
Uppsala Student Thesis
Computing Science No. 289
2005-01-07
ISSN 1100-1836

Semantic Web Queries to a Mediator
System

Master´s thesis by

Josef Schindler

Advisor and Supervisor: Tore Risch

January 2005

Uppsala Database Laboratory
Uppsala University

P.O. Box 513
S-751 20 Uppsala

Sweden

Abstract: This report describes how to extend the functional
mediator system Amos II (Active Mediator Object System)
to allow queries expressed in the query language RDQL be
processed over RDF-data (Resource Description Framework)
through Amos II. A new embedding to Amos II is proposed,
which translates RDQL-statements to AmosQL query strings
(the Amos II query language), which, when executed, evaluates
the queries over RDF-data accessible through Amos II. The
parser itself is written by using JavaCC, a Java based parser
generator.

Contents

1 Introduction 2

2 Background 4

2.1 Databases, query languages, SQL 4
2.2 Semantic Web . 5
2.3 Resource Description Framework (RDF) 6
2.4 RDF Data Query Language (RDQL) 8
2.5 Jena2 . 9
2.6 Mediator / wrappers . 10

3 The RDQL–Front System 12

3.1 Translation from RDQL to AmosQL 12
3.1.1 Translation rules . 15
3.1.2 Restrictions . 16

3.2 Architecture . 18
3.3 Implementation . 18

3.3.1 The translator . 18
3.3.2 Namespace . 20
3.3.3 Used foreign functions 20

3.4 Evaluation . 21

4 Summary and future work 22

A Appendix: RDQL grammar 24

B Appendix: Test queries, translations, and results 28

1

1 Introduction

This work is done to allow queries expressed in RDQL (Resource Description
framework data Query Language sec. 2.4) to be processed over RDF -data
(Resource Description Framework sec. 2.3) provided through Amos II (Active
Mediator Object System [4][5]).

It is getting increasingly difficult to get the desired information
in modern free-text search methods as provided by, e.g., GOOGLE.
One needs to access many different kinds of data to get the useful
information. Especially if one wants to combine web resources with
other kinds of data stored outside the web like enterprise databases
this data retrieval problem gets even worse [1].

The semantic web initiative [2] provides Internet-wide standards for semanti-
cally describing web data. Any web resource can be annotated with properties
describing its structure using the standards RDF [3][10] and RDF-Schema [9].
This facilitates guided search of web resources in terms of these properties,
which are represented as sets of RDF statements. These are triples containing
a web resource, a property and a value (subject, verb, object).
HP-Labs has developed a Java based package, Jena2 [7], for writing semantic
web applications. Different kinds of back-ends can be connected to Jena2 for
transparently storing RDF-data persistently given Jena´s Java-API. RDQL is
an RDF-based query language and a Jena2 API for RDQL has been defined [6].

The extensible functional multi-database system Amos II allows to execute
object-oriented and functional queries over federations of databases distributed
over the Internet. There are interfaces between Amos II and Java documented
in [11]. Either a Java program calls Amos II through the callin interface, or
foreign AmosQL functions are defined by Java methods through the callout
interface. This permits the development of access modules to external data
sources, called wrappers [8]. This functionality allows transparent queries to
views over combinations of different kinds of back-end data sources, so called
mediators. The mediators combine the underlying data sources in the needed
way to offer a high-level abstraction. It simplifies accessing heterogeneous
data sources at the application level. For example, wrappers for ODBC based
relational databases, CAD systems, Internet search engines, XML documents
or MIDI files have been implemented[8].
AmosQL is the query language based on Amos II. It is a relationally complete
object-oriented language.

This report will describe the development of a translator and the embedding
into Amos II, which allows to translate RDQL queries into AmosQL and ex-
ecute them. The now existing RDQLFront system has been developed with
a Java based parser generator, called JavaCC (Java Compiler Compiler). Ex-
actly the same RDQL grammar [12], which is used in the Jena2 package, is
also used in this project to make sure that every RDQL query is recognized

2

by the parser. After recognizing the RDQL query, it is translated into the
appropriate AmosQL query, which is then executed in Amos II.
Now, Amos II supports RDQL access to RDF sources in general.

This report is introduced by an overview of background knowledge of related
technologies from databases in general to the special Java framework for writ-
ing Semantic Web applications — Jena2. Question like: ’What is Semantic
Web and RDF?’, are detailed explained in this part of the report. Section
3 explains the present work, its architecture, implementation, and evaluation,
followed by a short summary. Detailed information about the RDQL grammar
and all test queries to verify the RDQL–front system are in appendix A and
B.

3

2 Background

This chapter gives an overview of the related technologies whose knowledge is
necessary for the project. There might be some few other things which are not
explained in detail here but I assume to have this knowledge background.

2.1 Databases, query languages, SQL

A database is nothing more than a collection of information that
exists over a long period of time [21].

In most cases, information is structured in tables, and queries manipulate and
combine tables. The database schema is a group of table definitions possibly
containing information. A Database Management System (DBMS) provides an
interface to these tables and implements mathematical theory for manipulating
the tables.
The query language is necessary to support the declarative specification of
both data manipulations. It allows manipulation and retrieval of data from a
database. Figure 1 shows the concept of a database system.

Figure 1: source: [22]

4

SQL (Structured Query Language) is an ANSI (American National Standards
Institute) standard computer language. There are many different versions
of the SQL language, but to be in compliance with the ANSI standard, they
must support the same major keywords in a similar manner (such as SELECT,
FROM, WHERE, UPDATE, DELETE, INSERT).

2.2 Semantic Web

The Semantic Web is an extension of the current Web in which information
is given well-defined meaning, better enabling computers and people to work
in cooperation. It is based on the idea of having data on the Web defined
an linked such that it can be used for more effective discovery, integration,
automation and reuse across various applications.
The Semantic Web provides an infrastructure that enables not just web pages,
but databases, services, programs, sensors, personal devices, and even house-
hold appliances to both consume and produce data on the web. Software
agents can use this information to search, filter and prepare information on
the web [13].
Also the Semantic Web consists of resources and links. However, now the
resources and links can have types which define concepts that tell a bit more
to the machines.
The rules Semantic Web is based on, called Semantic Web Main Principles as
described in [14], follow now:

1. Everything can be identified by URI´s

2. Resources and links can have types

3. Partial information is tolerated

4. There is no need for absolute truth

5. Evolution is supported

6. Minimalist design

The Semantic Web principles are implemented in the layers of Web technologies
and standards. The layers are presented in Figure 2.

The Unicode and URI layers make sure that we use international characters
sets and provide means for identifying the objects Semantic Web. The XML
layer with namespace and schema definitions make sure that the definitions
with the other XML based standards can be integrated in the Semantic Web.
With RDF and RDFSchema (RDFS) (see sec. 2.3) it is possible to make
statements about objects with URI´s and define vocabularies that can be
referred to by URI´s. This is the layer where types can be given to resources

5

Figure 2: The Semantic Web layers: The Logic layer enables the writing of
rules while the Proof layer executes the rules and evaluates together with the
Trust layer mechanism for applications whether to trust the given proof or not.
Source: [14]

and links. The Ontology layer supports the evolution of vocabularies as it can
define relations between the different concepts. The Digital Signature layer is
used to detect alterations to documents.

The Semantic Web provides a common framework that allows data to be shared
an reused across application, enterprise and community boundaries. It is based
on the Resource Description Framework (RDF) (sec. 2.3), which integrates a
variety of applications using XML for syntax and URIs for naming.
The present work is only based on RDF, not on RDFSchema.

2.3 Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a general-purpose
language for representing information in the Web [15].

It is intended for representing metadata about Web resources., such as the
title, author, and modification data of a Web page, or the availability schedule
for some shared resource. RDF can e.g. be used to represent information
about things that can be identified on shopping facilities (e.g., information
about specifications, prices, and availability), or the description of a Web
user´s preferences for information delivery.

RDF provides a common framework for expressing information so it can
be exchanged between applications without loss of meaning. The ability
to exchange information between different applications means that the
information may be made available to applications other than those for which
it was originally created.

6

The idea of RDF is to identify things using URIs, and describe resources in
terms of simple properties and property values. This enables RDF o represent
simple statements about resources as a graph of nodes and arcs representing
the resources, and their properties and values. Figure 3 should explain this
clearer1.

Figure 3: RDF graph: There is a person identified by
http://www.w3.org/People/EM/contact#me, whose name is Eric Miller,
whose email address is em@w3.org, and whose title is Dr.

• individuals, e.g., Eric Miller, identified by
http://www.w3.org/People/EM/contact#me

• kinds of things, e.g., Person, identified by
http://www.w3.org/2000/10/swap/pim/contact#Person

• properties of those things, e.g., mailbox, identified by
http://www.w3.org/2000/10/swap/pim/contact#mailbox

• values of those properties, e.g. mailto:em@w3.org as the value of the
mailbox property (RDF also uses character strings such as "Eric Miller",
and values from other datatypes such as integers and dates, as the values
of properties)

1Source: [16]

7

RDF uses a particular terminology for talking about the various parts of
statements. The part that identifies the thing the statement is about is called
the subject. The part that identifies the property or characteristic of the
subject that the statement specifies is called the predicate, and the part that
identifies the value of that property is called the object. Subject, predicate,
object (s,p,o) are together the so called RDF-triples.

RDF-Schema [15] is a framework defined in terms of RDF that allows prop-
erties to be standardized for different application domains. It is RDF´s vo-
cabulary description language. Various RDF-standards for different kinds of
web documents have been developed, the most well known is Dublin Core
(http://dublincore.org/).
Amos II includes the possibility to access and query such RDF and RDF-
Schema based meta-data descriptions [18].

2.4 RDF Data Query Language (RDQL)

RDQL is a query language for RDF based on SquishQL2. It extracts infor-
mation from RDF graphs. This section gives a quick description of the key
elements of the query language with some examples. The grammar of RDQL
is in appendix A.
As in section 2.3 explained is an RDF model a graph, often expressed as a set
of triples. An RDQL query consists of a graph pattern, expressed as a list of
triple patterns. Each triple pattern is comprised of named variables and RDF
values (URIs and literals). An RDQL query can additionally have a set of
constraints on the values of those variables, and a list of the variables required
in the answer set.
RDQL queries are in the form:

SELECT vars
FROM document
WHERE Expressions
AND Filters
USING Namespace declarations

This translator is restricted to only one document in the FROM-clause.

Example 1:
SELECT ?x,?y
FROM <http://example.com/sample.rdf>
WHERE (?x,<dc:name>,?y)USING dc for <http://www.dc.com#>

This would return all the ?x-?y tuples indicating the resource name and the
value of the dc:name property for each resource [19].

2SquishQL is a simple, SQL-like, triples-based query language for RDF, which is designed
to be human readable (’SQL-ish’).

8

Example 2:
SELECT ?x
FROM <http://example.com/sample.rdf>
WHERE (?x, <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>,
<http://example.com/someType>)

This triple pattern matches all statements in the graph that have
predicate http://www.w3.org/1999/02/22-rdf-syntax-ns#type and object
http://example.com/someType. The variable "?x" will be bound to the la-
bel of the subject resource. All such "x" are returned [6].
The example query above had just one triple pattern forming a single edge in
the graph pattern. More complicated graph patterns are made by writing all
the edges in the query.

Example 3:
SELECT ?family , ?given
FROM <http://example.com/sample.rdf>
WHERE (?vcard vcard:FN "John Smith")
(?vcard vcard:N ?name)
(?name vcard:Family ?family)
(?name vcard:Given ?given)
USING vcard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

This query finds the family name and given name from any vcards with
formatted name (FN) "John Smith". Here we see also the use of the USING
clause. The prefix "vcard" is used to abbreviate the URI or URIref [6].
Writing the full URI or writing the abbreviated form is the same query as
RDF only deals with full URIrefs.

RDQL was first released in Jena 1.2.0 (see subsection 2.5). Appendix A shows
the grammar which is derived from the Jena implementation of RDQL3. This
grammar is exactly as is implemented in the translator in this project, so every
possible variation of RDQL query can be recognized by the parser.

2.5 Jena2

Jena is a Java framework for writing Semantic Web applications. Different
kinds of back-ends can be connected to Jena2 for transparently storing RDF-
data persistently given Jena´s Java-API. Jena2 uses ARP2 as RDF parser.
It features (source: [20]):

• statement centric methods for manipulating an RDF model as a set of
RDF triples

• resource centric methods for manipulating an RDF model as a set of
resources with properties

3source: [17]

9

• cascading method calls for more convenient programming

• built in support for RDF containers - bag, alt and seq

• enhanced resources - the application can extend the behaviour of re-
sources

• integrated parsers and writers for RDF/XML (ARP), N3 and N-
TRIPLES

• support for typed literals

The basic Jena API did not have any query language interface. It was a basic
store-retrieve object interface. But then the RDF based query language RDQL
was proposed and a Jena2 API for RDQL has been defined. The implementa-
tion in Jena2 is coupled to relational database storage so that optimized query
is performed over data held in an internal Jena relational persistent store.
The present project provides RDQL to AmosQL translation which enables
Amos II to wrap RDF sources through ARP2, the RDF parser included in the
Jena2 package, through RDQL.

2.6 Mediator / wrappers

An Amos II database system can integrate data of different type into its own
object-oriented database using wrappers. The wrappers process data from
different external sources to make them searchable with a query language,
in our case AmosQL. For example, wrappers for ODBC based relational
databases, CAD systems, Internet search engines, XML documents or MIDI
files have been implemented[8]. This results in a common data model and a
query language for heterogeneous data.

The wrappers functionality allows transparent queries to views over combina-
tions of different kinds of back-end data sources, so called mediators. Amos II
is such a distributed mediator system. Each mediator peer provides a number
of transparent functional views of data reconciled from other mediator peers or
wrapped data sources. Some wrapper functionality in Amos II is completely
data source independent while other functionality is specific for a particular
kind of data source. Amos II contains a hierarchy of wrappers to share wrapper
functionality.
Amos II wraps RDF sources through ARP2, the RDF parser which is also
included in the Jena2 package from HP-Labs. In [7] one can find a list of
wrappers, that have been implemented in Amos II.

The mediator/wrapper approach is used for integrating heterogeneous data.
Most mediator systems integrate data through a central mediator server ac-
cessing one or several data sources through a number of wrapper interfaces
that translate data to a common data model (CDM) and know how to process
queries to the source [4].
The present work is an embedding, not a wrapper from Amos II point of view.

10

It does not integrate data into Amos II´s own database like a wrapper would
do. An embedding is an embedding of the Amos II system in other systems,
while wrappers make other system searchable through Amos II.
This system makes it possible to access Amos II from RDQL. It will provide
wrapping of SQL-sources and other sources Amos II can wrap.

11

3 The RDQL–Front System

This section describes the work and results of the project included the RDQL–
front system.

3.1 Translation from RDQL to AmosQL

At first, I give some examples of RDQL queries and the appropriate AmosQL
queries. All examples have been tested and verified. The RDQL queries are
taken from HP RDQL tests in April 2003 [23].

RDQL:
SELECT ?x
FROM <vc-db-1.rdf>
WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>, "John Smith")

AmosQL:
SELECT x
FROM charstring x
WHERE rdf_triples(’vc-db-1.rdf’) =
<x, ’http://www.w3.org/2001/vcard-rdf/3.0#FN’, "John Smith">;

Figure 4: RDQL - AmosQL Example 1

To make it simple, the system allows namespace to be defined before
running a query on Amos II and the resources in the FROM-clause are
prefixed with the specified namespace. In In this case the namespace
is: http://swordfish.rdfweb.org/rdfquery/tests/old/tests/rdql-tests-2003-04-
10/inputs/. If the full namespace had been specified in the FROM-clause, the
source would be <http://swordfish.rdfweb.org/rdfquery/tests/old/tests/rdql-
tests-2003-04-10/inputs/vc-db-1.rdf> instead of only <vc-db-1.rdf>. The
feature of the translator which allows to set the namespace is described in
subsection 3.3.2.
In RDQL each variable is introduced by a question mark (?) and can be
named using alphanumerical characters combined with an underscore (_).
Multiple variables are separated by a space and/or an optional comma (,), see
the following example:

The corresponding AmosQL has a similar SELECT-clause as RDQL just

SELECT ?name ?email, ?age,?tel_number

without the question mark in front of the variables. There is one special
difference:
In case that all query variables are to be specified, one can use in RDQL the
SQL-like shortcut in form of a star (*). In that case the parser has to scan
the whole RDQL query for variables, first. Then all found variables are used
in the AmosQL SELECT-clause.
The generation of the AmosQL FROM clause is a bit tricky to handle. All

12

variables included in the SELECT-clause and in the triple patterns have to be
inserted here (in the FROM-clause of the generated AmosQL statement). As
you can see in all examples, they are introduced by the word ’charstring’. In
example 3 you can see that the whole query must be scanned for variables not
only the SELECT-clause. Otherwise one would not find the ?y in the triple
pattern and the translation would loose ’charstring y’. The RDF-source-file,
in that case ’vc-db-1.rdf’ is not used in the AmosQL FROM-clause but in the
WHERE-clause. The WHERE-clause: In RDQL is a list of triple patterns

RDQL:
SELECT ?x, ?fname
FROM <vc-db-1.rdf>
WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>, ?fname)

AmosQL:
SELECT x, fname
FROM charstring x, charstring fname
WHERE rdf_triples(’vc-db-1.rdf’) =
<x,’http://www.w3.org/2001/vcard-rdf/3.0#FN’, fname>;

Figure 5: RDQL - AmosQL Example 2

indicated which have to be matched by each valid query result set. All
patterns representing an RDF statement have the form (subject, predicate,
object) where subject, predicate, and object can either be a <URIref> or a
?variable.
Note, that the triple patterns in AmosQL are embedded in ’<...>’ but in
RDQL they are embedded in ’(...)’ because ’<...>’ marks URIrefs in RDQL
wherefore in AmosQL regular string delimiters (’...’) are used. However, the
main difference is the used foreign function ’rdf_triples’, which is explained
in detail in subsection 3.3.3. This function gets the RDF-source-file from the
RDQL-FROM-clause as argument, and then its result is to set equal with the
RDF triple patterns which were indicated in the RDQL query. If there is more
than one triple pattern in the RDQL query, each triple pattern must have its
own rdf_triple foreign function and be connected together with the keyword
’AND’.
Example 3 shows this.
To make the query easier to read and write for humans, RDQL provides a way
to shorten the length of URIs used in the FROM-, WHERE- and AND-clauses
by defining a string prefix. Every prefix is defined in the USING-clause as
demonstrated below:

WHERE (?resource, <info:age>, ?age)
USING info FOR <http://somewhere/peopleInfo#>

The last example (4) shows, how the USING-clause must be handled in the
translation and how conditional expressions can be handled in the WHERE-
clause. The matched variables in the query (here: info) and the following colon

13

RDQL:
SELECT ?givenName
FROM <vc-db-1.rdf>
WHERE (?y, <http://www.w3.org/2001/vcard-rdf/3.0#Family>, "Smith"),
(?y, <http://www.w3.org/2001/vcard-rdf/3.0#Given>, ?givenName)

AmosQL:
SELECT givenName
FROM charstring givenname, charstring y
WHERE rdf_triples(’vc-db-1.rdf’) =
<y, "http://www.w3.org/2001/vcard-rdf/3.0#Family", "Smith">
AND
rdf_triples(’vc-db-1.rdf’) =
<y, ’http://www.w3.org/2001/vcard-rdf/3.0#Given’, givenName>;

Figure 6: RDQL - AmosQL Example 3

RDQL:
SELECT ?resource
FROM <vc-db-2.rdf>
WHERE (?resource, <info:age>, ?age)
AND ?age >= 24
USING info FOR <http://somewhere/peopleInfo#>

AmosQL:
SELECT resource
FROM charstring resource, charstring age
WHERE rdf_triples(’vc-db-2.rdf’)
= <resource, ’http://somewhere/peopleInfo#age’, age>
AND age>=’24’;

Figure 7: RDQL - AmosQL Example 4

14

(:) are replaced by the prefix. The conditional expression (here: age>=24) is
copied as is to AmosQL. Only the parameter (not variable or operator) (here:
24) must be embedded in "’...’", so that AmosQL deals it as charstring.
Finally, RDQL does not have a special character for ending queries but every
AmosQL statement ends with a semicolon (;).

3.1.1 Translation rules

This is a brief summary of the steps to perform the translation:
For the SELECT-clause do the following:
If it is SELECT *

• insert the keyword ’SELECT’

• look for all variables in the whole query

• remove the question marks (?)

• insert all found variables in the SELECT-clause separated by commas

If it is SELECT ?Var (, ?Var)*

• insert the keyword ’SELECT’

• remove the question marks (?)

• insert the variables in the SELECT-clause separated by commas

For the FROM-clause do the following:

• insert the keyword ’FROM’

• save the RDF-source-filename

• insert each variable from the SELECT-clause, WHERE-clause and
AND-clause introduced by ’charstring’ separated by commas

For the WHERE-clause do the following:

• insert the keyword ’WHERE’

• replace <...> around URIrefs with ’...’

• replace the brackets ’(...)’ around the triple patterns with ’<...>’

• remove all question marks in front of the variables

Do the following 4 steps for each triple pattern

• insert "rdf_triples(’"

15

• insert the RDF-source-filename from the FROM-clause and "’)"

• insert equal (’=’)

• insert the handled triple pattern

• if another triple pattern follows insert ’AND’

FOR the AND-clause do the following: If it has a triple pattern included:

• treat it like a WHERE-clause

Otherwise:

• insert the keyword ’AND’

• remove all question marks in front of the variables

• surround all parameters (not variables or operators) with ’...’

FOR the USING-clause do the following:

• scan the whole query for the word in front of ’FOR’

• if the word followed by a colon is found, replace it with the prefix (the
string after FOR)

And finally:

• insert a semicolon (’;’) at the end

3.1.2 Restrictions

There are a few RDQL statements, which can not be translated by this trans-
lator. It does not support to enter more than one source URL in the FROM-
clause. I found two different grammars of RDQL on the web. One supports
multiple source URLs [17] the other one does not [12]. Anyway, there was no
example in the test cases (appendix B) to verify multiple sources, so therefore
it is not implemented in this parser.
There were also no examples in the test cases to verify all possible operators
in the AND-clause. All possible operators are listed in appendix A, and they
are not altered by the translator. Only ’=’, ’>’ and ’<’ have been tested and
approved, so there might be some operator which is not accepted in AmosQL.

16

Figure 8: System layers around
RDQL-front system

Figure 9: Modules and inter-
faces of the RDQL-front system

17

3.2 Architecture

Diagram 8 shows the different system layers and modules affected in this work.
The RDQL-statement on top is given to the parser using a foreign function
in Amos II, which calls the parser start method of the RDQL-front system.
The parser recognizes the query and translates it into the corresponding
AmosQL query, which is then executed in Amos II. Amos II uses its wrapper
for RDF-sources (ARP2) to wrap the data in the RDF documents.
The present work was to implement the RDQL-front system. The architecture
of that layer is demonstrated in figure 9.

It is optional to define a source-namespace (prefix) by a foreing Amos II func-
tion, which is then automatically inserted into the AmosQL output query. This
feature is explained in subsection 3.3.2. After the parser gets an RDQL query
from Amos II included as argument in a foreign function, it recognizes matches
to the grammar, which is built up as a syntax tree. If a match is approved,
that part of the query is sent to the translator, which handles it on the basis
of its translation rules and outputs the translated query to Amos II. Finally
the query is executed in Amos II.

3.3 Implementation

This section is an overview, how the translator is implemented and what
features it has.

3.3.1 The translator

The parser itself is written by using JavaCC (Java Compiler Compiler), which
is the most popular parser generator for use with Java applications. A parser
generator is a tool that reads a grammar specification and converts it to a pro-
gram, in this case a Java program, that can recognize matches to the grammar.
In addition to the parser generator itself, JavaCC provides tree building via a
tool called JJTree, which is also used in this project. JJTree is a preprocessor
for JavaCC that inserts parse tree building actions at various places in the
JavaCC source. The output of JJTree is run through JavaCC to create the
parser.
In section 2.4 you can find the RDQL grammar included in the Jena package,
which is exactly as is also used in this project. After recognizing a match the
translator has to do the steps explained in 3.1.1.
A syntax tree is build from non-terminals in the grammar and finally it ends
with terminals at its leaves. Every time the parsers syntax tree matches a
terminal at one of his leaves, it has do some changes in the final AmosQL
output query, which is a realized as an array called, wholeQuery. Sometimes
it is necessary to know, which branches were taken in the syntax tree, what is
easily realized by integer flag variables.

18

Figure 10 shows the code for the SELECT-clause, which is one of the easi-
est to handle but similar to other clauses. All terminals are surrounded by

void SelectClause() :
{}
{
LOOKAHEAD(2)
<SELECT> Var(0) (CommaOpt(0) Var(0))*

{
wholeQuery[0]="select";

}
|
<SELECT> "*"

{
wholeQuery[0]="select";

}
}

Figure 10: Handling of the SELECT-clause

"<...>" in the grammar (here for example <SELECT>). The integers (here
(0)) shows the parser in the following node which node matched before. Ei-
ther <SELECT> Var() (CommaOpt() Var())* or <SELECT> "*" matches.
Then the Java code beneath it will be processed, which inserts "select" into
array wholeQuery in that case, which is the final AmosQL output query.
This array is built bit by bit during the parsing operation. There are several

Field Format of array wholeQuery

field 0: "select"
field 1: variables for SELECT-clause separated by commas
field 2: "from"
field 3: all variables of the query introduced with "charstring" and sepa-

rated by commas
field 4: "where"
field 5: "rdf_triples(’" + source URL + "’)"
field 6: "="
field 7: the triple pattern (for (#triple–patterns > 1) : <s,v,o> + field 5

+ "=")
field 8: constraint clause
field 9: ";"

vectors in which the parser writes something (imported strings from the orig-
inal RDQL query or new defined strings) when something matches at an end
node. The required modifications are handled then in these vectors.
Finally, when the array wholeQuery is built, the translator saves it into a string
variable, called parsedQuery, which is also the return Amos II gets back for the
foreign function ’rdql(%RDQL-query% ’, which is using the in [11] explained
Java interfaces. This return AmosQL query is then executed in Amos II.

19

Vectors

Vector selectVariables handles variables after SELECT
Vector sources (just one source) handles source URL
Vector rdfTripleVariables handles variables in the triple patterns
Vector rdfTriples handles triple patterns
Vector prefixvec handles prefixes
Vector constraintvec handles conditional expressions

3.3.2 Namespace

Setting a namespace to a certain prefix makes the query easier to read and
write for humans.
Included in the created foreign functions for this project there is one function,
called SourceNameSpace. This is a feature included in this system, which can
be used under Amos II by typing: SourceNameSpace(%URL prefix%). It sets
the namespace of the source URL to the entered one as long as it is not changed
by the user or Amos II is quitted.
You can find the initializing code for the function in subsection 3.3.3.

3.3.3 Used foreign functions

Multi-directional foreign function mechanism gives transparent access from
AmosQL to special purpose data structures such as internal Amos II metadata
representations or user defined storage structures. The mechanism allows the
programmer to implement query language operators in an external language
(Java, C or Lisp)[4].
The code in this section contains the foreign functions which have to be loaded
into Amos II before the RDQL–front system is disposed to work:

• rdf_triple_cache: holds the triple pattern in cache

• rdf_triples : gets the source URL as argument and stores all triple pat-
terns of the RDF source file in the cache if it wasn´t there before. The
predefined foreign AmosQL function parserdf uses ARP2 to parse an
RDF-file and emits the result as a stream.

• rdql : gets an RDQL query as argument and starts the translation and
execute of the query

• SourceNameSpace: gets the prefix of the source as argument and holds
it until a new prefix is inserted

The functions rdf_triples and rdf_triple_cache implement a statement caching
which is trivial to implement in Amos II as stored procedure. This effects
correct behavior of the system. Otherwise, a purely streamed implementation
of rdf_triples in terms of parserdf without statement caching would cause
reentrant calls to ARP2 which makes the system crash or give unexpected
results.

20

rdf_triple_cache:
create function rdf_triple_cache(Charstring src) -> Bag of
<Charstring, Charstring, Charstring> as stored;

rdf_triples:
create function rdf_triples(Charstring src) ->
<Charstring s, Charstring p, Charstring o> as
begin

if notany(rdf_triple_cache(src)) then
for each Charstring s, Charstring p, Charstring o, Integer i

where <s,p,o,i> = parserdf(src)
add rdf_triple_cache(src) = <s,p,o>;

for each Charstring s, Charstring p, Charstring o
where <s,p,o> = rdf_triple_cache(src)
result <s,p,o>;

end;

rdql:
create function rdql(charstring query) -> object as foreign "JAVA:Start/rdql";

SourceNameSpace:
create function SourceNameSpace(Charstring nm) -> Charstring as foreign
"JAVA:Start/sourcenamespace";

3.4 Evaluation

To evaluate the translator, several queries have been tested and verified. There
is a standard benchmark source for RDQL queries from HP used for imple-
menting RDQL into their Jena package [23]. It includes source input files,
queries, and the documented results. Only the queries having an RDF-file as
a source are used in this evaluation.
Every query is translated by the parser and all results are correct.
You can find the queries, translations, and results in appendix B.

When we started to run the tests, we realized that an RDQL query with more
than one triple pattern in its WHERE-clause did not run. We looked at the
problem and it turns out that the ARP2 parser we are using is not designed for
being recursively callable (i.e. it is not reentrant). A purely streamed imple-
mentation of rdf_triples in terms of parserdf without statement caching causes
reentrant calls to ARP2, which makes it crash or give unexpected results. Thus
for correct behavior of the system, statement caching is necessary.

21

4 Summary and future work

The now created RDQL–front system allows queries expressed in RDQL to be
processed over RDF-data provided through Amos II. This is implemented as
an embedding to Amos II which recognizes, translates, and executes RDQL
queries.

One of the most important things to get the RDQL–front system run, was the
implementation of the statement caching 3.4. The trivial way, to implement
it as a stored procedure with only a few lines of code (cp. 3.3.3), was a great
solution. Only the AmosQL feature – to allow a foreign function with side
effects – made this possible. The side effect is in this case, that it caches a
read RDF-file the first time it is accessed.
Future work will be to make the parser reentrant and evaluate performance
trade-offs with statement caching.

Finally, the possible uses of this project are reconsidered:
The system SWARD (Semantic Web Abridged Relational Databases) [1] is be-
ing developed for scalable RDF based wrapping of existing relational databases
in the hidden web. It uses the query language QEL, which is a Datalog based
query language for RDF.
Now, RDQL could replace this query language to allow RDQL-based media-
tion embedded in Jena2.
Especially, if RDQL or a similar language becomes the standard query lan-
guage for RDF in the semantic web community, this project together with
other Amos II functionality enables access from semantic web to data sources
wrapped by Amos II.

22

References

[1] J. Petrini, T. Risch: Processing Queries over RDF Views of Wrapped
Relational Databases, 1st International Workshop on Wrapper Tech-
niques for Legacy Systems, WRAP 2004, Delft, Holland, November 2004.
http://user.it.uu.se/ udbl/publ/WRAP04.pdf

[2] T. Berners-Lee, J. Hendler and O. Lassila: The Semantic Web, Scientific
American, May 2001.

[3] S. Decker et al: The Semantic Web - on the Roles of XML and RDF,
IEEE Internet Computing, Sept./Oct. 2000.

[4] T. Risch, V. Josifovski, t. Katchaounov: Functional Data
Integration in a Distributed Mediator System in P. Gray,
L.Kerschberg, P.King, and A.Poulovassils (eds.): Functional Ap-
proach to Data Management - Modeling, Analyzing and Inte-
grating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003.
http://user.it.uu.se/%7Etorer/publ/FuncMedPaper.pdf

[5] S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov,
T. Risch, and M. Sköld: Amos II User’s Manual,
http://user.it.uu.se/ udbl/amos/doc/amos_users_guide.html

[6] A. Seaborne, HP Labs Bristol: RDQL - A Query Lan-
guage for RDF, W3C Member Submission 9 January 2004
http://www.w3.org/Submission/RDQL/

[7] K. Wilkinson, C. Sayers, H. Kuno, D. Reynolds Efficient
RDF Storage and Retrieval in Jena2, Workshop on Seman-
tic Web and Databases, 7 September 2003, Berlin, Germany
http://www.hpl.hp.com/techreports/2003/HPL-2003-266.pdf

[8] Uppsala Database Laboratory Amos II Wrappers,
http://user.it.uu.se/%7Eudbl/amos/wrappers.html

[9] D.Brickley, R.V.Guha: RDF Vocabulary Description Language
1.0: RDF-Schema, W3C Recommendation 10 February 2004
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

[10] G.Klyne, J.J.Carroll: Resource Description Framework (RDF): Con-
cepts and Abstract Syntax, W3C Recommendation 10 February 2004
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[11] T. Risch, D. Elin: Amos II Java Interfaces, Uppsala Database Laboratory,
2000) http://user.it.uu.se/ torer/publ/javaapi.pdf

[12] The jena semantic web toolkit, RDQL grammar,
http://www.hpl.hp.com/semweb/rdql-grammar.html

23

[13] J. Hendler, T. Berners-Lee, E. Miller: Integrating Applications on the Se-
mantic Web, Journal of the Institute of Electrical Engineers of Japan, Vol
122(10), October, 2002, p. 676-680. http://www.w3.org/2002/07/swint

[14] M. Koivunen, E. Miller: W3C Semantic Web Activ-
ity, Semantic Web Kick-off Seminar, Finland Nov 2, 2001
http://www.w3.org/2001/12/semweb-fin/w3csw

[15] D. Brickley, R.V. Guha: RDF Vocabulary Description Language
1.0: RDF Schema, W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-schema/

[16] F. Manola, E. Miller: RDF Primer, W3C Recommenda-
tion 10 February 2004 http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/#dublincore

[17] A. Seaborne: RDQL - A Query Language for RDF, W3C Member Sub-
mission 9 January 2004 http://www.w3.org/Submission/2004/SUBM-
RDQL-20040109/

[18] T. Risch: Functional Queries to Wrapped Educational Semantic Web
Meta-Data, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.):
Functional Approach to Data Management - Modeling, Analyzing and
Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003.
http://user.it.uu.se/ torer/publ/semfdm.pdf

[19] RDQL Tutorial, http://phpxmlclasses.sourceforge.net/rdql.html

[20] Jena 2 - A Semantic Web Framework,
http://www.hpl.hp.com/semweb/jena2.htm, HP

[21] H. Garcia-Molina, J. Ullman, J. Widom: Database Systems: The Com-
plete Book (International Edition), Prentice-Hall, 2003.

[22] R. Elmasri, S. Navathe Fundamentals of Database Systems, 4th ed. 2004.
XXVI, Addison-Wesley Longman, Amsterdam, ISBN 0321204484

[23] RDQL-tests-2003-04-10, http://swordfish.rdfweb.org/rdfquery/tests/old/tests/rdql-
tests-2003-04-10/

[24] BNF for rdql.jj, http://www.hpl.hp.com/semweb/rdql-grammar.html

A Appendix: RDQL grammar

This is a permissive grammar. It is designed for convenience and includes
liberal interpretations of terms from other systems.

24

Lexical Tokens

QuotedURI ::= ’<’ URI characters (from RFC 2396) ’>’
NSPrefix ::= NCName As defined in XML Namespace
LocalPart ::= NCName As defined in XML Namespace
SELECT ::= ’SELECT’ Case Insensitive match
FROM ::= ’FROM’ Case Insensitive match
SOURCE ::= ’SOURCE’ Case Insensitive match
WHERE ::= ’WHERE’ Case Insensitive match
AND ::= ’AND’ Case Insensitive match
USING ::= ’USING’ Case Insensitive match
Identifier ::= ([a-z][A-Z][0-9]-_.])+
EOF ::= End of file
COMMA ::= ’,’
INTEGER_LITERAL ::= ([0-9])+
FLOATING_POINT_LITERAL ::= ([0-9])*’.’([0-9])+(’e’(’+’|’-’)?([0-9])+)?

STRING_LITERAL1 ::= ’"’UTF-8 characters’"’ (with escaped)̈

STRING_LITERAL2 ::= "’"UTF-8 characters"’" (with escaped)́
LPAREN ::= ’(’
RPAREN ::= ’)’
COMMA ::= ’,’
DOT ::= ’.’
GT ::= ’>’
LT ::= ’<’
BANG ::= ’ !’
TILDE ::= ’ ’
HOOK ::= ’?’
COLON ::= ’:’
EQ ::= ’==’
NEQ ::= ’ !=’
LE ::= ’<=’
GE ::= ’>=’
SC_OR ::= ’||’
SC_AND ::= ’&&’
STR_EQ ::= ’EQ’ Case Insensitive match
STR_NE ::= ’NE’ Case Insensitive match
PLUS ::= ’+’
MINUS ::= ’-’
STAR ::= ’*’
SLASH ::= ’/’
REM ::= ’%’
STR_MATCH ::= ’= ’ | ’ ’
STR_NMATCH ::= ’ ! ’
DATATYPE ::= ’g
AT ::= ’@’

Table 1: RDQL grammar part 1

25

References to lexical tokens are enclosed in <>. Whitespace is skipped.

Part 2

CompilationUnit ::= Query <EOF>
CommaOpt ::= (<COMMA>)?
Query ::= SelectClause (SourceClause)? TriplePattern-

Clause (ConstraintClause)? (PrefixesClause)?
SelectClause ::= (<SELECT> Var (CommaOpt Var)* | <SE-

LECT> <STAR>)
SourceClause ::= (<SOURCE> | <FROM>) SourceSelector
SourceSelector ::= QName
TriplePatternClause ::= <WHERE> TriplePattern (CommaOpt

TriplePattern)*
ConstraintClause ::= <SUCHTHAT> Expression ((<COMMA> |

<SUCHTHAT>) Expression)*
TriplePattern ::= <LPAREN> VarOrURI CommaOpt VarOrURI

CommaOpt VarOrConst <RPAREN>
VarOrURI ::= Var | URI
VarOrConst ::= Var | Const
Var ::= "?" Identifier
PrefixesClause ::= <PREFIXES> PrefixDecl (CommaOpt Pre-

fixDecl)*
PrefixDecl ::= Identifier <FOR> <QuotedURI>
Expression ::= ConditionalOrExpression
ConditionalOrExpression ::= ConditionalAndExpression (<SC_OR> Condi-

tionalAndExpression)*
ConditionalAndExpression ::= StringEqualityExpression (<SC_AND> StringE-

qualityExpression)*
StringEqualityExpression ::= ArithmeticCondition (<STR_EQ> Arith-

meticCondition | <STR_NE> Arithmetic-
Condition | <STR_MATCH> PatternLiteral |
<STR_NMATCH> PatternLiteral)*

ArithmeticCondition ::= EqualityExpression
EqualityExpression ::= RelationalExpression (<EQ> RelationalExpres-

sion | <NEQ> RelationalExpression)?
RelationalExpression ::= AdditiveExpression (<LT> AdditiveExpression |

<GT> AdditiveExpression | <LE> AdditiveEx-
pression | <GE> AdditiveExpression)?

AdditiveExpression ::= MultiplicativeExpression (<PLUS> Multiplica-
tiveExpression | <MINUS> MultiplicativeExpres-
sion)*

MultiplicativeExpression ::= UnaryExpression (<STAR> UnaryExpression |
<SLASH> UnaryExpression | <REM> UnaryEx-
pression)*

26

UnaryExpression ::= UnaryExpressionNotPlusMinus | (<PLUS>
UnaryExpression | <MINUS> UnaryExpression)

UnaryExpressionNotPlusMinus ::= (<TILDE> | <BANG>) UnaryExpression | Pri-
maryExpression

PrimaryExpression ::= Var | Const | <LPAREN> Expression
<RPAREN>

Const ::= URI | NumericLiteral | TextLiteral | BooleanLit-
eral | NullLiteral

NumericLiteral ::= (<INTEGER_LITERAL> | <FLOAT-
ING_POINT_LITERAL>)

TextLiteral ::= (<STRING_LITERAL1> |
<STRING_LITERAL2>) (<AT> Identifier)?
(<DATATYPE> URI)?

PatternLiteral ::= ..
BooleanLiteral ::= <BOOLEAN_LITERAL>
NullLiteral ::= <NULL_LITERAL>
URI ::= <QuotedURI> | QName
QName ::= <NSPrefix> ’:’ (<LocalPart>)? Unlilke XML

Namespaces, the local part is optional
Identifier ::= (<IDENTIFIER> | <SELECT> | <SOURCE>

| <FROM> | <WHERE> | <PREFIXES> |
<FOR> | <STR_EQ> | <STR_NE>)

Table 2: RDQL grammar part 2 in BNF

Note: The term "Literal" refers to a constant value, and not only an RDF
literal.

27

B Appendix: Test queries, translations, and re-

sults

Schema:
RDQL-query

AmosQL-query
Result

Test query 1: Simple statement
SELECT ?x
FROM <vc-db-1.rdf>
WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>, "John Smith")

SELECT x
FROM charstring x
WHERE rdf_triples(’vc-db-1.rdf’) =
<x, ’http://www.w3.org/2001/vcard-rdf/3.0#FN’, "John Smith">;
Result 1:

"http://somewhere/JohnSmith/"

Test query 2: Select two variables
SELECT ?x, ?fname
FROM <vc-db-1.rdf>
WHERE (?x, <http://www.w3.org/2001/vcard-rdf/3.0#FN>, ?fname)

SELECT x, fname
FROM charstring x, charstring fname
WHERE rdf_triples(’vc-db-1.rdf’) =
<x,’http://www.w3.org/2001/vcard-rdf/3.0#FN’, fname>;
Result 2:

<"http://somewhere/MattJones/","Matt Jones">
<"http://somewhere/SarahJones/","Sarah Jones">
<"http://somewhere/RebeccaSmith/","Becky Smith">
<"http://somewhere/JohnSmith/","John Smith">

28

Test query 3: Multi triple patterns
SELECT ?givenName
FROM <vc-db-1.rdf>
WHERE (?y, <http://www.w3.org/2001/vcard-rdf/3.0#Family>, "Smith") ,
(?y, <http://www.w3.org/2001/vcard-rdf/3.0#Given>, ?givenName)

SELECT givenName
FROM charstring givenname, charstring y
WHERE rdf_triples(’vc-db-1.rdf’) =
<y, "http://www.w3.org/2001/vcard-rdf/3.0#Family", "Smith">
AND rdf_triples(’vc-db-1.rdf’) =
<y, ’http://www.w3.org/2001/vcard-rdf/3.0#Given’, givenName>;
Result 3:

"Rebecca"
"John"

Test query 4: Multi variables, multi triple patterns
SELECT ?resource, ?givenName
FROM <vc-db-1.rdf>
WHERE (?resource, <http://www.w3.org/2001/vcard-rdf/3.0#N>, ?z) ,
(?z, <http://www.w3.org/2001/vcard-rdf/3.0#Given>, ?givenName)

SELECT resource, givenName
FROM charstring resource, charstring givenName, charstring z
WHERE rdf_triples(’vc-db-1.rdf’) =
<resource, ’http://www.w3.org/2001/vcard-rdf/3.0#N’, z>
AND rdf_triples(’vc-db-1.rdf’) =
<z, ’http://www.w3.org/2001/vcard-rdf/3.0#Given’, givenName>;
Result 4:

<"http://somewhere/MattJones/","Matthew">
<"http://somewhere/SarahJones/","Sarah">
<"http://somewhere/RebeccaSmith/","Rebecca">
<"http://somewhere/JohnSmith/","John">

29

Test query 5: AND-clause with conditional expression and USING-clause, dif-
ferent source
SELECT ?resource
FROM <vc-db-2.rdf>
WHERE (?resource, <info:age>, ?age)
AND ?age >= 24
USING info FOR <http://somewhere/peopleInfo#>

SELECT resource
FROM charstring resource, charstring age
WHERE rdf_triples(’vc-db-2.rdf’) =
<resource, ’http://somewhere/peopleInfo#age’, age>
AND age>=’24’;
Result 5:

"http://somewhere/JohnSmith/"

Test query 6: Multi prefixes
SELECT ?resource, ?familyName
FROM <vc-db-2.rdf>
WHERE (?resource, <info:age>, ?age) ,
(?resource, <vCard:N>, ?y) , (?y, <vCard:Family>, ?familyName)
AND ?age >= 24
USING info FOR <http://somewhere/peopleInfo#> ,
vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT resource, familyName
FROM charstring resource, charstring familyName, charstring age,
charstring y
WHERE rdf_triples(’vc-db-2.rdf’) =
<resource, "http://somewhere/peopleInfo#age", age>
AND rdf_triples(’vc-db-2.rdf’) =
<resource, ’http://www.w3.org/2001/vcard-rdf/3.0#N’, y>
AND rdf_triples(’vc-db-2.rdf’) =
<y, ’http://www.w3.org/2001/vcard-rdf/3.0#Family’, familyName>
AND age >= ’24’;
Result 6:

<"http://somewhere/JohnSmith/","Smith">

30

Test query 7: Select the predicate
SELECT ?prop
FROM <vc-db-2.rdf>
WHERE (<http://somewhere/JohnSmith/> , ?prop, "John Smith")
USING vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT prop
FROM charstring prop
WHERE rdf_triples(’vc-db-2.rdf’) =
<’http://somewhere/JohnSmith/’, prop, "John Smith">;
Result 7:

"http://www.w3.org/2001/vcard-rdf/3.0#FN"

Test query 8:
SELECT ?b
FROM <vc-db-2.rdf>
WHERE (<http://somewhere/JohnSmith/> , <vCard:N>, ?b)
USING vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#>

SELECT b
FROM charstring b
WHERE rdf_triples(’vc-db-2.rdf’) =
<’http://somewhere/JohnSmith/’,’http://www.w3.org/2001/vcard-
rdf/3.0#N’,b>;
Result 8:

"_:jARP1 "

Test query 9: Different source
SELECT ?property
FROM <vc-db-3.rdf>
WHERE (?person, <vCard:FN>, "John Smith") ,
(?person, ?property, ?obj)
USING
vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#> ,
rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT property
FROM charstring property, charstring person, charstring obj
WHERE rdf_triples(’vc-db-3.rdf’) =
<person, ’http://www.w3.org/2001/vcard-rdf/3.0#FN’, "John Smith">
AND rdf_triples(’vc-db-3.rdf’) =
<person, property, obj>;
Result 9:

"http://www.w3.org/2001/vcard-rdf/3.0#TEL"
"http://www.w3.org/2001/vcard-rdf/3.0#TEL"
"http://www.w3.org/2001/vcard-rdf/3.0#N"
"http://somewhere/peopleInfo#age"
"http://www.w3.org/2001/vcard-rdf/3.0#FN"

31

Test query 10:
SELECT ?telephoneNumber
FROM <vc-db-3.rdf>
WHERE (?person, <vCard:FN>, "John Smith") ,
(?person, <vCard:TEL>, ?tel) ,
(?tel, <rdf:type>, <vCard:work>) ,
(?tel, <rdf:value>, ?telephoneNumber)
USING
vCard FOR <http://www.w3.org/2001/vcard-rdf/3.0#> ,
rdf FOR <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT telephoneNumber
FROM charstring telephoneNumber, charstring person, charstring tel
WHERE rdf_triples(’vc-db-3.rdf’) =
<person, ’http://www.w3.org/2001/vcard-rdf/3.0#FN’, "John Smith">
AND rdf_triples(’vc-db-3.rdf’) =
<person, ’http://www.w3.org/2001/vcard-rdf/3.0#TEL’, tel>
AND rdf_triples(’vc-db-3.rdf’) =
<tel, ’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,
’http://www.w3.org/2001/vcard-rdf/3.0#work’>
AND rdf_triples(’vc-db-3.rdf’) =
<tel, ’http://www.w3.org/1999/02/22-rdf-syntax-ns#value’,
telephoneNumber>;
Result 10:

"+44 117 555 5555"

32

