
ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

128

Lars Melander

Integrating Visual Data Flow

Programming with Data Stream
Management

Dissertation presented at Uppsala University to be publicly examined in 2446, ITC,
Lägerhyddsvägen 2, Uppsala, Thursday, 6 October 2016 at 13:00 for the degree of Doctor
of Philosophy. The examination will be conducted in English. Faculty examiner: Professor
Sharma Chakravarthy (University of Texas).

Abstract
Melander, L. 2016. Integrating Visual Data Flow Programming with Data Stream
Management. Uppsala Dissertations from the Faculty of Science and Technology 128. 122 pp.
Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-506-2583-7.

Data stream management and data flow programming have many things in common. In both
cases one wants to transfer possibly infinite sequences of data items from one place to another,
while performing transformations to the data. This Thesis focuses on the integration of a
visual programming language with a data stream management system (DSMS) to support the
construction, configuration, and visualization of data stream applications. In the approach,
analyses of data streams are expressed as continuous queries (CQs) that emit data in real-time.
The LabVIEW visual programming platform has been adapted to support easy specification
of continuous visualization of CQ results. LabVIEW has been integrated with the DSMS
SVALI through a stream-oriented client-server API. Query programming is declarative, and it
is desirable to make the stream visualization declarative as well, in order to raise the abstraction
level and make programming more intuitive. This has been achieved by adding a set of visual
data flow components (VDFCs) to LabVIEW, based on the LabVIEW actor framework. With
actor-based data flows, visualization of data stream output becomes more manageable, avoiding
the procedural control structures used in conventional LabVIEW programming while still
utilizing the comprehensive, built-in LabVIEW visualization tools.

The VDFCs are part of the Visual Data stream Monitor (VisDM), which is a client-server
based platform for handling real-time data stream applications and visualizing stream output.
VDFCs are based on a data flow framework that is constructed from the actor framework, and
are divided into producers, operators, consumers, and controls. They allow a user to set up the
interface environment, customize the visualization, and convert the streaming data to a format
suitable for visualization.

Furthermore, it is shown how LabVIEW can be used to graphically define interfaces to
data streams and dynamically load them in SVALI through a general wrapper handler. As an
illustration, an interface has been defined in LabVIEW for accessing data streams from a digital
3D antenna.

VisDM has successfully been tested in two real-world applications, one at Sandvik Coromant
and one at the Ångström Laboratory, Uppsala University. For the first case, VisDM was
deployed as a portable system to provide direct visualization of machining data streams. The
data streams can differ in many ways as do the various visualization tasks. For the second case,
data streams are homogenous, high-rate, and query operations are much more computation-
demanding. For both applications, data is visualized in real-time, and VisDM is capable of
sufficiently high update frequencies for processing and visualizing the streaming data without
obstructions.

The uniqueness of VisDM is the combination of a powerful and versatile DSMS with visually
programmed and completely customizable visualization, while maintaining the complete
extensibility of both.

Keywords: data stream management; data stream visualization; visual data flow
programming; LabVIEW

Lars Melander, Department of Information Technology, Computing Science, Box 337,
Uppsala University, SE-75105 Uppsala, Sweden. Department of Information Technology,
Division of Computing Science, Box 337, Uppsala University, SE-75105 Uppsala, Sweden.

© Lars Melander 2016

ISSN 1104-2516
ISBN 978-91-506-2583-7
urn:nbn:se:uu:diva-286536 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-286536)

Contents

Acknowledgements . 6

Summary in Swedish . 8

List of papers .11

1 Introduction . 13

1 .1 Research questions and proposed solution 15

1 .2 Contributions 16

1 .3 Terminology 17
Diagram arrows 20

2 Monitoring industrial machines . 21

2 .1 Showcases 23
Sandvik Coromant – remote machine process monitoring 25
LOFAR digital antenna 29

3 Background . 33

3 .1 Data stream management systems 34
Amos II 35
SCSQ 36
SVALI 36

3 .2 Visual programming languages 36
LabVIEW (National Instruments) 38
Impedance mismatch 39

3 .3 Data flow programming languages 40
Data streams v . data flows 41
Retaining values for incremental visualization 41

3 .4 Actors 43

4 The VisDM system . 45

4 .1 VDFC implementation summary 47

4 .2 VisDM architecture 48
Architecture interfaces 49
LabVIEW concepts 50

4 .3 Implementation of VisDM 52
The RUN QUERY producer node 53
The visualization nodes 53
Constructing the visual data flow in LabVIEW 55
VisDM execution controls 56
Handling type resolution 57
Constructing the data flow 58

4 .4 Running update queries 60

4 .5 Visual stream wrappers 62
A visual wrapper example 62
Setting wrapper parameters 66

4 .6 Server and API details 66

4 .7 Evaluation 67
Sandvik Coromant machine tool monitoring 67
LOFAR antenna unit 68
Evaluation of VisDM visualization performance 68

5 Related work . 71

5 .1 Data streaming examples 72

5 .2 Visual data flow programming 73

5 .3 Platform comparison 74

5 .4 Visual query builder 76

6 Summary . 79

6 .1 Discussion 81
LabVIEW XNodes 82

6 .2 Future work 82

Appendix A – LabVIEW programming . 87

A .1 Customizing visualization 87

A .2 Enqueuer transfer 90

Appendix B – Server building blocks . 93

B .1 The fixstream() wrapper handler 93

B .2 Interfacing LabVIEW with embeddable components 95

B .3 Coroutines 96

B .4 Scans 99
Remote scans 100

B .5 Server structure 101

Appendix C – Tangential issues . 105

C .1 More issues with data flow programming 105
Solving wire branches and wire merges 105
Issues with LabVIEW data flow programming 108
When actor-based data flow programming fails 110

C .2 Feedback loops using actors 111

 References . 113

6

Acknowledgements

Thank you,
Tore, for giving me the chance, and for the things I have learned,
Kjell, for the guidance and the support,
to my colleagues, for the good times and the bad .

This project is supported by eSSENCE; the Swedish Foundation for Strategic
Research, grant RIT08-0041; and EU FP7 project Smart Vortex .

 7

To Liz

As I walk and leave a trail
upon the sands of time,

your prints match mine without fail
and with a scent of lime.

When I faltered you were close
and helped me find my way,
always guiding me at those

times I go astray.

Singular, the luck one has
considering how your

patience is as boundless as
the seas that I explore.

 For our matrimonial bliss
there’s one thing left to do.

Kneeling, I am asking this:
Please, let me marry you.

8

Summary in Swedish

I denna avhandling presenteras en plattform för visuell dataflödesprogrammering
och visualisering av dataströmmar, kallad VisDM (Visual Data stream Monitor) .
Dess syfte är att låta en användare enkelt och effektivt kunna hantera och visua-
lisera dataströmmar .

Möjligheten att effektivt kunna hantera dataströmmar i industriella miljöer
är numera kritiskt för att kunna utveckla tillverkningsindustrin . Åtskilliga in-
ternationella forsknings- och utvecklingsprojekt, såsom Industrial Internet [26],
Industry 4.0 [14][43] och Made in China 2025 [40], har som mål att höja produk-
tiviteten och kvaliteten för industriella tillverkningsprocesser och produkter . Ett
mycket viktigt område som belysts i EU:s Smart Vortex-projekt [72] är förmågan
att skalbart kunna samla in, behandla, analysera och visualisera dataströmmar .

Industriella system skapar väldiga mängder sensordata i form av kontinuerliga
realtids-dataströmmar från industriella processer och produkter utrustade med
sensorer . En dataström kan bestå av mätningar från en enda sensor, med värden
uppmätta för en enstaka komponent, eller bestå av en sammanställning av flera
dataströmmar . En resultatström kan vara en enkel filtrering eller aggregering, eller
en tillämpning av komplexa statistiska analyser, komplexa modeller, vibrations-
analyser, etc . Datakällor kan ligga både på komponentnivå och systemnivå . Till
exempel kan industriell utrustning ha en uppsättning av sensorer installerade,
vilka fortlöpande mäter utrustningens tillstånd . Ett kluster av dessa sensorer kan
sedan användas för att mäta nötning, belastning, åverkan, mm . för enskilda kom-
ponenter . Aggregering över en uppsättning av dessa strömmar kan användas för
att få en enhetlig översiktsbild av en hel produktionsenhet .

Allt eftersom dataströmshantering blir mer och mer omfattande och komplex
så krävs metoder och lösningar som kan underlätta denna hantering och mot-
verka den ökande komplexiteten . Lösningen som presenteras i denna avhand-
ling tillhandahåller enkel analys och visualisering av dataströmmar genom visuell
data flödesprogrammering av industriella tillämpningar . Ett generellt dataströms-
hanteringssystem exekverar kontinuerliga frågor som har definierats av använda-
ren . Dessa frågor kopplas upp mot dataströmmarna och kör analyser, filtreringar,
transformationer, mm . Resultatet kan sedan enkelt visualiseras av användaren .

 9

Generellt sett så är det önskvärt att flytta design- och programmeringsuppgif-
ter så nära slutanvändaren som möjligt, genom att höja abstraktionsnivån och
gömma komplexa moment genom automatisering . Detta kan åstadkommas ge-
nom att fokusera på dessa områden:
• Endast deklarativ programmering . Användare bör så långt det är möjligt en-

dast behöva fokusera på vad de vill göra, inte hur . Programmeringsspråk på
lägre nivå (C++, Java, etc .) är procedurella och fokuserar nästan uteslutande på
hur ett program skall implementeras, och kräver oftast omfattande erfarenhet
för att användas korrekt . De flesta användare kommer därför att finna dem
alltför svåra att tillämpa . Databasfrågor, som SQL och liknande, är å andra
sidan deklarativa och kräver inte att användaren har insikt i algoritmer eller
andra detaljer för att kunna utföra sin uppgift .

• Undvika behovet av specialiserad programmering, genom att beskriva och
hantera begrepp på en högre abstraktionsnivå och undvika implementations-
specifika lösningar .

• Applikationsorienterad visuell programmering . Att låta användare bygga sina
program med symboliska byggstenar är mycket mer intuitivt än textbaserad
programmering, och kan tilltala de som finner programmering främmande .
VisDM är ett klient-serversystem där klienten har konstruerats i det visuella

programmeringsspråket LabVIEW och servern är baserad på dataströmshante-
ringssystemet SVALI . Det bygger på en uppsättning av VDFC-definitioner (Vi-
sual Data Flow Component), vilka är uppdelade i producers, operators, consumers
och controls . De bygger upp de olika delarna av dataflöden som används för att
hantera dataströmmar .

LabVIEW har ett actor framework som utgör grunden till VisDM-klienten .
Ovanpå detta har ett data flow framework byggts som innehåller dataflödes-
abstraktioner, dynamisk typhantering, felhantering, visualiseringsstöd, m .m .
Detta ramverk ligger sedan till grund för VDFC-definitionerna . VDFC:er an-
vänds för att definiera och hantera strömkällorna medelst kontinuerliga frågor,
samt koppla dem till korrekt visualisering . De används också för att hantera upp-
dateringsfrågor, vilka kan köras för att ändra serverns tillstånd närhelst använda-
ren önskar . Vidare har SVALI utökats med ett ramverk för att dynamiskt kunna
ladda och köra LabVIEW-instrument för att kunna inhämta externa dataström-
mar genom visuell programmering .

VisDM har testats i två verkliga tillämpningar:
• Visualisering och validering av dataströmmar från industriella maskiner hos

Sandvik Coromant .
• Signalbehandling och visualisering av radiodata inhämtat från en digital 3D-an-

tenn som sköts av institutet för rymdfysik i Uppsala (IRFU) .

10

I båda fallen visualiseras data i realtid . Avsikten är att VisDM skall erbjuda fullt
stöd genom hela strömhanteringsprocessen, utan att tumma på vare sig prestanda
eller användarvänlighet .

Centralt för industriella processer är översyn av dataströmmar och problemlös-
ning, vilket är uppgifter som är starkt beroende av användarorienterad visualise-
ring och lättillgänglig inmatning av parametrar .

Sandvik Coromant1 utvecklar och tillverkar verktyg för metallbearbetning, och
tillhandahåller en utförlig kunskapsbas om skärning av metall . De har ett världs-
omspännande nätverk av maskinparker för bland annat fräsning och borrning,
och dessa maskiner är utrustade med sensorkluster vars utdata behöver behandlas
och övervakas . Med moderna produktionsflöden blir traditionella övervaknings-
metoder otillräckliga . Slitage och nedbrytningar behöver upptäckas så tidigt som
möjligt i produktion, vilket är omständligt och kostsamt utan automatisering .

VisDM har använts för att definiera ett gränssnitt till en LOFAR (LOw Fre-
quency ARray) antennprototyp som används av institutet för rymdfysik i Upp-
sala (IRFU) på Ångströmlaboratoriet2 . Antennen är en sofistikerad, helt digital
antenn som har tre ortogonala antennelement, vilket möjliggör mätningar av
radiosignalers riktning och polarisering .

Unikt för VisDM är dess utbyggbarhet . Inget annat system är så anpassnings-
bart för att kunna hantera alla möjliga sorters lösningar för dataströmshantering .

1 http://sandvik .coromant .com
2 http://www .irfu .se

 11

List of papers

The papers are referred to in the text by their Roman numerals:

I Lars Melander, Kjell Orsborn, Tore Risch, Daniel Wedlund
Visualization of Continuous Queries using a Visual Data Flow Programming
Language
[Submitted for journal publication]

I am the primary author of this paper .

II S . Badiozamany, L . Melander, T . Truong, C . Xu, T . Risch
Grand challenge: implementation by frequently emitting parallel windows
and user-defined aggregate functions
Proceedings of the 7th ACM international conference on Distributed
event-based systems, 2013, pp 325–330

Authors are listed in alphabetic order . My contributions:
• Implemented the “Shot on Goal” query, and its inclusion in the main

solution .
• Wrote 11% of the text in the paper .
• Responsible for testing the solution .
• Demo visualization .

III M . Leva, M . Mecella, A . Russo, T . Catarci, S . Bergamaschi, A . Malagoli,
L . Melander, T . Risch, C . Xu
Visually Querying and Accessing Data Streams in Industrial Engineering
Applications
21st Italian Symposium on Advanced Database Systems, SEBD 2013
Roccella Jonica, Italy, June 30th–July 3rd, 2013

I provided text input, and the DSMS server functionality and API .

 13

1 Introduction

 Sir Lancelot: “Look, my liege!”
King Arthur: “Camelot!”
Sir Galahad: “Camelot!”
Sir Lancelot: “Camelot!”
Patsy: “It’s only a model .”
King Arthur: “Shh!”

—Terry Gilliam et al ., Monty Python and the Holy Grail

The capability to efficiently handling data streams in industrial processes is be-
coming critical for transforming the current manufacturing industry . Several ma-
jor international research and development initiatives such as Industrial Internet
[26], Industry 4.0 [14][43], and Made in China 2025 [40], are focussing on this
transformation of the current manufacturing industry with the overall goal of im-
proving productivity and quality of industrial processes and products . A critical
area within this context, addressed in the EU project Smart Vortex [72], is scal-
able capability to collect, process, analyse, and visualize data streams to support
cyber-physical systems [43] as found in industrial processes and products, in the
project exemplified by machining processes, hydraulic power systems, and heavy
vehicles in production .

In an industrial system, large volumes of sensor data are produced in the form
of continuous data streams from industrial processes and products equipped with
sensor installations . A data stream can be generated by a single sensor, measuring
some quantity at the component level, or it can be a derived stream that consti-
tutes aggregated values over one or several other streams . A derived data stream
can be based on some simple filtering or aggregation operation but can also in-
volve the application of much more complex analytical and empirical models,
such as statistical analysis, on-line clustering algorithms, vibration analyses, etc .
The data streams can further originate from all levels of an industrial system, from
the component level to the system level . For example, industrial equipment will
be equipped with collections of sensors that will generate data streams providing
data about the current condition of a machining process . A set of sensors can then
be used for measuring wear, stress, strain, etc . for the individual components of
the equipment in use . Aggregations over collections of streams can also be applied

14

 Introduction

to derive more general states and conditions by selecting various sets and compos-
itions of streams or from equipment used in production lines . To make the out-
put data streams intelligible by an analyst, they should be visualized in real-time .

As data stream management is becoming increasingly complex, we need meth-
ods that counter-balance the complexity and make it more accessible . The ap-
proach in this Thesis enables easy analysis and visualization of streaming data .
The proposal presented is a flexible visual specification and deployment of visu-
alizations of data stream analyses produced by a data stream management system
(DSMS) [30] .

A DSMS is similar to a database management system (DBMS) with the dif-
ference that while a DBMS allows querying only stored data using a declarative
query language like SQL, a DSMS in addition provides continuous queries (CQs)
to query data streams in real-time . The CQs can filter, transform, combine, and
distribute the accessed data streams . A CQ differs from its DBMS counterpart
in that it may not have a determinate endpoint; it runs until the data streams
feeding it are terminated or its operation is interrupted by the user or the system .
CQs are very responsive, immediately returning results as soon as they are avail-
able, unlike a batch query that returns results only when it has finished running .

In general terms, it is desirable to move design and programming tasks closer
to the end user, by raising the level of abstraction and hiding more complex tasks
through automation . There are some direct ways of accomplishing this:
• Making application programming declarative . Users should as far as possible

be able to state what they want done, without having to state how to do it .
Low-level programming languages (e .g . C++ or Java) are procedural, meaning
that programming is almost exclusively about how things are done, and they
require extensive programming training and experience . Non-expert program-
mers may consequently find them too difficult to use . By contrast, database
query languages such as SQL are declarative, where users do not specify the
algorithms to be used and other details when performing database searches .

• Avoiding the need for programming specialists . A common approach to data
stream processing is to build systems from the ground up, using libraries in a
conventional programming language [4][5][6][31] . The major drawback is that
such implementations rely heavily on the expertise of the development team
involved, which is becoming increasingly rare as programmer demand and
application complexity increases . An alternative is to use declarative CQs to
enable very high level specification of data stream processing, without having
to explicitly specify details .

• Introducing application oriented visual programming . Letting users build pro-
grams by manipulating graphical building blocks is much more intuitive than
textual programming, and may appeal to those who find programming awk-
ward and difficult .

Research questions and proposed solution

 15

1 .1 Research questions and proposed solution
Looking at particularly industrial machining operations, it becomes clear just
how much data streaming applications can vary even within the same operational
context . Collecting all issues, certain research questions stand out:
• Can application usability be increased without hurting efficiency? Tasks should

become easier to implement, in a shorter time span, and requiring fewer re-
sources, while at the same time getting the same results as or better than exist-
ing systems .

• How does high-rate stream throughput from multiple sources affect design
decisions? Scalability is a keyword in the database world, and visualization
should not impose constraints .

• How can sophisticated visualization accommodate both ease of use and extens-
ible customization?

• To what extent can programming become more user-centric? A data stream
management system may be used by a dedicated program developer, an en-
gineer, or an operator, roles which may or may not belong to the same person .
Regardless of the role, a person should be comfortable using the software .
Visual data flow programming [20][22] offers rapid and robust prototyping of

applications . Data stream management is conceptually similar to data flow pro-
gramming, and with data flows the step between specification and implementa-
tion is eliminated; the program specification becomes the program . Development
time decreases, and programming tasks can be moved closer towards the end user .

LabVIEW [67] from National Instruments1 is a widely used visual program-
ming platform for building solutions to all sorts of industrial and scientific signal
processing applications [84][71][62] . It is often cited as a “de facto standard” for
developing testing and simulation solutions for signal processing, e .g . to generate
and visualize data streams [46][13] .

The approach presented in this Thesis, Visual Data stream Monitor (VisDM),
addresses the above issues by utilizing the existing state-of-the-art visual program-
ming environment in LabVIEW to enable high-level visualization for engineering
and scientific DSMS applications . LabVIEW offers a visual programming envir-
onment that is comprehensive, yet has a flat learning curve, and a user interface
that many find attractive [25][91][9] . It supports object-oriented programming
and has an interface for calling external functions . Like most programming tools
of its kind, LabVIEW supports the building of stand-alone programs that can be
deployed without depending on the development environment .

1 http://ni .com/labview

16

 Introduction

It is shown how visual data flows enable declarative specification of application
programs visualizing data streams defined as CQs to a DSMS, specifically how
producer-consumer pairs are created to link a CQ to its appropriate visualization .
A visual data flow is a program specified using graphic building blocks called
function nodes [22][81] where each node consumes one or several input data flows
and produces output data flows or visualizations . The function nodes are impli-
citly driven by the flow of data, rather than by explicit control structures as in
regular programming .

The prototype system provides an integrated visualization and scalable data
stream analysis platform, by interfacing LabVIEW with the SVALI (Stream
VALIdator) data stream management system [93] . SVALI is fully extensible and
includes several ascending technologies, such as distributed stream processing,
stream windowing, and customized indexing . SVALI has been tested and scru-
tinized in several real-world industrial applications [Paper II][10][93], and has
proven itself to be a robust and flexible DSMS . It is the fundamental building
block for the solutions presented in this Thesis, and has been thoroughly tested
in the Smart Vortex1 project [72] . SVALI scales very well with the work load, as it
can dynamically start parallel stream query processes when needed .

1 .2 Contributions
LabVIEW has been extended with a toolbox, Visual Data Flow Components (VD-
FCs), which enable declarative visual specification of data stream applications as
visual data flows . The declarative, data flow centric programming with VDFCs
does not rely on control structures the way regular programs do . The set of VD-
FCs is extensible, so that adding new components when needed is easy .

The integration of LabVIEW and SVALI has made it possible to develop a
mechanism for users to visually define data stream wrappers on a high level in
LabVIEW . A data stream wrapper is a program module to handle communic-
ation between SVALI and external stream sources . Visual data stream wrappers
enable entire applications to be defined in VisDM, only using CQs combined
with visual data flow specifications .

In VisDM the visualization is specified by connecting CQs to function nodes
in LabVIEW that continuously visualize consumed stream elements . The sources
of the visualized data flows are function nodes connected to CQs through a
stream-oriented client-server API . The function nodes are based on LabVIEW’s
actor framework [56] . Actors are stand-alone, thread-based processes that commu-
nicate between each other using messages [1][33] . It is fairly straightforward to

1 http://smartvortex .eu

Terminology

 17

design a data flow environment using actors; each actor becomes a function node,
and each entity in a data flow becomes a message that is sent from one actor to
another . By using the actor framework to define function nodes in VisDM, the
procedural control structures used in conventional LabVIEW programming are
eliminated .

VDFCs are constructed using a data flow framework that has been developed
for VisDM, based on the actor framework . It contains visualization components,
dynamic tuple [24] handling, error handling, etc .

There are typically many CQs running concurrently, and there may be update
queries running occasionally . Each query needs exclusive access to the SVALI
system when running, and to accommodate this a multiplexing server structure
is introduced . Implementing the new server structure requires cooperative mul-
ti-threading primitives, which are required for making query operations respons-
ive, both for the server structure and general query processing . However, queries
cannot be interrupted in the classic non-preemptive manner of most operating
systems . Instead, queries relinquish control at certain points of their execution,
allowing other processes to execute . Typically, a query will wait for some time for
new data to arrive on a stream . While it waits, the query is moved to a processing
queue, letting another query process operate in the meantime .

1 .3 Terminology
Application programming interface, API Provides functionality for accessing
a software component . It defines a set of routines for input, output, types, etc .,
creating logical independence between the base system and its calling conven-
tions, and the component being accessed .
Asynchronous VI A subVI that runs independently of all other VIs . It is not
managed by the run-time environment and error handling is generally very lim-
ited .
Background execution When a coroutine has yielded operation, but contin-
ues to execute . It cannot make changes to the system environment .
Block diagram Contains the code of a LabVIEW program . Programs are dis-
played graphically on a two-dimensional canvas and execution is done from left
to right .
Class A program template, from which objects can be instantiated .
Continuous query, CQ A query that does not have a determinate end point .
It outputs derived stream elements in real-time, immediately after initiation . It
typically has a window function, looking at a part of the stream at a time and
performing operations over that part .

18

 Introduction

Daemon A process that runs hidden from users, usually performing an auto-
mated service .
Database management system, DBMS Software that provides efficient stor-
age and management of data . There are many types, the most well-known being
relational DBMSs .
Data-driven execution Program execution is dictated by the flow of data . As
soon as a program component has sufficient data for execution, it will do so .
Data stream management system, DSMS Software that provides efficient
handling of data streams .
Demand-driven execution Program execution is dictated by data requests .
Program components will only execute when subsequent components want data .
Derived stream A filtered data stream, or output from a stream operator . In
the context of a data stream management system, it is typically the output from
continuous query .
Dispatcher A process that polls the states of a set of processes and executes
them in order according to a set of rules .
Dynamic link library, DLL See shared object .
Dynamic typing A variable’s type is set at run-time when assigned a value, and
can change several times during execution .
First class object An entity that can be dynamically created, destroyed, passed
to a function, returned as a value, and have all the rights that other variables in
the programming language have .
Foreground execution The state of a coroutine that executes while maintain-
ing ownership of the system environment .
Front panel The interface for a LabVIEW program, displaying input boxes,
diagrams, etc .
Function node An entity that first waits for data to arrive on all of its inputs .
Once data has arrived, the node is said to fire; it executes its function, typically
ending with data being transmitted on one or more output wires . Execution is
compartmentalized; function nodes do not interact with or change the state of
the system in which they operate . Their own state may change internally during
firings .
Impedance mismatch Appears when an entity or concept from one system
cannot readily be translated to another system . The most common example is ob-
ject-relational mismatch, where objects in a programming language do not have
a corresponding entity in a database, and the relations in the database likewise do
not have a corresponding concept in the programming language .

Terminology

 19

Internet protocol, IP The base protocol for transmitting data packets over In-
ternet .
Method A function that belongs to a class .
Multitasking Running more than one process at the same time in the same
operating system . This can be done by utilizing parallel processing pipes, or by
switching between processes . Of the latter, the most common type is preemptive
multitasking, where the operating system interrupts executing processes, as op-
posed to non-preemptive (cooperative) multitasking, where processes relinquish
execution on their own accord .
Overloading Defining several functions with the same name . They are dis-
cerned by the type and number of parameters .
Polymorphism Using a single interface or calling convention for entities of dif-
ferent types . It is useful for preserving unique behaviour of objects in a collection .
Port An endpoint of communication in an operating system . Identifies a spe-
cific process or a service .
Preallocated clone reentrant execution By default there will only be a single
instance of a VI residing in a LabVIEW process . All calls to the VI will go to that
instance . The calls cannot be concurrent, and the local state of the VI will be
shared among the calls . This mode instead causes a separate instance (clone) to be
allocated for each separate call to the VI . This preserves the local state of the VI
for that particular call, and is independent of other calls to the VI .
Race condition When events must occur in a certain order, but the support-
ing system fails to uphold that order . May appear when separate processes share
resources, and is usually caused by program bugs or a lack of proper synchroniz-
ation .
Run-time engine Provides an environment for running programs that would
otherwise not be executable on a certain system .
Secure sockets layer, SSL A cryptographic protocol for providing secure com-
munication over a computer network .
Shared object A program module that can be loaded by another program at
run-time . It is useful for inserting new functionality into an existing system .
Single assignment The idea of increasing program stability by allowing vari-
ables to be assigned values only once during their lifetime . All data flow program-
ming languages uphold this rule .
Static typing Variable types are resolved before running a program, and cannot
change .
Structured query language, SQL A programming language designed for man-
aging data in a relational DBMS or DSMS .

20

 Introduction

SubVI A user-defined function in LabVIEW, i .e . a VI that is used inside an-
other VI .
Tuple A tuple is a collection of ordered data . It can be handled as a single entity,
but the contained elements can also be accessed individually .
User datagram protocol, UDP A simple protocol for transmitting data pack-
ets . It is useful for data streaming, but unreliable .
Virtual instrument, VI A program written in LabVIEW .
Wrapper In general terms, a function or set of functions that is/are used for ac-
cessing another function or set thereof . In data streaming terms, a function used
for accessing an external data stream source .
XControl A front panel object that encapsulates other front panel objects .
Provides functionality for handling different kinds of events, and allows program-
mers to include various automation for the encapsulated objects .

Diagram arrows
There are several diagrams in this Thesis, with arrows of different shapes and col-
ours . Each arrow type has a certain meaning:

 A blue arrow indicates a data transfer of a single entity at a single in-
stance .

 A dashed blue arrow indicates a change of state, initiated by an operation
that is not part of the affected process .

 A double lined blue arrow indicates a data flow or data stream . Entities
are transferred continuously until operation is halted or the source runs
out of entities to transfer .

 A grey arrow indicates an execution flow, where the process maintains
ownership of a system .

 A dashed grey arrow indicates an execution flow, where the process does
not have system ownership, and thus must not access the components of
the system, or must do so with caution .

 A dotted grey line indicates a halted process . The process will sleep until
it is signalled .

 A black arrow with white-filled tip indicates class inheritance, pointing
to the parent class in a hierarchy .

 21

2 Monitoring industrial machines

 ‘Cheshire Puss, would you tell me, please,
which way I ought to go from here?’

 ‘That depends a good deal on where you
want to get to,’ said the Cat .

 ‘I don’t much care where—’ said Alice .
 ‘Then it doesn’t matter which way you go,’ said the Cat .
 ‘—so long as I get somewhere,’ Alice added as an explanation .
 ‘Oh, you’re sure to do that,’ said the Cat,

‘if you only walk long enough .’

—Lewis Carroll, Alice’s adventures in wonderland

The flowchart in Figure 1 shows a generic overview of a data stream management
system with visualization that can be applied to various data streaming applica-
tions . As the backend and frontend have very different computational properties,
it makes sense to divide them into a server and a client part . The client can be
kept on a portable device, while the server handles the resource-intensive compu-
tations on a stationary machine or cluster .

Figure 2 shows a very simple data flow schematic . As data arrives to a function
node [81], it is processed locally . Adding visualization of output to a data flow is
much easier than is usually the case with other programming platforms . It is just
the matter of adding the visualization where it is desired, often at the end of a
data flow, but also in the middle if one wishes, as with Figure 3, where the data
flow has two display nodes added, one in the middle of a program and one at the
end .

Figure 4 illustrates how equipment is monitored with VisDM . Instrumented
industrial machines produce machine data streams from sensors [26], which are
continuously processed in real-time by VisDM . VisDM includes a stream visu-
alizer where engineers can observe derived data streams produced by a continu-
ous data stream analyser that analyses data in the machine data streams . When
anomalies are detected the operator will perform feedback actions that alter the
behaviour of the machines . With a conventional batch data mining approach the
turnover rate can be counted in hours, days, or even longer, which is far too slow
for many industrial processes, especially manufacturing, where process degrada-

22

 Monitoring industrial machines

tion can come very quickly . If data can be processed immediately in real-time,
without intermediate storage, the feedback time is only measured by the reaction
time of the operator . The information delay from a machine to a supervisor is
only determined by the latency of the system, allowing an engineer (or a sys-
tem) to react to changing circumstances in very short order . The continuous data
stream analyser also supports immediate feedback without human involvement .
If automated feedback is used, the response time can be counted in milliseconds .

In VisDM the continuous data stream analyser processes CQs over a general
model of the monitored equipment in terms of a local main-memory database
inside the system [93][72] . The model consists of a set of functions and types that
define the database schema as well as derived quantities . Functions defined in the

Control data
and user input

Visualization
data stream

Data
streams

Raw data
streams

Sensor
Embedded
computer

Sensor
Embedded
computer

Data stream
management

system
Display

Data source Backend Frontend

Figure 1: A DSMS-based data collection and visualization system .

Outgoing
data flow

Intermediate
data flowFirst data

processing
function node

Incoming
data flow Second

function node

Figure 2: A simple data flow example .

Figure 3: A data flow program with two
display function nodes added .

Showcases

 23

model may return streams that combine data stored in the database with on-line
data from the machine data streams, e.g. continuously identifying or predicting
deviations from normal machine behaviour based on the model.

Figure 5 shows a simple example of how a data stream visualization may look
to an end user, with the corresponding speci�cation in Figure 6. �e speci�cation
is minimal in that it contains only the parts needed to specify the visualization,
and nothing else. Every component that is used to build the infrastructure for the
speci�cation is available for customization, but hidden from the user.

2.1 Showcases
VisDM has been used in one industrial case and one academic case: Validating
machine operation for Sandvik Coromant, and measuring radio signals in the
LOFAR project. It is intended to o�er comprehensive functionality throughout
the entire stream handling process, while maintaining both powerful, scalable
stream processing and ease of use.

Central to industrial cases are data stream monitoring and problem solving,
issues that rely on user-oriented data presentation and responsive user input. For
industrial cases, projects can be divided into three distinct parts:

&ĞĞĚďĂĐŬ�;ĂĐtiŽŶƐͿ

/ŶƐƚƌƵŵĞŶƚĞĚ�
ŝŶĚƵƐƚƌŝĂů�ŵĂĐŚŝŶĞ

DĂĐŚŝŶĞ�ĚĂƚĂ�
ƐƚƌĞĂŵƐ

sŝƐ�D

^ƚƌĞĂŵ�
ǀŝƐƵĂůŝǌĞƌ

�ŽŶtiŶƵŽƵƐ�
ĚĂƚĂ�ƐƚƌĞĂŵ�
ĂŶĂůǇƐĞƌ

�ĞƌŝǀĞĚ�ĚĂƚĂ�ƐƚƌĞĂŵƐ

�ĂƚĂďĂƐĞ

DŽĚĞů

�ŽŶtiŶƵŽƵƐ�
YƵĞƌŝĞƐ

Figure 4: Streaming data feedback. Data is
processed as it is being visualized.

24

 Monitoring industrial machines

1) Model design . This consists of queries that process incoming data, func-
tions that define the operational model of equipment, and schemas for data and
local storage . Designing and programming a model is non-trivial and requires a
certain amount of domain knowledge . On the other hand, this needs to be done
only once for each type of machine .

This Thesis touches only very briefly on this part, as it is not within the focus
of topics presented in the Thesis .

2) Operational design . This is the part which benefits the most from visual
data flow programming . Remote machines, on-board and off-board computers,
their interaction, and the operation of each is programmed using drag-and-drop

Figure 5: A simple data stream visualization application .

Figure 6: Visual data flow specification for the application .

Showcases

 25

symbolic function nodes wired together with virtual cables . Stream data is man-
aged and processed by calling stream functions in the model from the function
nodes .

Data flow programming substantially reduces the amount of possible errors,
simply by eliminating the procedural programming mode . Function node opera-
tion is localized, and when changes that are global for the process are made to the
data stream management system, they become regulated simply by the nature of
the underlying database system and its application programming interface .

A user may not need to design or maintain the application program, but doing
so becomes easy and intuitive . The risk of introducing errors because of inexper-
ience is minimized .

3) Visualization . This is where a user will spend most of their time, actually
running a system . As shown, visualization nodes become part of the application
design, meaning that both the customization of visualization and the operational
behaviour thereof become transparent to the user, to the same extent as for any
other function in the solution .

Since each application may demand its own type of visualization, and the plat-
form is supposed to accommodate for future implementations, it means that not
only does existing visualization elements need to support full customization, but
the design of new elements must be as easy and forthcoming as possible . This is
not possible with any function library, however user-friendly it may appear, if the
underlying solution does not resolve the issues mentioned .

The Sandvik case will be used throughout the Thesis for examples .

Sandvik Coromant – remote machine process monitoring
Sandvik Coromant1 develop and manufacture tools for the metalworking in-
dustry, and also build extensive knowledge in the field of metal cutting . This
combination is provided as a package to Sandvik Coromant customers . In pro-
duction and testing facilities around the world, Sandvik Coromant has a collec-
tion of various machine tools where some of them are performing milling and
drilling tasks for which various sensors and derived data via formulas and models
need to be monitored [76] . While performing these tasks, monitoring is crucial,
yet traditional point-wise comparison does not always solve the monitoring task .
Faults in the process need to be caught at the earliest possible juncture . This is
tedious and costly without automation .

In this scenario, each machine tool is equipped with a set of sensors, meas-
uring various properties, which include rotation speed, power consumption,
movement, and torque, counting from 15 parameters in total and upwards . The

1 http://sandvik .coromant .com

26

 Monitoring industrial machines

behaviour of each property can be learned using a statistical model trained by
measurements of a healthy machine during a learning phase . Milling machines
are very manoeuvrable, and Figure 7 shows how milling can be manipulated in
the X, Y, and Z axes, and rotated around the X and Z axes . The actual machine
tools used in the use case are multi-operational machine tools, but for exploring
the ability to inherit stream parameters one machine tool has been denoted as a
milling machine and another as a drilling machine . The benefit of having inher-
itance of the stream structure is the ability to configure any sensor configuration
at any machine from the simplest drill press which have one axis and one spindle
to complex grinding machines and as in our case multi-operation machine tools .

A CQ is a query returning a stream of objects and is defined in terms of stream
valued functions . A simple example is the following CQ which returns a stream
of tuples that represent the power consumption over time of the milling machine
in Figure 7:
select timestampMill(r), powerConsumption(r)
 from Record r
 where r in millStream(theMachine(42));

The function theMachine() accesses the database to return the object represent-
ing the machine labelled “42” . The derived stream valued function millStream()
encapsulates the interface for a given milling machine and produces a stream of
JSON records [51] r containing time stamped sensor values . The query returns

Figure 7: A milling machine .

Showcases

 27

CQs UpdatesDerived streams

Stream visualizer

DSMS server

JSON streams

Stream wrappers

CQ processor Database

Corenet
drill source

Corenet
mill source

Figure 8: Machining equipment monitoring . The yellow line
marks a threshold that dictates the correct operation .

28

 Monitoring industrial machines

a stream of time stamps and power consumptions extracted from these records .
The functions timestampMill() and powerConsumption() extract attributes from
each JSON record .

Figure 8 illustrates how VisDM is used for monitoring two machine data
streams, one from a milling machine and one from a drilling machine . The raw
data output is collected and structured by a software package called Corenet (Coro-
mant Extended Network) that contains a device gateway and a factory gateway .
The device gateway is the interface to a generic machine tool and its sensors, and
exposes a well formulated data stream . The factory gateway exposes all connected
device gateways over a single channel upstream to enable connectivity without
exposing each individual machine tool which would result in a much larger at-
tack surface . The Corenet server broadcasts JSON streams over an SSL-encrypted
connection .

The servers can connect to the Internet and thus the monitored machines can
be located anywhere where there is an Internet connection . The JSON streams
are interfaced with VisDM through a stream wrapper, which is a plug-in to
SVALI that iteratively converts the received measurements into the format used
by SVALI . Metadata and models about the monitored machines are stored in
a main-memory local database inside SVALI . The tuples in the derived streams
produced by the CQs are continuously emitted to the visualizer . Furthermore,
model data referenced in monitored CQs can be dynamically updated at run
time to alter the visualization . For example, a CQ definition may depend on a
user-provided threshold stored in the local database and when the threshold is
updated the CQ visualization changes .

The output diagrams in Figure 8 both continuously plot a stream of power
consumption data measurements while comparing them to desired power con-
sumption, indicated by yellow lines . The desired power consumption is defined
by the model . Alerts are signalled to notify the operator if the measured power
consumption deviates more than a user-specified margin from the desired power
consumption . In the top diagram, the model is a mathematical formula based on
machine specifications, while in the bottom diagram a statistical model is trained
by measuring the behaviour of a healthy machine . In both cases the margin can
be changed by the user, which will update the local database and influence the
alert sensitivity .

Showcases

 29

LOFAR digital antenna
VisDM has been used to define an interface to a LOFAR [32][89] (LOw Fre-
quency ARray) antenna prototype [49] that is operated by the Swedish Institute
of Space Physics in Uppsala (IRFU)1 at the Ångström Laboratory . The antenna
(Figure 9) is a sophisticated, completely digital antenna, and has three ortho-
gonal antenna elements, allowing an operator to measure not just the radio signal
strength, but also things like direction and polarization, and thus allowing for
advanced radio data handling and visualization . LOFAR is a synthesis array [55]
and is used for astronomical observations .

LOFAR consists of about 20 000 antenna units operating in tandem . Combin-
ing all signals through very processor-intensive calculations, the antennas operate
as one very large radio telescope . This setup produces vast amounts of data, which
has to be processed immediately as it is collected .

High band antennas (Figure 10) are collected in arrays (Figure 11), which are
then clustered (Figure 12) throughout Europe (Figure 13), mostly in the Nether-
lands . Unlike the prototype, they only have two antenna elements, leaving out
the Z axis . These antennas have a bandwidth of 50 MHz whereas the prototype
has a more moderate bandwidth, running at less than 100 kHz .

Shown in Figure 14, the DSMS server invokes a wrapper handler for running
a visual stream wrapper . The stream wrapper was defined in LabVIEW and then
dynamically loaded in SVALI using VisDM’s wrapper handler framework . The
antenna controller sends a stream of UDP packages to the stream wrapper . The
package data is forwarded to the wrapper handler which converts them to SVALI
types . The CQ then applies signal transformations to the data .

1 http://www .irfu .se

Figure 9: The 3D antenna prototype .

30

 Monitoring industrial machines

Figure 12: The “superterp” on which six LOFAR
stations are housed . © Top-Foto, Assen .

Figure 13: The international LOFAR telescope . © ASTRON .

Figure 10: A high
band antenna .

© Nout Steenkamp .

Figure 11: Black casing
covering antennae .
© Hans Hordijk .

Showcases

 31

Wrapper
handler

CQs
Stream visualizer

UDP stream

Visual stream
wrapper

CQ

Antenna
controller

Signal
transformationsD

SM
S

se
rv

er

3D antenna

Figure 14: Visualization of radio data .

 33

3 Background

 Cat [to Rimmer]: “What is it?”
Rimmer: “It’s a rent in the space-time continuum .”
Cat [to Lister]: “What is it?”
Lister: “The stasis room freezes time, you know, makes time

stand still . So whenever you have a leak, it must preserve
whatever it’s leaked into, and it’s leaked into this room .”

Cat [to Rimmer]: “What is it?”
Rimmer: “It’s a singularity, a point in the universe where

the normal laws of space and time don’t apply .”
Cat [to Lister]: “What is it?”
Lister: “It’s a hole into the past .”
Cat: “Oh, a magic door! Well, why didn’t you say?”

 —Rob Grant & Doug Naylor, Red Dwarf: Stasis Leak

Visualization functionality comes with trade-offs . We want it to be applicable
for whatever task we may think of without being bloated, easy to use without
being limited, and customizable without requiring extensive user training . At
one end of the spectrum, there are function libraries such as the Visualization
Toolkit1 (VTK) [79], which allows programmers to make just about anything
they want, but requires extensive programming experience in a text-based pro-
gramming language . Conversely, programs such as Visual Molecular Dynamics 2
(VMD) [35] provide a user with a ready-made, application specific visualization
environment which is powerful to use, yet easy to learn . Ideally, we would like to
break the boundaries of application specific programs, without having to increase
the complexity of the platform .

It is a common solution when adding visualization to data streaming systems
that application specific visualization tends to be added on an ad hoc basis, using
custom functions that are highly specialized and platform dependent, e .g . [28]
[37][92] . A related approach is to use an integrated development and visualization
environment for event or data stream processing [21][80][87][97] .

1 http://vtk .org
2 http://www .ks .uiuc .edu/Research/vmd

34

 Background

In ViSDM the data stream processing itself is provided through a general data
stream management system, while LabVIEW provides a very powerful visual pro-
gramming language in which the user easily can define custom visualization of
data sets . A library of common controls provides the basic primitives for build-
ing the visualizations . The visualization primitives are highly customizable using
a point-and-click interface and forms, and its visual programming capabilities
offer a comfortable and intuitive way to create specialized solutions . However,
LabVIEW does not have built-in support for continuous visualization of external
data streams . This is provided by VisDM, through its library of VDFCs .

3 .1 Data stream management systems
A data stream management system (DSMS, Figure 15) is similar to a database
management system (DBMS) with the difference that while a DBMS allows
searching only stored data, a DSMS in addition provides continuous query facil-
ities to search directly in real-time data streams from one or multiple sources . The
continuous queries can filter, transform, combine, and distribute the interfaced
data streams . The result from a continuous query is also a data stream called a
derived data stream .

 A continuous query differs from its DBMS counterpart in that it may not
have a determinate endpoint; it runs until the data streams feeding it are termin-
ated or its operation is interrupted be the user .

A continuous query may have real-time properties which can pose concerns for
the system in which it is running . The system must be able to process data at least
as quickly as it arrives, preferably quicker than the arrival rate, since there must
be room for processing user input and overhead (memory and resource manage-
ment, concurrent processing, etc .) .

Regular database queries, once started, usually cannot be modified . They are
created, run, and return a result . Modifications to a query are made in between
query executions . However, queries that run on a data stream management sys-
tem may run indefinitely, and should preferably be altered without stopping and
restarting them, when needed .

Data stream management systems

 35

Amos II
The Active Mediator Object System (AMOS) [73][74] is an object-relational DBMS
developed at Uppsala University . It is a main memory functional and extensible
DBMS, with several appealing properties:
• Platform independence . As long as a computer meets some minimum system

requirements, it can run a copy of the software . This includes embedded sys-
tems .

• Lightweight operation . The main memory and disk footprint is very small,
counting in kilobytes .

• Sophisticated query optimization .
• A functional query language, called AmosQL [27], which is fully relational and

compiles to predicate algebra .
• Tuple-by-tuple materialization of query execution, making it very responsive

and ideal for handling continuous (non-ending) queries .
These advantages with Amos II – which is its current moniker – make it ex-

tremely adaptable, not just for data stream processing, but also data mining, dis-
tributed computing, and much more .

Queries

Input data streams

Metadata Stored data

Query processing
software

Query processing
software

User

DSMS

Figure 15: The main building blocks of a
data stream management system .

36

 Background

SCSQ
The Super Computer Stream Query processor (SCSQ) [96] is based on Amos II, and
adds many stream processing capabilities through its query language SCSQL . Its
most notable features are:
• The ability to start massively parallel stream query processes dynamically, ad-

apting to the system load .
• Query language parallelization .
• Primitives for networked stream connections .

The main strength of SCSQ is how well it scales with the work load . This sets
it apart from other stream programming languages such as Curracurrong [39],
where work load distribution is static .

SVALI
The Stream VALIdator (SVALI, Figure 16) [93] is in turn built on top of SCSQ,
and adds new functionality to streams:
• Predicate windows; an extension to the more static timing and counting win-

dows found in other data stream management systems .
• Model learning; training a system to respond correctly to deviations in ma-

chine operation .
• Scalability; parallel streaming functions allowing systems with arbitrary com-

plexity .
SVALI is the fundamental building block for all solutions presented in this

Thesis, and has been thoroughly tested in the Smart Vortex1 project [72] .

3 .2 Visual programming languages
With visual programming, programs are built using symbols and visual abstrac-
tions, rather than entering text . This way programming becomes more intuitive
and can appeal to people who are uncomfortable with text-based programming
[54] . Visual programming languages (VPLs) are usually limited in scope, and
bound to a particular context or concept . For example, the NXT visual program-
ming language (Figure 17) is used solely for controlling LEGO electronics kits2 .

1 http://smartvortex .eu
2 http://mindstorms .lego .com

Visual programming languages

 37

Query languages:

Programming
language interfaces:

Client
language interfaces:

LabVIEW Matlab

(Continuous) Query API

SVALI kernel
Local ontology

(SVMDS)

JSON CSVSVALI Byte array

Indexing

Prediction

Matching

Optimization

Classification
P

lu
g-

in
 m

an
ag

er
(C

, J
av

a,
 P

yt
h

o
n

)
Data stream wrappers

AmosQL SQL

C Java

Figure 16: SVALI architecture .

Figure 17: NXT programming environment
for LEGO MindStorms .

38

 Background

While not required, VPLs usually offer automation of several tasks, the main
of which is resource management [38]; memory allocation, handling errors, etc .
VPLs require an integrated development environment (IDE), where a user can
create their programs, and there is usually only one proprietary IDE for each
language .

Another common feature of VPLs is more or less sophisticated visualization of
data output and user input . The user often has a library of text boxes, diagrams,
plots, grid tables, push buttons, and more at their disposal, making user interface
development trivial .

LabVIEW (National Instruments)
LabVIEW 1 [67] from National Instruments is a visual programming language
(Figure 18), and has many properties that make it attractive to use for visualiz-
ation: It maintains the user-friendliness of visual programming while still being
very versatile and supporting many types of applications . It was first intended for
controlling external measurement instruments and collecting data from those,
but has since grown in scope and become the programming environment of
choice for many engineers . The learning curve is flat, many complex tasks can
be handled with ease, and it is easy to deploy applications during any part of
development . LabVIEW comes equipped with many tool sets, and presentation
of data is easy with preconfigured visual tools that do not need customization, for
text as well as 3D graphics . It is easy to extend: functions compiled in a dynamic
link library or shared object can be loaded at run-time and called dynamically .
Like most VPLs, it offers automated resource handling and process management .

The programming language in LabVIEW is called G [57][59] . It defines all the
components of the LabVIEW programming environment .

LabVIEW comes equipped with many components that are used for creating
the VisDM client:
• An actor framework that forms the foundation for data flows in VisDM .
• Class polymorphism which enables dynamic type resolution .
• Extensive connectivity to external functions .

Data flows in LabVIEW are driven by control structures [2] . These structures
unavoidably make much of LabVIEW code procedural, and because of this, de-
clarative-procedural impedance mismatch is introduced should LabVIEW be used
in conjunction with a DSMS .

1 http://ni .com/labview

Visual programming languages

 39

Impedance mismatch
The term “impedance mismatch” originates from electrical engineering [88] . It
was adopted by computer science to define the problems that may arise when
two models, schemas, or technologies of different types are combined . The term
is often used when describing the differences between object models used in pro-
gramming and relational models used in database storage [36] . This is called ob-
ject-relational impedance mismatch .

Query languages are declarative, meaning that the programmer states what op-
erations they want performed, not how, as opposed to what is usually the case of
procedural programming languages, such as C/C++, Java, Python, etc . However,
since these are the languages we use to access databases, by the means of an ap-
plication programming interface (API), we get a declarative-procedural impedance
mismatch (D-P mismatch) . D-P mismatch can increase the complexity of even
fairly simple tasks significantly .

The common way of handling D-P mismatch is to introduce a scan primitive .
A scan can be seen as a placeholder; calling a scan will return the next set of values
from a query result, allowing a procedural language go through the result in an
ordered manner .
SELECT timestamp, power FROM output;

Figure 18: LabVIEW program example . This is the action loop of the actor for
the Run Query VDFC (see Chapter 4, “The VisDM system” on page 45) .

40

 Background

This SQL statement is a simple example; we select all “timestamp” and “power”
pairs from the table “output” . How this retrieval is done is not specified, but
left to the DBMS to decide . By whatever means we execute this statement, it is
preferable if this level of abstraction can be maintained .
rs = conn.execute(“SELECT timestamp, power FROM output”);
while (rs.next()) { // loop until we have exhausted the query
 ts = rs.getInteger(1);
 pw = rs.getDouble(2);

 // Do something with the values
}

In contrast, the above Java code snippet shows what is required of a Java API if
we want to access the database output in that language . We have to specify what
to do, and then how to do it . From this short example there are at least two issues
to address:
• Extraction is bound to a while loop . Anything we want to do with the vari-

ables, we need to do inside of it .
• Resource management is prevalent . We need to make sure the right type of

variable is retrieved from the right position in the scan, lest an exception is
triggered .
The object rs (abbreviation of “result set”) is in this case the scan object .
In the same manner, visualization can also become a rather tedious endeavour .

While there are very sophisticated tool sets available nowadays for visualizing
data, they still force a user to focus on how to visualize something right after
deciding what to visualize .

Any mismatch issue can be alleviated by a sufficiently advanced programming
framework . The challenge is to introduce a framework that becomes less complex
than the issue it is trying to resolve .

3 .3 Data flow programming languages
In a visual data flow programming language (VDFPL) [38], it is often the case
that a program specification becomes the program: a user specifies what should
be done, and the programming environment takes care of the rest; how things
should be done .

Figure 19 shows a simple diagram of data from a single stream source flow-
ing through an operator that manipulates the data, and then to a display node
presenting the data to the user . The diagram is completely declarative and easy
to follow, and it works equally well for data stream manipulation and data flow
programming .

Data flow programming languages

 41

A DFPL offers several advantages compared to a procedural language:
• Order of execution is implicitly determined by how functions are wired, mak-

ing DFPLs declarative, just as query languages are, which helps avoid D-P
mismatch issues .

• Multi-threading and parallelization is completely automated; nodes may fire at
the same time, as long as data is available .

• Functions do not have side effects and generally cannot become deadlocked, at
least for a demand-driven DFPL [20] .

Data streams v . data flows
There is one difference between data streams and data flows that plays an import-
ant part of program development: data flows must be semi-synchronous, in that
the total amount of data in all wires or all variables must be equal if a program is
to finish properly, whereas data streams can be completely asynchronous, running
independently of each other .

A data flow function node will only execute once all inputs have a value . This
means that one input must not fill up with values faster than any other . On the
other hand, a data stream has its own source, producing values at its own rate,
and therefore function nodes in a data stream may not be able to wait for values
to arrive on all inputs .

It may not be obvious when either type of execution manifests . For example,
a sorted merge join [50] function node may fire as soon as a tuple arrives on any
input . A union [8] node on the other hand may only fire when all inputs have
data . In the latter case, disparate stream rates require some form of load shedding
[83][53] strategy to handle the data overflow .

Retaining values for incremental visualization
There are three plots displayed in Figure 20 that are updated incrementally from
a streaming query . Different strategies exist for realizing the incremental plots,
depending on the functionality of the platform .

Stream
source

Stream
operator Display

Figure 19: Data flow relationship between a
stream source, an operator, and a display .

42

 Background

1) A plot is a sliding window [29] . The visualization output is treated like the
result of any data stream windowing function, and is created and maintained
within the DSMS . The plot will be defined entirely in the CQ . For each display
refresh, the entire plot is sent as a single tuple to the display diagram . There are
two advantages with this approach:
• All logic is confined to the data stream management system . The visualization

object will only display the data, without any need for further data manage-
ment .

• LabVIEW diagram objects always expect arrays of points . The contents of the
tuple become syntactically equivalent to the desired input for the object .
However, this approach comes with two rather big and obvious disadvantages:

• Plotting of streaming data tends to occur with small increments, meaning that
data will be sent over and over again, resulting in very inefficient data transfer .

• Each tuple can become very big for large plots, which can strain the capabilit-
ies of the underlying system .
This method is better suited for small plots, and plots that are updated infre-

quently .
2) All plotting functionality is contained within the display object, which only

accepts incremental updates . The display canvas is refreshed with each update,
and the size of the plot is set in the object . This is generally an efficient approach,

Figure 20: A LabVIEW XY Graph with three plots,
running a machine monitoring and validation system .

Actors

 43

with the drawback that it adds extra programming baggage to the block diagram .
The arrays expected by the diagram objects must be handled in the implement-
ation .

There is an approach to automate the incremental updates of a display canvas,
by maintaining a history log of tuples in the data flow programming language .
Whenever a tuple is retrieved from an input, it is possible to retrieve previous
tuples as well . This is a feature of temporal languages [70][68], which all text-
based data flow programming languages are . This is however not a feature of any
existing visual data flow language .

3 .4 Actors
Actors [1][33] are stand-alone, thread-based processes that communicate between
each other using message queues . They are designed specifically with concurrent
and distributed systems in mind . It is fairly straightforward to design a data flow
environment using actors; each actor becomes a function node, and each entity
in a data flow becomes a message that is sent from one actor to another . Practical
implementations of data flow programming languages have existed for several
years [38], and there are many who are looking into actor-based data flows [11]
[48][94] . Actors are very well suited for parallelizing tasks, and work well with
many different multi-core processor architectures [78] .

The functionality of LabVIEW actors is illustrated in Figure 21 . These actors
contain two independently running loops: one message loop that handles incoming
messages delivered in a message buffer queue and calls different message functions
depending on the types of incoming messages . The action loop executes program-

Incoming
messages

Action loop

Shared data

Outgoing
messages

Messages
sorted by type

Message loop

Local data
access

Message
functions

Figure 21: Basic layout of a generic actor .

44

 Background

mer defined tasks . Each LabVIEW actor has local shared data, available for all
actor components . New outgoing messages can be created by the message functions
or the action loop and sent to other actors, or back to the actor itself .

The action loop and message loop operate independently . Messages are handled
one at a time and their corresponding functions execute serially .

Actors generally come with some infrastructure, which includes a startup
phase, shutdown phase, and extensive error handling, all of which is fully pro-
grammable . This infrastructure is extended to support the data flow framework
on which the VisDM VDFCs are based .

Data flow function nodes based on actors come with some advantages:
• The nodes operate independently of each other, taking advantage of parallel-

ism without introducing race conditions .
• As tuples become messages sent between actors, operations follow the single

assignment rule [17][86], which is a requirement for data flow programming .

 45

4 The VisDM system

 Now these points of data make a beautiful line .
And we’re out of beta . We’re releasing on time .
So I’m GLaD . I got burned .
Think of all the things we learned
for the people who are
still alive .

—Jonathan Coulton, Still Alive

Figure 22 shows a simple VisDM application that visualizes a stream in a con-
tinuously updated diagram of values representing the current power consump-
tion of a milling process over a time window . Every LabVIEW program has two
semantically separated views: a front panel containing the visualization and user
interface (Figure 22) and a corresponding block diagram (Figure 23) that specifies
the program .

Figure 22: Continuous visualization of power
output from a milling machine .

46

Visual data flow specification .

VDFCs are divided into producers, operators, consumers, and controls . Producers
are the sources of data flows, typically a data stream from a CQ . Consumers are
the end points of the data flows, presenting data to the user . Controls accept user
input from the user . Operators are function nodes that manipulate data flows . A
typical operator is a function node that extracts particular values from a tuple .

Figure 23 shows how the application is specified as a visual data flow in VisDM .
In the example, the CQ on page 26 is running on a SVALI server named
“Mill1” . The red and yellow RUN QUERY VDFC node is a producer, a VisDM
function node that is the source of a data flow . In this case the producer sends
the CQ to the SVALI server and receives a stream of tuples that constitutes the
output data flow represented in VisDM by the black dotted wire 1 . The
output of RUN QUERY becomes the input of a VDFC node labelled “Mill Power”
that represents the diagram in Figure 22 . It is a consumer node that visualizes a
stream using a LabVIEW graphical object, in this case an XY Graph . Graphical
objects have labels that help identify front panel objects and their corresponding
block diagram symbols . Pink solid wires denote strings in LabVIEW, e .g . the
parameters of the RUN QUERY node .

Visualizing CQs requires some way for the user to start and stop each stream .
VisDM provides this functionality through a VDFC representing start-stop but-
tons that controls the execution of a producer . Such control VDFCs are connec-
ted to the producer they control by a black ridged wire .

The program in Figure 24 is functionally equivalent to Figure 23, but uses
conventional LabVIEW control structures . As can be seen, the non-procedural
data flow code in Figure 23 is much more simple and easy to understand than the
procedural code in Figure 24 .

1 LabVIEW execution is always from left to right .

Figure 23: Visual data flow specification .

VDFC implementation summary

 47

A reason for the complexity is that each data stream should be visualized and
controlled independently of other streams . The procedural definition is com-
plex since the programmer has to specify in details how to iterate over each data
stream, how to handle events, and how to terminate the stream gracefully . By
contrast, the data flow specification is simple and straight-forward for visualizing
each data stream, since it does not require detailed specification of the execution .

4 .1 VDFC implementation summary
Programs in LabVIEW are called virtual instruments (VIs) [66] . VIs can run as
separate programs, or can be called from other VIs as subroutines, then named
subVIs [65] . VIs are defined procedurally using different kinds of control struc-
tures . As is apparent from Figure 24, subVIs are not self-contained and thus do
not qualify as function nodes, unless explicitly implemented as such .

Figure 24: Conventional LabVIEW code .

48

 The VisDM system

In order to make VDFCs behave like function nodes without any control struc-
tures, they are implemented using the LabVIEW actor framework [56] . The actor
framework enables creating multiple independently running subVI processes that
can communicate with each other asynchronously through message passing . The
data-driven execution of actors allow VDFCs to operate independently of each
other rather than through the rigid control driven serial execution of regular VIs .

Another issue is that SubVIs and actors alone cannot be used for defining
consumers . The reason is that graphical objects that are included in a subVI
cannot be made visible on the front panel of the main VI . In order to present
graphical objects on the front panel as in Figure 22 of the main VI while encap-
sulating the actor functionality, VDFC consumer nodes are implemented using
LabVIEW XControls [58] . XControls are specialized front panel objects that en-
capsulate other front panel objects and provide methods for handling different
kinds of events . For consumer VDFCs, the XControls provide dynamic run-time
behaviour defined by actors that are started by the XControls . This behaviour is
provided by subVIs that are part of VisDM .

In addition, control VDFCs are also implemented as XControls, since they
must encapsulate the code that controls data flow execution while providing the
control objects on the front panel .

4 .2 VisDM architecture
The architecture of VisDM is illustrated in Figure 25 . There is a SVALI server,
which is SVALI extended with a service handler to process CQs, database up-
dates, and other SVALI commands . The VisDM client is LabVIEW extended with
VDFC definitions for constructing data stream visualizations . It contains a client
API to communicate with one or more SVALI servers . LabVIEW applications
using the VisDM client framework can send commands to the SVALI server, for
example to start CQs that filter and transform data stream from one or several
stream sources accessed through SVALI . The result of a CQ is a derived stream
which is sent to the VisDM client for visualization . VisDM client applications
define data stream visualization by visual data flows, e .g . as in Figure 23 .

A stream source can be, e .g ., an embedded computer that outputs a data
stream from a sensor onto a network, rows read from a data file, or a data stream
emanating from a different computer .

A stream wrapper is a plug-in to SVALI that continuously converts data re-
ceived from an external data stream into data structures supported by SVALI .
The wrapper may leave all stream handling to an external agent such as Corenet
and only retrieve the data from a broadcasting source, or it may have complete

VisDM architecture

 49

control of the stream source, setting it up beforehand and shutting it down af-
terwards . Data stream wrappers can be created visually with VisDM and plugged
into SVALI .

The VisDM client API is called from the VisDM data flow framework, which
contains data flow abstractions, dynamic type resolution, error handling, visu-
alization support, etc . This framework is in turn based on the LabVIEW actor
framework .

The user-generated commands back to the SVALI server can change the beha-
viour of CQs, e .g . changing a threshold, changing tuple rate, interrupting CQs,
etc .

All queries running on a SVALI server are integrated: they run in the same
address space and share access to the local database . As the number of streams
increases, processing may become too much for a single server, and the execution
must be distributed across several servers .

Architecture interfaces
The VisDM system has several layers of interfaces, the exact number of which
depends on the nature of the wrappers used and whether any distributed systems
are utilized . The schematic of a typical system can be seen in Figure 26 .

The LabVIEW API provides an abstraction for interfacing the VisDM data
flow objects with the client C API, which consists of a set of C functions for ex-
ecuting commands and retrieving data from CQs on the server .

The server CQ framework is built around a multiplexing dispatcher that re-
ceives incoming calls from a client and then issues server commands accordingly .
The result streams of CQs are packaged in a special type of scan . In general,
a scan is a generator that is used to step through iteratively a possibly infinite
data stream . VisDM scans allow CQs to run simultaneously in the same server
without interfering with each other, and provide general query maintenance .

Commands

Stream
source

Stream
source

Stream
wrapper

Se
rv

ic
e

h
an

d
le

r

Stream
wrapper

SVALI server

C
lie

n
t

A
P

I

VisDM client

Derived
streams

VDFC definitions

Data flow
framework

Actor
framework

D
at

ab
as

e

Figure 25: The client-server architecture of the VisDM system .

50

 The VisDM system

Scans reside on the server, while the client API uses remote scans to communic-
ate with the server . They are placeholders for VisDM scans representing derived
streams, and mainly add location independence to a scan, the physical location of
which can be unknown to the user, and could even be undefined until run time .

A CQ calls its stream wrapper directly, or through a wrapper handler . The wrap-
per handler can dynamically load and integrate a stream wrapper with the server .

Every running server becomes part of a federation, where it is identified by
a unique name . All servers in a federation automatically become aware of each
other’s existence, and adding new servers becomes as easy as just giving the server
a name .

LabVIEW concepts
Before describing the implementation of VisDM in details, some basic LabVIEW
constructs need to be explained . The VI in Figure 24 is used as an example and is
at the same time explained .

V
is

D
M

 c
lie

n
t

SV
A

LI
 s

er
ve

r

Client C API

External data stream source

LabVIEW API

Visual programming
and visualization

DSMS

Dispatcher

Wrapper
handler

Fe
d

er
at

io
n

Remote scan

Stream
wrapper

Scan

CQ

Figure 26: The interface stack of VisDM .

VisDM architecture

 51

Graphical objects in LabVIEW are divided into controls and indicators, where
controls collect user input and indicators present outputs to the user .

Three types of control structures are used in Figure 24, and they are shown
separately in Figure 27 . A while loop executes the sub-diagram inside the frame
over and over until a Boolean condition is met1 . This condition is wired to the
termination symbol and will cause the loop to exit when true . The blue square
is a counter holding the current iteration .

An event structure will execute a sub-diagram when a certain event is triggered .
It can have several sub-diagrams for separate events . It will execute the diagram
associated with the triggered event, but only one triggered event will be executed
at a time . Each event has a set of labelled attributes holding data pertinent to the
event . Events can only be triggered if execution has reached the structure, making
it wait for the events .

A case structure executes a certain sub-diagram depending on the condition
wired to the condition switch . The conditions can be true/false, ranged, or
enumerated . Event and case structures may contain several layered sub-diagrams,
but only one is shown at a time . They can be flipped using the list at the top .

The outer while loop in Figure 24 is needed to restart the diagram after it has
been terminated, since there can be several diagrams that are executed independ-
ently . The outer event structure waits for the user to press the start button before
starting the data stream visualization . There are two controls used in Figure 24
to represent the start and stop buttons . Controls return a value, indicated by the
triangle on the right-hand side , where the data type is indicated by the
colour of the border . Pressing a button triggers a value change event that event
structures can catch . Each button is located in its corresponding event structure
for convenience .

The “Mill Power” node is an indicator that visualizes one or several stream
elements . Visualizing a stream requires iteratively retrieving each stream element
by a while loop . An iteration over a data stream stops either by the user pushing
the stop button or when end-of-stream is reached .

1 As such, the while loop is really a do-until loop .

Figure 27: Commonly used control structures in LabVIEW .

52

 The VisDM system

The START QUERY node initializes the CQ and sends a stream handle to the
other nodes . The READ TUPLE node reads the current stream element from the
handle in a while loop . The tuple must be converted to a LabVIEW diagram data
type by the READ XY GRAPH node before being visualized by the “Mill Power”
node . When a CQ ends, the READ TUPLE node will stop the main while loop . At
that point there are no more tuples that can be visualized, and the tuple output
from the read tuple node is undefined . Consequently, the diagram must be pre-
vented from receiving data, which is accomplished by the last value case structure .
It switches out the diagram, preventing it from executing further .

The stop condition’s event structure will either wait for a pressing of the stop
button, or a timeout . If the button is pressed, the stop query node runs and then
the event while loop will exit . Every 500 ms, a timeout event is triggered at which
point the structure will execute a sub-diagram polling whether end-of-stream is
reached . If so, it will cause the event while loop to exit . Otherwise the loop will
start over and the event structure will wait for new events .

4 .3 Implementation of VisDM
Data flow programming comes in two flavours: data-driven or demand-driven
[22][34] . With data-driven execution, function nodes produce output whenever
data is available from the inputs . With demand-driven execution the nodes can
only produce output when it is explicitly requested from a subsequent node . The
data-driven approach is well suited for processing CQs, where code is executed
whenever data arrives . The message driven operation of actors is equivalent to
data-driven operation . Actors send messages at their own discretion regardless
of the state of receiving actors . This means actors are well suited for designing a
data-driven data flow framework .

In order to support the construction of data flow programs like the one in Fig-
ure 23, there are some shortcomings of LabVIEW that need to be solved . Using
actors allow us to eliminate all control structures, but there are more issues that
need to be addressed . The semantics of wires in VisDM do not match the control
driven data transfer semantics of wires in LabVIEW . Also, the static data types in
LabVIEW can handle neither CQs nor data flows, as the VisDM wires need to
resolve the types of tuples at run-time .

The SVALI server allows CQs to be altered while they are running, by ex-
ecuting separate updates of the local database . For this purpose VisDM supports
the creation of application-specific VDFCs that send commands to SVALI for
execution .

Implementation of VisDM

 53

Furthermore, stream wrappers can be created in LabVIEW and then loaded
and executed in a running server, through a wrapper handler that can optionally
be called from a CQ .

The RUN QUERY producer node
As illustrated in Figure 28, in VisDM the RUN QUERY node uses an action loop
to retrieve tuples from a derived stream specified by a CQ that is sent to SVALI
through the VisDM client API when the action loop is started . The API returns
a handle to a remote scan, which is an interface to the derived stream returned
from the CQ . The remote scan includes a query signature that describes the types
of the objects received from the derived stream . It is forwarded to the subsequent
actor as part of a startup message to describe subsequently emitted tuples . Then the
remote scan is started by iterating over tuples as they arrive from SVALI one at a
time through messages asking for the next tuple in the remote scan . The tuples are
converted to LabVIEW representation according to the query signature and sent
as outgoing tuple messages to other VDFCs . When there are no more tuples to
receive from the stream, the remote scan is closed and a stop message is propagated
through the data flow to close the VDFCs in the data flow . The termination is
triggered by a stop message to the RUN QUERY node itself . When the stop message
arrives, it is forwarded to subsequent VDFCs before the shutdown function of the
RUN QUERY node is called to terminate the actor .

The visualization nodes
The flowchart in Figure 29 describes the operation of a VisDM visualization
node . The shared data area is used for buffering tuples used by the display and for
storing error messages .

The actor for a consumer node does not have an action loop, but has three
message functions:

1) The startup function validates that the tuple signature corresponds to the
display format and initializes the display . Caught error messages are stored in the
shared data area .

2) The update display function converts each received tuple according to the
format required by the display and refreshes it . LabVIEW requires all points in a
visualization diagram to be stored in an array for each refresh . In the case when
a tuple contains only a part of the points, the shared data area is used for accu-
mulating points . The visualization can be either incremental, where the display
canvas is modified for each received tuple, or non-incremental, where the canvas
is completely redrawn for each new tuple .

3) The shutdown function simply terminates the actor .

54

 The VisDM system

If an error is detected the actor will continue to accept incoming tuples, but
will display error information to the user . The message loop may catch initial-
ization errors, the startup function may catch validation errors, and finally the
display function will present the caught errors to the user .

Appendix A .1, “Customizing visualization” on page 87 goes through the
details of the visualization execution in a display node .

Stop
message

Action loop

Message loop

No more
tuples

Tuple
message

Build tuple according
to signature

Start

Call scan for
next tuple

Run scan

Send tuple

End

CQ

Message functions

Forward stop
message

Stop message

End

Shutdown

Stop
message

Post stop
message to self

Initialize CQ

Remote
scan

Shutdown CQ

C
lie

n
t

A
P

I

Close
remote

scan

Startup
message

Send signature

Figure 28: The actor operation in the RUN QUERY producer .

Implementation of VisDM

 55

Constructing the visual data flow in LabVIEW
Actors in LabVIEW communicate through message buffers . An actor sending a
message to a receiving actor will put the message in the receiving actor’s message
buffer . When starting an actor, it will return a reference to its message buffer . In
VisDM, each actor is created by a starter subVI that starts the actor and estab-
lishes the communication with other actors . To allow for several consumer actors
to receive messages from a producer actor, a shared LabVIEW queue [63] is cre-
ated by the starter of the producer and passed to the consumer starters . When a
consumer actor is started a reference to its message buffer is added to the queue .
For each message buffer in the queue the producer uses the message buffer to
send messages to the corresponding consumer actor . When all message buffers are
assigned, the producer can start its actor .

For details, see Appendix A .2, “Enqueuer transfer” on page 90 on how a
data flow between a producer and a consumer in VisDM is set up .

Incoming
messages

Message loop

Local data
access

Message functions

Update display

Startup

Shared data

End

Shutdown

Startup message

Tuple message

Stop message

Figure 29: Actor operation for a visualization node .

56

 The VisDM system

VisDM execution controls
The use of actors and externally running CQs has implications for how Lab-
VIEW programs behave . The execution controls for a VI, highlighted in Figure
30, that are normally used do not work for VisDM clients . These controls only
affect the state of the VI, whereas the execution of a VisDM application depends
on many other things:
• Starting and stopping a data flow is dependent on the operation of the CQs .
• Actors run independently of the main VI and are not affected by its execution

controls .
• As one VI can contain several data flows, custom controls offer more fine-

grained execution control .
• The execution of a VI differs depending on the LabVIEW environment in

which it runs, which can be the development environment, or the stand-alone
run-time engine [61] .
VisDM has a control VDFC containing start and stop buttons in a single

XControl, shown in Figure 31 . It is connected to the VDFCs that it controls . The
operational steps for actually running VisDM data flows are as follows:

1) When opening a VI, if it is set to auto-run (as is the case with VIs running
in the run-time engine), it will be stopped .

2) When pressing start, it will run the whole VI . Connected VDFCs will
be flagged and start running . VDFCs not connected ignore the execution and
will not start . Connected VDFCs whose actors are already running will likewise
ignore it .

Figure 30: Execution controls of a VI .

Figure 31: On the left, the front panel appearance of the execution
controls . On the right, their appearance in the block diagram .

Implementation of VisDM

 57

3) Pressing stop will signal the pertinent scans on the server to interrupt their
CQs . Visualization will automatically stop when a CQ has terminated .

Handling type resolution
LabVIEW uses strong typing while the types in the result tuples of a dynamic
CQ are not known until run time . There is a possible conflict between the type
structure of the tuples a CQ returns and the type structure of the front panel
display elements of the VDFC . To validate that the types match, they are resolved
in VisDM by the consumer actor’s startup function . Furthermore, the update dis-
play function dynamically converts each incoming tuple into the format required
by the front panel object . To enable the VDFC actor to handle any front panel
object as a parameter, it is passed as a reference to the actor by the starter subVI .

There are two instances where the type conversion can fail . The first, more ob-
vious one is when the tuple data types do not match the expected, statically typed
output, when checked once by the startup function . The second kind of failure
occurs when data can be converted but is otherwise malformed, for example
when the order of data is different from what is expected by the visualization .
This will not cause the visualization node to fail from running, but the output
will become incoherent .

Tuples retrieved from a CQ first have to be converted to a format that can be
managed by LabVIEW, and then converted to the native types required by the
visualization objects used in the application . These steps are a consequence of type
impedance mismatch .

Tuples must be copied because LabVIEW cannot manage references to ex-
ternal objects . In Figure 32, how many copies of the same string are there? It is
impossible to tell (without referring to detailed LabVIEW memory management
documentation at least) . It is likely that some form of copy-on-write method is
utilized, meaning that both diagrams contain exactly one string instance . Enfor-

Figure 32: These two diagrams are
indistinguishable programmatically .

58

 The VisDM system

cing some form of reference counting scheme on top of this is counterproductive
and will not increase efficiency . Furthermore, LabVIEW classes do not have user-
defined destructors [60], making implicit object termination impossible .

LabVIEW supports object-oriented programming and class polymorphism .
This enables tuples to be imported and resolved at run-time . In VisDM, tuples
are represented as arrays of values, where each value is a specific instance of a child
class shown in Figure 33 .

“LV Object” is the base class for all classes used in LabVIEW, and all custom
classes will automatically inherit it . “Value Array” is the storage container for a
tuple, storing any child class instance of the abstract class “Value” . This includes
other instances of “Value Array”, making it possible to store recursive tuples, e .g .
tuples containing arrays of points, for plotting diagrams . “String”, “Number”,
“Real Array”, “Complex Array”, and “Object” are the types expected to be re-
turned from SVALI . Number arrays are dedicated number types in SVALI, and
therefore it is more efficient to have separate types for them instead of convert-
ing them to tuples . “Object” instances are application-specific objects that can
be transferred between different servers, but cannot necessarily be translated to
LabVIEW types .

Constructing the data flow
Figure 34 shows the current class hierarchy for the VisDM data flow framework .

All producers need a method “Propagate stop” that forwards a stop message to
listening actors . Consumers need a method “Startup” that initializes the VDFC
upon receiving the startup message, and a method “Process tuple” that handles
each tuple message that arrives . Operators need all three, and the different num-
bers of methods may increase with future versions of the data flow framework .

LV Object

Value

Value Array String Number ObjectNumber Array

Real Array Complex Array

Figure 33: VisDM class structure for storing tuples .

Implementation of VisDM

 59

Methods in LabVIEW are VIs that belong to a class, and are therefore called
method VIs .

The class structure in Figure 34 is complete for the current incarnation of the
VisDM data flow framework . “Run Query” is the only producer class . Anybody
adding a user-defined class for a new VDFC will have to implement their own
version of the “Startup” and “Process tuple” method VIs .

All message classes must have a method VI named “Do” . Whenever an actor
receives a message, it will call that message’s “Do” method . That VI will in turn
call the appropriate message handling function of the actor . In the case of a tuple
message, it will always be sent to an operator class, and it will call the “Process
tuple” method of said operator . A startup message will be sent to a “Startup”
method of an operator in the same way .

LV Object

LabVIEW Actor LabVIEW Actor Message

Run Query Operator

LabVIEW Actor
Stop Message

Tuple Message

Startup Message

Custom Operator Consumer

Custom Display

Do

Data Flow Actor

Error handling
Propagate stop

Startup
Process tuple

Figure 34: The current actor class structure for data flow
emulation . LabVIEW actor framework classes have a grey label,

data flow classes are yellow, user-defined classes are pink .

60

 The VisDM system

4 .4 Running update queries
Stream monitoring might last for considerable lengths of time . Therefore a de-
rived stream from a CQ can be altered while it is running by updating the local
database through a separate connection . For example, a validation threshold that
a CQ depends on may be updated while the CQ is running, which is different
from regular database queries, where queries are isolated from updates .

An update VDFC specifies an update command sent to a SVALI server and
requires as a parameter the name of the server . The command is sent when the
user interacts with it . A practical example is the case of validation diagrams for
Sandvik Coromant milling machines as illustrated by the front panel in Figure
35 . There are four VDFCs: one visualization diagram plotting the mill stream
output, the start and stop buttons, an update VDFC for entering a new threshold
margin, and an alert indicator showing when the power output deviates outside
of the margin . The power output from a machine is expected to stay within a cer-
tain margin from a predefined power output level . When power measurements
deviate outside of this margin, an alert is signalled to the user . The margin for
each machine is stored in the local database . It is altered whenever the user enters
a new value to the update VDFC, sending an update statement to SVALI .

The block diagram for Figure 35 is presented in Figure 36 . Two separate CQs
are started on the server “Mill1”, the result streams of which are sent to their
corresponding visualization VDFCs: the power stream is emitted to the “Mill
Power” diagram and the alert stream to the red LED indicator .

The alert stream runs separately from the mill power stream . Each time the
alert status changes, it outputs a tuple with alert information . The stream rate for
alerts is usually very low .

“Margin” is a VDFC that handles updates of server “Mill1” . When a new num-
ber is entered into its text box, it is padded into a proper update command sent
to the server . This is done in a subVI that is called from the update VDFC, as
illustrated by Figure 371, where an update statement is built by the PREP STATE-
MENT VDFC . The margin parameter is inserted at the question mark placeholder .

The PREP STATEMENT VDFC builds the following update statement when the
user enters “0 .9”:
set threshold_margin(42) = 0.9

1 “1 .23” inside the “Parameter” node icon declares that the input
to PREP STATEMENT is a number, “abc” inside the “Statement”
node icon declares that the output is a string .

Running update queries

 61

Figure 35: Plotting the mill power for a Sandvik Coromant
milling machine . The yellow line marks an expected mill
power output . The text box labelled “Margin” allows the

user to set a new threshold margin during operation .

Figure 36: Adding update functionality to a block
diagram with two CQ visualizations .

Figure 37: The subVI for preparing the statement sent to the server .

62

 The VisDM system

Writing to a database is a violation of the single assignment [17][86] rule . How-
ever, databases are persistent, and they come with their own interfaces and proto-
cols for ensuring safe interaction, and therefore could be considered exempt from
the data flow programming rules .

4 .5 Visual stream wrappers
A stream wrapper is a program module to handle communication between SVALI
and external stream sources of a particular kind . It converts incoming data into
streams of tuples emitted to SVALI . In the case of data from the Sandvik Coro-
mant use case where Corenet streams were used, the stream wrapper consists of
a set of Python functions that establish and maintain an SSL connection to a
Corenet server, and convert the incoming stream elements .

A stream wrapper has three phases: 1) an initialization phase, establishing a
connection with a stream source, 2) a retrieval phase where data tuples are con-
tinuously received from a source, converted, and emitted to SVALI, and 3) a
shutdown phase where the stream is closed .

VisDM includes a framework to enable visual programming of SVALI stream
wrappers as virtual instruments in LabVIEW . The VIs are dynamically loaded
and executed in the SVALI server . Since VIs in general cannot be called directly
from outside LabVIEW, the SVALI server has been extended with a wrapper
handler that calls VIs compiled to a dynamic link library (DLL or shared object) .

A visual wrapper example
Figure 38 shows a VisDM client display example, showing Fourier transforms
of the radio signals collected from the LOFAR prototype antenna . VisDM was
connected remotely to the antenna over the Internet, and used to display signal
transformations in real time . In this application, both the visualization and the
stream wrapper were defined visually with VisDM .

The block diagram is shown in Figure 39 . Looking more closely at the CQ,
there are some parts that warrant further explanation:
select abs(fft(na1)), abs(fft(na2)), abs(fft(na3))
 from number cnt, carray na, carray na1, carray na2, carray na3
 where (cnt, na) in fixstream(vi(“radio.vi”), “u2,ci2[366]”)
 and (na1, na2, na3) = il(na, 3)

The stream of tuples emitted consist of three arrays, one from each channel .
fixstream() is the general VisDM wrapper handler for stream wrappers . The first
argument of fixstream() is an interface object that loads the LOFAR stream wrap-
per VI named “radio .vi” . The second argument specifies the type format of the

Visual stream wrappers

 63

data stream, and is used to decode the tuples emitted from the wrapper handler .
In this case the first value is a two-byte unsigned integer counter that indexes each
tuple, and the second value is a numeric vector consisting of 122 interleaved, four-
byte complex integer signal values from three channels . The function il() unbraids
the separate radio channels, which are then transformed individually and emitted
for visualization .

The operation of fixstream() is described in detail in Appendix B .1, “The fix-
stream() wrapper handler” on page 93 .

The block diagrams in Figure 40 to Figure 42 define the three phases of the
stream wrapper VI to capture LOFAR data streams . Each phase has a corres-
ponding case in a LabVIEW case structure, numbered from one to three . A VI
that acts as a stream wrapper has the case number, “Case”, as input and two out-

Figure 38: Displaying Fourier transforms of the
three LOFAR antenna radio channels .

Figure 39: Sending the CQ to a SVALI server running
LOFAR . Note that this query does not define the x-axis .

64

 The VisDM system

puts, “Result Stream” and “Error Stream” . Two streams are emitted to the VisDM
wrapper handler: one result stream containing data tuples, and an error stream
to signal errors .

The block diagram in Figure 40 shows the first, startup phase of the LOFAR
stream wrapper “radio .vi” . It establishes a UDP connection to the antenna and
sends startup commands . The IP and Port of the antenna are stored in the wrap-
per as well as an ID of the UDP connection . No result stream elements are emit-
ted .

The second phase in Figure 41 uses the values stored in the first phase . It is
called each time a new tuple is requested from the wrapper handler . 5 000 bytes
are allocated for each UDP package, which is converted to a byte array and emit-
ted to the result stream, with a 2 000 ms timeout .

The third phase in Figure 42 sends a shutdown command to the antenna and
then closes the connection .

Figure 43 shows the data path through the system . The stream wrapper and the
compiled VIs run in an instance of the LabVIEW run-time engine [61], which is
dynamically loaded into the SVALI server process by the VI wrapper handler . In

Figure 40: The startup phase of the LOFAR
stream wrapper “radio .vi” .

Figure 41: The emit phase of “radio .vi” . It is called
each time a new tuple is requested from SVALI .

Visual stream wrappers

 65

Figure 42: The shutdown phase of “radio .
vi”, shutting down the connection .

Digital 3D antenna

SVALI server

VisDM client

Visualization

LabVIEW
run-time
engine

Signal
transformations

VisDM
wrapper
handler

CQ

Stream wrapper VI

Compiled VI
DLL/shared object

fixstream()

Figure 43: Radio visualization data path .

66

 The VisDM system

order to retain data values between the different phases of a wrapper, even when
the same wrapper VI is used for more than one stream, the VI execution mode is
set to preallocated clone reentrant execution [64] . This mode causes LabVIEW to
create a separate instance of the VI for each separate call .

Setting wrapper parameters
There are two ways to set parameters for a visual stream wrapper:

1) Server-side . A VI can be set to open its front panel when it is loaded . Any
parameters can then be entered directly into the stream wrapper . The advantage
is that the wrapper can be altered directly while it is running and collecting data .
The disadvantage is that this has to be done on the server .

2) Client-side . Any value for a control in a LabVIEW VI can be set remotely
from another VI running in the same process, as long as the name of the control
is known . This allows parameter input to be scripted, and controls can also be
updated while running, through a dedicated update VDFC .

4 .6 Server and API details
Both SVALI and LabVIEW can be embedded in other programs . Furthermore,
both can in turn call embedded components . A bare-bones SVALI DLL has been
embedded in the VisDM client to aid with peer communication, details of which
can be explored in Appendix B .2, “Interfacing LabVIEW with embeddable com-
ponents” on page 95 .

Most APIs that are used for accessing queries base their operation on a scan en-
tity . While scans encapsulate queries from the user, they do not by themselves en-
capsulate queries from each other . This is the purpose of a special type of coroutine
[90][69][19], on which the VisDM scans are built . By using coroutines, queries
can be scheduled so that their operation do not come into conflict with each
other . But they also need a mechanism by which they avoid blocking the system
when doing something that is peripheral to the query operation, such as waiting
for data input . Coroutines are discussed in detail in Appendix B .3, “Coroutines”
on page 96 .

Remote scans add connection transparency to scans . A remote scan is used by
the client to connect to a scan on a server, but it can also be used in more general
terms as a logical entity that represents a physical entity located elsewhere . A
remote scan behaves exactly the way a scan does, and effectively eliminates per-
ceived physical distances in a computer network .

Scans and remote scans are discussed further in Appendix B .4, “Scans” on page
99 .

Evaluation

 67

The coroutines inside scans as well as stand-alone coroutines run in tandem
using cooperative multitasking, on the multiplexing server . For details on how
this works, see Appendix B .5, “Server structure” on page 101 .

4 .7 Evaluation
As previously shown, VisDM has successfully been tested in two real-world ap-
plications, one industrial at Sandvik Coromant and one academic at the Ång-
ström Laboratory, Uppsala University .

Initial performance studies of the VisDM system have been carried out, evalu-
ating the practical limits of its visualization capabilities .

All applications are defined as producer-consumer pairs, matching a CQ data
stream source to a visualizer data stream sink .

Sandvik Coromant machine tool monitoring
In this use case [93], the task is to provide a portable system for easily customiz-
able visualisation of CQs, where the operator can start new client windows and
make changes to those already running, depending on the operational paramet-
ers . To enable this, the VisDM system was deployed to visualize machining data
streams, connecting a laptop directly to monitored machines in production on
the factory floor . Setting up a running system required only a few minutes of
VisDM configuration, consisting mostly of mapping data in arrays to corres-
ponding variable names .

There can be many machines running at different sites . Each machine may
be unique and perform several different tasks [77]: turning, threading, milling,
drilling, boring, etc . The number of sensors varies and there can be many para-
meters measured, up to 40 for some machines . The input used is machine control
system data currently sampled at ~200 Hz1 . The derived streams that are calcu-
lated from the input streams can have any frequency, down to fractions of a hertz
for alarm streams . Visualization of streams from each machine runs independ-
ently from the others, which is well supported by VisDM’s data flow primitives .

Since the result of a Corenet stream is visualized as a sliding window, the visu-
alization is incremental .

1 Data from external sensors such as dynamometers are often in the
range of 2–5 kHz, but they are not covered in this use case .

68

 The VisDM system

LOFAR antenna unit
LOFAR consists of about 20 000 antenna units operating in tandem, in effect
becoming a very large radio telescope . All units are identical and their operation
is unlikely to change during their run time . Instead, operation is focused on
intensive calculations over high-rate, possibly massive data streams . The radio
signals are received as signal vectors consisting of interleaved, complex numbers
from three channels . As specified by the CQ on page 62, an FFT is applied to
each channel and then visualized non-incrementally by VisDM .

In this case, the visualization update speed is determined mainly by two things:
the radio signal bandwidth, and the size of the signal vectors . Higher bandwidth
means more data, but bigger vector size for higher resolution means slower up-
date speeds . Running the receiver at 44 .1 kHz bandwidth generates ~367 UDP
data packages per second . The call to fixstream() in Figure 39 on page 63 con-
verts each received byte array from the “radio .vi” stream wrapper VI to a tuple
consisting of a counter and a vector of 366 complex numbers . The carrier wave
frequency does not affect the data speed, because the carrier wave is subtracted
in the antenna hardware before transfer . Displaying data packages as they arrive
requires the VisDM client to update display objects at a rate of ~2 .7 milliseconds,
or 370 hertz .

Evaluation of VisDM visualization performance
The test applications in their current state do not toe the limits of VisDM by any
means . Furthermore, it is of little practical use to display values faster than the eye
can perceive or the computer screen can muster . The 370 hertz update frequency
in the LOFAR case is much higher than is needed for presentation purposes, and
this is also true for the 200 hertz frequency in the Sandvik Coromant case .

Displaying tuples as they arrive can be a convenience, as it can save some
configuration time and generally increase the system flexibility . The chart in Fig-
ure 44 shows maximum update frequencies in kilohertz for a query running in
VisDM, returning a stream of arrays consisting of complex, double values (16
bytes), and having them plotted in VisDM . The chart specifically shows how
the maximum update frequencies relate to the tuple size . Testing was done on an
Intel Core i7-4770 @ 3 .40GHz running Windows 7 .

Evaluation

 69

2,1

1,6
1,5

1,3
1,2

0,0

0,5

1,0

1,5

2,0

2,5

0 50 100 150 200 250 300 350 400

U
p

d
at

e
fr

eq
u

en
cy

 (
kH

z)

Tuple size (data points)

Maximum update frequency

Figure 44: Relation between tuple size and update frequency .

 71

5 Related work

 “You seriously planned all this mad scientist stuff? I
mean, when was this hopeless black fantasy supposed
to happen? When were you planning to do it?”

 “‘Do it?’ Dan, I’m not a comic book villain . Do you seriously think
I’d explain my master-stroke if there remained the slightest chance
of you affecting its outcome? I did it thirty-five minutes ago .”

—Alan Moore, Watchmen

The power of VisDM is its ability to combine powerful, visually defined data
stream visualization with a state-of-the-art DSMS in one versatile and expressive
working system by using an existing, commercial, and general visual program-
ming language extended with data flow primitives to provide powerful customiz-
able visualization components .

Visual data flow solutions with strong visualization capabilities are becoming
more widespread . The platforms described below combine data stream manage-
ment, data visualization, and data flow programming to various degrees . They are
usually based on a client-server structure with a point-and-click interface . They
are marketed to the public, either as commercial systems or downloadable func-
tion libraries . There are experimental systems that have been developed by various
computer science research groups, but they usually have limited scope, or they are
not being developed or maintained anymore [34][15] .

A basic prerequisite of any system that is useful for data stream management
is the ability to handle data streams with disparate stream rates . One way many
solutions do that is by imposing a predefined structure or schema on the tuples
in a stream, the simplest form being to prepend a time stamp to tuples [23] .
Others that perform pattern matching need tuples to contain type and structure
metadata [75] .

SVALI does not impose requirements on the nature of data streams . It is up to
the implemented model, through the schema it utilizes, to impose restrictions for
how data can be accessed and processed .

72

 Related work

5 .1 Data streaming examples
There are platforms that try to provide complete solutions for all data streaming
tasks, such as IBM Streams1 [12] and SQLStream Blaze 2 [82] . Both have their
own comprehensive query languages, and support point-and-click visualization
through a web-based interface . However, the visualization is based on JavaScript
templates, and customization – to the extent that it is available – must be pro-
grammed manually in JavaScript . By contrast, all VisDM visualization is defined
visually, including any customization, using a readily available and comprehens-
ive toolkit .

Complex event processing (CEP) provide tools and techniques for analysing and
controlling complex series of interrelated events [45][16] . A central part of CEP is
pattern matching and actions over complex event sequences rather than analys-
ing streams of measurements . Some prominent examples of platforms for hand-
ling CEP are Tibco StreamBase 3 [87], DataWatch Desktop4 [21], ZoomData5 [97],
and Software AG Apama 6 [80] . Function extensibility ranges from non-existent
(DataWatch Desktop) to very good (StreamBase) . These systems have dedicated,
non-generic visualization components that can be sophisticated (zooming, in-
formation extraction, etc .) but are much more limited compared to the function-
ality VisDM offers through LabVIEW .

Rickshaw7 and Plotly 8 are function libraries for visualizing streaming data .
They are programmed in JavaScript – Plotly is available for other languages as
well – and can be used with various data stream sources . Programming is text-
based and supports only visualization without any primitives for connecting to
or managing data streams .

Comparing VisDM with the systems mentioned above, VisDM leverages on
the rich visualization and data stream programming capabilities available in Lab-
VIEW to provide support for advanced engineering and scientific applications .

1 http://ibm .com/software/products/ibm-streams
2 http://sqlstream .com/blaze
3 http://streambase .com
4 http://datawatch .com/products/datawatch-desktop
5 http://zoomdata .com
6 http://techcommunity .softwareag .com/ecosystem/

communities/public/apama/products/apama
7 http://code .shutterstock .com/rickshaw
8 https://plot .ly

Visual data flow programming

 73

5 .2 Visual data flow programming
A visual programming platform which shares many similarities with LabVIEW is
VEE 1 [41], from Keysight Technologies . Just as with LabVIEW, its main intended
application is to serve as a frontend to, and work in conjunction with, various
measurement instruments . And just as with LabVIEW it can be programmed to
perform all sorts of different tasks . The data flow programming model in VEE is
much closer to the data flow programming paradigm than LabVIEW, and pro-
grams are not dependent on control structures for their operation . Instead they
depend on iterators, switches, and merges [20][38] .

Programs in VEE are read from left to right and from top to bottom . Wires
connecting to the left and right-hand sides of a node are data wires, and the ones
on the top and bottom are sequence wires . For example, the yellow iterator node
with a circular arrow in Figure 45 is connected on all four sides . The leftmost wire
contains loop parameters, the rightmost wire outputs an iteration value each time
the topmost wire transmits a trigger, and the bottommost wire outputs a trigger
on each occasion it happens .

1 http://keysight .com/en/pc-1000003078%3Aepsg%3Apgr/agilent-vee

Figure 45: A sample VEE program . Note the yellow
elements which are iterator functions, and the beige

elements which are calls to external functions .

74

 Related work

The program in Figure 46 shows the use of an iterator, a switch and a merge .
Every half a second, the knob control (the iterator) outputs a value, and depend-
ing on the value the “If/Then/Else” box (the switch) outputs different triggers .
The “JCT” box (the merge) collects the data flows, and the “AlphaNumeric” text
box shows the resulting text .

Unfortunately, VEE has insufficient extensibility for complete integration of
the system with a DSMS as VisDM requires . Polymorphism is also not suppor-
ted, meaning that there is no way of handling dynamic typing for tuples .

Apache NiFi1 [3] (Figure 47) is a browser-based visual data flow program-
ming language . It can be connected to external data streams and to visualization
toolkits, but completely lacks those capabilities by its own .

Streams, Blaze, and StreamBase all provide their own data flow programming
environment . An example in StreamBase can be seen in Figure 48 . In Stream-
Base, writing to a database is a side effect of some of the nodes, which is a devi-
ation from pure data flow programming, because the operation of the function
nodes is not restricted to the nodes themselves .

5 .3 Platform comparison
In Figure 49, the most important features of all these systems have been collected
in a single table . There are some notes to be aware of:
• The systems mentioned that have a DSMS also have a built-in query language .

This does not have to be the case; there could be only an API available .
• Visually defined visualization can still mean that extending the visualization

requires manual, text-based coding, in the cases where comprehensive visual-
ization tools do not exist .

1 https://nifi .apache .org

Figure 46: A VEE program with a condition entity .

Platform comparison

 75

• “Extensible stream sources” means that the platform can be extended to con-
nect to new stream sources. In the case of CEP platforms, they are still limited
to certain types of sources.

• Supporting streaming data does not necessarily mean that the streams are real-
time and high-rate. It is often the case that the streaming is done from some
kind of repository, like a data warehouse.

• All platforms that have visualization based on JavaScript naturally have
browser-based visualization. LabVIEW provides browser-based visualization
through a dashboard based on Microsoft Silverlight. �is dashboard is avail-
able for Android, iOS, and Windows 10 as well.

• Continuous updates are updates to data stream �ltering while an application is
running. Only VisDM provides updates to CQs running on a server.

Figure 47: Apache NiFi example application.

Figure 48: An event �ow diagram in StreamBase.

76

 Related work

5 .4 Visual query builder
In most cases, continuous queries are programmed in a text-based language . In
contrast, [10][47] describe the SmartVortex Visual Query System used for SVALI
[Paper III] . It is aimed towards letting inexperienced programmers build complex
queries . With a point-and-click interface, the user can visually define any query .

Unlike the other platforms presented in this chapter, this is not a complete,
stand-alone system . Its editor, shown in Figure 50, capitalizes on many advantages
with visual programming:
• The interface significantly flattens the learning curve for people who are unfa-

miliar with query programming .
• Wiring is strictly hierarchical and eliminates most, if not all, risks of syntax

errors .
• The two-dimensional programming style supports code reuse, at least to a lim-

ited extent, e .g . type definitions can be shared .

VisDM

IBM Streams

SQLStream Blaze

TIBCO StreamBase

Software AG Apama

ZoomData

DataWatch Desktop

Rickshaw
Plotly

Keysight VEE

Apache NiFi

Built-in query language
Visual, declarative data
flow applications

Visually defined
visualization

Extensible visualization
Comprehensive
visualization tools

Integrated DSMS
Stream source types All All All CEP CEP CEP CEP
Extensible stream
sources

Real-time data streams
Browser-based
visualization

App-based visualization
Continuous updates

Figure 49: Features comparison .

Visual query builder

 77

The programming style of the builder shares many properties with data flow
programming – strict function hierarchies notwithstanding – and is somewhat
similar to DFQL [18], PICASSO [42], and other visual query languages, where
focus is on the graphical representation of an already established query language
and increasing the usability of said language, without adding any new technolo-
gies or semantics to the language .

Figure 50: The query editor for the visual query builder .

 79

6 Summary

 “Er, what if … if I’m not in front of one when it
tries to hit me? What if it is in fact behind me?”

 “Ah, well, I am afraid that in that case sir has
to go back and start all over again, sir .”

 “And, er, how do I do that?”
 “Being born is traditionally the first step, sir .”

—Terry Pratchett, Thud

Visual Data stream Monitor (VisDM) is a platform for online analysis and visu-
alization of data streams . It has a stream-oriented client-server architecture and
utilizes visual data flows for connecting continuous query results with appropri-
ate real-time visualization displays . VisDM provides easy data flow specification
to specify continuous visualizations of CQ results . The data flow specification is
simple and straight-forward for visualizing each data stream, since it does not re-
quire detailed specification of the execution . Visual data flows enable declarative
specification of application programs visualizing data streams defined as CQs to
a DSMS .

VisDM integrates a visual programming language with a data stream manage-
ment system (DSMS) to support the construction, configuration, and visualiza-
tion of data stream applications . To achieve this, the LabVIEW visual program-
ming platform has been adapted to support the easy specification of continuous
visualizations of CQ results . LabVIEW comes with many different graphical
objects for visualizing data, both in 2D and 3D . They are mainly intended for
statistical and signal processing data, but can handle other types of data as well,
and in the case that they should not be sufficient, new customized visualization
tools can always be created .

To enable visual specification of interfaces to external data stream sources,
VisDM includes a framework to enable visual programming of SVALI stream
wrappers as virtual instruments in LabVIEW, which can then be loaded and ex-
ecuted in a running server, through a wrapper handler that can be called from a
CQ .

80

 Summary

LabVIEW has been extended with a toolbox, Visual Data Flow Components
(VDFCs), which enable declarative visual specification of visual data stream ap-
plications as visual data flows . The set of VDFCs is extensible, so that adding new
components when needed is easy . The declarative, data flow centric programming
with VDFCs does not rely on control structures the way regular LabVIEW pro-
grams do . Thus VisDM extends LabVIEW with a data flow framework on which
the VDFCs have been created . The data flow framework utilizes the actor frame-
work of LabVIEW . With actor-based data flows, visualization of data stream out-
put becomes more manageable, avoiding the procedural control structures used
in conventional LabVIEW programming while still utilizing the comprehensive,
built-in LabVIEW visualization tools .

VDFCs are divided into producers, operators, consumers, and controls . Pro-
ducers are the source of data flows, typically a CQ that runs on a server . Con-
sumers are the end points of the data flows, typically displaying the CQ results .
Operators perform manipulations of data flows, most commonly extracting val-
ues from tuples . Controls accept input from the user, like sending commands to
the server (update VDFCs) and starting/stopping a data flow . The VDFCs allow
the user to focus on what they want done, while minimizing the trouble with
how to do it .

To implement the VisDM system, LabVIEW was interfaced with the SVALI
(Stream Validator) data stream management system . In order to operate as a
query server, SVALI was extended with components for handling multiple CQs
concurrently . For client-server access to continuous queries, a special type of scan
primitive and a dispatcher for switching between running CQs have been added
to SVALI . Furthermore, it has been extended to dynamically incorporate visually
programmed stream wrappers, for the handling of external stream sources .

VisDM has been applied on two different real-world problems in order to
evaluate its effectiveness: one on industrial machining and one on processing
high-volume radio telescope data streams . For both applications, data is visual-
ized in real-time, and VisDM is capable of sufficiently high update frequencies
for processing and visualizing the streaming data without obstructions .

The strength of visual data flow programming is the expressive power, making
data stream management and visualization easy and intuitive, even for users who
are unfamiliar with the concepts . Using symbolic building blocks interconnected
with wires, a program definition becomes the program itself . The visual program-
ming tools of LabVIEW provide a foundation for visualization and programming
of data streams . Combined with the SVALI, we get a well-rounded and very
flexible solution for all sorts of data stream management tasks .

Discussion

 81

Data streaming applications and visualizations are easy to define, configure,
and deploy using VisDM . It works well both for inexperienced programmers
as well as experienced ones, depending on the application . It offers strong visu-
alization capabilities without limiting the unique data streaming capabilities of
SVALI .

A unique strength of VisDM is its complete extensibility . No other system
offers the same capabilities for adapting to such a vast range of data streaming
and visualization tasks .

6 .1 Discussion
While LabVIEW works adequately for providing a base for VisDM, it is far from
ideal in many aspects . Much of the loss of performance lies with XControls . Most
of that loss comes from having to use references for visualization . Using references
in LabVIEW instead of the actual objects is inefficient to varying degrees, de-
pending on the type of reference . XControls are by themselves relatively resource
heavy just because of how they are integrated with the run-time environment .
Furthermore, typecasting of objects is inefficient compared to other object-ori-
ented languages .

Still, the advantages that LabVIEW brings to the table may render all other
issues inconsequential . There is seemingly no other solution that can offer this
combination of sophisticated visual programming, visualization tools, and ex-
tensibility .

LabVIEW graphical objects and in particular diagrams more often than not
will require extra infrastructure to operate properly . For example, diagrams only
accept arrays as input, containing the complete plot data . It is up to the program-
mer to facilitate these arrays . This kind of customization is difficult to encapsulate
without using XControls .

Static typing in LabVIEW becomes a roadblock, because it hinders the adop-
tion of a system-wide schema .

LabVIEW graphical objects are not customizable the same way that widgets
are in other language frameworks . For one thing, they do not have support for
callback functions, i .e . user defined functions that are called by the framework .
The details of setting up an example front panel object using an XControl is
presented in Appendix A .1, “Customizing visualization” on page 87 .

82

 Summary

LabVIEW XNodes
Many LabVIEW functions have connector panes that can be customized in many
ways . Connections to a subVI on the other hand cannot be altered without hav-
ing to make several different versions of the VI .

The three boxes to the left in Figure 51 show how the array indexing function
can be extended to retrieve several values at the same instance from an array . The
two rightmost boxes show the function for flattening data to a string, which can
accept literally anything that can be transferred through a wire .

This flexible behaviour can be created using XNodes12 . They provide a form of
meta-programming, where the behaviour and appearance of an XNode is defined
by a set of VIs that the programmer provides .

This can be particularly useful for type resolution, where the dynamic conver-
sion of tuples can be solved using overloading in an XNode, the appearance of
which can be completely adaptable to different applications .

The reason that XNodes are currently not included in any solution is because
they are not officially supported, and subject to change at any moment . Docu-
mentation is quite insubstantial and only a few tutorials exist . They are generally
not recommended for use .

6 .2 Future work
Several topics lie ahead, warranting further investigations . The current system is
merely a prototype; there are both issues with the architecture that need to be
solved, and practical applications that need to be investigated .

Client-side management of a distributed DSMS . A possible future work is
to extend VisDM with VDFCs that visually define data flows deployed across
several distributed compute nodes, executing CQs or other stream computations
in parallel . The VDFC implementation should automatically parallelize the ex-
ecution across any number of compute nodes, making node management trans-
parent to the user .

For massively parallelizing heavy computational processes [95], a parallel com-
putation could be specified graphically by dropping VDFC nodes on the block
diagram .

Generalized and streamlined system pipeline . Most industrial machines
today that require automated monitoring come with embedded computers that
collect and distribute sensor data . If the machines are equipped with embedded,

1 http://labviewwiki .org/XNodes [unavailable at the time of writing .]
2 https://lavag .org/files/category/10-xnodes

Future work

 83

off-the-shelf single board computers running Linux or similar, then each board
can run an instance of SVALI, which can be represented by function nodes in
VisDM . This way, the whole data streaming architecture from machine to user
can be administered from a single VisDM client .

Common for all systems utilizing custom components is that there is always
an initial step where raw data is produced which must then be converted to a
format that can be handled by subsequent platforms . This adds extra steps to the
data stream pipeline, and requires more resources . Basing the entire pipeline on
VisDM eliminates these extra steps . Sensor data still need stream wrappers with
this model, but they can be included as light-weight functions in SVALI, instead
of being separate processes .

Pluggable visual query builders . Constructing queries in a visual program-
ming environment, instead of manually typing them, offers many of the same ad-
vantages that visual data flow programming provides: a flattened learning curve,
elimination of many syntax errors, making the code more manageable, etc . The
extensibility of both SVALI and LabVIEW makes it easy to attach a visual query
builder . The SmartVortex Visual Query System [28] is intended to be used in con-
junction with SVALI, but other extensions may be incorporated as well . DFQL
[18] is one such system, PICASSO [42] is another one .

Pluggable backends . It should be investigated whether data streaming plat-
forms such as IBM Streams and SQLStream Blaze may serve as backends to
VisDM .

Visual stream operators . SVALI can be extended with a framework for dy-
namically loading and executing visually defined streaming functions, by using
VisDM . These functions may work as functors [85] .

Figure 51: Examples of the versatility of functions .

84

 Summary

Automated stream monitoring . There are currently no mechanisms for hav-
ing a server and a client automatically exchange information about their states .
Ideally, a client should be able to convey the nature of desired data stream input,
and the server should if possible cater to those requests . There are some issues that
may benefit from this communication:
• Tuple buffering . Automatically adjusting buffer size and timeout according to

changes in stream rates can influence perceived visualization behaviour, and
decrease the load on computer resources .

• Data stream health status . Automated supervision and monitoring of the vari-
ous components of a data stream management application can be very benefi-
cial to a user, who may not have a clear understanding of what can go wrong if
a system suddenly becomes unresponsive .
Visualization can become a heavy load for the client and might slow it down

so much that it cannot retrieve data as fast as it is produced . In those cases, some
form of load shedding protocol is needed . There are various strategies for load
shedding [83][7][53], but they can all be divided into two categories:

1) Pruning. Filtering functions are applied that discard less interesting data
and hopefully preserves the more interesting bits . Pruning works well, at least in
theory, with the current system architecture, since it can easily be incorporated in
a distributed data stream management system as filtering functions .

2) Aggregation. Statistical functions are applied to extract the essence of the
data, without needing to preserve the actual data .

While pruning seems like the better choice at face value, the fact is that aggreg-
ation has some appealing properties for visualization:
• The data that is to be visualized has probably already been pruned in one way

or another, and the alternative left is simply to discard data that cannot be
visualized in time .

• The data to visualize may already be the output from aggregation, e .g . a run-
ning average, and thus only needs minimal adjustments . Which leads to the
next point:

• Aggregation works well together with visualization, because the reduction rate
can be quite significant, and one can make flexible solutions such as the one
shown in Figure 52, where the aggregation is done in two steps with intermedi-
ate database storage, with the two functions or queries running in parallel . The
daemon process is handled through the VisDM server extensions .
Preferably, load shedding should be automatic . One possibility is to have the

client operators informing the server of their largest acceptable delivery rate . This
data can then be picked up by the data stream management system, allowing it
to inject the appropriate aggregation or pruning functions when processing the
streaming data .

Future work

 85

DSMS
Input
stream Stream function

daemon

DBMS

Derived
stream

Stream function

Figure 52: Balancing stream rate by running two asynchronous
stream functions with intermediate database storage .

 87

Appendix A – LabVIEW programming

This appendix goes into details and minutiae of LabVIEW-specific solutions to
programming issues . Certain knowledge of how LabVIEW programming works
and of available functions is required .

A .1 Customizing visualization
Design of a visualization object and its operation are divided between an XCon-
trol and a class inherited from the “Consumer” class in Figure 34 on page 59 .
This class becomes the driver of the visualization for the XControl .

The front panel presented in Figure 53 shows a number box embedded in a
façade VI . Every XControl has this VI, and the canvas of its front panel becomes
the face of the XControl when used inside another VI .

Figure 54 shows the corresponding block diagram for this façade VI . It handles
the brunt of all XControl operations, which in this case is not so much, since
the diagram will only run once, upon receiving the tuple stream object . The im-
portant part is the “Display Init” method VI, which is part of the “Consumer”
class . It associates an instantiated display class object with the tuple stream and
the graphical object . All inputs have a red triangle, indicating a type cast . A black
triangle in the upper left corner of an entity indicates a custom type definition,
which is causing the topmost red triangle to appear for the “Display Init” subVI .
In the two other cases the red triangles indicate a type cast to a more generic class:
The “Number” child class is casted to the “Consumer” class, and the “Digital”
class reference is casted to a generic control reference .

The block diagram in Figure 55 shows the operation of the “Do” method VI,
the message handler of the “Tuple” class . Any actor receiving this message will
call this VI . The actor must be a descendant of the “Operator” class, as it is to
this class the actor will be cast . All “Operator” descendants must have a “Process
Tuple” VI which will handle the received tuple .

Note that the “Actor out” output has a red triangle . That is because the casted
“Operator” object will be casted back to a generic actor .

The “Process Tuple” block diagram in Figure 56 is called for each tuple for the
number box . It performs two operations: 1) Casting the stored reference to the
right type . The VI has a dummy number box which serves as the type target for

88

LabVIEW programming

Figure 53: The front panel of a façade VI that has a
number text box embedded . The connector pane

is predefined in the XControl template .

Figure 54: The block panel of the façade VI . The event
structure and all objects outside of it are part of the

XControl template, and must not be altered .

Figure 55: The “Do” method VI of the “Tuple”
class . All it does is call the “Process Tuple” VI of the

recipient actor, casted to an “Operator” class .

Customizing visualization

 89

Figure 56: This is the “Process Tuple” block
diagram for the “Number” class . It will be called

each time a tuple message is received .

Figure 57: The XControl for a scatter or line plot . Note that
this XControl is structurally identical to the one in Figure 54 .

Figure 58: The “Process Tuple” VI for a scatter/line plot .

90

LabVIEW programming

casting the control reference . This is not necessary, but increases the efficiency of
the subsequent method call . 2) The tuple member VI “Number Get” converts the
first element of the tuple to a double precision number . Using the casted control
reference, this number is presented in the number box . A slight improvement can
be made by moving the reference type cast to the “Startup” method VI, which
runs during initialization .

The example shown in Figure 57 and Figure 58 is slightly more complicated,
because it requires data to be preserved between calls .

The main difference in the “Process Tuple” block diagram shown in Figure
56, compared to the one Figure 58, is the handling of data . The “Point Get” VI
handles the type conversion: it reads the first two elements of the tuple and re-
turns them as a two-dimensional point . The “Array Build” VI reads data stored in
the actor, adds the point to the array, and then writes data back to the actor . An
actor may store any data, and by including the data in the actor returned from
the “Do” method VI, its proper storage is ensured .

A .2 Enqueuer transfer
The Run Query subVI – and any other producer or operator that sends tuple
messages to a subsequent actor – cannot both send a queue reference and wait to
receive an item from that queue; the subVI must have finished running before it
can return any items . The solution is to start an asynchronous VI to do the wait-
ing, and then returning the reference .

The block diagram for the Run Query subVI, shown in Figure 59, consists
basically of three parts: 1) starting the asynchronous VI (the function with the
sideways triangle), 2) waiting for the VI to start running (the while loop), and 3)
returning a tuple stream object with the queue name .

The subVI is set to preallocated clone reentrant execution, which means it has
a unique clone name . This name is used to uniquely identify the queue as well .
“Run Query Loop .vi” is the name of the VI that will be started independently . A
reference is opened to a clone of the VI which is then set to run .

The while loop will check every tenth of a second if the VI is running, and exit
when it does . This is needed because of what is possibly a bug in LabVIEW: If a
VI finishes running too quickly after it has started an asynchronous VI, then that
VI will never run . The while loop will ensure that it is running, before leaving
the VI .

Afterwards, the reference is closed, and any error that may have appeared
(through the yellow and black wire) is returned with the tuple stream object .

Enqueuer transfer

 91

Figure 59: Inside the Run Query subVI .

Figure 60: Enqueuer reception inside the “Run Query Loop .vi” VI .

Figure 61: Sending the enqueuer inside the “Display Init” VI .

92

LabVIEW programming

There are three queue operations carried out by the “Run Query Loop .vi”
block diagram in Figure 60: 1) Before going into the while loop, the queue is ob-
tained (it is created if it does not exist) . 2) Inside the loop, the dequeue function
will wait for a message enqueuer to arrive for 1 000 milliseconds . If an enqueuer
arrives, it will loop over and wait for a new one, otherwise it will time out and
exit . 3) Afterwards, the queue is no longer needed and will be deallocated .

The enqueuers that were retrieved from the queue are packed in an array and
written to the query actor object, which is then launched .

This way of enqueuer retrieval is necessary, because the number of enqueuers is
unknown . This also means that it is possible, however unlikely, that initialization
can fail, because of the timeout . A longer timeout means a smaller chance of fail-
ure, but increased waiting time for the user .

There are three possible types of errors, of differing precedence . A queue opera-
tion error has highest priority, because if an operation fails, everything else fails as
well . It is possible that the queue receives an item after it has timed out, causing
the timing error . The third and most likely error is an unwired output, causing
the enqueuer array to be empty .

A fourth possible error is a subsequent actor trying to send an enqueuer to a
queue that has been closed, but that is handled elsewhere .

It is certainly possible to start the actor first, and then have the actor wait for
the enqueuers . This would eliminate much of the code needed above . However, it
is more desirable to have all enqueuers in place before starting the actor; it makes
the design more robust to changes, and makes error handling easier .

“Display Init” (Figure 61) is the subVI that is used inside a consumer to re-
trieve the tuple stream object and initialize the consumer . “Display in” is the child
class that handles visualization, “Ctl Ref in” is a reference to the display object
that receives the visualization output . The VI obtains the queue for the queue
name retrieved from the tuple stream object . It then starts the consumer actor
and puts the returned enqueuer in the queue .

 93

Appendix B – Server building blocks

The SVALI server has several components that may be interesting for a closer
look .

B .1 The fixstream() wrapper handler
Continuing the example with the digital antenna prototype, a typical query will
be based on this query template:
select counter, array from number counter, carray array
 where (counter, array) in fixstream(vi(“radio.vi”), “u2,ci2[366]”);

This query returns a stream of tuples, where the first value is a number and
the second is an array of complex numbers (data type carray in SVALI) . They
are converted from a two-byte unsigned integer package counter and an array
of 366 complex, two-byte, signed integers, as defined in the second parameter of
the fixstream() function . This parameter also declares the return signature of the
function . The default declaration of fixstream() is:
stream of object

When added to the query above it automatically gets the type:
stream of (number, carray)

In effect, this adds static type checking to a dynamic context .
There does not exist any semantic coupling between the wrapper function out-

put and the wrapper handler input – just as there is none between data streams
and wrappers – meaning that it is up to the user to verify that the type string
actually matches the contents of the byte array . This is a problem with all wrapper
programming . A possible solution is to add some form of schema propagation .
By associating a data stream with a schema, it becomes possible to automate type
checking of the fixstream() function . At the time of writing, there does not exist
any mechanism for defining schemas .

Wrapper handler operation is divided into two threads, in order to do as much
work in parallel as possible . The child thread performs the two tasks that can be
done outside of the system: waiting for a data package to arrive, and converting
the data to SVALI data types . The execution flow is illustrated in Figure 62 .

94

Server building blocks

Start

Yes

No

Yes

No

Start stream thread

Allocate resources and
parse tuple types

Call stream wrapper startup

Start

Enter coroutine
background

Retrieve data packet
from wrapper

End

System
interrupt signalled?

Thread rendez-vous

Leave coroutine background

Allocate and build tuple

Free resources

Signal wrapper thread

Thread rendez-vous

End

Convert byte array to SCSQ types

Switch data buffersSwitch data buffers

Interrupt signalled?

Call stream wrapper shutdown

Emit tuple

Figure 62: The execution flowchart for
the fixstream() wrapper handler .

Interfacing LabVIEW with embeddable components

 95

The parent thread will most likely run in a coroutine, since the query is expec-
ted to run on a server . It is possible though to run the query in a dedicated pro-
cess, and in that case the steps for entering background execution and returning
to the foreground will not have any effect . When running in a coroutine, it will
wait for data from the child thread in the background, allowing other queries
to run in the meantime . Allocating and building a tuple must be done in the
foreground . The child thread meanwhile will continue to retrieve the next data
package .

B .2 Interfacing LabVIEW with embeddable components
SVALI has a C application programming interface (API) through which a pro-
grammer can send commands and retrieve query results . Correspondingly, Lab-
VIEW supports calling external functions in C1 by loading a DLL/shared object
(Figure 63), the functions of which can be called through a LabVIEW function
named call library function node (Figure 64) . Using the node, functions become
individual entities in a block diagram .

The node in Figure 64 corresponds directly to a C function in the client API,
which is loaded with the DLL/shared object:
int32_t __declspec(dllexport) lv_nextrow(a_scan scan, a_tuple tpl)
{
 return a_nextrow_basic(scan, tpl, TRUE);
}

The function a_nextrow_basic() is in turn part of the SVALI peer API that
supports communication between peers, both clients and servers . a_scan can be
either a scan object or a remote scan object .

LabVIEW does not check the validity of any function calls . Instead it is up
to the programmer to make sure that function compatibility is maintained . For
each function call, a list of LabVIEW variables are matched against the function
parameters . In the case of a type mismatch, it is up to the external function to
handle type conversion . LabVIEW provides a library of C functions for creating
and handling native types .

The main purpose of an application programming interface is to provide access
to a different programming environment . The second most important aspect is
logical independence . An API is expected to behave in a certain way that is pre-

1 Other languages can be used as well, as long as
they support functions with C headers .

96

Server building blocks

dictable and conformant to the environment in which it is used . This behaviour
need not emulate the underlying system, and it must not change with updates of
said system .

B .3 Coroutines
SVALI coroutines are asymmetric and stackful, but not first-class [52] . They can-
not be transferred to a different processing context from which they were started,
nor can they be saved to a file .

An asymmetric coroutine must always yield a value at some point . This is the
expected behaviour with function calls, and is a natural match with query exe-
cution .

A stackful coroutine can yield a value at any point in its execution, whereas
stackless ones can yield values only in the main coroutine function . Recursive
coroutines must be stackful, to mention an example, but the handling of queries
does in itself not require stackfulness .

The basic functionality of a coroutine is that of a child process running along-
side the main process, sharing the same resources . Both processes cannot run at
the same time, because that will cause conflicts . System resources must only be
accessed by one process at a time . This is a form of cooperative multitasking,
where each process at some point allows the other process to run .

LabVIEW

Function interface

Function prototype

Loaded DLL/shared object

DLL loader

Initialization

Figure 63: A schematic overview of external
function calls in LabVIEW .

Figure 64: A library function node for
retrieving a tuple from a scan .

Coroutines

 97

All asymmetric coroutines follow the flowchart in Figure 65 in one way or
another . Upon resuming a coroutine, the main process may pass data to it, just as
with a regular function call .

For streaming queries, this basic operation would be sufficient for continuous
execution and returning tuples in a timely manner, if they were only contingent
on processing power . Letting all running queries yield tuples through a coroutine,
one after another, would not impede the operation of any single query . However,
continuous queries also depend on operations outside of the system, the main
concern of which is the reading of data from external data streams . A coroutine
that waits for data to arrive on a stream will block the operation of all other
processes . It is therefore important that the coroutine can wait for data while
relinquishing control of the system . A coroutine that has system control is said
to run in the foreground . A coroutine that has relinquished system control but is
still running is said to have entered the background . As illustrated in Figure 66,
a coroutine that wants to enter the foreground again has to wait for the main
process to call it .

A coroutine that is waiting, either for data input or to return to foreground
execution, will be suspended by the operating system and thus not consume any
processing power .

A coroutine that enters the background returns the symbol *BUSY* to the main
process, to indicate its changed state, shown in Figure 66 . For background exe-
cution, coroutines must be stackful, because entering the background is in effect
equivalent to a yield, but it can happen at any call depth during the coroutine’s
execution . When about to leave the background, the coroutine can signal the
main process . This allows the main process to wait for one or many coroutines to
become available for resuming operation .

Resume coroutine

Halted Executing
Coroutine yield

Main process Coroutine

HaltedExecuting

Figure 65: Execution flow of a basic coroutine .

98

Server building blocks

Coroutines are the basic building blocks of the server . They offer the ability
to switch out queries and to run them in the background . Each query runs in
its own coroutine, and the main process of the server calls each coroutine in
turn . Entering the background lets a query continue to run without blocking the
server, and thus allowing other queries to run .

When a coroutine enters background execution, its state becomes unknown,
because the coroutine’s state is stored in its system variables, and those are not
available until the next time the coroutine enters the foreground, including the
query that it is running . One consequence is that a background coroutine cannot
be stopped or deleted . Any process trying to do so will halt until the coroutine
leaves the background . A coroutine does share some variables with its calling
process, and coroutines running in the background can be flagged, causing them
to terminate themselves upon reentering the foreground .

Coroutines running in the background must not access system resources, e .g .
they must not allocate or manipulate variables . Some operations that do not alter
the state of the system – like reading the value of a variable – are still possible, but
unsafe . They can still access resources that exist independently of the system . A
stream source is typically handled by the coroutine that accesses it, which means
that the state of the coroutine becomes irrelevant for communicating with the
source .

Coroutine yield

Resume coroutine

BUSY

Executing in background

Leaving background

Waiting to execute
in foreground

Main process Coroutine

Resume coroutine

Entering background

Figure 66: Execution flow of an extended coroutine
supporting background execution .

Scans

 99

B .4 Scans
A scan is, at the very least, an entity that provides procedural access to the results
of a query execution . SVALI scans do a bit more, as they encapsulate queries and
provide abstractions for their operation . From a user point of view, the two main
points are: 1) an interface for handling the query in a way that feels logical and is
generic across different applications, and 2) fallback routines that guarantee the
graceful shutdown of a query, should it be interrupted or fail .

At initialization, a query is assigned a coroutine and a buffer . The coroutine
allows a query to wait for data, call functions outside of the system efficiently, and
return data opportunistically through stateful operations, the last of which it does
by sending data to the buffer .

A scan is the meeting point between the external programming language used
for running a query, and the internal goings-on of the query engine, either a
server or a stand-alone program . As such, scans provide logical independence
between the application layer and the system kernel .

All running servers have a single program loop that handles all requests . Figure
67 shows the interaction between the server loop and the coroutine for a scan
that has been sent to the server . The coroutine does not return data to the loop .
Instead the data is put in the buffer, which is shared by the scan object and the
coroutine .

The point of using a buffer in a scan is to transmit data efficiently over a net-
work and between processes, and there are two settings for the buffer:
• A fixed buffer size . The coroutine thread will not yield until the buffer is filled .
• A fixed buffer size with timeout . In order to increase responsiveness to scan

operation, each time the buffer has a tuple added, a timer is checked to see if a
timeout has been reached . If it has, the coroutine will yield and the buffer will
be stored in the scan object . A scan will not time out if it is empty, but wait
for at least one tuple .
On top of these two options, a scan can have a rate, which is a rule or set of

rules for how responsive a scan should be depending on the output rate of the
tuples . This rate may change over the course of query operation .

Tuples are retrieved from a scan one at a time, regardless of buffer size . Only
when the buffer is empty is the coroutine called again and query operation re-
commenced .

100

Server building blocks

Remote scans
A remote scan is a handle to a scan residing on a server . Each time a function
call is made for a remote scan, a request is made to the scan on the server . Every
SVALI process has a process global hash table [44] that stores server-side scans .
A server-side scan has the same life span as the coroutine it contains; once the
coroutine has finished running, the scan is deleted, along with all components .

Get tuple from query and
store in buffer

Resume query

Call other coroutines
or wait for signal

BUSY

Waiting for stream
to output data

Signal server loop

Server loop Coroutine

Resume query

BUSY

Waiting for stream
to output data

Signal server loop

Call other coroutines
or wait for signal

Resume query

Buffer is full, send
it to clientCoroutine yield

Resume query

Get tuple from query
and store in buffer

Figure 67: Coroutine operation inside a
scan in the server structure .

Server structure

 101

A remote scan provides transparency . For all intents and purposes, it is a scan,
but its physical location is not in the process with which it is associated . Its loca-
tion could be unknown to the user, and even switch places during its run time1 .

B .5 Server structure
A DSMS client – it can be written in LabVIEW, Java, C/C++, or whichever lan-
guage one chooses – will likely support several concurrent calls to the server, or
there can be several clients calling a single server . This posed a problem, because
Amos II and its siblings did not originally support independently running quer-
ies in a single process; a query running in a server process would prevent other
queries from running . This becomes a problem when a streaming query waits for
input from a stream source, because the query will block while it is waiting . This
is where coroutines with support for background execution come to the rescue
in SVALI, because they will allow a query to wait without blocking the system .
In effect, there will still only be one query running at any moment, but it runs
within a flexible, multiplexing server structure, where queries switch themselves
out of the system at opportune moments .

Usually, waiting for data input means waiting for a data stream source to send
data, but it could be user input as well . In other cases queries are expected to read
and process data at certain intervals, and during the time not spent doing that,
the query should not obstruct other queries from running .

When waiting for data stream input, a query will automatically enter the back-
ground . It cannot return to the foreground until permitted to do so by the server
loop, as described in Figure 66 . A query that does not read data from an external
stream may not enter the background unless programmed to, and will only relin-
quish control of the server upon returning tuples to the client . This may not be a
problem if the query returns tuples faster than other running queries, otherwise
it will slow down the other queries to its own pace .

Each running server will always have one special type of coroutine called a dis-
patcher, and at server startup it is the only thing that is running in the server loop .
The dispatcher listens to incoming calls and runs server functions in response to
those calls . It does not discern between types of calls, as each call by itself defines
the server function to execute . In order to run queries in conjunction with each
other, they cannot be executed immediately when called . Instead the dispatcher
will add them to a list with all the queries running on the server, including the
dispatcher itself . The server loop calls each coroutine in turn . This is necessary in
order to maintain the multiplexing nature of the server .

1 Provided it is a first class object .

102

Server building blocks

Client Server

Query list

List of pending
queries

Yes

No

No

Compile query and
store in query list

Add query to
pending list

Yes

No

Yes

Send tuples

Remove query
from pending list

Query
terminated?

Remove query
from query list

Execute
incoming calls

Call all queries in
pending list

Did any
query return

tuples?
Sleep

Start

Request tuples

Send query to
server

Wait for tuples
to arrive

Query
terminated?

End

Use tuples in
their context

Receive tuples

Incoming calls

Server loop

Figure 68: A client running in a separate process
interacting with a server, when running a query .

Server structure

 103

The flowchart in Figure 68 shows the client-server operation of a single query
coroutine in conjunction with the dispatcher . Often, the dispatcher will wait for
incoming calls while all queries currently running are likewise waiting for incom-
ing data . When that happens, the server loop will become suspended and wait for
any coroutine to leave the background and signal the loop to continue running .

The server can also – on top of the dispatcher and queries – run daemon func-
tions in stand-alone coroutines that are not wrapped by a scan . These coroutines
are called by the server, but their operational control is handled either by a pro-
grammer or by script automation . They are useful for handling scheduled tasks
and similar .

There are two query lists shown in Figure 68: the query list that contains all
the queries sent to the server, and a list with pending queries . The query list is a
mix of scans – those are the queries – and coroutines for the dispatcher and any
daemon functions . A pending query is a scan that has received a request for more
tuples, and the list stores the coroutines of those scans .

A scan will collect several tuples at a time, to increase efficiency, meaning that a
query will wait for data stream input several times without returning any results .

The dispatcher and all queries will be called at the same time, because it is
likely that most, if not all, will wait in the background for input to arrive; a
coroutine will only start waiting for input when called, so it makes sense to call

Yes

Executed
incoming call

Waiting for
incoming call

Waiting for
data input

No

Query returned
tuples

Wait until dispatcher or a
coroutine signals return

from background

End of
pending list?

Send tuples
to client and

remove query

Run
dispatcher

Call next query
in pending list

Start of
server loop

Figure 69: Calls to dispatcher and queries in the server loop .

104

Server building blocks

all coroutines as early as possible . In the case of the dispatcher, it will wait for
input from any connected client; a remote scan will not call its server counterpart
directly, but through the dispatcher, in order to maintain the responsiveness of
the server .

All operating systems have some form of condition variables, which are used
for suspending the execution of threads, and to signal their state to a different
thread . The dispatcher and all queries each run in their own threads, and each has
two condition variables for signalling their execution state: one for suspending
operation, and one for signalling background execution . In the case when all
queries plus dispatcher are waiting for input, the server will wait on each variable
simultaneously . Figure 69 shows the order of operations for that situation to ap-
pear .

At the moment the dispatcher or a query receives stream input, it will want to
return to the foreground by signalling the server loop to continue . That thread
will in turn start to wait on another condition variable, which the server loop
thread will signal when it in turn is ready to wait .

Only one query can run in the foreground at a time, and it will do so at its own
leisure, until it returns tuples or reenters the background . Only then can a differ-
ent query continue its operation . This cooperative multitasking allows queries to
switch execution states in a fairly deterministic manner, and does not raise all the
timing issues that are related to preemptive multitasking . It does however mean
that much of the operational time of queries is serial, and for this reason queries
running on a single server do not scale well; the operational time required by a
server is approximately the sum of the operational time of all queries running on
that server . Instead, for highly scalable processing the parallelization primitives
provided by SCSQ [95][96] have to be used .

 105

Appendix C – Tangential issues

This appendix describes some things that are related to topics that were presen-
ted in this Thesis, and which may be interesting, but nonetheless did not merit
inclusion in the main text .

C .1 More issues with data flow programming
There have been a few mentions of when data stream management in a data flow
programming environment can fail, but unfortunately there are more issues to
consider .

Solving wire branches and wire merges
A user may want to send the output from one function node to more than one
input of subsequent nodes . How this is accomplished for a particular data flow
framework is up to the developers of that platform . Branching may even be pro-
hibited . The data flow programming paradigm is not affected by whichever solu-
tion is chosen for wire branches . For example, Max1 from Cycling 74 has impli-
cit wire branching (the left diagram in Figure 70), while StreamBase (the right
diagram) only allows explicit wire branching using a splitting function node . It
should be noted that of the two, only StreamBase is intended for handling data
streams, as Max relies on a global tick counter for program operation . It makes
sense to use a splitting node for data streams, because it is convenient to be able
to attach a broadcasting function to the node, offering options for filtering the
different output streams .

LabVIEW does not have any way of handling wire branches . Likewise, it is
impossible to tell whether a subVI output is wired or not . There is however a way
to circumvent this problem in this case, thanks to the queue used to transfer an
actor message buffer . By setting a timeout when waiting for a queue to receive a
message buffer, any amount of message buffers can be handled and consequently
any type of wire branch can be handled as well .

1 http://cycling74 .com/products/max

106

Tangential issues

If the three block diagrams in Figure 71 were ordinary LabVIEW programs,
the wiring would be impossible to discern for each diagram from within a pro-
gram. For the purpose of data streaming, the leftmost diagram should return an
error, because it does not have a consumer that receives tuples. �e other two
diagrams should be �ne, but in order for the data �ow framework to function
properly, they need to be distinguishable. If only explicit wire branching were
allowed through the use of a function node, the problem would be solved. It
does however not stop users from drawing wire branches in LabVIEW anyway,
causing the program to fail.

�e details of how this is solved in VisDM was covered in Appendix A.2, “En-
queuer transfer” on page 90.

In contrast, wire merges should not be allowed. �e rules of data �ow pro-
gramming do not forbid wire merges, but there are situations when they are
not feasible. LabVIEW does not have support for merging wires, as this would
con�ict with the behaviour of its programming model. Looking at the diagram in
Figure 72, the two Run Query nodes would send their queue references simultan-
eously to the “Output” XControl, which becomes impossible to resolve.

Figure 70: To the left, branches in Max are handled
automatically (top-to-bottom). StreamBase has a speci�c
function node for creating wire branches (left-to-right).

Figure 71: �ree di�erent connection
wirings that need to be discerned.

More issues with data flow programming

 107

With other data flow programming platforms (for example Max) wire merges
are supported, without the need of merge operators . In these cases, the ele-
ments of the merged data flow retain their operational context . Elements of a
data stream, in contrast, lose their context when mixed with other data flows/
streams, as would be the case in Figure 72 . A data stream can generally not be
chopped into bits, as would happen with a simple wire merge that will interleave
the streams . And even if it can be divided, the order of the merged tuples is usu-
ally important as well . First of all, there is the question whether tuples should be
chained together, or merged physically into new entities . Merging data streams
always requires a merging function, usually a join operation [50] . Figure 73 shows
an example of how this may appear in a block diagram .

A merge operator can provide monitoring and error handling services, which
can be very useful, particularly if the streams have widely different transfer rates .

Interestingly, actors do not prohibit wire merges . Merges merely translate to
the receiving actor collecting messages from more than one transmitting actor .
The messages may need additional data about their point of origin, which is easy
to add, or each actor may have its own set of message types .

Figure 72: Merging function node output . This works fine
in a data flow setting in general, but not when handling data

streams . This way of merging wires is not possible in LabVIEW .

Figure 73: The correct way of handling data stream merges, using
a merge function to ensure the validity of the merged stream .

108

Tangential issues

Issues with LabVIEW data flow programming
A wire in LabVIEW does not represent a data flow, it represents a data transfer.
In a data flow programming language, data flows are what drives the execution . If
execution is not driven by data flows, it is questionable whether it is a data flow
programming language .

Case in point, think of how a data flow programming language would handle
the press of a button . In Max, the pressing of a button sends an event over a wire
representing an event flow . It is a data flow that may only produce a single value
over an application run time, but it is a data flow nonetheless . In Max, events are
called “bangs”, and are identified by the wire through which they are transmitted .
Bangs do not contain any information by themselves, other than indicating an
event . More complex events can be built by wiring data, as can be seen in the
example shown in Figure 74 .

In LabVIEW, the pressing of a button will not cause an event unless an event
structure is waiting for the event to occur . And even then, it will only trigger once
unless the event structure resides in a loop structure . If a button is pressed before
the event structure has had time to start waiting for the event, it will never trigger
for that event .

Figure 75 shows the basic layout for handling events; an event structure resid-
ing inside a loop structure . When program execution reaches the event structure,
that particular thread will wait for the button to be pressed . When pressed, any
code residing inside that particular event tab will execute . Afterwards, any func-
tions wired to the structure will execute, and after that the loop structure will start
a new iteration and a new event will be waited for . This shows very clearly the
procedural nature of LabVIEW .

A control structure need not run counter to data flow paradigms . The Lab-
VIEW case structure creates a branch of execution, where the data transfer passes
through one out of two or more diagrams . The number of inputs and outputs
will be equal for all diagrams, because they are in effect stacked, only one of them
being shown at a time . In a data flow program, all diagrams would be visible at
the same time, and a switch [20][38], or something similar, would redirect the
data flow through the proper diagram instead .

Figure 76 shows a very simple case structure with two options . The value of the
“Option” input controls which control tab to run .

The code to run for a particular case must reside completely within the struc-
ture frame . The case structure is functionally equivalent to a data flow merge [20]
[38] function . An example of how such a function may look in LabVIEW, were it
to exist, is shown in Figure 77 .

More issues with data flow programming

 109

Note that the execution of different cases can be quite different when using a
merge, depending on the data flow model used . When using a demand-driven
[20] model, the correct case will be evaluated only when an option is set and
incorrect cases will not be evaluated . This operation is equivalent to how the case
structure operates in LabVIEW . In a data-driven model however, all cases may

Figure 74: Button example from the Max help .

Figure 75: Handling a LabVIEW button press event .

Figure 76: A simple LabVIEW case structure
setup . The two parts of the block diagram show

the same program, but with different cases .

110

Tangential issues

be evaluated before the option is set . Once the correct option is set, the corres-
ponding result will be propagated through the diagram, and the other results will
be ignored . This will cause extra resources to be spent evaluating operations that
will be discarded, but on the other hand the data flow system may respond faster .

When actor-based data flow programming fails
Problems with actor based data flow programming can be summarized with one
word: congestion . Actors must be able to process data at least as fast as it arrives .
This may not always be the case, and it may be hard to predict when such a situ-
ation appears . Temporary congestion is usually not a problem, thanks to message
buffering, but issues appear for prolonged durations .

In lieu of a loop construct, a data flow may have a function node that produces
a series of numbers within a certain range (Figure 78) . Producing these numbers
is computationally cheap, and the data flow will very quickly fill up with messages
containing the numbers . Consequently, there must be a mechanism for regulat-
ing the flow of numbers . In Max, this is accomplished with a global tick counter .
In VEE, iteration functions must have a connected sequence trigger input .

Iteration can be implemented by using a feedback loop (see Appendix C .2,
“Feedback loops using actors” on page 111), when such are available . Feed-
back-based iteration can eliminate congestion issues without relying on triggers .

Figure 77: A data flow conditional merge in LabVIEW pseudo-
“code”, equivalent to the case structure in Figure 76 .

Data flow of
iterated values

Operation
Range

Iteration step
Countable

number serie

Figure 78: A function node that produces a data
flow of values for certain parameters .

Feedback loops using actors

 111

C .2 Feedback loops using actors
A visual data flow programming language may or may not support feedback loops .
Including feedback support does not violate any rules for data flow program-
ming, instead it depends on the intended application of the platform . Feedback
loops are interesting because they can be used both for iteration and recursion .

StreamBase is intended for stream processing and aggregation, and therefore
has no need for feedback . Max is more generalized, and does have feedback
support . One reason feedback works well in Max is because of the global tick
counter, causing all output inter-operations to become well defined and trivial .
Figure 79 shows a Max program example which has a feedback loop being fed by
an iterator .

The feedback source is connected after the result output widget . This means
that the initial value for the feedback is the content currently contained in the
output display . LabVIEW indicators do not have any wired output, and thus
feedback behaves differently, as shown in Figure 80 .

LabVIEW supports feedback inside a loop structure context by using the feed-
back node, which simply delays the value transfer for one iteration . LabVIEW
does not support cyclic diagrams as Max does .

However, when moving to a solution using actors, the feedback node will not
work . The problem with the diagram in Figure 81 is that the wire is not a data
flow, but merely facilitates the setup of the flow . The feedback node will allow the
design of a program with feedback, but the design will be incorrect and cause a
run-time error .

Actors do not directly support the construction of feedback loops, because at
some stage of construction an actor must be created before an output enqueuer
can be assigned to it . In Figure 82, this happens in the rightmost feedback node .
Its actor is created first, then later the actor for the leftmost feedback node is
created, but the input enqueuer from the leftmost actor becomes the output en-
queuer for the rightmost actor . This is easy to solve manually though: The right-
most actor receives a dummy enqueuer, which is then replaced after creating the
second actor .

The feedback solution in Figure 82 circumvents the restriction of cyclic wir-
ing by introducing a feedback node that has two distinct functions: either as a
feedback source or as a feedback sink . By giving both nodes the same identifier,
they get a logical connection without having to wire them together . The type
of operation is determined by whether any input is wired: A node that has two
unwired inputs will only receive default (empty) tuple stream objects, and thus
become a sink .

This solution does not account for any custom initial tuple .

112

Tangential issues

Figure 79: A simple feedback loop in Max .
The iterator function is named “uzi” .

Figure 80: Example of a feedback loop in LabVIEW . The star
symbol in the feedback node represents the default value, either
a default wire value (initially zero), or a connected wire input .

Figure 81: A faulty diagram using actors .

Figure 82: A better diagram . The left copy of the feedback
node is the sink, the right one is the source .

 113

 References

[1] Gul A . Agha
ACTORS: A Model of Concurrent Computation in Distributed Systems
1985

[2] Allen L . Ambler, Margaret M . Burnett
Visual Forms of Iteration that Preserve Single Assignment
Journal of Visual Languages and Computing 1, 1990, pp 159–181

[3] Apache NiFi Team
Apache NiFi Overview, 8 December 2015
https://nifi .apache .org/docs .html

[4] the Apache Software Foundation
Apache Flink, 2015
https://flink .apache .org

[5] the Apache Software Foundation
Apache Storm, 2015
http://storm .apache .org

[6] the Apache Software Foundation
Spark Streaming, 14 October 2015
http://spark .apache .org/streaming

[7] B . Babcock, M . Datar, R . Motwani
Load shedding for aggregation queries over data streams
Data Engineering, Proceedings . 20th International Conference on, 2004,
pp 350–361

[8] Y . Bai, H . Thakkar, H . Wang, C . Zaniolo
Time-Stamp Management and Query Execution in Data Stream
Management Systems
Internet Computing, IEEE 12(6), 2008, pp 13–21

[9] Ed Baroth, Chris Hartsough
Experience Report: Visual Programming in the Real World
Visual Object Oriented Programming, edited by MM Burnett, A .
Goldberg & TG Lewis, Manning Publications, Prentice Hall, 1995

114

 References

[10] E . Bauleo, S . Carnevale, T . Catarci, S . Kimani, M . Leva, M . Mecella
Design, realization and user evaluation of the SmartVortex Visual Query
System for accessing data streams in industrial engineering applications
Journal of Visual Languages and Computing 25, 2014, pp 577–601

[11] S . S . Bhattacharyya, G . Brebner, J . W . Janneck, J . Eker, C . von Platen,
M . Mattavelli, M . Raulet
OpenDF – A Dataflow Toolset for Reconfigurable Hardware and Multicore
Systems
ACM SIGARCH Computer Architecture News 36(5), 2009, pp 29–35

[12] A . Biem, E . Bouillet, H . Feng, A . Ranganathan, A . Riabov,
O . Verscheure, H . Koutsopoulos, C . Moran
IBM InfoSphere Streams for Scalable, Real-Time, Intelligent Transportation
Services
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data (SIGMOD ’10), New York, USA

[13] Robert H . Bishop
LabVIEW 2009 Student Edition
Prentice Hall Press, 2009

[14] M . Brettel, N . Friederichsen, M . Keller, M . Rosenberg
How Virtualization, Decentralization and Network Building Change the
Manufacturing Landscape: An Industry 4.0 Perspective
International Journal of Mechanical, Aerospace, Industrial, Mechatronic
and Manufacturing Engineering 8(1), 2014, pp 37–44

[15] Marat Boshernitsan, Michael Downes
Visual Programming Languages: A Survey
Computer Science Division, University of California, Berkeley, 2004

[16] Sharma Chakravarthy, Raman Adaikkalavan
Events and Streams: Harnessing and Unleashing Their Synergy!
Proceedings of the second international conference on Distributed event-
based systems, ACM, 2008, pp 1–12

[17] Donald D . Chamberlin
The “single-assignment” approach to parallel processing
AFIPS ‘71 (Fall) Proceedings of the November 16–18, fall joint computer
conference, 1971, pp 263–269

[18] Gard J . Clark, C . Thomas Wu
DFQL: Dataflow query language for relational databases
Information & Management 27(1), July 1994, pp 1–15

 115

[19] Melvin E . Conway
Design of a separable transition-diagram compiler
Communications of the ACM 6(7), July 1963, pp 396–408

[20] Arvind Culler, David E . Culler
Dataflow Architectures
Annual Review of Computer Science 1, June 1986, pp 225–253

[21] DataWatch
Literature, 2016
http://datawatch .com/explore/literature

[22] Alan L . Davis and Robert M . Keller
Data Flow Program Graphs
Computer 2(15), 1982, pp 26–41

[23] P . Dekkers, M . van Vliet, P . E . M . Ligthart, H . de Man, G . Ligtenberg
Complex event processing
Master’s Thesis, Radboud University Nijmegen, Nijmegen, Netherlands
October 2007

[24] Ramez Elmasri, Sham Navathe
Database Systems: Models, Languages, Design, and Application
Programming
Pearson, 2011

[25] Nesimi Ertugul
Towards Virtual Laboratories: a Survey of LabVIEW-based Teaching/
Learning Tools and Future Trends
International Journal of Engineering Education 16(3), 2000, pp 171–180

[26] Peter C . Evans, Marco Annunziata
Industrial internet: Pushing the boundaries of minds and machines
General Electric, 2012

[27] Gustav Fahl, Tore Risch, Martin Sköld
AMOS: An Architecture for Active Mediators
University of Linköping Institute of Technology, Computer Science
Department, 1993

[28] A . Gal, S . Keren, M . Sondak, M . Weidlich, H . Blom, C . Bockermann
Grand Challenge: The TechniBall System
Proceedings of the 7th ACM international conference on Distributed
event-based systems, 2013

116

 References

[29] T . Ghanem, M . Hammad, M . Mokbel, W . Aref, A . Elmagarmid
Incremental Evaluation of Sliding-Window Queries over Data Streams
Knowledge and Data Engineering, IEEE Transactions on 19(1), January
2007, pp 57–72

[30] Lukasz Golab, M Tamer Öszu
Data Stream Management
Morgan & Claypool, 2010

[31] T . Grabs, R . Schindlauer, R . Krishnan, J . Goldstein, R . Fernandéz
Introducing Microsoft StreamInsight
Technical report, 2009

[32] M . P . e . a . van Haarlem, et al .
LOFAR: The LOw-Frequency ARray
Astronomy & Astrophysics 556, August 2013

[33] Carl Hewitt
What is computation? Actor model versus Turing’s model
A Computable Universe: Understanding and Exploring Nature as
Computation, Singapore, World Scientific, 2013, pp 159–185

[34] Daniel D . Hils
Visual Languages and Computing Survey: Data Flow Visual Programming
Languages
Journal of Visual Languages and Computing 3, 1992, pp 69–101

[35] William Humphrey, Andrew Dalke, Klaus Schulten
VMD: Visual Molecular Dynamics
Journal of molecular graphics 14(1), 1996, pp 33–38

[36] Christopher Ireland, David Bowers, Michael Newton, Kevin Waugh
A Classification of Object-Relational Impedance Mismatch
Advances in Databases, Knowledge, and Data Applications,
DBKDA’09 . First International Conference on . IEEE, 2009

[37] M . Jergler, C . Doblander, M . Najafi, H-A . Jacobsen
Grand Challenge: Real-time Soccer Analytics Leveraging Low-Latency
Complex Event Processing
Proceedings of the 7th ACM international conference on Distributed
event-based systems, 2013

[38] Wesley M . Johnston, J . R . Paul Hanna, Richard J . Millar
Advances in Dataflow Programming Languages
ACM Computing Surveys (CSUR) 36(1), 2004, pp 1–34

 117

[39] V . Kakkad, S . Attar, A . E . Santosa, A . Fekete, B . Scholz
Curracurrong: a stream programming environment for wireless sensor
networks
Software: Practice and Experience 44(2), February 2014, pp 175–199

[40] Scott Kennedy
Made in China 2025
Center for Strategic & International Studies, 1 June 2015
http://csis .org/publication/made-china-2025

[41] Keysight Technologies
VEE Pro 9.32 Data Sheet
http://literature .cdn .keysight .com/litweb/pdf/5990-9117EN .pdf

[42] H . J . Kim, H . F . Korth, A . Silberschatz
PICASSO: a graphical query language
Software: Practice and Experience 18(3), March 1988, pp 169–203

[43] Jay Lee, Behrad Bagheri, Hung-An Kao
A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing
systems
Manufacturing Letters 3, 2015, pp 18–23

[44] Witold Litwin
Linear Hashing: a new tool for file and table addressing
VLDB 80, 1980

[45] David Luckham
The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems
Springer, 2008

[46] E . Lunca, S . Ursache, O . Neacsu
Graphical Programming Tools for Electrical Engineering Higher Education
iJOE 7(1), 2011, pp 19–24

[47] A . Malagoli, M . Leva, S . Kimani, A . Russo, M . Mecella, S . Bergamaschi,
T . Catarci
Visual Query Specification and Interaction with Industrial Engineering Data
G . Bebis et al . (Eds .): ISVC 2013, Part II, LNCS 8034, 2013, pp 58–67

[48] Kudlur Manjunath, Scott Mahlke
Orchestrating the Execution of Stream Programs on Multicore Platforms
ACM SIGPLAN Notices 43(6), 2008, pp 114–124

118

 References

[49] Lars Melander
SensorGui – a digital radio data graphical interface
Uptec IT 04031, 2004

[50] Priti Mishra, Margaret H . Eich
Join Processing in Relational Databases
Journal ACM Computing Surveys (CSUR) Surveys Homepage archive
24(1), March 1992, pp 63–113

[51] Matt Morley
JSON-RPC 2.0 Specification
JSON-RPC Working Group <json-rpc@googlegroups .com>,
04 January 2013
http://jsonrpc .org/specification

[52] A . L . de Moura, R . Ierusalimschy
Revisiting Coroutines
ACM Trans . Program . Lang . Syst . 31(2), Article 6, February 2009, pp 31

[53] Barzan Mozafari, Carlo Zaniolo
Optimal Load Shedding with Aggregates and Mining Queries
Data Engineering (ICDE), 2010 IEEE 26th International Conference on,
IEEE, 2010, pp 76–88

[54] Brad A . Myers
Taxonomies of Visual Programming and Program Visualization
Journal of Visual Languages and Computing 1, 1990, pp 97–123

[55] P . J . Napier, A . R . Thompson, R . D . Ekers
The Very large Array: Design and Performance of a Modern Synthesis Radio
Telescope
Proceedings of the IEEE 71(11), 1983, pp 1295–1320

[56] National Instruments
Actor Framework, 28 July 2011
http://ni .com/actorframework

[57] National Instruments
BridgeVIEW™ and LabVIEW™—G Programming Reference Manual,
January 1998
http://ni .com/pdf/manuals/321296b .pdf

[58] National Instruments
Creating New Front Panel Objects with LabVIEW XControls, 30 Mars 2012
http://ni .com/tutorial/3198/en

 119

[59] National Instruments
G Dataflow (G)
http://ni .com/documentation/en/labview-comms/latest/g-prog/dataflow

[60] National Instruments
LabVIEW Object-Oriented Programming: The Decisions Behind the Design,
21 May 2014
http://ni .com/white-paper/3574/en

[61] National Instruments
LabVIEW Run-Time Engine Compatibility, 26 November 2014
http://digital .ni .com/public .nsf/
allkb/800E68EBF895BD96862570770051FF36

[62] National Instruments
LabVIEW Tools Network
http://ni .com/labview-tools-network

[63] National Instruments
Queue Operations Functions, June 2014
http://zone .ni .com/reference/en-XX/help/371361L-01/glang/queue_vis

[64] National Instruments
Reentrancy: Allowing Simultaneous Calls to the Same SubVI, June 2014
http://zone .ni .com/reference/en-XX/help/371361L-01/lvconcepts/
reentrancy

[65] National Instruments
Tutorial: SubVIs, 1 April 2015
http://ni .com/white-paper/7593/en

[66] National Instruments
Virtual Instrumentation, 4 February 2013
http://ni .com/white-paper/4752/en

[67] National Instruments
White Papers, 2016
http://ni .com/white-papers

[68] Mehmet A . Orgun, Wanli Ma
An overview of temporal and modal logic programming
Lecture Notes in Computer Science 827, 1994, pp 445–479

[69] W . Pauli, M . L . Soffa
Coroutine Behaviour and Implementation
Software: Practice and Experience 10(3), 1980, pp 189–204

120

 References

[70] John Plaice, Blanca Mancilla, Gabriel Ditu
From Lucid to TransLucid: Iteration, Dataflow, Intensional and Cartesian
Programming
Mathematics in Computer Science 2(1), 2008, pp 37–61

[71] Pedro Ponce-Cruz, Fernando D . Ramírez-Figueroa
Intelligent Control Systems with LabVIEW
Springer, 2010

[72] T . Risch, S . Badiozamany, D . Heutelbeck, L . Karlsson, M . Löfstrand, L .
Melander, K . Orsborn, T . Truong, D . Wedlund, C . Xu, M . Johansson
D5.1: SMART VORTEX DSMS report and specification
SMART VORTEX –WP5-D5 .1, FP7-ICT-257899, July 2014

[73] Tore Risch, Vanja Josifovski
Distributed Data Integration by Object-Oriented Mediator Servers
Concurrency and Computation: Practice and Experience J . 13(11), John
Wiley & Sons, September 2001

[74] Tore Risch, Vanja Josifovski, Timour Katchaounov
Functional Data Integration in a Distributed Mediator System
Published in P .M .D .Gray, L .Kerschberg, P .J .H .King, and A .Poulovassilis
(eds .): Functional Approach to Computing with Data, Springer

[75] David B . Robins
Complex Event Processing
University of Washington, Redmond, WA, 6 February 2010

[76] Sandvik Coromant
Knowledge
http://sandvik .coromant .com/en-gb/knowledge/pages/default .aspx

[77] Sandvik Coromant
Tools for metal cutting
http://sandvik .coromant .com/en-gb/products/pages/tools .aspx

[78] J . Sermulins, W . Thies, R . Rabbah, S . Amarasinghe
Cache Aware Optimization of Stream Programs
ACM SIGPLAN Notices 40(7), 2005, pp 115–126

[79] Will Schroeder, Ken Martin, Bill Lorensen
Visualization Toolkit: An Object-Oriented Approach to 3D Graphics
Kitware; 4th edition, 1 December 2006

[80] Software AG
White Papers, 2016
https://softwareag .com/corporate/res/wp/Default .asp

 121

[81] Masahiro Sowa, Tadao Murata
A Data Flow Computer Architecture with Program and Token Memories
IEEE transactions on computers C-31(9), September 1982

[82] SQLStream
Resources
http://sqlstream .com/resources

[83] N . Tatbul, U . Çetintemel, S . Zdonik, M . Cherniack, M . Stonebraker
Load shedding in a data stream manager
VLDB ’03 Proceedings of the 29th international conference on Very large
data bases, 2003, pp 309–320

[84] M . Tawfik, E . Sancristobal, S . Martin, G . Diaz, M . Castro
State-of-the-Art Remote Laboratories for Industrial Electronics Applications
Technologies Applied to Electronics Teaching (TAEE), 2012, pp 359–364

[85] Robert D . Tennent
Functor-category semantics of programming languages and logics
Springer Berlin Heidelberg, 1986

[86] L . G . Tesler, H . J . Enea
A language design for concurrent processes
AFIPS ’68 (Spring) Proceedings of the April 30–May 2, spring joint
computer conference, 1968, pp 403–408

[87] TIBCO
Special Reports, White Papers and Datasheets
http://streambase .com/news-and-events/reports-and-surveys

[88] Daniel D . Traficante
Impedance: What It Is, and Why It Must Be Matched
Concepts in Magnetic Resonance 1, 1989, pp 73–92

[89] M . de Vos, A . W . Gunst, R . Nijboer
The LOFAR Telescope: System Architecture and Signal Processing
Proceedings of the IEEE 97(8), 2009, pp 1431–1437

[90] Arne Wang, Ole-Johan Dahl
Coroutine sequencing in a block structured environment
BIT Numerical Mathematics 11(4), December 1971, pp 425–449

[91] Kirsten N . Whitley and Alan F . Blackwell
Visual Programming in the Wild: A Survey of LabVIEW Programmers
Journal of Visual Languages and Computing 12(4), 2001, pp 435–472

122

 References

[92] Yingjun Wu, David Maier, Kian-Lee Tan
Grand Challenge: SPRINT Stream Processing Engine as a Solution
Proceedings of the 7th ACM international conference on Distributed
event-based systems, 2013

[93] C . Xu, D . Wedlund, M . Helgoson, T . Risch
Model-based Validation of Streaming Data
Proceedings of the 7th ACM international conference on Distributed
event-based systems, 2013

[94] H . Yviquel, E . Casseau, M . Wipliez and M . Raulet
Efficient multicore scheduling of dataflow process networks
Signal Processing Systems (SiPS), IEEE Workshop on, 2011, pp 198–203

[95] Erik Zeitler
Scalable Parallelization of Expensive Continuous Queries over Massive Data
Streams
Digital Comprehensive Summaries of Uppsala Dissertations from the
Faculty of Science and Technology, 2011

[96] Erik Zeitler, Tore Risch
Processing high-volume stream queries on a supercomputer
ICDE Ph .D . Workshop 2006, Atlanta, GA, April 2006

[97] ZoomData
Streaming Data: Why It Makes Sense and How to Work With It
2015

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science
Editor: The Dean of the Faculty of Science

1–11: 1970–1975
12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and

by thermography. 1975.
13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zey-

lanica Willd., and Chara haitensis Turpin. 1976.
14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolar-

ization Technique. 1976.
15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposi-

tion of Azoethane and Propionyl Peroxide. 1976.
16. Lennart Källströmer: The significance of biotin and certain monosaccharides

for the growth of Aspergillus niger on rhamnose medium at elevated tempera-
ture. 1977.

17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Ade-
nohypophysis. 1978.

18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash
Photolysis of L-tryptophan. 1978.

19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with
Special Reference to the Effect of Size and Shape of Solute and Solvent Mole-
cules. 1978.

20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization
of Some Aromatic Schiff Bases in Solution. 1979.

21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and
its Application in a Study of Conformational Changes in Bovine Serum Albu-
min. 1985.

22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering.

1988.
24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation.

Study of their decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications

with Case Studies in the South and East China Sea and Fennoscandia. 1989.
26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the

Fennolora Profile. 1989.
27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection.

1989.
29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experi-

mental Results on even Selenium Nuclei. 1989.
30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some

Aspects of Fracturing in the Crystalline Rock of the Siljan Ring Area, Central
Sweden. 1990.

31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model.
1990.

32. Kjell Janson: Experimental investigations of the proton and deuteron structure
functions. 1991.

33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight

Spherical Nuclei. 1991.
35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local

Optimisation Methods. 1992.
36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions.

1992.
37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield

with Time. 1993.

Prior to January 1994, the series was called Uppsala Dissertations from the Faculty of
Science.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science and Technology
Editor: The Dean of the Faculty of Science

1–14: 1994–1997. 15–21: 1998–1999. 22–35: 2000–2001. 36–51: 2002–2003.
52. Erik Larsson: Identification of Stochastic Continuous-time Systems. Algorithms,

Irregular Sampling and Cramér-Rao Bounds. 2004.
53. Per Åhgren: On System Identification and Acoustic Echo Cancellation. 2004.
54. Felix Wehrmann: On Modelling Nonlinear Variation in Discrete Appearances of

Objects. 2004.
55. Peter S. Hammerstein: Stochastic Resonance and Noise-Assisted Signal Transfer.

On Coupling-Effects of Stochastic Resonators and Spectral Optimization of Fluctu-
ations in Random Network Switches. 2004.

56. Esteban Damián Avendaño Soto: Electrochromism in Nickel-based Oxides. Color-
ation Mechanisms and Optimization of Sputter-deposited Thin Films. 2004.

57. Jenny Öhman Persson: The Obvious & The Essential. Interpreting Software Devel-
opment & Organizational Change. 2004.

58. Chariklia Rouki: Experimental Studies of the Synthesis and the Survival Probabili-
ty of Transactinides. 2004.

59. Emad Abd-Elrady: Nonlinear Approaches to Periodic Signal Modeling. 2005.
60. Marcus Nilsson: Regular Model Checking. 2005.
61. Pritha Mahata: Model Checking Parameterized Timed Systems. 2005.
62. Anders Berglund: Learning computer systems in a distributed project course: The

what, why, how and where. 2005.
63. Barbara Piechocinska: Physics from Wholeness. Dynamical Totality as a Concep-

tual Foundation for Physical Theories. 2005.
64. Pär Samuelsson: Control of Nitrogen Removal in Activated Sludge Processes.

2005.

65. Mats Ekman: Modeling and Control of Bilinear Systems. Application to the Acti-
vated Sludge Process. 2005.

66. Milena Ivanova: Scalable Scientific Stream Query Processing. 2005.
67. Zoran Radovic´: Software Techniques for Distributed Shared Memory. 2005.
68. Richard Abrahamsson: Estimation Problems in Array Signal Processing, System

Identification, and Radar Imagery. 2006.
69. Fredrik Robelius: Giant Oil Fields – The Highway to Oil. Giant Oil Fields and their

Importance for Future Oil Production. 2007.
70. Anna Davour: Search for low mass WIMPs with the AMANDA neutrino telescope.

2007.
71. Magnus Ågren: Set Constraints for Local Search. 2007.
72. Ahmed Rezine: Parameterized Systems: Generalizing and Simplifying Automatic

Verification. 2008.
73. Linda Brus: Nonlinear Identification and Control with Solar Energy Applications.

2008.
74. Peter Nauclér: Estimation and Control of Resonant Systems with Stochastic Distur-

bances. 2008.
75. Johan Petrini: Querying RDF Schema Views of Relational Databases. 2008.
76. Noomene Ben Henda: Infinite-state Stochastic and Parameterized Systems. 2008.
77. Samson Keleta: Double Pion Production in dd→αππ Reaction. 2008.
78. Mei Hong: Analysis of Some Methods for Identifying Dynamic Errors-invariables

Systems. 2008.
79. Robin Strand: Distance Functions and Image Processing on Point-Lattices With

Focus on the 3D Face-and Body-centered Cubic Grids. 2008.
80. Ruslan Fomkin: Optimization and Execution of Complex Scientific Queries. 2009.
81. John Airey: Science, Language and Literacy. Case Studies of Learning in Swedish

University Physics. 2009.
82. Arvid Pohl: Search for Subrelativistic Particles with the AMANDA Neutrino Tele-

scope. 2009.
83. Anna Danielsson: Doing Physics – Doing Gender. An Exploration of Physics Stu-

dents’ Identity Constitution in the Context of Laboratory Work. 2009.
84. Karin Schönning: Meson Production in pd Collisions. 2009.
85. Henrik Petrén: η Meson Production in Proton-Proton Collisions at Excess Energies

of 40 and 72 MeV. 2009.
86. Jan Henry Nyström: Analysing Fault Tolerance for ERLANG Applications. 2009.
87. John Håkansson: Design and Verification of Component Based Real-Time Sys-

tems. 2009.
88. Sophie Grape: Studies of PWO Crystals and Simulations of the ̄pp → Λ̄Λ, Λ̄Σ0 Re-

actions for the PANDA Experiment. 2009.
90. Agnes Rensfelt. Viscoelastic Materials. Identification and Experiment Design. 2010.
91. Erik Gudmundson. Signal Processing for Spectroscopic Applications. 2010.
92. Björn Halvarsson. Interaction Analysis in Multivariable Control Systems. Applica-

tions to Bioreactors for Nitrogen Removal. 2010.
93. Jesper Bengtson. Formalising process calculi. 2010.
94. Magnus Johansson. Psi-calculi: a Framework for Mobile Process Calculi. Cook

your own correct process calculus – just add data and logic. 2010.
95. Karin Rathsman. Modeling of Electron Cooling. Theory, Data and Applications.

2010.

96. Liselott Dominicus van den Bussche. Getting the Picture of University Physics.
2010.

97. Olle Engdegård. A Search for Dark Matter in the Sun with AMANDA and IceCube.
2011.

98. Matthias Hudl. Magnetic materials with tunable thermal, electrical, and dynamic
properties. An experimental study of magnetocaloric, multiferroic, and spin-glass
materials. 2012.

99. Marcio Costa. First-principles Studies of Local Structure Effects in Magnetic Mate-
rials. 2012.

100. Patrik Adlarson. Studies of the Decay η→π+π-π0 with WASA-at-COSY. 2012.
101. Erik Thomé. Multi-Strange and Charmed Antihyperon-Hyperon Physics for PAN-

DA. 2012.
102. Anette Löfström. Implementing a Vision. Studying Leaders’ Strategic Use of an

Intranet while Exploring Ethnography within HCI. 2014.
103. Martin Stigge. Real-Time Workload Models: Expressiveness vs. Analysis Efficiency.

2014.
104. Linda Åmand. Ammonium Feedback Control in Wastewater Treatment Plants.

2014.
105. Mikael Laaksoharju. Designing for Autonomy. 2014.
106. Soma Tayamon. Nonlinear System Identification and Control Applied to Selective

Catalytic Reduction Systems. 2014.

	Abstract
	Contents
	Acknowledgements
	Summary in Swedish
	List of papers
	1 Introduction
	1 1 Research questions and proposed solution
	1 2 Contributions
	1 3 Terminology
	Diagram arrows

	2 Monitoring industrial machines
	2.1 Showcases
	Sandvik Coromant – remote machine process monitoring
	LOFAR digital antenna

	3 Background
	3 1 Data stream management systems
	Amos II
	SCSQ
	SVALI
	3 2 Visual programming languages
	LabVIEW (National Instruments)
	Impedance mismatch
	3 3 Data flow programming languages
	Data streams v data flows
	Retaining values for incremental visualization
	3 4 Actors

	4 The VisDM system
	4 1 VDFC implementation summary
	4 2 VisDM architecture
	Architecture interfaces
	LabVIEW concepts
	4 3 Implementation of VisDM
	The RUN QUERY producer node
	The visualization nodes
	Constructing the visual data flow in LabVIEW
	VisDM execution controls
	Handling type resolution
	Constructing the data flow
	4 4 Running update queries
	4 5 Visual stream wrappers
	A visual wrapper example
	Setting wrapper parameters
	4 6 Server and API details
	4 7 Evaluation
	Sandvik Coromant machine tool monitoring
	LOFAR antenna unit
	Evaluation of VisDM visualization performance

	5 Related work
	5 1 Data streaming examples
	5 2 Visual data flow programming
	5 3 Platform comparison
	5 4 Visual query builder

	6 Summary
	6 1 Discussion
	LabVIEW XNodes
	6 2 Future work

	Appendix A – LabVIEW programming
	A 1 Customizing visualization
	A 2 Enqueuer transfer

	Appendix B – Server building blocks
	B 1 The fixstream() wrapper handler
	B 2 Interfacing LabVIEW with embeddable components
	B 3 Coroutines
	B 4 Scans
	Remote scans
	B 5 Server structure

	Appendix C – Tangential issues
	C 1 More issues with data flow programming
	Solving wire branches and wire merges
	Issues with LabVIEW data flow programming
	When actor-based data flow programming fails
	C 2 Feedback loops using actors

	References

