

Linköping Studies in Science and Technology
Dissertation No. 452

O

N

EXTENSIBLE

AND

OBJECT

-

RELATIONAL

DATABASE

TECHNOLOGY

FOR

FINITE

ELEMENT

ANALYSIS

APPLICATIONS

K

JELL

 O

RSBORN

Department of Computer and Information Science
Linköping University, Linköping, Sweden

Linköping 1996

Linköping Studies in Science and Technology
Dissertation No. 452

O

N

EXTENSIBLE

AND

OBJECT

-

RELATIONAL

DATABASE

TECHNOLOGY

FOR

FINITE

ELEMENT

ANALYSIS

APPLICATIONS

K

JELL

 O

RSBORN

Department of Computer and Information Science
Linköping University, S-581 83 Linköping, Sweden

Linköping 1996

Cover illustration: “Color Slices” – from the Chromo Cube series – BECK & JUNG, 1996.
Used by permission of BECK & JUNG, Lund, Sweden.

ISBN 91-7871-827-9
ISSN 0345-7524

Printed in Sweden by triva-tryck ab, Linköping 1996.

v

PREFACE

The research presented in this thesis has been carried out at the Laboratory for Engi-
neering Databases and Systems, Department of Computer and Information Science,
Linköping University. It has been financially supported by the Swedish National Board
for Industrial and Technical Development.

I would like to take this occasion to express my appreciation to my supervisor Professor
Tore Risch for giving me the opportunity to carry out this research, and for his inspiring
and excellent supervision during this work. Likewise, the additional supervision and en-
couragement from Associate Professor Bo Torstenfelt have been of invaluable impor-
tance. I would further like to direct my appreciation to Professor Sture Hägglund for his
encouraging guidance during my research and to Associate Professor Anders Törne for
his support during the initiation of this work. Furthermore, the generosity among my
colleagues to share their knowledge and experiences, have greatly facilitated this work.

I would also like to acknowledge the artists

BECK & JUNG

 for their kind generosity in
giving me the permission to use one of their computer artwork in this thesis.

Linköping, August, 1996.

Kjell Orsborn

vi

vii

ABSTRACT

Future

database technology

must be able to meet the requirements of scientific and en-
gineering applications. Efficient data management is becoming a strategic issue in both
industrial and research activities. Compared to traditional administrative database ap-
plications, emerging scientific and engineering database applications usually involve
models of higher complexity that call for extensions of existing database technology.
The present thesis investigates the potential benefits of, and the requirements on,

com-
putational database technology

, i.e. database technology to support applications that in-
volve complex models and analysis methods in combination with high requirements on
computational efficiency.

More specifically, database technology is used to model

finite element analysis (FEA)

within the field of

computational mechanics

. FEA is a general numerical method for
solving partial differential equations and is a demanding representative for these new
database applications that usually involve a high volume of complex data exposed to
complex algorithms that require high execution efficiency. Furthermore, we work with

extensible

and

 object-relational (OR)

 database technology. OR database technology is
an integration of

object-oriented (OO)

 and

relational

 database technology that com-
bines OO modelling capabilities with extensible query language facilities. The term OR
presumes the existence of an

OR query language

, i.e. a relationally complete query lan-
guage with OO capabilities. Furthermore, it is expected that the

database management
system (DBMS)

 can treat extensibility at both the query and storage management level.

viii

The extensible technology allows the design of

domain models

, that is database repre-
sentations of concepts, relationships, and operators extracted from the application do-
main. Furthermore, the extensible storage manager allows efficient implementation of
FEA-specific data structures (e.g. matrix packages), within the DBMS itself that can be
made transparently available in the query language.

The discussions in the thesis are based on an initial implementation of a system called
FEAMOS, which is an integration of a

main-memory resident

 OR DBMS, AMOS, and
an existing FEA program, TRINITAS. The FEAMOS architecture is presented where
the FEA application is equipped with a local embedded DBMS linked together with the
application. By this approach the application internally gains access to general database
capabilities, tightly coupled to the application itself, that include a storage manager, a
data model, a database language and processor, transactions, and remote access to data
sources. On the external level, this approach supports concurrency, inter-operability,
data exchange and transformation, data and operator sharing, data distribution, etc.,
among subsystems in an

engineering information system

environment. In the FEAMOS
system, data representations and their related operators in TRINITAS have piece by
piece been replaced by corresponding representations in AMOS. To be able to express
matrix operations efficiently, AMOS has been extended with data representations and
operations for numerical linear matrix algebra that handles overloaded and multi-direc-
tional foreign functions.

Performance measures and comparisons between the original TRINITAS system and
the integrated FEAMOS system show that the integrated system can provide competi-
tive performance. The added DBMS functionality can be supplied without any major
performance loss. In fact, for certain conditions the integrated system outperforms the
original system and in general the DBMS provides better scaling performance. It is the
authors opinion that the suggested approach can provide a competitive alternative for
developing future FEA applications.

ix

CONTENTS

1 INTRODUCTION ...1

1.1 DATABASE TECHNOLOGY FOR FINITE ELEMENT ANALYSIS. 2

1.2 RESEARCH METHOD . 6

1.3 RESEARCH SCOPE. 6

1.4 THESIS OUTLINE . 7

1.5 NOTATIONS . 8

2 FINITE ELEMENT ANALYSIS AND SOFTWARE9

2.1 FINITE ELEMENT ANALYSIS . 9

2.2 THE FINITE ELEMENT ANALYSIS PROCESS . 11

2.3 FINITE ELEMENT ANALYSIS CONCEPTS. 13

2.4 SOFTWARE FOR FINITE ELEMENT ANALYSIS. 22

x

2.5 THE TRINITAS SOFTWARE . 25

3 DATABASES AND DATABASE MANAGEMENT SYSTEMS..........29

3.1 CHARACTERISTICS AND OBJECTIVES OF DATABASE SYSTEMS . . 32

3.2 CONVENTIONAL DATABASE TECHNOLOGY . 34

3.2.1 Hierarchical database management systems34

3.2.2 Network database management systems35

3.2.3 Relational database management systems35

3.3 OBJECT DATABASE TECHNOLOGY . 36

3.3.1 Object-oriented concepts . .36

3.3.2 Object-oriented and object-relational database technology 38

3.4 EXTENSIBLE DATABASE TECHNOLOGY . 40

3.5 MAIN-MEMORY DATABASE TECHNOLOGY. 42

3.6 ADDITIONAL DATABASE TECHNOLOGIES. 43

3.6.1 Distributed database management systems 43

3.6.2 Active database management systems44

3.7 SCIENTIFIC AND ENGINEERING DATABASE TECHNOLOGY 45

3.8 QUERY LANGUAGES FOR DBMS. 52

3.8.1 Relational algebra and relational calculus 53

3.8.2 The SQL language . .55

3.8.3 Object-oriented query languages . .56

4 THE AMOS DBMS AND THE AMOSQL LANGUAGE59

4.1 THE MEDIATOR APPROACH . 60

4.2 THE AMOS ARCHITECTURE . 63

xi

4.3 THE AMOSQL LANGUAGE . 67

4.3.1 Objects, types, and functions. .67

4.3.2 AMOSQL data management . .70

4.4 EMBEDDING, INTERFACING AND EXTENDING AMOS 72

5 THE FEAMOS APPROACH...77

5.1 THE FEAMOS ARCHITECTURE. 79

5.2 EXTENDING AMOS WITH LINEAR MATRIX ALGEBRA 83

5.2.1 Linear algebra for finite element analysis 84

5.2.2 Matrix algebraic concepts .86

5.2.3 The matrix foreign data source. .96

5.2.4 The array foreign data source . 108

5.3 FINITE ELEMENT ANALYSIS DOMAIN MODELLING 112

5.3.1 Geometry and topology . 113

5.3.2 The discretisation process . 129

5.3.3 Finite element analysis solution algorithms 138

5.3.4 Result evaluation . 143

5.4 PERFORMANCE ISSUES . 148

6 RELATED TECHNOLOGIES ..157

6.1 IMPLEMENTATION TECHNOLOGIES . 157

6.2 THE STEP STANDARD AND THE EXPRESS LANGUAGE. 159

7 SUMMARY..161

7.1 CONCLUSIONS . 161

7.2 FUTURE WORK . 164

xii

8 REFERENCES ..167

APPENDIX A: TRINITAS CONCEPTS. .179

APPENDIX B: FEAMOS DOMAIN MODEL .183

APPENDIX C: FEAMOS FOREIGN FUNCTIONS 189

1

1 INTRODUCTION

Future

database management systems (DBMSs)

 must be able to meet the requirements
of scientific and engineering applications. Scientific and engineering data management
is becoming a strategic issue in both industrial and scientific communities. A high lev-
erage is confined in providing efficient information management and flexible informa-
tion systems in enterprises as well as for research. In the engineering field, an

engineer-
ing information system (EIS)

 is responsible for providing information among several
engineering and business disciplines, as indicated in Figure 1, to support the complete
product life-cycle of various products. Most simplified, the scientific field commonly
has the problem of handling large amounts of empirical data sets provided by some test
equipment on ground or in space. It is believed that database technology can play a sim-
ilar and important role in the implementation of scientific and engineering applications
of tomorrow, as it is currently doing in administrative applications.

In contrast to traditional administrative database applications, applications in science
and engineering usually involve more complex models that need to be represented in
the database. This calls for extensions of existing database technology to be able to han-
dle these models efficiently [1] [2] [3].

Furthermore, there are activities concerned with various types of advanced analyses that
include computational intensive tasks and form a subset of all activities that should be
supported in a scientific or engineering information system. This can include several
kinds of mechanical, electrical, chemical analyses, etc. These kinds of activities are also

2

found in other fields such as in advanced financial and statistical applications. In addi-
tion to models of higher complexity, these activities include computational-intensive
and complex analysis methods. Together, this requires that extensions of existing data-
base technology should support data and operator representation capabilities that pre-
serve efficient data processing. We use the term

computational database technology

 to
refer to database technology that should support applications emphasising processing
efficiency and needs for complex and application-specific operations. It is intended that
this should be a unifying term for database technology, in engineering, science, statis-
tics, etc., that emphasise the computational aspect in addition to more conventional data
management.

Figure 1.

Engineering information management should support several disciplines
in an engineering information system environment.

1.1 DATABASE TECHNOLOGY FOR FINITE ELEMENT ANALYSIS

The present thesis focuses on database technology for applications within the computa-
tional mechanics field. The potential benefits of, and the requirements on, database
technology for supporting these applications are investigated. More specifically, our
work is on the

next generation extensible and object-oriented (OO) database technolo-
gy

, also referred to as

object-relational (OR)

 database technology,

DBMS

 [4], Frank [5],
and Stonebraker and Moore [6]. OR database technology is an integration of OO and
relational database technology that combine OO modelling capabilities with query lan-
guage facilities. Hence, OR presumes the existence of a

relationally complete

OO query

EIS

Analysis
Design

Marketing

Manufacturing
Maintenance

Testing

Finance

Recycling

3

language

. Further it is expected that the DBMS can treat extensibility at both the query
and storage management level. We use DBMS technology to model the field of

finite
element analysis (FEA)

, a general numerical method for solving partial differential
equations. FEA is a demanding representative of these new database applications that
usually involve a high level of complexity of both data and algorithms, as well as a high
volume of data and high requirements on execution efficiency. The discussions in the
thesis are based on an initial implementation of a system called FEAMOS [7], which is
an integration of a

main-memory (MM) resident

 OR DBMS, AMOS [8] [9], and an ex-
isting FEA program, TRINITAS [10] [11].

The AMOS design intends to provide a lightweight and open DBMS architecture that
should permit an easy combination and integration with other applications. It should
further facilitate tailoring and extension of the DBMS to suit the needs of demanding
applications as found in the engineering area. AMOS is intended to perform as a medi-
ating software layer, [12]

[13]

[14], among applications and data sources for locating,
storing, retrieving, exchanging, transforming, and monitoring data. AMOS can be an
embedded database within an application by directly linking AMOS to the application
at compile time. The application and the DBMS will then be executing in the same com-
puter process and be sharing its address space. In addition, AMOS can be used in a con-
ventional client-server environment where the applications and the DBMS have their
own computer processes via the client-server interface. It is also possible to define do-
main-specific packages of specialised data structures and operators, and integrate them
with AMOS. AMOS has the ability to seamlessly define and call foreign functions (im-
plemented in C or LISP) through its foreign data source interface.

AMOS further includes the AMOSQL query language that, in this work, has been used
to represent and manipulate the

domain conceptualisation

, i.e. concepts, relationships,
and operations, of the FEA domain. AMOSQL is a more than relationally complete and
extensible OO query language that is an extended derivative of OSQL, Lyngbaek [15].
The query language is influenced and has much in common with new standardisation
efforts for query languages like SQL3, Melton [16], and OQL, Cattell [17].

TRINITAS is a general-purpose FEA program that integrates the entire analysis process
and that can be completely controlled through a graphical user interface, illustrated in
Figure 2. A typical TRINITAS session includes an interactive problem specification in
terms of geometry, boundary conditions and domain properties. This is followed by a
discretisation phase, a solution phase, and an evaluation of the results of the calculation.
The TRINITAS system currently includes functionality for analysing static, dynamic,
and eigenvalue problems within the mechanical design domain, including elastic and
thermal effects. In addition, TRINITAS includes capabilities to handle adaptivity, opti-
mization, and contact problems in static cases. The TRINITAS program does not incor-
porate any data or result files. Instead, all model interaction is performed through the
graphical user interface that accesses main-memory data structures representing the
analysis model. It is further designed in a highly structured, “object-based”, manner
with specific sets of procedures for each concept, such as point or line.

4

In FEAMOS, both structure and process of the FEA domain are modelled in the data-
base

.

 This is done by defining a

domain model

 using the extensible OR query language,
the extensible query optimizer, and the extensible storage manager. A domain model
represents a specific category of the mediator layers that are responsible for managing
application-specific knowledge. The domain model is a database representation of con-
cepts, relationships, and operators extracted from the application domain. In our case, a
database schema is defined to represent finite element (FE) methodology, i.e. FE mod-
els and solution algorithms. The extensible query language allows domain-specific FE
operators to be included in the DBMS. A user can define queries in terms of the FE
model, and the queries may contain FE specific operators. By providing cost hints to
the extensible query optimizer the execution cost of new operators in the query lan-
guage can be treated by the optimizer. Furthermore, the extensible storage manager al-
lows efficient implementation of FEA-specific data structures (e.g. matrix packages)
within the DBMS itself and then made transparently available in the query language.

Figure 2.

A “FEA model”, analysed in the FEAMOS system, shows a view of the
graphical user interface of TRINITAS.

The thesis presents an architecture for the integrated FEAMOS system where the FEA
application is equipped with a local embedded MM DBMS that is linked into the appli-

5

cation [18]. By this approach the application gains access to general database capabili-
ties tightly coupled to the application itself, providing a storage manager, data model,
database schema, database language and processor, transaction processing, and remote
access to data sources. On the external level, this approach supports, for example, con-
currency, inter-operability, data exchange and transformation, data and operator shar-
ing, data distribution among applications and data sources in the engineering informa-
tion system (EIS) environment. Different AMOS mediators are here responsible for lo-
cating, translating, and integrating data in various data sources for the applications.
Ultimately, the DBMS can decide how and where to execute a query, using query opti-
mization techniques. Internally, the architecture provides the application with powerful
and high-level modelling capabilities through the object-relational query language.
This includes object identities, subtyping, inheritance, views, overloaded functions,
multi-directional functions, and foreign functions. The modelling capabilities make it
possible to design database schemas that possess both physical and logical data and op-
erator independence. Hence, the query language modelling supports and facilitates
high-level application modelling that increases flexibility, composability, and reusabil-
ity of domain conceptualisations.

It is of vital importance for the application to preserve the execution efficiency while
adding functionality to the system. The present approach supports this requirement in
several ways. Most important is the ability to provide an embedded database where the
application can access and update data through a fast-path interface using precompiled
and preoptimized database functions. The AMOS extensibility with foreign data sourc-
es, i.e. packages of specialised data representations and operations, makes it possible to
provide efficiency for critical activities. For instance, scientific and engineering appli-
cations usually involve large amounts of numerical data that must be represented and
processed effectively. By providing specialised representations and operations it is pos-
sible to avoid unnecessary copying and transformation of data. Execution efficiency is
also supported by the query processor that has the ability to optimize access paths and
operator ordering. This is especially important in complex modelling situations where
the optimizer can automatically chose a good execution order. This simplifies the de-
sign of the database and frees the programmer from specifying the exact execution or-
der which can be stated in higher-level terms. By providing general and efficient data
representations in the DBMS, these become directly available to the application and
need not be re-implemented.

In the FEAMOS system, data representations and their related operators in TRINITAS
have piece by piece been replaced by corresponding representations in AMOS. All data,
formerly residing in TRINITAS, is now stored in the database. The thesis show exam-
ples of how the query language can meet data modelling needs in different parts of the
FEA domain including geometry, mesh, analysis algorithm, and calculated results.
AMOS has also been extended with a foreign data source; a package for numerical lin-
ear matrix algebra. This package includes dense and skyline matrix representations in-
tegrated in a matrix-type structure in the database schema. The schema further includes
functions for solving linear equation systems and everything is transparently integrated

6

in the query language. To be able to express the matrix operations efficiently, AMOS
has been extended to handle overloaded and multi-directional foreign functions [19],
i.e. the ability to handle overloading of foreign functions on all arguments and for dif-
ferent binding patterns. All matrix representations are implemented by means of a basic
data source for numerical arrays.

1.2 RESEARCH METHOD

The requirements and potential benefits of database technology for FEA applications
have been studied and investigated primarily by implementing and testing database
technologies for a real FEA application where the applicability can be evaluated and
demonstrated. A fundamental issue is the ability to make changes and additions to, and
replace source code in both the DBMS and in the FEA application. An iterative ap-
proach is used where parts of the application can be studied and where initial implemen-
tations are refined until a satisfactory result is achieved or other conclusions can be
made.

The work presented in this thesis spans the fields of database technology and FEA tech-
nology. It has been an aim to put appropriate emphasis on both fields in order to avoid
naive research contributions with respect to each field. The attempt to cover both fields,
has meant that some losses in depth have probably been made in the treatment of spe-
cific parts in each area. Hopefully, this is more related to the nature of interdisciplinary
research than to lack of insight on the part of the author.

1.3 RESEARCH SCOPE

This work has mainly covered database technology for FEA applications within the
computational mechanics field. The emphasis has been on the local perspective in stud-
ying the representation and processing of FEA conceptualisations using query language
technologies; in other words, how database technology can be used within an FEA ap-
plication to support modelling and manipulation of FEA data. However, an important
reason to include database facilities locally, within the application, is that this provides
the application with mechanisms for communicating and exchanging data and informa-
tion with other applications. Hence, the global perspective has also been considered in
this work, which is revealed in the architectural discussions for FEA applications and
EIS environments in general. Other issues are more related to the global perspective,
such as distribution, replication, and concurrency. Further, transactional control of FEA
activities has not been treated here but the potential benefits of transactions have been
pointed out for future work.

Furthermore, the software-related issues of FEA have been emphasised and a restriction
has been made to work with one specific FEA application. It has further been an aim to
cover, at least to some extent, the various subactivities of a complete FEA to investigate

7

the potential advantages that database technology can provide. The conceptualisation
of the FEA domain has mainly been restricted to two-dimensional, static, and linear-
elastic analyses, in order to treat a more manageable problem domain.

1.4 THESIS OUTLINE

After this introduction to the ideas behind this thesis, its outline will be briefly re-
viewed. The next two chapters, Chapter 2 and Chapter 3, continue with a presentation
of FEA and database technology, the two major research fields of concern in this re-
search. Chapter 2 starts by providing an intuitive introduction to the concepts of FEA
and the process of carrying out an FEA. This is followed by a more mathematical deri-
vation of the FEA concepts, within the scope of two-dimensional linear elasticity, to re-
veal the origin of various FEA quantities. Next, we turn to the description of conven-
tional FEA software and points out some of their problems. Eventually, the background
on FEA concludes by presenting the TRINITAS FEA application which has acted as
the FEA software basis in this research. It should be noted that subsections are mainly
directed to the potential reader who has little or no experience in FEA, where the last of
these sections requires some insight into mathematical calculus. Readers from the FEA
community can probably skip these parts. The rest of this chapter is intended for a
broader audience.

The second field, database technology, is reviewed in Chapter 3. It starts with a review
of the basic concepts and objectives of DBMSs. This is followed by a brief presentation
of different categories of conventional database technology including: hierarchical, net-
work, and relational database technology, that are categories mainly based on a division
of database technology with respect to the underlying data model. The next sections
presents database categories more relevant for this research, namely object-based, ex-
tensible, and main-memory database technology. The following section presents two
additional categories, distributed and active DBMSs, that are included mostly for their
potential long-term importance for this work. Section 3.7 discusses the characteristics
and requirements of scientific and engineering database technology and specifically for
FEA applications. Finally, this database technology chapter ends with a brief review of
query languages for DBMSs. In similarity with the previous section on FEA technolo-
gy, the two initial parts in this section are primarily directed to the reader with little or
no knowledge in database technology.

This review of background information for this research is followed by a presentation,
in Chapter 4, of AMOS and its basic technology, i.e. the specific DBMS that acts as the
research tool in database technology within this research. It describes the mediator idea,
the AMOS architecture, the AMOSQL language, and the facilities for embedding, in-
terfacing, and extending AMOS.

The main chapter in this thesis, Section 5, treats the FEAMOS approach of using data-
base technology for FEA applications and prototype development of an FEA applica-

8

tion based on main-memory, extensible and OR database technology. This section starts
by explaining and motivating the application of this kind of database technology to FEA
and then continues to describe the architecture of FEAMOS. Thereafter follows a sec-
tion that describes the extension of AMOS with numerical linear matrix algebraic capa-
bilities using a matrix foreign data source. This is accomplished by the use of an array
foreign data source that is also described. Next, the higher-level FEA domain modelling
is treated with examples in representing geometry, mesh, algorithms, and results. The
last section addresses performance issues by a few comparisons between FEAMOS and
TRINITAS.

Before the summary, in Chapter 7, that discusses the FEAMOS approach and presents
the conclusions, a short chapter, Chapter 6, provides some comments on alternative and
related technologies. This includes both implementation techniques such as OO pro-
gramming languages, relational database technology, OO database technology, and
knowledge-based techniques, as well as standards for representing product data.

1.5 NOTATIONS

This section provides a short list of common notations used in the rest of this thesis. The
list is as follows:

A, σ, ε: matrix

Asquare: matrix subtype

Acol, Arow, a: column or row matrix

aij , ax: matrix components

A, a: scalar

Ae: element quantity

AT: transposed matrix

9

2 FINITE ELEMENT ANALYSIS AND SOFTWARE

The present chapter starts with an intuitive introduction to finite element analysis (FEA)
followed by an outline of the FEA process. This is followed by a more formal presen-
tation of the concepts of FEA by means of a specific example. These parts are mainly
directed to readers with little or no experience of the FEA field and present the field in
a form that should be relatively easy to penetrate. To a great extent, the notation follows
the one found in Ottosen and Petersson [20]. The next parts are more directed to a gen-
eral audience and include a description and discussion of software for FEA and the soft-
ware environment in which it should be used. These parts further present current re-
search directions in designing FEA software. Finally, this chapter ends with a presenta-
tion of TRINITAS, Torstenfelt et al. [10] and Torstenfelt [11], a state-of-the-art FEA
research system that has formed the application base in this work.

2.1 FINITE ELEMENT ANALYSIS

FEA represents a broad class of approximate numerical analysis techniques to solve
partial differential equations. Several scientific and engineering disciplines take advan-
tage of these kinds of general analysis techniques. In the engineering field different
classes of the finite element method (FEM) is applied to solve corresponding problems
in areas such as electrostatics, electromagnetics, heat conduction, fluid flow, stress and
strain, vibration, and stability [20] [21] [22]. The present treatise is biased towards, but

10

not restricted to, the mechanical engineering field where FEA is used for analyses of
designs involving different characteristic design criteria, such as strength, stiffness, sta-
bility, and resonance.

The application of FEM in an analysis situation could be intuitively described by means
of a simple example, shown in Figure 3. The left part of Figure 3 represents a hypothet-
ical problem where a steel console is rigidly fastened at the lower edge and is further
exposed to a uniformly distributed traction load at the upper edge. For example, to be
able to calculate the deformation and the corresponding internal loadings of the console,
the analyst transforms this “real” problem into a corresponding FEA problem, here il-
lustrated in the right part of Figure 3.

Figure 3. The left part of the figure illustrates a rigidly fastened console exposed to
a uniform traction at the upper edge and it is supposed it can be
represented as a plane solid mechanical problem. It consists of a region,
Ap, with a thickness, tp. Further, the region is bounded in the plane by its

boundary Lp. In the right part of the figure, a corresponding and

schematic finite element model is presented. The FE-model consists of
eight two-dimensional and linear finite elements that have rigid
boundary conditions at the lower edge and nodal loads acting at the
upper edge.

The idea behind is to approximate the physical and continuous quantities of the “real”
problem, such as shape, material, and loadings, with a corresponding set of piece-wise
continuous quantities where the mathematical treatment should preserve important
physical behaviour. This is accomplished by selecting and applying a set of predefined
approximation functions for each quantity. For instance, the geometry is approximated
with a set of finite elements, connected together at the corners that are also called nodes.
Using the node coordinates, the geometry can be interpolated along element edges and

x

y

Ap,tp

Lp

11

within elements. In our example, the geometry is approximated by eight bilinear ele-
ments that form a piece-wise linear region. Similarly, other quantities can be approxi-
mated using interpolation functions. Usually, the displacement field is approximated in
terms of the node displacements and will become the primary unknowns in the final
equation system. Likewise, the rigid boundary condition will be expressed in terms of
node displacements and the distributed load will be transformed into nodal loads.

Hence, this approximation technique transforms the continuous problem into a corre-
sponding discrete problem that results in an equation system that in our example will be
expressed in terms of the node displacements. The node displacements are then calcu-
lated by solving the equation system using numerical analysis techniques. Finally, the
stress distribution in the body can be calculated from the displacements.

2.2 THE FINITE ELEMENT ANALYSIS PROCESS

The FEA process can typically be divided into four major activities specification, dis-
cretisation, analysis, and evaluation, as illustrated in Figure 4. First one needs to spec-
ify the problem with data about the shape, and about the domain and boundary condi-
tions. The shape, or the geometry, is defined in terms of geometrical entities. Domain
data that defines the material and boundary data can, for instance, consist of forces and
prescribed displacements. Secondly, the discretisation activity decomposes the contin-
uous domain into a finite element mesh consisting of elements and nodes. The mesh
data is used in the subsequent analysis activity along with the domain and boundary
conditions, to build the equation system to be solved. In a linear-elastic static analysis,
this implies the solution of a single linear equation system expressed in matrix form,
K a = f, where K is the stiffness matrix, a the displacement vector, and f the load vector.
The K matrix is assembled by stiffness contributions reduced to the nodes from every
element and f includes load components from the boundary conditions reduced to ap-
propriate nodes. The a vector represents the unknowns to be solved, i.e. displacements,
and sometimes rotations, for every degree of freedom at the nodes, and is calculated
during the analysis activity. The fourth activity, evaluation, includes result evaluation
and validation of different levels of complexity. For instance, it might include a calcu-
lation, visualisation, verification, and an evaluation of critical quantities, such as stress
fields, or deformation. The engineer usually decides which quantities should be inves-
tigated and further carries out the evaluation manually or semi-manually by means of
computer support, e.g. the engineer can visually investigate computer-visualised stress
fields of the model in search for critical areas that might imply that a redesign is neces-
sary.

The evaluation might show that the specified requirements are met or it might indicate
that a further and more detailed analysis must be considered or that a redesign must take
place that again implies a re-analysis. This is indicated in Figure 4 where the whole
process cycle might be looped several times until satisfactory results are accomplished.
Likewise, different reasons may also imply iterations in the subactivities. Obviously,

12

one might want to alter the geometry or the mesh before performing the analysis step.
Furthermore, the analysis activity is sometimes repeated for different load cases. More
complex analysis algorithms, such as algorithms for non-linear or dynamic problems,
are iterative in themselves and they can further require an adjustment of the analysis pa-
rameters between analysis steps. If an analysis quantity must be evaluated in more de-
tail, or if complementary results must be checked, the evaluation activity can also in-
volve iteration before completion.

Figure 4. The FEA process divided into four activities: I) problem specification in
terms of geometry, boundary conditions and domain properties, II)
discretisation (meshing) of analysis geometry into an approximate
discrete representation (the FEA mesh), III) assemblage and analysis of
the equation system, IV) evaluation and synthesis of calculated results.

Besides these basic needs of iterations in the FEA process, more complex analysis
classes also require iterations in this process, which is not indicated in Figure 4. For ex-
ample, adaptive FEA methods use mesh refinement, and other techniques, for iterative-
ly enhancing the solution accuracy. This means that an iteration involving the discreti-
sation and the analysis activity is needed. Furthermore, optimization techniques, such
as shape optimization, require a repetition of the complete FEA cycle until some spec-
ified stop criteria are fulfilled, since the analysis involves an alteration of the design ge-
ometry.

SPECIFICATION

DISCRETISATION

ANALYSIS

EVALUATION

I.

II.

III.

IV.

IN

OUT

13

Thus, the central part in a FEA involves the solution of one or several systems of equa-
tions of different levels of complexity depending on the phenomenon studied. Even in

the most basic analysis case this usually involves a large amount of data1. For example,
the number of unknowns in the equation system can range from a hundred to several
hundreds of thousands and beyond. This large set of data further has a high level of
complexity since most concepts, including geometry, domain and boundary conditions,
mesh, equations, and calculated results are related in some sense.

2.3 FINITE ELEMENT ANALYSIS CONCEPTS

When solving a problem by FEA, a specific formulation of the FEM is applied corre-
sponding to that problem category. There exist numerous FEA formulations for differ-
ent problem classes including boundary-value problems, initial-value problems, and ei-
genvalue problems. For instance, the static linear elasticity or heat conduction problems
are formulated as elliptic partial differential equations that constitute subcategories of
the boundary-value problem category [23].

In this context, we introduce the application of FEA by means of a class of problems
restricted to plane linear-elastic static problems. This problem class is illustrated by
Figure 5, where a plane body occupies region A and is restricted in the xy-plane by the
boundary L. Furthermore, it is assumed that the interaction between the body and the
environment can be stated as a combination of prescribed displacements on one part of
the boundary, Lg, and of prescribed tractions on the other part of the boundary, Lh. Some

further restrictions will be made in the subsequent presentation to facilitate the interpre-
tation.

The governing equations for the mechanical problem of solids consist of the equations
of equilibrium, the kinematic equations, and the constitutive equations. These equations
are, together with appropriate boundary conditions, the basic equations of solid me-
chanics.

Considering the static case and ignoring body forces, the equations of equilibrium are
given by

(1)

where σ is the stresses in the components

1. Data is in the FEA context used as a general term that refers to both input data and
result data of an analysis.

∇̃
T

σ 0=

14

 (2)

and is a matrix differential operator in two dimensions defined as

. (3)

Figure 5. The left part of the figure illustrates a general plane body that consists of
a region, A, with a thickness, t. Further, the region is bounded in the
plane by its boundary L with its normal vector n. In the right part of the
figure the boundary has been divided into two parts Lg and Lh such that

L = Lg + Lh. On Lg, the essential boundary condition u = g holds,

whereas Lh is influenced by the natural boundary condition t = h.

The kinematic relation defines the strains, ε, and states that

(4)

where u is the displacements that, in the two-dimensional case, has the components:

σ
σxx

σyy

σxy

=

∇̃

∇̃

x∂
∂ 0

0
y∂

∂

y∂
∂

x∂
∂

=

x

y
t = h

u = g

Lg

Lh

n
A, t

L

x

y

ε ∇̃u=

15

. (5)

The strain components in the two-dimensional case are

. (6)

If the thermal strains are excluded, the constitutive relation for linear elasticity, i.e.
Hooke’s generalised law, states that:

(7)

where D is the constitutive matrix. If we consider isotropic materials and plane stress
conditions, D is given by

 (8)

where E is Young’s modulus, and ν is Poisson’s ratio.

Boundary conditions can typically be expressed in terms of prescribed traction vectors,
t, or displacements, u. In the two-dimensional case we have

 on Lh, and (9)

 on Lg (10)

where h is given on the Lh part of the boundary and g are given on the Lg part of the
boundary. The type of boundary conditions represented by Eq. (9) are called natural
boundary conditions since they follow from the statement of the problem whereas Eq.
(10) represents boundary conditions that are called essential boundary conditions. As
illustrated in Figure 5, the entire boundary L is the sum of Lh and Lg. Further, the trac-
tion vectors can be expressed as

(11)

where S is the stress tensor and n is the normal boundary vector. Their components are
in two dimensions

u
ux

uy

=

ε
εxx

εyy

εxy

=

σσσσ Dε=

D E

1 ν2
–

1 ν 0

ν 1 0

0 0 1
2
--- 1 ν–()

=

t h=

u g=

t S n=

16

, (12)

, and (13)

. (14)

The field equations, Eqs. (1), (4), and (7), are a general analytic formulation of the static
and linear-elastic mechanical problem for isotropic solids.

A FEA formulation corresponding to this basic problem statement can be stated from a
weak formulation of the equilibrium equations Eq. (1). This process includes the intro-
duction of a vector-valued weight function and the application of the well-known
Green-Gauss theorem, that results in a transformation of Eq. (1) to

(15)

where v is an arbitrary weight function. Further, according to Figure 5, A is the plane
region of the body that is circumscribed by the boundary L and has the thickness t. The
left-hand side of Eq. (15) represents the internal balance term that should be in balance
with the boundary term represented by the right-hand side. The establishment of this
equation only involves the equilibrium equation in Eq. (1) and, hence Eq. (15) is not
restricted to any specific constitutive model.

From the weak formulation of the balance equation, Eq. (15), the FEA approximation
can be introduced in a straightforward manner since the weak formulation only restricts
the approximated quantities to be piece-wise continuous within the region A. This cri-
terion is fulfilled by choosing the approximations according to

 (16)

where N contains the global interpolation functions and a contains the nodal displace-
ments. The components of N and a are:

, and (17)

t
tx
ty

=

S
σxx σxy

σyx σyy

=

n
nx

ny

=

∇̃v()
T

σt Ad
A∫ v

T

L∫° t t Ld=

u Na=

N
N1 0 N2 0 N3 … Nn 0

0 N1 0 N2 0 … 0 Nn

=

17

. (18)

In accordance with the Galerkin weighted residual method, the arbitrary weight func-
tion v should take the same approximation as u that yields

 (19)

where c is arbitrary.

Introducing B as

 (20)

and inserting Eqs. (19) and (20) in Eq. (15) yields

. (21)

Since c is arbitrary it follows that

. (22)

As for Eq. (15), this equation holds for arbitrary constitutive relations since we have not
so far used any information about the material condition.

A constitutive model for linear elastic and isotropic materials, Eq. (7), is now intro-
duced. The kinetic relation, Eq. (4), together with Eqs. (16) and (20) yield

 (23)

and together with Eq. (7) we get

. (24)

Insertion of Eq. (24) in Eq. (22) gives us

. (25)

This equation can be rewritten using the boundary conditions in Eq. (9). The complete
boundary conditions are available since t is known along Lh and u along Lg. This yields:

a
T

u1x u1y u2x u2y … unx uny
=

v Nc=

B ∇̃N=

c
T

B
Tσt Ad

A∫ N
T

L∫° t t Ld–
 0=

B
Tσt Ad

A∫ N
T

L∫° t t Ld– 0=

εεεε B a=

σ D B a=

B
T

D B t Ad
A∫

 a N
T

L∫° t t Ld=

18

. (26)

This equation is the finite element formulation of two-dimensional elasticity. Taking
the definition of D for plane stress condition would result in a form that applies for plane
stress and isotropic linear elasticity.

It is common to introduce the following notation to simplify the expression of Eq. (26):

, and (27)

 (28)

where K is called the stiffness matrix and f the load vector. The f vector can include
some additional terms that are not included since body forces and thermal strains are
ignored. Furthermore, for the special case where Lg is fixed, i.e. g = 0, the second term
in Eq. (28) vanishes and we get

 (29)

With the notations of Eq. (27) and Eq. (29) we then have

. (30)

The equation Eq. (30) represents a linear equation system expressed in global quanti-
ties. The corresponding local form is straightforwardly accomplished by stating the
equations in local quantities. Thus, at the element level we have

 (31)

where

, and (32)

. (33)

The e, and α refer to the quantities of one element.

In more detail the quantities at the element level are commonly stated by means of an
isoparametric formulation of the finite elements. An isoparametric element formulation

B
T

D B t Ad
A∫

 a N
T

Lh
∫° ht Ld N

T

Lg
∫° t t Ld+=

K B
T

D B t Ad
A∫=

f N
T

Lh
∫° ht Ld N

T

Lg
∫° t t Ld+=

f N
T

Lh
∫° ht Ld=

K a f=

K
e
a

e
f
e

=

K
e

B
eT

D B
e
t Ad

Aα
∫=

f
e

N
eT

Lhα
∫° ht Ld=

19

provides elements that are allowed to be distorted more freely than simpler elements.
This is accomplished by mappings from a parameterised parent domain to the global
domain. We illustrate this for a four-node isoparametric element shown in Figure 6.

Figure 6. The four-node isoparametric quadrilateral element. The parent domain
(left figure) is expressed by the parameters ξ and η, both with the range
(-1,1), that are used to express the mapping into the global domain (right
figure).

Hence, in two dimensions the coordinates x and y in the global domain are expressed
by means of the parameters ξ and η in a parent domain. The mapping is performed by
element interpolation functions for the corner points that in this case are:

. (34)

Using these interpolation functions the global coordinates x and y can be expressed as

, and (35)

(36)

where Ne for this four node elements is given by

x

y
η

ξ

(-1,1)

2

34

(1,1)

(-1,-1) (1,-1)

1

3
4

2(x1,y1)

1

(x4,y4)
(x3,y3)

(x2,y2)

N1
e 1

4
--- ξ 1–() η 1–()

N2
e 1

4
---– ξ 1+() η 1–()

N3
e 1

4
--- ξ 1+() η 1+()

N4
e 1

4
---– ξ 1–() η 1+()=

=

=

=

x x ξ η,() N
e ξ η,()x

e
= =

y y ξ η,() N
e ξ η,()y

e
= =

20

 (37)

and where xe and ye have one component for each node that in this case results in

 (38)

for xe and, likewise, for ye

. (39)

Equations (35) and (36) can be used in expressions that include dependencies of x and
y. However, to be able to evaluate the element quantities in Eqs. (32) and (33), they
have to be transformed to the parent (ξ,η) domain. Performing these transformations
yield the corresponding equations

 (40)

where Be, the derivative of Ne, is given by

 (41)

and where |J| is the Jacobian and is the determinant of the Jacobian matrix J that in two
dimensions has the following form:

. (42)

J is derived from the relation:

N
e ξ η,() N1

e
N2

e
N3

e
N4

e=

x
eT

x1 x2 x3 x4
=

y
eT

y1 y2 y3 y4
=

K
e

B
eT ξ η,()D ξ η,()B

e ξ η,()t ξ η,() J ξ ηdd

1–

1

∫
1–

1

∫=

B
e

x y,()

x∂
∂N1

e

0
x∂

∂N2
e

0
x∂

∂N3
e

0
x∂

∂N4
e

0

0
y∂

∂N1
e

0
y∂

∂N2
e

0
y∂

∂N3
e

0
y∂

∂N4
e

y∂
∂N1

e

x∂
∂N1

e

y∂
∂N2

e

x∂
∂N2

e

y∂
∂N3

e

x∂
∂N3

e

y∂
∂N4

e

x∂
∂N4

e

=

J ξ∂
∂x

η∂
∂x

ξ∂
∂y

η∂
∂y

=

21

. (43)

Since the functions ξ(x,y) and η(x,y) are not normally known we can determine the in-
verse relation between the interpolation functions of the parent and the global domain
in order to determine the partial derivatives in Eq. (41). Using Eq. (42) we get:

 (44)

Hence, if J is invertible we have

 (45)

that can be computed for each Ni.

Further, the element load vector fe gets the following form

 (46)

where

. (47)

The boundary integrals in Eq. (46) must be evaluated for each of the four boundaries
where ξ and η are equal to -1 and 1. For example, for ξ = ±1, Eq. (47) will take the form:

dx

dy

ξ∂
∂x

η∂
∂x

ξ∂
∂y

η∂
∂y

dξ
dη

=

ξ∂
∂Ni

e

η∂
∂Ni

e

ξ∂
∂x

ξ∂
∂y

η∂
∂x

η∂
∂y

x∂
∂Ni

e

y∂
∂Ni

e
J

T x∂
∂Ni

e

y∂
∂Ni

e
= =

x∂
∂Ni

e

y∂
∂Ni

e
J

T()
1– ξ∂

∂Ni
e

η∂
∂Ni

e
=

f
e

N
eT

Lgα
∫° h x ξ η,() y ξ η,(),()t x ξ η,() y ξ η,(),() Ld

N
eT

Lgα
∫° t x ξ η,() y ξ η,(),()t x ξ η,() y ξ η,(),() Ld+

=

Ld
ξ∂

∂x ξd
η∂

∂x ηd+
 2

ξ∂
∂y ξd

η∂
∂y ηd+

 2
+

1 2⁄
=

22

. (48)

If we divide fe into on Lh and on Lg and suppose that h is prescribed for the el-

ement edge where ξ = 1, the contribution to the load vector fe would be

 (49)

Likewise, to calculate the contribution to the load vector for loads on the other element
edges we evaluate Eq. (46) for other values of ξ and η.

The central concepts of FEA have been introduced to show an example of what type of
information should be represented within a FEA application. The FEA application re-
quires further functionality to manage this information. As outlined in the previous sec-
tion, the application needs numerical analysis capabilities to handle equation solving.
A fully integrated FEA system would also include functionality to handle geometry,
discretisation, and result evaluation, preferably supplied through a graphical user inter-
face. The next section will continue the discussion on conventional FEA software and
Chapter 5 will present how to take advantage of database technology for representing
and managing FEA concepts.

2.4 SOFTWARE FOR FINITE ELEMENT ANALYSIS

FEA software is widely used in different engineering and scientific disciplines, where
analysis of mechanical designs represents a main application area. A mechanical design
can be analysed with respect to several phenomena, such as mechanical, thermal, and
acoustic behaviour. Since the analysis requirements vary a great deal depending on the
complexity of the design and its intended functionality, the software requirements of
FEA programs vary in a similar manner. For example, for a simple design it might be
sufficient with a single linear static analysis. This should be compared to design situa-
tions where large, complex and interrelated analyses of several analysis cases are per-
formed that might further concern several parts of a design and include coupled phe-
nomena.

This diverse complexity makes FEA strongly dependent on an efficient computing en-
vironment including both hardware and software. For the software area this not only in-
cludes the use of FEA programs but involves a much broader spectrum of software en-
gineering issues. Firstly, considering internal issues while looking at an autonomous
FEA program, it should ultimately be designed in a way that supports both effective us-
age as well as development and maintenance. Secondly there are inter-related aspects,
where FEA software as any other EIS software ultimately should be designed to support

Ld
ξ∂

∂x

 2

ξ∂
∂y

 2

+
1 2⁄

ξd=

fLh

e fLg

e

fLh

e
N

eT
h

1–

1

∫=

23

effective integration and communication with other applications in an EIS software en-
vironment.

Modern commercial FEA programs have integrated the complete analysis process from
modelling to evaluation and take advantage of graphical user interfaces where the anal-
ysis model can be specified in domain-specific terminology. However, when turning to
FEA programs for more advanced analysis methods, it is not uncommon that several
programs are involved in one analysis. A computer-aided design (CAD) program can
be used to define the geometry, a second preprocessor program can be responsible for
generating the mesh that should be supplied to the actual FEA program for the analysis
activity. Finally, a postprocessor can be involved in visualisation and evaluation of
analysis results. In this process data is typically exchanged through files of different for-
mats.

Several among the major commercial FEA programs have their origin in the 1960’s. In
contrast to the exceptional development in hardware performance during the last 30
years, the basic structure of commercial FEA programs and their development have not
gone through any dramatic change since their origin. This is partly explained by the fact
that it is much easier to take advantage of hardware performance than to redesign and
reimplement the software.

The conventional and direct use of FEA programs is mainly concerned with its analysis
functionality, processing efficiency, and efficient user interfaces, and does not imply
any direct requirements on its internal structure and flexibility. Efficient processing im-
plies that efficient algorithms and corresponding data structures are available. The im-
portance of flexibility and internal structure becomes more evident when turning to sit-
uations where data should be communicated to and from other systems, combined with
other data, or composed into new derived information. The same holds for development
and maintenance of this type of software where the complexity can be reduced and a
higher level of reuse can be accomplished by increasing structure and composability.

In conventional FEA software, data and algorithms are usually integrated and designed
for a specific purpose. Likewise, domain knowledge, such as consistency checks, are
usually compiled into the application. To provide data exchange with other applica-
tions, specific interface programs must be written to access data. Further, the domain
knowledge can not be inspected, verified, modified, or extended without writing a pro-
gram. A more open software design where data and knowledge could be represented
more explicitly would enhance the usability, maintainability, and the verification pos-
sibilities and probably increase the subsequent analysis quality.

Furthermore, investments in FEA and related software usually involve large direct costs
as well as educational costs and potential costs for transformation of old data. Likewise,
the software vendors have large investments in existing systems where a technology
change in implementation technique becomes very costly. Consequently, these circum-
stances prohibit the evolution of FEA software.

24

If FEA data could be represented in a vendor-independent manner outside of FEA ap-
plications, a more flexible situation can arise. Hence, data should be modelled and ac-
cessed by as generic and standardized software tools and techniques as possible. Data
modelling and management should rather be problem- and theory-dependent than ap-
plication-program dependent. However, representing data independent of its usage
might sometimes be impossible for efficiency reasons and must be considered in de-
signing software tools and standards for EIS.

In order to increase the functionality and renew the design of scientific and engineering
software in general, several modern programming techniques have been paid some at-
tention, including knowledge-based techniques, Chalfan [24], Alsina et al. [25], Mitch-
ell et al. [26], and Abelson et al. [27]; OO programming, Forde et al. [28]; and database
techniques, Ahmed et al. [29], Eastman [30], Beck et al. [31], and Samaras et al. [32].
Likewise, the FEA research community, has applied knowledge-based techniques in
several areas of FEA from supporting input data generation and mesh generation to the
control of a complete analysis and to provide design knowledge, Mackerle and Orsborn
[33], Forde and Stiemer [34], Ramirez and Belytschko [35], Shephard et al. [36], and
Tworzydlo and Oden [37].

As in several other fields, OO programming languages, such as C++, CommonLisp (in-
cluding CLOS), OO dialects of Pascal, and Smalltalk, have been suggested for design
and implementation of FEA software, Baugh and Rehak [38], Fenves [39], Forde et al.
[40], Filho and Devloo [41], Dubois-Pelerin et al. [42], Williams et al. [43], Scholz [44],
Baugh and Rehak [45], Mackie [46], Ross et al. [47], Raphael and Krishnamoorthy
[48], Yu and Adeli [49], Hoffmeister et al. [50], Arruda et al. [51], Devloo [52], Eyher-
amendy and Zimmermann [53], Gajewski [54], Ju and Hosain [55], Shepherd and Lefas
[56], Langtangen [57], Cardona et al. [58], Zeglinski et al. [59], and Lu et al. [60]. A
major reason for this has been to reduce program complexity by introducing OO struc-
ture in the software which is at least intuitively motivated since it is quite natural to
think of engineering data in terms of objects and their relationships. A certain scepti-
cism has sometimes been raised against these techniques directed towards a potential
loss in execution efficiency. However, Devloo [52] shows that this is not the case,
which is also supported in the DIFFPAK project, Langtangen [57], where even better
performance compared to FORTRAN implementations has been reported.

The functional programming paradigm has also been suggested for implementing FEA
software, Grant et al. [61].

In the FEA field, database support has so far been used for storage and retrieval of data
and results mainly using relational databases and special-purpose database implemen-
tations, Yeh et al. [62], Felippa [63], Dopker et al. [64], Santana et al. [65], Myers [66],
Xingjian [67], Spainhour et al. [68], Krishnamoorthy and Umesh [69], Pepper and Ma-
rino [70], Magnin and Coulomb [71], Yang and Yang [72], Baker [73], Felippa [74],
and Bergman et al. [75]. It has further been shown in Ketabchi et al. [76] that OO
DBMSs are more suitable than traditional DBMSs for modelling data in the engineering
field.

25

Emerging standards for representing and exchanging product data will probably also
play an important role in future engineering software. The STEP (STandard for the Ex-
change of Product data) standard covers the modelling of engineering data, ISO [77],
and indeed FEA data, ISO [78]. The STEP standard is based on the data modelling lan-
guage EXPRESS, ISO [79], that is used to specify data schemes for various engineering
domains. Different tools to support EXPRESS-based data exchange are also being de-
veloped. However, these standards do not solve, and should probably not be considered
as the final solution to, the complete management needs of engineering data. There will
always be enterprise-specific data and use of data that does not conform to existing
standards. For this reason, it ought to be convenient to combine or integrate standards
like STEP with more general data management standards such as query languages for
databases. For instance, SQL, the standard query language for relational (R) DBMSs,
has a very broad coverage and is not restricted to any specific application area. A further
extension of SQL to enable object-orientation is proposed in the SQL3 standard speci-
fications [16]. Another competing standard proposal in this area is the ODMG stand-

ard1, Cattell [17], that incorporates the OQL query language.

2.5 THE TRINITAS SOFTWARE

TRINITAS, Torstenfelt et al. [10] and Torstenfelt [11], is a general-purpose FEA pro-
gram that integrates the entire analysis process and that is completely controlled
through a graphical user interface, as illustrated in Figure 7. The typical TRINITAS ses-
sion starts with an interactive problem specification in terms of geometry, domain prop-
erties and boundary conditions. An approximation of the geometry is then accom-
plished in the discretisation phase. The discretised geometry is thereafter used, in com-
bination with boundary and domain conditions, to establish the equation system to be
solved. This activity is an integrated part of the solution phase where the equation sys-
tem also is solved. Eventually, the session ends with an evaluation of the results of the
calculation. The TRINITAS system currently includes functionality for analysing stat-
ic, dynamic, and eigenvalue problems within the mechanical design domain, including
elastic and thermal effects. In addition, TRINITAS includes capabilities to handle adap-
tivity, optimization, and contact problems in static cases.

The TRINITAS program is “model-oriented” rather than file-oriented and does not in-
corporate any data or result files. Instead, all model interaction is performed through the
graphical user interface that accesses main-memory data structures representing the
analysis model. TRINITAS is further designed in a highly structured, “object-based”,
manner with specific sets of procedures for each concept class, such as point, line, sur-
face, and volume. The design is also layered with well-defined interfaces between the
layers. A simplified view of the different layers is provided in Figure 8. These layers
include the graphical user interface level, the application concepts layer including FEA-

1. The ODMG standard originates from the Object Management Group (OMG), Framing-
ham, MA, USA.

26

related concepts and operations, the abstract array layer, and the data file layer for sec-
ondary storage. Additional interfaces exist for communicating with, for example,
graphical devices. All data in the application layer is stored in main-memory using the
abstract array representation and storage and retrieval to and from secondary storage is
handled automatically by the system. The TRINITAS system currently consists of
about 2200 subroutines of FORTRAN code and a small part of C code to interface
graphics libraries.

Figure 7. Example of the graphical user interface of TRINITAS.

The geometry is the central concept when specifying an analysis model in TRINITAS.
A analysis geometry is built up from basic geometric entities, such as points, lines, sur-
faces, and volumes. When the geometry is specified, it can be extended with different
forms of boundary conditions, such as point loads, distributed loads, fixed or prescribed
displacements. The domain properties are provided by default if nothing else is speci-
fied. Hence, the problem to be analysed can be completely specified before one consid-
ers how it should be discretised. This makes it possible to change the discretisation
without respecifying the boundary conditions.

27

TRINITAS supports both mapped and free-mesh algorithms for the discretisation
phase. About eight different element types are available, such as constant and linear
strain triangles, bilinear quadrangle, quadratic lagrange, and trilinear hexahedral.

Figure 8. A simplified view of the TRINITAS architecture.

Information about relationships between geometric entities and the elements and nodes
in the discretisation is used for calculating the load vector and to establish the stiffness
matrix. Stiffness matrices can be stored either as full regular matrices or as compact
skyline matrices. The analysis type automatically selects an appropriate representation.
TRINITAS further includes an algorithm that performs bandwidth reduction before the
equation solving takes place.

A number of analysis types are supported with an emphasis on linear elasticity. This in-
cludes conventional stress analysis as well as optimization of weight, stiffness, or stress,
adaptivity, and contact analysis.

A variety of quantities from the analysis can be evaluated. These include displacements,
basic stress components, von Mises stresses, and reaction forces. It is possible to eval-
uate both single values or to present a sequence of values in a graph. Furthermore, the
system can automatically handle updates of these values if the analysis is recalculated.
Field quantities can further be displayed as iso-level curves.

Graphical User Interface

FEA Concepts FEA Operations

Abstract Array Representation

TRINITAS Data Direct Access File
M

ai
n-

m
em

or
y

S
ec

on
da

ry
st

or
ag

e

28

In Appendix A, a list of main concepts and analysis capabilities of TRINITAS is includ-
ed. For further information on TRINITAS functionality, the reader is referred to [11].

As a final but important note, it is worth mentioning that the “object-based” and layered
design of TRINITAS, illustrated in Figure 8, has facilitated the integration with the
DBMS in this work. The TRINITAS architecture has made it possible to transfer sub-
sets of the application model to corresponding database representations. In the FEA-
MOS system, the abstract array layer and the data file layer have been replaced by a cor-
responding database representation by introducing an interface to the database between
the application layer and the abstract array layer. In addition, specific parts of the FEA-
related concepts and operations could be separated and replaced by higher-level object
representations within the database.

29

3 DATABASES AND DATABASE MANAGEMENT
SYSTEMS

An effective operation of information assets is becoming a strategic issue in commercial
activities. Formerly, these issues were mostly emphasized in administrative areas but
have lately also got much attention in several engineering disciplines. The objective of
the database management approach is to provide developers, administrators, and users
with generic software tools that support definition and manipulation of data in an effi-
cient, uniform, flexible, and secure manner.

A database is, according to Elmasri and Navathe [80], a collection of related data. Da-
tabases also usually incorporate further implicit properties in that the database repre-
sents a specific subdomain of the real world, the data is logically structured with an in-
tended meaning, and the database is produced for a specific purpose. Elmasri and Nav-
athe also define a database management system (DBMS) as a general-purpose software
system that facilitates definition, construction, and manipulation of databases for vari-
ous applications. As illustrated in Figure 9, a database and a database management sys-
tem are together referred to as a database system (DBS) and might also include other
application software.

A DBMS works as an intermediate layer between applications or users and data to pro-
vide a generic interface to the data. It should be viewed as a tool to protect data assets,
improve data quality, and to facilitate changing informations needs according to

30

Loomis [81]. These generic software tools in the DBMS can help the developers, ad-
ministrators, and users to define and manipulate data in a uniform manner.

A database language (DBL), provided by a DBMS, is the actual interface for users and
applications using a database. The DBL can be an integrated language that includes
constructs for database definition and manipulation. Probably the most well-known in-
tegrated database language is SQL (Structured Query Language) [82], a standardized
language for relational databases. The database community usually uses the term query
language as a synonym for an integrated database language even though “query” refers
only to retrieving data from that database. This habit is inherited by the present author.

Figure 9. Outline of a simplified database system.

Before a database can be accessed, its content must be defined and it must further be
populated with data. A database is defined by means of the DDL that includes con-
structs for defining a database schema, i.e. the structure of the database including data
types, relationships, and constraints, and should reflect the structure of the application
domain under consideration. A database schema is also referred to as the system cata-
logue, data dictionary, or meta data. This schema definition is made in terms of the data

Database Database
schema

DBMS

DATABASE SYSTEM

Users’
interactive queries

Applications
procedures/statements

Data managing tools

Database language tools

31

model that is supported by the DBMS. A data model is a set of predefined concepts in-
cluding data types and basic operators provided by the DBMS. In addition, the behav-
iour of the application domain under consideration can be an integral part of the data-
base definition to various levels of extent. Behaviour is specified by user-defined oper-
ations on the database that are appropriate or relevant to the application domain. This
explicit representation and storage of the definition of the database in a database schema
is a distinguishing characteristic of a DBMS compared to conventional software where
data definition is an integral part of the application program. A DDL compiler processes
the schema descriptions into internal representations in the system catalogue.

The database can either be accessed by users directly, or indirectly, by other applica-
tions. In a direct user access of the database, the user usually states either ad hoc, or pre-
defined queries (also termed “canned queries”) to the database usually through a high-
level query language such as SQL. Compared to a conventional and procedural-oriented
programming language, a query language normally has a declarative nature. This means
that you do not express the sequence or procedure for how to process your data, instead
you declare what kind of data you are looking for. This is usually referred to as express-
ing “what” instead of “how”. Ad hoc queries are transformed and optimized into an ef-
ficient and executable form by the query processor before they are executed, while pre-
defined queries are compiled at definition time.

Indirect access of a database, through an application, can be made by including embed-
ded DML statements or precompiled DML procedures. The DML includes constructs
for retrieving, inserting, deleting, and modifying data in the database. Embedded DML
statements are usually precompiled by a query processor before executing them where-
as precompiled DML procedures are DML statements precompiled into a procedure,
stored in the database, that can be called in the application.

Compilation and optimization of DDL and DML statements are made by the query
processing tools that also interact with the system catalogue. An executable statement
is thereafter delivered to the database manager that accesses the database to store or re-
trieve data. If the database is stored on disk this involves an interaction with the file
manager to access the physical data. The database manager is also responsible for sev-
eral other tasks in the DBMS, including the control of authorisation, concurrency, in-
tegrity constraint checking, and backup/recovery. authorisation controls the user acces-
sibility of a database and can, for instance, restrict access privilege for a user to a spe-
cific part of the database. Concurrency control is responsible for controlling database
interactions among concurrent users while preserving data consistency. Controlling
data integrity involves keeping data consistent by checking that the specified consisten-
cy constraints are not violated. Backup and recovery are responsible for keeping data
safe against failure usually by making periodical and persistent backups of the database
and keeping a log of database operations. The ability to keep the database consistent is
facilitated by defining database processing in terms of transactions. Transactions are
operations on the database that represent atomic and controlled logical processing units.

32

3.1 CHARACTERISTICS AND OBJECTIVES OF DATABASE SYSTEMS

The main objectives of a DBMS include an efficient, flexible, reliable, and secure man-
agement of data. Certainly, the value and importance of these aspects vary among ap-
plication areas as well as for specific purposes within application areas. For instance, in
some administrative applications the efficiency of a DBS might be valued against man-
ual data handling, while in computing-intensive engineering applications it must be
compared to that of conventional file-processing applications. However, to meet these
objectives a DBMS can include software tools that provide:

• Data modelling capabilities in terms of a basic data model. A data model includes a
set of predefined constructs for structuring data that can involve predefined data
types, basic operations, and user-defined data structures. The structure of data is fur-
ther defined into a database schema including domain concepts, relationships, and
even operations. A powerful and important aspect of data modelling is the ability of
the user to define complex data objects and relationships. A system-supported data
model also promotes and fosters the design and use of standardised and uniform
data representations that will facilitate reuse, communication and exchange of data
among applications and within organisations.

• A high-level database language, usually referred to as the query language, that pro-
vides the interface to the database. The DBL can be used directly and interactively
for defining, manipulating and querying of data. DBL statements can also be em-
bedded in a host language (the implementation language of the application) for in-
directly accessing data in the database. In a DBL, data management is usually spec-
ified more declaratively than in a conventional programming language.

• Persistent storage of data, i.e. data (and program procedures) can be stored perma-
nently on secondary storage and thus will survive termination of program execution
and can later be retrieved. Transferring data between a DBMS and applications can
give rise to what is called an impedance mismatch problem which has to be ad-
dressed. The impedance mismatch problem implies that the application and the
DBMS have incompatible data representations, meaning that when data is ex-
changed it must be transformed. An approach to solve this problem is to be able to
store and manipulate programming language objects (e.g. C++ or Smalltalk objects)
persistently in the database which is the approach applied in some OO DBMS.

• Efficient accessibility of data. DBMSs support facilities for creating access struc-
tures, or indexes, that make access of data elements efficient. There are general in-
dexing techniques, such as various tree data structures and hash tables, and tech-
niques specialised for certain types of data, such as quad trees for spatial data. The
DBMS also usually has facilities for optimizing queries, i.e. transforming a query
into a form that has an effective execution order.

• Logical and physical data independence by views and language mappings. Data in-
dependence means that there is a separation between two software layers in such a
way that there is no need for the “upper layer” to know anything about the data or-
ganisation or the data access techniques in the lower level. Data independence be-

33

tween the internal schema and the conceptual schema in a DBMS is referred to
physical data independence since the conceptual schema needs no knowledge of
physical data storage. Likewise, when the external schema does not need complete
knowledge of the conceptual schema, it is referred to as logical data independence.
It should be possible, for instance, to add information about an entity or add new
entities to the conceptual schema without affecting the external schema. The DBMS
accomplishes data independence by language mappings between different schemas
and restricting certain operations to a specific schema. More complete discussions
on issues in data independence are given in Date [83].

• Data sharing through concurrency control and transaction processing. Operations in
a DBMS can be performed as transactions that are logical operation units on the da-
tabase. The transaction processing software controls the state of transactions and
guarantees that the database is always in, or can return to, a consistent state. Further,
the DBMS can use concurrency control to ensure that several users can access and
update the same data element in a controlled manner and guaranteeing a correct re-
sult. Thus, transactions and concurrency control ensure multiuser transactions to be
performed correctly and several users can share data without bothering about inter-
fering with other users.

• Access control through authorisation tools. Not every user might be allowed to ac-
cess the complete database and to control this, the DBMS must include security and
authorisation software. authorisation can, for instance, be specified in terms of priv-
ileged commands or software, or by allowing database access through a set of
views.

• Different levels of fail security through facilities for logging, backup, and recovery.
To assure that the database can be recovered from different types of software and
hardware failures the DBMS include facilities for logging of transactions, making
backups of the database, and recovery procedures to recover from failures and re-
store the database into its last consistent state.

• Another type of data security can be controlled to some extent by redundancy con-
trol, certain inconsistency control, and integrity constraints. Redundancy can be re-
duced by sharing data among applications. Limited redundancy can also be control-
led by automatically propagating updates in the database to avoid inconsistencies.
Even without redundancy there can be data inconsistencies. A data element can be
updated with an inaccurate value in reference to itself or to some other data element.
This type of inconsistency is controlled by adding integrity constraints in the data-
base that can be controlled by the DBMS.

• Active behaviour can be introduced into the database through the addition of declar-
ative rules and inference procedures (or deduction). By representing rules that
should perform some defined action when some conditions are fulfilled an active
behaviour can be achieved in the database.

• There is a well-known architecture for describing databases called the three-schema
architecture [84]. Its aim is to isolate the physical database from applications. From
the lowest level, the first schema is the internal schema that describes the physical

34

storage structure of the database in terms of the physical data model and access
methods. The second level, the middle level, involves the conceptual schema and is
a general conceptual representation of the problem domain. It describes entities,
structures, and operators in terms of a data model without physical considerations.
The third level represents the external schemas (or views) and describes subsets of
the conceptual schema that are relevant to, and in a form suitable for, particular ap-
plications.

3.2 CONVENTIONAL DATABASE TECHNOLOGY

Various criteria can be applied for dividing DBMSs into certain categories. Usually, the
underlying data model works as a base for such a division but you can also see division
according to, for instance, usage profile, distribution, or structure of the DBMS. If we
start with the data model, there are basically the hierarchical, the network, the relational,
and the object-oriented data model.

Figure 10. The evolution of DBMS technology.

3.2.1 Hierarchical database management systems

In hierarchical DBMSs data is arranged in hierarchical tree structures of connected
record types. Data manipulation in the hierarchical model is accomplished by embed-
ding data manipulation operators in a host language. There are a set of operators for
navigating in the tree structure and operators for “updating” data in a record-at-a-time

fashion. One of the earliest and most widespread hierarchical DBMS is IMS1 (Informa-
tion Management System).

1. IMS is a product of the IBM Corporation.

1960 1970 1980 1990 20001950

Files
HDBMS

NDBMS

RDBMS

SQL (ANSI)

OODBMS

ORDBMS

SQL2

... OQL, SQL3

35

3.2.2 Network database management systems

Data represented in the network model is arranged in network structures represented by
record types where interrelationships are represented by set types. A set type represents
a one-to-many relationship between two record types. As for the hierarchical model,
data manipulation is done by means of operators for navigating in the network and by
record-at-a-time operators for updating data stored in the records. The data manipula-
tion commands are also in this case intended to be embedded in a host language. The

network model is often referred to as the CODASYL1 (Conference on Data Systems
Languages) model and an example of a commercial CODASYL-based DBMS is

IDMS2.

3.2.3 Relational database management systems

The relational data model is based on a single uniform data structure called a relation
that is used to represent both data and interrelations. A relation is commonly viewed as
a named table where rows are called tuples and where columns contain attributes. A ta-
ble can represent both a class or a relationship between classes. When the table repre-
sents a class, the tuples represent specific instances, of that class and the attributes rep-
resent common properties for the class. Similarly, a table can be used to represent a re-
lationship, whose instances are represented by rows in the table. In this case, the
columns represent the participating entity types. Further, relationships can be of n-ary
type where n states the number of columns in the relation.

Different types of constraints can usually be defined on relations in order to control the
consistency of data. The different types of constraints include domain constraints, key
constraints, and entity integrity and referential integrity constraints. These are used to
control that the value domain of attributes is correct, that tuples are uniquely defined,
and to maintain consistency among tuples.

Data manipulation on the relational model is usually made through a high-level query
language, usually SQL, that includes both procedural and nonprocedural constructs.
The term query language associates only to retrieval operations, but in addition, a gen-
eral query language usually includes operations for data definition, and update. For up-
dates of relations, there are three basic operations for inserting, deleting, and modifying
tuples. Section 3.8 presents more about data management in R DBMSs and SQL.

Compared to older data models, such as the hierarchical and the network models, the
relational model is more independent from its physical implementation. It also has a
more formal basis since its simple and uniform base model has made it possible to de-

1. Originally defined by the CODASYL Data Base Task Group in 1971.
2. IDMS was originally a product of Cullinet Software, Inc., and is currently marketed un-

der the name CA-IDMS by Computer Associates.

36

rive a relational algebra and a relational calculus that is based on mathematical theories.
An important reason to the success of R DBMSs, is the availability of declarative query
facilities in SQL.

Examples of well-known commercial R DBMSs are ORACLE1, Sybase2, INGRES3,

INFORMIX4, and DB25.

3.3 OBJECT DATABASE TECHNOLOGY

Classical DBMS technology concentrated on supporting administrative applications.
However, in contrast to these traditional administrative database applications, scientific
and engineering applications usually involve models and analysis methods of higher
complexity, Cattell [85]. This has put new requirements on existing database technolo-
gy including support for domain-specific data modelling capabilities while preserving
efficient data processing. It is expected that the next generation of object database tech-
nology, where OO and relational database technologies are merged, can meet several of
these needs. This also includes the availability of extensibility and main-memory resi-
dency in DBMSs that are here presented as separate subsections.

3.3.1 Object-oriented concepts

Basic OO concepts that usually are supported in OO DBMS include objects, object
identity, composite objects, methods, encapsulation, type hierarchies and inheritance,
operator overloading, late binding, and version and configuration management.

• Objects form a fundamental concept of OO methodology. An object represents a
physical or abstract entity that possesses certain characteristics. Similar objects that
share the same characteristics can usually be defined and referenced as a group
which is a means to introduce structure and reduce complexity in a concept domain.
Other fundamental concepts of OO methodology including encapsulation, classes
(or types), and inheritance are described below. In contrast to objects implemented
by means of OO programming languages, OO databases provide facilities for han-
dling persistent objects, i.e. objects that persist after finishing the execution of a pro-
gram. Database objects can also be shared by several different applications.

• Object identity (OID) is a unique system-generated identifier for an object. By let-
ting the system handle object naming and look-up, these facilities can be made more
efficient and relieve the application programmer from implementing this mecha-

1. ORACLE is a product of Oracle, Inc.
2. Sybase is a product of Sybase, Inc.
3. INGRES is a product of Ingres, Inc.
4. INFORMIX is a product of Informix, Inc.
5. DB2 is a product of the IBM Corporation.

37

nism. OID:s are used to refer to specific objects in the database (e.g. for making as-
sociations between objects) or in the application program.

• Composite objects are objects that are built up of other objects, possibly in several
layers. For instance, a mechanical design can include many design details. Grouping
of objects is a kind of aggregation that can be represented with ordinary relation-
ships in the database. However, some DBMSs provide special treatment of aggre-
gation relationships including such facilities as deleting, copying, and clustering of
composite objects. Composite objects are also referred to as structured complex ob-
jects in contrast to the term unstructured complex objects that are used for referring
to large binary objects (BLOBs) such as images, sounds, or unstructured texts.

• Attributes represent named properties of objects and can have various representa-
tions. Simple attributes are used to describe properties that can be represented by lit-
eral values such as integers, reals, or strings. Complex attributes consist of referenc-
es, collections, and derived attributes. Reference attributes represent relationships
between objects through OID:s. Collection attributes represent groups of simple at-
tributes or references in the form of arrays, lists, sets, and multi-sets. Derived at-
tributes are represented in terms of other attributes and the retrieval of attribute val-
ues involves a computation. Some systems, like AMOS, have capabilities to auto-
matically represent invertible attributes, i.e. attributes can be used in both
directions. Normally, this capability must be represented by two relations in each
direction that must be kept consistent. Attributes are used for representing different
types of relationships in OO DBMSs. Object attributes offer the most direct tech-
nique for representing properties in pure OO methodology. In fact, when consider-
ing real world properties in more detail, one realises that properties are actually re-
lations between objects. For instance, the hardness of wooden table is related to the
exposed object such as a hand or an axe. For the hand the table is hard, but to the
axe it might be soft. Another example is colour that at first thought is closely related
to a thing but that is really dependent on the watcher’s ability to see colours. In prac-
tice, we usually relate these properties to one specific type of object but sometimes
a more general modelling is more convenient. By introducing functions overloaded
on all arguments, Flodin et al. [19], this type of more general modelling technique
can be used to describe relations dependent on several object types.

• Storing database methods associated with database objects in the database is an im-
portant ability of OO DBMSs. However, first generation OO DBMSs do not nor-
mally support the ability to store methods in the database; instead they are stored
outside the database. In many situations, domain data is more conveniently repre-
sented by procedural information. This can, for instance, be a weight function that
is derived from the current geometry of a design or function that calculates the cur-
rent position or velocity of a design component. By allowing procedures in the da-
tabase they can be used in filtering out and reducing the amount of data that should
be passed to the application. Procedural information has normally been encoded in
the application programs but the evolution of OO database techniques has facilitated
storage of procedures in the database. In pure OO systems all communication with
objects is performed through methods that hide the internal structure of the objects.

38

This is called encapsulation and provides one form of data independence.

• The structure and behaviour of objects (called the intent) are defined by types (or
classes) that are also used for controlling the type extent, i.e. the set of objects that
adhere to a certain type. Objects are used for representing types in a meta-level man-
ner and define the type intent or object properties as attributes and methods. OO
methodologies usually involve some generalisation mechanism for types, providing
capabilities to structure types into hierarchies or acyclic graphs. These structures de-
fine sub- and supertype relationships among types and can be used for applying var-
ious hierarchical relationships. For instance, it can be used for inheritance where a
subtype inherits properties from its supertypes. When a type inherits from several
parallel supertypes it is called multiple inheritance.

• Operator overloading, sometimes called ad hoc polymorphism, is one kind of pol-
ymorphism that plays an important role in OO modelling. Polymorphism implies an
ability to have several forms. In the case of computer science, this term is used to
denote various forms of sharing the same name or reference for different program-
ming objects like variables and functions. Operator overloading is one form of pol-
ymorphism that permits operators to have different implementations for different
types, or more generally for the signature for the operator. This can be accomplished
by different combinations of static or dynamic type checking, and early binding (al-
so called static binding) or late binding (also called dynamic binding) of operators.
The term overriding is sometimes used to refer to the situation where a type has an
inherited operator name and redefines its implementation. This is a distinction from
the more general overloading term where inheritance is not required. Examples of
advanced use of overloaded functions for modelling linear algebraic matrix opera-
tions are described in [19]. Efficient treatment of overloaded functions in AMOS is
presented in Flodin and Risch [86] and Flodin [87].

• System-supported versions and configurations facilitate the representation and
management of multiple variants of the same object in the database. A version is a
variant of a single specific object whereas a configuration is a consistent variant of
a complex object. A configuration of a complex object includes other objects that in
turn have their own (possibly different) versions or configurations. Versions and
configurations can be used to keep different copies of, for instance, designs, to con-
trol authorisation to different versions of objects, and they can also be used as tools
for concurrency control, i.e. to coordinate work between multiple users. Several OO
DBMSs have basic features that support version and configuration management.

3.3.2 Object-oriented and object-relational database technology

Object database technology has evolved from two different areas. Both these strategies
to provide object-oriented functionality in DBMSs share some characteristics but also
have major differences. What is referred to as the first generation OO DBMSs, Atkin-
son et al. [88], evolved in the area of OO programming languages where the need for
database facilities in OO applications arose, such as the ability of storing programming

39

objects (e.g. C++ or Smalltalk objects) persistently on secondary storage. When this
kind of application terminates, objects persist on secondary storage and can later be re-
trieved by another application. First generation OO DBMSs also usually include basic
database facilities such as a simple query language, access techniques such as hashing
and clustering, transaction management, and concurrency control and recovery. How-
ever, they are incompatible with R DBMSs and do not include several R DBMS fea-
tures such as a complete declarative query language, meta data management, views, and
authorisation. Their advantage is a seamless integration with their corresponding OO
programming language. Products originating from the first generation OO DBMS ap-

proach are Gemstone1, O2
2, Objectivity3, ObjectStore4, ONTOS5, and Versant6.

Systems called the second generation OO DBMSs evolved from the classical relational
database community and were also inspired by OO ideas. The attempt to meet the needs
required by new types of database applications, as for instance from the scientific and
engineering area, has resulted in an extension of relational database technology with
OO capabilities. Examples of these capabilities include object identity, object structure,
composite objects, type constructors, encapsulation, inheritance, and OO extensions of
a query language. By combining this type of system with a call-level interface, it is pos-
sible to provide OO DBMS capabilities to programming language-based applications.
These DBMSs were first referred to as extended-relational DBMSs, Stonebraker et al.
[89], but recently the term object-relational database management systems (OR
DBMSs), DBMS [4], Frank [5], and Stonebraker and Moore [6], has gained considerable

acceptance. Examples of this type of product are Odapter7, Illustra8, and UniSQL9. The
research prototype AMOS, that is used in this work, is based on this approach. An im-
portant aspect of OR database technology is the availability of several kinds of extensi-
bility including query language, query processing, and storage management extensibil-
ity. These issues are discussed in the next section that covers extensible database tech-
nology.

These two approaches to accomplishing object database technology are currently blend-
ed, Kim [90], in that the first generation OO DBMSs are extended with, for example,
query languages, query optimization, views, constraints, meta data management, au-
thorisation, triggers, transaction management, two-phase commit, and parameterised
performance tuning. Likewise, the second generation OO DBMSs are extended to in-
corporate OO concepts to be able to handle objects and OO modelling. A detailed anal-
ysis of the requirements on query processing in object-relational database technology is

1. Gemstone is a product of GemStone Systems, Inc.
2. O2 is a product of O2 Technology.
3. Objectivity is a product of Objectivity, Inc.
4. ObjectStore is a product of Object International, Inc.
5. ONTOS is a product of ONTOS, Inc.
6. Versant is a product of Versant Technology, Inc.
7. Odapter is a product of Hewlett-Packard, Inc.
8. Illustra is a product of Illustra, Inc.
9. UniSQL is a product of UniSQL, Inc.

40

provided in [6].

3.4 EXTENSIBLE DATABASE TECHNOLOGY

Extensible database technology has been identified, by Carey [91] and Carey and Haas
[92] among others, as a key technology for providing database technology to new
emerging database applications, such as advanced engineering applications. Applica-
tions of this type usually require more powerful modelling techniques and performance
than provided by standard DBMSs. This calls for database techniques that can be tai-
lored to support new data types, functions, complex objects, storage and access tech-
niques. According to Carey and Haas, another motivation for this approach is to facili-
tate the incorporation of emerging database technologies into existing DBMSs. This
motivation can actually be generalised into a motivation to provide emerging database
technology (or software technology in general) to existing applications. Most engineer-
ing applications are implemented in a conventional programming language which
means that large parts of the application must be redesigned and reimplemented in order
to take advantage of new software technologies. It would be much easier to take advan-
tage of new software technologies if, instead, a software tool was used to develop the
application. An extensible DBMS can, for instance, provide mechanisms for concurren-
cy control and for distribution and replication of data, that would immediately be avail-
able to the application developer.

Carey and Haas [92], have identified three levels of extensibility that are applicable in
extensible DBMSs:

1. Data storage and access methods extensions. It must be possible in extensible data-
base technology to introduce new storage structures and indexing techniques for
data. Applications are very different in their needs for specialised data structures
and access methods. For instance, numerical data is used very differently among
(or within) applications. Some concepts are represented and handled as single
numerical values that maybe should be retrieved, compared with similar data, or
updated with new values. This could be a hole diameter or a single temperature. In
contrast, other (and even the same) concepts are more efficiently represented as
large collections of numerical data, usually in the form of arrays or matrices. Per-
haps the collection should be a discrete representation of a concept that is tempo-
rally or spatially distributed, such as a temperature field or a stiffness distribution.
These concepts are usually involved in more complex mathematical operations that
can be efficiently implemented using array and matrix data representations.

2. Query language extensions that include the ability of defining abstract data types
(ADTs), i.e. the definition of new data types and their corresponding operations. In
OO technology this is accomplished by allowing the user to define new types (or
classes) of objects and defining operations on these types. This could even include

41

the ability to define type constructors, i.e. an ability to have parameterised type def-
initions, discussed in Werner [93]. Extensibility at the query language level also
includes more general possibilities to extend the query language, such as defining
operations for data collections. This covers different kinds of aggregation operators
such as summation of numbers, counting members, or calculating averages.

3. Query processing extensions. The query processor can also be extended with new
execution strategies and new methods for combining existing operators. One might
wish to include better algorithms for join operators or new strategies for operator
ordering. Furthermore, the query processor must be able to handle the new applica-
tion-specific operations that the query language has been extended with. Hence, it
must be possible to add cost measures and optimization rules for these new opera-
tions that should be treated by the query optimizer.

Extensibility is handled to various degrees by different DBMSs categories. In pure OO
DBMSs, the extensibility is accomplished only through user-defined types and meth-
ods. This type of extensibility can also be available in DBMSs based on extensions of
relational database technology but these can also provide extensible storage managers
and query processors. There exist several research systems in the extensible DBMS
field built upon different basic data models. In Starburst, McPherson and Pirahesh [94],
and in Postgres, Stonebraker et al. [95] (commercialised as Illustra, Stonebraker and
Moore [6]), the data models are built on extensions to the relational data model. Further,
the PROBE system, Goldhirsh and Orenstein [96], and the ORION system, Woelk and
Kim [97], are built on an OO data model. In AMOS, Fahl et al. [8], the OO data model
has been combined with relational query capabilities. GENESIS, Batory [98], and EX-
ODUS, Carey and DeWitt [99], have a somewhat different approach in providing tool-
kits for generating application-specific DBMSs.

The extension of a DBMS with new data structures, operators and suchlike must also
handle the interaction with other database facilities, such as security, concurrency con-
trol, and recovery. Another problem is the interface that should bridge the gap between
the extensible DBMSs and the application that might be implemented in a language
with a more primitive type system. Some efforts have been made in this area within the

ODMG standardisation where the OQL1 language, Cattell [17], is defined to permit dif-
ferent language bindings for representing the data types of OQL. Using the extensible
DBMS as a powerful tool for actually implementing applications adds another view to
the interface problem. In this case, the application functionality is partly, or to a large
extent, implemented within the DBMS where more general resources can be “plugged
into” the DBMS as modules. This raises the questions of which data structures should
be provided by the DBMS and where the processing should take place. By delegating
certain application-specific operations to the DBMS one could take advantage of effi-
cient data access techniques of the DBMS. This approach could further reduce the over-

1. In OQL, user-defined methods can be included in queries but they can not be handled by
the optimizer.

42

head for transporting and transforming data between the DBMS and the application.

3.5 MAIN-MEMORY DATABASE TECHNOLOGY

Main-memory (MM) DBMSs have evolved during the last few years, DeWitt et al.
[100] and Eich [101]. Conventionally, databases are disk-based, i.e. they reside on a
secondary storage media, usually in the form of magnetic harddisks. However, hard-
ware developments such as large main-memories and fast networks have provided po-
tential for new design ideas. This has cleared a path for the development of MM
DBMSs that assume that the entire database resides in primary memory.

There are well-known differences in the characteristics of secondary and primary mem-
ory, Garcia-Molina and Salem [102], that include:

• Main-memory has orders of magnitudes lower access times than magnetic disk
memory.

• Main-memory is usually volatile while magnetic disks are not. However, non-vola-
tile main-memories are becoming more common.

• Magnetic disks have a high initiation cost for each access that is independent of the
amount of data that should be retrieved. This fact makes this kind of storage devices
block-oriented. Main-memory has low initiation cost and consequently needs no
block-orientation.

• Sequential access is faster than random access for magnetic disks. This does not
hold for main-memories since they are really random access memories. Thus, data
organisation and clustering are more important for disk storage.

• Main-memory data can be more vulnerable to software errors than disk-resident
data since main-memories can be directly accessed by processors.

Disk-based database systems cache data from secondary to primary memory for
processing. In contrast, an MM DBMS can have a copy of data on disk for backup pur-
poses. Hence, both architectures have data located both in main-memory and on disk
but MM DBMSs have their principal copy in memory while disk-based DBMSs have
their principal copy on disk. These differences considerably influence the design for
these two database system architectures. Since disk access is the bottleneck for disk-
based systems, they are designed with data structures, access methods, and clustering
techniques that should minimise disk access for reading and writing data to disk. Main-
memory database systems access data directly in memory which results in better per-
formance than conventional disk-based database systems. For main-memory systems it
is instead the processing time that is the origin for the performance. Garcia-Molina and
Salem [102] mention performance considerations as especially important to real-time
applications. However, performance can also be of vital importance in other engineer-
ing tasks such as interactive engineering applications for design and analysis that in-

43

volve computing-intensive calculations and simulations. Performance is not only ac-
complished through main-memory residency; at least as important is query optimiza-
tion that can reduce the combinatorial complexity of queries by several orders of
magnitudes. Litwin and Risch [103] show that a combination of main-memory residen-
cy and query optimization is required for best performance. This technique can actually
reduce execution time to less than one disk access in some situations which would be
impossible with traditional disk-based techniques.

Access methods and data representations are additional issues that are effected by
switching from disk-based to main-memory-based technology. Specialised access
methods are utilised to take advantage of main-memory characteristics. For instance,
there are methods based on hashing techniques, special tree representations, or pointer-
based indexing. Data representation techniques must also be adapted for main-memory.
Furthermore, the query execution cost is determined by the processing cost instead of
the cost for disk access as in disk-based systems, as discussed in more detail in Listgar-
ten and Neimat [104]. Concurrency control, transaction and recovery processing, and
data clustering and migration are also mechanisms that need specialised treatment, Gar-
cia-Molina and Salem [102]. The techniques for exchanging data between applications
and the database also need adaption to main-memory residency of the application pro-
gramming interface.

MM DBMSs, are exemplified by SmallBase, Listgarten and Neimat [104] and Heytens
et al. [105], WS-IRIS [103] and AMOS [8]. SmallBase is built upon a relational data
model, whereas WS-IRIS and AMOS are based on an object-relational data model. A
main design idea behind main-memory, as well as extensible, database technology is
the ability to use these types of DBMSs embedded within applications.

3.6 ADDITIONAL DATABASE TECHNOLOGIES

3.6.1 Distributed database management systems

DBMSs can be centralised or distributed. A centralised DBMS resides on a single com-
puter site that includes the complete database and the DBMS software and hardware.
Distributed database management systems [106], D DBMSs, take a contrasting ap-
proach, i.e. the data and software are distributed over a hardware platform that consists
of multiple computer sites that are connected by some form of communication network.
There are different potential benefits that motivate the use of D DBMSs that include:

• Distributed databases can naturally conform to distributed applications. Database
applications may be physically distributed (different locations) or logically distrib-
uted (different application domains) that require or make it convenient to distribute
data over several sites.

• The reliability and availability can be increased since redundancy can be introduced

44

by replicating data and functionality over several sites.

• Controlled data sharing can be provided by keeping local control over data but al-
lowing distributed access.

• Performance can be increased due to the distribution of transactions over multiple
sites that would otherwise be processed at a centralised site.

Distributed database systems can further be divided into various categories depending
on additional factors such as the level of homogeneity, autonomy, and transparency.

Distributed database systems can have different levels of homogeneity. In a homoge-
nous database system the same DBMS is used on both servers and clients, which is not
the case for heterogeneous database systems.

There can further be different levels of autonomy in D DBMSs. At one end of the spec-
trum we have no autonomy where a D DBMS acts as a centralised DBMS with a single
conceptual schema and the access must be made through one server. At the other end
we have federated DBMSs or multidatabase systems where each server has an inde-
pendent DBMS. It is then possible to have local databases and transactions that provide
a higher degree of autonomy. Global clients can then, through a multidatabase interface,
access privileged parts of the collection of autonomous databases (that form the multi-
database).

Another aspect of distribution of databases is the degree of distribution transparency of
the system. Does the user need to now anything of where data is distributed and of how
data is fragmented or replicated? In a transparent system this knowledge is not needed
but is required to some extent in systems with a lower transparency level.

Technology for D DBMSs can be of great importance in applications for engineering
design and analysis where different engineering domains withhold their own databases.
Certain parts of that data must be shared among several disciplines and further be kept
in consistence at the global level. The role of D DBMSs in engineering applications is
briefly discussed in sections Section 3.7, Section 6.2, and Section 5.1.

3.6.2 Active database management systems

Database systems have traditionally been passive, i.e. the communication between the
users or applications and the DBMS have been triggered by the former. In contrast, an
active database management system can in itself react and act on database events (e.g.
database updates) or external events (e.g. updates of physical signals). Active function-
ality is commonly accomplished by providing some form of rule system in the DBMS.
Rules usually consist of a condition part and an action part. The condition part defines
the event situation that should be true for executing the operations defined by the action
part. Actions can consists of database operations and external operations. When the rule
system detects relevant events it triggers the condition monitoring and, if the condition

45

part evaluates to true, the action part is executed.

The active database functionality can be used to provide consistency control as an inte-
gral part of data management. For instance, constraint management can use rules that
detect and abort transactions that attempt to perform updates that violate database con-
straints, Ceri and Widom [107], Kim [90], Risch and Sköld [108], Sköld [109], Sköld
and Risch [110].

Explicit declaration of rules for data consistency and consistency handling within the
DBMS can increase the flexibility of consistency control and the reliability of data. By
integrating the rule system within the DBMS, the data exchange between an application
and a database can be reduced and, furthermore, query optimization techniques can be
used for accomplishing efficient rule execution.

The ideas of active DBMS technology are influenced by the fields of knowledge-based
and expert systems, expert database systems, and deductive DBMSs. Techniques from
these fields, like rule-based reasoning and inference techniques, have been adapted to
suit needs emphasised in the database area, such as handling large data sets and efficien-
cy-related considerations.

Active behaviour in AMOS is treated in Risch and Sköld [108], Sköld [109] and Sköld
and Risch [110], that describe the extensions of AMOS with efficient change monitor-
ing techniques using active rules. These techniques could, for example, be used for con-
straint checking in model preparation and result evaluation and for controlling solution
parameters in the engineering analysis process.

3.7 SCIENTIFIC AND ENGINEERING DATABASE TECHNOLOGY

The database field can also be divided into different application areas where the require-
ments on the database technology can vary heavily. The field of scientific and engineer-
ing database technology is the most relevant for this work.

Classical DBMS technology was primarily designed for conventional applications of
business and administration that were characterized by large amounts of data with rel-
atively simple structure, and where the operations on data were small and simple as
well. However, as for instance pointed out by Cattell [85], these techniques have had
less to offer to more complex software applications for supporting mechanical engi-
neering, electrical engineering, document handling, software and systems engineering,
process control, science and medicine, expert systems, and advanced financial applica-
tions.

The field of scientific and engineering applications has been especially emphasised by
several authors, Cattell [85], Navathe and Elmasri [80], Korth and Silberschatz [111],
Loomis [81], and Ullman [112], as an important field for future database support. In the

46

literature there exist a division of database applications into scientific databases and en-
gineering databases. The term “scientific” is usually associated to areas such as life,
earth, space sciences and suchlike where large amounts of “real” data (experimental or
measured data) is handled. On the other hand, “engineering” refers to typical engineer-
ing issues of producing articles from mechanical or electrical components (such as nuts,
bolts, and resistors) to complete complex products or systems (such as cars, aircraft,
power plants, and computers). The engineering process can in itself be quite complex
including several different subprocesses that should be coordinated. For instance a me-
chanical design should be specified, designed, analysed, manufactured, tested, main-
tained, and possibly re-cycled; manufacturing should be prepared and manufacturing
tools should be produced, for instance. A simple product might involve just a few peo-
ple within an enterprise while a more complex product requires the engagement of
many employees with different skills that might span several enterprises. In the engi-
neering field a large amount of data is “synthetic” (that is generated by design tools as
CAD software, or simulation tools).

More specifically, conventional database applications were, according to Korth and Sil-
berschatz [111], characterised by:

• Uniform and equal-sized data items.

• Record-oriented and fixed-length data items.

• Small data items.

• Atomic fields. Record-fields are unstructured and of fixed length.

• Short transactions with an execution time of fractions of a second.

• Conceptual schema changes are infrequent and usually involve only simple modifi-
cations.

Much of the effort in research and development of new database technology aims at
supporting those kinds of new emerging database applications mentioned above. Com-
pared to classical database applications, these applications usually deal with a more
complicated problem domain. They require the representation of a much broader spec-
trum of domain information that involves complex composite concepts of several types
and of non-uniform data items, complex concept structures, associated operations, and
domain knowledge. The conceptual structure also evolves during its life-cycle meaning
that the schema will be exposed to more changes. Further, the usage profile can also be
quite different as data should usually be shared among several project members in a
computing environment. Specific data processing activities typically have much longer
duration in these applications and data exists in several versions which must be kept
consistent. The application part will usually contain much functionality and it is of ma-
jor importance to have a good programming language interface to achieve efficient
communication between the application part and the DBMS. It is also required that the
database application has a performance of, at least, the same level as a conventionally
implemented application. Specifically in engineering applications, data usually incor-

47

porates the following characteristics:

• Engineering designs are in general represented by collections of non-homogeneous
data objects. A specific design object is typically a composition of other design ob-
jects that form a more complex structure than those found in conventional DBMS
applications. Further, these object compositions usually include many domain-spe-
cific relationships. These relationships can be of various types, such as mechanical,
mathematical, spatial, and temporal relationships, and are important in engineering
applications for representing the structure and functionality of the design. In addi-
tion, this type of relationships might need special treatment in the database concern-
ing data structures and access techniques.

• Derived data, i.e. data computed from basic data elements, is important in engineer-
ing applications. This type of data can require a recalculation whenever any under-
lying data element is updated. For instance, the weight of a design and any other
quantity dependent on the weight must be updated whenever the geometry is
changed.

• Engineering data involves many domain-specific types where each type does not
need to include a large amount of instances. However, a complete design can in its
entirety represent a substantial amount of data.

• Engineering domains include a lot of domain knowledge that governs the permissi-
bility and consistency of data. At present, this type of knowledge is usually embed-
ded within applications or explicitly handled be users. By extracting domain knowl-
edge, from applications and users, and representing it as meta-knowledge in the da-
tabase it will be represented more explicitly and become easier to manage.

• Engineering data objects are usually built up by several basic data types for literal,
numerical, and image data (BLOB’s). Numerical data is a central component of en-
gineering data and is usually used in aggregate data items such as in arrays, vectors
and matrices. These numerical data types are used in describing higher-level engi-
neering elements, such as geometries formed by complex compositions of basic ge-
ometry elements. Conventional commercial DBMSs do not normally support data
structures suitable for engineering applications; they mainly support basic data
types such as character strings, integers, and floats (not always). However, these
systems will evolve and provide more complex data types as well and with the in-
troduction of OO DBMSs, this fact does not hold since these usually support aggre-
gate and user-defined data types. On the other hand, this will probably not be
enough. Advanced engineering applications will always demand specialised data
types, such as compact and efficient matrix representations optimized for specific
applications. Extensible DBMSs are able to provide this functionality.

• The domain-specific functionality and behaviour are important aspects of engineer-
ing design that one would like to capture in the database. For example, how a certain
mechanical connection is allowed to move and if it is dependent on other parts in
the design. Representing functionality and behaviour usually includes some kinds
of computations that can be represented by allowing the representation of functions

48

and procedures in the database.

• Engineering data structures are in general more exposed to change compared to data
structures in conventional DBMS applications. Engineering designs evolve contin-
uously during the development process in comparison to conventional database ap-
plications where the structure of data is more static.

• Transactions in engineering applications are typically of longer duration than nor-
mal database transactions that last for fractions of seconds. Design and analysis ac-
tivities may take hours, days, weeks, and even longer to perform. Commercial
DBMSs use locking-techniques that assume transaction times of a few seconds.
However, specific engineering activities can include smaller transactions like up-
dates of a local design that must be kept consistent. Thus, engineering applications
can involve the complete scale from short to long transactions. The profile of up-
dates of engineering design is also quite different from conventional updates that
typically should update single values. It is not uncommon that updates in engineer-
ing applications are far-reaching since many geometrical, topological, and function-
al relationships involve many related objects. Changing a single design object can
imply updates of many related design objects.

• Engineering design and analysis systems must provide configuration and versioning
support. A design passes through several design stages where it can exist in several
related versions and where each version has its own state, specifying if it is released
or is in any other relevant state. The design support system must also permit engi-
neers to work on their own private or local design that is extracted out of and can be
merged into a public or global design representation.

• Engineering computing environments can be of various complexity from single per-
sonal computers to large networks of work stations and including special servers for
data storage (DBMS servers) and processing (super and parallel computers). At
least in the complex case, data can be distributed over the complete network where
responsibilities for specific parts are distributed on specific organisational func-
tions. For instance, there might be different persons who are responsible for geom-
etry data, materials data, and test data. The data that represent the current and com-
plete design can therefore be distributed over the network and subsections of data
do not need to be in the same state at any time. There can also, as already mentioned,
be local copies of specific design objects or other associated objects such as various
analysis models. For instance, for performing some type of mechanical analysis you
might need to retrieve geometry, material, and loading data from different sources
into your analysis model. The analysis can thereafter be carried out and perhaps it-
erated before a satisfactory result has been accomplished. The iteration process
might require alterations of data and data exchange between the local and global
level. At certain “check-points”, inconsistencies between these levels must be re-
solved and updated. Thus, DBMSs might be involved for data management on both
the local and global level for sharing, exchanging, and combining data and for main-
taining consistency between levels.

• Engineering designs can include a lot of repetitive data in forms of nuts and bolts,

49

form features like holes, fillets, or notches. For this type of design object, only dis-
tinct values need to be stored for every instance and general properties can be re-
used.

• Engineering applications usually have higher requirements on execution perform-
ance than conventional applications. Data is typically used in highly interactive and
computing-intensive tasks with high performance requirements that should be
matched by the DBMS as well.

• The amount of engineering data in a design project can be huge. These levels are
expected to rise since more design, analysis, testing, and manufacturing activities
are being computerised and more data is being generated in each activity. DBMSs
for engineering applications must be able to cope with these amounts of data.

Computational mechanics forms a sub-area of mechanical engineering where efficient
computing support is obligatory. In this area, finite element analysis is utilised for ana-
lysing and simulating different phenomena such as mechanical, thermal, fluid, or acous-
tic. FEA software should handle large complex analysis models and algorithms in a
computing environment that involves several other software tools. In this area, database
technology can be introduced for a number of reasons and tasks including:

• The administration and management of FEA models and simulation results, both lo-
cally or globally. This involve administrating geometry, material, and load data,
complete analysis models, analysis results, and the relations between FEA data and
corresponding design objects. There are also other administrative data not directly
related to FEA, such as design project data, that can be relevant for this task as well.

• Sharing, exchanging, combining, and transforming data among different tools and
users. The same basic data, such as data regarding the geometrical form of the de-
sign, might be used by several users or tools. If different tools use the same data but
in different formats, data must be transformed to the appropriate format for specific
tools. The DBMS can provide a uniform and standardised data representation that
suits different tools. Furthermore, a DBMS can be a powerful medium for exchang-
ing data between tools. Geometrical data generated in a CAD program might be
combined with load data from some load handling program, and it can be provided
to an FEA program by means of a data-based representation and retrieval.

• Extending the domain functionality of FEA applications. Additional functionality
can be added to FEA systems by representing and utilising domain knowledge, such
as different types of constraints on, or rules for, the FEA domain. For example, the
DBMS can check if finite elements are too distorted or if calculated stresses exceed
some critical level. Some commercial DBMSs currently provide mechanisms for
defining rules that can detect and react when a certain condition is fulfilled in the
database.

• Extending the system functionality of FEA applications. If an FEA application is
tightly integrated with or developed by means of a DBMS, the final application can
take advantage of generic DBMS techniques for data management including data

50

sharing, distribution and replication of data, concurrency control, transaction
processing, persistency, backup, and recovery. Furthermore, the DBMS provide the
application with a data model, storage management, and a query language and proc-
essor that support application modelling.

• Development, evolution, and maintenance of FEA software. By using generic soft-
ware developments tools, such as a DBMS, applications can be defined at a higher
conceptual level than is normally done in conventional applications. Data is mod-
elled and manipulated at a higher level resulting in more flexible, composable, and
reusable models. Generic subsystems of the DBMS (see previous item) can be used
directly and need not be re-implemented and a great deal of low level implementa-
tion details can be avoided. This will restrict, isolate, and reduce complexity of those
parts of the application that concern the actual problem domain resulting in an ap-
plication that is easier to maintain, evolve, and further develop.

The items concerning FEA and listed above can to various degrees be accomplished
with database technology of today. In general, the first three items can involve a DBMS
that is loosely coupled to the FEA program. Data can be stored in and retrieved from
the database but most of the application functionality is kept within the FEA program.
The DBMS will complement the FEA program by supporting pure DBMS facilities.
The latter two items involve a more tight coupling between the FEA program and the
DBMS. In this situation, database technology is used for developing, and to be an inte-
gral part of, the FEA application. Domain-specific functionality is here transferred from
the FEA program to the DBMS. Various architectural considerations for tightly coupled
systems are further discussed in Section 5.1.

Database technology for scientific and engineering databases has, in for example [1] [2]
[3], been identified as an area where further research is needed to develop database tech-
nologies that meet the requirements of these applications. Much attention has recently
been paid to OO DBMSs which are considered to be specifically suitable for this type
of application. A number of characteristics that favour object-oriented models have
been pointed out by Navathe and Elmasri [80] and Cattell [85]. Object-orientation pro-
vides modelling that is isomorphic to the problem domain, provides complex model
structures, has uniformity of data access, and provides extensible models resulting in a
higher level of modularity and flexibility of the models. The referenced and additional
mechanisms that OO DBMSs provide for supporting advanced data management in-
clude:

• Unique system-provided object identifiers are convenient in engineering applica-
tions that typically deal with unnamed design objects such as point, lines, and sur-
faces in a geometrical model.

• Composite objects are everyday things in the engineering world.

• Referential integrity is important for maintaining consistency within complex engi-
neering models.

• Object-type hierarchies provide an important mechanism for structuring engineer-

51

ing data.

• Ability to store associated procedures in the database supports representation of do-
main functionality.

• Object encapsulation can hide implementation details and provide limited data in-
dependence, but does also restrict the expressibility that can be inconvenient in cer-
tain situations.

• Ordered sets and references are very useful in engineering applications where the
order among objects is used in many situations.

• Large data blocks are applicable, for instance for representing large numerical ma-
trices.

• A programming language interface is important for integration with applications
and for representing domain operators.

• Multiple database versions must be supplied for representing engineering design
versions.

• Long-term lock and check-out mechanisms must be supplied to conform to engi-
neering design tasks.

• Efficient remote and local database access is important since engineering models in-
clude large amounts of data that should be processed and presented to the user.

• Single-user performance is very important since most engineering applications pre-
suppose interactive computer-intensive usage.

• Ease of schema changes supports the representation of evolving designs.

However, DBMSs for new advanced applications also need the support of traditional
database facilities, which is emphasized by Cattell [85] and Stonebraker et al. [89]. The
requirements that engineering applications would benefit from are here presented with
comments on the relation to the previous discussion on engineering data, and are as fol-
lows:

• Ability to store and handle large volumes of structured data persistently.

• Access to query language facilities. A query language in its general meaning, in-
cluding data definition and manipulation is a powerful tool to model and manipulate
domain data. Advanced applications, such as in the field of computational mechan-
ics, require extensible query languages that permit the definition of domain opera-
tors.

• Tools for designing application user-interfaces. Traditional forms-based interfaces
might be useful for administrating engineering data but are not for design and anal-
ysis applications where much data is distributed over space and time. However, new
advanced GUI tools might support the design of form- and geometry-related inter-
faces that can be useful.

52

• Capability of distributed databases can be important for storing engineering data on
several servers in a network.

• Support for triggers or more advanced active rules can be useful for specific tasks
such as automatic checking of analysis results and other design constraints.

• Fine-grained concurrency can be required along with long-running transactions in
engineering applications.

• Crash recovery capability for keeping an engineering database consistent is desira-
ble.

• Data independence is an important aspect since it is a basic mechanism for sharing
data among applications and it is a means to raise the conceptual level in data mod-
elling.

When the application of database technology in advanced engineering applications
spreads, the requirements on DBMSs will be further widened. One such requirement is
the ability to do analysis and synthesis of data in the database, i.e. data should be proc-
essed, analysed, and synthesised by domain-specific database operators instead of
transferring data into the application for processing. This has already received attention
in other areas such as in geographical informations systems (GIS) [113], chemistry
[114], and advanced financial applications [115].

For applications that require specialised data structures, perhaps in combination with
advanced processing algorithms, extensible DBMSs can provide key technology for
implementing these applications. The DBMS can be extended with new data structures
and access techniques that can be seamlessly managed by the system. One example
would be numerical analysis algorithms that are usually based on compact and efficient
matrix representations, such as skyline or sparse matrix representations. These special-
ised representations need dedicated operators for numerical algorithms in linear and
non-linear algebra, and mathematical programming, for example. This approach will be
further discussed in Section 4.1.

A closing comment regarding scientific and engineering data management; there is re-
ally no clear distinction between the areas of science and engineering. The engineering
field also involves much “real” data, such as test data from different activities, and sci-
entific work involves simulated data as well. Further, many computing tools are used in
both science and engineering. Programs for FEA are used in industrial product devel-
opment as well as in research in the computational mechanics field and others.

3.8 QUERY LANGUAGES FOR DBMS

The term query language is commonly used as a synonym for database language
(DBL), i.e. the language interface to the DBMS. These terms where introduced earlier
in this chapter but will here be presented in more detail and complemented with some
general issues and directions of query languages. Query languages are usually higher-

53

level languages than ordinary programming languages. The query language is the actual
data management language that is used for defining, updating, and querying data in the
database. Sometimes, the term query language is only used to refer to the pure query
language, i.e. the part of a database language that concerns querying of data and not data
definitions and updates. It is also quite common to view the database language interface
as a collection of languages for different purposes that include a data definition lan-
guage (DDL) for data definition and schema management, and a data manipulation lan-
guage (DML) for updating and querying the database. The data definition is sometimes
further separated into a DDL, a storage definition language (SDL) for defining the
physical storage schema, and a view definition language (VDL) for defining database
views.

General query languages were first developed for R DBMSs and included SQL, the
most well-known query language that has become the standard query language for R
DBMSs. Other examples of relational query languages are QBE and QUEL.

The field of OO DBMSs still lacks a unified and standardised data model and even more
a unifying query language. However, standardisation efforts are currently being made
in this area within the SQL community, through SQL3 ISO/ANSI [16], and in the OMG
community, through OQL ODMG [17]. A few commercial products do currently offer
object-oriented query facilities like for instance, OpenODB, UniSQL, and Illustra.
Likewise, our AMOS OR DBMS research prototype also include object-oriented query
facilities through AMOSQL. The current trend in this area is to combine relational and
object-oriented database technologies to achieve object-relational query capabilities,
i.e. the powerful query capabilities of relational query languages extended for object-
oriented data models, Kim [90].

3.8.1 Relational algebra and relational calculus

It is common to characterise query languages as being procedural or nonprocedural (al-
so declarative). With a procedural language you specify how to compute the expected
result, whereas by means of a nonprocedural language you specify the desired result
without any computation strategy. Procedural and nonprocedural query languages can
be considered as two basic language forms. Most commercial database languages in-
clude both nonprocedural and procedural parts as in the case of SQL that include a non-
procedural query language.

Two formal query languages, relational algebra and relational calculus, have been de-
fined for the relational data model.

Relational algebra is a procedural query language that defines a collection of operations
for manipulating entire relations. These operations take relations as input and produce
new relations as output. There are operations specifically defined for relations as well
as set operations from set theory. Examples of the former include select , project , and

54

join . As illustrated in Figure 11, the select operator extracts tuples from a relation
whereas the project operation extracts attributes. The join operation combines relat-
ed tuples, from two relations, that fulfil some join condition into single tuples in a new
relation. There also exist several different variants of join operators. Set operations in-
clude union , intersection , difference , and cartesian product . It has been
shown that a basic set of relational operators, consisting of the select , project , un-

ion , difference , and cartesian product , is complete in the sense that they can be
used to form the other relational operators.

Queries in relational algebra are formed by combining operators into an ordered se-
quence. In the example below the start_point and its position is projected from the
resulting table of selecting the lines with line_name “L10” from the straight_line

table.

PROJECT start_point, position(SELECT line_name =
’L10’ (straight_line))

Relational calculus is, in contrast to relational algebra, a nonprocedural query language.
The relational calculus is a formal language based on predicate calculus. Furthermore,
their is one variant of relational calculus, termed tuple relational calculus, where vari-
ables are associated with tuples. There is also a second variant called domain relational
calculus where variables are associated with attribute values.

Figure 11. Illustration of the results of applying three basic relational algebra,
operators, SELECT, PROJECT and JOIN, on relational tables.

For example, for the tuple relational calculus a simple query expression have the form:

{tvar | COND(tvar)}

PROJECT (∏)SELECT (σ)

JOIN (__)

=

55

where

tvar

 is the set of all tuples that satisfy the conditional expression

COND(tvar)

.
Simplified, a conditional expression can consist of atomic expressions including tuple
ranges and comparison expressions. Atomic expressions can be combined by logical
connectives to formulas that can further include quantifiers.

The previous example for relational algebra would have the following form as a query
in tuple relational calculus:

{t.start_point,t.position | straight_line(t) and
 t.line_name = ‘L10’}

The domain relational calculus has a similar structure and it is shown that the expres-
siveness of domain and tuple relational calculi are the same. It has further been shown
that the expressiveness of relational calculus and relational algebra are equivalent. Que-
ry languages that have the same expressiveness as relational calculus are called

rela-
tionally complete

 query languages.

Furthermore, there are other relational data retrievals that can not be expressed by
means of the basic set of relational operators. These include aggregation, recursive clo-
sure, and arithmetic operations together with specialised variants of the basic opera-
tions, such as various join methods.

Most commercial query languages for the relational model include elements of both re-
lational algebra and calculus as exemplified by SQL. Other examples include the query
language QUEL that is based on tuple relational calculus and the graphical query lan-
guage QBE, based on domain relational calculus. Commercial relational query lan-
guages usually have relationally complete query capabilities and they also include com-
mon extended operations. Their capabilities are extended as new versions appear and
their more advanced query facilities will vary between products and versions.

This section has only treated retrieval capabilities of query languages but commercial
query languages also include other features covering operations for data definition, up-
dates, and others.

3.8.2 The SQL language

SQL has become the standard query language for R DBMSs. It was first developed by
IBM and in 1986 for the American National Standards Institute (ANSI) and in early
1987 for the International Standards Organisation (ISO) an SQL standard was pub-
lished, Melton and Simon [82]. A revised and expanded version, known as SQL-92 (al-
so SQL2), was published in 1992. There is further ongoing work on the next generation
of the SQL standard, SQL3, that aims at including support for object-orientation.

The SQL language is a general query language that copes with data definition, interac-
tive data manipulation, embedded data manipulation, view definition, authorisation, in-

56

tegrity, and transaction control.

The data definition part includes operations for creating, altering, and removing tables,
i.e. relations in SQL. In addition to specifying the relations in the database, the DDL
includes commands for defining: schemas explicitly, value domains, indexes, security
and authorisation, integrity constraints, and physical storage structures of relations.

Updates on relations in SQL consist of the

insert

,

update

, and

delete

 commands for
inserting, modifying values of, and deleting tuples in a relation.

Retrieval expressions in SQL are formed by means of the

select

 statement and its ba-
sic structure consist of the

SELECT

,

FROM

 and

WHERE

 clauses with the following syntax:

select

 <attribute list>

from

 <table list>

where

<condition>

where

• The

select

 clause corresponds to the projection operator of relational algebra and
the

<attribute list>

 is the list of attributes that should be retrieved in the query.

• The

from

 clause corresponds to the cartesian product operation of relational algebra,
and where the

<table list>

 is the tables that should be involved in the retrieval

• The

where

 clause corresponds to the selection operator of relational algebra where
the

<condition>

 is a predicate that constrains the attributes in the

from

 clause.

Again, the former example would be expressed in SQL as:

select

 t.start_point,t.position

from

 straight_line t

where

t.line_name = ‘L10’

This was only a brief presentation of a subset of all the functionality of the SQL lan-
guage. A detailed description of the current SQL2 standard is provided in Melton and
Simon [82]. There is further an SQL3 standard proposal, Melton [16], in progress that
suggests major extensions to be made to the SQL language to support object-oriented
methodology.

3.8.3 Object-oriented query languages

Object-oriented query languages are based on an object data model in comparison to
query languages for R DBMS, which usually means SQL, that are based on the relation-
al data model. Hence, in contrast to relational query languages that operate on tables,
object-oriented query languages are designed to operate on sets of objects.

57

The motivation is to provide query language capabilities for the object data model that
are at least as powerful as the relationally completeness of relational query languages.
OO modelling is considered to be richer and more suitable for several kinds of applica-
tions, including scientific and engineering applications, by providing facilities such as
richer data structures, and user-defined types and operations. For instance, data types
for numerical collections are usually supported. Furthermore, the object-oriented model
reduces the impedance mismatch between the DBMS and the application that exists for
the relational data model. Hence, the combination of an object data model with query
facilities provides both the advantages of OO modelling and of R DBMSs, such as de-
clarative data access and query optimization.

There is currently no uniform and standardised specification for an object data model.
However, there are two emerging standards [116], ODMG-93 [17], and SQL3 [16], that
define their own object data model in combination with query facilities. Certain efforts
are also made to try to merge these standards. While ODMG-93, including its query lan-
guage OQL, is more related to OO programming languages, such as C++ and Smalltalk,
SQL3 is built on extensions to the SQL language. The final outcome of these standard-
isation efforts is not settled, and no detailed presentation of their capabilities will be pre-
sented here. It is worth noting that the query language of the O

2

 DBMS [117] is closely
related to the OQL language whereas the query language of Illustra, described in [6], is
built on an earlier specification of SQL3.

The AMOSQL query language, described in Section 4.3, will here exemplify the capa-
bilities of an OO query language. It should be noted that AMOSQL originates from the
OSQL language [15] and includes some unique features not provided in the suggested
standards. These include overloaded multi-directional functions that have been used ex-
tensively in this work. Overloading of functions on multiple arguments is included in
SQL3 but not in ODMG-93. Further, the extensibility of the AMOSQL query processor
that handles optimization of foreign functions is an important property when modelling
applications-specific operations. This capability is not covered in any of the standardi-
sations, but is actually provided by Illustra, and emphasised as an important mecha-
nism.

58

59

4 THE AMOS DBMS AND THE AMOSQL LANGUAGE

AMOS (Active Mediators Object System) [8] [9] is a research DBMS prototype and
conforms to systems classified as

object-relational (OR)

DBMSs. An AMOS prototype
has been developed [9], built on substantial developments of the WS-IRiS main-mem-
ory OO DBMS engine [103]. WS-IRiS was developed at Hewlett-Packard Laborato-
ries, Palo Alto, CA, and is a derivative of Iris [118]. AMOS is further a main-memory
DBMS and assumes that the entire database is contained in main-memory. The AMOS
architecture is tailored for main-memory usage to provide competitive performance
which is confirmed in [103]. The database can be saved to, and restored from, disk to
provide persistency to secondary storage. Optionally, a transactional logging system
supports logging and recoverability of committed database transactions.

The “object-relational” term presupposes the existence of a relationally complete query
language. AMOS includes the AMOSQL query language that provides a declarative
query interface for defining, populating and manipulating the database. AMOSQL is an
extensible and object-oriented query language that is more than relationally complete.
AMOSQL is a derivative of OSQL [15] which is a functional language, originating
from DAPLEX [119]. The AMOSQL query language is further influenced by standard-
isation efforts like SQL3 [16] and OQL [17].

AMOSQL and AMOS allow extensibility at the query language level, the query
processing level, and at the storage management level. These capabilities are important

60

for accommodating tuned representations and operations required by demanding appli-
cations. Extensions to the system can be implemented in external programming lan-
guages like C or LISP (or languages callable by these).

AMOS can be operated as a single-user system, or as a multi-user system using client-
server network communication. In addition prototypes of graphical interfaces to AMOS
have been developed that include web-server capabilities to be able to communicate
with web-browsers.

The next section presents the mediator approach that shows how AMOS servers can be
used as a mediating layer between applications and data sources in, for example, an EIS
environment. The idea of domain-specific mediators is explained. This is followed by
a presentation of the AMOS architecture including the different subsystems that form
AMOS and their interaction. A short introduction to the AMOSQL language is then in-
cluded and, finally, this chapter is completed with a more detailed presentation of the
possibilities of extending and interfacing AMOS.

4.1 THE MEDIATOR APPROACH

Future computer-supported engineering environments will consist of large numbers of
workstations connected with fast communication networks. Each workstation will have
powerful computing and storage capacities to store, maintain, and do computations over
local engineering data and knowledge bases, or information bases. The

mediator

 ap-
proach, Wiederhold et al. [12], Wiederhold [13], and Risch and Wiederhold [14], intro-
duces an intermediate level of software between databases and their use in applications
and by users. The purpose of a mediator is to query, monitor, transform, combine, and
locate desired information between a, possibly heterogeneous, set of applications and
data sources. An external data source can be a conventional DBMS such as an R DBMS
or an OO DBMS, other mediators (other AMOS servers in our case), data files for spe-
cific exchange file formats, as well as data obtained by executing some program.
Figure 12 shows a possible configuration of a mediator system. Since mediators “un-
derstand” application terminology as well as database terminology, they can combine,
and take advantage of, both high-level domain-specific data interaction and efficient
data management.

Several different types of AMOS mediators can be identified including domain models,
monitors, integrators, translators, and locators:

•

Domain models

are complete or partial models of application domains and this type
of mediator is of main importance to this work. This can include the complete con-
ceptualisation of the domain with both concept structures and operators. The exten-
sibility of AMOSQL allows the design of domain models that represent application-
oriented models and operators, i.e. FEA models in our case. This allows for knowl-
edge, now hidden within application programs as local data structures, to be extract-

61

ed and stored in AMOS modules as domain-specific models and operators. The ben-
efits of using domain models include easier access and management through a query
language, better data description (as schemas), and other benefits provided by
DBMSs such as transaction capabilities and ad hoc query processing. The query
processing must be as efficient as customized main-memory data structure represen-
tations to allow the use of local embedded domain models linked into applications
without substantial loss of efficiency. Domain models often need to be able to rep-
resent specialized data structures for the intended class of applications. An initial
study on how the AMOSQL language can be used to model and manage domain
models for product data has been reported in Orsborn [120] [121]. Initial results
from the use of AMOSQL to model FEA domain models have been presented in
Orsborn [7]. Domain models for FEA are further discussed in Section 5.3. It is pos-
sible to use both programmed procedures and high-level query languages for ac-
cessing domain models. Combining general query-language constructs with do-
main-related representations provides a more problem-oriented communication. In-
vestigations show that this approach to data management is more effective
compared to the use of conventional programming languages [76] [122]. The com-
bination of programming and query languages and their pros and cons for data man-
agement are further discussed in Cattell [85].

•

Monitors

 are mediators that manage the detection of significant changes in data (or
in relations among data) that could originate from some sensory data sources or oth-
er updates of data. Active mediators can respond to changes and take action or notify
applications or mediators. The treatment of monitors in AMOS by providing active
rules is discussed in Risch and Sköld [108], Sköld [109], and Sköld and Risch [110].

•

Integrators

 and

translators

. Integrators combine data from several data sources or
other mediators, to form a uniform view of combined data. In the integration process
it might be necessary to first translate data by a translator to obtain a uniform repre-
sentation format. By using this type of mediator, applications can be designed for
one uniform representation and there is no need to maintain multiple data models.
Integration and translation in the AMOS environment is treated in Fahl [123] and
Fahl and Risch [124].

•

Locators

, a generalised form of

name servers

, are servers for locating where infor-
mation is stored among data sources or other mediators in a distributed environ-
ment. An important part in locating information is the ability to treat global queries,
i.e. queries that span several databases. Multidatabase queries for distributed AMOS
systems are treated in Werner [93].

As illustrated in Figure 12, a specific mediating system might require a composition of
several, but maybe not all, types of mediators. Hence, the mediator architecture should
allow a combination of different mediators into a mediator system. It would then be
possible to design dedicated mediators for specific tasks, e.g. for accessing an R DBMS,
for import and export to and from data exchange files, for instance. This type of medi-
ating system can then be accessed by other mediating systems in the network. Further,
the example in Figure 12 illustrates different alternatives for applications to access data

62

in external data sources in the mediator system. In Application 1, only one external data
source is relevant and there is no need to use an integrator to access data. The translator
provides data in a format that can be directly accessed through the embedded AMOS in
the application. The next case, Application 2, includes queries that span over two data
sources that require an integration of data. The final case is a combination of the two
previous situations. Some application queries span several data sources and need inte-
gration whereas other queries only regard data in a third data source that can be accessed
directly through the translator. Each application can further store local data in its em-
bedded database.

Figure 12.

A mediator architecture that illustrates how a combination of different
types of mediators (AMOS DBMSs) is used to mediate data among
applications and data sources. Each application is equipped with an
embedded DBMS.

The domain models are not indicated in Figure 12, but can constitute parts of other me-
diators. That is, an embedded or an integrator AMOS can include domain-oriented
meta-data in their schemas. Meta-data for each application domain that should be han-
dled by a mediator must be available to its schema. Likewise, mediators that should
handle active behaviour must be configured with monitoring capabilities.

E-AMOS

NS-AMOSI-AMOS

T-AMOS

External

Application 1

E-AMOS

Application 2

E-AMOS

Application 3

data source 1

T-AMOS

External
data source 2

T-AMOS

External
data source 3

63

4.2 THE AMOS ARCHITECTURE

The AMOS design intends to provide a lightweight

1

 and open DBMS architecture that
should permit an easy combination and integration with other applications. It should
further facilitate tailoring and extension of the DBMS to suit the needs of demanding
applications as found in the engineering area. AMOS is intended to work as a mediating
software layer among applications and data sources for locating, storing, retrieving, ex-
changing, transforming, and monitoring data.

As illustrated in Figure 13, AMOS can be an embedded database within an application
by directly linking it to the application at compile time. The application and the DBMS
will be executing in the same computer process and be sharing its address space. In ad-
dition, the DBMS can be used in a client-server environment where the applications and
the DBMS have their own computer processes, also shown in Figure 13. The client-
server communication is based on sockets and remote-procedure calls. It is also possi-
ble to define domain-specific packages of specialised data structures and operators, and
integrate them with AMOS. AMOS has the ability to seamlessly define and call foreign
functions (implemented in, or callable from, C or LISP) through the foreign data source
(FDS) interface. More about foreign functions and extensibility of AMOS is presented
in the rest of this section and in sections Section 4.4 and Section 5.2.

The AMOS kernel consists of several subsystems that are responsible for different
tasks. The main subsystems are illustrated in Figure 14 and include:

• The communication with AMOS from external applications is made through an ex-
ternal call-level interface. There are currently interface procedures, that can be
called from application programs, supported for the C and LISP languages. Further,
the interface support both fast-path communication with AMOS and communica-
tion through embedded AMOSQL statements within applications. The fast-path in-
terface is a procedural call-level interface that accesses precompiled database func-
tions directly, bypassing the parsing and optimization steps. Type checking on
AMOSQL function arguments is optional and late bound function invocations are
permitted. In the embedded approach, AMOSQL statements are embedded in appli-
cations and passed as strings to an evaluation function that activates the AMOSQL
parser. Both approaches can be mixed within applications. The same external inter-
face supports both communication with embedded databases and client-server com-
munication as illustrated in Figure 13. AMOS also has a foreign data source (FDS)
interface for external communication with other applications, tailored application
packages, or other AMOS databases as well. See subsequent item on the FDS for
more details on integrating external data sources.

• A

command interpreter

 that is responsible for scanning and parsing of AMOSQL
expressions. The parser passes requests to an appropriate subsystem such as the

1. The AMOS footprint is about 800 KB of code and 800 KB of meta data on HP7xx
series workstations.

64

schema manager, rule processor or the query optimizer. It further dispatches com-
mands to the transaction manager for committing transactions, saving databases and
connecting to databases.

Figure 13. A possible client-server architecture for working with applications

coupled to AMOS. The fast-path interface (FIF) and the embedded
AMOSQL (EQL) can be used to communicate with the DBMS by
applications with an embedded DBMS. AMOS also includes a foreign
data source (FDS) interface for integrating foreign data and operator
representations.

• The schema manager controls all schema operations. This includes creating and de-
leting types, functions, and rules.

• There is also a rule manager that handles rules in the database. Rules in AMOS are
of condition-action type where conditions stated as general AMOSQL queries can
trigger actions to be performed, expressed as general AMOSQL procedural state-
ments. Rule management includes issues such as creation, deletion, activation, de-

CIF

AMOS
Server

A
pp

l.
pa

c.

APPLICATION

FIF EQL

Embedded
AMOS

A
pp

l.
pa

c.
FDS interface

FDS interface

SIF

65

activation, monitoring and execution of database rules. Rules in AMOS are treated
in more detail in Risch and Sköld [108], Sköld [109], and Sköld and Risch [110].

• The foreign data source (FDS) interface of AMOS admits integration of foreign
data structures and operators. Foreign operators are defined and implemented as
multi-directional foreign functions with overloading on all arguments, Litwin and
Risch [103], Flodin and Risch [86], Flodin [87], and Flodin et al. [19]. In AMOSQL,
one can define database operations as foreign functions that are implemented in
some external programming language like C or LISP. An AMOSQL foreign func-
tion is seamlessly integrated within the query language. It is further possible to de-
fine and register new foreign data representations that will be accessible within the
database. Extensibility and foreign functions of AMOS are further discussed and ex-
emplified in sections Section 4.4 and Section 5.2.

• The optimizer is responsible for transforming ad hoc queries, update statements,
functions, and procedures into tractable execution plans using query optimization
and compilation techniques. This process involves the application of transformation
rules and heuristic cost-based query optimization techniques that produce executa-
ble and efficient query plans. By the definition of execution costs for foreign func-
tions (default costs are also provided), the optimizer is able to optimize expressions
that include foreign functions. Query optimization in AMOS and the management
of foreign predicates are treated in detail in Litwin and Risch [103], Flodin and
Risch [86], and Flodin [87].

• The execution plan interpreter handles the processing and execution of optimized
expressions that are represented in an intermediate ObjectLog language, Litwin and
Risch [103]. The execution plan interpreter is, for instance, responsible for dispatch-
ing calls to the FDS interface.

• The logical object manager administers operations on database objects including
OID handling, creation and deletion of objects, and updating of stored functions.
Updates can imply inserting, updating, or removing data in functions whose extents
are stored in the database. An update operation causes the creation of an event that
is passed to the event manager in the physical object manager. Operations on this
level are transactional and are optionally logged. The logical object manager has a
fast path entry for calling preoptimized AMOSQL functions from the call-level in-
terface.

• The physical object manager includes parts for managing all physical operations on
user objects (i.e. instances of user-specified types), system objects (strings, integers,
reals, lists, arrays, vectors, atoms, hash tables, etc.), and event objects (objects rep-
resenting database transactions). Examples of operations are allocation, dealloca-
tion, and access operations. Foreign functions can manipulate the physical object
manager, e.g. to allocate and update user-defined internal storage structures.

• Memory operations are controlled by the memory manager that automatically allo-
cates and deallocates memory, and reclaims memory by garbage collection. Thus,
memory management is implicitly controlled by the DBMS, relieving the program-

66

mer from explicit memory handling.

Figure 14. A schematic view of the AMOS architecture where boxes represent main
functions.

• Since AMOS presupposes that the database resides in main-memory, the disk man-
ager is more primitive in comparison to disk-based DBMSs. It mainly handles
flushing of database images between main-memory and disk for initiation, connec-
tion, or saving of databases.

• The transaction manager controls all transactions to the database by keeping a log

TransactionPhysical object manager

Recovery

FP AMOS IF

Schema
manager

Logical object manager

Rule
processor

Command Interpreter

Optimizer

Execution plan IP

User
obj. mgr.

System
obj. mgr.

Event
obj. mgr.

FDS

IF

External Interface

E-AMOS SQL

Array pac

Appl. pac

Appl. pac

manager

manager

Disk
manager

Memory
manager

67

of all database operations so that transactions can be undone or redone to guarantee
database consistency.

• Optionally, a recovery manager, Karlsson [125], can be activated to ensure database
persistency. The recovery manager is responsible for automatically maintaining
persistency of a database that is exposed to transactions. Persistency and backup,
with respect to secondary storage, is in AMOS accomplished by flushing the log-
file to disk for each transaction and saving the database to disk periodically. By log-
ging transactions to disk, the database can be recovered after a main-memory crash.

The architecture of AMOS permits extensions to be made on all levels that were de-
scribed in Section 3.4 and the extensibility of AMOS will be further discussed in Sec-
tion 4.4.

4.3 THE AMOSQL LANGUAGE

AMOSQL is a functional language with object-oriented extensions and with an expres-
siveness beyond relational completeness. Its basic capabilities include constructs for
database schema definition and evolution, database population and updates, and data-
base queries in terms of the basic data model that includes objects, types, and functions.
It further supports logical operators, arithmetic operators, aggregation operators, nested
subqueries, disjunctive queries, quantification, transitive closures, recursion, multi-da-
tabase queries, Werner [93], and active rules, Risch and Sköld [108], Sköld [109], and
Sköld and Risch [110]. Other main features are capabilities to handle overloaded and
multi-directional functions in combination with late binding, Flodin [87], Flodin and
Risch [86], and Flodin et al. [19]. These facilities can be handled for both regular and
foreign AMOSQL functions.

AMOSQL provides a declarative query language interface to the database. The declar-
ative nature requires optimization of queries before execution can take place to accom-
plish efficient execution strategies. AMOS currently supports three different optimiza-
tion techniques that cover classical exhaustive search and newer techniques based on
heuristics, Litwin and Risch [103] and Näs [126]. By defining additional cost formulas
expressed as AMOSQL functions, the optimizer can be extended to handle costs for,
and optimize queries including, foreign functions.

Extensibility of AMOSQL is further treated in Section 4.4 and for a more detailed pres-
entation of the AMOSQL language, the reader is directed to Flodin et al. [9].

4.3.1 Objects, types, and functions

The data model consists of the basic constructs objects, types, and functions as illustrat-
ed in Figure 15. Concepts in an application domain are represented as objects. There are
two types of objects in AMOS. Literal objects, such as boolean, character string, inte-
ger, real, etc., are self identifying. The other type are known as called surrogate objects

68

that have unique object identifiers. Surrogate objects represent physical or abstract and
external or internal concepts, e.g. mechanical components and assemblies such as a skin
panel or a wing in an aircraft design, finite elements, geometrical elements. System-spe-
cific objects, e.g. types and functions, are also treated as surrogate objects.

Figure 15. The basic constructs and relations of the AMOS data model.

Types are used to structure objects according to their functional characteristics, in other
words it is possible to structure objects into types. Types are in themselves related in a
type hierarchy of subtypes and supertypes. Subtypes inherit functions from supertypes
and can have multiple supertypes. In addition, functions can be overloaded on different
subtypes (i.e. having different implementation for different types). The current type tax-
onomy of AMOS is presented in Figure 16.

Functions are defined on types, and are used to represent attributes of, relationships
among, and operations on objects. Examples of functions for these different categories
might be diameter, distance, and move_point. It is possible to define functions as
stored, derived, procedure or foreign. A stored function has its extension explicitly
stored in the database, whereas a derived, procedure, or a foreign function has its exten-
sion defined in an AMOSQL query, an AMOSQL procedure, or a function in an exter-
nal language. Furthermore, functions can be defined as one- or many-valued and are in-

TYPES FUNCTIONS

OBJECTS

op
er

at
e

on

pa
rti

ci
pa

te
 in

classify

belong to

op
er

at
e

on
pa

rti
ci

pa
te

 in

defined with

constrain

defined w
ith

constrain tri
gg

er
m

on
ito

r

RULES

69

vertible when possible. Stored and some derived functions can be explicitly updated us-
ing update semantics but other functions need special treatment for updates. Advanced
OO query-languages also provide object views [127] capabilities to support data inde-
pendence. In AMOSQL, views are supported through derived functions. Functions pro-
vide an associative access to objects and are uniformly invoked independently of
whether they represent stored or derived data. This makes it possible to change the un-
derlying physical object representation without altering the access queries. Since func-
tions can be optimized they support a higher level of data independence than methods.

Figure 16. The current type taxonomy of AMOS with text-boxes indicating entities
and arrows indicating is-a relationships.

Functions can further be overloaded, i.e. functions defined for different combinations
of argument types can share the same name. This is also referred to as a special form of
polymorphism. The selection of the correct implementation of an overloaded function
is made at function invocation based on the actual argument types. A variant of an over-

Amos

Type

Function

Rule

Object

User type

Relation

Literal

User type obj.

Index

Cursor

Saga

Monitor Monitor inst. Monitor act.

Number

Charstring

Tuple

Multiset

Boolean

Bag

Vector

List

Relation

Boolean

Bag int.

Bag real

70

loaded function, i.e. a specific implementation, is called a resolvent. AMOS supports
overloading for all four basic types of functions and automatically handles the selection
of early binding (compile time) and late binding (run time) of functions. Overloading
of functions on the result types is not currently supported.

In addition, AMOS supports multi-directional functions, i.e. a function can be applied
for different binding patterns. A binding pattern defines which of the arguments and the
results that are bound, and which that are unbound, in a function invocation. In this way,
functions can be applied for several “directions”, or binding patterns, making the func-
tion similar to a relation. For stored, derived, and procedural functions, this multi-direc-
tional capability is automatically supported where applicable. In the case of foreign
functions, the user must explicitly define the applicable variants of the multi-directional
function.

A thorough presentation of the AMOS treatment of overloading and multi-directional
functions is given in [19] [86] [87].

4.3.2 AMOSQL data management

AMOSQL provides statement constructs for typical database tasks, including data def-
inition, population, updates, querying, flow control, and session and transaction control.
Data schemas can be defined, modified, and deleted by means of AMOSQL statements.
The definition of types, functions, and objects is performed through a create state-
ment. For example, types may be defined by a create type statement as:

create type named_object(name charstring);

create type fea_object subtype of named_object;

create type element subtype of fea_object;

create type node subtype of fea_object;

where a stored function, name, is defined as a character string within the parentheses of
the named_object type. A new type becomes an immediate subtype of all supertypes
provided in the subtype clause, or if no supertypes are specified, it becomes an imme-
diate subtype of the system type UserTypeObject .

Functions can also be defined separately from the types by a create function state-
ment, exemplified by the nodes function that relates elements to nodes:

create function nodes(element e1) -> bag of node n as stored;

A database is populated with objects with a create type statement with or without
initialisation of functions, and where type stands for the specific type to be instantiated.

For example, some nodes and elements can be created by the following statements1:

71

create node (name) :n1 (“n1”),
 :n2 (“n2”),
 ...
 :n16 (“n16”);

create element (name, nodes)
:e1 (“e1”, bag(:n1, :n2, :n6, :n5)),
:e2 (“e2”, bag(:n2, :n3, :n7, :n6)),
...
:e9 (“e9”, bag(:n11, :n12, :n16, :n15));

Derived functions are defined in a similar manner as stored functions with a single
AMOSQL-query as the function body. An example of a derived function is presented

as the topology function below1:

create function topology(element e1) -> element e2 as
select distinct e2

for each element e2
where nodes(e1) = nodes(e2) and

 e1 != e2;

The topology defines how elements are related to each other. When the topology func-
tion is accessed, it derives the elements e2 that have some common node with element
e1, i.e. the elements that are connected to a given element. An example shows the to-

pology for elements 1 and 5, respectively2.

name(topology(:e1));
“e2” “e4” “e5”

name(topology(:e5));
“e1” “e2” “e4” “e6” “e8” “e9” “e7” “e3”

Querying a database for objects having specified properties is made using a select

statement. For instance the nodes of :e1 in the example earlier can be retrieved by the
following query:

select name(nodes(:e1));
“n1” “n6” “n5” “n2”

Functions are also invertible (not always) and it is therefore possible to use the nodes

1. Variables preceded by colon, such as :n1, are global interface variables used by
AMOSQL to hold query results temporarily during a session and to share values
with foreign languages.

1. The “=” operator in this case compares each element in the bags.
2. Functions can be composed in accordance with the DAPLEX semantics [119]. This

means that if the result of an inner function is multiple-valued, the subsequent outer
function is applied to each value.

72

function in the opposite direction which can be expressed as:

select name(e) for each element e where nodes(e) = :n1;
“e1”

Deletion of types, functions, and objects is performed through a delete statement as:

delete type element;
delete function nodes;
delete :e1;

In addition to database population by object creation and attribute assignments it is pos-
sible to use function update statements set , add, and remove , and type update state-
ments add and remove . Examples of update statements for functions are:

set nodes(:e1) = bag(:n1, :n2, :n6);
add nodes(:e1) = :n5;
remove nodes(:e1) = :n2;

A more complete presentation of data management capabilities in AMOS and
AMOSQL is presented in [9].

4.4 EMBEDDING, INTERFACING AND EXTENDING AMOS

The two basic alternatives for connecting applications to AMOS are either through a
tight or a loose connection.

In the tight connection, or embedded DBMS connection, AMOS is directly linked to-
gether with a C-based application program. Since this means that the application and
AMOS are executing in the same address space, it provides the fastest connection pos-
sible. By using a driver program in C that initialises AMOS and catches AMOS errors,
the DBMS can be linked to the application as a C-library. A possible disadvantage with
this approach is that execution errors in the application may cause AMOS to crash.

For the loose connection, or the client-server connection, the application can work as a
client to an AMOS server. A client-server connection permits that several applications
access the same AMOS server concurrently. In this situation, the application and
AMOS are executing in different Unix processes. This approach makes the AMOS
server more resistant to execution errors in the application. If an application crashes, it
will not afflict the AMOS server. The main disadvantage in this approach is the over-
head of the inter-process communication. In comparison to the tight connection, the ac-
cess time can be several order of magnitudes higher in this loose connection.

For both these types of connections there are two possibilities to communicate with

73

AMOS from the host language of the application; either through the embedded query
interface or through the fast-path interface. Currently, the host language should be C
(or being able to call C), since the interface routines are available in C.

In a tight connection, the embedded query interface, AMOSQL statements can be exe-
cuted from the host language by calling an AMOSQL execution procedure that takes
strings of AMOSQL statements as input. After evaluating the AMOSQL statement, it
returns the value of the evaluation as the result. Carrying out the evaluation means that
the parser and the query processor must be activated for interpreting and executing the
statement.

This can be avoided by using the fast-path interface through which calls to predefined
and preoptimized AMOSQL functions can be made directly, thereby evading the pars-
ing and query processing step. It should be noted that using the fast-path, instead of the
embedded query interface, is significantly faster. According to [9], the difference is up
to two orders of magnitude. The normal database-access from the application should
use this technique of defining AMOSQL functions for database-related application op-
erations and later invoke them from the application using the fast-path interface.

In addition to the procedure for using the embedded query and fast-path interface, re-
spectively, the inter-process communication must be activated when the client-server
connection should be used.

For transferring data between the host language and the database AMOS uses object
handles, i.e. logical references to C data structures stored in the database. An operation,
termed dereferencing, can convert the object handle into the C pointer that refers to the
corresponding data record. The interface library provides routines for managing data
referenced by object handles, such as primitives for declaring, assigning, deassigning,
and dereferencing object handles.

Furthermore, AMOS includes an embedded Lisp interpreter that provides similar capa-
bilities (and sometimes simpler) for exchanging Lisp data with the database as was de-
scribed for C. There also exist interface routines between C and Lisp.

According to the previous Section 3.2, there were three categories of extensibility that
could be identified for an extensible DBMS. These were query language, query proces-
sor, and storage manager extensions. AMOS is extensible on all these levels.

At the query language level, the user can define application-specific types and opera-
tions using AMOSQL. How users can create new types in AMOSQL was described in
Section 4.3, that also included examples on how to define operations as AMOSQL
functions.

It is further possible to seamlessly extend AMOSQL with new database operations by

74

defining AMOSQL functions as foreign and using a conventional programming lan-
guage (such as C or Lisp) for their implementation. This is done by means of the foreign
function interface that allows AMOSQL to communicate with external programming
languages.

AMOSQL foreign functions can be uni-directional or multi-directional. A uni-direc-
tional function is a normal function with the simple intention to compute the result (one
or several) given the values of its arguments. The following example shows how to de-
fine a uni-directional function abs , that computes the absolute value of a number using
a foreign Lisp function:

create function abs(number n1) -> number n2 as

foreign abs.number.number;

where abs.number.number is the name of the Lisp function that implements the abs

AMOSQL function. The abs.number.number implementation only includes a call to
the Lisp abs function:

(define abs.number.number (obj osql:n1 osql:n2)

(osql-result osql:n1 (abs osql:n1)))

Like AMOSQL functions, foreign functions can be multi-directional. A multi-direc-
tional function is defined, and can be applied, for different binding conditions. The
binding conditions state the admissible combinations of bound and unbound (free) ar-
guments and result variables for a certain function and are defined in a binding pattern,
i.e. a list of - (bound) and + (free) symbols. For uni-directional functions, the arguments
are always bound and the results are unbound that state the (- +) binding pattern for the
abs function. The reasons for having this multi-directional capability include a reduc-
tion of the number of operator signatures that are necessary for a specific amount of
functionality and that the query optimization is enhanced. By reducing the number of
operations while keeping the functionality will further result in simpler domain models
and support reusability. To exemplify this capability we show how the minus function

can be implemented by inverting the plus function1.

create function minus(number n1, number n2) -> number n3 as

select n3 where n3 + n2 = n1;

Here, the definition of the minus AMOSQL function reuses the plus multi-directional
foreign function and for different possible binding patterns the correct variant of the
plus function will be applied. The definition of the plus function must be made for
each applicable binding pattern. The most obvious ones are those that correspond to one

1. The “+” operator is in-fix syntax for the plus function. Furthermore, the minus
and plus functions are actually system-provided functions but are here used in a
simple example to include most of the interesting ingredients.

75

free argument or result. This gives us the following three definitions1:

create function plus(number n1 bound,
 number n2 bound) -> number n3 free

as foreign plus.number.number.number--+;

create function plus(number n1 bound,
 number n2 free) -> number n3 bound

as foreign plus.number.number.number-+-;

create function plus(number n1 free,
 number n2 bound) -> number n3 bound

as foreign plus.number.number.number+--;

In similarity with the abs function, each plus is implemented by a foreign Lisp func-
tion. The plus (and the minus) function can now be applied with either of the binding
patterns. For instance, to find the sum and the difference of two numbers would look
like:

select n3 for each number n3 where plus(:n1,:n2) = n3;

select n3 for each number n3 where minus(:n1,:n2) = n3;

Furthermore, again in correspondence with AMOSQL functions, AMOS can handle
overloaded foreign functions with overloading on all arguments. This makes it possible
to define foreign functions for different combinations of argument types and AMOS
will be able to select the correct variant at invocation. Examples of the use of overload-
ed foreign functions are given in Section 5.2.

The query processor must know about the cost of different operations to be able to per-
form query optimization. For this reason, the query optimizer of AMOS can be extend-
ed with cost hints for foreign functions, making it possible to optimize queries that in-
clude foreign functions. A cost hint currently consists of two values, one that represents
the cost of the operation and another that represents the size of the result. Cost hints can
be provided as absolute values, by evaluating a cost hint function, or by a default hint
if no cost hint is supplied. There are additional possibilities for extending the query
processing that is exemplified in Näs, [126], that treats the extension of AMOS with
new optimization techniques.

The AMOS storage management system further allows the extension of AMOS with
new storage types, i.e. different types of physical data records. The storage manager is
responsible for allocation and deallocation of physical objects that are referenced
through object handles. The foreign function interface provides primitives for defining

1. The syntax used here is adapted to a planned AMOSQL evolution that slightly sim-
plifies the definition of multi-directional functions.

76

this kind of new data storage types. AMOS maintains a global type table with informa-
tion about the properties of the built-in physical storage types, such as integer, real,
string, object, etc. The introduction of a new storage type is made by expanding the type
table with a new entry with information that includes the type name, size, allocation
method, deallocation method, and more. In addition, each storage type should have a
corresponding C record template that should include type information, a reference
counter, and the data part. This capability can be used to define tailored data structures,
required in many scientific and engineering applications, that can be made available in
AMOSQL.

The AMOS System Manual [128] treats most of the issues discussed in this section in
more detail. Various aspects of foreign functions are discussed in Litwin and Risch
[103], Flodin and Risch [86], Flodin [87], and Flodin et al. [19].

77

5 THE FEAMOS APPROACH

This chapter describes the FEAMOS system in more detail, starting with a recapitulation
of the motivation for the approach of using database technology as a basis for implement-
ing FEA applications. The next section presents the FEAMOS architecture that shows
how the previously presented AMOS architecture is specialised for FEAMOS. The in-
ternal architecture shows how the FEAMOS application is designed, which is followed
by an illustration of how it fits in a mediator-based EIS environment. After the architec-
tural description, there is a section that describes the design and implementation of the
matrix and array data sources that extend AMOS with storage structures and operations
suitable for numerical and linear matrix algebra within the database. The subsequent sec-
tion describes the current FEA domain model that has been developed for the FEA do-
main. The presentation of this high-level FEA domain modelling is divided into subsec-
tions that cover specific parts, including: geometry, mesh, boundary, solution algorithm,
result interpretation. The final subsection treats performance issues for the current im-
plementation status of FEAMOS where comparisons are made with TRINITAS.

The FEAMOS system consists of the TRINITAS FEA application equipped with a local
embedded AMOS DBMS linked to the application. By using this approach the applica-
tion gains access to general database capabilities tightly coupled to the application it-
self. On the external level, this approach facilitates data mediation among applications
and data sources in the EIS environment. Furthermore, this provides the application in-
ternally with complete DBMS capabilities.

78

The basic idea in the FEAMOS approach is to use database technology as a basis for
developing the FEA application. In our case, the conventional database approach of
only storing and accessing data is also extended with the possibility to perform applica-
tion-specific operations on data within the database. In this context, we use the term
computational database technology to provide a vocabulary for referring to database
technology that supports applications with a major need for computational support,
which is here exemplified by FEA for computational mechanics.

To recapitulate, we have identified certain database technologies that we think are im-
portant and suitable as computational database technologies for this task. These key
technologies are main-memory resident, extensible, and object-relational database
technologies in combination with the domain model concept.

Main-memory DBMSs, such as AMOS, are prerequisites for the embedded database ap-
proach and to support processing efficiency comparable to that of programming lan-
guages.

Extensibility should be provided for the query language, the query processor and the
storage manager. The query language extensibility of AMOSQL provides user-defined
types and operations and supports powerful means for flexible domain modelling while
letting the DBMS perform data access optimization. AMOSQL also provides extensi-
bility of the query optimizer, which permits the introduction of more complex domain-
specific cost models that reflect certain aspects of the application domain. For example,
costs for numerical operations or solution accuracy of numerical calculations can be in-
cluded in the cost models. Thus, the query optimization can influence the choice and
tuning of operators in FEA. Furthermore, the AMOS storage manager can be extended
with tailored data representations that can be specialised for numerical operations or
other application-critical tasks.

The term object-relational presupposes the existence of an extensible OO query lan-
guage. The AMOSQL query language provides the application with a declarative ac-
cess language to the database. A declarative query language in combination with query
optimization supports high-level modelling with powerful capabilities for data inde-
pendence. In addition, AMOSQL has the unique capability of supporting multi-direc-
tional functions with overloading on all arguments that extends the modelling capability
and increases the possibility of reuse. Query languages also make it possible to make
advanced ad hoc queries concerning the contents of the database. This might be de-
manded by advanced users and is quite useful since it is impossible to foresee the com-
plete information needs.

These database technologies form the basis for the FEAMOS approach to define do-
main models that represent a conceptualisation of the FEA domain and which can take
advantage of DBMS functionality for its definition, compilation, and optimization.

79

5.1 THE FEAMOS ARCHITECTURE

The architecture for the integrated FEAMOS system is illustrated in Figure 17. The ap-
plication and the database are linked together and communicate through the fast-path
interface (FIF) provided by AMOS. This makes it possible to call precompiled and pr-
eoptimized database functions. Query expressions can also be sent to AMOS using the
embedded query language interface (EQL). Furthermore, through the foreign data
source (FDS) interface the DBMS can access application-specific packages that can in-
clude specialised data structures and operations.

By this approach the application gains access to general database capabilities tightly
coupled to the application itself, providing a storage manager, data model, database
schema, database language and processor, transaction processing, and remote access to
data sources. Internally, the architecture provides the application with powerful and
high-level modelling capabilities through the object-relational query language. This in-
cludes object identifiers, subtyping, inheritance, views, overloaded and multi-direction-
al functions, and foreign functions. The modelling capabilities make it possible to de-
sign database schemas that possess both physical and logical data and operator inde-
pendence. Hence, the query language modelling supports and facilitates high-level
application modelling that increases flexibility, composability, and reusability of do-
main conceptualisations.

Figure 17. The FEAMOS architecture with the AMOS DBMS embedded within the
TRINITAS application. for working with applications coupled to AMOS.
Currently the fast-path interface (FIF) is used but the embedded
AMOSQL (EQL) is also available for applications with an embedded
DBMS. A matrix package is integrated with the DBMS as a foreign data
source (FDS).

M
at

rix
 p

ac
.

TRINITAS

FIF EQL

Embedded
AMOS

FDS interface

C
lie

nt
 IF

80

On the external level, this approach supports, among other things, concurrency, inter-
operability, data exchange and transformation, data and operator sharing, data distribu-
tion among applications and data sources in the EIS environment as illustrated in
Figure 18. Different AMOS mediators can be combined for locating, translating, and
integrating data in various data sources for the applications. Ultimately, the DBMS can
decide how and where to execute a query, using query optimization techniques. By pro-
viding several mediators with the same application package, as illustrated by the matrix
package in Figure 19, it will be possible to decide where the execution should take
place.

Figure 18. A mediator-based EIS architecture that illustrates how a combination of
different types of mediators (AMOS DBMSs) is used to mediate data
among applications and data sources. Each application is equipped with
an embedded DBMS.

Figure 18 shows an example of how an EIS environment could be extended with data
management capabilities by taking advantage of the mediator approach. Each applica-
tion can have its own embedded DBMS (E-AMOS) that can communicate with other
mediators. For example, an integrator (I-AMOS) and possible translators (T-AMOS),
can support the FEA application to retrieve analysis data that reside in a relational da-
tabase (RDB) or in a STEP import file. The CAD application can provide geometric

FEA

E-AMOS

PDM

E-AMOS

NS-AMOS

T-AMOS

RDB

I-AMOS

S-AMOS STEP file

T-AMOST-AMOS

OODB

CAD

E-AMOS

CAx

E-AMOS

81

data through its own mediator to a database server (S-AMOS). An OO database
(OODB) can be used for long-term storage of FEA data. A product data management
(PDM) system can be used for administrating product data in the EIS system. The name
server (NS-AMOS) is used to locate where data is stored. The domain models that cover
the different applications are parts of the global schema of the mediator system.

Figure 19. A possible client-server architecture for working with applications
coupled to AMOS. The fast-path interface (FIF) and the embedded
AMOSQL (EQL) can be used to communicate with the DBMS by
applications with an embedded DBMS. AMOS also includes a foreign
data source (FDS) interface for integrating foreign data and operator
representations.

It is of vital importance for the application to preserve the execution efficiency while
adding functionality to the system. There are several factors that influence the overall
performance in database systems where conventional engineering applications are com-

CIF

AMOS
Server

M
at

rix
 p

ac
.

TRINITAS

FIF EQL

Embedded
AMOS

M
at

rix
 p

ac
.

FDS interface

FDS interface

SIF

82

bined with DBMSs. In the present approach execution efficiency is supported by main-
memory processing, query optimization, and extensibility. Most important is the ability
to have an embedded main-memory database where the application can access and up-
date data through a fast-path interface using precompiled and preoptimized database
functions.

Generally, execution efficiency is also supported by the query processor that has the
ability to optimize access paths and operator ordering. This is especially important in
complex modelling situations where the optimizer automatically can choose a good ex-
ecution order. This simplifies the design of the database and frees the programmer from
specifying the exact execution order which can be stated in higher-level terms. By pro-
viding the application with general and efficient data representations in the DBMS,
these become directly available to the application and need not be re-implemented.

The AMOS extensibility with foreign data sources, i.e. packages of specialised data
representations and operations, makes it possible to provide efficiency for critical activ-
ities. For instance, FEA involves large amounts of numerical data that must be repre-
sented and processed effectively. This requires data representations that are tuned for
numerical operations, such as compact matrix representations.

Furthermore, specialised representations and operations in the DBMS are also required
to avoid unnecessary duplication and transformation of data. If suitable data represen-
tations and operations are not available, data must be moved, and maybe transformed,
to and from the DBMS for processing. Hence, the location of data and processing and
data representation can be critical for processing efficiency, as also indicated in Stone-
braker and Moore [6].

Three basic situations can be identified that reveals the problems of data and processing
location:

1. Both data and operations are located in the application. This is one of the extreme
cases where no DBMS is engaged and, accordingly, there are no DBMS capabilities
and the location problem has no relevance.

2. Data is located in the database but the operations are located in the application. In a
conventional R DBMS, where data is stored in tables, data might need both to be
transformed to a suitable format and duplicated into the application. By using an ex-
tensible DBMS, the data transformation can be avoided but data must still be dupli-
cated into the application for processing. The same holds for the opposite case and
direction, but this case is probably not so common, where data is located in the ap-
plication and the operations are available in the DBMS.

3. Both data and operations are located in the database. If appropriate data representa-
tions are available, data duplication and transformation can be avoided.

It should be noted, that the DBMS can provide indexing techniques that speed up data
access. In general, it is also wise to make data reductions, such as filtering, within the

83

database before data is transferred to the application. Hence, to take full advantage of
the DBMS capabilities might require that certain parts of the application-specific oper-
ations should be performed by the DBMS. If this were solved for existing applications,
it might imply a severe redesign of the application logic.

The size and number of data items must also be considered in evaluating where to locate
data and operations. These kind of decisions, of where the processing should take place,
could also be supported by the query processor. By defining appropriate cost measures
for operators at different locations, the execution can directed to the one (or even sev-
eral) of the servers in a network that is most cost-effective.

In FEAMOS, a manipulation of an application object through the TRINITAS user in-
terface, or by an application procedure, implies an immediate update of the database.
For example, when a point is moved on the screen it is a database point object that is
updated. Thus, since application data is only stored in one place, data redundancy and
inconsistency can be avoided.

With the availability of the query language it is further possible to query the contents in
the database through the query language interface of the database. For example, we are
currently using a www-interface in AMOS to connect a www-browser to the DBMS for
interactive query access.

5.2 EXTENDING AMOS WITH LINEAR MATRIX ALGEBRA

One main idea in this work was to provide analysis capabilities in a database environ-
ment that can support the needs of scientific and engineering applications. As the usage
of database techniques will increase in scientific and engineering disciplines the re-
quirements on analysis capabilities will grow. Scientific and engineering applications
are computationally intensive applications and the idea is to provide numerical analysis
capabilities within the database environment to support the processing needs of these
applications. The foreign data source for arrays, described in the next section, was de-
signed and implemented with the intention to use it for implementing support for nu-
merical linear algebra in AMOS.

By providing both data structures suitable for these applications and corresponding op-
erations that are relevant it is possible to choose where the data should be located and
where the processing should take place. Data transportation between the application and
the database that are not required can be eliminated. Further, the types of analysis capa-
bilities, together with the proposed architecture described in Section 4.2 and Section
5.1, that involve local embedded databases within applications, can provide new pow-
erful techniques for developing scientific and engineering applications.

Hence, we would like to have numerical matrices in the database, not only the array data
structure. This makes it possible to perform operations on matrices, producing new or

84

modified matrices, compared to only accessing the physical array data structure. There
are several research examples of how to provide this functionality in applications using
a conventional approach, i.e. numerical analysis packages in programming languages.
This includes both traditional programming languages, such as FORTRAN and C, An-
derson et al. [129], as well as OO languages, such as C++, CommonLisp (including
CLOS), OO dialects of Pascal, and Smalltalk, Baugh and Rehak [38], Fenves [39],
Forde et al. [40], Filho and Devloo [41], Dubois-Pelerin et al. [42], Williams et al. [43],
Scholz [44], Baugh and Rehak [45], Mackie [46], Ross et al. [47], Raphael and Krishna-
moorthy [48], Yu and Adeli [49], Hoffmeister et al. [50], Arruda et al. [51], Devloo
[52], Eyheramendy and Zimmermann [53], Gajewski [54], Ju and Hosain [55], Shep-
herd and Lefas [56], Langtangen [57], Cardona et al. [58], Zeglinski et al. [59], Lu et al.
[60], Dongarra et al. [130], Dongarra et al. [131], and Barton and Nackman [132]. Our
approach shares several ideas with the programming-language approach and further ex-
tends the ambitions in terms of expressibility and functionality by providing query-lan-
guage integration and database facilities. Likewise, we extend the conventional data-
base approach of only storing and accessing data with capabilities for numerical analy-
sis within the DBMS. By having matrix types in the database it is possible to extend the
query language with operations on matrices to form an algebra for the matrix domain
that can be used in application modelling. It would further be possible to introduce spe-
cial query optimization methods for numerical data processing to support automatic op-
timization of execution plans for numerical methods. This could, for instance, include
decisions for selecting a suitable data representation, solution method, and processing
location.

The need to include data storage types for collections of numerical data in DBMSs has
been emphasised by several authors including Sarawagi and Stonebraker [133], Maier
and Vance [3], Maier and Hanson [134], Vandenberg and DeWitt [135], Libkin et al.
[136], Rotem and Zhao [137], and Seamons et al. [138]. In these works they mainly ad-
dress the issue of providing numerical storage types from a secondary-storage perspec-
tive. An issue for future work would be to investigate how these techniques could be
combined with the approach in this work focusing on main-memory representations.

5.2.1 Linear algebra for finite element analysis

A central problem in the present application domain of FEA is the solution of linear
equation systems. This is a characteristic that is shared among many formulations of
scientific and engineering problems. The solution process of linear equations is illus-
trated by an example from the FEA domain. First, the multiplication of general matrices
can be expressed by the equational relation,

 (50)

where matrix A times matrix B is equal to matrix C. If A and B are known and fulfil
certain properties we can calculate C by matrix multiplication. In some cases it is also

A B C=

85

possible to calculate A or B if the two other matrices are known. However, this is not
as straightforward as in the former case since it usually involves the solution of some
kind of equation system.

A specific case, but central in scientific and engineering computations, is the case where
Eq. (50) forms a linear equation system. In this case, the equation system is composed
of one square matrix A, and two column matrices b and c.

In the FEA domain, the solution of these types of equation systems is a central issue. A
common problem in this domain is to solve an equation (stated earlier in Section 2.3 as
Eq. (30)) of the form

. (51)

Recalling from Section 2.3, that in the treatment of linear elasticity problems, K is usu-
ally called the stiffness matrix, a the displacement vector, and f the load vector. Further,
in linear elasticity, the stiffness matrix is symmetric and non-singular. If appropriate
boundary conditions are enforced and the equations corresponding to fixed displace-
ments are eliminated, the resulting submatrix of K will become positive definite.

These types of linear systems are usually solved by transforming the equation system
into one or several equation systems that are simpler, but equivalent, to solve. In the
FEA domain, this process usually involve a decomposition of K into a set of matrices.
There are various decomposition methods, but a common method in FEA decomposes
K into three matrices as

 (52)

where L is a lower unit triangular matrix, D is a diagonal matrix, and U is an upper unit
triangular matrix. Unit triangular matrices have unit values in its diagonal. Furthermore,

for non-singular symmetric matrices it holds that U = LT, Golub and van Loan [139].

This decomposition method is called LDLT decomposition, or Crout decomposition.
Further, due to the symmetry, this decomposition reduces the amount of computation
work to perform. It can also be computed without engaging the right-hand side of Eq.
(51) in contrast to conventional Gauss elimination techniques. Alternative decomposi-
tion methods can be added to cover additional problem classes.

Hence, Eq. (51) can be transformed into the equivalent form

. (53)

Now, by introducing the intermediate quantities y and z, Eq. (53) can be solved by,

K a f=

K L D U=

U
T

 D U a f=

86

 (54)

where the first and last equation systems are triangular systems and the mid system is a
diagonal system or linear scaling. As we shall see later, Eqs. (54) can be solved in a
straightforward manner.

5.2.2 Matrix algebraic concepts

Some matrix algebraic concepts will be introduced where the notation mainly follows
that of Golub and van Loan [139]. The vector space of all m-by-n matrices is denoted

by the m-by-n scalar field , where normally S ∈ R, the set of real numbers. How-
ever, due to the computational requirements it might be necessary to extend the types
of matrix representations such that S belongs to one of Z (the set of integers), Rf (the set
of four-byte reals), and Rd (the set of 8-byte reals). This means that matrices can have
integer, float, and double representations. If matrix expressions were to allow mixing
matrix types, this must be taken care of in the definition of matrix operations. This dis-
tinction is left out in the subsequent presentation of matrix concepts.

Thus, for a matrix A we have,

, where (55)

Here, aij represents the element of A at row i and column j.

Basic matrix algebraic operations of matrices can now be introduced. The conventional
approach introduces matrix algebraic operations as functions that take matrices as argu-
ments and produce new or altered matrices. Here, a somewhat different approach will
be applied. Since the query language AMOSQL allows the definition of multi-direc-
tional functions, it is possible to define operations on matrices as relationships that are
isomorphic to the corresponding mathematical expressions. In Golub and van Loan,
[139], operations are represented by the notation, where the arrow associates to
a one-directional function application. In the present context, this notation is replaced
by the notation that is more associated to bi-directional or multi-directional re-
lationships. However, it should be noted that this notation does not imply that the rela-
tionship exist, or is defined, for every direction that corresponds to the combinations of
matrix types.

U a y=

D y z=

U
T

 z f=

S
m n×

A S
m n×∈ A⇔ ai j()

a11 … a1n

: :
am1 … amn

= = ai j S∈

a b→

a b↔

87

Hence, the basic operations on matrices include:

• addition:

, where with the elements

• subtraction:

, where with the elements

• multiplication:

, where with the elements

• transposition:

, where with the elements

There are also operations on combinations of scalars and matrices that include:

• multiplication of scalar and matrix:

, where with the elements

• multiplication of matrix and scalar:

, where with the elements

• division of scalar and matrix:

, where with the elements

In addition we have the normal scalar arithmetic operations:

• addition: , where

• subtraction: , where

• multiplication: , where

• division of scalar and matrix: , where

We should note that the matrix concept defined above covers general m-by-n matrices.
By making restrictions on this definition it is possible to define specialised categories

of matrices that forms subspaces of the vector space . For instance, we can define

• , representing the general rectangular matrix, .

S
m n×

S
m n×× S

m n×↔ A B+ C= ai j bi j+ ci j=

S
m n×

S
m n×× S

m n×↔ A B– C= ai j bi j– ci j=

S
m r×

S
r n×× S

m n×↔ A B⋅ C= aik bkj⋅
k 1=

r

∑ ci j=

S
m n×

S
n m×↔ A

T
B= aj i bi j=

S S
m n×× S

m n×↔ a B⋅ C= a bi j⋅ ci j=

S
m n×

S× S
m n×↔ A b⋅ C= ai j b⋅ ci j=

S
m n×

S× S
m n×↔ A b⁄ C= ai j b⁄ ci j=

S S× S↔ a b+ c=

S S× S↔ a b– c=

S S× S↔ a b⋅ c=

S S× S↔ a b⁄ c=

S
m n×

S
m n×

Arect

88

• , representing a square matrix, , with the same number of rows and

columns.

• , a square matrix with the additional constraint that represents a

symmetric matrix, .

• , a symmetric matrix with the additional constraint for that rep-

resents a diagonal matrix, .

• , a matrix with the same number of rows and columns with the additional

constraint for and that represents an upper triangular matrix,

.

• , an upper triangular matrix with the additional constraint for

that represents an upper unit triangular matrix, .

• , a matrix with the same number of rows and columns with the additional

constraint for and that represents a lower triangular matrix, .

• , an upper triangular matrix with the additional constraint for

that represents a lower unit triangular matrix, .

• , a rectangular matrix with 1 column representing a column matrix, or

.

• , a rectangular matrix with 1 row representing a row matrix type, or .

With these additional categories of matrices, the previous list of matrix operations can
also be specialised further taking the additional categories into account. This is illustrat-
ed here for the case of matrix multiplication of rectangular matrices. By identifying in-
dex sizes of the arguments and the results the following combinations arise:

• , or matrices categorised as

• , or matrices categorised as

S
m m×

Asquare

S
m m×

si j sj i=

Asymm

S
m m×

si j 0= i j≠

Adiag

S
m m×

si j 0= i j>

Auptri

S
m m×

si j 1= i j=

Auputri

S
m m×

si j 0= i j< Alowtri

S
m m×

si j 1= i j=

Alowutri

S
m 1×

a

Acol

S
1 m×

a Arow

S
m r×

S
r n×× S

m n×↔ Arect Brect⋅ Crect=

S
m n×

S
n n×× S

m n×↔ Arect Bsquare⋅ Crect=

89

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

• , or matrices categorised as

Hence, the resulting matrix category of multiplying two (rectangular) matrices is de-
pendent on the sizes of the outer indexes of the argument matrices. By interpreting the
above matrix spaces as sub-categories of the rectangular matrix category we get rela-
tionships between argument matrix categories and result argument category for the ma-
trix multiplication operator. By considering other matrix characteristics, such as sym-
metry and singularity, further specialisations of these relationships can be established.
For instance, if it is known that a certain matrix is symmetric and it is multiplied with
another matrix, the appropriate result category can be produced. However, if we only
know that the matrix is square, the symmetry condition must be evaluated before this
information can be used in deciding the result category.

Furthermore, in applications like FEA, it is common to use specialised and more com-
pact physical representations, Hughes [23], and Carey and Oden [140], of matrices in
contrast to “full” regular matrix representations. As illustrated in Figure 20, there are,
for example, skyline matrix (or profile matrix) representations where consecutive zero-
valued elements above the “skyline” are left out and the matrix is usually represented
by matrix columns in a one-dimensional array. This is an example of a compact repre-
sentation where the matrix structure is static, i.e. it is not allowed to change. Additional
static representations along the same theme exists. There are also dynamic matrix rep-

S
n n×

S
n m×× S

n m×↔ Asquare Brect⋅ Crect=

S
m 1×

S
1 n×× S

m n×↔ Acol Brow⋅ Crect=

S
m n×

S
n m×× S

m m×↔ Arect Brect⋅ Csquare=

S
m m×

S
m m×× S

m m×↔ Asquare Bsquare⋅ Csquare=

S
m 1×

S
1 m×× S

m m×↔ Acol Brow⋅ Csquare=

S
m n×

S
n 1×× S

m 1×↔ Arect Bcol⋅ Ccol=

S
n n×

S
n 1×× S

n 1×↔ Asquare Bcol⋅ Ccol=

S
1 n×

S
n m×× S

1 m×↔ Arow Brect⋅ Crow=

S
1 n×

S
n n×× S

1 n×↔ Arow Bsquare⋅ Crow=

S
1 n×

S
n 1×× S

1 1×↔ Arow Bcol⋅ c=

S
1 1×

S
1 1×× S

1 1×↔ a b⋅ c=

90

resentations where the storage structure is allowed to change. These representation
types are usually referred to as sparse matrix representations and are typically imple-
mented by some linked-list data structure. The categorisations and their usage in estab-
lishing the multiplication operator as relationships among different categories that are
exemplified above can be further extended to establish relationships between combina-
tions of other matrix categories and representations as well as for different operators.

To sum up this part, three principles have been presented that divide the matrix concept
into different categories, namely:

• mathematically-related matrix categories based on the general matrix concept and
its characteristics that further restrict this concept into subcategories.

• the data types, integer, float, and double, used for representing and implementing
numerical matrices.

• various physical representations schemes for representing and implementing matri-
ces such as regular, skyline, or sparse. The present representations are restricted to
the regular and skyline type.

Figure 20. Examples of two different one-dimensional physical representations for
symmetric and triangular matrices, where X indicates non-zero values. In
a), a full storage scheme is illustrated where each element is stored. In
the skyline storage scheme, illustrated in b), zeros over the skyline are
excluded.

The reason for defining several matrix categories is the potential ability to take advan-
tage of the knowledge about specific categories in representing numerical data and ap-

a)

X 0 X 0 X X X X X X 0 0 X 0 XX 0 0 X 0
X X X 0

X X X
X 0

X

→

b)

X X X X X X X X X 0 XX 0 0 X 0
X X X 0

X X X
X 0

X

→

skyline

91

plying numerical analysis methods. This concerns the possibilities of applying efficient
storage and processing techniques. So far it is possible to use:

• a priori information to determine matrix categories appropriate for a specific prob-
lem.

• information about matrix categories related by a specific operator to determine ap-
propriate operator and the correct result (or argument) category.

• information about matrix characteristics, i.e. properties that are not distinguished by
separate categories, to determine correct operator result (or argument) to efficiently
direct subsequent matrix representations and operations.

The next section shows how these matrix concepts can be represented in, and managed
by, the AMOSQL extensible and OO query language.

If declarative matrix algebraic expressions do not contain a unique execution order, it
is possible to apply some form of operator reordering to obtain an efficient processing.
This is analogous to applying query optimization techniques where initial query expres-
sions are transformed into equivalent but more efficient execution plans. Optimization
of the execution order for matrix algebraic expressions must be based on the mathemat-
ical laws of matrix algebra that restrict the way that these expressions can be trans-
formed. In the general case, it should be possible to extend the query optimization tech-
niques with capabilities to optimize general query expressions that include matrix alge-
braic operators. Similar ideas have been suggested by Wolniewicz and Graefe in [142]
for integration of mathematical operations on time series.

For instance, it would be possible to apply the laws for scalar-matrix and matrix-matrix
multiplication, [143], to guide the execution order.

 associativity of scalar and matrix multiplication

 distributive law of premultiplication

 distributive law of postmultiplication

 associative law of matrix multiplication

This can be exemplified by the last law, i.e. the associative law of matrix multiplication,
that can be expressed in an operator tree as in Figure 21. By using knowledge about
types and further matrix properties, a preferred execution order can be decided upon.

c A B() cA()B A cB()= =

A B C+() AB AC+=

B C+()D BD CD+=

AB()C A BC()=

92

Figure 21. Operator trees for the associative law of matrix multiplication where the
two trees represent corresponding operations.

The preferred operator order can be determined by comparing the estimated costs cor-
responding to operator sequences. This is exemplified by considering the multiplication
of three rectangular matrices. The problem is to find the most efficient execution order
of the following combination of matrix multiplications,

, where . (56)

with the two possible operator sequences that were illustrated in Figure 21. Thus we can
either apply the execution order,

, or (57)

. (58)

The estimated costs for matrix multiplication is proportional to the number of multipli-
cations of scalar values that are involved. For a simple matrix multiplication of two rec-

tangular and regular matrices the cost, , can be expressed as:

 (59)

where M represents multiplication, m and n is the size of the first matrix and n and k of

the second. Further, , represents a general constant related to the matrix multiplica-

A B C

×

×

CA B

×

×

A B C⋅ ⋅ A S
m n×

B S
n k×

C S
k l×∈,∈,∈

AB()C

A BC()

CM

CM CM m n k, ,() O mnk() C0
Mmnk∼= =

C0
M

93

tion operator. For combinations of several multiplications we get the total cost, ,

from:

 (60)

where the summation is made over i, i.e. all simple multiplication operations. The pre-
ferred order can then be found by determining the one with the minimum total cost.

Continuing our example, if we consider as constant over each simple operation, we

can calculate the costs for the two possible execution orders as:

 (61)

 (62)

where (I) is the case given by (57) and (II) the case in (58). If, for example, we choose

 and , we get and . This exam-

ple is illustrated in case a) in Figure 22 and tells us that the first execution order, given
by (58), is preferable. On the other hand, if we choose and

we get and ; pointing out the first execution order, given

by (57), as favourable. This corresponds to case b) in Figure 22.

Instead of calculating actual costs to determine the preferable execution order, one can

use the difference in execution cost, , as the starting point. Hence, we have

. (63)

Since each quantity in Eq. (63) is non-negative, it is possible to state that for

where and,

i) if choose execution order (illustrated by case
a) in Figure 22), or

ii) if choose execution order (illustrated by case
b) in Figure 22), or

iii) if the decision is indifferent (exemplified by case c) and
d) in Figure 22, or

Ctot
M

Ctot
M Ci

M mi ni ki, ,()
i

∑=

C0
M

Ctot

MI C0 mnk mkl+()=

Ctot

MII C0 mnl nkl+()=

m k 1= = n l 10= = Ctot

MI 20C0= Ctot

MII 200C0=

m k 10= = n l 1= =

Ctot

MI 200C0= Ctot

MII 20C0=

C∆ tot
M

C∆ tot
M Ctot

MII Ctot

MI– C0 mn l k–() kl n m–()+()= =

A B C⋅ ⋅

A S
m n×

B S
n k×

C S
k l×∈,∈,∈

l k–() 0> n m–() 0>∧ AB()C

l k–() 0< n m–() 0<∧ A BC()

l k–() 0= n m–() 0=∧

94

iv) if or the decision is indefi-
nite and further examinations of the costs must be performed by evaluating the total
costs measure in (63). This resulting decision can be either of i, ii, or iii. Examples
of this situation are presented in case e) and f) in Figure 22, of which the conclusion
in these special cases is that they are indifferent.

Figure 22. Examples of how the execution order and matrix structure affects the cost
for consecutive matrix multiplications.

In general, it is preferable to execute contracting operators before expanding operators,
but for combined operations the total cost must be considered. Similar preference or-
derings can be made for the other multiplication laws and additional operators and op-
erator combinations. Furthermore, there are other factors that can affect the execution
cost and can be introduced into a cost model, such as the representation scheme and
memory requirements. This last type of optimization technique suggested, cost-based
optimization of matrix operators, is not yet implemented in the FEAMOS system.

Query optimization can be made both at compile time and at run time. Predefined que-

l k–() 0< n m–() 0>∧ l k–() 0> n m–() 0<∧

b)a)

× ×××

d)c)

× ×××

e)

××

f)

× ×

95

ries can be optimized at compile time if the necessary information is available whereas
ad hoc queries must be optimized at run time. Since query optimization normally is an
expensive operation, it is preferably to perform it at compile time if possible. For exam-
ple, the join operation is a commutative operation that results in an exponential increase
in possible query plans when several join operations are combined.

It is further possible to use information available at compile time, e.g. type information
or other problem-specific knowledge (such as that the linear-elastic stiffness matrix is
symmetric and non-singular), to guide optimization of matrix expressions at compile
time. The type system can be used to select the correct execution plan as long as it is
unique, and this is the technique currently being used for solving linear equations.

Since data is not static, conventional query optimization normally uses statistics about
data, such as table sizes and predicate selectivities for performing optimization at com-
pile time. In analogy with this type of query optimization, it would be possible in the
matrix domain to store statistics about average matrix sizes and later apply this knowl-
edge in query optimization and compilation to select efficient execution methods. The
applicability of this technique must be further investigated.

To be able to explore actual sizes and structures of matrices, properties that vary from
one analysis case to another, the optimization must take place at run time. If there are a
few possible execution plans or other simple decisions to be made this might be satis-
factory with respect to efficiency. For instance, the associative law of matrix multipli-
cation, considered in the former example, represents a lower combinatorial complexity
than the commutative relational join operation that has factorial complexity. For facto-
rial complexity we have:

, where , according to Stirling’s formula [144].

In the case of the associative law of matrix multiplication we have:

.

Hence, matrix multiplication exhibits a lower exponentiality than the join operation.
This can indicate that matrix expressions of reasonable size that include a small number
of alternative execution plans, or simple decisions, could be optimized at run-time. Be-
fore any further conclusions can be made, additional investigations must be made in this
matter.

However, if run-time optimization is not satisfactory, dynamic optimization can be ap-
plied, Cole and Graefe [145], that handles precompiled alternative execution plans. By
precompiling several alternative execution plans, a specific execution plan can be se-

an n!= n! n n
e

 n
∼

an 1 3

2 2
----------–

 1 2–()
n 2–

1 3

2 2
----------+

 1 2+()
n 2–

+=

96

lected at run time at a much smaller cost than if pure run-time optimization was re-
quired.

5.2.3 The matrix foreign data source

If matrix algebraic operators are integrated within the query language it is possible to
perform numerical analysis expressed as declarative queries. The query language then
needs to be extended with:

• A set of basic matrix types and

• A set of basic matrix operations.

It is then possible to use the built-in capabilities of the query language to:

• Perform domain modelling and manipulation where domain concepts are based on
matrix types. Hence, physical conversion between the application and the database,
such as copying and transformation of data, can be avoided since the same physical
formats can be supplied at both locations. Having domain concepts in the database
representation that are isomorphic to application concepts also avoids unnecessary
conceptual conversions between concepts in the application and in the database.

• Make queries that involve matrices in combination with other types of data, i.e. que-
ries can be stated that combine and process matrix data with other data types (heter-
ogeneous data in general). A uniform representation and access to matrix data will
also facilitate the combination of matrix-based data across application boundaries.

• Express composite, and more complex, matrix operations in terms of the basic set
of matrix operations. Further, algorithms can be expressed in a data independent
manner in terms of these basic or composite operations. For instance, multi-direc-
tional operations can provide reuse of operations, which results in concise algorithm
representations.

• Declarative expressiveness can leave execution order decisions to the query proces-
sor. Matrix types can be used to control processing of matrix operations. Matrix op-
erations can be made polymorphic such that the choice of a specialised and appro-
priate algorithm is dependent on the problem type. By having specialised storage
schemes and operators for different matrix types it is possible to guide the numerical
computation into efficient processing alternatives and to choose optimized storage
and processing techniques where possible.

• The query processor can be extended to understand domain-specific operators (que-
ries) that provide algorithm-choices based on cost measures. Hence, the application
domain can take advantage of algebraic and cost-based optimization of matrix, or
other, domain operations.

Furthermore, one would like to have appropriate database representations of matrices
with respect to storage and processing concerns. Tailored storage schemes and algo-

97

rithms to optimize storage and processing requirements are common in FEA. For these
reasons, it would be convenient to exploit matrix characteristics based on mathematical
properties including structure, physical matrix representation schemes, and basic data
types.

To accomplish the above functionality, it is required (or at least most facilitating) that
the query language is equipped with certain capabilities. These include:

• Object-oriented features such as user types, subtyping, inheritance, etc., as stated in
Section 3.3.1. Object-orientation provides facilities for structuring the matrix do-
main in a problem-oriented fashion while reusing specifications in the type taxono-
my. The type system also provides the capability to optimize processing by selecting
algorithms based on type information.

• Overloading is required to be able to define variants of matrix operations specialised
for matrix sub-categories or matrix representations.

• Overloading on all arguments makes it possible to have functions specialised for
combinations of matrix types that is typically the case for matrix operations.

• Multi-directional functions provide the ability to apply functions in multiple direc-
tions, facilitating reuse of functions and compact representations.

• Foreign functions are a basic capability for transparently integrating matrix opera-
tions within the query language while implementing numerical matrix operations ef-
ficiently in a programming language.

• Customized internal data representations are, together with foreign functions, re-
quired to be able to handle the representation and processing of specialised matrix
representation schemes.

• To be able to direct decisions concerning execution order, selection of redundant al-
gorithms, and others, to the query processor, cost-based optimization must be sup-
ported.

• Main-memory DBMS technology provides efficient processing capabilities that are
vital for numerical analysis computations as performed in FEA.

• Support of integration, combination, and exchange of data from other DBMSs.

In these issues, there are several problems that need to be solved. In pure object-orien-
tation only the receiver of a message, corresponding to the first argument of a function,
is used for deciding the appropriate method to apply. This is not sufficient to conven-
iently define mathematical operations, such as matrix algebraic operations, since oper-
ations need to be defined for different combinations of argument types in a type hierar-
chy. For example, we can define plus (+) and times (*) for different combinations of
numbers and matrices as:

plus(number n1, number n2) -> number n3
plus(matrix m1, matrix m2) -> matrix m3

98

times(number n1, number n2) -> number n3
times(number n1, matrix m1) -> matrix m2
times(matrix m1, number n1) -> matrix m2
times(matrix m1, matrix m2) -> matrix m3

We see that for the plus function it is sufficient with overloading on the first argument
to be able to distinguish between the two variants. In the other case, where the times

function is overloaded, a selection mechanism based on the first argument is not suffi-
cient since there are several possible functions to choose among.

However, there are several examples where matrix class libraries are defined in OO pro-
gramming languages like C++, Scholz [44], Ross et al. [47], Yu and Adeli [49], Zeglin-
ski et al. [59], Lu et al. [60], Dongarra et al. [131], and Barton and Nackman [132].

These types of languages1 do not permit an automatic treatment of overloading of op-
erations on multiple arguments and the operation dispatch must be handled explicitly.
An alternative solution would be to have special operators for each case and by provid-
ing overloading on all arguments this can be achieved, Flodin et al. [19]. In comparison
to pure object-orientation this technique extends the capabilities for abstraction and re-
use.

Furthermore, it would be desirable to be able to apply matrix operations in different di-
rections in queries and functions. A simple case is seen in the definition of a matrix
transposition function in the example below

create function transpose(lower_triangular_matrix ltm) ->
 upper_triangular_fmatrix utm as

select utm where transpose(utm) = ltm;

where transposition of a lower_triangular_matrix is accomplished by applying the
inverse of transposing an upper_triangular_fmatrix .

The ability to handle multi-directional functions provides several advantageous fea-
tures:

• multi-directional functions make it possible to reuse operations. An example of how
this is applied for reusing matrix operations is given below. The minus operator, in
the example, is expressed in terms of a formerly defined plus operator. In this exam-
ple, the first argument of the plus function is unbound and the appropriate applica-
tion of the multi-directional plus function will be handled by the system.

create function minus(matrix m1, matrix m2) -> matrix m3 as
select a3 where plus(m3,m2) = m1;

• multi-directional applicability of functions can significantly reduce database search,

1. C++ can handle overloading on all arguments if late binding does not occur.

99

reported in Flodin [87]. Multi-directional functions and indexes increase the physi-
cal data independence since the system can efficiently execute a function in its most
efficient direction independently from its logical usage.

• multi-directional functions can increase the readability and simplify the application
design since the problem description becomes more domain-oriented and imple-
mentation independent.

The following example shows how the solution of a triangular equation systems can be
expressed in a straightforward and mathematically-oriented manner. A triangular equa-
tion system is composed by multiplying a triangular matrix and a column matrix; form-
ing a second column matrix. This can be expressed by the multiplication function,
times, that is overloaded for different types of triangular matrices illustrated by

where the first matrix represents a generic triangular matrix category that has several
specialisations that correspond to the following multiplication operations:

 (64)

There are additional variants of these operations since the matrix categories can have
different representation schemes and basic numerical data type. In AMOSQL, the mul-
tiplication operators are implemented as multi-directional foreign functions that are de-
fined for appropriate binding patterns. A binding pattern is a unique pattern that states
which of the interface variables of a function are presumed to be bound and which that
are free (unbound). The current implementation of the times function include the fol-
lowing two binding patterns. The first is

 (65)

where indexes represent if the function variable is bound (b) or free (f). Here, the two
arguments are bound and the result is free. This binding pattern corresponds to normal
multiplication. Further, operations that correspond to the second binding pattern,

 (66)

are not always defined. However, when the second argument is a column matrix, it cor-
responds to the solution of different types of linear equation systems (including trian-
gular systems). Here the first argument and the result are bound and the second argu-

S
n n×

S
n 1×× S

n 1×↔

Auptri Bcol⋅ Ccol=

Auputri Bcol⋅ Ccol=

Alowtri Bcol⋅ Ccol=

Alowutri Bcol⋅ Ccol=

A
b

B
b⋅ C

f
=

A
b

B
f⋅ C

b
=

100

ment is free, i.e. the unknown in the equation. The multiplication operators that are cur-
rently implemented are listed in Appendix C.

By defining overloaded foreign functions for different binding patterns, the number of
operations that are required for expressing the same functionality can be reduced. The
same operation can be reused in application design in a uniform and compact fashion.
Furthermore, operations such as matrix algebraic operations can be expressed in a
mathematically tractable syntax. For instance, all of the operations that correspond to
Eqs. (64) for solving triangular equation systems form a subset of all the operations that
can be expressed by the same AMOSQL expression as,

select b for each column_matrix b where :A * b = :c;

where :A and :c are variables bound to matrix OID:s. Defining and composing various
matrix operations to form more complex expressions that will be executable by the que-
ry processor is also allowed. The following query includes a transpose function that will
influence the decision of which multiplication operator to apply.

select b for each column_matrix b where transpose(:A) * b = :c;

If :A is bound to an upper triangular matrix, the transpose operator will change the type
of :A to a lower triangular matrix and another multiplication operator will be applied
than if the transpose operation were absent.

As an example of how overloaded multiplication functions can be defined and used we
consider the first and third equation in Eqs. (64). The first equation can be interpreted
as corresponding to a matrix multiplication when A and B are known, and to solving an
upper triangular linear equation system when A and C are known. For the situation
where B and C are known the equation has no unique solution. This interpretation can
be captured by overloading a function for matrix multiplication of an upper triangular
matrix with a column matrix that results in another column matrix. This function should
be overloaded on the bbf binding pattern and for the bfb binding pattern. By leaving out
the fbb binding pattern, the result will be undefined for this case. This can be defined in
AMOSQL by the following two functions.

create function times(upper_triangular_matrix uptri bound,
 column_matrix cola bound) ->
 column_matrix colr free as

foreign times.uptri.col.col--+fn;

create function times(upper_triangular_matrix uptri bound,
 column_matrix cola free) ->
 column_matrix colr bound as

foreign times.uptri.col.col-+-fn;

In this case, the actual behaviour is implemented by foreign functions in Lisp and C.

101

Similarly, the third equation in Eqs. (64) corresponds to a matrix multiplication when
A and B are known, the solution of a lower triangular equation system when A and C
are known, and when B and C there is no unique solution. This is translated to the two
AMOSQL functions:

create function times(lower_triangular_matrix lowtri bound,
 column_matrix cola bound) ->
 column_matrix colr free as

foreign times.lowtri.col.col--+fn;

create function times(lower_triangular_matrix lowtri bound,
 column_matrix cola free) ->
 column_matrix colr bound as

foreign times.lowtri.col.col-+-fn;

These functions can be used in defining additional matrix functions in AMOSQL. For
instance, it might be convenient to define a function for solving triangular systems that
can be precompiled and called directly from an application. This is accomplished by the
lin_solve AMOSQL function:

create function lin_solve(triangular_matrix tri,
 column_matrix cola) -> column_matrix colr as

select colr where tri * colr = cola;

By additional multiplication function definitions the lin_solve function will apply to
all triangular systems in Eqs. (64). As we shall see later, it is possible to generalise this
concept even further.

Hence, it has been showed how matrix operations can be defined and applied using
overloaded multi-directional functions and foreign functions. We now turn to another
example to show how AMOSQL can be further extended with additional matrix oper-
ations to solve linear equation system. Referring to Eq. (30) in Section 2.3, a linear
equation system of a typical finite element analysis, such as in static linear-elastic stress
analysis, can be expressed as,

 (67)

where K is a symmetric and non-singular matrix, a is a column vector of unknowns, and
f is a column vector. This can be expressed by a multiplication function with the first
argument and the result bound and the second argument free. Thus, solving the equation
system Eq. (67) can be very easily expressed in AMOSQL as,

select a for each column_matrix a where :k * a = :f;

where the resulting column vector cx is calculated by applying an appropriate form of
the multi-directional multiplication function which is determined by the query proces-

K
b

a
f⋅ f

b
=

102

sor. Looking at this in more detail, the definition the multiplication function for this
binding pattern involves the application of three additional and simpler multiplication
operators and a factorisation operator that forms the complete solution of a linear equa-
tion system. Again referring to Eqs. (52), (53), and (54) in this section, this solution
process can be declaratively expressed by functions corresponding to the equational ex-
pressions,

 (68)

where U is an upper unit triangular matrix, D is a diagonal matrix, and x and y are col-
umn vectors. When K and f are known, the execution order is implicitly given from the
binding patterns. Hence, by defining the operation corresponding to Eq. (67) as the so-
lution of Eq. (68), the solution of the a linear equation system can be expressed as the
inverse to a single matrix multiplication expression. The query processor will then au-
tomatically transform expressions of the form in Eq. (67) to a corresponding represen-
tation in Eq. (68). This means that the function for multiplying a symmetric matrix with
a column matrix has a straightforward implementation for the bbf binding pattern as,

create function times(symmetric_matrix k bound,
 column_matrix a bound) ->
 column_matrix f free as

foreign times.sym.col.col--+fn;

where times.sym.col.col--+fn is the foreign function that should be executed. For
the bfb binding pattern we should express the transformation of Eq. (67) to Eq. (68)
which is accomplished by the following function definition:

create function times(symmetric_matrix k bound,
 column_matrix a free) ->
 column_matrix f bound as
select a

for each
upper_unit_triangular_matrix u,
diagonal_matrix d,
column_matrix ca, column_matrix cf

where
factorise(k) = <u,d> and
transpose(u) * cf = f and
d * ca = cf and
u * a = ca;

K
b

U
T()

f
D

f
U

f⋅ ⋅=

U
b

a
f⋅ x

b
=

D
b

x
f⋅ y

b
=

U
T()

b
y

f⋅ f
b

=

103

As mentioned, there is no explicit execution order in function definitions; it is deter-
mined by the query processor. For instance, in the solve function above, this means that
the subexpressions in the where clause can be arbitrarily ordered.

If one would like to access the analysis capabilities of the DBMS from an application,
the AMOSQL expression for solving the equation can be packed into a precompiled
function that can be directly called from the application. This would look like

create function lin_solve(symmetric_matrix k,column_matrix f) ->
 column_matrix a as
select a where k * a = f;

and which can be called by,

lin_solve(:k,:f);

and where :k and :f are references to matrix OID:s.

Pure invertibility and overloading of functions in an object-oriented query language are
treated in Flodin and Risch [86], and Flodin [87]. However, as shown above, pure ob-
ject-orientation, is not sufficient in the present domain but overloading an all arguments
is required. Hence, the method of Flodin and Risch [86] is not sufficient in this case.
Due to this fact, the method has been generalised to handle overloaded multi-directional
functions with late binding, Flodin [87] and Flodin et al. [19]. Thus, the present mech-
anism for selecting the appropriate matrix algebraic operation (i.e. function) is based on
type-dispatch for functions overloaded on all argument in combination with late bind-
ing. This works fine for the examples in our application since a unique execution plan
exist in each case. However, problems can at least theoretically arise when more than
one operator is applicable. For this situation, our technique can be extended with a cost-
based resolution technique for overloaded functions.

The previous section provided a taxonomy of matrix categories and matrix operators
that could be specialised for different combinations of matrix categories. These con-
cepts form the base for the implementation of numerical matrix algebra in the AMOS
environment. The conceptualisation of the matrix domain that has been designed and
implemented covers numerical matrices of integer, float, and double data types. Includ-
ed in this conceptualisation are matrix categories and operators that were presented in
the former parts of this section. This also involves the regular and skyline representa-
tions, but there is currently no sparse representation (mainly due to its absence in the
original TRINITAS system). Not every possible variant of the basic operators is cur-
rently covered but the functionality exceeds the ability of solving linear equation sys-
tems of both regular and skyline matrices. However, it is expected that the basic oper-
ators can be combined to form additional algorithms.

Matrix categories are implemented as a type taxonomy with the basic structure accord-

ing to Figures 23, 24, 25, and 261. There are currently three basic inheritance structures

104

that rely on multiple inheritance to provide the intended functionality to concrete types.
The representation of the three numerical data types are currently modelled by explicit
types, illustrated in Figure 25. In future developments it would be possible (dependent
on execution overhead) to treat these representations implicitly by the use of type tem-
plates in a similar way to C++, [146]. Then int, float, and double could share the storage
method and the right data type is accomplished implicitly by casting at access time. The
type structure that represents mathematical concepts, illustrated in Figure 23, have fur-
ther been separated from the matrix representation schemes that have their own type
structure, illustrated in Figure 24. A similar separation is suggested by Chambers and
Leavens [147].

Figure 23. The current type taxonomy for representing the mathematical matrix
categories.

All matrix types are currently based on one of the numerical array types, described in

1. The type names in the figures have been shortened in some case and the illustration
of the type taxonomy has been slightly compacted for facilitating the overview. The
complete type taxonomy can be studied in Appendix B.

square column row

upper tri. lower tri.

rect. matrix

triangularsymmetric

diagonal

lower unit tri.upper unit tri.

105

Section 5.2.4, for their physical representation. They are further implemented as linear
arrays, applying a column-order storage sequence. Multiple inheritance is also used for
inheriting basic properties from the array types.

As the needs are extended, the type taxonomy can be extended to handle additional rep-
resentation schemes and data types as indicated for a sparse representation scheme in
Figure 24. It should be noted that it might also be suitable to extend the type taxonomy
to handle additional mathematical matrix categories as well. For instance, when the do-
main is extended with additional problem categories it can be necessary to distinguish-
ing between matrices that are positive definite, positive semi-definite, etc. Whether the
treatment of additional matrix properties should be accomplished by additional sub-
types or by another mechanism must be further investigated.

Figure 24. The type taxonomy for representing numerical matrix representation
schemes. Regular and skyline matrix schemes are currently implemented,
whereas the sparse scheme indicated are not at present included.

Figure 25. The type taxonomy for numerical matrix data types where there are
subtypes for integer, float, and double data types of numerical data. The
concrete representations are inherited from the corresponding numerical

skyline matrixregular matrix sparse matrix

matrix scheme

float matrixinteger matrix double matrix

matrix type

106

array type that are currently used for the physical representation of all
matrix types.

The properties and operations in the matrix domain are implemented by means of
AMOSQL functions. Basic matrix operations that are not specific to matrices are inher-
ited from other supertypes, such as array types. An example is the size function that is
defined for the array type. Functions are further multi-directional where it is applicable.
The name function can, for instance, be used for retrieving matrix names or for retriev-
ing matrices with a given name. There are also several variants of some functions due
to overloading on different function signatures. This is not revealed in the subsequent
list of functions. A more complete list of overloaded foreign functions can be found in
Appendix C.

• construct(charstring typename, vector settings) -> boolean

• initialise(matrix mat, vector settings) -> boolean
The initialise function is used for specifying initialisations specific to matrices and
is applied by the generic construct function.

• destruct(object obj) -> boolean
The destruct function implements specific matrix behaviour that should be applied
when a matrix is destructed by the generic destruct function.

• name(matrix mat) -> charstring aname
The name function is a stored attribute that is used for user-defined naming of ma-
trices.

• size(matrix mat) -> integer asize
The size function derives the size of the matrix that was set at creation time.

• rows(matrix mat) -> integer nrows
The number of rows of the matrix is held by the stored function rows.

• columns(matrix mat) -> integer nrcols
The number of columns of the matrix is held by the stored function columns.

• ref(matrix mat, integer indexi, integer indexj) -> number value
Matrix elements can be referenced by the ref function where the second and third
argument specify the indexes of the element that should be determined.

• set(matrix mat, integer indexi, integer indexj, number value) -> boolean
The set function is used for updating matrix elements.

• plus(matrix m1, matrix m2) -> matrix m3
The plus function is a multi-directional function that implements invertible matrix
addition. Alternatively to the prefix notation, the “+” operator can be used in infix
notation.

• minus(matrix m1, matrix m2) -> matrix m3

107

The minus function is a multi-directional function that implements invertible matrix
subtraction. Alternatively to the prefix notation, the “-” operator can be used in infix
notation. Subtraction is defined as the inverse of plus, i.e. the code that implements
plus is reused for the minus function.

• times (matrix m1, matrix m2) -> matrix m3
The times function is a multi-directional function that implements invertible matrix
multiplication. Alternatively to the prefix notation, the “*” operator can be used in
infix notation. Multiplication is overloaded on different function signatures to im-
plement efficient operations and for code reuse.

• quotient (matrix m1, number n) -> matrix m2
The quotient function is a multi-directional function that implements invertible ma-
trix division where applicable. Alternatively to the prefix notation, the “/” operator
can be used in infix notation. Currently, the quotient function is not used in the ap-
plication.

108

Figure 26. The composite type taxonomy for the matrix domain with individual
inheritance structures for the three basic categorisation principles.

• transpose(matrix m1) -> matrix m2
Transposition of matrices that does not do any physical reorganisation, it only cre-
ates a new object with a different type without copying data.

• factorise(symmetric_matrix m1) -> <upper_unit_triangular_matrix m2,
diagonal_matrix m3>
Factorise implements decomposition of symmetric matrices. Furthermore, it is cur-
rently implicitly assumed that matrices are nonsingular. Currently the factorise

function implements LDLT decomposition (or Crout decomposition) that divides a

matrix

row vector

column vector

square

symmetric

diagonal

triangular

upper triangular

upper unit triangular

lower triangular

lower unit triangular

matrix scheme

regular

skyline

sparse

matrix representation

imatrix

fmatrix

dmatrix

symmetric skyline imatrix

symmetric skyline dmatrix

symmetric skyline fmatrix

109

symmetric matrix C into three matrices L, D, and U, where L * D * U, L = trans-
pose(U), U is an upper unit triangular matrix, D is a diagonal matrix. Here, only D
and U are generated.

• dindex(skyline_matrix m) -> iarray a
The dindex function stores the diagonal index of a skyline matrix to be used by other
operations for locating specific columns.

Other operators can be expressed in terms of these basic matrix operators, and of course,
the current set of base operators can be extended. As an example of the former, a linear
combination of matrices can easily be expressed using the AMOSQL infix notation as,

select m3 for each matrix m3
where :a * m1 + :b * m2 = m3;

where :a and :b are reals and :m1 and :m2 are matrices, or by function composition us-
ing prefix notation:

select m3 for each matrix m3
where plus(times(:a,:m1), times(:b,:m2)) = m3;

This expressibility is accomplished by overloading the times operator on combinations
of number and matrix. Further, expressing this as a function would look like

create function linear_combination(real a, matrix m1,
 real b, matrix m2) -> matrix as

select a * m1 + b * m2;

5.2.4 The array foreign data source

Many scientific and engineering applications involve one- or multi-dimensional se-
quences of numerical data expressing arrays or matrices of numerical values. These are
usually used to represent different mathematical concepts, such as scalar-, vector-, or
dyadic-valued quantities. Thus, the ability to represent and do computations on se-
quences of numerical data is of great importance for scientific and engineering software
tools. Several commercial “tool kits” for scientific and engineering computations, like

MATLAB 1, MATHCAD2, and HiQ3, support these facts.

Likewise, the database community has emphasised the ability to represent sequences of
numerical data. This capability can, for instance, be found in commercial products like

Illustra [6] and eBASE4. It has also been developed for research DBMSs including EX-

1. MATLAB is a product of MathWorks, Inc.
2. Mathcad is a product of MathSoft, Inc.
3. HiQ is a product of National Instruments, Inc.
4. eBASE is a product of Universal Analytics, Inc.

110

ODUS [99]. Furthermore, the standard proposals of SQL3 [16] and OQL [17] include
data structures for numerical sequences in their object model. By providing data struc-
tures for numerical sequences in a database environment it will be possible to combine
this type of numerical data with other data types, such as simple integer and real number
data, character strings. Hence, an extended set of data structures are made available for
facilitating modelling and manipulation of the rich set of scientific and engineering da-
ta.

In this work, the AMOS object-relational DBMS has been extended with a numerical
array data structure. At the query language level, three different numerical and one-di-
mensional, or linear, array types have currently been defined and implemented. The ar-
ray types (or classes) are defined for sequences of integers, floats, and doubles, that are
denoted:

• iarray

• farray

• darray

where iarray, farray, and darray represents a fixed sequence of 4-byte integer numbers,
4-byte real numbers, and 8-byte real numbers respectively. These three types are
formed in a type structure according to Figure 27 where the array type is a subtype of
the usertypeobject type.

Eight basic operations have currently been defined for arrays at the query language lev-
el:

• construct(charstring typename, vector settings) -> boolean

• initialise(array arr, vector settings) -> boolean

• destruct(array arr) -> boolean

• name(array arr) -> charstring aname

• size(array arr) -> integer asize

• ref(array arr, integer index) -> number value

• set(array arr, integer index, number value) -> boolean

where name is a stored function representing an optional name attribute and size is a
foreign function that represents the length of the array. The construct and destruct op-
erations are general constructor and destructor procedures for implementation of tai-
lored creation and deletion operations. The construct operator takes a name of a type
and a vector of initial settings and creates an object of that type. It then applies the ini-
tialise operator, overloaded for different types, that defines specific initialisations for
the created object. Finally, the construct operation returns the newly created and initial-
ised object.

111

Figure 27. The type hierarchy for numerical arrays where the array type is a subtype
of usertypeobject.

The current implementations of the initialise and the construct functions for objects are
as follows:

create function initialise(object obj, type tp,
vector settings) -> object as

begin
/* type-specific initialisations */
result obj

end;

create function initialise (array arr, type arrtype,
 vector settings) -> array as

begin
allocate(arr, arrtype, settings);
set name(arr) = vref(settings, 1);
result arr

end;

create function construct(charstring typename,
vector settings) -> object obj as

begin
declare type tp;
set tp = typenamed(typename);
set obj = new_object(tp);
initialise(obj, tp, settings);
result obj

end;

As an example of how tailored constructor functionality can be accomplished, the sec-
ond initialise function above is designed for the array type by overloading the initialise
function for a corresponding array type signature. The values of the size and name at-

iarray farray darray

iarray

112

tributes are extracted from the settings vector and initiated by the allocate and set oper-
ations. More specifically, the allocate operation is responsible for allocating a literal ar-
ray object (a basic data storage structure) of a specified size and associating it with an
object of type array. The constructor and destructor operations were mainly introduced
to provide tailored creation and deletion for array types and subsequent extensions to
matrices and domain-specific types presented in Section 5.3.3. Parallel work on AMOS
has generalised the applicability of constructors to any user-defined type [93]. Similar
functionality is specified in the SQL3 proposal. The ref and the set operator are foreign
functions for retrieving and updating single array values. Additional retrieval and up-
date operators are required as well, but these are still provided by the FEA application.
This includes operators for accessing subparts of an array and similar operations on oth-
er aggregation data structures based on arrays. Operations of this type are not normally
supported in array representations for databases but are of great importance to engineer-
ing applications and are supplied in “tool-kits” such as MATLAB and others. As we
have seen in the previous section, this basic array type structure is further extended by
adding subtypes of arrays and by adding operators that are required in specific applica-
tions.

Below the query language level, the new array data source is defined by a literal array
data type. The array data type is complemented by a set of basic operations that are ac-
cessible from both LISP and C. Foreign functions, defined at the query language level,
are defined by means of operations at this level that operate on literal arrays. Since it is
possible to dereference the array data structure from the literal object, it is possible to
implement critical and kernel array operations as efficiently as in conventional pro-
gramming languages.

Hence, as described in Section 4.4, C record templates for the literal array data types are
defined for iarray, farray, and darray. The techniques for defining and registering new
storage data types that were described in the same section have been used. An example
of the record template for the farray data type (float array) is provided below.

struct farray
{ objtags tags;

char filler1[2];
int len;
char filler2[4];
char cont[sizeof(float)];};

The objtags include type information and reference counters for storage management,
len is the size of the array, and the last. char declaration is a pointer to the data seg-
ment. The basic data structure is of the same type as arrays in C and Fortran.

There are currently five basic operations defined on literal arrays which are implement-
ed in C. Here, they are exemplified for float arrays:

• mkfarrayfn(arraysize) creates a literal float array object where the number of ele-

113

ments is determined by arraysize.

• farraysizefn(array) retrieves the size of the literal array object.

• farrayreffn(array, arrayel) retrieves the value of the float, in the literal array object,
at the position determined by index.

• setfarrayfn(array, arrayel, elvalue) assigns the float value to the float, in the literal
array object, at the position determined by index

These operations are all implemented in C. They are also registered to LISP using a
standardised naming convention and are accessed as mkfarray, farraysize, farrayref,
and setfarray.

There is an additional operation:

• floatcont(farray-oid) that returns the dereferenced array of floats (the basic array
data storage structure) of the literal array object.

The floatcont operation is a C-macro and is a low-level operation that should only be
used within other operations to be able operate on and index the basic array data struc-
ture.

The numerical array data structures can be further developed to include dynamic arrays
and maybe multi-dimensional (at least two-dimensional) arrays. For numerical analysis
applications, you usually use some form of tailored two-dimensional representation of
arrays that takes advantage of domain-specific characteristics to provide more compact
representations of multi-dimensional arrays, e.g. skyline matrix representations. This is
one major reason behind the decision to use this array representation to implement the
matrix representation as discussed in the previous section. The performance for the cur-
rent array representation is discussed in a special section, Section 5.4, that treats related
performance issues as well.

5.3 FINITE ELEMENT ANALYSIS DOMAIN MODELLING

Domain modelling involves the actual conceptualisation of the FEA domain into con-
cepts, relationships, and operations in a high-level and problem-related terminology. A
suitable conceptual level and data representation should be tuned to processing needs.
This usually requires that a number of design iterations are performed. Increasing the
conceptual level in the analysis, design and implementation of engineering applications
is an important principle for developing these applications more efficiently. A higher
level of representation independency and resistance can be obtained if the conceptuali-
sation is based on theories and basic principles instead of on application-specific repre-
sentations. Further, logical descriptions and representations (such as database schemas)
of a domain are more general and reusable than actual physical implementations. As al-
ready discussed, query language technology provides the application developer with
modelling capabilities at a higher level than that of a conventional programming lan-

114

guage level.

The FEA domain has coarsely been divided into a number of subdomains that covers
concepts related to geometry, boundary, domain, finite elements, and linear matrix al-
gebra. This division is similar to the general structure within the associated TRINITAS
FEA system. However, there are also differences. Since TRINITAS is in some sense
“object-based”, i.e. it is structured around FEA-related abstract data types, it is not re-
ally an object-oriented system. The current design, within AMOS, has introduced a
more object-oriented view on the FEA domain using, for instance, inheritance, encap-
sulation, and function overloading to structure the problem domain. There are further-
more, some intermediate design trade-offs in the system that are related to the merging
of the original “object-based” and the new object-oriented conceptualisation of the FEA
domain. These trade-offs include mappings between OID:s and names, location of op-
erations and index utilization, and unsuitable data representations. However, these are
all temporary problems that could be dealt with in further development. These design
flaws must be accepted in this intermediate stage, where an FEA domain model is not
completely established that takes advantage of potential database capabilities. Like-
wise, to what extent the object-oriented design should be performed must be further ex-
amined, i.e. which kinds of concepts are suitable to represent as objects and to what lev-
el of detail should the object-orientation be taken. These issues will be exemplified in
subsequent sections.

Currently, the conceptualisation mainly covers geometry-, analysis-, and matrix-related
concepts. Examples also show how concepts related to discretisation and calculated re-
sults can be modelled and manipulated by the query language. Boundary- and domain-
related concepts, such as boundary conditions and material models, are not covered in
the present work and remain to be addressed in future work.

5.3.1 Geometry and topology

The geometry is the base for specifying FEA problems in TRINITAS, similar to the ap-
proaches presented in Myers [66] and Finnigan et al. [148]. The complete problem is
specified with respect to the geometry including loadings, other boundary conditions
and domain conditions. In FEAMOS, the geometric model is a transformation of the ge-
ometric concepts in TRINITAS into a corresponding database schema in AMOS.
TRINITAS builds up the geometry from basic entities of various geometric categories
such as points, curves, surfaces, and volumes as listed in Appendix A. Categories such
as straight line, arc, triangular surface, and quadrangular surface are represented by
named and fix-sized arrays in TRINITAS. The TRINITAS geometric categories are
transformed into a class taxonomy with the basic structure illustrated in Figure 28. An
abstract class geometry_object holds the basic geometry classes volume, surface,

curve, and point . The complete class taxonomy includes several subclasses and is
presented in Figure 30. For instance, the curve class has the subclasses straight line, arc,
parabola cubic section, and Bezier cubic segment. The class taxonomy is modelled by

115

a type and subtype structure in AMOSQL.

Topology relations, i.e. relations among geometric entities such as faces, edges, and
vertices , are modelled as functions between basic geometry classes as illustrated in
Figure 29. The forks at the end of the relations indicate many-to-many relationships, i.e.
for instance that a surface can have many edges and each curve can be an edge to many
surfaces. Since values of normal and multi-valued stored functions in AMOSQL are un-
ordered, the topology functions are represented by vectors to accomplish an ordering of
vertices, edges, etc. For example, the function vertex_vector is defined by:

create function vertex_vector(curve c) -> vector as stored;

In addition, a derived vertices function have been defined for accessing each element

more conveniently in ad hoc queries1:

create function vertices(curve c) -> point p as

select element(vertex_vector(c));

The vertices function provides a relation between a curve instance to its defining
points with the intuitive direction from the curve to the points, but with applicability in
both directions. Spatial coordinate data is defined for the point class where the posi-

tion function stores the x, y, and z coordinates of a point instance. Coordinates can also
be retrieved by the derived functions x_coordinate, y_coordinate, and z_coordinate.
The position function is currently implemented as a tuple of three reals, which causes
unnecessary data conversions in manipulating these data. The implementation of the
FEAMOS geometry model uses the previously described matrix package in its imple-
mentation in AMOS. This has made it possible to use database representations suitable
for numerical processing, and replacing the tuple representation of the coordinates with
a matrix representation eliminates the need for data conversions and facilitates numer-
ical processing of coordinate data.

In addition, to keep an intermediate correspondence with TRINITAS, a number of at-
tributes are currently defined for different geometric categories but might later suit bet-
ter in other concept classes. These attributes are located below the dashed lines in
Figure 28. There are no absolute truths on how to locate attributes to specific concepts
and this issue will not be discussed in any depth. A good conceptualisation is most cer-
tainly based on knowledge about the domain, experience in domain modelling, and an
iterative evolution of the design. As an example, the curve type currently has a divi-

sion and a density function implemented. The division function represents the
number of subdivisions a specific curve is divided into and the density function rep-
resents a node density along a curve. Further studies might reveal that it would be more
convenient to associate these attributes to a mesh concept related to the curve since the

1. It should be noted that an extension of AMOSQL to handle ordered sets, or sequenc-
es, can eliminate the need for the vertices function .

116

division and density are, in fact, attributes related to the discretisation of a geometry.
However, other issues, such as model complexity and processing efficiency, can influ-
ence the outcome of these decisions as well.

Figure 28. Basic type taxonomy for geometry-related concepts in the application
domain, where arrows denote is-a (subtype to supertype) relations.

Even if the geometric schema includes those geometric concept classes of TRINITAS,
the geometric schema is designed in a general manner to be applicable in other applica-
tions as well. There is no application-specific information represented in the basic geo-
metric model. Where applicable, relations are established with object identifiers
(OID:s) instead of using names and naming conventions. The geometric model can eas-
ily be evolved with new geometric concepts or the schema can be changed without af-
fecting the application. The application communicates with the general geometry model
through a set of derived functions that form a view of the geometry model that can be
tailored for a specific application. For example, TRINITAS currently uses application-
generated names to refer to “objects”. In the geometry model of FEAMOS, these names

Geom. obj.
Name

Volume
Exists vol.

Surface
Exists sur.

Curve
Exists curve

Point
Exists point

Vertices

Exists obj.
Initialise
Destruct

Faces Edges

Position

Division

N.elements
Element set
Element type
N.node elem
N.nodes
Node set
Node deriv.
Material

Density

1D Volume
Cross section

2D Volume
Thickness

3D Volume

X coord.
Y coord.
Z coord.

Face vector Edge vector Vertex vector

117

are not used for references but they are stored as redundant information in the database
and used for interfacing between this database and the application.

Figure 29. Topological relations (rectangular symbols) between basic geometry
concepts with the intuitive direction indicated by triangular arrowheads.

Operations on geometrical objects are implemented by means of AMOSQL functions
and procedures. TRINITAS operations can be divided into basic operations and com-
posite operations. Basic operations include creation and deletion of geometric entities
as well as operations for accessing and changing their properties. Composite operations
are more complex and usually more domain-oriented operations such as finding specif-
ic sets of geometric entities, or calculating geometry-dependent quantities.

Volume

Faces

Surface

Edges

Curve

Vertices

Point

118

Figure 30. The current type taxonomy for the geometric model in FEAMOS.

Since the composite operations partly include basic operations, this initial representa-
tion of the geometry model within the database has focused on including the set of basic
operations that can be seen as the actual application interface to the geometry model.
When more and more functionality is transferred to the DBMS, this interface will grow
to incorporate more domain-specific operations. Hence, there are database operations

geometric object

volume

1d volume

constant cross section

triangular section

2d volume

quadrangular section
polygon section
triangular torus
quadrangular torus
polygon torus

3d volume

tetrahedron
pentahedron
hexahedron
extruded polyhedron

surface

triangular
quadrangular
cylindrical

curve

straight line
arc
parabola cubic section
bezier cubic segment

point

polygonic

119

implemented for constructing and destructing geometry objects. For this purpose, it
would be convenient to be able to define tailored constructors and destructors that can
be overloaded. The AMOS system did not permit this kind of definition at the time
when the geometry model was implemented. However, this was later implemented to
be used for matrices, described in Section 5.2.4. Later again, this functionality has been
generalised by Werner [93] and implemented in AMOS. Currently, the geometry model
still uses specialised procedures for creating points, straight lines, etc., but these can lat-
er easily be replaced by overloaded constructors. Furthermore, the access functions and
the update procedures have been implemented as derived AMOSQL functions in terms
of basic stored functions. In this manner, the application interface forms a view to the
database schema supporting a data-independent design.

In FEAMOS, when a geometry is modelled in TRINITAS, an object structure is gener-
ated in an AMOS database. The original FORTRAN procedures that handle geometry
in TRINITAS have been redesigned to use the AMOS C interface procedures to com-
municate with the DBMS. There is no redundant representation of the application mod-
el, it exists only within the database. Thus, when an object is manipulated, as for in-
stance moving a point in a geometry model on the screen, it implies a direct update of
the database object.

The modelling of a geometry can be illustrated by means of the example shown in
Figure 31. The picture shows a rectangular plate that is fixed on a wall at its left side
and is further exposed to a distributed and uniform pressure load at the upper edge. In
this case, the geometry model is formed by a number of basic geometric elements, i.e.
4 points, 4 straight lines, 1 surface element, and 1 volume element, shown in Figure 32.

This can be expressed in AMOSQL1 as:

create point(name, position)
:p1(“p1”, <0.0, 0.0, 0.0>),
:p2(“p2”, <0.0, 120.0, 0.0>),
:p3(“p3”, <90.0, 120.0, 0.0>),
:p4(“p4”, <90.0, 0.0, 0.0>);

create straight_line(name, vertex_vector, division, density)
:l1(“l1”, {:p1, :p2}, 3.0, 0.0),
:l2(“l2”, {:p2, :p3}, 3.0, 0.0),
:l3(“l3”, {:p3, :p4}, 3.0, 0.0),
:l4(“l4”, {:p4, :p1}, 3.0, 0.0);

create quadrangular_surface(name, edge_vector)
:s1(“s1”,{:l1, :l2, :l3, :l4});

1. To facilitate the interpretation, an interactive style of programming is used the ex-
ample in contrast with using the application programming interface for expressing
the same functionality.

120

create quadrangular_section_volume(name, face_vector)
:v1(“v1”, {:s1});

These statements create a geometric model where the geometric objects are structured
as illustrated in Figure 33. Through TRINITAS, the model is built up graphically and
the result is illustrated in Figure 34.

Figure 31. A simple physical structure consisting of a fixed plate that is exposed to
a distributed and uniform pressure load.

The AMOSQL query language can then be used to formulate queries to the model about
its structure and content, such as basic geometrical and topological information. For ex-
ample the edges of :s1 can be extracted by:

edges(:s1);
OID[0x0:765] OID[0x0:766] OID[0x0:767] OID[0x0:764]

Similarly, the edges can be extracted from :v1 by:

edges(faces(:v1));

120

90

121

OID[0x0:765] OID[0x0:766] OID[0x0:767] OID[0x0:764]

Actually, to be sure that an edge will only occur once if it is of several surfaces that form

a volume, the query should be reformulated, using the unique 1 function, as:

unique(edges(faces(:v1)));

If it is common to access the points from other levels than at the curve level, it can be
convenient to overload the vertices function as a derived function on other geometric
classes as well:

create function vertices(volume v) -> point p as

select p for each curve c

where p = unique(vertices(c)) and

c = unique(edges(faces(v)));

Figure 32. Basic geometrical model of the structure in Figure 31 including
boundary conditions.

By applying the edges function in the opposite direction, we can find the surface that a
specific curve is a part of:

1. The unique function is an aggregation function that eliminates duplicates from a
multiset.

L2

L1

P4 P3

P1 P2

L3

L4 S1, V1

122

select s for each surface s where edges(s) = :l2;

OID[0x0:768]

The edges function is modelled to store object identifiers internally for generality and
efficiency reasons. However, the name function can also be applied on each object for
name reference. The first of the preceding examples would then look like:

name(edges(:s1));

“L2“ “L3“ “L4“ “L1“

Figure 33. The structure of an instance model of a simple geometric model in
FEAMOS.

In addition to basic operations for managing data, the application includes more com-
plex and composite operations that form the domain functionality of the application. As
argued at the beginning of this section, there are several factors that influence the deci-
sion of where to place operations. Additionally, it might imply a severe redesign of the
application logic when operations implemented in a conventional and procedural pro-
gramming language should be expressed in a database language that is of a more declar-
ative nature. Geometric information is involved in many tasks within FEA that are
spread all around the application. A redesign at the global level has currently not been
considered within FEAMOS, that covers the complete use of geometry information.
Nevertheless, a few examples will show how AMOSQL can be used to model more
complex and composite geometric operations.

v1

s2

l1 l2 l3 l4

p1 p2 p3 p4 p1

Faces

Edges

VerticesVerticesVerticesVertices

123

Operations on geometry to find different sets of boundary objects of the geometry oc-
curring frequently. For instance, TRINITAS includes an operation for retrieving the
corners of different geometric entities. In AMOSQL, this is expressed for a quadrangu-
lar section in the corners function as:

create function corners(quadrangular_surface qs) -> point as

select p1 for each curve c1, curve c2, point p1

where c1 = edges(qs) and

c2 = edges(qs) and

c1 < c2 and

p1 = vertices(c1) and

p1 = vertices(c2);

Figure 34. The geometry model example modelled in TRINITAS completed with
boundary conditions in the form of a fixed boundary and a distributed
and uniform load.

Currently, AMOSQL mainly support bag-valued functions. This means that functions
in general return multisets and for obtaining sets the application of additional filtering

124

functions is required. In, for instance, the corners function this has been avoided by
reducing the qualifying data sets by replacing the != (not equal to) function by the <

(less than) function. There is a common interest in engineering applications to be able
to handle sets and ordered sets (or sequences), in addition to multisets. Although
AMOSQL supports data types for sets and sequences, queries can currently not auto-
matically handle and preserve ordering and duplication elimination. A support for han-
dling sequences and sets in queries will facilitate the specification of common applica-
tion-specific operations where unique and ordered results are desirable. Future incorpo-
ration of this functionality in AMOSQL is being considered.

Applying the corner function to our geometry example should return the four corner
points of our model as:

select name(corners(s)) for each surface s;
“P3“ “P4“ “P2“ “P1“

The compact expressiveness of AMOSQL is illustrated by a comparison with the cor-
responding GET_SURFACE_CORNER_POINTS procedure in TRINITAS:

SUBROUTINE GET_SURFACE_CORNER_POINTS(CORNERS,LINES,
UNIQUE_POINTS)

INTEGER CORNERS,TYPE,I,J,K,NHIT
CHARACTER LINES(1)*8,POINTS(4)*8,UNIQUE_POINTS(1)*8,

% END_POINTS(2)*8
NHIT = 0
DO 10 I=1,CORNERS

CALL GET_LINE(LINES(I),TYPE,POINTS)
CALL GET_LINE_END_POINTS(TYPE,POINTS,END_POINTS)
DO 20 J=1,2

DO 30 K=1,NHIT
IF(UNIQUE_POINTS(K).EQ.END_POINTS(J)) GOTO 20

30 CONTINUE
NHIT = NHIT + 1
UNIQUE_POINTS(NHIT) = END_POINTS(J)

20 CONTINUE
10 CONTINUE

END

In the TRINITAS procedure the specific surface is implicitly defined by its edges that
are passed as the LINES argument. Here is also an additional argument, CORNERS, that
must be bound before calling the procedure as exemplified in the GET_SURFACE_CG pro-
cedure below.

SUBROUTINE GET_SURFACE_CG(SURFACE_NAME,TYPE,LINES,TP)
INTEGER SC(3),TP(2)
INTEGER TYPE,I,CORNERS,GET_NO_SURFACE_LINES
REAL*4 GC(3),GC0(3)
CHARACTER LINES(1)*8,POINTS(20)*8,SURFACE_NAME*8

125

C Get number of surface corners
CORNERS = GET_NO_SURFACE_LINES(SURFACE_NAME,TYPE)

C Get all unique corner points
CALL GET_SURFACE_CORNER_POINTS(CORNERS,LINES,POINTS)

C Calculate the centre of gravity
GC0(1) = 0.
GC0(2) = 0.
GC0(3) = 0.
DO 10 I=1,CORNERS

CALL GET_POINT(POINTS(I),GC)
GC0(1) = GC0(1) + GC(1)
GC0(2) = GC0(2) + GC(2)
GC0(3) = GC0(3) + GC(3)

10 CONTINUE
GC0(1) = GC0(1)/CORNERS
GC0(2) = GC0(2)/CORNERS
GC0(3) = GC0(3)/CORNERS
CALL GET_SCREEN_COORDINATE(GC0,SC)
TP(1) = SC(1)
TP(2) = SC(2)
END

Similar observations can be made, as in the previous example, when comparing with

the corresponding functionality expressed in the AMOSQL centroid 1 function:

create function centroid(quadrangular_surface qs) ->
 <real x,real y,real z> as

select x,y,z
where

x = mean(x_coordinate(corners(qs))) and
y = mean(y_coordinate(corners(qs))) and
z = mean(z_coordinate(corners(qs)));

where mean is an aggregation function that calculates the numerical mean value of its
argument. An application of centroid to our example looks like:

centroid(OID[0x0:768]);
<40.,50.,0.>

An additional example shows an AMOSQL function, opposing_curves , for extracting
pairs of curves that are opposite for a quadrangular surface.

create function opposing_curves(quadrangular_surface qs) ->
 <curve c1, curve c2> as

select unique((select c1,c2

1. It should be noted that for a general quadrangular, a more advanced calculation of
the centroid is required. This functionality is currently absent in TRINITAS.

126

for each curve c1, curve c2
where

c1 = edges(qs) and
c2 = edges(qs) and
notany(end_points(c1) =
end_points(c2))));

Applying the opposing_curves function on the quadrangular surface in our example
gives us the set of tuples of related curves, such as:

opposing_curves(OID[0x0:768]);

<OID[0x0:765] ,OID[0x0:767] >
<OID[0x0:766] ,OID[0x0:764] >
<OID[0x0:767] ,OID[0x0:765] >
<OID[0x0:764] ,OID[0x0:766] >

Note that this function can also be used for extracting the opposing curve to a specific
curve of a surface as in the following query:

select unique((select c for each curve c
where

opposing_curves(OID[0x0:768]) = <c, OID[0x0:766]>));

OID[0x0:765] OID[0x0:767] OID[0x0:764]

Again, comparing with TRINITAS, the ADD_OPPOSITE_AND_RELATED_LINES subrou-
tine include a similar functionality as the opposing_curves function. However, one
branch of the Fortran subroutine treats triangular surfaces whereas another treats quad-
rangular surfaces. In AMOSQL, this would be accomplished by overloading the
opposing_curves function on triangular_surface as well.

SUBROUTINE ADD_OPPOSITE_AND_RELATED_LINES(SURFACE_NAME,
% LINE_NAME,CURRENT_NO_SUBDIVISIONS,
% LINE_LIST, NUMBER_OF_LIST_MEMBERS)
 INTEGER NUMBER_OF_LIST_MEMBERS,TYPE,I
 INTEGER CURRENT_NO_SUBDIVISIONS

REAL*4 ATTRIBUTE(4)
CHARACTER SURFACE_NAME*8, LINE_NAME*8, LINE_LIST(1)*8
CHARACTERLINES(20)*8, POINTS(4)*8, END_POINTS(2)*8
CHARACTEROTHER_END_POINTS(2)*8
LOGICAL GET_SURFACE,GET_LINE_ATTRIBUTES,LINE_ON_LIST
IF(GET_SURFACE(SURFACE_NAME,TYPE,LINES)) THEN
 IF(TYPE.EQ.1) THEN
 DO 10 I=1,3
 IF(LINES(I).NE.LINE_NAME) THEN
 IF(GET_LINE_ATTRIBUTES(LINES(I),

% ATTRIBUTE)) CONTINUE
 IF(.NOT.LINE_ON_LIST(LINES(I),LINE_LIST,

% NUMBER_OF_LIST_MEMBERS).AND.

127

% INT(ATTRIBUTE(1)).NE.CURRENT_NO_SUBDIVISIONS)
 THEN

 NUMBER_OF_LIST_MEMBERS =
% NUMBER_OF_LIST_MEMBERS + 1

 LINE_LIST(NUMBER_OF_LIST_MEMBERS) = LINES(I)
 END IF
 END IF

10 CONTINUE
 ELSE IF(TYPE.EQ.2) THEN
 CALL GET_LINE(LINE_NAME,TYPE,POINTS)
 CALL GET_LINE_END_POINTS(TYPE,POINTS,END_POINTS)
 DO 20 I=1,4
 CALL GET_LINE(LINES(I),TYPE,POINTS)
 CALL GET_LINE_END_POINTS(TYPE,POINTS,

% OTHER_END_POINTS)
 IF(END_POINTS(1).NE.OTHER_END_POINTS(1).AND.

% END_POINTS(1).NE.OTHER_END_POINTS(2).AND.
% END_POINTS(2).NE.OTHER_END_POINTS(1).AND.
% END_POINTS(2).NE.OTHER_END_POINTS(2)) THEN

 IF(GET_LINE_ATTRIBUTES(LINES(I),
% ATTRIBUTE)) CONTINUE

 IF(.NOT.LINE_ON_LIST(LINES(I),LINE_LIST,
% NUMBER_OF_LIST_MEMBERS).AND.
% INT(ATTRIBUTE(1)).NE.CURRENT_NO_SUBDIVISIONS)

 THEN
 NUMBER_OF_LIST_MEMBERS=NUMBER_OF_LIST_MEMBERS+1
 LINE_LIST(NUMBER_OF_LIST_MEMBERS) = LINES(I)
 END IF

END IF
20 CONTINUE

END IF
END IF
END

The preceding examples of operations on the geometry mainly considered the retrieval
of topologic information, but also included some calculation of geometric information,
in terms of the centre of gravity, in the centroid function. Another geometric operation,
is to find the nearest point to a given point (or position), by calculating the minimal dis-
tance. In TRINITAS, this is accomplished by the FIND_NEAREST_POINT procedure. The
distance calculation is carried out in the GET_SCREEN_DISTANCE procedure.

LOGICAL FUNCTION FIND_NEAREST_POINT(C,PICKED_POINTS,
% NO_PICKED_POINTS,
% NEAREST_POINT_NAME,
% SCREEN_COORDINATE)

INTEGER SCREEN_COORDINATE(3),C(1),SC(3)
INTEGER NPOINTS,I,NO_PICKED_POINTS,J
REAL*4 DISTANCE,GET_SCREEN_DISTANCE,MIN_DISTANCE,GC(3)
LOGICAL GET_POINT

128

CHARACTERPICKED_POINTS(1)*8,POINT_NAME*8
CHARACTERNEAREST_POINT_NAME*8
COMMON /POINT1/ NPOINTS
FIND_NEAREST_POINT = .FALSE.
MIN_DISTANCE = 1.0E38

C Loop over all defined points
DO 10 I=1,NPOINTS

CALL GET_POINT_NAME(I,POINT_NAME)
IF(GET_POINT(POINT_NAME,GC)) THEN

CALL GET_SCREEN_COORDINATE(GC,SC)
DISTANCE = GET_SCREEN_DISTANCE(SC,C)
IF(DISTANCE.LT.MIN_DISTANCE) THEN

DO 20 J=1,NO_PICKED_POINTS
IF(PICKED_POINTS(J).EQ.POINT_NAME) GOTO 10

20 CONTINUE
MIN_DISTANCE = DISTANCE
NEAREST_POINT_NAME = POINT_NAME
SCREEN_COORDINATE(1) = SC(1)
SCREEN_COORDINATE(2) = SC(2)
SCREEN_COORDINATE(3) = INT(0)
FIND_NEAREST_POINT = .TRUE.

END IF
END IF

10 CONTINUE
END

REAL*4 FUNCTION GET_SCREEN_DISTANCE(P1,P2)
INTEGER P1(1),P2(1)
GET_SCREEN_DISTANCE = SQRT(REAL(P1(1)-P2(1))**2 +

% REAL(P1(2)-P2(2))**2)
END

If we ignore that the TRINITAS procedures involve a transformation of coordinates in
space to the screen plane, the same functionality can be expressed by the two AMOSQL
functions called nearest_point and distance .

create function nearest_point(point p1) -> point p2 as
select p2

where distance(p1, p2) =
minagg((select distance(p1, p3)

 for each point p3));

create function distance(point p1, point p2) -> real d as
select d for each real x1, real y1,

 real x2, real y2
where x1 = x_coordinate(p1) and

 y1 = y_coordinate(p1) and
 x2 = x_coordinate(p2) and

129

 y2 = y_coordinate(p2) and
 d = sqrt((x2*x2-x1*x1) + (y2*y2-y1*y1));

The application of the nearest_point and the distance functions, by means of an ad-
ditional test point :pa, in our example looks like:

create point(name, position) :pa(“pa”, <100.0, 100.0, 0.0>);

name(nearest_point(:pa));
<“P3”>

distance(:pa, :p3);

<42.4264>

select name(p),distance for each point p, real distance
where nearest_point(:pa) = p and

 distance = distance(:pa, p);

<“P3”,42.4264>

It should be noted that in the general three-dimensional case the distance and the
nearest_point function can be overloaded on lines instead of points. A screen posi-
tion can then be viewed as a straight line perpendicular to the screen which makes it
possible to calculate and compare the distances in terms of the actual point coordinates
of the geometry model. This opens the possibility of using spatial indexing techniques
to make the search in the point space more efficient. As the set of points in the point
space becomes large, spatial indexing techniques can dramatically reduce search effort.
However, this issue must be studied in more detail before any specific conclusions can
be drawn. There are other FEA data sets as well where spatial indexing can be advan-
tageous. This includes the discretisation of the geometry into mesh data and calculation
of quantities, such as stress and displacement fields, distributed over the geometry.
Hence, the potential benefit of spatial indexing for different FEA tasks must be evalu-
ated to avoid sub-optimizations.

Several spatial indexing techniques are based on a tree representation where the access
cost is dependent on the depth of the tree. An approximated measure of the access cost,
Ca, can be expressed in terms of the indexed data set N; we get . This cost

should be compared to the current access cost using linear search (i.e. no indexes) is
proportional to N.

There is currently no spatial indexing technique available in AMOS and a future re-
search area would be to investigate how spatial indexes could make spatially-related
queries more efficient. To be able to make relevant conclusions, this work should prob-
ably include comparisons on how indexing, filtering, as well as the location of data and
processing influence the total processing costs for different operations, as pointed out
in Section 5.1.

Ca Nlog∼

130

5.3.2 The discretisation process

The discretisation process is the intermediate step between the problem specification,
in terms of geometry and domain and boundary conditions, and the solution process.
The discretisation transforms the problem geometry into a mesh of discrete elements
that form an approximation of the geometry. A mesh can be built up by elements from
a broad set of element categories where their applicability depends on the nature of the
problem and how the problem should be approximated.

There has been no extensive treatment of the discretisation process in this work but an
initial conceptualisation of mesh-related concepts and relationships has been modelled.
The main reason has been to show how a query language, such as AMOSQL, can be
used to model this type of data and how queries can be used to retrieve valuable infor-
mation, to point out some relevant issues worth mentioning.

A basic type taxonomy, illustrated in Figure 35, has been designed that has a similar
structure to the one designed for the geometry model illustrated in Figure 28. The struc-
ture of a finite element can here be described in terms of volume elements, surface ele-
ments, curve elements, and nodes. These basic element entities are related by the faces,
edges, and nodes relationships shown in Figure 36. These relationships describe the el-
ement topology and could be compared to the topological relationships for the geometry
in Figure 29. Hence, the basic structure of finite element concepts and geometrical con-
cepts are very similar and the idea is that this similarity should facilitate the representa-
tion of relationships between the geometry and the mesh. By providing useful relation-
ships between these two models, it is easier to map other quantities that require repre-
sentations in both models. For instance, one would like to be able to specify different
forms of boundary conditions on the geometry but for the analysis they need to be
mapped to discretised representations. These ideas are similar to those found in
Finnegan et al. [148].

The example in Figure 31 will be continued in this section to introduce these discreti-
sation concepts. This geometry model can be used as the basis for the specification and
generation of a finite element mesh. If a simple mesh is specified, with three bi-linear
elements per edge of the rectangular, the resulting mesh will have the appearance shown
in Figure 37.

As in the case of the geometry model, the type taxonomy is implemented as an
AMOSQL types as:

create type fea_object subtype of named_object;

create type element subtype of fea_object;
create type volume_element subtype of element;
create type surface_element subtype of element;
create type curve_element subtype of element;

create type node subtype of fea_object;

131

create type load subtype of fea_object;
create type line_load subtype of load;
create type point_load subtype of load;

create type displacements subtype of fea_object;
create type fixed_displacements subtype of displacements;

Figure 35. Basic type taxonomy for finite element-related concepts in the
application domain.

A few extra types that should be used to model loadings and displacements conditions
have also been added in this example.

Likewise, the topological element relations are implemented as AMOSQL functions in
a similar way to the geometry case.

create function face_vector(volume_element ve) -> vector
as stored;

create function faces(volume_element ve) -> surface_element as
select element(face_vector(ve));

create function edge_vector(surface_element se) -> vector
as stored;

create function edges(surface_element se) -> vector
select element(edge_vector(se));

FEA obj.
Exist obj.

Volume el.
Exists v. el.

Surface el.
Exists s. el.

Curve el.
Exists c. el.

Node
Exists node

Nodes

Initialise
Destruct

Faces Edges Position

Name

Face vector Edge vector Node vector

132

create function edge(surface_element se) -> curve_element as
select element(edge_vector(se));

create function node_vector(element e) -> vector
as stored;

create function nodes(element e) -> node as
select element(node_vector(e));

Figure 36. Topological relationships between basic FEA element concepts.

It is then possible to populate a database with element and node objects. This is done by
continuing to populate our geometrical database. Thus, the element structure in
Figure 37 can be created by the following AMOSQL statements:

create node (name) :n1 (“n1”),
 :n2 (“n2”),
 ...
 :n16 (“n16”);

create curve_element (name, node_vector)
:ce1 (“ce1”, {:n1,:n2}),
:ce2 (“ce2”, {:n2,:n3}),
...
:ce24 (“ce24”, {:n15,:n16});

Volume el.

Faces

Surface el.

Edges

Curve el.

Nodes

Node

133

create surface_element (name, edge_vector)
:se1 (“se1”, {:ce1,:ce5,:ce8,:ce4}),
:se2 (“se2”, {:ce2,:ce6,:ce9,:ce5}),
...
:se9 (“se9”, {:ce17,:ce21,:ce24,:ce20});

create volume_element (name, face_vector)
:ve1 (“ve1”, {:se1}),
:ve2 (“ve2”, {:se2}),
...
:ve9 (“ve9”, {:se9});

Figure 37. A simple FE mesh consisting of 9 bi-linear elements including node and
element numbers. Rigid boundary conditions are introduced for the left
edge and the loading condition is modelled by a line load. Note that node
and element numbers are included only for facilitating interpretation of
the examples and is not required (but optional) by the FEAMOS system.

The node numbers and the surface and volume element numbers correspond to the num-
bering in the mesh in Figure 37, whereas the numbering of the curve elements is given

134

in Figure 38. To facilitate the interpretation of the element and node structure an in-
stance model for one of the nine elements is given Figure 39. There are actually nine
similar instance models that share elements and nodes on several levels.

Figure 38. The labels assigned to the curve elements in the mesh example illustrated
in Figure 37.

It is now possible to state queries to this database model of the mesh. For instance, the
nodes of a curve element can be retrieved:

name(nodes(:ce2));

“n2” “n3”

Another example retrieves the edges of a surface element:

name(edges(:se2));

“ce2” “ce6” “ce9” “ce5”

These basic functions can further be overloaded, as derived functions, on additional
types to get a convenient retrieval capability. For instance, the nodes and the edges

functions are here overloaded on additional element types.

create function nodes(surface_element se) -> node n as

select unique(nodes(edges(se)));

create function nodes(volume_element ve) -> node n as

select unique(nodes(edges(faces(ve))));

CE1 CE2 CE3

CE4 CE5 CE6 CE7

CE8 CE9 CE10

CE11 CE12 CE13 CE14

CE15 CE16 CE17

CE18 CE19 CE20 CE21

CE22 CE23 CE24

135

create function edges(volume_element ve) -> curve_element ce as
select edges(faces(ve));

With this capability, we can easily retrieve nodes for surface elements and nodes and
edges for volume elements.

name(nodes(:se2));
“n2” “n3” “n7” “n6”

name(nodes(:ve1));
“n1” “n2” “n6” “n5”

name(edges(:ve1));
“ce1” “ce5” “ce8” “ce4”

Figure 39. The structure of an instance model for one of the volume elements in the
mesh example.

Furthermore, the same functions can be applied in the reverse direction to find out in
which elements a specific node appears.

select name(ve) for each volume_element ve where nodes(ve) = :n1;
“ve1”

select name(ve) for each volume_element ve where nodes(ve) = :n10;
“ve4” “ve5” “ve7” “ve8”

ve1

se2

ce1 ce5 ce8 ce4

n1 n2 n6 n5 n1

Faces

Edges

NodesNodesNodesNodes

136

So far, this description has only concerned the mesh structure itself, but it is now time
show how it can be connected to the geometry. A good idea is to separate the discreti-
sation and the geometry as much as possible, which has already accomplished. Further,
the discretisation is probably more dependent on the geometry than the opposite. By de-
fining functions between mesh and geometry on the mesh concepts, the geometry con-
ceptualisation becomes independent of the discretisation conceptualisation. Hence,
mesh concepts are tied to the corresponding geometric concepts by the following func-
tions.

create function volume(volume_element ve) -> volume as stored;
create function surface(surface_element se) -> surface as stored;
create function curve(curve_element ce) -> curve as stored;
create function point(node n) -> point as stored;

These functions must further be populated by appropriate values.

set volume(:ve1) = :v1;
set volume(:ve2) = :v1;
...
set volume(:ve9) = :v1;

set surface(:se1) = :s1;
set surface(:se2) = :s1;
...
set surface(:se9) = :s1;

set curve(:ce1) = :c1;
set curve(:ce2) = :c1;
...
set curve(:ce18) = :c4;

set point(:n1) = :p1;
set point(:n4) = :p2;
set point(:n16) = :p3;
set point(:n13) = :p4;

Now, relationships across are established and information can be retrieved about these
relationships. For instance, it is possible to retrieve the position of the points that define
the curve that the curve element :ce11 is associated to.

select position(p) for each point p, curve c
 where curve(:ce11) = c and
 vertices(c) = p;
<10.,70.,0.>
<10.,30.,0.>

Maybe it would be more interesting to be able to extract information about loading and
displacement conditions. To show how this can be accomplished a few properties are
defined for line loads and fixed displacements. To be able to define where the load or

137

the fixation should act, a curve function is defined for each concept. For the line load
an additional intensity function is defined to represent the load intensity.

create function curve(line_load l) -> curve as stored;
create function intensity(line_load l) -> real as stored;
create function curve(fixed_displacements d) -> curve as stored;

Then, a specific load and fixation is created:

create line_load(name, curve, intensity)
:ll1(“ll1”, :c3, -1000.0);

create fixed_displacements(name, curve) instances
:fd1(“fd1”, :c4);

When the discretised model should be established in an FEA, one would like to know
which nodes boundary conditions are acting on. These nodes can be retrieved in our
model. For example, the nodes that are influenced by the line load can be retrieved by
the following query:

select distinct 1 name(n) for each node n, curve c,
curve_element ce, line_load l

where curve(l) = c and
 curve(ce) = c and
 nodes(ce) = n;

“n13” “n14” “n15” “n16”

Similarly, the nodes that are influenced by the fixed line is found through the query:

select distinct name(n) for each node n, curve c,
curve_element ce, fixed_displacements fd

 where curve(fd) = c and
 curve(ce) = c and
 nodes(ce) = n;
“n1” “n5” “n9” “n13”

Furthermore, if would be possible to eliminate the node that takes part in both the load
and the fixation:

select distinct name(n) for each node n, curve c,
curve_element ce, line_load l

where curve(l) = c and
 curve(ce) = c and
 nodes(ce) = n and
 notany(fixed(n));

“n14” “n15” “n16”

1. The distinct keyword tells the select statement to eliminate duplicates in a simi-
lar way to the unique operator.

138

In the preceding query a function, fixed , is used that checks if a specific node is fixed
and has the following implementation:

create function fixed(node n) -> node as
select n where n = (select distinct m for each node m,

curve c,
curve_element ce,
fixed_displacements fd

 where curve(fd) = c and
curve(ce) = c and
nodes(ce) = m);

Hence, it has been shown how the query language can be used for extracting informa-
tion about the mesh and its relationships to geometry and boundary conditions. Several
of these query examples are much more complicated to express in an ordinary program-
ming language. However, the conceptualisation must be further developed to incorpo-
rate and handle the different element types provided in TRINITAS as outlined in
Figure 40.

Figure 40. Outline of a type taxonomy for finite element mesh concepts.

fea object

element

volume element

surface element

curve element

node

3D element

2D element

1D element

element type

bi-linear quadrangle

linear bar

quadratic lagrange
quadratic serendipity

constant strain triangle
linear strain triangle

tri-linear hexahedral

non-linear bar

139

Furthermore, it must be evaluated whether the data representations currently provided
in AMOS are efficient enough to support discretisation operations. If more efficient
data representations are required, a similar approach to the matrix data source, de-
scribed in Section 5.2.3, might be applicable where foreign and specialised data repre-
sentations were implemented and made available from AMOS. For this purpose, it
might be suitable to apply a tree data structure as described in Fenves [39].

Finally, it would be most interesting to investigate if function materialisation techniques
[149] could be applied in this context to automatically handle computation and caching
of, for instance, derived topology functions.

5.3.3 Finite element analysis solution algorithms

The ability of the DBMS to solve linear equation systems in the FEA process was one
primary intention of the design and implementation of the linear algebraic matrix alge-
bra package that were described in Section 5.2.

For this reason, the type system of AMOS was extended with a set of matrix types
equipped with a basic set of matrix operations that were transparently made available
in the query language. This ability permitted application-specific domain concepts to be
given a suitable representation that were transparently handled through the query lan-
guage. Hence, effective data representations could be provided by the DBMS that elim-
inate or minimise low-level data administration such as physically copying and trans-
forming data.

The solution algorithms of finite element analysis include procedures for numerically
solving linear equation systems. In the FEAMOS system, these algorithms can be ex-
pressed in a very natural and high-level terminology by the built-in package for linear
matrix algebra. Application-specific domain concepts that are to be represented by ma-
trices are modelled as subtypes of appropriate matrix types. This makes it possible to
express the corresponding domain operations in terms of these domain-specific matrix
concepts.

We exemplify this by the solution of the previously stated, Eq. (30), linear equation sys-
tem K a = f, where K is the stiffness matrix, a is the displacement vector, and f is the
load vector. Using domain-specific types, this solution process can be stated in the fol-
lowing manner. According to Figure 41, the stiffness matrix, K, is modelled as a sub-
type of the symmetric_matrix type; the displacement vector, a, and the load vector, f,
are modelled as subtypes of the column_matrix type. Further, by providing a specific
domain type taxonomy for these domain concepts, domain-specific properties can be
represented independently of the mathematical matrix concepts.

However, the corresponding domain operations must be able to generate the correct re-
sult type in order to maintain consistency. In the present case, the solution of the linear

140

equation system is performed by applying the operations that correspond to Eqs. (67),
in Section 5.2.3. We see that:

 (69)

the factorisation of K should return a diagonal matrix and at least one upper unit trian-
gular matrix. If we, for instance, consult Hughes [23], we see that the LDL factorisation
produces a diagonal matrix, D, where the matrix elements have the same unit as the el-

ements of K. Further, for the upper and lower unit triangular matrices, U and UT, the
elements are unitless. Continuing with the solution of the upper triangular equation sys-
tem,

 (70)

this operation should produce a displacement vector a. When considering the bbf bind-
ing pattern, this operation should produce a displacement vector x, since U is unitless.
Consistently, the next diagonal scaling operation

 (71)

should generate a displacement vector x with the bfb binding pattern, whereas the bbf
binding pattern should return a load vector y, due to the multiplication of stiffness ele-
ments in D with displacement elements in x. Finally, for the operation that solves the
lower triangular system

 (72)

a load vector y should be produced since f is a load vector and U is unitless. Conse-
quently, the bbf binding pattern for this operation returns a load vector with the present
arguments.

If the original matrix multiplication operations have been carefully designed, they will
produce the correct result type for several cases. For instance, in Eqs. (70) and (72), the
correct type will be produced since it is deduced from one of the argument or result
types. However, when the result type is dependent on combinations of argument and re-
sult types, as in Eq. (71), special treatment is needed. In the present case, this function
is overloaded for the domain types signatures. Likewise, the result type of D in the fac-
torisation operation, corresponding to Eq. (69), is domain-dependent. Here, this is ac-
complished by overloading this operation on K.

By using these basic matrix operations, the solution of the system can be stated in
AMOSQL in a very convenient notation. Presuming that a stiffness matrix and a load
vector exist and are bound to the interface variables :k and :f respectively, the

K
b

U
T()

f
D

f
U

f⋅ ⋅=

U
b

a
f⋅ x

b
=

D
b

x
f⋅ y

b
=

U
T()

b
y

f⋅ f
b

=

141

AMOSQL query for solving the displacements would look like:

select a for each displacement_vector a where :k * a = :f;

Figure 41. The representation of application domain types, such as stiffness, loads,
and displacements, as subtypes of matrices in the matrix taxonomy. The
taxonomy is here somewhat reduced to simplify the presentation.

The stiffness matrix, K, could have been modelled with either of the available represen-
tations, i.e. as a subtype of the regular or skyline matrix schemes that implies a reg-
ular or a skyline representation of the equation system. However, this does not change
the expression for the solution algorithm and the system automatically creates matrices
with the appropriate types and selects the correct operations to solve the equation sys-
tem. By providing several matrix representations schemes, the application can explicit-

matrix

row vector

column vector

square

upper triangular

upper unit triangular

lower triangular

lower unit triangularmatrix scheme

regular

skyline

sparse

symmetric stiffness regular matrix

fea concepts

stiffness

load

displacement

symmetric

diagonal

triangular

diagonal stiffness matrix

load vector

displacement vector

symmetric stiffness skyline matrix

142

ly choose a suitable representation depending on the problem type, or implicitly, by let-
ting the query processor make the decision based on type information or a potential cost
model. The DBMS could also support the derivation of the correct type representation
by using a derived type mechanism as described in Werner [93], but this facility was
not available at the time of this work. Thus, the potential convenience of using derived
types must be further evaluated.

If the solution algorithm were embedded within an application, it would be suitable to
represent it as a database function that could be accessed from the application. This is
expressed as follows:

create function lin_solve(symmetric_stiffness_regular_matrix k,
load_vector f) -> displacement_vector a as

select a where k * a = f;

and overloaded for the skyline representation:

create function lin_solve(symmetric_stiffness_skyline_matrix k,
load_vector f) -> displacement_vector a as

select a where k * a = f;

A small example1 in Figure 42 is used to show how this can be used in problem solving.

The compact representation using skyline matrices is assumed in this example. The cre-
ation of the basic matrices and the solution of the corresponding equation system are
performed by the following AMOSQL statements:

set :k = construct(“symmetric_stiffness_skyline_matrix”,{{1.0},
 {-1.0,2.0},{-1.0,2.0},{-1.0,2.0}}});

set :i = construct(‘iarray’,{0,2,4,6}); 2

set dindex(:k) = :i;

set :f1 = construct(“load_vector”,{1.0,0.0,0.0,0.0});

set :a = solve(:k,:f1);

print(:a);
{4,3,2,1}

1. Normally, matrices are created and updated by calling database functions from the
application which are inconvenient to use in textual examples. The syntax for inter-
active manipulation of matrices is somewhat temporary and has been slightly mod-
ified to shorten the presentation of the examples.

2. It is not necessary to create the index array :i of the skyline matrix :k explicitly but
this is the current procedure.

143

It is further possible to express the repetitive solution of the same problem for different

load cases by overloading the solve function on bags1 of load vectors. This would be
expressed as:

create function lin_solve(symmetric_stiffness_skyline_matrix k,
bag of load_vector f) ->
displacement_vector a as

select a where k * a = element(f);

Figure 42. An example equation system with a 4x4 stiffness matrix, a displacement
vector with 4 unknowns, and two load vectors including one non-zero
component each.

Combining the load_vector :f1 with another called :f2 into a bag :fseq makes it pos-
sible to express the corresponding solution in the following manner:

set :f1 = construct(“load_vector”,{1.0,0.0,0.0,0.0});

set :fseq = {:f1,:f2};

set :aseq = lin_solve(:k,:fseq);

print(:aseq,0);
{4,3,2,1}

print(:aseq,1);
{8,6,4,2}

It should be noted that, by overloading matrix operations, the domain conceptualisation
will hold independently of how each concept is represented or how the operations are
implemented. As discussed earlier, the declarativeness of the query language makes it
possible to achieve both logical and physical data independence. Since the schema in

1. Actually, one would like to have a sequence of load_vector instead of a bag
(or multiset) to preserve order but, as have been pointed out earlier, this capability
is not currently available in AMOSQL.

1 1– 0 0

1– 2 1– 0

0 1– 2 1–

0 0 1– 2

a1

a2

a3

a4

⋅

1

0

0

0

2

0

0

0

,=

144

our case not only includes data descriptions, but also operator descriptions, this inde-
pendence of physical and logical implementation becomes valid for operations too.

For instance, in the present context the solution of a triangular equation system A b = c,
where A is a triangular matrix and b and c are column vectors, is expressed in
AMOSQL as:

select b for each column_vector b where :A * b= :c;

This expression is independent of how the C-procedure that solves this system is imple-
mented which results in physical implementation independency.

Furthermore, by replacing the name of the variables in this expression, the expression
solves a linear equation system K a = f, where K is a symmetric matrix and a and f are
column vectors. However, this solution includes a transformation of the equation sys-
tem into a set of simpler equations, according to Eq. (68), that is expressed by an
AMOSQL expression. The transformation in Eq. (68) could be replaced by a different
transformation that also solves the linear equation systems, for example by applying a
different matrix decomposition method. This does not influence the expression of the
solution in terms of the times operator on the highest level. Hence, a form of logical im-
plementation independency is achieved.

In this sense, the term “data independence” might be unsuitable to use in some situa-
tions and a more suitable term could, for instance, be physical and logical implementa-
tion independence.

Since both structure and process of the application domain can be captured, we can
model complete parts of the domain knowledge independently of any application.
Hence, this provides sharing of domain knowledge among applications and further fa-
cilitates its reuse. Furthermore, the ability of the query optimizer to handle domain
models including concepts, data representations, operators, and cost models that are do-
main-dependent, can be viewed as a form of domain compilation. Hence, we have a do-
main compiler that uses domain knowledge in the compilation process.

Further work in this area would be to develop corresponding domain models for other
parts of the FEA process, such as calculating element quantities including the element
stiffness in Eq. (32) and the element loads in Eq. (33). The possibility of using matrix
algebraic expressions for this purpose must be studied in more detail.

5.3.4 Result evaluation

The result evaluation activity includes calculation and interpretation of various physical
quantities, such as stresses, displacements, and eigenvalues that is evaluated according
to some design criteria. As illustrated in Figure 43, TRINITAS supports this evaluation
graphically by facilities for displaying, for instance, stress and displacement fields, sin-

145

gle values, multiple values in graphs. The calculated results are stored in arrays that are
accessed by a set of built-in FORTRAN subroutines. By making various menu-based
selections, the user can activate appropriate routines and display the result.

When the basic array-based data storage of TRINITAS was replaced by a correspond-
ing array representation in AMOS, it immediately made all data accessible at the array
level from the query language. Without any further conceptual modelling, it was possi-
ble to state queries over all data, including calculated analysis results.

Since all data are available at the query language level, the user has numerous capabil-
ities to compose queries for retrieving, combining, and transforming data. For instance,
queries can be stated for retrieving:

• max and min displacements,

• max and min stresses,

• various weighted quantities such as von Mises stresses, etc., and

• quantities combined with additional constraints.

Figure 43. An example that shows how analysis results can be presented to the user
in TRINITAS. The picture includes coloured iso-levels of von Mises
stresses, the displacement field, and two single stress values.

146

The following query selects a single value from an array1 of von Mises stresses, where
the index corresponds to a certain node:

ref(array_named(“VON1 “),0);
844.779

If one would like to extract the maximum von Mises stress this query can be extended
to traverse the complete array and then apply the max aggregation operator:

select max((select vonmises
for each integer i, integer j, real vonmises

where i = iota(0,j) and
j = size(array_named(“VON1 “)) - 1
and vonmises = ref(array_named(“VON1 “),i)));

2269.62

Further, it is not necessary to store every type of result in the database. Instead, derived
functions can be defined that calculate these measures. The ability to do calculations
within queries is exemplified in the following ad-hoc query where the previous query
is reformulated in terms of the basic stress components:

select max((select vonmises
for each integer i, integer j,

 real sigmaxx, real sigmayy, real sigmaxy, real vonmises
where j = size(array_named(“VON1 “)) - 1 and

 i = iota(0,j) and
 sigmaxx = ref(array_named(“SXX1 “),i) and
 sigmayy = ref(array_named(“SYY1 “),i) and
 sigmaxy = ref(array_named(“SXY1 “),i) and
 vonmises = sqrt(abs(sigmaxx*sigmaxx +

 sigmayy*sigmayy -
 sigmaxx*sigmayy +
 3*sigmaxy*sigmaxy))));

2269.62

Associated information can be retrieved by selecting several results in the same query,
as in the subsequent query where the stress value is combined with a number corre-
sponding to the node number:

select max((select vonmises,i+1
for each integer i, integer j, real vonmises

where i = iota(0,j) and
j = size(array_named(“VON1 “)) - 1 and
vonmises = ref(array_named(“VON1 “),i)));

<2269.62,83>

1. The array_named function maps a name of an array to an array object.

147

The query results can further be filtered by adding additional constraints in the query.
Here, the von Mises stresses that exceed 2000.0 (MPa) are extracted along with the
node numbers.

select vonmises,i+1
for each integer i, integer j, real vonmises

where i = iota(0,j) and
j = size(array_named(“VON1 “)) - 1 and
vonmises = ref(array_named(“VON1 “),i) and
vonmises > 2000.0;

<2269.62,83>
<2128.4,90>

The previous examples showed how the current array representation was directly acces-
sible from the query language. In comparison to the original TRINITAS program, the
expressibility for accessing and composing data have increased dramatically in FEA-
MOS, even if the queries became a bit clumsy on occasion. In addition, it is not so crit-
ical if some relevant evaluation functionality has been overlooked in the implementa-
tion. It will be relatively simple to add this through the query language. In TRINITAS,
this must be done by implementing some new FORTRAN routines.

As was pointed out, the previous examples implied a rather clumsy and unattractive use
of the query language. To get rid of this disadvantage, one could introduce much more
structure within the result information through OO modelling. For instance, by associ-
ating the stress components to the nodes, the former queries can be expressed and inter-
preted much more conveniently. This can be accomplished as:

create function stresses(node n) -> farray as stored;

As we only consider stress components in the xy-plane, the stresses function stores
an array of three reals that can represent the stress components σxx, σxy, and σyy. These
can be explicitly referenced and defined by derived functions.

create function sigma-xx(node n) -> real as
select ref(stresses,0);

create function sigma-xy(node n) -> real as
select ref(stresses,1);

create function sigma-yy(node n) -> real as
select ref(stresses,3);

create function vonmises(node n) -> real vm as
select sqrt(abs(sigma-xx(n)*sigma-xx(n) +

 sigma-yy(n)*sigma-yy(n) -
 sigma-xx(n)*sigma-yy(n) +
 3*sigma-xy(n)*sigma-xy(n)));

148

By structuring the stresses along these lines, the previous query for retrieving the max-
imum von Mises stress can now be expressed as:

select max((select vonmises(n) for each node n));

Likewise, the node1 can be retrieved together with the von Mises stress:

select max((select vonmises(n),n for each node n));

Additional constraints can easily be introduced in a similar way to the former example,
but here the there is a more direct association to the stress function.

select vm for each node n, real vm
where vm = vonmises(n) and vm > 2000.0;

It will also be easy to express queries including additional constraints as in the follow-
ing query where von Mises stresses within a certain area are extracted:

select n for each node n where vonmises(n) > 0.0 and
x_coordinate(n) > 50.0 and
x_coordinate(n) < 70.0 and
x_coordinate(n) > 40.0 and
y_coordinate(n) < 60.0;

Here, it is presupposed that coordinate functions are defined for nodes.

By overloading stress functions on other types, in addition to nodes, it is possible to se-
lect stresses along boundary, curves, or other geometrical sections.

Currently, we have the possibility to directly interact with the FEAMOS database
through the query language through a database client, shown in Figure 44. This www-
based database client uses a general www-interface implemented in AMOS. Within this
work we have also discussed and planned to implement functions for displaying the re-
sult of a query graphically on the analysis model. This type of display function should,
for instance, be able to display a set of nodes that have been filtered out as a result of a
query.

Within this context there are also two database mechanisms that ought to be studied in
further research. As indicated in other areas of FEA, indexes can be of great importance
for supporting efficient processing. FEA results, such as stress and temperature fields,
are examples of spatial quantities where spatial indexing techniques could be applied.
Furthermore, in studying the issue of whether a stored or a derived representation of
analysis results is preferable, it should be of interest to evaluate how function material-
isation techniques [149] could support these decisions in an automatic manner.

1. Note that the node is here an object and not a number as in the previous example.

149

Figure 44. An illustration of the use of a www-based database client in combination
with FEAMOS for providing ad-hoc query capabilities.

Even if the user can get great support from graphics and a query language, as described
here, the result interpretation is mainly a manual activity. The efficiency and quality
could probably be increased for this activity by taking advantage of the rule system in
AMOS. By defining active rules that interpret the results, parts of the evaluation activity
could probably be automated. The applicability of these ideas requires additional study.

5.4 PERFORMANCE ISSUES

As pointed out earlier in this thesis, performance is of vital importance for FEA appli-
cations since large data volumes, and complex and costly operations are involved. It is,
moreover, important to attain good performance on the average as well as good scale-
up characteristics. Furthermore, for interactive FEA applications it is important that the
response time is acceptable for the activities that are to be performed.

150

Since this work does not cover a final and complete implementation of an FEA appli-
cation, it is not possible to make a complete performance evaluation either. However,
the FEAMOS system is complete in the sense that it is possible to perform complete
analyses to demonstrate its current capabilities. This makes it possible compare the per-
formance of subactivities in the analysis process where alternative implementation
techniques exist for FEAMOS with respect to TRINITAS.

One of the first performance evaluations made in this work, [7], was to compare the ef-
ficiency of FEAMOS and TRINITAS of creating and accessing simple data entities. A
major reason was to evaluate the interface overhead for accessing the database in FEA-
MOS compared to accessing a Fortran array in TRINITAS. The performance test meas-
ured the time for the creation of objects including an initialisation (update) of two stored
functions. This corresponds to point objects, a name attribute, and a position attribute
with three coordinates. We also measured the access time for random access of the same
number of objects including the access of the name and the position function. These re-
sults are presented in Figure 45 and Figure 46. The original figures in Orsborn [7], were
measured with WS-IRiS, [118], and these have later been updated to be valid for
AMOS.

Figure 45. A performance comparison between FEAMOS and TRINITAS. The
diagram shows the real time for creating point objects and for accessing
the position of randomly chosen point objects. The x-axis represents the
number of objects and the y-axis the real execution time in seconds.

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000

FEAMOS create

FEAMOS access

TRINITAS create

TRINITAS access

151

It is seen from the diagrams that TRINITAS has quadratic performance curves while
the FEAMOS curves show a linear behaviour. The improved behaviour is explained by
the lack of dedicated storage structures in TRINITAS and results in a significantly im-
proved performance of FEAMOS in comparison to TRINITAS when the amount of
data increases. TRINITAS performs linear search over the point object set, whereas
FEAMOS takes advantage of built-in storage structures of AMOS, such as hash tables,
for efficient access. These kinds of storage structures can, of course, also be implement-
ed in TRINITAS, which should result in a similar inclination of the TRINITAS per-
formance curves. However, Figure 45 illustrates the importance of efficient indexing
techniques to provide good scaling capabilities.

Figure 46. The diagram shows a more detailed view of the previous diagram for
creating and accessing point objects that reveals the performance of
FEAMOS and TRINITAS for small data sets. The x-axis represents the
number of objects and the y-axis the real execution time in seconds.

As seen in Figure 46, TRINITAS performs better than FEAMOS at small sets of point
objects, i.e smaller than about 150. This is due to the interface overhead in accessing

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 100 200 300 400 500

FEAMOS create

FEAMOS access

TRINITAS create

TRINITAS access

152

the database. Nevertheless, it shows that FEAMOS performs fairly well even with small

data sets1 and the processing performance is no real bottle-neck at these object volumes.

Here it is worth mentioning that a constant access overhead can significantly degrade
performance if the access frequency of application-specific operations is high, for ex-
ample, if a large number of small data items are accessed one at a time instead of as a
whole. Another example would be when efficient indexing techniques are applied in the
database but the data filtering is performed in the application algorithms without index-
ing. Hence, efficient representation methods, like indexing techniques, must be applied
intelligently and accompanied by appropriate processing methods and algorithms with-
in the application or the database. If an existing application is to take full advantage of
database facilities, such as indexing, this might require that certain application opera-
tions must be redesigned. Concerning, the comparison in Figure 45 and Figure 46, it
should further be noted that the access phase is more critical than the creation phase
since it has a higher frequency in a real application situation.

The ability to extend the DBMS with tuned and efficient data representations has been
emphasised here as an important capability for computational database technology.
Therefore, it was of interest to evaluate the performance of our array implementation.
This has been done by measuring the execution time for decomposing the stiffness ma-
trix. This operation concerns the stiffness matrix represented as a single array which is
operated upon by the decomposition method implemented in Fortran (the same base
routine is used in both FEAMOS and TRINITAS in this comparison).

The outcome of this comparison is graphically presented in Figure 47 and the measured
values are provided in Table 1. These show that the FEAMOS array implementation is
at least as fast as the corresponding Fortran array in TRINITAS.

The last performance test was made with the intention to test whether it was possible
gain an acceptable performance for real and critical FEA analysis activities. The estab-
lishment and solution of the complete linear equation system was chosen as a relevant
test case. No tuning has been made of the interface routines that are involved and since
database access is frequent when establishing the stiffness matrix and load vector, it was
expected that FEAMOS should perform significantly worse than TRINITAS. The re-
sults from these measures are presented in Figure 48 and Table 2, and in Figure 49 and
Table 3.

These figures show that in the worst case FEAMOS is about five times slower than
TRINITAS and, at best, FEAMOS is about 15 percent behind. This is significantly bet-
ter than was expected considering the fact that the database access in FEAMOS include
some Lisp interpretation as well. Hence, even if these figures do not show any ultimate

1. It should be noted that no extensive exploration of the tuning possibilities of the in-
terface has been carried out and it is expected that this could further reduce the in-
terface overhead.

153

FEAMOS performance, they indicate that the FEAMOS approach is a promising direc-
tion for continued work.

In comparing Figure 48 and Figure 49, it is seen that there is a bigger difference be-
tween FEAMOS and TRINITAS in the first diagram than in the second. This is proba-
bly due to the fact that the rate between the number of numerical operations and number
of data accesses is higher for problems including quadratic elements then those includ-
ing linear elements.

Figure 47. A diagram showing a comparison of the real execution time in FEAMOS
and TRINITAS for the decomposition of stiffness matrices of different
sizes, reflecting the relative efficiency of the array representation in
FEAMOS. The x-axis represents the number of unknowns and the y-axis
the real execution time in seconds.

The present work has not included any detailed analysis of storage requirements in
FEAMOS compared with the corresponding requirements of TRINITAS. Furthermore,
this matter raises additional questions that might need an answer, for instance, which

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000

FEAMOS

TRINITAS

154

parts of data should be stored and what parts can be derived with respect to storage and
processing requirements. These types of decisions would preferably be delegated to the
DBMS. These issues have mainly been left to future research.

Figure 48. These two graphs show the real execution time for establishing and
solving complete equation systems for models of linear elements. The x-
axis represents the number of unknowns and the y-axis the real execution
time in seconds.

Figure 49. The same comparison as in the previous diagram except that the models
include quadratic elements. The x-axis represents the number of
unknowns and the y-axis the real execution time in seconds.

0,1

1

10

100

1000

1 10 100 1000 10000

FEAMOS

TRINITAS

0,1

1

10

100

1000

1 10 100 1000 10000

FEAMOS

TRINITAS

155

To traditionalists it might be surprising that the performance results showed that the
FEAMOS system, including a DBMS, could perform this well. Major contributing fac-
tors to these encouraging performance measures of FEAMOS also include the fact that
the database is embedded (shares the same address space) in the application and that the
database is in main-memory. Disk access and process or network communication can
severely slow down the system.

Table 1. Numerical values for the comparison of the real execution time in
FEAMOS and TRINITAS for decomposing stiffness matrices of different
sizes that were graphically presented in Figure 47.

Table 2. Numerical values for the graphical presentation of solving complete
equation systems in Figure 48.

The performance evaluations made so far have compared FEAMOS with TRINITAS,
the original FEA program. These comparisons have provided some valuable insight for

Problem
Degrees of

freedom
FEAMOS TRINITAS

8x8 144 0,02 0,03

16x16 544 0,30 0,31

32x32 2112 4,15 4,17

64x64 8320 63,54 63,59

Problem
Degrees of

freedom
FEAMOS TRINITAS

8x8 144 1,69 0,35

16x16 544 6,57 1,21

32x32 2112 27,84 7,50

50x50 5100 83,08 32,91

64x64 8320 156,98 78,34

156

this work and additional evaluations are required in future work. In further studies, it
would also be valuable to make comparisons of both FEAMOS and TRINITAS to com-
mercial FEA software.

Table 3. Numerical values for the graphical presentation of solving complete
equation systems in Figure 49.

Problem
Degrees of

freedom
FEAMOS TRINITAS

4x4 144 0,96 0,38

8x8 544 4,46 1,82

16x16 2112 29,55 18,65

25x25 5100 134,59 109,72

32x32 8320 339,27 298,57

157

6 RELATED TECHNOLOGIES

This chapter will review the main alternative implementation technologies that could
be considered in this context. As reviewed in Chapter 2, object-oriented programming
(OOP), database technology, and knowledge-based technologies, have been applied to
implement FEA applications. Within the field of general database technology the main
implementation alternatives are the relational or OO database technologies discussed in
Chapter 3.

Another important and related field is the emerging standardisation of specification and
exchange of product data within the STEP standard [77]. This standard includes parts
that cover FEA data as well as other related data, such as CAD data.

6.1 IMPLEMENTATION TECHNOLOGIES

Object-oriented programming has been applied in implementing FEA applications by
several researchers as shown in Section 2. OOP provides OO modelling capabilities,
such as objects, attributes, methods, inheritance, and encapsulation. Various OO lan-
guages support these capabilities to different degrees. In general, OOP supports physi-
cal data independence through encapsulation. In comparison to database technology,
encapsulation supports a more limited form of physical data independence since the

158

DBMS also takes advantage of optimization and indexes. Furthermore, the view mech-
anism of DBMSs supports logical data independence which is not available in OOP. For
example, views can take advantage of query optimization whereas a derived attribute in
an OOP must be programmed procedurally. The AMOSQL query language extends the
OO modelling capabilities with overloaded multi-directional functions that increase the
capabilities of encapsulation and reuse. Further OOP provides programming language
execution efficiency which is important for the intended types of applications. Suitable
data structures for representing numerical data, such as multi-dimensional arrays, are
also available even if specialised representations must be implemented. The storage
management of OOP languages are at a low level with little support for large data sets.
OOP languages do not provide any general DBMS facilities, including persistence,
transactions, queries, optimization, and so on.

An R DBMS provides complete DBMS capabilities, including a relationally complete
query language, database schemas, storage management, transactions, and persistence.
On the other hand, the relational modelling paradigm is less suitable than the OO mod-
elling paradigm. This can result in more complex schemas for the relational model in
comparison to object-oriented schemas [76]. Further, R DBMSs do not support suitable
data structures for collections of numerical data. In addition, there is little or no support
for adding new data structures. Application-specific operations can sometimes be de-
fined as database procedures stored in the database. More complex schemas and the un-
availability of numerical data structures and the corresponding operations are contrib-
uting factors that can make it hard to accomplish execution efficiency of the same level
as programming languages.

OO DBMSs have modelling capabilities at the same level as OOP languages and can
provide execution efficiency at the same level as well. In addition OO DBMSs provide
persistence and limited query and optimization capabilities. However, OO DBMSs
have no support for facilities, such as overloaded multi-directional operations provided
in AMOS, i.e. they can not handle overloading on all arguments and operations can not
be defined for different binding patterns. Furthermore, as in OOP, there is no support
for views that reduces the data independence capabilities. Extensibility is also restricted
to user-defined types and operations (methods). Due to the lack of query optimization
is absent, there are no facilities available that correspond to an extensible query proces-
sor that can optimize expressions involving application-specific operations.

Earlier experiences, [33] [150] [151] [152], have shown that knowledge-based (KB)
implementation techniques usually provide a rich set of modelling capabilities, such as
OO modelling variants such as frames, logical formulas, and rules, at least in large hy-
brid KB tools. These powerful and flexible modelling capabilities are also a drawback
since there is no uniform standard for expressing application knowledge. This is espe-
cially apparent when there is a need for exchanging data with other applications. The
impedance mismatch between the data modelling capabilities of the application and the
KB tool makes data exchange hard. Furthermore, KB tools normally rely on heuristic
search techniques that are less efficient in comparison to query optimization techniques

159

found in DBMSs. Hence, DBMSs have better scalability performance in comparison to
KB-tools. However, several mechanisms from knowledge-based systems have been
adopted by the database field and adapted to the efficiency requirements of DBMSs
[153]. For example, several DBMSs support constraints, rules, and triggers [107].

These were some general comparisons among alternative implementation technologies;
however, to be able to make indisputable conclusions in specific situations real imple-
mentations must be compared.

6.2 THE STEP STANDARD AND THE EXPRESS LANGUAGE

An emerging international standard aims to deal with the modelling and exchange of
product data. The International Standard ISO 10303 “Industrial Automation Systems
and Integration - Product Data Representation and Exchange”, ISO [77], that is usually
referred to as STEP, has the objective to

“provide a neutral mechanism capable of describing product data
throughout the life cycle of a product, independent from any particular
system”.

STEP should provide an “Esperanto” for management of product information inde-
pendent of the discipline involved and where different levels of usage could range from
the application-specific to the inter-enterprise level. ISO 10303 is organized in a series
of parts, where the series involves: overview, description methods, implementation
methods, conformance testing methodology and framework, integrated generic re-
sources, integrated application resources, application protocols, and abstract test
suites. The overview series describes the structure and contents of the standard and the
description method’s series includes the description of the formal data description lan-
guage EXPRESS, described in Schenk and Wilson [154], and also graphical represen-
tation notations, e.g. by means of EXPRESS-G. Further, the implementation method’s
series intends to specify different implementation techniques for realizing data sharing,
including physical file exchange, application programming interfaces, and database im-
plementations. The conformance testing methodology and framework together with the
abstract test suites define the requirements and testing procedures to apply to an imple-
mentation to judge if it is in conformance with the ISO 10 303 application protocol. The
integrated generic resources, integrated application resources, and application protocols
include the actual conceptual schemas for product information. For example, there is
one part of integrated application resources that specifies the requirements for exchang-
ing FEA information, [78].

STEP usage could be applied at several levels and there is currently a convention with
four implementation levels for defining a STEP system based on its type of data sharing:

160

1. file exchange,

2. working form (structured data in memory),

3. database, and

4. knowledge base.

The first release of STEP includes the specification of the level 1 file format for data
exchange. Further, the central ingredients in STEP include:

1. the EXPRESS language, used to specify the

2. conceptual schemas,

3. SDAI – the STEP data access interface, together with

4. the physical file exchange structure.

These ingredients make it possible to specify, represent, and exchange product informa-
tion in a formalized and standardized way, independent of the system, software or dis-
cipline involved. Thus, two different systems must be able to represent the same types
of product data they would like to exchange.

The idea of a standard for representing and communicating product information is of
great importance for the development and efficiency of enterprise and engineering in-
formation management. It simplifies the management and communication of product
information in an inter-enterprise or -organisation situation as well as within enterpris-
es. A standard will also make industry less dependent on certain software or hardware
vendors and thus stimulate further evolution of product management systems.

It is, however, important that a standard like STEP continuously evolves and has the
aim to integrate future requirements of knowledge management. Then if a standard is
flexible and extensible it can support and not hinder the development of product infor-
mation management of an enterprise.

There is currently no support within STEP for communicating product information by
means of a query language. This could, however, be included in a later version of STEP
where the database implementations of STEP are addressed. A query language might
simplify the representation of application protocols which might be seen as views of the
product model. The SDAI might also be represented in a query language taking advan-
tage of general mechanisms for data management currently provided by advanced da-
tabase management systems.

161

7 SUMMARY

7.1 CONCLUSIONS

This work covers database technology for FEA applications. The potential of OR data-
base technology in this context has been studied and evaluated by implementing FEA-
MOS, an FEA application integrated with an OR DBMS. The development of the FEA-
MOS prototype system has meant that about 5000 lines of C code, and 5000 lines of
AMOSQL and Lisp code, have been implemented together with some additional For-
tran code. At the same time a number of Fortran routines have been eliminated from
TRINITAS. Certain areas have been studied in more detail than others and this selection
has mainly been based on the convenience from an implementation perspective rather
than giving priority to specific issues. In areas where additional database facilities need
to be implemented or where the implementation has not reached a mature state, the dis-
cussion and conclusions are based on simplified implementations.

We have presented an architecture for an FEA application that combines an existing
FEA program with an OR DBMS. The present approach provides positive effects on
both the external and the internal level. Externally, the mediator approach can support,
for example, data exchange and transformation, data and operator sharing, data distri-
bution, concurrency control among applications and data sources in an EIS system. By
embedding an extensible and main-memory resident OR DBMS in the application, im-
mediate access is gained to general database capabilities such as storage management,

162

data modelling, query language, query processing, and transaction processing. Domain-
specific data management can be supplied without sacrificing execution efficiency.

More specifically,

• The FEAMOS approach, an original idea of using main-memory resident, extensi-
ble, and OR database technology for FEA, has been introduced.

• An architecture for FEAMOS has been designed that tightly integrates the FEA ap-
plication with the embedded DBMS. Architectural considerations, such as the influ-
ence of data representations and processing location on the overall efficiency have
been discussed.

• The architecture of a mediator-based global EIS system incorporating the FEAMOS
system has been outlined. It has been shown how the architecture of the mediator
system can support sharing, exchange, and combination of data and processing
among EIS applications and data sources.

• The applicability of the domain model concept that provides the application with
domain modelling, compilation, and optimization capabilities of an OR query lan-
guage has been demonstrated. The benefits of query language modelling and ad hoc
queries have been shown for various FEA activities. Additional benefits of using
domain models that include easier access through a query language, better data de-
scriptions (such as schemas), and ad hoc query processing have been presented.
Hence, it is not necessary to re-implement low-level dedicated data structures such
as indexes for each new system. Such a reimplementation not only duplicates im-
plementation efforts but, as our example shows, may prove less efficient than the
highly optimized data management provided by an embedded DBMS. Domain
models can also form a base for mediation of domain information among applica-
tions and data sources in an EIS system. For example, by providing access to other
databases, such as relational DBMSs described in [8] and [123], from the domain
model it is possible to build models and ad hoc queries that combine data from other
databases.

• AMOS has been extended with foreign data sources for numerical matrix algebra
and basic array representations. Specific capabilities of AMOSQL to handle over-
loaded and multi-directional foreign functions provide a convenient mechanism for
expressing and implementing domain-specific operations as found in numerical ma-
trix algebra. This technique provides a more powerful capability of abstraction and
reuse in comparison to pure object-orientation. The matrix data source takes advan-
tage of these capabilities for implementing and using type-based function dispatch-
ing for selecting appropriate matrix operations. An extension of these facilities to
include domain-specific optimization techniques, including dynamic query optimi-
zation, to optimize the execution of matrix expressions has also been outlined.

• It has further been shown that the FEAMOS approach provides high processing ef-
ficiency for application-critical operations, due to the availability of well-fitted and

163

tailored main-memory data representations and operations within AMOS. Process-
ing efficiency is, however, further dependent on such issues as query optimization,
data indexing and filtering, and an appropriate selection of data representation and
processing location.

• A number of additional database technologies have been identified as being impor-
tant for supporting efficient domain modelling and are acknowledged as potential
topics for future research as described in Section 7.2.

The key database technologies that form the basis for this work are object-relational,
extensible and main-memory database technologies. The extensibility should further
cover the query language, the query processor, and the storage manager:

• The DBMS is object-relational due to the modelling and extensibility capabilities of
the query language including overloaded and multi-directional functions.

• Extensibility of the query language provides domain-specific modelling of data and
operations. The query processor also needs to be extensible to be able to cope with
optimization and cost models for domain-specific foreign operations. Furthermore,
the storage manager must be extensible to allow for incorporating tailored data rep-
resentations, such as specialised matrix schemas.

• Main-memory is a prerequisite for being able to use the embedded DBMS approach
and for supporting high processing efficiency.

Performance measures and comparisons between the original TRINITAS system and
the integrated FEAMOS system show that the integrated system can provide competi-
tive performance. The added DBMS functionality can be supplied without any major
performance loss. In fact, under certain conditions the integrated system outperforms
the original system and in general the DBMS provides better scaling performance.
However, a full exploitation of the potential of the DBMS can only be accomplished by
intelligent and careful design that takes advantage of DBMS facilities for filtering and
accessing data in application operations.

It is argued here that the suggested architecture can form a promising alternative for the
design and implementation of FEA applications and similar scientific and engineering
applications. The present approach provides positive effects on both the external and
the internal level. It facilitates integration of, or communication with, an engineering
application with other parts of a global EIS system. By embedding a lightweight and
extensible MM DBMS in an application you get a standardized query language for rep-
resenting, managing, and exchanging domain data as well as access to generic software
facilities for implementation of engineering applications without sacrificing execution
efficiency. It will then be possible to achieve a global improvement in the efficiency of
FEA software from the point of view of the developer, the maintainer, and the user. It
might further be expected that this will result in the increased life-time of data and soft-
ware and that the analysis quality can be enhanced.

Generally, database technology can play a similar and important role in the implemen-

164

tation of scientific and engineering applications of tomorrow, as it is currently doing in
administrative applications. Specifically, we believe that database technology adapta-
ble to the requirements of engineering applications such as OR DBMSs will play an im-
portant role in this area.

7.2 FUTURE WORK

A broad spectrum of potential research topics arises for future research within this field.
A number of specific topics have been pointed out throughout this thesis.

From the FEA perspective, several of the ideas in this work can be further developed.
The geometry representation could be extended with more advanced geometry repre-
sentations, for example the ability to handle solids in the query language. The inclusion
of more complex operations in the existing geometry model is also of interest, especial-
ly in combination with spatial indexing techniques.

As shown in Section 5.3.2, a query language can be highly convenient for expressing
and extracting logically related data which exist in an FEA mesh and its relations to ge-
ometry, boundary conditions, and equation system. A more general applicability of
these ideas is expected to provide improved results for the modelling of FEA data. To
support the efficient treatment of various relationships, it would be of interest to study
function materialisation techniques.

The work on the data source for numerical matrix algebra has revealed several future
research topics, including optimization of matrix algebraic expressions, a combination
of main-memory and secondary storage matrix representations, and the ability to ex-
press more complex algorithms in the query-language-based matrix algebra. This also
includes the ability to express additional parts of the analysis process, such as calculat-
ing element stiffnesses and load components, and assembling the global stiffness ma-
trix.

In the evaluation of analysis results, the ad hoc query capability can provide a powerful
and flexible mechanism that can add functionality to conventional and “hard-coded”
postprocessors. An issue for further research would be to investigate how the query lan-
guage could be extended with graphical presentation primitives, as suggested in the the-
sis, to support the evaluation of large and distributed (spatially or temporally) data sets.
The field of geographical information systems can probably provide valuable experi-
ence in this matter. The application of various data indexing techniques to provide
processing efficiency is also a potential research area in this context.

Furthermore, future research in database technology for FEA applications should also
consider the possibility of making comparisons with commercial FEA software, espe-
cially in the context of processing efficiency.

In general, it is of interest to study how more complex operations can be described in

165

declarative query languages, such as AMOSQL. It has here been suggested that the ex-
tension of AMOSQL to preserve the uniqueness of sets and the order of sequences in
query expressions should be investigated. For instance, it is expected that this can facil-
itate the formulation of geometry-related operations and queries.

From the DBMS perspective, optimization techniques and cost models for domain-spe-
cific operations should be further investigated. This includes the optimization of query
expressions involving matrix operations and also more problem-related knowledge that
takes advantage of certain problem characteristics to guide the execution.

Again, the applicability of general indexing techniques, such as spatial indexes, in FEA
and provided by the DBMS need further investigation. Another research area of interest
is the potential capability to use function materialisation techniques that could include
cost models for storage space and processing and for handling the computation of func-
tion values. For instance, if the geometry discretisation operation could be supported by
a mechanism of this kind, the FEA mesh could automatically be recomputed if the ge-
ometry has been changed since the last time mesh data were accessed.

The application of rules in FEA for controlling the analysis process or for automatic re-
sult evaluation have also been discussed in this work, but needs further study. However,
earlier work by the author [152] has shown how rules in knowledge-based systems can
be applied for similar purposes.

Using conventional database transactions and long-running transactions, such as sagas
[155], to control the FEA process and database consistency has not been treated in this
work but needs to be addressed if DBMS facilities such as concurrency and recovery
are to be supported.

In another area, product data management, some activities have already been per-
formed, Orsborn [120] [121]. An important ingredient within this area is the STEP
standard [77] and we are currently engaged in providing AMOS with an EXPRESS [79]
interface. This will, for example, provide a base for exchanging FEA data with other
STEP-based applications.

Finally, other areas of interest include applying temporal query capabilities to express
dynamic FEA problem classes, distributed database technology for storage and process-
ing of FEA data, and query language-supported parallelisation of FEA processing.

166

167

8 REFERENCES

1. French, J. C., Jones, A. K., and Pfaltz, J. L., “Summary of the Final Report of the NSF
Workshop on Scientific Database Management”, SIGMOD Record, v. 19 n. 4, December
1990, p. 32-40.

2. IEEE Computer Society, “The Bulletin of the Technical Committee on Data Engineering”
(TCDE), Special Issue on Scientific Databases, v. 93 n. 2, 1993.

3. Maier, D. and Vance, B., “A Call to Order”, Proceedings of the Twelfth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Washington, DC,
May 1993, p. 1-16.

4. DBMS, “A New Direction in DBMS”, Interview with Michael R. Stonebraker, DBMS, v.
7 n. 2, February 1994, p. 50-60.

5. Frank, M., “Object-Relational Hybrids”, DBMS, v. 8 n. 8, July 1995, p. 46-56.

6. Stonebraker, M, and Moore, D., “Object-Relational DBMSs: The Next Great Wave”, Mor-
gan Kaufmann Publishers, Inc., 1996.

7. Orsborn, K., “Applying Next Generation Object-Oriented DBMS for Finite Element Anal-
ysis”, Proceedings of the 1st International Conference on Applications of Databases
(ADB94), Vadstena, June 20-22, 1994, p. 215-233.

8. Fahl, G., Risch, T., and Sköld, M., “AMOS - An Architecture for Active Mediators”, The
International Workshop on Next Generation Information Technologies and Systems
(NGITS’ 93), Haifa, Israel, June 28-30, 1993, p. 47-53.

168

9. Flodin, S., Karlsson, J., Orsborn, K., Risch, T., Sköld, M., and Werner, M., “AMOS Us-
ers’s Guide”, EDSLAB, Linköping University, Linköping, March 1994.

10. Torstenfelt, B., Allestam, H., and Klarbring, A., “Shape Optimization Implemented in an
Object-Oriented Finite Element Program Environment”, 6th Nordic Seminar on Computa-
tional Mechanics, Linköping, 1993.

11. Torstenfelt, B., “An Integrated Graphical System for Finite Element Analysis”, User’s
Manual Version 2.0, LiTH-IKP-R-737, Linköping University, Linköping, January 1993.

12. Wiederhold, G., Risch, T., Rathmann, P., DeMichiel, L., Chaudhuri, S., Lee, B. S., Law,
K. H., Barsalou, T., and Quass, D., “A Mediator Architecture for Abstract Data Access”,
Tech. report STAN-CS-90-1303, Stanford University, Stanford, February, 1990.

13. Wiederhold, G. “Mediators in the Architecture of Future Information Systems”, IEEE
Computer, March 1992, p.38-49.

14. Risch, T. and Wiederhold, G. “Building Adaptive Applications Using Active Mediators”,
Proceedings of Database and Expert Systems Applications (DEXA ‘91), 1991.

15. Lyngbaek, P., “OSQL: A Language for Object Databases”, HPL-DTD-91-4, Hewlett-
Packard Company, January 1991.

16. Melton, J. (ed.), ANSI SQL3 Papers SC21 N9463 - SC21 N9467, ANSI SC21 Secretariat,
New York, U.S.A., 1995.

17. Cattell, R. G. G. (ed.), “The Object Database Standard: ODMG-93, Release 1.2”, Morgan
Kaufmann Publishers, Inc., 1994.

18. Orsborn, K. and Risch, T., “Next Generation of O-O Database Techniques in Finite Ele-
ment Analysis”, Proceedings of the 3rd International Conference on Computational Struc-
tures Technology (CST96), Budapest, Hungary, August 21-23, 1996, p. 121-136.

19. Flodin, S., Orsborn, K., and Risch, T., “Using Multi-Method Queries in Finite Element
Analysis”, submitted to the 13th International Conference on Data Engineering, Birming-
ham, U.K., April 7-11, 1997.

20. Ottosen, N. and Petersson, H. “Introduction to the Finite Element Method”, Prentice Hall
International Ltd., 1992.

21. Becker, E. B., Carey, G. F., and Oden, J. T., “Finite Elements: An Introduction”, Prentice-
Hall, Inc., v. 1, Texas Finite Element Series, 1981.

22. Reddy, J. N., “An Introduction to the Finite Element Method”, MacGraw-Hill, Inc., 1985.

23. Hughes, J. T. H. “The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis”, Prentice Hall International Ltd., 1987.

24. Chalfan, K. M., “An Integration Tool for Life-Cycle Engineering”, Knowledge Represen-
tation, 1986, p. 592-595.

25. Alsina, J., Fielding, J., and Morris, A., “ADROIT - An Expert System for Aircraft Design”,
Aerogram, v. 4 n. 5, May 1987, p. 2-5.

26. Mitchell, A. R., Bryan, S. S., and Hall, M. D., “Design Engineering Technologies for Aer-
ospace Vehicles”, Tech. report American Institute of Aeronautics and Astronautics, Inc.,
1987.

27. Abelson, H., Eisenberg, M., Halfant, M., Katzenelson, J., Sacks, E., Sussman, G. J., Wis-

169

dom, J., and Yip, K., “Intelligence in Scientific Computing”, Communications of the
ACM, v. 32 n. 5, May 1989, p. 546-562.

28. Forde, B. W. R., Russell, A. D., and Stiemer, S. F., “Object-Oriented Knowledge Frame-
works”, Engineering with Computers, v. 5, 1989, p. 79-89.

29. Ahmed, S., Wong, A., Sriram, D., and Logcher, R., “Object-Oriented Database Manage-
ment Systems for Engineering: A Comparison”, Journal of Object-Oriented Programming,
v. 5 n. 3, June 1992, p. 27-44

30. Eastman, C.M., “The Contribution of Data Modeling to the Future Development of CAD/
CAM Databases”, Proceedings of the 1991 ASME International Computers in Engineering
Conference and Exposition, Santa Clara, CA, USA, 1991 August 18-22. Published in En-
gineering Databases: An Enterprise Resource, ASME, New York, NY, USA, 1991, p. 49-
54.

31. Beck, R., Cue, R., and Schricker, V., “Engineering Databases - Current Technology and
Future Directions”, Proceedings of the 1992 Pressure Vessels and Piping Conference, New
Orleans, LA, USA, 1992 June 21-25. Published in Computer Technology - 1992 - Advanc-
es and Applications, ASME, Pressure Vessels and Piping Division, PVP v. 234, New York,
NY, USA, 1992, p. 73-82.

32. Samaras, G., Spooner, D., and Hardwick, M., “Query Classification in Object-Oriented
Engineering Design Systems”, Computer-Aided Design, v. 26 n. 2, February 1994, p. 127-
136.

33. Mackerle, J. and Orsborn, K., “Expert Systems for Finite Element Analysis and Design Op-
timization - A Review”, Engineering Computations, v. 5 n. 2, 1988, p. 90-102.

34. Forde, B. W. R. and Stiemer, S. F., “Knowledge-Based Control for Finite Element Analy-
sis”, Engineering with Computers, v. 5 n. 3-4, 1989, p. 195-204.

35. Ramirez, M. R. and Belytschko, T., “An Expert System for Setting Time Steps in Dynamic
Finite Element Programs”, Engineering with Computers, v. 5 n. 3-4, 1989, p. 205-219.

36. Shephard, M. S., Baehmann, P. L., Georges, M. K., and Korngold, E. V., “Framework for
the Reliable Generation and Control of Analysis Idealizations”, Computer Methods in Ap-
plied Mechanics and Engineering, v. 82, 1990, p. 257-280.

37. Tworzydlo, W. W. and Oden, J. T., “Towards an Automated Environment in Computation-
al Mechanics”, Computer Methods in Applied and Engineering, v. 104, 1993, p. 87-143.

38. Baugh, J. W., and Rehak, D. R., “Object-Oriented Design of Finite Element Programs”,
Computer Utilization in Structural Engineering Proceedings of the Sessions at Structures
Congress ‘89, San Francisco, CA, USA, May 1-5, 1989, p. 91-100.

39. Fenves, G. L., “Object-Oriented Programming for Engineering Software Development”,
Engineering with Computers, v. 6, 1990, p. 1-15.

40. Forde, B. W. R., Foschi, R., and Stiemer, S. F., “Object-Oriented Finite Element Analysis”,
Computers & Structures, v. 34 n. 3, 1990, p. 355-374.

41. Filho, J. S. R. A., and Devloo, P. R. B., “Object-Oriented Programming in Scientific Com-
putations: the Beginning of a New Era”, Engineering Computations, v. 8, 1991, p. 81-87.

42. Dubois-Pelerin, Y., Zimmermann, T., and Bomme, P., “Object-Oriented Finite Element
Programming: II. A Prototype Program in Smalltalk”, Computer Methods in Applied and
Engineering, v. 98, 1992, p. 361-397.

170

43. Williams, J. R., Lim, D., and Gupta, A., “Software Design of Object Oriented Discrete El-
ement Systems”, Proceedings of the Third International Conference on Computational
Plasticity, Barcelona, Spain, April 6-10, 1992, p. 1937-1947.

44. Scholz, S. -P., “Elements of an Object-Oriented FEM++ Program in C++”, Computers &
Structures, v. 43 n. 3, May 1992, p. 517-529.

45. Baugh, J. W. and Rehak, D. R., “Data Abstraction in Engineering Software Development”,
Journal of Computing in Civil Engineering, v. 6 n. 3, July 1992, p. 282-301.

46. Mackie, R. I., “Object Oriented Programming of the Finite Element Method”, International
Journal for Numerical Methods in Engineering, v. 35 n. 2, August 1992, p. 425-436.

47. Ross, T. J., Wagner, L. R., and Luger, G. F., “Object-Oriented Programming for Scientific
Codes. II: Examples in C++”, Journal of Computing in Civil Engineering, v. 6 n. 4, October
1992, p. 497-514.

48. Raphael, B. and Krishnamoorthy, C. S., “Automating Finite Element Development Using
Object Oriented Techniques”, Engineering Computations, v. 10 n. 3, June 1993, p. 267-
278.

49. Yu, G. and Adeli, H., “Object-Oriented Finite Element Analysis Using EER Model”, Jour-
nal of Structural Engineering, v. 119 n. 9, September 1993, p. 2763-2781.

50. Hoffmeister, P., Zahlten, W., and Krätzig, W. B., “Object-Oriented Finite Element Mode-
ling”, Proceedings of the 5th International Conference on Computing in Civil and Building
Engineering (V-ICCCBE), Anaheim, CA, USA. Published by ASCE, New York, USA,
1993, p. 537-544.

51. Arruda, R. S., Landau, L., and Ebecken, N. F. F., “Object-Oriented Structural Analysis in
a Graphical Environment”, In Artificial Intelligence and Object-Oriented Approaches for
Structural Engineering, Topping, B. H. V. and Papdrakakis, M. (eds.), Civil-Comp Press,
1994, p. 129-138.

52. Devloo, P. R. B., “Efficiency Issues in an Object-Oriented Programming Environment”, In
Artificial Intelligence and Object-Oriented Approaches for Structural Engineering, Top-
ping, B. H. V. and Papdrakakis, M. (eds.), Civil-Comp Press, 1994, p. 147-151.

53. Eyheramendy, D. and Zimmermann, T., “Object-Oriented Finite Element Programming:
Beyond Fast Prototyping”, In Artificial Intelligence and Object-Oriented Approaches for
Structural Engineering, Topping, B. H. V. and Papdrakakis, M. (eds.), Civil-Comp Press,
1994, p. 121-127.

54. Gajewski, R. R., “An Object-Oriented Approach to Finite Element Programming”, In Ar-
tificial Intelligence and Object-Oriented Approaches for Structural Engineering, Topping,
B. H. V. and Papdrakakis, M. (eds.), Civil-Comp Press, 1994, p. 107-113.

55. Ju, J. and Hosain, M. U., “Substructuring Using an Object-Oriented Approach”, In Artifi-
cial Intelligence and Object-Oriented Approaches for Structural Engineering, Topping, B.
H. V. and Papdrakakis, M. (eds.), Civil-Comp Press, 1994, p. 115-120.

56. Shepherd, D. A., and Lefas, I. D., “The Use of an Object-Oriented Language in the Devel-
opment of Structural Engineering Programs”, In Artificial Intelligence and Object-Orient-
ed Approaches for Structural Engineering, Topping, B. H. V. and Papdrakakis, M. (eds.),
Civil-Comp Press, 1994, p. 153-157.

57. Langtangen, H. P., “DIFFPACK: Software for Partial Differential Equations”, Tech. report

171

STF33 A94020, SINTEF, Oslo, Norway, March, 1994.

58. Cardona, A., Klapka, I., and Geradin, M., “Design of a New Finite Element Environment”,
Engineering Computations, v. 11, 1994, p. 365-381.

59. Zeglinski, G. W., Han, R. P. S., and Aitchison, P., “Object Oriented Matrix Classes for Use
in a Finite Element Code Using C++”, International Journal for Numerical Methods in En-
gineering, v. 37, 1994, p. 3921-3937.

60. Lu, J., White, D. W., Chen, W. -F., and Dunsmore, H E., “A Matrix Class Library in C++
for Structural Engineering Computing”, Computers & Structures v. 55 n. 1, 1995, p. 95-
111.

61. Grant, P. W., Sharp, J. A., Webster, M. F., and Zhang, X., “Some Issues in a Functional
Implementation of a Finite Element Algorithm”, 6th International Conference on Function-
al Programming Languages and Computer Architectures, Copenhagen, June 1993, p. 12-
17.

62. Yeh, C. -P., Fulton, R. E., and Peak, R. S., “A Prototype Information Integration Frame-
work for Electronic Packaging”, ASME Winter Annual Meeting, Atlanta, GA, USA, 1991
December 1-6, Published by ASME, New York, NY, USA, 91-WA-EEP-43, 1991, p. 1-8.

63. Felippa, C. A., “Implementation of Scientific Data Management in Computational Me-
chanics: Personal Experiences”, In “State-of-the Art Surveys on Computational Mechan-
ics”, ISBN: 0-7918-0303-1, 1989, p. 469-491.

64. Dopker, B., Murray, P., and Choong, F. N., “Object Oriented Data Base and Application
Management System for Integrated”, Interdisciplinary Mechanical System Simulation,
Published in Mechanical systems analysis, design and simulation, ASME, Design engi-
neering division, DE v. 3(3), New York, NY, USA, 1989, p. 81-87.

65. Santana, O., Chia, B. T., Coulomb, J. L., and Iafrate, J. P., “Data Bases for CAD Applica-
tions”, Third Biennial Conference on Electromagnetic Field Computation, Washington,
DC, USA, 1988 December 12-14. Published in IEEE Transactions on Magnetics v. 25 n.
4, July 1989, p. 2956-2958.

66. Myers, K. W., “New Tools for FEA. Solving the Data Management Problem”, Finite Ele-
ment Analysis, Computer Applications, and Data Management - Presented at the 1990
Pressure Vessels and Piping Conference, Nashville, TN, USA, 1990 June 17-21. Published
in ASME, Pressure Vessels and Piping Division, PVP v. 185, New York, NY, USA, 1990,
p. 37-41.

67. Xingjian, Y., “Database Design Technique for Finite Element Analysis”, Second World
Congress on Computational Mechanics - WCCM II, Stuttgart, Germany, 1990 August 27-
31. Published in Computer Methods in Applied Mechanics and Engineering v. 91 n. 1-3,
October 1991, p. 1357-1364.

68. Spainhour, L. K., Patton, E. M., Burns, B. P., Rasdorf, W. J., and Collier, C. S., “Computer-
Aided Analysis System with DBMS Support for Fiber-reinforced Thick Composite Mate-
rials”, Proceedings of the 1991 ASME International Computers in Engineering Conference
and Exposition, Santa Clara, CA, USA, 1991 August 18-22. Published in Engineering Da-
tabases: An Enterprise Resource, ASME, New York, NY, USA, 1991, p. 37-48.

69. Krishnamoorthy, C. S. and Umesh, K. R., “Adaptive Mesh Refinement for Two-dimen-
sional Finite Element Stress Analysis”, Indian Inst. of Technology, Madras, India. Pub-
lished in Computers and Structures v. 48 n. 1, July 1993, p. 121-133.

172

70. Pepper, D. W. and Marino, J. A., “Object Oriented Relational Database for Assessing Ra-
dioactive Material Transport”, Proceedings of the 4th Annual International Conference on
High Level Radioactive Waste Management, Las Vegas, NV, USA. Published by ASCE,
New York, NY, USA, 1993, p. 1187-1193.

71. Magnin, H. and Coulomb, J. L., “Towards a Distributed Finite Element Package for Elec-
tromagnetic Field Computation”, 5th Biennial IEEE Conference on Electromagnetic Field
Computation, Claremont, CA, USA. Published in IEEE Transactions on Magnetics v. 29
n. 2, March 1993, p. 1923-1926.

72. Yang, J. and Yang, N., “A Brief Review of FEM Software Technique”, Advances in Engi-
neering Software v. 17 n. 3, 1993, p. 195-200.

73. Baker, P., “Integrated Approach to Finite Element Analysis of Advanced Composite Struc-
tures”, Computer-Aided Design, v. 21 n. 7, September 1989, p. 441-446.

74. Felippa, C. A., “Database Management in Scientific Computing - I. General Description”,
Computers and Structures, v. 10 n. 1, 1979, p. 53-61.

75. Bergman, G., Oldenburg, M., and Jeppsson, P., “Integration of a Product Design System
and Nonlinear Finite Element Codes via a Relational Database”, Engineering Computa-
tions, v. 12, 1995, p. 439-449.

76. Ketabchi, M. A., Mathur, S., Risch, T., and Chen, J., “Comparative Analysis of RDBMS
and OODBMS: A Case Study”, IEEE Computer Soc. International Conference 35, San
Francisco, 1990. Digest of papers/Compcon spring 90, February 26 - March 2, 1990, p.
528-537.

77. ISO 10303-1, “Product Data Representation and Exchange - Part 1: Overview and Funda-
mental Principles”, ISO 10303-1, International Organization for Standardization, 1992.

78. ISO 10303-104, “Part 104 - Integrated Application Resources: Finite Element Analysis”,
ISO 10303-104, International Organization for Standardization, 1992.

79. ISO 10303-11, “Part 11 - Description Methods: The EXPRESS Language Reference Man-
ual”, ISO 10303-11, International Organization for Standardization, 1992.

80. Elmasri, R. and Navathe, S. B., “Fundamentals of Database Systems”, 2nd ed., The Ben-
jamin/Cummings Publishing Company, Inc., 1994.

81. Loomis, M. E. S., “The Database Book”, Macmillan Publishing Company, 1990.

82. Melton, J. and Simon, A. R., “Understanding the New SQL: a Complete Guide”, Morgan
Kaufmann Publishers, Inc., 1993.

83. Date, C. J., “An Introduction to Database Systems”, v. 1, 5th ed., Addison-Wesley Publish-
ing Company, Inc., 1990.

84. Tsichritzis, D. and Klug, A. (eds.), “The ANSI/X3/SPARC DBMS Framework”, AFIPS
Press, 1978.

85. Cattell, R. G. G., “Object Data Management: Object-Oriented and Extended Relational
Database Systems”, Addison-Wesley Publishing Company, Inc., 1991 (reprinted with cor-
rections 1992).

86. Flodin, S. and Risch, T., “Processing Object-Oriented Queries with Invertible Late Bound
Functions”, Proceedings of the 1995 Conference on Very Large Databases, September
1996, p. 335-344.

173

87. Flodin, S., “Efficient Management of Object-Oriented Queries with Invertible Late Bound
Functions”, Licentiate Thesis LiU-Tek-Lic 1996:03, Linköping University, Linköping,
February, 1996.

88. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., and Zdonik, S., “The Ob-
ject-Oriented Database System Manifesto”, In Kim, W., Nicolas, J-.M., and Nishio, S.,
(eds.), Proceedings of the First International Conference on Deductive and Object-Orient-
ed Databases (DOOD), Elsevier Science Publishers, Amsterdam, 1989, p. 40-57.

89. Stonebraker, M, Rowe, L. A., Lindsay, B., Gray, J., Carey, M., Brodie, M., Bernstein, P.,
and Beech, D., “Third-Generation Database System Manifesto”, SIGMOD Record, v. 19
n. 3, September 1990, p. 31-44.

90. Kim, W. “Modern Database Systems: The Object Model, Interoperability, and Beyond”,
Addison-Wesley Publishing Company, 1995.

91. Carey, M. (ed.), Special issue on extensible database systems, Database Engineering, v. 10
n. 2, June 1987.

92. Carey, M. and Haas, L., “Extensible Database Management Systems”, SIGMOD Record,
v. 19 n. 4, December 1990, p. 54-60.

93. Werner, M., “Multidatabase Integration Using Polymorphic Queries and Views”, Licenti-
ate Thesis LiU-Tek-Lic 1996:11, Linköping University, Linköping, March 1996.

94. McPherson, J. and Pirahesh, H., “An Overview of Extensibility in Starburst”, Database En-
gineering, v. 10 n. 2, June 1987, p. 92-99.

95. Stonebraker, M., Anton, J., and Hirohama, M., “Extendability in Postgres”, Database En-
gineering, v. 10 n. 2, June 1987, p. 76-83.

96. Goldhirsh, D. and Orenstein, J., “Extensibility in the PROBE Database System”, Database
Engineering, v. 10 n. 2, June 1987, p. 84-91.

97. Woelk, D. and Kim, W., “An Extensible Framework for Multimedia Information Manage-
ment”, Database Engineering, v. 10 n. 2, June 1987, p. 115-121.

98. Batory, D. S., “Principles of Database Management System Extensibility”, Database Engi-
neering, v. 10 n. 2, June 1987, p. 100-106.

99. Carey, M. and DeWitt, D., “An Overview of the EXODUS Project”, Database Engineer-
ing, v. 10 n. 2, June 1987, 107-114.

100. Dewitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D., Stonebraker, M. R., and Wood, D.,
“Implementation Techniques for Main Memory Database Systems”, SIGMOD Record, v.
14 n. 2, 1984, p. 1-8.

101. Eich, M. H. (ed.), “Main-Memory Databases: Current and Future Research Issues (fore-
word)”, Special section on main-memory databases, IEEE Transactions on Knowledge and
Data Engineering, v. 4 n. 6, December 1992.

102. Garcia-Molina, H.and Salem, K. “Main-Memory Database Systems: an Overview”, IEEE
Transactions on Knowledge and Data Engineering, v. 4 n. 6, December 1992, p. 509-516.

103. Litwin, W., and Risch, T., “Main Memory Oriented Optimization of OO Queries Using
Typed Datalog with Foreign Predicates”, IEEE Transactions on Knowledge and Data En-
gineering, v. 4 n. 6, December 1992, p. 517-528.

104. Listgarten, S. and Neimat, M-.A., “Modeling Costs for a MM-DBMS”, Proceedings of the

174

1st International Workshop on Real-Time Databases: Issues and Applications, Newport
Beach, CA, USA, March 7-8, 1996, p. 77-83.

105. Heytens, M., Listgarten, S., Neimat, M.-A., and Wilkinson, K., “Smallbase: A Main-Mem-
ory DBMS for High-Performance Applications”, Research report, Database Technology
Department, Hewlett-Packard Laboratories, September 1995.

106. Özsu, M. T. and Valduriez, P., “Principles of Distributed Database Systems”, Prentice-
Hall, Inc., 1991.

107. Widom, J. and Ceri, S., “Active Database Systems: Triggers and Rules for Advanced Da-
tabase Processing”, Morgan Kaufmann Publishers, Inc., 1996.

108. Risch, T., and Sköld, M., “Active Rules Based on Object-Oriented Queries”, IEEE Data
Engineering (special issue on active databases), v. 15 n. 1-4, December, 1992, p. 27-30.

109. Sköld, M., “Active Rules Based on Object Relational Queries - Efficient Change Monitor-
ing Techniques”, Licentiate Thesis LiU-Tek-Lic 1994:38, Linköping University,
Linköping, September 1994.

110. Sköld, M. and Risch, T., “Using Partial Differencing for Efficient Monitoring of Deferred
Complex Rule Conditions”, Proceedings of the 12th International Conference on Data En-
gineering (ICDE’96), New Orleans, Louisiana, February 26 - March 1, 1996, 392-401.

111. Korth, H. F. and Silberschatz, A. “Database System Concepts”, 2nd ed., McGraw-Hill,
Inc., 1991.

112. Ullman, J. D., “Principles of Database and Knowledge-Base Systems”, v. 1, Computer Sci-
ence Press, Inc., 1988.

113. Arikawa, M., Kawakita, H., and Kambayashi, Y., “Dynamic Maps as Composite Views of
Varied Geographic Database Servers”, Proceedings of the 1st International Conference on
Applications of Databases (ADB94), Vadstena, Sweden, June 20-22, 1994, p. 142-157.

114. Kemp, G. J. L., Jiao, Z., Gray, P. M. D., and Fothergill, J. E., “Combining Computation
with Database Access in Biomolecular Computing”, Proceedings of the 1st International
Conference on Applications of Databases (ADB94), Vadstena, Sweden, June 20-22, 1994,
p. 317-335.

115. Chandra, R. and Segev, A., “Using Next Generation Databases to Develop Financial Ap-
plications”, Proceedings of the 1st International Conference on Applications of Databases
(ADB94), Vadstena, Sweden, June 20-22, 1994, p. 190-203.

116. Moss, E. (ed.), Special issue on emerging object query standards, IEEE Data Engineering,
v. 17 n 4., December, 1994.

117. Bancilhon, F., Delobel, C., and Kanellakis, P. (eds.), “Building an Object-Oriented Data-
base System: The Story of O2”, Morgan Kaufmann Publishers, Inc., 1992.

118. Fishman, D. H., Annevelink, J., Chow, E. Connors, T., Davis, J. W., Hasan, W. Hoch, C.
G., Kent, W., Leichner, S., Lyngbaek, P., Mahbod, B., Neimat, M. A., Risch, T., Shan, M.
C., and Wilkinson, W. K., “Overview of the Iris DBMS”, in Kim, W., Lochovsky, F. H.
(eds.): Object-Oriented Concepts, Databases, and Applications, ACM Press, Addison-
Wesley, 1989, p. 219-250.

119. Shipman, D. W., “The Functional Data Model and the Data Language DAPLEX”, ACM
TODS, v. 6, n. 1, March 1981, p. 140-173.

175

120. Orsborn, K., “Modeling of Product Data Using an Extensible O-O Query Language”,
LiTH-IDA-R-93-15, Linköping University, Linköping, May 1993.

121. Orsborn, K., “Management of Product Data Using an Extensible Object-Oriented Query
Language”, accepted at the Sixth International Conference on Data and Knowledge Sys-
tems for Manufacturing and Engineering (DKSME ‘96), Tempe, Arizona, October 24-25,
1996.

122. Takizawa, M., “Distributed Database System JDDBS”, JARECT Computer Science &
Technologies 7, OHMSHA & North Holland, 1983, p. 262-283.

123. Fahl, G., “Object Views of Relational Data in Multidatabase Systems”, Licentiate Thesis
LiU-Tek-Lic 1994:32, Linköping University, Linköping, June 1994.

124. Fahl, G. and Risch, T., “Query Processing Over Object Views of Relational Data“, (to be
published in VLDB Journal).

125. Karlsson, J. S., An Implementation of Transaction Logging and Recovery in a Main Mem-
ory Resident Database System, Masters Thesis LiTH-IDA-Ex-94-04, Department of Com-
puter and Information Science, Linköping University, Linköping, Sweden, 1995.

126. Näs, J., “Randomized optimization of object-oriented queries in a main-memory database
management system”, Masters Thesis LiTH-IDA-Ex-93-25, Department of Computer and
Information Science, Linköping University, Linköping, Sweden, 1993.

127. Abiteboul, S., and Bonner, A., “Objects and Views”, Proceedings of the ACM SIGMOD
Conference, 1991, p. 238-247.

128. Flodin, S., Karlsson, J., Risch, T., Sköld, M., and Werner, M., “AMOS System Manual”,
EDSLAB, Linköping University, Linköping, June 1996.

129. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenny, A., Ostrouchov, S., and Sorensen, D., “LAPACK Users’
Guide”, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995.

130. Dongarra, J. J., Pozo, R., and Walker, D. W., “An Object-Oriented Design for High Per-
formance Linear Algebra on Distributed Memory Architectures”, Proceedings of the Ob-
ject-Oriented Numerics Conference (OONSKI), Sunriver, Oregon, May 26-27, 1993.

131. Dongarra, J. J., Pozo, R., and Walker, D. W., “LAPACK++: A Design Overview of Object-
Oriented Extensions for High Performance Linear Algebra”, Proceedings of Supercomput-
ing ‘93, IEEE Press, 1993, p. 162-171.

132. Barton, J. J. and Nackman, L. R., “Wrapping LAPACK in Objects”, C++ Report, v. 7 n. 5,
June 1995, p. 50-53.

133. Sarawagi, S. and Stonebraker, M., “Efficient Organization of Large Multidimensional Ar-
rays”, Proceedings of 1994 IEEE 10th International Conference on Data Engineering, Hou-
ston, TX, USA, 14-18 February, 1994. p. 328-36.

134. Maier, D. and Hanson, D. M., “Bambi Meets Godzilla: Object Databases for Scientific
Computing”, Proceedings of the Seventh International Working Conference on Scientific
and Statistical Database Management, Charlottesville, Virginia, USA, September 28-30,
1994, p. 176-184.

135. Vandenberg, S. L. and DeWitt, D. J., “Algebraic Support for Complex Objects with Ar-
rays, Identity, and Inheritance”, Proceedings of the 1991 ACM SIGMOD International
Conference on Management of Data, Denver, Colorado, June 1991, p. 158-167.

176

136. Libkin, L., Machlin, R., and Wong, L., “A Query Language for Multidimensional Arrays:
Design, Implementation, and Optimisation Techniques”, Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996. p. 228-239

137. Rotem, D. and Zhao, J. L., “Extendible Arrays for Statistical Databases and OLAP Appli-
cations”, Proceedings of the Eight International Conference on Scientific and Statistical
Database Management, Stockholm, Sweden, June 18-20, 1996, p. 108-117.

138. Seamons, K. E., Chen, Y., Winslett, M., and Cho, Y., “Persistent Array Access Using Serv-
er-Directed I/O”, Proceedings of the Eight International Conference on Scientific and Sta-
tistical Database Management, Stockholm, Sweden, June 18-20, 1996, p. 98-107.

139. Golub, G. H. and van Loan, C. F., “Matrix Computations”, 2nd ed., The John Hopkins Uni-
versity Press, 1989.

140. Carey, G. F. and Oden, J. T., “Finite Elements: Computational Aspects”, Prentice-Hall,
Inc., v. 3, Texas Finite Element Series, 1984.

141. Cook, R. D., “Concepts and Applications of Finite Element Analysis”, 3rd ed., John Wiley
& Sons, Inc., 1989.

142. Wolniewicz, R., and Graefe, G., “Algebraic Optimization of Computations over Scientific
Databases”, Proceedings of the 19th VLDB Conference, Dublin, Ireland, August 24-27,
1993, p. 13-24.

143. Wyle, C. R. and Barret, L. C., “Advanced Engineering Mathematics”, 5th ed., MacGraw-
Hill, 1985.

144. Råde, L. and Westergren, B., “Beta: Mathematics Handbook”, 2nd ed., Studentlitteratur
and Chartwell-Bratt, 1990.

145. Cole, R. L., and Graefe, G., “Optimization of Dynamic Query Evaluation Plans”, SIG-
MOD, 1994, p. 150-160.

146. Stroustrup, B., “The C++ Programming Language”, 2nd ed., Addison-Wesley Publ.
Comp., 1993.

147. Chambers, C. and Leavens, G. T., “Typechecking and Modules for Multimethods”, ACM
Transactions on Programming Languages and Systems, v. 17 n. 6, November 1995, p. 805-
843.

148. Finnigan, P. M., Kela, A., and Davis, J. E., “Geometry as a Basis for Finite Element Auto-
mation”, Engineering with Computers v. 5, 1989, p. 147-160.

149. Kemper, A., Kilger, C., and Moerkotte, G., “Function Materilization in Object Bases: De-
sign, Realization, and Evaluation”, IEEE Transactions on Knowledge and Data Engineer-
ing, v. 6 n. 4, August 1994, p. 587-608.

150. Orsborn, K., “Integration of Deeper Models for Fracture Analysis into Xfrac”, LiTH-IKP-
R-542, Linköping University, Sweden, 1988.

151. Orsborn, K., “Using Knowledge-Based Techniques in Systems for Structural Design.
Computers & Structures v. 40, n. 5, 1991, p. 1203-1211.

152. Orsborn, K. “Structural Design Systems Using Knowledge-Based Techniques: Applica-
tions to Damage Tolerance Design of Aircraft Structures” Licentiate Thesis n. 400,
Linköping University, Sweden, October, 1993.

177

153. Brodie, M. L. and Mylopoulos, J. (eds.), “On Knowledge Base Management Systems: In-
tegrating Artificial Intelligence and Database Technologies”, Springer-Verlag, 1986.

154. Schenk, D. A. and Wilson, P. R., “Information Modeling: The EXPRESS Way”, Oxford
University Press, Inc., 1994.

155. Garcia-Molina, H. and Salem, K., “Sagas”, Proceedings of ACM SIGMOD 1987 Annual
Conference, San Francisco, May 27-29, 1987, p. 249-259.

178

179

APPENDIX A: TRINITAS CONCEPTS

The subsequent list cover the main FEA-related concepts currently represented in
TRINITAS. It is not claimed that this list is complete since TRINITAS is continuously
developed and additional functionality is added.

GEOMETRY CONCEPTS

point

curve

straight line
circular segment
parabola
bezier cubic segment

surface

triangular
quadrangular
polygon

180

volume

1D cylinder
2D constant thickness

triangular
quadrangular
plane polygon

axi triangular torus
axi quadrangular torus
axi polygonic torus

3D tetrahedron
3D pentahedron
3D hexahedron
3D extruded polyhedron

DOMAIN PROPERTY CONCEPTS

material
linear elastic isotropic

BOUNDARY PROPERTY CONCEPTS

force
point load
line load
surface load
volume load
nodal load

fixed displacements
fixed point
fixed line
fixed surface
fixed node

prescribed displacements
prescribed point
prescribed line
prescribed surface
prescribed node

fixed temperature
temperature on lines

181

convective heat transfer on lines

fixed flux on lines

MESH CONCEPTS

2D linear bar
2D nonlinear bar
2D constant strain triangle
2D linear strain triangle
2D bilinear quadrangle
2D quadratic lagrange
2D quadratic serendipity
3D trilinear hexahedral

TIME CONCEPTS

time domain
time intensity function

ANALYSIS CLASS CONCEPTS

linear static stress analysis

optimization

minimum weight
maximum stiffness
min(max) stress

linear buckling analysis

linear dynamic stress analysis

eigenvalue
transient analysis

steady state thermal analysis

transient thermal analysis

nonlinear static stress analysis

phase transformation analysis

182

quench simulation

EVALUATION CONCEPTS

node values
reaction force
displacement
applied load
sigma xx
sigma yy
sigma xy
von mises

graph

entity along line
sequence of nodes
function of time
versus another entity
external unit

183

APPENDIX B: FEAMOS DOMAIN MODEL

This list provides an overview to the important parts of the current FEA domain model
in FEAMOS.

GENERAL TYPES

named_object;

GENERAL FUNCTIONS

name

construct

initiate

destruct

exist_object

get_object_type

object_named

remove_object

rename_object

coerce

objects_to_names

names_to_objects

184

GEOMETRIC TYPES

geometric_object
volume

D_1_volume
constant_cross_section_volume

D_2_volume
triangular_section_volume
quadrangular_section_volume
polygon_section_volume
triangular_torus_volume
quadrangular_torus_volume
polygon_polygon_volume

D_3_volume
tetrahedron_volume
pentahedron_volume
hexahedron_volume
extruded_polyhedron_volume

surface
triangular_surface
quadrangular_surface
cylindrical_surface
polygon_surface

curve
straight_line
parabola_cubic_section
bezier_cubic_segment
arc

point

GEOMETRY FUNCTIONS

Volume functions

exists_volume
volume_named
face_vector
faces
get_face_vector
set_face_vector
no_of_elements
no_of_nodes
element_set_name
node_set_name
nodes_per_element
material_name
thickness
cross_section
node_derivatives

185

element_type
get_volume_attributes
set_volume_attributes
initiate
create_triangular_volume
create_quadrangular_volume
create_polygon_volume
remove_volume

Surface functions

exists_surface
surface_named
edge_vector
edges
get_edge_vector
set_edge_vector
initiate
create_triangular_surface
create_quadrangular_surface
create_cylindrical_surface
create_polygon_surface
remove_surface(charstring ch) -> boolean

Curve functions

exists_curve
curve_named
get_curve_type
vertex_vector
vertices
get_vertex_vector
set_vertex_vector
division
get_division
set_division
density
get_density
set_density
create_straight_line
create_parabola_cubic_section
create_bezier_cubic_segment
create_arc
remove_curve

Point functions

exists_point
point_named

186

position
get_position
set_position
x_coordinate
y_coordinate
z_coordinate
create_point
remove_point

FINITE ELEMENT TYPES

fea_object
element

volume_element
surface_element
curve_element

node
load

line_load
point_load

displacements
fixed_displacements

FINITE ELEMENT FUNCTIONS

Mesh functions

face_vector
faces
edge_vector
edges
edges
node_vector
nodes
volume
surface
curve
point

Load functions

curve
intensity

Displacement functions

curve

187

ARRAY TYPES

array
iarray
farray
darray

ARRAY FUNCTIONS

construct
initialise
destruct
name
array_named
size
ref
set

MATRIX TYPES

This overview of matrix types are slightly compacted is a view that shows the number
of types for each basic matrix type, representation scheme, and matrix data type. Matrix
names have been shortened to make the overview simpler.

rectangular matrix
regular

imatrix
...

fmatrix
row
column
square

symmetric
diagonal

triangular
upper triangular

upper unit triangular
lower triangular

lower unit triangular
dmatrix

...

skyline
imatrix

...
fmatrix

quadratic
symmetric
triangular

188

upper triangular
upper unit triangular

lower triangular
lower unit triangular

dmatrix
...

sparse
imatrix

...
fmatrix

...
dmatrix

...

MATRIX FUNCTIONS

construct
initialise
destruct
name
size
ref
set
rows
columns
plus
minus
times
quotient
transpose
factorise

dindex (for skyline matrices)

TRINITAS MATRIX TYPE

trinitas_matrix

TRINITAS MATRIX FUNCTIONS

construct
initiate
rows
columns
format
precision
get_trinitas_matrix_attributes

189

APPENDIX C: FEAMOS FOREIGN FUNCTIONS

This appendix presents an overview of the existing implementations of foreign func-
tions for different binding patterns for the matrix data source. Where overloaded func-
tion implementations exist for different matrix schemes it is indicated. In addition, func-
tions are overloaded, when relevant, for different matrix data types. These variants are
not included in this list.

PLUS

MINUS

 derived AMOSQL function

Arect
b Brect

b
+ Crect

f
=

Arect
b Brect

f
+ Crect

b
=

Arect
f Brect

b
+ Crect

b
=

Arect
b Brect

b
– Crect

f
=

190

 derived AMOSQL function

 derived AMOSQL function

TIMES

Regular representation

Arect
b Brect

f
– Crect

b
=

Arect
f Brect

b
– Crect

b
=

a
b Brect

b⋅ Crect
f

=

a
b Brect

f⋅ Crect
b

=

Arect
b Brect

b⋅ Crect
f

=

Adiag
b Bcol

b⋅ Ccol
f

=

Adiag
b Bcol

f⋅ Ccol
b

=

Auptri
b Bcol

b⋅ Ccol
f

=

Auptri
b Bcol

f⋅ Ccol
b

=

Auputri
b Bcol

b⋅ Ccol
f

=

Auputri
b Bcol

f⋅ Ccol
b

=

Adiag
b Buptri

b⋅ Cuptri
f

=

Adiag
b Buputri

b⋅ Cuputri
f

=

191

Skyline representation

Asym
b Bcol

b⋅ Ccol
f

=

Asym
b Bcol

f⋅ Ccol
b

=

Alowtri
b Bcol

b⋅ Ccol
f

=

Alowtri
b Bcol

f⋅ Ccol
b

=

Alowutri
b Bcol

b⋅ Ccol
f

=

Alowutri
b Bcol

f⋅ Ccol
b

=

Alowtri
b Buptri

b⋅ Csym
f

=

Alowutri
b Buputri

f⋅ Csym
b

=

Auptri
b Bcol

b⋅ Ccol
f

=

Auptri
b Bcol

f⋅ Ccol
b

=

Auputri
b Bcol

b⋅ Ccol
f

=

Auputri
b Bcol

f⋅ Ccol
b

=

Adiag
b Buptri

b⋅ Cuptri
f

=

Adiag
b Buputri

b⋅ Cuputri
f

=

192

QUOTIENT

TRANSPOSE

Regular representation

Asym
b Bcol

b⋅ Ccol
f

=

Asym
b Bcol

f⋅ Ccol
b

=

Alowtri
b Bcol

b⋅ Ccol
f

=

Alowtri
b Bcol

f⋅ Ccol
b

=

Alowutri
b Bcol

b⋅ Ccol
f

=

Alowutri
b Bcol

f⋅ Ccol
b

=

Alowtri
b Buptri

b⋅ Csym
f

=

Alowutri
b Buputri

f⋅ Csym
b

=

Arect
b

b
b⁄ Crect

f
=

Auptri
b Blowtri

f↔

Auptri
f Blowtri

b↔

Auputri
b Blowutri

f↔

Auputri
f Blowutri

b↔

193

 derived AMOSQL function

 derived AMOSQL function

 derived AMOSQL function

 derived AMOSQL function

Skyline representation

The same variants as for the regular representation

FACTORISE

Regular representation

Skyline representation

The same variant as for the regular representation

Alowtri
b Buptri

f↔

Alowtri
f Buptri

b↔

Alowutri
b Buputri

f↔

Alowutri
f Buputri

b↔

Asym
b Buputri

f Cdiag
f→

194

195

INDEX

A

AMOS 59

architecture 63

AMOSQL 70
array 108
attribute 37

collection 37

complex 37

derived 37

invertible 37

reference 37

simple 37

authorisation 31

B

backup 31
binding pattern 70, 74
boundary condition 11, 15

C

class 38
collection attribute 37
command interpreter 63
complex attribute 37
composite object 37
computational database technology 2,

78
concurrency 31
concurrency control 33
configuration 38
cost hint 75
Crout decomposition 85

D

data
model 30, 32

persistent 32

data definition language 53
data dictionary 30
data independence

logical 32

physical 32

data manipulation language 53
data model

relational 35

database 29
database language 30, 32, 52
database management system 29

active 44

hierarchical 34

main-memory 59

network 35

object-oriented 38

object-relational 39, 59

relational 35

database management systems 1

active 44

distributed 43

database method 37
database system 29
database technology

computational 2, 78

engineering 45

extensible 2, 40

main-memory 42

object 36

object-oriented 2

object-relational 2

scientific 45

declarative 53
dereferencing 73
derived attribute 37
discretisation 11, 129
disk manager 66
displacement vector 11, 138

196

distribution transparency 44
domain compilation 143
domain conceptualisation 3
domain condition 11
domain model 4, 60
domain relational calculus 54
dynamic optimization 95

E

early binding 38
element 11

isoparametric 18

embedded query interface 73
engineering information system 1
essential boundary condition 15
execution plan interpreter 65
EXPRESS 25, 159

F

fast-path interface 73
FEAMOS 77

architecture 79

finite element 18
finite element analysis 3, 9

functional programming 24

knowledge-based techniques 24

object-oriented programming 24

relational database 24

software 22

finite element method 9
foreign data source 65
foreign function 74

overloaded 75

foreign function interface 74
function 67

derived 68

foreign 68, 74

multi-directional 70, 74

overloaded 69

procedure 68

stored 68

function materialisation 147, 165

G

generalisation 38

I

impedance mismatch 32

indexes 32

inheritance 38

multiple 38

integrator 61

integrity constraint 31, 33

invertible attribute 37

L

late binding 38

LDLT decomposition 85

load vector 11, 18, 138

locator 61

logging 33

logical object manager 65

M

main-memory 3

main-memory database technology 42

matrix 86

regular 89

skyline 89

sparse 90

mediator 60

memory manager 65

mesh 11

method 37

monitor 61

multi-directional foreign function 74

multiple inheritance 38

197

N

name server 61
natural boundary condition 15
node 11, 19
nonprocedural 53

O

object 36, 67
object handle 73
object identity 36
object views 69
operator overloading 38
optimizer 65
OQL 57
overloaded 69
overloaded foreign function 75
overloading 38
overriding 38

P

physical object manager 65
polymorphism 38, 69

ad hoc 38

procedural 53

Q

query
ad hoc 31

predefined 31

query language 30, 52

R

recovery 31
recovery manager 67
reference attribute 37
regular matrix 89
relation 35
relational algebra 53

relational calculus 54

relationally complete 55

resolvent 70

rule 33, 44

rule manager 64

S

schema 30

schema manager 64

SDAI 160

simple attribute 37

skyline matrix 89

sparse matrix 90

spatial indexing 128, 147

SQL 55

SQL3 57

STEP 25, 159

stiffness matrix 11, 18, 138

storage definition language 53

storage type 75

structured complex object 37

system catalogue 30

T

table 35

three-schema architecture 33

transaction 33

transaction manager 66

transaction processing 33

transactions 31

translator 61

TRINITAS 25

tuple relational calculus 54

type 37, 67

U

unstructured complex object 37

198

V

version 38
view definition language 53
views 32

Department of Computer and Information Science
Linköping Institute of Technology

PhD theses
(Linköping Studies in Science and Technology Dissertations)

No 14 Anders Haraldsson: A Program Manipu-
lation System Based on Partial Evalua-
tion, 1977, ISBN 91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based
Verification of Time Margins in Digital De-
signs, 1977, ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av proc-
essbeskrivningar i naturligt språk, 1977,
ISBN 91-7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP
Compiler and its Implications for Ideal
Hardware, 1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File
Queries in a Meta-Database System
1978, ISBN 91-7372-232-4.

No 51 Erland Jungert: Synthesizing Database
Structures from a User Oriented Data
Model, 1980, ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the De-
velopment of Methods and Tools for In-
teractive Design of Applications
Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhance-
ment in a Well-Structured Pattern Match-
er though Partial Evaluation, 1980, ISBN
91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Hu-
man-Computer Interface in Commercial
Systems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an
Abstract Prolog Machine and its Applica-
tion to Partial Evaluation, 1981, ISBN 91-
7372-479-3.

No 71 René Reboh: Knowledge Engineering
Techniques and Tools for Expert Systems,
1981, ISBN 91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifi-
ability in large Software Systems, 1982,
ISBN 91-7372-527-7.

No 94 Hans Lunell: Code Generator Writing Sys-
tems, 1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum
Weight Triangulation, 1983, ISBN 91-7372-
660-5.

No 109 Peter Fritzson: Towards a Distributed Pro-
gramming Environment based on Incre-
mental Compilation, 1984, ISBN 91-7372-
801-2.

No 111 Erik Tengvald: The Design of Expert Plan-
ning Systems. An Experimental Opera-
tions Planning System for Turning, 1984,
ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Mini-
mum Decompositions of Polygons, 1987,
ISBN 91-7870-133-3.

No 165 James W. Goodwin: A Theory and System
for Non-Monotonic Reasoning, 1987, ISBN
91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for
Automated Synthesis of VLSI Systems,
1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and Sys-
tem for Design of Distributed Systems,
1988, ISBN 91-7870-301-8.

No 192 Dimiter Driankov: Towards a Many Val-
ued Logic of Quantified Belief, 1988, ISBN
91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inherit-
ance for an Object Oriented Knowledge
Base, 1989, ISBN 91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware De-
scription and Verification Method, 1989,
ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and
Logical Foundations of Truth Mainte-
nance, 1989, ISBN 91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based De-
sign Support and Discourse Manage-
ment in User Interface Management
Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-
7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to
Interactive Design in Multiple Inheritance
Hierarchies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monoton-
ic Formalism with Explicit Defaults, 1991,
ISBN 91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorith-
mic Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Dis-
course-Cognitive and Computational
Aspects, 1992, ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and
Abstract Machines: Contributions to a
Methodology for the Implementation of
Logic Programs, 1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992,
ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-
880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic
Functions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

Department of Computer and Information Science
Linköping Institute of Technology

PhD theses
(Linköping Studies in Science and Technology Dissertations)

No 281 Christer Bäckström: Computational
Complexity of Reasoning about Plans,
1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natu-
ral Language Analysis, 1992, ISBN 91-
7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dy-
namic Slicing with Applications to De-
bugging and Testing, 1993, ISBN 91-7871-
065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-
7871-078-2.

No 312 Arne Jönsson: Dialogue Management for
Natural Language Interfaces - An Empiri-
cal Approach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems
in Physical Environments: Compositional
Modelling and Framework for Verifica-
tion, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Deci-
sion Support and Learning. A Study of Dis-
crete-Event Manufacturing Simulation at
Asea/ABB 1968-1993, 1995, ISBN 91-7871-
494-X.

No 375 Ulf Söderman: Conceptual Modelling of
Mode Switching Physical Systems, 1995,
ISBN 91-7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness
in Logic Programs, 1995, ISBN 91-7871-
538-5.

No 396 George Fodor: Ontological Control, De-

scription, Identification and Recovery
from Problematic Control Situations,
1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Se-
mantics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement
by Testability Analysis and Transforma-
tions, 1996, ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning,
1996, ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported In-
dustrial Training from an Organisational
Learning Perspective - Development
and Evaluation of the SSIT Method, 1996,
ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN
91-7871-704-3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and
Arenas: Participatory Design in Practice,
1996, ISBN 91-7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-
820-1.

No 452 Kjell Orsborn: On Extensible and Object-
Relational Database Technology for Fi-
nite Element Analysis Applications, 1996,
ISBN 91-7871-827-9.

