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Abstract

Scalable Persisting and Querying of Streaming Data by
Utilizing a NoSQL Data Store

Khalid Mahmood

Relational databases provide technology for scalable queries over persistent data. In
many application scenarios a problem with conventional relational database
technology is that loading large data logs produced at high rates into a database
management system (DBMS) may not be fast enough, because of the high cost of
indexing and converting data during loading. As an alternative a modern indexed
parallel NoSQL data store, such as MongoDB, can be utilized. In this work, MongoDB
was investigated for the performance of loading, indexing, and analyzing data logs of
sensor readings. To investigate the trade-offs with the approach compared to
relational database technology, a benchmark of log files from an industrial application
was used for performance evaluation. For scalable query performance indexing is
required. The evaluation covers both the loading time for the log files and the
execution time of basic queries over loaded log data with and without indexes. As a
comparison, we investigated the performance of using a popular open source
relational DBMS and a DBMS from a major commercial vendor. The implementation,
called AMI (Amos Mongo Interface), provides an interface between MongoDB and an
extensible main-memory DBMS, Amos II, where different kinds of back-end storage
managers and DBMSs can be interfaced. AMI enables general on-line analyzes through
queries of data streams persisted in MongoDB as a back-end data store. It
furthermore enables integration of NoSQL and SQL databases through queries to
Amos II. The performance investigation used AMI to analyze the performance of
MongoDB, while the relational DBMSs were analyzed by utilizing the existing
relational DBMS interfaces of Amos II.
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1 Introduction 

Relational databases are commonly used for large-scale analyses of historical data. 

Before data can be analyzed it has to be loaded into the database and indexed. If the data 

volume is high the applications require high performance bulk loading of data into the 

database. However, the load time for relational database may be time consuming. NoSQL 

data stores have been proposed [1] as a possible alternative approach to traditional 

relational databases for large scale data analysis. For providing high performance update, 

this type of database system generally sacrifices consistency by providing so called 

eventual consistency compare to ACID transactions of regular DBMSs. Unlike NoSQL 

data stores relational databases provide advanced query languages for the analytics and 

indexing is a major factor in providing scalable performance. Relational databases have a 

performance advantage compared to data stores that do not provide indexing to speed up 

the analytical task [2]. However, there are some NoSQL data stores, such as MongoDB 

[3], that provide a simple query language that uses indexing (also secondary B-tree 

indexes) to speed up data access and analytics.   

 The purpose of the project is to investigate whether a state-of-the-art NoSQL data 

store is suitable for storing and analyzing large scale numerical data logs compare to 

relational databases. The performance of three different back-end data stores for 

persisting and analyzing such data logs is investigated: 

1 MongoDB is the leading NoSQL data store [4]. As MongoDB provides both 

indexing, a well-defined C interface [5], and a query language, it seems to be a 

good alternative to relational databases. It is investigated how well MongoDB 

enables high performance archival of numerical data logs and efficient subsequent 

log analytics queries. 

2 As the most popular relational database, we investigate how well MySQL 

performs for loading and analyzing numerical data logs.  
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3 We furthermore compare the performance with that of a major commercial 

relational database vendor (DB-C).  

We compared all three systems in terms of load-time, time to do analytics for a 

typical set of analytical queries, and the resource allocation for storing data logs. Our 

results revealed the trade-offs between loading and analyzing of log data for both kinds of 

systems. We discuss the cause of the performance differences and provide some issues 

that future system should consider when utilizing MongoDB as back-end storage for 

persisting and analyzing historical log data. 

The implementation utilizes an extensible main-memory database system, Amos II 

[6], to which the three different data managers were interfaced as back-ends. In particular 

the Amos-Mongo Interface (AMI), which is crucial in this project, was developed by 

utilizing the Amos II C foreign function interface [7]. AMI provides general query 

capabilities as well as high performance access of data source by enabling Amos Query 

Language (AmosQL) statements to operate over MongoDB databases. The interfaces of 

the two relational DBMSs were already present in Amos II, which simplified the 

performance comparisons with those systems. 

The main contributions of this project are: 

 It provides a benchmark to evaluate the performance of loading and analyzing 

numerical data logs.  

 It provides a comparison of the suitability of the three database systems for large-

scale historical data analysis based on the benchmark. 

 It provides a flexible interface to access MongoDB data stores where general 

queries and command using the AmosQL query language can be expressed. The 

interface includes scalable and high-performing functionality for bulk loading 

data records into MongoDB.   

 It overcomes the limitations of MongoDB to perform complex queries including 

joins and numerical operators by enabling relationally complete AmosQL queries 

to MongoDB databases.  
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 It solves a major bug of MongoDB’s C Driver API for Windows and contributed 

to the community forum by providing a fully functional driver. 

The rest of the report is structured as follows. Section 2 describes and compares 

relevant background technologies for the project. It includes a presentation of our real-

world historical log application. Section 3 presents the architecture and implementation 

of the Amos-Mongo Interface (AMI). Section 4, presents the basic benchmark for testing 

the performance of loading and analyzing data. The different systems are investigated 

using the benchmark. The section ends with a discussion of the performance results. 

Finally, Section 5 summarizes the work and indicates future research.  
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2 Background 

In this section, we will first present a real world application scenario that requires 

persisting and analyzing of historical log data. After that the so called NoSQL database 

systems and their properties are discussed and contrasted with traditional DBMSs. In 

particular using MongoDB as a back-end NoSQL data store for persisting and querying 

historical data is discussed. Detailed discussions related to NoSQL database systems can 

be found in a survey by Rick Cattell  [1] and a comprehensive report in [8]. As some of 

the topics discussed in this section have been motivated by these sources, the interested 

readers are requested also to read the original discussions. Finally the main functionality 

of the Amos II system [6] used in the project are overviewed.   

2.1 Application scenario 

Our application involves analyzing data logs from industrial equipments. In the 

scenario, a factory operates some machines and each machine has several sensors that 

measure various physical properties like power consumption, pressure, temperature, etc. 

For each machine, the sensors generate logs of measurements, where each log has 

timestamp ts, machine identifier m, sensor identifier s, and a measured value mv. Each 

measured value mv on machine m is associate with a valid time interval bt and et 

indicating the begin time and end time for mv, computed from the log time stamp ts [9]. 

The table (collection) measures (m, s, bt, et, mv) will contain the large volume of log data 

from many sensors on different machines. There is a composite key on (m, s, bt).  

These logs will be bulk loaded into MongoDB and two relational DBMSs (MySQL 

and DB-C) to compare the performance. Since the incoming sensor streams can be very 

voluminous it is important that the measurements can be loaded fast. After the log stream 

has been loaded into measures, the user can perform some query to analyze the status of 

the sensors and the corresponding values of mv to detect the anomalies of sensor 
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readings. The performance of loading and analyzing logs will be investigated in Section 

4. The rest of this section provides the necessary background. 

2.2 NoSQL and relational DBMSs  

In general, there are six key features of NoSQL data stores [1].  

Horizontal partitioning: To achieve higher throughput in NoSQL data stores, the 

data can be partitioned over many different servers, whereas, for achieving high 

performance, traditionally, RDBMs are targeted towards improving more powerful 

hardware in a dedicated server. NoSQL systems like MongoDB support automatic 

sharding (fragmentation, partitioning) by distributing the data over many commodity 

servers.  

Simple call level interface: In contrast to APIs such as JDBC to relational 

DBMSs, NoSQL data stores provide simple call level interfaces or protocols.  In 

MongoDB, BSON (JSON-like documents) objects in binary format are used to store and 

exchange data, express queries and commands. MongoDB provides APIs in different 

programming languages to communicate with data servers 

Weak constancy model: According to Eric Brewer’s CAP theorem [10], a 

distribute system data store can only have at most two of three of the properties 

consistency, availability and partition tolerance. Based on this, NoSQL database systems 

give up the ACID transaction consistency of relational DBMSs to achieve the other two 

attributes. This is called eventual consistency. MongoDB does not provide global 

consistency among distributed data servers and eventual consistency is by default.  As an 

option, atomic updates of a single MongoDB data server can be specified by the 

findAndModify command.  

Replication: For providing redundancy and high availability, replication is used to 

distribute the same data over many servers. MongoDB provides master-slave replication 

over sharded data. Replication is asynchronous for higher performance; however, data 

loss can also occur in case of system failure.  
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Distributed index: For accessing the data from partitions, efficient use of 

distributed indexing is necessary. MongoDB can use either range based partitioning or 

hash based partitioning for distributed indexing. 

Dynamic addition of attributes: In NoSQL, new attributes to data record can be 

dynamically added. MongoDB is a schema-less database system, which allows dynamic 

addition of attributes. In MongoDB, within a single collection, each record can be 

heterogeneous, while in a relational database table all records are uniform. 

2.3 MongoDB 

Being a NoSQL data store, MongoDB supports the above-mentioned key features. 

MongoDB has some extended features and different terminology compare to other 

DBMSs. Important features which can enhance our application are discussed here. 

2.3.1 The MongoDB data model  

Unlike Memcached [1], which is basic NoSQL key-value store that provides a main-

memory cache of distributed objects, MongoDB is a document data store. A MongoDB 

database consists of a number of collections where each collection consists of a set of 

structured complex objects called documents, whereas a basic key-value store associates 

a void object with each key. A collection in MongoDB is a set of documents, which is 

similar to a table in RDBMs. However, MongoDB objects can have nested structures 

while a relational table row must be a record of atomic values. Unlike table rows, the 

attributes of each MongoDB document is not defined statically in the database schema, 

but are defined dynamically at runtime. Although a collection does not enforce a schema, 

documents within the same collection have similar purpose.   

MongoDB represents objects in a JSON-like [11] binary representation called 

BSON. BSON supports the data types Boolean, integer, float, date, string, binary, and 

nested types as well as some MongoDB specific types [12].  Like JSON, a BSON object 

consists of atomic types, associative arrays, and sequences. The following is an example 

of a BSON document being a member of some collection: 
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{ 

  name: { first: 'John', last: 'McCarthy' }, 

  birth: new Date('Sep 04, 1927'), 

  death: new Date('Dec 24, 2011'), 

  contribs: [ 'Lisp', 'Artificial Intelligence', 'ALGOL' ], 

  awards: [ 

            { 

              award: 'Turing Award', 

              year: 1971, 

              by: 'ACM' 

            }, 

            { 

              award: 'Kyoto Prize', 

              year: 1988, 

              by: 'Inamori Foundation' 

            }, 

            { 

              award: 'National Medal of Science', 

              year: 1990, 

              by: 'National Science Foundation' 

            } 

          ] 

} 

ObjecId:   

In MongoDB, each object stored in a collection requires a unique _id field as key, which 

guarantees the uniqueness within the collection. This _id acts as a primary key which has 

a default B-Tree index defined on the field. If the client does not provide an _id field, the 

server will generate a 12-byte BSON object of type ObjectId, which combines following 

attributes: 

 4-bytes representing the seconds since the Unix epoch for the time when the 

object was created, 

 a 3-bytes machine identifier, 

 a 2-bytes process id, and 

 a 3-bytes counter, starting with a random value. 

 

The ObjectId  is small and fast to generate [3]. Moreover, the ObjectId can also be 

generated in a client by using the client’s driver APIs as machine identifier to ensure 

global uniqueness. 
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2.3.2 Dynamic query with index support 

Like RDBMs, MongoDB supports dynamic queries with automatic use of indexes. It 

provides queries by field, range search, regular expression, as well as calls to user-

defined JavaScript functions. The user can define indexes on object attributes and 

MongoDB will automatically exploit the indexes. MongoDB provide several kinds of 

indexes including single attribute index, compound index on multiple attributes, multi-

dimensional indexes on arrays, geospatial indexes, and full text search indexes. The 

default B-Tree index on the primary key _id attribute can also be a compound index. This 

index could be utilized for representing the composite key of measures(). We have left 

utilizing this index for future work, since it would change the data representation and 

make queries more complicated. 

2.3.3 Write concerns  

MongoDB provides two different levels of write concern, which specifies whether 

inserts, updates, or deletes are guaranteed to be consistent or not [3]. With 

unacknowledged write concern, the write operation is not guaranteed to be persisted. In 

that case MongoDB does not acknowledge the receipt of the write operation in order to 

provide high performance. On the other hand, when consistency is required, 

acknowledged write concern can be used that confirms the receipt of the write operation, 

at the expense of a longer delay. 

 As a NoSQL data store, MongoDB also provides load balancing by automatic 

sharding and distributing data over servers. Replication can also be used for ensuring 

high availability with increased read performance. MapReduce can be utilized for 

applying complex analytics on all elements in collections in parallel. Aggregation is 

provided by GROUP BY functionality. MongoDB can also provide server side execution 

through JavaScript programs shipped to the servers.  

2.4 MapReduce 

A popular approach to large-scale data analysis is MapReduce [13], which provides a 

mechanism for parallel computations over data read from a distributed file system. With 
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MapReduce data is not loaded into a database before the analytics, so loading time is 

saved compared to relational DBMSs [2]. However, as scalable analyses of historical data 

often require efficient use of indexing, the absence of indexing in MapReduce (i.e. 

Apache Hadoop) can often provide significant performance degradation compared to 

relational databases for analytical queries [2]. Therefore, for scalable analytics and 

loading of historical log data, this approach might not be suitable alternative compare to 

relational DBMSs and NoSQL data stores. The purpose of this work is to investigate 

scalable loading, storage, and querying of numerical data logs, which is not directly 

provided by MapReduce. 

2.5 Amos II 

Amos II is an extensible main-memory DBMS that provides an object-oriented data 

model and a relationally complete functional query language, AmosQL [6]. In Amos II 

different back-end database systems can be queried by defining interfaces called 

wrappers [14]. A wrapper is an interface between the query processor of Amos II and the 

query processing capabilities of a particular kind of external data source.    

The wrappers makes Amos II a meditator system that that can process and 

execute queries over data stored in different kinds of external data sources [15]. In 

particular, a general wrapper has been defined to enable transparent AmosQL queries to 

any relational database [6], which is used in the project to run the benchmark queries over 

MySQL and DB-C databases.  

In the project an Amos II wrapper interface for MongoDB was developed. The 

interface is called AMI (Amos-Mongo Interface). It enables AmosQL queries that contain 

MongoDB queries as parameters represented by key-value pairs in Amos II. AMI uses 

the foreign function interface [7] of Amos II to access MongoDB data stores through the 

MongoDB C driver API [5]. The interface provides the necessary primitives for complex 

AmosQL queries over MongoDB collections for analyzing log files. 

Although MongoDB has a dynamic queries capability with automatic use of 

indexes, it does not support relationally complete queries that join several collections and 
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it does not provide numerical operators. Integrating MongoDB and Amos II provides 

relationally complete queries over MongoDB collection including numerical operators 

for log analysis.  

Through AMI and Amos II, queries can be specified that combine data in 

MongoDB collections with data in other DBMSs, which enables integration of NoSQL 

and SQL databases. This enables to utilize several other kinds of data sources in addition 

to NoSQL and relational DBMSs for a single application. As this integration of 

heterogeneous data source poses numerous technical challenges, a wrapper-mediator 

approach such as Amos II for resolving these issues can be a well suited and viable 

solution [15]. 

2.5.1 The Amos II data model 

The data model of AMOS II is an Object-Oriented (OO) extension of the DAPLEX 

functional data model [16]. The Amos II data model consists of three basic building 

blocks: objects, types, and functions. In this data model everything is an object, including 

types and functions, where types classify objects and functions define properties of 

objects. Objects can be classified into one or more types, which entail an object to be an 

instance of one or several types. The types are organized into a hierarchy where the type 

named Object is the most general type. 

In general, the representations of objects are of two types: surrogates and literals. 

Surrogate objects are represented by explicitly created and deleted OIDs (Object 

Identifiers) through AmosQL statements. Example of surrogate objects is real-world 

entities such as objects of type Person. By contrast, literal objects are self-described 

system maintained objects that do not have any explicit OID. Examples of this type of 

object are numbers and strings. Literal objects can also be a collections of other objects 

such as vectors (1-dimentional arrays of objects), bags (unordered collections of objects), 

and records (sets of key/value pairs). Records in Amos II correspond to BSON objects, 

which is the basis for the data model of MongoDB and extensively used in AMI. 
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Record Type: 

The collection data type named Record represents dynamic associations of key-value 

pairs [6]. This is similar to hash links in Java, and key-value pairs or BSON objects in 

MongoDB. In the following manner a new Record can be instantiated in Amos II:   

set :rec= { 'Greeting':     'Hello, I am Tore', 

              'Email':        'Tore.Andersson@it.uu.se' 

               } 

 

Here, a record instance bound to the variable :rec is created that consists of two keys 

Greeting and Email with corresponding values 'Hello, I am Tore', and 

'Tore.Andersson@it.uu.se', respectively. For developing an interface between Amos II 

and MongoDB, the efficient conversion between object of type Record and the 

corresponding MongoDB BSON objects is needed, which has been performed in this 

project. 

Functions: 

In Amos II, functions represent different kinds of properties of objects. Based on their 

implementations, the functions can be classified as stored, derived, foreign, or procedural 

functions. Except for procedural functions, Amos II functions are non-procedural without 

side effects [14].  

Stored functions represent properties of object stored in the database, i.e. tables, 

for example: 

create function age(Person)-> Integer  

as stored; 

create function name(Person)-> Charstring  

as stored; 

 

Here age and name are properties of objects of type Person, with type Integer and 

Charstring, respectively.   

 A derived function is defined in terms of an AmosQL query. A derived function is 

similar to a view in a relational database, but may be parameterized. For example: 

create function age(Person p)->Integer as  

 current_year() - born(p); 
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Here, the derived function age() is defined based on two other functions current_year() 

and born(). Derived functions are side effect free and the query optimizer is applied when 

they are defined. 

A foreign function is implemented in an external programming language (C, Java, 

Python, or Lisp). Foreign functions are important for accessing external data stores and 

DBMSs. AMI is implemented using foreign functions in C [7] to access the MongoDB C 

driver API. Assume that we have an external hash table indexing strings implemented in 

Java. The following foreign function can be defined to get the string v for key k: 

create function get_string(Charstring k)-> Charstring v 

  as foreign “JAVA:Foreign/get_hash"; 

 

Here the foreign function get_string() is implemented as a Java method get_hash of the 

public Java class Foreign. The Java code is dynamically loaded when the function is 

defined. The Java Virtual Machine is interfaced with the Amos II kernel through the Java 

Native Interface to C [15]. 

A procedural function is defined using the procedural sub-language of AmosQL 

having side effects. The syntax of procedural functions is similar to stored procedures in 

SQL: 99 [17].  

2.5.2 The query language AmosQL 

The select statement provides a general and very flexible way of expressing AmosQL 

queries. The format of the select statement is as follows: 

select <result>  

from <type extents>  

where <condition>; 

 

An example of such a query is:  

select name(p), age(p) 

from Person p 

where age(p)>34; 

 

In this example, tuples with the properties name and age of those objects of type Person 

in the databases that are more than 34 years old will be returned.   
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 Extensive query optimization is the key to execute a query efficiently. Naïve 

execution of the above query without a query optimizer, may lead to very inefficient 

execution. Thus, Amos II provides a query optimizer that transforms the query into an 

efficient execution strategy. The AMI interface between Amos II and MongoDB provides 

MongoDB specific primitives for executing queries to MongoDB databases.  

2.5.3 Extensibility 

Amos II is an extensible main memory database system. To extend Amos II for accessing 

any external data source like MongoDB, the Amos II foreign function interface has to be 

utilized. There are external interfaces between Amos II and several programming 

languages, such as ANSI C/C++, Java, Python, and Lisp [7], [18]. Although the Java 

interface is the most convenient way to write Amos II applications, for high performance 

and time critical application one should utilize the more advanced Amos II C interface 

[7]. In this project, as we aim to achieve high performance access to MongoDB 

databases, so the low level external C interface is utilized to extend the Amos II kernel.  

 For implementing foreign functions in C, the following steps of development are 

needed [7]: 

 A C function implementing the foreign function has to be developed.  

 A binding of the C function to a symbol in the Amos II database has to be defined 

in C. 

 A definition of the foreign AmosQL function signature has to be defined in 

AmosQL.  

 An optional cost hint to estimate the cost of executing the function can be defined.  

A complete example of a AmosQL foreign function implemented in C has been 

provided in page 12-15 of [7]. Reader concerns about the detailed implementation of 

foreign functions are requested to follow this documentation. 

2.6 Discussion 

In this section, the properties of so called NoSQL databases were discussed. The general 

features of NoSQL data stores and some exclusive features of MongoDB and Amos II 
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were discussed more specifically. To scale large scale data analysis, or in our case 

persisting and analyzing of historical log data, the features of MongoDB such as weak 

consistency model and dynamic query capability with support of indexes have been 

expected to enhance the performance of such applications. However, as one can also 

expect to utilize several other distributed data sources including NoSQL data stores and 

RDBMSs within a single application, a wrapper-mediator approach by extending the 

main memory database Amos II for accessing MongoDB was suggested.  

 MongoDB does not support numerical operators and complex queries that 

combine several collections (i.e. table) through joins. To save the programmer from 

having to implement such features (i.e. join), one of the key advantages of extending 

Amos II with MongoDB is to provide the ability to express powerful and relationally 

complete AmosQL queries over MongoDB databases.  

AMI is implemented by a set of AmosQL foreign functions utilizing the foreign 

function C interface of Amos II. The implementation is described in the next section.  
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3 The Amos MongoDB Interface (AMI) 

AMI is an interface between Amos II and the MongoDB DBMS. The purpose of this 

interface is to seamlessly integrate MongoDB with the Amos II extensible DBMS, which 

allows the AmosQL Query Language to operate over MongoDB databases. 

3.1 Architecture 

AMI utilizes the Amos II C interface [7] by defining a set of foreign functions in Amos II 

that can be called from queries and procedures. These foreign functions internally call the 

MongoDB client C Driver API [5]. Figure 3.1 illustrates the architecture of AMI having 

the following modules: 

 The Amos II kernel provides general query processing functionality through the 

Amos query processor. 

 The Amos-Mongo wrapper provides an interface for transparent and optimized 

queries to MongoDB data sources from the Amos query processor. It contains the 

Amos-Mongo query processor and the Amos-Mongo interface. This project 

implements the Amos-Mongo interface, which is as a set of foreign functions that 

calls the MongoDB client API, provided by the C Driver. The on-going Amos-

Mongo query processor implements query optimization specialized for 

MongoDB. It will improve query performance by generating semantically 

equivalent queries for MongoDB data source for a given AmosQL query.  

 The MongoDB C Driver 0.8.1 version  has been used in this project to enable 

AMI to interact with MongoDB databases.  The MongoDB C driver is developed 

by the vendor of MongoDB. Although the driver was in alpha stage of 

development, due to high performance and portability, it was used as a desirable 

driver. However, It has been found that the original driver had a major bug in 

Windows Socket communication, which has been fixed in this project and 

reported in the community forum [19]. The details are discussed in section 3.3.  
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Figure 3.1. Architecture of AMI 
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structure for managing both call as well as efficiently representing tpl for actual 

arguments and results.  

 There are several kinds of foreign functions implemented in AMI:  

 A foreign function that sends general MongoDB query expressions to the 

database server for execution.  

 Foreign functions that add or delete objects to/from database collections. 

In particular a bulk insert function allows high-performance inserts of 

many objects. 

 A foreign function that issues MongoDB database commands, e.g. to 

access meta-data or to create indexes. For example, as MongoDB creates a 

collection implicitly when it is referenced in a command the first time (i.e. 

when the BSON object is stored by an insert operation), a MongoDB 

database command can also be used for creating new collections explicitly 

[20].  

A complete example related to these foreign functions has been provided in AMI tutorial 

section of 0. 

3.2.1 Data type mappings 

In general, the AMI client API represents data objects in local memory and sends it over 

a socket connection to the database server. In MongoDB, BSON objects are used to 

represent data objects, express queries, and express commands. The MongoDB C Driver 

provides APIs to create, read, and destroy BSON objects [5]. Similarly, Amos II provides 

corresponding data types to represent the contents of BSON objects. In particular, the 

datatype Record represents dynamic associative arrays [6]. A number of API functions in 

C are provided to access and store key-value pair in records. Therefore, to seamlessly 

integrate Amos II query language with MongoDB data store, it is important to provide an 

interface for data type mapping between BSON and Record objects. AMI provides the 

following two functions for data type mapping between Record and BSON.:  

record_to_bson(bindtype env, oidtype *rec, bson *b, int conn_no)  

 

bson_data_to_record(bindtype env, const char *data) 
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The datatype oidtype is a general handle to any kind of Amos II object and env provides 

the binding context for error handling. The functions are recursive as both BSON and 

Record can have nested key-value pairs.  

 Currently, AMI provides mappings between integers, floating point numbers, 

strings, binary types, and 1D arrays.  

3.2.2 MongoDB object identifiers 

In every MongoDB BSON document, the _id field is required to guarantee the 

uniqueness within the collection. The value of _id can be provided as a conventional data 

type like integer, floating point number, or string, which is unique in the collection.  If a 

new document has been inserted without the _id field, the MongoDB server 

automatically creates the _id field as a 12-byte BSON object of type ObjectId that a 

uniquely identifies the new object in the data store. The object identifier is generated 

based on timestamp, machine ID, process ID, and a process-local incremental counter. 

 Although the MongoDB server will automatically create the object identifier if  a 

BSON object is inserted without _id attribute,  the MongoDB C driver API for insertion 

(mongo_insert()) does not return this object identifier. To enable the Amos user to 

further reference the created object after insertion, AMI uses a MongoDB C Driver API 

function to generate a globally unique 12-byte BSON object identifier in the client side 

and add it to inserted record before sending it to the server for physical insertion. This 

mechanism to generate the object identifier in the client is a very efficient solution as it 

eliminates the communication overhead of the object creation taken place in the server.  

3.2.3 Connecting to data sources  

Before using any AMI functions, it is required to connect the MongoDB data source to 

Amos II. AMI provides the following foreign function implementation in C to access the 

data source. 

create function mongo_connect(Charstring host) -> Integer conn_no 

  as foreign 'mongo_connect+-'; 
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Here, the host name can be defined as an IP address where a MongoDB server is running 

on a default port. It is possible to connect multiple server instances. In the following 

example, a new connection is created to the MongoDB data source running in localhost 

(IP 127.0.0.1) and the connection number is assigned to the Amos II variable :c. This 

variable can further be referenced by other interface functions to communicate with the 

data source. 

set :c = mongo_connect("127.0.0.1"); 

 

Similarly, the following foreign function is provided to close the connection with a data 

source:  

create function mongo_disconnect(Number conn_no)-> Boolean status 

  as foreign 'mongo_disConnect-+'; 

 

In the following example the connection that was created by mongo_connect() earlier, is 

disconnected by calling mongo_disconnect(): 

mongo_disconnect(:c); 

3.2.4 Inserting a single object  

For inserting an object (BSON Object) into a MongoDB data store, AMI provides the 

following foreign function interface that takes a MongoDB connection number, database 

name, collection name, and Record as parameters:   

create function mongo_add(Number conn_no, Charstring  database,  

                                Charstring collection, Record r) 

                              -> Literal id 

  as foreign 'mongo_add----+'; 

 

mongo_add() inserts a record r into the specified collection and returns the MongoDB 

object identifier id for the inserted object. As MongoDB is a schema-less, it is quite 

flexible to insert a record into a data store collection. For example, if the database or 

collection does not exist, MongoDB will automatically create the database and/or 

collection specified in the mongo_add() call. The mongo_add() implementation will 

convert the Amos II record r into an equivalent BSON Object. If the _id field is not 

provided in r a unique 12-Byte BSON object identifier will be generated in the client side 
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and returned (see section 2.3.1). Otherwise, the user provided value of attribute _id in r is 

returned. In the following example, a record is inserted into a MongoDB data store.  

mongo_add(:c, "tutorial", "person",  

{  

"Name": "Ville",  

"age" :   54 

} 

     ); 

 

Here, the MongoDB connection has been bound to variable :c by a previous 

mongo_connect() call (see section 3.2.3). The mongo_add() call creates a new MongoDB 

object stored in the collection “person” in the database “tutorial”. Since no attribute _id 

is provided, mongo_add() will generate and return a new MongoDB object identifier 

representing the inserted record in the MongoDB data store before inserting the new 

object into the data store. In this example, a record with two attributes Name and age is 

inserted to the data source.  

Records with arbitrary new attributes can be inserted without modifying the 

database schema as relational databases require. In the following example a record with 

two additional attributes _id and email are provided without any modification of the 

schema. Here the object identifier _id has the value 10, which will be returned from 

mongo_add(). 

mongo_add(:c, "tutorial", "person",  

{  

"_id"  : 10, 

"Name" : "George",  

"age"  :  27, 

"email": "george.85@it.uu.se" 

} 

     ); 

3.2.5 Bulk inserting objects  

With the same level of flexibility as with single document inserts using mongo_add(), 

AMI provides the following foreign function for bulk inserting multiple records: 

create function mongo_add_batch(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

                                Vector vr, Integer writeConcern)  

                                -> Boolean status 

as foreign 'mongo_add_batch-----+'; 
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Here, the first three parameters are the same as for mongo_add(). The fourth parameter vr 

is a vector of records to be bulk inserted. If the parameter writeConcern=1 it specifies 

that an acknowledgement is returned after each inserted object, otherwise the insertion is 

unacknowledged and asynchronous. The mongo_add_batch() function returns true if the 

insertion succeeds.  

 The following convenience functions encapsulate the different write concerns:   

create function mongo_add_batch_ack(Integer  conn_no, Charstring  database,  

                                    Charstring  collection, Vector vr)  

                                  -> Boolean status 

as mongo_add_batch(conn_no, database, collection, vr, 1); 

 

create function mongo_add_batch_unack(Integer conn_no, Charstring database,  

                                      Charstring  collection, Vector vr)  

                                    -> Boolean status 

as mongo_add_batch(conn_no, database, collection, vr, 0); 

 

With mongo_add_batch_ack() MongoDB confirms the receipt of each write operation to 

catch network, duplicate key, and other errors, while with mongo_add_batch_unack() 

MongoDB does not acknowledge the write operations and no errors are caught. With 

mongo_add_batch_unack() higher insertion rates are expected than with 

mongo_add_batch_ack(). In the following example, a vector of records are batch inserted 

with  mongo_add_batch_unack():  

mongo_add_batch_unack(:c, "tutorial", "person",  

{ 

{"Name": "Carl", "City": "Uppsala"}, 

{"Name": "Eve"}, 

{"Name": "George", "Country": "Sweden"}, 

{"Name": "Olof", "age": 65} 

    }); 

 

Notice that Amos uses the notation {…} to form vectors (while BSON uses […]) and that 

each record may have different attributes within the same bulk insert.  

3.2.6 MongoDB queries  

AMI provides a flexible foreign function mongo_query() for sending queries to 

MongoDB for evaluation. Since queries to MongoDB are expressed in BSON format, the 
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corresponding record structure is used in the mongo_query() as well. It has the following 

definition: 

create function mongo_query(Number  conn_no, Charstring  database,  

                            Charstring collection, Record q)  

                          -> Bag of Record r 

as foreign 'mongo_query----+'; 

 

The parameters connection, database, and collection name identify the queried 

collection, while the parameter q specifies the query as a record. The result from the 

evaluation by the MongoDB server is a bag of records that matches the query q.  

 In the following example, all the objects member of collection person in database 

tutorial database having attribute age=27 will be returned:  

mongo_query(:c, "tutorial", "person", {"age": 27}); 

 

To return all the documents from a collection, an empty record can be used:  

mongo_query(:c, "tutorial", "person", {:}); 

 

Range queries can also be expressed. For example the following query returns all objects 

in the person collection with age greater than 50 and less than 60:  

mongo_query(:c , "tutorial", "person",  

{ 

"age": { "$gt": 50, "$lt": 60 } 

}); 

 

A comprehensive SQL to MongoDB Mapping chart can be found in [21]. Some more 

query examples are provided in AMI tutorial section of 0. 

3.2.7 Deleting objects  

The AMI function for deleting the documents from a MongoDB database is similar to 

mongo_query(): 

create function mongo_del(Number  conn_no, Charstring  database,  

           Charstring collection, Record q)  

                        -> Boolean status 

as foreign 'mongo_del----+'; 
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The function mongo_del() deletes objects in a collection matching a query q.  

 In the following example, all the documents in the collection person having 

age=27 will be removed (if any). The Boolean value true will be returned upon success.  

mongo_del(:c, "tutorial", "person", {"age": 27}); 

 

3.2.8 Indexing  

An index is a special data structure supporting efficient execution of queries in databases. 

MongoDB provides a number of different indexing structures. In particular B-Tree 

indexes are definable for any top level object attribute(s) of the objects in a collection. 

Without indexing MongoDB must scan all objects in a queried collection to match the 

query filter against each object. To reduce this inefficiency, AMI provides the following 

function to define an index on one or several attributes for the objects in a given 

collection.  

create function mongo_createIndex(Number  conn_no, Charstring  database,  

Charstring  collection,  

Charstring indexName, Record spec) 

-> Boolean status   

as foreign 'mongo_createIndex-----+';              

 

The parameter indexName specifies a name for the index and the parameter spec specifies 

the properties of the index, such as its attributes, the sort order of the index, and what 

kind of index structure is created. By default B-tree indexes are created, but MongoDB 

supports several other kinds of indexes as well. Indexes can be defined on either a single 

attributes or multiple attributes. For example, the following function call creates a B-tree 

index on a single attribute age:  

mongo_createIndex(:c, "tutorial", "person", "ageIndex", {"age": 1}); 

 

The number 1 specifies that the B-tree index for age will be stored in ascending order. To 

order the index in descending order -1 is specified. 

MongoDB supports compound (composite) indexes, where a single index 

structure holds references to multiple attributes of the objects in a collection [3]. The 

following example creates a compound index on Name and age. Here, first the values of 



 

34 

the Name attribute will be stored in ascending order and the values of age will be stored 

in descending order.  

mongo_createIndex(:c, "tutorial", "person", "ageIndex",  

{  

"Name": 1,  

"age": -1 

     } 

); 

 

The following function removes an index named indexName from a collection: 

create function mongo_dropIndex(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

Charstring indexName) 

                               -> Record status 

 

The function mongo_dropIndex() is defined  using an API for issuing administrative 

commands on the database provided by MongoDB C Driver [5], to be explained next. 

3.2.9 MongoDB database commands 

MongoDB provides a set of database commands [20] that are issued on a data source. 

AMI provides the following function for issuing the MongoDB database commands cmd: 

create function mongo_run_cmd(Integer  conn_no, Charstring  database,  

                              Record cmd) 

                            -> Record status 

as foreign 'mongo_run_cmd---+'; 

 

The database command cmd  is represented as a record.  

 In the following example, mongo_run_cmd() is used to delete the index named 

ageIndex from collection person: 

mongo_run_cmd(conn_no, "tutorial",  

{  

"dropIndexes": "person",  

"index"      : "ageIndex" 

} 

); 

 

The syntax of a database command expressed as a record varies. For example, the 

attribute dropIndexes above specifies that an index in collection should be deleted and the 

attribute index specifies its name. As another example, MongoDB C Driver [5] 
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implements database user roles [22] as database commands. All the database user roles 

can be expressed as records.  

The function mongo_dropIndex() is defined as a procedural function in terms the 

mongo_run_cmd() as:  

create function mongo_dropIndex(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

 Charstring indexName) 

                               -> Record status   

as mongo_run_cmd(conn_no, database,  

                   { "dropIndexes": collection, "index": indexName }); 

 

The following AMI functions are all defined using mongo_run_cmd(): 

 mongo_dropCollection() - Removes the specified collection from the database. 

 mongo_dropDB() - Removes the entire database.  

 mongo_dropIndex() - Drop an index within a collection and database.  

 mongo_dropAllIndex() - Drop all the indexes within a collection and database. 

 mongo_getPrevError() - Returns status document containing all errors. 

 mongo_collStats() - Reports storage utilization statics for a specified collection.  

 indexStats() - Collect and aggregates statistics on all indexes.  

 mongo_dbStats() - Reports storage utilization statistics for the specified database.  

 mongo_collNameSpaces() - Get all the collection identifiers in a database. 

 mongo_indexNameSpaces() - Get all the index identifiers in a database. 

The detailed function signatures and examples of their usage can be found in 0. 

3.3 MongoDB C driver issues 

The MongoDB C Driver [5] provides a C-based client API for MongoDB database 

servers. There are several other client driver implementations for different other 

programming languages, e.g. Java, C#, or Python. To ensure high performance the C 

driver API was chosen in implementing AMI.  

The current version 0.8.1 of the C driver is still in alpha stage and the project 

found that the driver had a major bug when being used under Windows. After building 

the driver with the recommended Python build utility SCons [23] and the Microsoft 
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Visual Studio 2010 compiler, the driver was unable to connect to the MongoDB server 

using the MongoDB C Driver function: 

 
int mongo_client( mongo *conn , const char *host, int port ); 

 

It turned out that conn->err returned the error MONGO_SOCKET_ERROR, and the problem 

was found to be the absence of windows socket initialization, because the MongoDB C 

driver that was built for Windows 7 environment, never initiated the Winsock DLL 

structure. We therefore added to the C driver code in env.c with proper Windows Socket 

initialization function WSAStartup(). The purpose of WSAStartup() is to allow an 

application or DLL to specify the version of Windows Sockets required and retrieve 

details of the specific Windows Sockets implementation. A DLL can only issue further 

Windows Sockets functions after successfully calling of WSAStartup() [24].  

 A Microsoft Visual Studio 2010 project with the proper implementation of the 

above mentioned windows socket initialization and modified source code of MongoDB C 

Driver 0.8.1 was developed in this project to build a functioning driver API. The detailed 

code as well as the settings of Visual Studio project is explained in 0. The problem 

description, solution, and the Microsoft Visual Studio 2010 project has been provided for 

the MongoDB bug report community forum [19].  

 It should be mentioned that the MongoDB C Driver 0.8.1 APIs can be 

successfully built and used under Mac OS X 10.6 Snow Leopard and Scientific Linux for 

64 bit platform, without the above mentioned problem.  

3.4 Discussion 

In this section the architecture, implementation details as well as functionality of Amos-

Mongo Interface (AMI) was described. In AMI the corrected MongoDB C Driver 0.81 

API is utilized to implement a set of foreign Amos II functions in C. AMI provides data 

type mappings between the associative arrays represented by BSON objects in MongoDB 

and Record objects in Amos II. As MongoDB uses BSON as the data storage and 

network transfer format for objects, this data-type mapping provides a flexible and 

convenient way of accessing MongoDB databases, expressing queries and commands 
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from AmosQL, and extending the interface by defining AmosQL functions in terms of 

MongoDB database commands. The flexibility and performance of AMI provides a 

convenient and flexible solution for the ongoing development of a full-functional Amos-

Mongo Wrapper. Finally, an executable tutorial as well as complete signatures of all 

functions in AMI is provided in 0.  
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4 Performance Evaluation 

To evaluate NoSQL data stores compared with relational databases for storing and 

analyzing logged data streams (historical data), we compared the performance for data 

logs from real world industrial application of MongoDB, MySQL and a relational DBMS 

called DB-C from a major commercial vendor. Here, we compared these three systems in 

terms of load-time, time to do simple analytics, and the resource allocation. To perform 

analytics on persistent logs, we defined a benchmark consisting of a collection of basic 

tasks and queries required in analyzing numerical logs. For each task, we measured the 

query performance in terms of execution time for the systems. We also investigated the 

statistics about resource allocation (i.e. database and index size). Our results revealed the 

trade-offs between loading and analyzing data log for the systems. Although the process 

to load the data with indexing for scalable execution of queries took a lot of time in all 

systems, the observed performance for both MongoDB and DB-C was strikingly better 

compare to MySQL in both loading time and analytics. We have speculated about the 

cause of this dramatic performance differences and provide some insight issues that 

future system should consider when utilizing MongoDB as back-end storage for 

persisting and analyzing data logs. 

4.1 Data set 

The evaluation was made based on log files from a real-world industrial application in the 

Smart Vortex project [25]. The log measurements from time series for one kind of these 

time series was used in the performance evaluation. The chosen time series is plotted in 

Figure 4.1.  It has approximately 111M measurements and occupied 6GB gigabytes.  
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Figure 4.1. Pressure measurements of sensors for 1 hour 

To investigate DBMS performance with growing raw data file size, parts of the raw log 

data file was loaded into the databases. The performance of load times, query times, and 

resource allocation was measured for the different DBMSs. 

4.2 Benchmark queries 

In this section, we define the tasks representing a set of queries that are basic to perform 

analytics over log data. There are many kinds of queries for analyzing log data, as 

discussed in [9]. Some of these queries require efficient evaluation of numerical 

expressions, which is supported by SQL but cannot be easily specified in a simple 

NoSQL data store or MongoDB. Therefore, we limit ourselves to those quires that are 

basic for log analytics and do not involve the use of complicated numerical operators or 

joins. Before executing the queries, the data has to be bulk loaded into the database. 
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4.2.1 Key lookup query Q1 

This task involves finding measured value mv for a given machine m, sensor s and begin 

time, bt. The query in SQL or equivalent AmosQL by utilizing AMI is specified as 

follows: 

SELECT * FROM measures va  

WHERE va.m =?  

AND va.s =? AND bt =? 

mongo_query(:c, "LogDB", measures",  

  { 

     'm': ?, 's': ?, 'bt': ? 

  } 

) 

 

In order to improve the performance of such a query, we need efficient use of indexing 

by B-trees or hash tables. In MySQL or DB-C, we index by defining a composite primary 

key on (m, s, bt). Since in MongoDB there is always a default B-tree index on attribute 

_id, we have to add a secondary compound index on (m, s, bt). All systems utilize B-tree 

indexes for performing such queries. In the later part of this section, we will provide 

several alternatives of bulk loading, indexing, and executing the key lookup task. 

Initially, the tasks will be performed without any index, which is expected to speed up the 

bulk loading but slows down the analytics. Then we will investigate two other 

alternatives by defining indexes. This is expected to slow down the bulk loading as it has 

to consider the update on indexes as well, while it will speed up the query execution task. 

4.2.2 Basic analytical query Q2 

This query involves finding anomaly of sensors by observing measured values, mv, 

deviating from an expected value. Here, the sensors with the measured value mv higher 

than the unexpected value is detected.  Such query can be expressed in SQL, or 

equivalent AmosQL for MongoDB, as follows: 

 

SELECT * FROM measures  

WHERE mv>? 

mongo_query(:c, "LogDB", "measures",     

  { 

    'mv': { $gt': x }  

  }  

) 

 

Since the effectiveness of a secondary index is highly dependent on the selectivity, this 

query was executed for different query condition selectivities by providing the 
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appropriate range of mv. To obtain different selectivities we measured the dependency 

between value of mv and actual selectivity of Q2, plotted in Figure 4.2 

 

Figure 4.2. Measured value to selectivity mapping 

Based on Figure 4.2, we executed Q2 for values of mv resulting in the selectivities 

0.02%, 0.2%, 2%, 5% and 10%. In order to improve the performance of the query, we 

need the efficient use of a B-Tree index. We can utilize a secondary B-Tree index on mv 

for MySQL, DB-C, and MongoDB.  

 Query Q2 is an example of a very basic analytical query that involves inequality 

comparisons. Complex analytical queries usually involve inequalities and can often be 

rewritten into inequality queries like Q2 [9]. 

Another performance issue is that bulk loading gets slowed down by adding a 

secondary index on mv, which is also investigated. 
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4.3 Indexing alternatives 

To investigate the impact of different indexing strategies and their trade-off with bulk-

loading we investigated the following three kinds of indexing: 

(1) No index: We performed bulk loading execution of the two queries without 

specifying any index. Here we expected to achieve fast loading time but the analytics 

should suffer without any index.  

(2) Sensor key index: We created a composite index on machine id m, sensor id s and 

begin time bt. The data was bulk loaded with the index created and the corresponding 

queries were performed. We expected to observe degradation in loading performance 

compared to experiment (1). However, the key lookup query of Q1, was expected to 

have significant performance improvement, as it will utilize this index. Query Q2 

does not utilize this index and should not be impacted. 

(3) Sensor key and value indexes: We added an extra secondary index on mv. The data 

was then bulk loaded and the same queries as before were investigated. We expected 

to observe further degradation of the loading performance. Furthermore, the simple 

analytical task Q2 should perform significantly better, as it can utilize the secondary 

index on mv.  

The indexing influences both bulk loading performance and storage utilization. 

4.4 Benchmark environment 

The benchmark was performed on a computer running Intel
R 

Core
TM

 i5-4670S, 3.1GHz 

CPU with Windows 7 Enterprise 64-bit operating system. The server has 16GB of 

physical memory. The MongoDB version used for empirical performance evaluation was 

v2.4.8 and for MySQL Server it was 5.6.12. For the MongoDB database AMI was used 

to execute the benchmark queries in AmosQL. There is an SQL interface for JavaAmos 

[18], which was used to perform the queries for MySQL and DB-C. Here, JavaAmos is a 

version of the Amos II kernel connected to the Java virtual machine (JVM). Although the 

SQL interface for JavaAmos utilizes Java, this should not impact significantly the 

performance compared to the C interface of AMI; according to [26], “High-level 
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languages are good and need not hurt performance”. However, for providing unbiased 

comparison results, a SQL interface in C for Amos II was developed for MySQL 

performance evaluation in this project by utilizing the same Amos II C Interfaces [7] that 

is utilized in the AMI implementation.  

4.4.1 MySQL configuration 

In MySQL, the InnoDB engine was used in the benchmark, where the benchmark 

database and index size will occupy approximately 11.3GB and 6.3GB, respectively. 

According to the MySQL memory allocation recommendation [27], the 

innodb_buffer_pool_size should be set to 70% of available memory which is 

approximately 9.22GB for the chosen configuration. Furthermore, as the query cache 

biases the query execution speed, it was turned off by enabling the SQL_NO_CACHE 

option. 

4.4.2 MongoDB configuration 

As the attribute names are stored in each BSON object of a MongoDB collection, we 

have avoided long and descriptive attribute names, which might impact the final size of 

the database. For example, we avoided attribute names like “mechineId” and used “m” 

instead. No other optimizations and dedicated allocations of memory were performed for 

MongoDB. 

4.4.3 DB-C configuration 

We did not use any optimization and dedicated allocations of memory to evaluate the 

performance of DB-C; it was used out-of-the-box with default configuration. As for 

MySQL, the query cache was turned off. 

4.4.4 Benchmark execution 

For each of system we measured the load-time for 1, 2, 4, and 6 GB of data size. The raw 

data files were stored in CSV format where each individual row represents the sensor 

reading based on machine identifier m, sensor identifier s, begin time bt, end time et, and 

the measured value mv. 
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There are two ways to bulk load into MongoDB:  

1. using command line utility mongoimport, and 

2. using the client driver API function mongo_insert_batch().  

AMI utilizes the second alternative to provide greater flexibility since it provides 

different levels of write concerns for observing the tradeoff between write 

acknowledgement and bulk loading speed up. Unlike the mongoimport utility, 

mongo_insert_batch() also provides options to modify data before loading. We also 

analyzed the performance of command line loading, which has about the same 

performance compared to the acknowledged version of mongo_insert_batch().  

Bulk loading into MySQL was always performed utilizing the LOAD DATA 

INFILE SQL command for bulk loading CSV files
1
. For DB-C, we used its bulk loading 

utility. It should be noted that the LOAD DATA INFILE command of MySQL and bulk 

loading command for DB-C are not as flexible as the AMI bulk loading interface for 

MongoDB, which allows advanced pre-processing by AmosQL of log records from an 

input stream.  

For the task executions, the key lookup Q1 for all three systems used the same 

data sizes starting from 1GB up to 6 GB in order to measure system scalability. By 

contrast, the simple analytical query Q2 was executed only with the largest data size of 

6GB for all the systems since it evaluates the impact of using B-Tree based secondary 

index to speed up query performance, and this speed-up depends on the selectivity of the 

indexed condition and not the database size. 

To enable incremental bulk loading of new data into exiting collections, the 

indexes are always predefined in all experiments, rather than building them after the bulk 

loading. Although one might consider the option of bulk loading first and then building 

the index, this will contradict the notion of our real scenario of applications where bulk 

                                                 

1
 The alternative to insertion rows by executing INSERT INTO commands was not used 

as it was significantly slower. 
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loading and analyzing the stream of log data is a continuous process that demands 

incremental loading of the data into a pre-existing log table or collection. 

For providing stable results for each benchmark task, we made all the experiment 

starting with empty databases.  

4.5 Experimental Results 

In this sub-section, we present our benchmark results consisting of bulk loading and 

analyzing by scaling the size of the log data up to 6GB. For observing the tradeoff 

between bulk loading and speeding up the analytical tasks, the following three alternative 

experiments were conducted to investigate the impact of different indexing strategies 

discussed in section 4.3. In the following subsections we discuss these three alternative 

investigations in sequence.  

4.5.1 No index 

We loaded the data and made the performance measurements on all systems without 

defining any index. The loading performance for the systems is shown in Figure 4.3.  

 

Figure 4.3. Performance of bulk loading without indexing 



 

46 

 

In the above figure, we can observe that all of the systems offer scalable loading 

performance by observing the linear increase in time as data size grows. DB-C was faster 

compared to all other systems and scaled linearly (around 4.3 MB/s), even faster than 

MongoDB without acknowledged write concern. Furthermore, the performance 

difference is small between MongoDB with acknowledged write concern and MySQL, 

despite that there is always a primary key index on _id in MongoDB, while MySQL has 

no index. As expected, for large data loadings (more than 4 GB) unacknowledged 

MongoDB is 19% and 22% better than both the acknowledged MongoDB and MySQL 

bulk loadings.  

In Figure 4.4, the key lookup task Q1 is measured, to retrieve the particular record 

of a sensor. All three systems do not scale without indexing since every system performs 

a full table/collection scan. However, MongoDB seems to provide better performance 

compare to other systems.  

   

Figure 4.4. Performance of Q1 without indexing 

Figure 4.5 provides the performance of the basic analytical task of Q2 without index for 

selectivities ranging from 0.02% up to 10% and 6GB of data. Unlike the key lookup task 

Q1, MongoDB here performed around 40% worse than both MySQL and DB-C for any. 
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As the key lookup task, an ordered B-Tree indexing is expected to speed up the 

performance of this analytical task.  

 

  

Figure 4.5. Performance of Q2 with varying selectivity without indexing  

Discussion of results: 

The performance results of bulk loading, key lookup task Q1 and basic analytical task Q2 

were shown in Figure 4.3, Figure 4.4, Figure 4.5, respectively. DB-C demonstrated 

fastest bulk loading performance compare to other systems. Although there is a default 

primary index on the MongoDB, both of the bulk loading alternatives performed 

surprisingly better than MySQL. 

For the key lookup task Q1 MongoDB is slightly faster, and the difference seems 

to increase with increasing database size. The lack of indexing makes none of the systems 

scale well. However, further investigations with a larger data set are needed for final 

conclusion.  

For the basic analytical task Q2, both MySQL and DB-C is significantly faster 

than MongoDB for any chosen selectivity. Also in this case, the lack of indexing 

decreases scalability for all systems.  
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 In the next section, we will add a composite index on machine id, sensor id and 

begin time to speed-up the key lookup task Q1 and observe the tradeoff between loading 

time and task exaction.  

4.5.2 Sensor key index 

In this experiment, we defined a composite index on machine id m, sensor id s, and begin 

time bt. In MySQL and DB-C, a composite primary key on these fields was defined. In 

MongoDB a composite secondary index was defined. The loading performance is shown 

for all systems in Figure 4.6. The most surprising outcome from the result is that MySQL 

scales significantly worse than MongoDB and DB-C. 

 

 

Figure 4.6. The performance of bulk loading with sensor key index 

When the inserted data size is 4 GB or more, MySQL is more than 4 times slower 

compare to other systems. Both DB-C and MongoDB demonstrates scalable performance 

for bulk loading. DB-C scaled linearly (around 1.7 MB/s). 
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According to Figure 4.7, with the sensor key index, the key lookup task Q1 for a 

6GB database takes 0.12 s with MySQL, 0.25 s with MongoDB and 0.076 s with DB-C, 

which is insignificant for all systems and shows that the indexing works. 

 

Figure 4.7. The performance of Q1 for 6GB data size with sensor key index  

For MongoDB we also measured the access time of obtaining an object for a 

given MongoDB identifier, which was around 0.25 s, i.e. the access time for an identity 

lookup in MongoDB is the same as for a sensor key lookup. The reason is that both 

indexes are clustered B-Tree indexes. 

 The result of the simple analytical task Q2 for different selectivity is shown in 

Figure 4.8.  Here, it turns out that MySQL performs much worse with a primary key 

index than without one, while MongoDB demonstrated scalability with less performance 

degradation. Whereas the performance of DB-C follows MongoDB’s performance up to 

5% selectivity and performed better for higher selectivity. With a senor key index 

MongoDB and DB-C become more than 12 and 32 times faster than MySQL, 

respectively.  
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Figure 4.8. The performance of Q2 varying the selectivity with sensor key index  

Discussion of results: 

Even though MongoDB maintains both a primary index and a secondary composite 

index, it scales significantly better than MySQL and is comparable with DB-C for bulk 

loading of data logs. As expected, the sensor key index provides scalability for the key 

lookup task Q1 for all systems, while the simple analytic task Q2 is still slow. 

In the next section, we added an index on measured value, mv to speed up the 

basic analytical task Q2 and observe the tradeoff between loading time and tasks 

exaction. 

4.5.3 Sensor key and value indexes 

In this experiment, we defined an ordered index on the measured value mv, for achieving 

scalable performance of Q2 and to evaluate the impact of selectivity when using that 

index. In every system, a secondary B-Tree index on mv field is defined. 

The loading performance is shown in Figure 4.9. 
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(a)  

 

(b) 

Figure 4.9. The performance of bulk loading with both sensor key and value 

indexes, (a) shows three systems (b) highlights only MongoDB and DB-C  
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The secondary value index decreases the loading performance of MySQL for a 6GB 

database around 60%, 25% for acknowledged MongoDB inserts, and 38% for 

unacknowledged MongoDB inserts. Thus the extra index has less impact on MongoDB 

performance than on MySQL.  

The bulk load time for DB-C is slightly slower than MongoDB scaling linearly 

(around 1.1 MB/s), while MySQL is very slow when both indexes are defined 

beforehand.  

 The performance of the key lookup task Q1 is the same as without the sensor 

value index, as expected.  

 Figure 4.10  shows the performance of the simple analytical task Q2 for different 

selectivities and a database size of 6 GB with both sensor key and value indexes. Clearly 

there is a problem with secondary index for inequality queries in MySQL. On the other 

hand, both MongoDB and DB-C scale well. Figure 4.10b compares the performance of 

Q2 for only MongoDB and DB-C. 
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(a) 

  

(b) 

Figure 4.10 The performance Q2 varying the selectivity with sensor key and value 

indexes a) shows three systems b) highlights only MongoDB and DB-C  



 

54 

This time we have decrease the selectivity up to 50%. Here it can be seen that 

for selectivities up to 2% DBC-C is slightly slower than MongoDB, between 2% and 

20% Mongo-DB is faster, while above 20% DB-C is faster. The reason is that the 

query optimizer of DB-C changes from a non-clustered index scan to a full scan when 

the selectivity is somewhere between 2% and 5%, whereas MongoDB continues with 

in an index scan for growing selectivities.  

Table 4.1 lists all the performances of the simple analytical task Q2 for a 6 GB 

database with varying selectivities, without indexing, with sensor key indexes, and with 

both sensor key and value indexes.  It can be seen that for highly selective queries (0.02 

%) the secondary index improves the performance of MongoDB from 88 s to 1.6 s (factor 

55) , of MySQL from 40 s to 21 s (a factor 1.9) and of DB-C from 46 s to 1.8 s (factor 

26) so the secondary index improves the performance much more for MongoDB and DB-

C than for MySQL.  

Table 4.1. Analytical Task, Q2 with sensor key and value indexes 

Discussion of results: 

The results showed that MySQL was clearly slower than MongoDB and DB-C for both 

bulk loading and for utilizing secondary indexes in inequality queries, which are very 

important issues for log data analytics. Both DB-C and MongoDB scaled for the basic 

analytical task Q2 while MySQL did not. For selective queries, MongoDB performs 

better than DB-C while for non-selective queries DB-C switches to full scan thus 

provides better scalability. 

Selectivity Without index Sensor key  index Sensor key & value indexes 

% MongoDB MySQL DB-C MongoDB MySQL DB-C MongoDB MySQL DB-C 

0.02 88 40 46 88 2,335 82 1.6 21 1.8 

0.2 88 40 44 90 2,549 83 2.7 57 3.3 

2.00 94 48 52 95 2,602 82 12.7 672 17.4 

5.00 103 60 60 104 2,582 82 24.8 1,141 79.3 

10.00 119 79 75 211 2,595 82 50 3,260 80.0 
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4.5.4 Storage utilization 

 Figure 4.11 shows the database and index sizes for 6GB of log data loaded into the three 

systems. The total database size together with all the indexes in MongoDB, MySQL and 

DB-C are 20.3 GB, 17.7 GB 15GB, respectively. In MongoDB there is extra storage 

overhead of 3.4 GB for object identifier index. 

 

Figure 4.11. Database statistics for 6GB raw sensor data 

 

For the data records MySQL consumes 52% more storage compare to MongoDB 

11.4 GB. The reason is that our MongoDB representation is very compact because of the 

short attribute names (average 72 bytes), while the MySQL records have a fixed length of 

95 bytes.  

The index size for the combined sensor key and value indexes of MongoDB is 

larger (9.5 GB) than the corresponding MySQL (6.3 GB) and DB-C (7.5 GB) indexes.  

 

4.6 Discussion 

Although index utilization is crucial for efficient analysis of log data, indexing also slows 

down the process of bulk loading. For example, bulk loading was demonstrated to be 

scalable without having any index for the relational DBMSs, and with the default object 
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identifier index of MongoDB. In spite of MongoDB having an object identifier index, its 

bulk loading performance was still 3% better than MySQL without any index. The bulk 

loading of the 6GB dataset into DB-C was fastest and linear at a speed of 4.3 MB/s, 

compared to both MySQL and MongoDB. 

The introduction of indexes to speed up the analytical tasks demonstrated that 

MySQL’s did not scale for our application compare to MongoDB and DB-C when 

indexing is used.  For the largest data size of 6GB, both bulk loading alternatives of 

MongoDB and DB-C were more than 5 times faster compared to MySQL. For the 

analytical query, Q2 with 10% selectivity, MongoDB was 65 times faster and DB-C was 

41 times faster compared to MySQL. The reason of performance degradation was due to 

MySQL’s ineffective utilization of secondary B-Tree index. The good performance of 

DB-C show that relational databases are comparable to non-distributed NoSQL data 

stores for persisting and analyzing streaming logs. 

The unacknowledged write concern of bulk loading with MongoDB is faster 

compared to acknowledge write concern (see Figure 4.9), so this option can be utilized 

for high performance loading of time-critical applications. However, the difference 

between unacknowledged bulk loading in MongoDB and bulk loading in DB-C was less 

than 10% at expense of a possibly inconsistent database. DB-C scaled best and linearly 

when only the key index was present (1.7 MB/s), while MongoDB was faster up to 6GB 

when both indexes were present while DB-C still scaled better and linearly than 

MongoDB (1.1 MB/s). 

We also demonstrated MongoDB’s default primary key index utilization by 

executing a lookup query and drew the conclusion that the utilization of this index can be 

highly efficient and its future application should be investigated.  

The database and index sizes in MongoDB are comparable to the relational 

databases, with slight overhead for the unused primary index in MongoDB. MongoDB 

would be as compact as the other systems if the regular primary index can replaced with 

the unused index.  
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We also found that MongoDB is easy to use and could be run out-of-the box with 

minimal tuning while MySQL requires substantial tuning to be efficient. DB-C requires 

more complicated setup compared to the other system, but no tuning was necessary.  

Furthermore, AMI’s bulk loading was demonstrated to be flexible and having the 

same performance compared both to the bulk loading tools of the relational DBMSs and 

the command language interface in MongoDB. The flexibility makes AMI suitable for 

pre-processing of log data with insignificant overhead. For the experiments one large 

CSV log file of all sensor readings was first split into several smaller CSV log files with 

different sizes. These CSV files were then streamed into MongoDB by using a CSV file 

reader available in Amos II to feed the read data into AMI’s bulk loader. The overhead of 

such streaming in AMI is that BSON records have to be generated and sent to the server. 

The overhead was found to be insignificant: for example, when data size is 6 GB, more 

than 111 million Amos II native objects of type Record were converted to the 

corresponding BSON objects of MongoDB before bulk loading them into the server. The 

difference in total bulk loading time between the bulk loading interface of AMI and 

MongoDB’s command line bulk loading utility was insignificant.  
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5 Conclusion and Future Work 

The performance of loading and analyzing of numerical log data using a NoSQL data 

store was investigated as an alternative to relational databases. The performance was 

evaluated on a benchmark consisting of real world application log files. The currently 

most popular NoSQL data store, MongoDB [4] and the most popular open source 

relational DBMS, MySQL [28] was compared with a state-of-the-art relational DBMS 

from a major commercial vendor. The evaluation was made by observing the tradeoff 

between load-time and basic analytic queries over numerical logs. Since error analyses 

often require selecting the sensor reading where an attribute value is larger than a 

threshold, the effectiveness of index selection was evaluated by varying the selectivity of 

a non-key attribute. 

Although MySQL demonstrated similar bulk load performance of log data as the 

other systems when no index was defined, both MongoDB and the commercial relational 

DB-C scaled substantially better for bulk loading when an index(es) was present. 

Furthermore, MongoDB has the option to load data without confirming success of write 

operations (unacknowledged write concern). This option was slightly faster (around 10%) 

than DB-C when both indexes were defined. As historical data analysis can often tolerate 

weaker consistency for persistent loading, such an option may be useful for analyzing log 

data where full consistency is not required.  

All system performed well for looking up records matching the key (query Q1) 

when a primary key index is present. For the analytical task of range comparisons 

between a non-key attribute and a constant (query Q2), both MongoDB and DB-C scaled 

substantially better than MySQL. A more careful comparison of DB-C and MongoDB 

revealed that DB-C scales better for non-selective queries, while MongoDB is faster for 

selective ones. The reason is that, unlike MongoDB and MySQL, DB-C switches from a 

non-clustered index scan to a full table scan when the selectivity is sufficiently low, while 

MongoDB (and MySQL) continues to use an index scan also for non-selective queries.   



 

59 

 The extensible DBMS Amos II [6] was utilized for the comparison. An interface 

between Amos II and MongoDB called AMI (Amos Mongo Interface) was implemented 

to enable general queries and updates to MongoDB data store using MongoDB’s query 

language. A corresponding interface already existed for querying relational databases 

from Amos II using SQL. While providing high performance access to MongoDB, AMI 

enables significant flexibility advantages compared to the MongoDB command line 

interface, including (1) expressing powerful and relationally complete AmosQL queries 

and updates including join and comprehensive numerical operator support not present in 

MongoDB, (2) comprehensive bulk loading data into MongoDB from AmosQL,  and (3) 

execution of MongoDB database commands from AmosQL. Compared to the rigid bulk 

load interfaces of MySQL and DB-C, AMI’s implementation of bulk inserts is flexible 

and opens us to perform on-line bulk loading of data streaming directly from sensors.  

There are several critical issues that we observed in this project as future work:  

 As MongoDB always maintains a default primary key index on an object 

identifier per record (document), this index should also be utilized as a 

clustered index when possible, which is being investigated as another 

alternative.  

 MongoDB does not provide queries containing joins or numerical 

operators. Here AMI provides an interface for implementing such 

operators as post-processing operators in Amos II.  The flexibility and 

performance of AMI provides an appropriate foundation for development 

of a fully-functional Amos-Mongo wrapper, which provides transparent 

relationally complete queries over MongoDB databases possibly 

combined with other kinds of data sources. 

 Although the performance evaluation demonstrated that a system 

combining NoSQL features with dynamic query support by utilizing 

automatic indices can provide significant performance advantage for 

persistent loading and analyzing of historical log data, an elaborate 
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analysis of such applications having more complex queries should be 

developed.  

 MongoDB provides automatic parallelization (sharding), where 

collections are distributed over several MongoDB servers based on the 

primary keys. The performance implications of sharding should be 

investigated. In particular, parallelization should improve bulk loading 

times. Even though MongoDB does not guarantee consistency between 

shards it could be acceptable for log analytics. 

To conclude, in our chosen application scenario, MongoDB is shown to be a 

viable alternative for high performance loading and analysis of historical log data 

compared to relational databases. 

 

 



 

61 

References 

[1] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Rec., vol. 39, 

no. 4, p. 12, May 2011. 

[2] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. Dewitt, S. Madden, and M. 

Stonebraker, “A Comparison of Approaches to Large-Scale Data Analysis,” in 

Proceedings of the 2009 ACM SIGMOD International Conference on Management 

of Data, 2009, pp. 165–178. 

[3] MongoDB Inc., “The MongoDB 2.4 Manual,” 2013. [Online]. Available: 

http://docs.mongodb.org/v2.4/. [Accessed: 14-Feb-2014]. 

[4] MongoDB Inc., “MongoDB – The Leading NoSQL Database,” 2014. [Online]. 

Available: http://www.mongodb.com/leading-nosql-database. [Accessed: 04-Mar-

2014]. 

[5] MongoDB Inc., “MongoDB C Driver 0.8.1 Documentation,” 2013. [Online]. 

Available: http://api.mongodb.org/c/0.8.1/. [Accessed: 14-Feb-2014]. 

[6] S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, M. Sköld, and E. 

Zeitler, “Amos II Release 16 User’s Manual,” Uppsala DataBase Laboratory, 

Department of Information Technology, Uppsala University, Sweden, 2014. 

[Online]. Available: 

http://www.it.uu.se/research/group/udbl/amos/doc/amos_users_guide.html. 

[Accessed: 14-Feb-2014]. 

[7] T. Risch, “Amos II C Interfaces,” Uppsala DataBase Laboratory, Department of 

Information Technology, Uppsala University, Sweden, 2012. [Online]. Available: 

http://user.it.uu.se/~torer/publ/externalC.pdf. [Accessed: 14-Feb-2014]. 

[8] C. Strauch, “NoSQL Databases,” Stuttgart, 2011. 

[9] T. Truong and T. Risch, “Scalable Numerical Queries by Algebraic Inequality 

Transformations,” in The 19th International Conference on Database Systems for 

Advanced Applications, DASFAA 2014, 2014. 

[10] E. A. Brewer, “Towards Robust Distributed Systems,” in PODC ’00 Proceedings 

of the nineteenth annual ACM symposium on Principles of distributed computing, 

2000, pp. 7–19. 



 

62 

[11] “JavaScript Object Notation (JSON),” 2014. [Online]. Available: 

http://www.json.org/. [Accessed: 06-Mar-2014]. 

[12] MongoDB Inc., “BSON Types,” 2013. [Online]. Available: 

http://docs.mongodb.org/manual/reference/bson-types/. [Accessed: 16-Feb-2014]. 

[13] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on Large 

Clusters,” in Proc of 6th Symposium on Operating Systems Design and 

Implementation, 2004, pp. 137–149. 

[14] T. Risch and V. Josifovski, “Distributed data integration by object-oriented 

mediator servers,” Concurr. Comput. Pract. Exp., vol. 13, no. 11, pp. 933–953, 

Sep. 2001. 

[15] T. Risch, V. Josifovski, and T. Katchaounov, “Functional Data Integration in a 

Distributed Mediator System,” .M.D.Gray, L.Kerschberg, P.J.H.King, 

A.Poulovassilis Funct. Approach to Comput. with Data , Springer, 2004. 

[16] D. W. Shipman, “The functional data model and the data language DAPLEX,” in 

Proceedings of the 1979 ACM SIGMOD international conference on Management 

of data - SIGMOD ’79, 1979, p. 59. 

[17] P. Gulutzan and T. Pelzer, SQL-99 Complete, Really. Miller Freeman, Lawrence, 

Kansas, 1999. 

[18] D. Elin and T. Risch, “Amos II Java Interfaces,” Uppsala DataBase Laboratory, 

Department of Information Technology, Uppsala University, Sweden, 2000. 

[Online]. Available: http://user.it.uu.se/~torer/publ/javaapi.pdf. [Accessed: 14-Feb-

2014]. 

[19] K. Mahmood, “MongoDB C Driver 0.8.1 Socket Issues on Windows 7, Original 

Title: Socket initialization problem Windows 7,” 2014. [Online]. Available: 

https://jira.mongodb.org/browse/CDRIVER-290. [Accessed: 16-Feb-2014]. 

[20] MongoDB Inc., “Database Commands,” 2013. [Online]. Available: 

http://docs.mongodb.org/manual/reference/command/. [Accessed: 16-Feb-2014]. 

[21] MongoDB Inc., “SQL to MongoDB Mapping Chart,” 2013. [Online]. Available: 

http://docs.mongodb.org/manual/reference/sql-comparison/. [Accessed: 19-Feb-

2014]. 

[22] MongoDB Inc., “User Privilege Roles in MongoDB,” 2013. [Online]. Available: 

http://docs.mongodb.org/manual/reference/user-privileges/. [Accessed: 16-Feb-

2014]. 



 

63 

[23] The SCons Foundation, “SCons: Open Source software construction tool,” 2013. 

[Online]. Available: http://www.scons.org/. [Accessed: 16-Feb-2014]. 

[24] Microsoft, “WSAStartup function: Microsoft Develoer Network (MSDN),” 2013. 

[Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms742213(v=vs.85).aspx. [Accessed: 16-Feb-2014]. 

[25] “Smart Vortex Project,” 2014. [Online]. Available: http://www.smartvortex.eu/. 

[Accessed: 26-Feb-2014]. 

[26] M. Stonebraker and R. Cattell, “10 Rules for Scalable Performance in ‘Simple 

Operation’ Datastores,” Commun. ACM, vol. 54, no. 6, pp. 72–80, Jun. 2011. 

[27] R. James, “MySQL Memory Allocation,” 2012. [Online]. Available: 

http://mysql.rjweb.org/doc.php/memory. [Accessed: 27-Feb-2014]. 

[28] O. Corporation, “Market Share,” 2014. [Online]. Available: 

http://www.mysql.com/why-mysql/marketshare/. [Accessed: 04-Mar-2014].  



 

64 

Appendix A 

Amos Mongo Interface (AMI) functions and examples 

AMI interface functions  

/* Connect to the MongoDB database server on a given IP host */ 

create function mongo_connect(Charstring host) -> Integer conn_no 

  as foreign 'mongo_connect+-'; 

 

/* Disconnect from the MongoDB server */ 

create function mongo_disconnect(Number conn_no)-> Boolean status 

  as foreign 'mongo_disConnect-+'; 

 

/* Add a record to a MongoDB collection and return its MongoDB identifier*/ 

create function mongo_add(Number conn_no, Charstring  database,  

                          Charstring collection, Record o) -> Object id 

  as foreign 'mongo_add----+'; 

 

/* Add batch of records to a MongoDB collection */ 

create function mongo_add_batch(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

                                Integer write_concern,  Vector oid)  

                              -> Boolean status 

  as foreign 'mongo_add_batch-----+'; 

 

/* Add batch of records to a MongoDB collection with write acknowledgment 

*/ 

create function mongo_add_batch_ack(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

                                Vector oid)  

                              -> Boolean status 

as mongo_add_batch(conn_no, database, collection, 1,oid); 

 

/* Add batch of records to a MongoDB collection without write 

acknowledgment */ 

create function mongo_add_batch_unack(Integer  conn_no,  

Charstring  database, Charstring  collection,  

       Vector oid) -> Boolean status 

as mongo_add_batch(conn_no, database, collection, 0,oid); 

 

/* Delete record(s) from a MongoDB collection and return Boolean status on 

success */ 

create function mongo_del(Number  conn_no, Charstring  database,  

                          Charstring collection, Record q)  

-> Boolean status 

  as foreign 'mongo_del----+'; 

 

/* Query a MongoDB collection */ 

create function mongo_query(Number  conn_no, Charstring  database,  

                          Charstring collection, Record q)  
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-> Bag of Record x 

  as foreign 'mongo_query----+'; 

 

/* Create index on collection */ 

create function mongo_createIndex(Number  conn_no, Charstring  database,  

                                  Charstring  collection,  

          Charstring indexName, Record field) 

                                   -> Boolean status   

  as foreign 'mongo_createIndex-----+';              

                 

AMI database commands  

/* Generic function for issuing database command */ 

create function mongo_run_cmd(Integer  conn_no, Charstring  database,  

                              Record cmd) 

                            -> Record status 

  as foreign 'mongo_run_cmd---+'; 

 

/* Derived function to drop an index */ 

create function mongo_dropIndex(Integer  conn_no, Charstring  database,  

                                Charstring  collection,  

 Charstring indexName) -> Record status   

  as mongo_run_cmd(conn_no, database,  

                   { "dropIndexes": collection, "index": indexName }); 

 

/* Derived function to drop an index */ 

create function mongo_dropAllIndex(Integer  conn_no, Charstring  database,  

                                   Charstring  collection) 

                                 -> Record status  

  

  as mongo_run_cmd(conn_no, database,  

                   { "dropIndexes": collection, "index": "*" }); 

 

/* Return status object containing all errors */ 

create function mongo_getPrevError(Integer  conn_no, Charstring  database ) 

                                 -> Record status   

  as mongo_run_cmd(conn_no, database, { "getPrevError": 1 }); 

 

/* Repors storage utilization statics for a specified collection */ 

create function mongo_collStats(Integer  conn_no, Charstring  database,  

                                Charstring  collection) -> Record status   

  as mongo_run_cmd(conn_no, database, { "collStats": collection}); 

 

/* Report the aggregate statistics for the B-tree data structure of a   

MongoDB index.*/ 

create function indexStats(Integer  conn_no, Charstring  database,  

                           Charstring  collection, Charstring indexName) 

                         -> Record status   

  as mongo_run_cmd(conn_no, database,  

                   { "indexStats": collection, "index": indexName }); 

 

/* Report storage utilization statistics for the specified database */ 

create function mongo_dbStats(Integer  conn_no, Charstring  database,  

                              Integer scale) -> Record status   

  as mongo_run_cmd(conn_no, database, { "dbStats": 1, "scale": scale}); 
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/* Count the number of documents in a collection */ 

create function mongo_count(Integer  conn_no, Charstring  database,  

                            Charstring  collection, Record query)  

                          -> Record   

  as mongo_run_cmd(conn_no, database,{"count":collection ,"query": query}); 

 

/* Remove the specified collection from the database */ 

create function mongo_dropCollection(Integer  conn_no,Charstring  database,  

                              Charstring  collection) -> Record status  

  as mongo_run_cmd(conn_no, database, { "drop": collection}); 

 

/* Remove the entire database */   

create function mongo_dropDB(Integer  conn_no, Charstring  database) 

                           -> Record status   

  as mongo_run_cmd(conn_no, database, { "dropDatabase": 1}); 

 

/* Get all the collections namespaces in a database */ 

create function mongo_collNameSpaces(Integer  conn_no,Charstring  database) 

                                   -> Bag of Record x   

  as mongo_query(conn_no, database, "system.namespaces", empty_record()); 

 

/* Get all the index name in a database */ 

create function mongo_indexNameSpaces(Integer  conn_no,Charstring database) 

                                    -> Bag of Record x   

  as mongo_query(conn_no, database, "system.indexes", empty_record()); 

AMI tutorial 

/* Make a new connection and store in temporary (transient) variable :c */ 

set :c = mongo_connect("127.0.0.1"); 

 

/* Empty old collection 'person' in  database 'tutorial': */ 

mongo_del(:c, "tutorial", "person", {:});  

 

/* Populate the database with some new records. */  

mongo_add(:c, "tutorial", "person", {"Name": "Ville", "age": 54}); 

/* mongo_add() returns the unique MongoDB OID for the new database record 

*/ 

 

/* Populate more: */ 

mongo_add(:c, "tutorial", "person", {"Name": "George", "age": 27}); 

mongo_add(:c, "tutorial", "person", {"Name": "Johan", "age": 27}); 

mongo_add(:c, "tutorial", "person", {"Name": "Kalle", "age": 13}); 

 

/* Get all objects in the database: */ 

mongo_query(:c, "tutorial", "person", empty_record()); 

 

/* Query the database to find specific records: */ 

mongo_query(:c, "tutorial", "person", {"age": 27}); 

/* Notice the field "_id" holding the OIDs */ 

 

/* Manually associate your own identifier (numbers or strings) with 

records: */ 

mongo_add(:c, "tutorial", "person", {"_id":1, "Name": "Olle", "age": 55}); 

mongo_add(:c, "tutorial", "person", {"_id":"abc","Name":"Ulla","age": 55}); 
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mongo_add(:c, "tutorial", "person", {"_id":1.3,"Name":"Kalle","age":55}); 

 

/* Get all objects in the database: */ 

mongo_query(:c, "tutorial", "person", empty_record()); 

 

/* Get the new objects with your manually added OIDs: */ 

mongo_query(:c, "tutorial", "person", {"_id":1}); 

mongo_query(:c, "tutorial", "person", {"age":55}); 

 

/* Delete some objects: */ 

mongo_del(:c, "tutorial", "person", {"age": 27}); 

mongo_del(:c, "tutorial", "person", {"Name": "Olle"}); 

 

/* Check who is left: */ 

mongo_query(:c, "tutorial", "person", empty_record()); 

 

/* Store first encountered object named "Kalle" in variable :kalle */ 

select r into :kalle 

from Record r 

where r in mongo_query(:c, "tutorial", "person", {"Name":"Kalle"}); 

 

/* Inspect variable :kalle */ 

:kalle; 

 

/* Set :id_kalle to the Mongodb identifier of :kalle: */ 

set :id_kalle = :kalle["_id"]; 

 

/* Inspect :id_kalle */ 

:id_kalle; 

 

/* Use :id_kalle to retrieve the record: */ 

mongo_query(:c, "tutorial", "person", {"_id": :id_kalle}); 

 

/* Do a bulk insert of several records without acknowledgements: */ 

mongo_add_batch_unack(:c, "tutorial", "person", { 

{"Name": "Carl", "age": 38}, 

{"Name": "Eve", "age": 65}, 

{"Name": "Adam", "age": 68}, 

{"Name": "Olof"}}); 

 

/* Look at the database: */ 

mongo_query(:c, "tutorial", "person", empty_record()); 

 

/* Find persons with age>64: */ 

mongo_query(:c , "tutorial", "person", {"age": {"$gt": 64}}); 

 

/* Find persons with 50<age<60: */ 

mongo_query(:c , "tutorial", "person", {"age": {"$gt": 50, "$lt": 60}}); 

 

/* Find persons whith age<=40 or age>=60: */ 

mongo_query(:c , "tutorial", "person", {"$or": {{"age": {"$lte": 40}}, 

                                                {"age": {"$gte": 60}}}}); 

 

/* Find persons whith age<=40 or age>=60 and named Adam: */ 

set :mq = {"$and": {{"$or": {{"age": {"$lte": 40}},{"age": {"$gte": 60}}}}, 

           {"Name": "Adam"}}};; 



 

68 

 

pp(:mq); /* Pretty print query */ 

 

mongo_query(:c , "tutorial", "person", :mq);           

 

/* Find persons whith age<=40 or age>=60 and not named Adam: */ 

set :mq = {"$and": {{"$or": {{"age": {"$lte": 40}},{"age": {"$gte": 60}}}}, 

           {"Name": {"$ne": "Adam"}}}}; 

 

pp(:mq); /* Pretty print query */ 

 

mongo_query(:c , "tutorial", "person", :mq); 

 

/* Find persons with age not <60): */ 

mongo_query(:c , "tutorial", "person", {"age": {"$not": {"$lt": 60}}}); 

 

/* Inspect collection statistics: */ 

pp(mongo_collstats(:c, "tutorial", "person")); 

 

/* Disconnect from data source */ 

mongo_disconnect(:c); 

Database utility commands tutorial 

/* Make a new connection and store in temporary (transient) variable :c */ 

set :c = mongo_connect("127.0.0.1"); 

 

/* Get all the collection namespaces (including system colections) in 

 database "tutorial"*/ 

mongo_collNameSpaces(:c, "tutorial"); 

/* Extract the namespace from the records */ 

mongo_collNameSpaces(:c, "tutorial")["name"]; 

 

/* See the storage utilization stats of "person" */ 

mongo_collStats(:c, "tutorial", "person"); 

 

/* Get all the index namespaces of "person" */ 

mongo_indexNameSpaces(:c, "tutorial"); 

 

/* Extract the namespace from the records */ 

mongo_indexNameSpaces(:c, "tutorial")["name"]; 

 

/* Create 2 B-Tree indexes */ 

mongo_createIndex(:c, "tutorial", "person", "ageIndex", {"age": 1}); 

mongo_createIndex(:c, "tutorial", "person", "NameIndex", {"Name": 1}); 

 

/* Inspect that there are 3 indexes now */ 

mongo_indexNameSpaces(:c, "tutorial")["name"]; 

 

/* The indexStats() command aggregates statistics for the B-tree data 

structure of a MongoDB index.*/  

/*run with mongod –enableExperimentalIndexStatsCmd*/ 

indexStats(:c, "tutorial", "person", "ageIndex" ); 

 

/* Utilize the B-Tree index on age */ 

mongo_get(:c, "tutorial", "person",  
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  {"age": { "$gt": 10, "$lte": 65 }} ); 

 

/* remove age index */ 

mongo_dropIndex(:c, "tutorial", "person", "ageIndex"); 

 

/* check it */ 

mongo_indexNameSpaces(:c, "tutorial")["name"]; 

 

/* remove all indexes */ 

mongo_dropAllIndex(:c, "tutorial", "person"); 

 

/* The indexes _id cannot be deleted: */ 

mongo_indexNameSpaces(:c, "tutorial")["name"]; 

 

/* Add a record with _id 1: */ 

mongo_add(:c, "tutorial", "person", {"_id":1, "Name": "Olle",  

                                               "age": 55}); 

/* Add another record with _id 1 => noting returned */ 

mongo_add(:c, "tutorial", "person", {"_id":1, "Name": "Kalle",  

                                               "age": 55}); 

/* Check the duplicate key error */ 

mongo_getPrevError(:c, "tutorial"); 

 

/* Report storage utilization statistics for the specified database.*/ 

/* The field “dataSize” is size in number of bytes */ 

mongo_dbStats(:c, "tutorial",  1 ); 

 

/* Here “dataSize” is in number of KB */ 

mongo_dbStats(:c, "tutorial",  1024 ); 

 

/* Remove person collection in tutorial database */   

mongo_dropCollection(:c, "tutorial", "person"); 

 

/* See if it is deleted */ 

mongo_collNameSpaces(:c, "tutorial")["name"]; 

 

/* Remove "tutorial" database */   

mongo_dropDB(:c, "tutorial"); 

 

/* Disconnect from data source */ 

mongo_disconnect(:c); 
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Appendix B 

MongoDB C Driver 0.8.1 issues 

As mentioned in section 3.3, to build a functioning driver, this project has made a 

Microsoft Visual Studio 2010 project with the implementation of windows socket 

initialization by restructuring the source code directories of MongoDB C Driver 0.8.1. 

The project builds and generates the mongo_driver.dll and mongo_driver.dll in the 

AmosNT/bin directory which can further be accessed by Amos-Mongo Interface, 

mongo_wrapper.dll. This project has used the preprocessor directives of 

MONGO_USE__INT64 and MONGO_ENV_STANDARD. It also includes an additional linking 

dependency with ws2_32.lib. As discussed earlier the function WSAStartup() is added 

because an application or DLL can only issue further Windows Sockets functions after 

successfully calling WSAStartup(). The following lines of code have been embedded on 

line number 500 in env.c to resolve the issue.  

 

WORD wVersionRequested; 

WSADATA wsaData; 

/* Use the MAKEWORD(lowbyte, highbyte) macro declared in Windef.h */ 

wVersionRequested = MAKEWORD(2, 2); 

 

err = WSAStartup(wVersionRequested, &wsaData); 

if (err != 0) 

{ 

        /* Tell the user that we could not find a usable */ 

        /* Winsock DLL.                                  */ 

  printf("WSAStartup failed with error: %d\n", err);         

} 
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