate in query planning, and to provide

61

62 Related Work

standard interfaces for method invocation and query execution. The Garlic
query processor itself has, like the cost-based pick approach in AMOS II ,
no a priori knowledge about the query processing capabilities of the indi-
vidual data sources. Instead the query processor identifies the portions of a
query that concern a specific data source, and the wrapper determines what
parts of the task it is able to perform and creates execution plans. There
are three advantages using this non-declarative approach. First, the middle-
ware optimizer does not have to know all the details about the capabilities
and restrictions of the underlying data source. Secondly, it is much easier to
introduce new kinds of data sources even if they have unanticipated restric-
tions or capabilities. Neither any declarative specification language nor the
optimizer code has to be changed or extended. Thirdly, the start-up costs
to write a new wrapper are kept small, nevertheless, the wrapper can be
easily extended to exploit more of the repository’s native query processing
capabilities. However, there are also drawbacks compared to the declara-
tive approach as it is used for example in the TSIMMIS [10] and DISCO [28]
project. The main disadvantage is that the Garlic middleware does not know
in advance which parts of the query can be handled by the repository. This
can lead to a number of unsuccessful work requests.

Garlic uses a dynamic programming approach based on Lohman’s frame-
work [19] for query decomposition and query optimization. The execution
plans are trees of operators that are called POPs, (Plan OPerators). There
exist POPs for join, sort, filter (selections) etc. and also a generic POP, called
PushDown, which encapsulates work to be done at a repository. Properties
are attached to all plans to indicate the work they are performing. These
properties include information about tables being used, predicates being ap-
plied and the estimated cost of the plan. Properties are also used by the
wrappers to indicate which part of the requested query they are willing to
perform. If, for example, a wrapper is not able to calculate one of the re-
quested predicates then it will create a plan that leaves this predicate out.
The properties of the returned plan show what part of the requested work
is really done by the wrapper, and the Garlic middleware system will do the
remaining work. STrategy Alternative Rules, for short STARs, are produc-
tion rules of a grammar that are used to construct different execution plans.
Each rule determines how a new plan is constructed from one or more partial
plans, and there exist conditions for every STAR that guard its triggering.
Generic STARs are fired during enumeration when a piece of work is found
that must be done by a wrapper. These STARs model the capabilities of the

5.1 The Garlic System 63

different wrappers and describe “what” the wrapper can execute, but not
“how” it is done.

A complete execution plan is built bottom-up. For example, plans for se-
lect queries are created in three phases. During the first phase, every collec-
tion that is used in the query is accessed by using the generic access-STARs
provided by each wrapper. In the second phase, the join order is determined.
Dynamic programming is used for first creating two-way joins, then three-
way joins and so forth until all needed joins are performed. For every join are
three join methods considered. The RepoJoin is executed in the repository,
the NestedLoopJoin is executed within the Garlic system and the BindJoin
is a semi-join where the Garlic system send intermediate results from the
outer objects to the wrapper, which uses these results for filtering the data
it returns. In the third and last phase, the final query plans are constructed
and Garlic includes all projections, selections and orderings that have not
been achieved so far. The least cost plan out of all the created plans is then
chosen for query execution.

Although the Garlic approach to external data source integration and
query processing is very similar to our approach in AMOS II , there exist
some differences:

• In Garlic are all attributes of an object retrieved at the same time be-
fore the joins take place. In AMOS II is only the core-cluster retrieved
all at once, whereas the other predicates can be accessed after some
joins took place. Doing this can eliminate communication overhead and
lead to shorter query execution times.

• Garlic requests the wrapper to handle a set of predicates or to perform
a join, whereas in AMOS II ’s cost-based pick approach the wrappers
group themselves those predicates together that they regard as a unit.
This avoids unsuccessful work request, however, the mediator has no
control over the grouping process.

• The decomposer push approach in AMOS II knows roughly which
predicates can be handled by the repository. This a priory knowledge
is used for a pre-selection in the grouping phase.

• AMOS II has the concept of directly mapped functions which avoids
the invocation of the wrapper’s query processor during plan genera-
tion. Moreover, for very simple data sources that can only return their
entire content, even the core-cluster function can be a directly mapped

64 Related Work

function and the grouper and the translator are not needed at all. In
Garlic, on the other side, is the interface to the repository completely
hidden to the middleware and the wrappers participate always in the
query planning process.

• The Garlic system evaluates the cost for all possible join methods
(nested-loop join, semi-join etc.). In AMOS II , on the other hand, the
wrapper decides based on its capabilities which join method is per-
formed. No other alternatives are considered. Though this can lead to
suboptimal plans, the query optimization time is considerably reduced,
especially when many join operations are needed. And the latter can
be true even for relatively simple queries due to the excessive view cre-
ation needed for schema integration over heterogeneous data sources.

• In AMOS II does the mediator and not the wrapper create and store
the OIDs. In fact, the OIDs are completely unknown to the wrapper
and key values are used for object identification.

• Garlic has a centralized architecture, i.e. all data sources are wrapped
in a single system. AMOS II , in contrast, employs a distributed ar-
chitecture, i.e. there can exist many mediator servers communicating
with each other.

5.2 The TSIMMIS System

The TSIMMIS (The Standford-IBM Manager of Multiple Information
Sources) project uses a declarative approach for describing the capabilities
of different information systems [10, 22, 17].

The object exchange model (OEM) is used as common data model and
serves as basis for data integration. The basic entity in OEM in an object.
Every object is self-describing containing the components OID, label, type
and value. Therefore no external schema for storing meta type information
is needed.

As mentioned above, and in contrast to the Garlic and AMOS II system,
does the TSIMMIS system use a declarative approach for describing the
capabilities of the data sources. More specifically, it uses templates specified
in the Relational Query Description Language (RQDL) to represent the set
of queries, called source queries, that can be processed by each data source.
During query processing a query is divided into subqueries, which relate to

5.3 Other Relevant Research Projects 65

predicates in the AMOS II system. After view expansion an execution plan
is created during the three consecutive phases matching, sequencing and
optimizing.

The matcher finds for every subquery all the source queries processing it.
This is done by expanding the templates which describe the set of executable
source queries. Some pruning techniques are utilized to avoid unnecessary
template expansions that cannot lead to matching source queries. The au-
thors claim that in most practical situations the relevant source queries are
produced in a polynomial time despite the inherent exponentiality of the
problem [22]. The result of the matching phase is a set of source queries
of which each one processes a subquery and has eventually some binding
pattern requirements.

Next, the sequencer creates a set of feasible sequences, i.e. a list of source
queries that together process all subqueries. Achieving this it is not just a
question of which source queries should process which subquery, but also of
determining their execution order to meet the binding requirements.

Finally, the optimizer picks the most efficient plan out of all feasible ones
by calculating the cost of all plans.

The wrappers are only contacted in the adjacent execution phase. They
receive the subquery and return the requested results. It is guaranteed that
the data source can perform the subquery as the subquery was derived out
of the templates describing all their executable queries.

5.3 Other Relevant Research Projects

Chaudhuri and Shim [1] discuss the topic of cost-based optimization of re-
lational conjunctive queries in the presence of foreign functions. They intro-
duce a simple declarative rule language to express the semantic information
about these foreign functions. This declarative rule language is basically a
set of rewrite rules that are used to generate alternative equivalent queries.
L(x, y) → R(x, z) is the notation for a rewrite rule where L(x, y) and R(x, z)
are conjunctive expressions and x, y and z are ordered sets of variables. Ev-
ery variable in the set x is called an universal variable, which is a variable
that occurs in both sides of the rewrite rule.

As an example consider a relational database with a table Business that
stores the ID, name and the type of businesses, and a geographic data man-
ager that provides the two foreign functions Map(ID, loc) and Map Rest(ID,

66 Related Work

loc). Map returns given the ID of a business its location and Map Rest does
the same for restaurants only. For obtaining the location of restaurants we
can either take a join between Business and Map or can invoke Map Rest.
Ths can be expressed in the following rewrite rule1:

Business(ID, name, ’Restaurant’),Map(ID, loc) ↔ Map Rest(ID, loc)

Observe that it is not always correct to apply this rewrite rule. For example
when there exists another table Owner in the relational database that stores
the name of a business and the name of its owner and we want to retrieve
the location of all restaurants whose owner is called ’Bob’, we can state the
following query Q:

Q(loc) : − Business(ID, name, ’Restaurant’), Map(ID, loc),
Owner(name, ’Bob’)

However, applying the above rewrite rule leads to the following query Q′

that is not semantically equivalent:

Q′(loc) : − Map Rest(ID, loc), Owner(name, ’Bob’)

It turns out that the semantics of the rewrite rules guarantee that the left-
hand and the right-hand sides of the rewrite rules are equivalent over univer-
sal variables only. Thus, a rewrite rule L(x, y) → R(x, z) can only be applied
in a query Q when Q has the form

Q(u) : − L(v,w), G(t)

where G(t) represents the conjunction of the rest of the predicates in query
Q, and where the set of variables w is disjoint from the set u as well as the
set t. An applicable occurrence of a rewrite rule is called a sound occurrence.

During query optimization first the closure of a query, i.e. the set of all
equivalent queries, is generated by iteratively applying all sound occurrences
of all rewrite rules. Next, the best execution plan for every query is computed
and the cheapest of all these plans will get executed. A smart algorithm
using the dynamic programming approach is presented that eliminates the
recalculation of common subqueries in different plans. Note that the closure

1Rewrite rules and queries are stated in domain calculus expressions as in non-recursive
Datalog [29].

5.3 Other Relevant Research Projects 67

of a query might not be finite for some rewrite rules, due to the existence
of endless derivations that do not terminate. This must also be detected by
the query optimizer.

This proposed approach might be applicable for our B+-tree example by
stating a couple of rewrite rules for transforming the simple B+-tree scan into
a range query. However, it doesn’t work for parameterized foreign functions
like SQL that need a string expression as input. It is not possible to create
the appropriate string expression with these simple rewrite rules expressed
in a declarative language.

Related to this approach is the Starburst project [23]. However, Star-
burst uses a procedural language for expressing the semantic knowledge,
which enables the description of arbitrary complex rewrite rules. Moreover,
the rewrite rule language in Starburst is not only used to express semantic
knowledge, but also to express the rules for query transformation during
the optimization phase. Another difference to the work of Chaudhuri and
Shim [1] is that Starburst uses heuristics for applying a rewrite rule and do
not follow an exhaustive search approach.

68 Related Work

Chapter 6

Summary and Future Work

6.1 Summary and Conclusions

AMOS II is an extensible object-oriented mediator database system. It is
designed to integrate the data stored in a number of distributed heteroge-
neous data sources. In this thesis I presented the extensions I have made to
the AMOS II system. These extensions concern three main subjects. Firstly,
I created a mechanism for an easy transformation of a foreign data model
into the AMOS II data model. Secondly, I defined the role of a wrapper and
described how to deal with limited query capabilities. Furthermore, an inter-
face for extending the core mediator system with new wrappers was defined.
And thirdly, I proposed and evaluated two approaches to query processing
over external data sources. For demonstration purposes a B+-tree package
was used. I will now briefly summarize each of these contributions.

For data model transformation the concepts of mapped functions,
mapped types, mapped objects and directly and indirectly mapped functions
were introduced. Furthermore is it possible to clusterize the properties of a
mapped type into a core and non-core clusters. Key information is needed
for creating unique OIDs in the mediator system. These concepts allow both
the representation of data stored in an external data source as well as the
introduction of new operators in the AMOS II mediator system.

The role of wrappers can be divided in three different tasks (see Fig-
ure 3.1). The meta-data manager supplies the needed information for inte-

69

70 Summary and Future Work

grating external data and operators. The query participator participates in
query optimization and encapsulates the knowledge about the repository’s
query capabilities. It also provides cost functions. And, finally, for providing
an interface to the external data sources the concept of foreign functions is
utilized. These foreign functions are either called directly by the user or they
are directly or indirectly mapped to some other functions.

For query processing over external data sources two different approaches
were presented and evaluated. The decomposer push approach utilizes the
AMOS II decomposer to send subqueries to the wrappers for execution in
the external data source. For doing that the decomposer has to have some
knowledge about the query capabilities of the repositories. As it is nearly
impossible to declare all the minute details and restrictions of every data
source, the wrappers declare only which multi implementation functions
(MIFs) they might be able to handle. All predicates of a subquery that can-
not be process in the repository are post-processed in the mediator system.
In the cost-based pick approach, on the contrary, are the subqueries formed
by the wrappers during cost-based optimization. The wrappers pick those
predicates they are willing to perform. It appears that the cost-based pick
approach is well suited for data sources with very limited query capabilities
that do not have their own query optimizer. The decomposer push approach,
however, seems to be the better suited for fully fledged data sources like rela-
tional or object-oriented databases. This means that the decomposer is used
for decomposing queries over “real” databases whereas the cost-based pick
approach is used for extending the AMOS II system with data sources that
do not have their own query optimizer.

6.2 Future Work

AMOS II is a very stable research system and very well suited for further
extensions. There exist a couple of interesting questions in the area of this
work that have to be further investigated. Some of the main issues are the
following:

• The cost-based pick approach is only implemented for ranksort so far.
As shown in Chapter 4 should this implementation be reviewed and op-
timized to reduce the cost-based optimization time. Furthermore, the
grouping and translation phases have to be introduced in the other two
algorithms, i.e. random sort and the dynamic programming approach.

6.2 Future Work 71

• The proposed approach for data model transformation should be tested
for other repositories like web sources, file managers and very spe-
cialized applications. An interesting example for a complex indirectly
mapped function is the grep command. grep is capable of searching
files for single words or for whole patterns expressed as regular expres-
sions. Capturing all these capabilities in an indirectly mapped function
would be both, an useful extension to the AMOS II system, as well
as a challenging task well suited for testing the concept of indirectly
mapped functions.

• In this thesis the focus was kept on retrieving data from external data
sources. There exists a need for introducing generic functions for in-
serting and updating data in the repositories.

• Caching techniques for materializing intermediate results in the
AMOS II system should be made available for wrappers. This can lead
to huge performance improvements in query execution times.

72 Summary and Future Work

Appendix A

Abbreviations

COID create OID (object identifier)
DBMS database management system
DcT decomposition tree
DDL data definition language
DML data manipulation language
DST data source type
MIF multiple implementations functions
ODBC open database connectivity
OEM object exchange model
OID object identifier
OO object oriented
PPL post processing list
SAE ship and execute
SF subquery function
SIF single implementation function
SQL structured query language

73

74 Abbreviations

References

[1] S. Chaudhuri, K. Shim, “Query Optimization in Presence of Foreign
Functions”, Proceedings of the 19th Conference on Very Large Data Bases
(VLDB’93), pp. 529-542, Dublin, Ireland, 1993.

[2] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody, R. Fagin, M. Flick-
ner, A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. Williams,
E. Wimmers, “Towards Heterogeneous Multimedia Information Systems:
The Garlic Approach”, Proc. IEEE RIDE-DOM, Taipei, Taiwan, March
1995.

[3] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, The MIT
Press, 1990.

[4] R. Elmasri, S. Navathe, Fundamentals of Database Systems, The Ben-
jamin/Cummings Publishing Company, Inc., second edition, 1994.

[5] G. Fahl, T. Risch, M. Sköld, “AMOS – An Architecture for Active Me-
diators”, Proceedings of Next Generation Information Technologies and
Systems (NGITS’93), Hafai, Israel, June 1993.

[6] G. Fahl, T. Risch, “Query processing over object views of relational
data”, The VLDB Journal, 6, pp. 261-281, November 1997.

[7] D. Fishman, D. Beech, J. Annevelink, E. Chow, T. Conners, J. Davis,
W. Hasan, C. Hoch, W. Ken t, S. Leichner, P. Lyngbaek, B. Mah-
bod, M. Neimat, T. Risch, M. Shan, W. Wilkinson, “Overview of the
IRIS DBMS”, in W. Kim, F. Lochovsky, eds., Object-Oriented Concepts,
Databases and Applications, Readiong, MA: Addison-Wesley, 1989.

[8] S. Flodin, T. Risch, “Processing Object-Oriented Queries with Invertible
Late Bound Functions”, Proceedings of the 21st Conference on Very Large
Databases (VLDB’95), Zürich, Switzerland, 1995.

75

76 References

[9] S. Flodin, V. Josifovski, T. Risch, M. Sköld, M. Werner, “AMOSII User’s
Guide”, available at http://www.ida.liu.se/∼edslab, 1999.

[10] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman,
Y. Sagiv, J. Ullman, V. Vassalos, J. Widom, “The TSIMMIS Approach
to Mediation: Data Models and Languages”, Journal of Intelligent Infor-
mation Systems, Vol. 8, No. 2, pp. 117-132, 1997.

[11] L. Haas, D. Kossmann, E. Wimmers, J. Yang, “Optimizing Queries
Across Diverse Data Sources”, Proc. of the 23rd International Conference
on Very Large Data Bases (VLDB’97), Athens, Greece, August 1997.

[12] L. Haas, R. Miller, B. Niswonger, M. Roth, P. Schwarz, E. Wimmers,
“Transforming Heterogeneous Data with Database Middleware: Beyond
Integration”, Bulletin of the Technical Committee on Data Engineering,
IEEE Computer Society, Vol. 22, No. 1, March 1999.

[13] Y. E. Ioannidis, Y. C. Kang, “Randomized Algorithms for Optimizing
Large Join Queries”, Proceedings of the 1990 ACM-SIGMOD Conference
on the Management of Data, pp. 312-321, Atlantic City, NJ, May 1990.

[14] A. Josifovski, T. Risch, “Functional Query Optimization over Object-
Oriented Views for Data Integration”, Journal of Intelligent Information
Systems (JIIS), Vol. 12, pp. 165-190, 1999.

[15] A. Josifovski, “Design, Implementation and Evaluation of a Distributed
Mediator System for Data Integration”, Dissertation No. 582, Laboratory
for Engineering Databases, Linköping University, Sweden, 1999.

[16] A. Josifovski, T. Katchaounov, T. Risch, “Optimizing Queries in
Distributed and Composable Mediators”, Proc. of the 4th Conference
on Cooperative Information Systems (CoopIS’99), Edinburgh, Scotland,
September 1999.

[17] C. Li, R. Yerneni, V. Vassalos. H. Garcia-Molina, Y. Papakonstantinou,
J. Ullmann, M. Valiveti, “Capability Based Mediation in TSIMMIS”, Pro-
ceedings SIGMOID Conference, 1998.

[18] W. Litwin, T. Risch, “Main Memory Oriented Optimization of OO
Queries Using Typed Datalog with Foreign Predicates”, IEEE Transac-
tions on Knowledge and Data Engineering, Vol. 4, No. 6, pp. 517-528,
December 1992.

References 77

[19] G. Lohman, “Grammar-like functional rules for representing query opti-
mization alternatives”, Proc. of the ACM SIGMOD Conf. on Management
of Data, pp. 377-388, Portland, OR, USA, May 1989.

[20] P. Lyngbaek et al., “OSQL: A Language for Object Databases”, Tech-
nical Report, HP Labs, HPL-DTD-91-4, 1991.

[21] Adrian Mardlin, “ISAM Manager, B+Tree/ISAM System For C++”,
Nildram Software, 1994.

[22] Y. Papakonstantinou et al., “Capabilities-Based Query Rewriting in
Mediator Systems”, Journal of Distributed and Parallel Databases, Vol. 6,
No. 1, pp. 73-110, 1998.

[23] H. Pirahesh, J. M. Hellerstein, W. Hasan, “Extensible/Rule Based
Query Rewrite Optimization in Starburst”, Proceedings of the 1992 ACM-
SIGMOD Conference on the Management of Data, pp. 39-48, San Diego,
CA, May 1992.

[24] M. Roth, P. Schwarz, “Don’t Scrap It, Wrap It.”, 23rd Int. Conf. on
Very Large Databases (VLDB97), pp. 266-275, Athens, Greece, August
1997.

[25] M. Roth, P. Schwarz, “A Wrapper Architecture for Legacy Data
Sources”, IBM Technical Report RJ10077, 1997.

[26] D. Shipman, “The Functional Data Model and the Data Language
DAPLEX”, ACM Transactions on Database Systems, Vol. 6, No. 1, ACM
Press, 1981.

[27] M. Sköld, T. Risch, “Using Partial Differencing for Efficient Monitoring
of Deferred Complex Rule Conditions”, 12th International Conference on
Data Engineering (ICDE’96), IEEE, New Orleans, Louisiana, Feb. 1996.

[28] A. Tomasic, L. Raschid, P. Valduriez, “Scaling Access to Heterogenous
Data Sources with Disco”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 10, No. 5, pp. 808-823, Sept./Oct. 1998.

[29] J. Ullman, Principles of Database and Knowledge-Base Systems, Vol. I
& II., Computer Scinece Press, New York, NY, 1988.

78 References

[30] V. Vassalos, Y. Papakonstantinou, “Describing and Using Query Capa-
bilities of Heterogeneous Sources”, Proceedings of the 23rd VLDB Confer-
ence, pp. 256-265, Athens, Greece, August 1997.

[31] G. Wiederhold, “Mediators in the Architecture of Future Information
Systems”, IEEE Computer Vol. 25, No. 3, pp. 38-49, 1992.

