
Management of 1-D Sequence

Data –

From Discrete to Continuous

by

Ling Lin

Mar. 25th, 1998

2

Abstract

Data over ordered domains such as time or linear positions are termedsequence
data. Sequence data require special treatments which are not provided by tradi-
tional DBMSs. Modelling sequence data in traditional (relational) database sys-
tems often results in awkward query expressions and bad performance. For this
reason, considerable research has been dedicated to supporting sequence data
in DBMSs in the last decade. Unfortunately, some important requirements from
applications are neglected, i.e., how to support sequence data viewed ascontin-
uous under user-defined interpolation assumptions, and how to perform sub-
sequence extraction efficiently based on the conditions on the value domain.
We term these kind of queries asvalue queries (in contrast toshape queries that
look for general patterns of sequences).

This thesis presents pioneering work on supporting value queries on 1-D
sequence data based on arbitrary user-defined interpolation functions. An inno-
vative indexing technique, termed theIP-index, is proposed. The motivation for
the IP-index is to support efficient calculation of implicit values of sequence
data under user-defined interpolation assumptions. The IP-index can be imple-
mented on top of any existing ordered indexing structure such as a B+-tree. We
have implemented the IP-index in both a disk-resident database system
(SHORE) and a main-memory database system (AMOS). The highlights of the
IP-index — fast insertion, fast search, and space efficiency are verified by
experiments. These properties of the IP-index make it particularly suitable for
large sequence data.

Based on the work of the IP-index, we introduce an extended SELECT opera-
tor, σ*, for sequence data. Theσ* operator, σ* cond(TS), retrieves sub-
sequences (time intervals) where the values inside those intervals satisfy the
condition cond. Experiments made on SHORE using both synthetic and real-
life time sequences show that theσ∗ operator (supported by the IP-index) dra-
matically improves the performance of value queries. A cost model for theσ∗
operator is developed in order to be able to optimize complex queries. Optimi-
zations of time window queries and sequence joins are investigated and verified
by experiments.

ii

Another contribution of this thesis is on physical organization of sequence data.
We propose a multi-level dynamic array structure fordynamic, irr egular time
sequences. This data structure is highly space efficient and meets the challenge
of supporting bothefficient random accessand fast appending. Other relevant
issues such as management of large objects in DBMS, physical organization of
secondary indexes, and the impact of main-memory or disk-resident DBMS on
sequence data structures are also investigated.

A thorough application study on “terrain-aided navigation” is presented to
show that the IP-index is applicable to other application domains.

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Prof.
Tore Risch, for guiding me into the area of databases and being supportive dur-
ing my four years of graduate study at Linköping University. His extensive
knowledge and endless enthusiasm in research work has always been an inspi-
ration for me. I am also indebted to him for his unflagging words of encourage-
ment whenever he thinks I needed them, and his warm recommendations which
helped me to find my ideal job in industry (although he would prefer me to stay
in academia).

I would also like to thank my co-supervisor, Prof. Zebo Peng, for providing val-
uable comments for both my Licentiate and doctoral theses andshowing inter-
est in my work. I also appreciate the interesting discussions with Dr. Per-Olof
Fjällström on algorithms and complexity during the early stage of my research.
Special thanks to Ivan Rankin for checking the English in this thesis.

I would like to thank all my (current and former) colleagues for contributions
and help. Among them, I am especially grateful to Martin Sköld and Magnus
Werner, who have shown the utmost patience with my many questions during
the early stage of my research and study. For technical discussions, I would like
to thank Olof Johansson for suggesting the “slab method” which led to the idea
of the IP-index, and Henrik André-Jönsson for discussions on similarity search
on time sequences. Many thanks to Martin Sköld who has shared with me all
the frustration and excitement during my research, and offered his kindly help
whenever he could.

I had the great fortune to meet Prof. Richard Snodgrass (Univ. of Arizona) at a
summer school in Italy in 1995. Prof. Snodgrass has provided me insightful
comments on my work and helped shape my research direction despite his busy
schedule. I would like also to thank Prof. Christian S. Jensen at Aalborg Uni-
versity, Denmark, for reading my doctoral thesis and for willing to be my oppo-
nent.

Being a member of the ISIS project, I would especially like to thank Prof. Len-
nart Ljung and Niclas Bergman at the Dept. of Electrical Engineering (ISY) for
pleasant and inspiring discussions on applying database techniques in terrain-

iv

aided navigation.

I am also grateful to all staffs at the Dept. of Computer Science (IDA), espe-
cially Lillemor Wallgren and Anne Eskilsson, for creating a friendly, warm
environment for foreign students. I am indebted to Dr. Anders Törne, who
accepted me as a guest student at the very beginning (otherwise this thesis
would not have existed).

I consider myself very fortunate because of the friendship I have experienced.
Among my former colleagues, I would like to thank Magnus (and his wife Per-
nilla) for being supportive when I needed friendship; and Gustav, for teaching
me tennis and sharing laughter. Among my Chinese friends, I would like to
thank YuCheng, RongFeng, Dan, Li, TianRuo, Man, and many others, for being
supportive and sharing a colourful life away from China. I am also indebted to
my swedish “host family” — Ms. Christina Grill, who has shared my tears and
laughter all these years.

Among the many blessings that have happened to me during the last few years
when I was pursuing my doctoral degree, the best part is that I met a wonderful
man — my fiancé Martin Sköld. Martin has helped me a great deal in every
aspect of my life in Sweden, including my study, my research, and my personal
life. Where would I be without him?

Finally, I would like to thank my parents and my sister for their encouragement,
their endless support, and always believing in me.

Ling Lin

Linköping
December 1998

Contents

1 Introduction . 1

1.1 DBMS . 1

1.1.1 Historical Overview . 1

1.1.2 Object-Relational DBMS . 3

1.2 Sequence Data . 4

1.2.1 Active Research on Sequence Data 5

1.2.2 What is Missing? . 6

1.3 Indexing . 8

1.3.1 Introduction to Indexing . 9

1.3.2 Criteria of a Good Index . 10

1.4 Main Contributions and Thesis Outline 11

1.4.1 Main Contributions . 11

1.4.2 Thesis Outline . 14

2 Time Sequences. 17

2.1 The Time Sequence Data Model . 17

2.1.1 Regularity . 19

2.1.2 Static/Dynamic . 20

2.1.3 Interpolation . 20

2.1.4 Time Sequences or Time Series? 22

2.2 Discrete or Continuous Time? . 23

2.2.1 Interpolation for Discrete/Continuous Time Model 24

2.2.2 Precision of Time Points . 25

vi Conents

2.3 Summary . 26

3 IP-index . 27

3.1 Motivation . 27

3.2 IP-index . 28

3.2.1 Anchor-State Sequence . 29

3.2.2 The Limitation of the IP-index 31

3.3 Algorithms . 32

3.3.1 Insertion Algorithm . 32

3.3.2 Search Algorithm . 33

3.4 IP-index versus the Precision of vis . 35

3.4.1 How Does the Precision of vis Affect the IP-index? . . . 35

3.5 Comparison with a Conventional Secondary Index 36

3.6 Related Indexes . 38

3.6.1 Temporal Indexes . 38

3.6.2 Spatial Indexes . 40

3.6.3 Indexes in Computational Geometry 41

3.6.4 SIQ-Index for Value Queries . 41

3.7 Generalized IP-index . 42

3.8 Summary . 42

4 Insertion/Search Time and Space Usage 43

4.1 Performance in a Main-Memory Database System 43

4.1.1 Implementation Notes . 43

4.1.2 Time Sequences Used in the Measurements 44

4.1.3 Insertion Time . 45

4.1.4 Search Time . 48

4.1.5 Largely Monotonic Time Sequences 48

4.2 Performance in a Disk-Resident Database System 51

4.2.1 Implementation Notes . 51

4.2.2 Time Sequences Used in the Measurements 51

4.2.3 Insertion Time . 52

4.2.4 Search Time . 52

4.3 Space Usage . 55

4.3.1 Time Sequences Used in the Experiments 55

4.3.2 Experimental Results . 55

4.4 Summary . 58

Contents vii

5 Various Forms of Value Queries 59

5.1 Exact Queries .59

5.2 Range Queries. .60

5.2.1 Interpolated Range Queries .61

5.2.2 Discrete Range Queries .63

5.2.3 Approximate Queries. .65

5.3 Time-Window Queries. .66

5.4 Amplitude-Sensitive Shape Queries. .67

5.5 Summary .68

6 The σ* Operator . 69

6.1 Formal Definitions. .69

6.1.1 The Definition of TS andTS . 69

Continuous and Non-Continuous Interpolation Functions71

6.1.2 The Definition of σ . 73

6.1.3 The Definition of σ* . 74

6.2 Implementations of σ* . 75

6.2.1 σ* t=t'(TS) .75

6.2.2 σ* v=v'(TS) .76

IP Operator .76

Get the First Few Answers Quickly77

6.2.3 σ* t>t’(TS) .78

6.2.4 σ* v>v’(TS) .79

Discrete Range Selection. .80

6.3 Performance Measurements on SHORE.80

6.3.1 σ* v=v’(TS) — Using the IP-index or Scanning the TS? . 80

Constructing the Synthetic Time Sequence81

Experimental Results. .81

6.3.2 Getting the First Answer .84

Constructing the Experimental Data.84

Experimental Results. .84

6.4 Related Work. .84

6.4.1 The Originalσ* Operator. .84

6.4.2 The “System Query” Q’. .86

6.4.3 Relevant Operators in Temporal Databases86

The σ Operator .87

The τ Operator. .89

The Ω Operator .89

viii Conents

6.5 Proposing New Functions for the ADT of Time Sequences 90

6.6 Summary . 92

7 Physical Organization . 95

7.1 Database Access Time . 96

7.2 Physical Organization of Time Sequences 97

7.2.1 Properties of Time Sequences . 97

7.2.2 Arrays for Time Sequences . 97

Regular/Irregular Time Sequences 97

Static/Dynamic Time Sequences 98

7.2.3 The Multi-Level Dynamic Array Structure 98

The Data Structure . 99

Insertion .101

Migration .103

Search .103

7.2.4 Related Work .104

Comparison with the PLI-tree and the AP-tree 104

Linked List .105

Arrays versus Relational Tables 105

On Access Patterns .106

7.3 IP-index .107

7.3.1 Primary Indexes and Secondary Indexes107

7.3.2 IP-index as a Secondary Index 108

How to Implement the Anchor-State Sequences? 110

7.4 Storage Management for Large Objects112

7.4.1 In Relational DBMSs .112

7.4.2 In Object-Oriented DBMSs .114

7.5 Main Memory DBMSs versus Disk-Resident DBMSs116

7.5.1 Background .116

7.5.2 Impact on Index Design .117

Main-Memory Index Structures 117

Disk-Based Index Structures .119

7.5.3 Impact on Data Structures .121

7.6 Is the IP-index Practical for Large Time Sequences?122

7.7 Summary .124

8 Query Optimization . 125

8.1 Stream Processing .125

Contents ix

8.2 The Cost Model ofσ* v=v’(TS) .126

8.2.1 The Linear Case. .127

8.2.2 The Non-Linear Case. .128

8.2.3 Cost Model .129

8.3 Cardinalities of Range Queries. .130

8.4 The Cost Model ofσ* v>v’(TS) .133

8.5 Time Window Queries. .133

8.5.1 Optimization of Time Window Queries134

8.5.2 Experiments. .135

8.6 Complex Queries. .137

8.7 Summary .140

9 Related Work . 143

9.1 SEQ — A Sequence DBMS. .144

9.1.1 The SEQ Data Model. .144

9.1.2 Abstract Data Type (ADT). .145

9.1.3 Physical Organization of Sequences.146

9.1.4 SEQUIN Query Language .147

9.1.5 Query Optimization. .148

9.1.6 Comparison With Illustra. .150

9.1.7 Conclusions. .151

9.2 Similarity Search on Time Sequences151

9.2.1 Using the Discrete Fourier Transform151

9.2.2 Function Approximation .153

Relevance to Our Approach. .153

9.2.3 Shape Languages. .154

9.2.4 Conclusions. .155

9.3 Time Series Management Systems. .155

9.3.1 FAME .157

9.3.2 CALANDA .158

9.3.3 Informix TimeSeries DataBlade.159

9.3.4 Conclusions. .159

9.4 Temporal Databases. .159

9.4.1 Time Dimensions. .160

9.4.2 Research on Temporal Databases.161

9.4.3 Temporal Databases and Time Series Management . . . 165

9.5 Summary .168

x

10 Application Study . 171

10.1 What is Terrain-Aided Navigation .171

10.2 Using the IP-index in Terrain-Aided Navigation172

10.2.1 The Approach .173

10.2.2 Cardinality .173

10.3 Measurements .174

10.3.1 The Real Map .174

10.3.2 The Track Files .174

10.3.3 Cardinality .175

10.3.4 The Settling Time of the IP-index177

10.3.5 Conclusions .177

10.4 Summary .178

11 Conclusions and Future Work 179

11.1 Concluding Remarks .179

11.2 Future Work .180

12 Appendix . 181

SHORE Implementation Notes .181

13 Bibliography . 189

Chapter 1

Introduction

The motivation for this thesis is to address a neglected issue in database man-
agement systems— to support sequence data viewed ascontinuous under arbi-
trary user-defined interpolation assumptions. For understanding of this thesis
work, this chapter provides background knowledge such as the evolution of
database technology, the application domains for sequence data, and the con-
cept of indexing. The main contributions and thesis outline are listed at the end
of this chapter.

1.1 DBMS

In concept, adatabase management system (DBMS) is a general-purpose soft-
ware system that facilitates the processes of storing and manipulating data. The
primary goal of a DBMS is to provide the user with bothconvenient andeffi-
cient access to large volume of complex data. In addition, a DBMS must pro-
vide the safety of the information stored in case of system crashes or
unauthorized access. Other services such as data integrity, concurrent access of
shared information, are also carried out by the DBMS.

1.1.1 Historical Overview

The evolution of DBMS technology is illustrated in Fig.1.1.

In the 1960s, data management was carried out atfile processing level by con-
ventional operating systems. Indexed files provided a simple way to store

2 Chapter 1 Introduction

records on disk with fast look up facility. The advanced indexed file systems
provide the most basic features of modern database systems such as managing
fixed-length records with various types, providing persistent storage and
indexes, and performing locking for concurrent access.

In the 1970s, the first complete database management systems appeared, using
the network (NDBMS) and hierarchical (HDBMS) data models [46]. They pro-
vided the previous facilities of file systems plus several more sophisticated
ones: record identifiers and link structures between records, multiple files
treated as a single database, user authorization, and transactions for database
recovery and consistency.

In the 1980s,relational DBMSs (RDBMSs) [46]started to dominate the data-
base product market. The relational data model is based onrelations. A relation
is a table consisting ofrows andcolumns, where each column contains a partic-
ular data type. Therefore, arelational database consists of a set of tables, and
each table consists of a set of columns. An example of a relational table would
beemployee(name, age, salary). This table manages information about employ-
ees in a certain company.

Operations on relational tables constitute therelational algebra [34]. The
major operations in the relational algebra includeselection, projection, and
join. A selection retrieves the rows in a table where the columns in those rows
satisfy some predicates (an example predicate could be “name = ‘John’”). A
projection returns its argument table with certain attributes left out. Ajoin
combines tables by connecting their rows where the columns of these rows sat-
isfy some predicates (an example of a join predicate could be “employee.name
= manager.name”).

The relational DBMS achieved its popularity by itssimplicity in database

1950 198019701960 20001990

Files
HDBMS

NDBMS
RDBMS

OODBMS

ORDBMS

SQL (ANSI)

Fig. 1.1: The evolution of DBMS technology

SQL2
... OQL, SQL3

Section 1.1 DBMS 3

design, its dataindependency between physical and logical level, and a high-
level query language (SQL). Compared to earlier database management sys-
tems such as NDBMSs or HDBMSs, the query language SQL frees the end-user
from getting into the low-level storage details. In this way the application pro-
grams do not need to be rewritten when low level implementations change.

Starting from late 1980s, new application domains such as computer-aided
design, scientific and statistic applications, multimedia applications for image,
audio, and video data, require more capabilities than relational DBMSs pro-
vide. These new requirements include complex structures for objects, new data
types, and new access methods. As a consequence, a new generation of data-
base technology— theobject-oriented DBMS (OODBMS) [39] emerged.

Most OODBMSs are implemented by extending some object-oriented program-
ming languages (e.g., C++ or Smalltalk) with database functionalities such as
data persistence, concurrency control, and recovery. Compared to RDBMSs,
OODBMSs are more powerful in data modelling and have higher performance.
For example, objects in OODBMSs may have arbitrary complex structures;
while information about a complex object in RDBMSs is oftenscattered over
many relations or records, leading to a loss of direct correspondence between a
real-world object and its database representation. However, OODBMSs nor-
mally do not have the declarative access power and dataindependency as
RDBMSs do. Datasecurity is also a problem in OODBMSs because application
programs and the database share the same address space [39].

It can be seen that RDBMSs and OODBMSs both have their strength and weak-
ness. RDBMSs are more suitable for traditional business applications which are
characterized in ad-hoc queries, short-duration transactions, high throughputs,
and high security. OODBMSs are more suitable for applications with complex
data, high performance and long transactions such as CAD.

1.1.2 Object-Relational DBMS

To combine the strength from both RDBMSs and OODBMSs, a new generation
of database technology, theobject-relational DBMS (ORDBMS) emerged in the
1990s. ORDBMSs can be seen as a marriage of the declarative access power
from the relational world and the complex data modelling power from the
object world.

In the relational world, theabstract data type (ADT) [128] is the key technol-
ogy to extending relational DBMSs with more powerful modelling and process-
ing capabilities. The relational query language standard,SQL2, is under way to
be extended to a new standard,SQL3, which supports object-oriented concepts
such as object identifiers, classes, type hierarchies and inheritance. According

4 Chapter 1 Introduction

to the preliminary draft of SQL3 (which is likely to be finished in a few years),
columns in a relation can have complex types, the structure of a relation is
extended to allow nested relations, type hierarchies and inheritance are also
supported. See [118] for details about the extensions. These extensions bring
challenges to almost every aspect of a relational DBMS, including its data
model, query processing techniques, and storage management. In fact, a rela-
tional DBMS has to be redesigned from scratch in order to achieve good per-
formance. An example of this kind of system is Illustra [64].

In the object world, the Object Data Management Group (ODMG) is proposing
a standardized query language for OODBMSs, namedOQL. OQL has features
in common with SQL3. It can be seen that relational DBMSs (RDBMSs) and
object-oriented DBMSs (OODBMSs) are merging into object-relational
DBMSs (ORDBMSs), which is the future trend of the database technology.

The ORDBMS technology is not mature yet. In fact, many extensible database
systems claim that they are object-relational but they are not. According to
Stonebraker [39], an object-relational database system should include the fol-
lowing features: 1) support for base type extensions in an SQL context; 2) sup-
port for complex objects in an SQL context; 2) support for inheritance in an
SQL context; 4) support for a production rule system.

Among the new data types that ORDBMSs support, the most widely studied
one is time series, serving business applications such as stock price indexes and
bank interest rates, or scientific applications where data are generated from
sensors. From the discussion of the next section, we shall see that some impor-
tant requirements from the time series applications areoverlooked in both
research prototypes and commercial products.

1.2 Sequence Data

Data over ordered domains such as time orlinear positions are termedsequence
data. The most commonly seen sequence data aretime sequences (time series)1

where data are ordered bytime. Time sequences appear in many application
domains: 1) business applications such as stock price, product sales, or bank
interest rates; 2) scientific data from sensor readings such as climate measure-
ments or collision of particle beams; 3) medical data such as temperature read-
ings of patients or cardiology data; 4) event sequences in automatic control,
process supervision, or telecom network monitoring. An example time
sequence is shown in Fig.1.2, which represents the temperature reading of a
patient in a hospital.

1. The subtle difference between these two terms will be discussed in Chapter 2. In this
chapter, these two terms are used interchangeably.

Section 1.2 Sequence Data 5

Sequence data require special treatments which are not provided by traditional
DBMSs. Modelling sequence data in traditional (relational) database systems
often results in awkward query expressions and bad performance [110]. In fact,
most sequence data in real-life applications are managed byfile systemsor spe-
cial purpose management systems instead of by DBMSs.

Realizing this deficiency, considerable research has been dedicated to support-
ing sequence data in DBMSs in the last decade. In what follows, we shall give
an overview of that work and point out what is missing. This will bring out the
motivations for the thesis.

1.2.1 Active Research on Sequence Data

Segev and Shoshani [105] proposed the “time sequence” data model to model
temporal information. Atime sequence (TS)is denoted as<s, (t, a)*> wheres
denotes asurrogate and(t, a)* denotes the sequence of values associated with
the surrogate. A collection of time sequences for the same surrogate class is
defined as atime sequence collection (TSC). Operations over TSCs were
defined in [105], such asextraction of sub-sequences,aggregation, composition
of two sequences, etc. Storage management of time sequences was studied in
[117]. The time sequence data model is independent of any existing data mod-
els (such as the relational data model) and serves as the data model of this the-
sis work. This data model will be discussed more in detail in Chapter 2.

An active research area on time sequences deals withsimilarity search, i.e.,
finding similar patterns in different time series. Similarity search is essential in
discovering and predict the risk, causality, and trend associated with a specific
pattern. Several approaches have been suggested. Agrawal et al. [4][51] use
Discrete Fourier Transform and compare the first few coefficients in a multi-
dimensional space to check the similarity of time series. In [112] time series
are transformed into some feature-preserved functions to achieve efficiency in
storage and indexing. In [6] a shape language has been defined to express time
series and feature queries.

t

v

38

Fig. 1.2: The temperature reading of a patient in a hospital

6 Chapter 1 Introduction

Seshadri et al. [110] developed a sequence database system named SEQ. Vari-
ous issues in managing sequence data in DBMSs such as data models, query
languages, and implementations were investigated. In SEQ, sequence data were
modelled as anabstract data type (ADT), and supported by common operators
such assubsequence extraction, aggregate, and composition. A sequence query
language,SEQUIN, was developed to specify these operations. Important
issues such as query optimization were investigated. This system was later
evolved to PREDATOR [111] which supports other types of non-traditional
data types such as image, audio, and spatial data.

Supporting of sequence data has been an active research subject in ORDBMSs.
In fact, many commercial database systems have been extended to support the
time series data type. Examples are Informix’s TimeSeries DataBlade [65],
Oracle’s TimeSeries DataCartrige [95], and IBM’s TimeSeries DataExtender.
Clearly there is a high demand from applications to support sequence data.

1.2.2 What is Missing?

It can be seen from the above overview that supportingsequence data has
attracted substantial research interest during the last few years. Unfortunately,
an important requirement from applications isneglected, i.e., how to support
sequence data viewed ascontinuous under arbitrary user-defined interpolation
assumptions. In most research literature, sequences are treated as discrete
points and operations on sequences are defined on the discrete model. Among
the few research papers ([21][32][33]) that address interpolation issues, only
the “step-wise constant” interpolation is assumed, while most real-life applica-
tions require more sophisticated interpolation functions such as linear interpo-
lation or moving average. Therefore, it is important that a DBMS should
understand the semantics of a continuous sequence and support user-defined
interpolation functions.

Another interesting issue is how to extract sub-sequences based on the condi-
tion on the value domain. Most research on constructing sub-sequences is
based on the condition on theordering domain (such astime domain). However
constructing sub-sequences based on conditions on thevalue domain is highly
desirable for real-life applications. Two examples are given below.

1. The Temperature Sequence shown in Fig.1.3.

In [112] an example is given to find the pattern of “goalpost fever” in a
patient’s temperature reading. “Goalpost fever” is one of the symptoms of
Hodgkin’s disease, behaving as two consecutive fevers during 24 hours.
This query was formulated as a shape query in [112] as “finding those sub-
sequences with exactly two peaks”.

However, since a “fever” means the body temperature is higher than 38°C,

Section 1.2 Sequence Data 7

this query can also be formulated as “finding the two time intervals when
the values inside the intervals are greater than 38 and the distance between
them is less than 24 hours”.

2. The Engine Sequence shown in Fig.1.4.

Fig. 1.4 shows a periodic time sequence representing the pressure of a cylin-
der inside an engine. The data is collected by a sensor in a real-life applica-
tion [48]. The pressure of the cylinder changes with its angle periodically
(360°) and reaches a peak once in every period. On monitoring the behav-
iour of the engine, an interesting query would be “when did the pressure
reach its peak in every period?” [48].

It can be seen from Fig.1.4 that all peaks have the property that v > 1.5. So
this query could be reformulated as “when were thevalues greater than
1.5?”.

These two examples demonstrate the importance of supporting sub-sequence
extraction based on the conditions on the value dimension. We term the queries

t

v

38

Fig. 1.3: The “goalpost fever” pattern

24 hours

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

2.5

Fig. 1.4: The pressure sequence

8 Chapter 1 Introduction

concerning the value dimension of a sequence asvalue queries (in contrast to
shape queries that look for general patterns in the sequence). In most applica-
tions, value queries involve implicit values introduced by interpolation assump-
tions on the sequence.

It is difficult to support value queriesefficiently becauselinear scanningseems
like the only obvious solution, which will result in bad performance, especially
for large sequences. Clearly, to speed up processing time of value queries, some
kind of secondary index [118] has to be built for sequence data. [117] is one of
the very few research papers mentioning the issue of value queries. Unfortu-
nately, it claims that “a secondary index over the data values is not needed in
most applications— such an index can potentially be very expensive in terms
of storage, because the number of entries for such an index is in the order of the
number of data value”. It also claims that “such indexes (if absolutely neces-
sary) would use conventional indexing methods”.

Although the above claims seem reasonably true at first glance, we argue in this
thesis that they are actually not. First of all, we claim that a secondary index is
definitely needed in the value dimension for most sequence data. This is
because queries on a sequence are often based on the conditions on thevalue
dimension rather than on the ordering dimension, and the efficiency issue is
essential for long sequences. Secondly, we will show that a conventional sec-
ondary index cannotdeal with value queries. The main reason is that a conven-
tional secondary index does not preserve the ordering semantics of a sequence
and cannot support interpolation.

In this thesis we propose an innovative indexing technique, termed theIP-
index, to efficiently support value queries based on user-defined interpolation
functions. Surprisingly, the IP-index is not expensive in terms of storage as
[117] predicated. In fact, the size of the IP-index is generally small even for
large sequences. Meanwhile, the IP-index is very efficient, i.e., the index inser-
tion and search time is very small, even for large sequence data.

The efficiency requirement for sequence data is essential because most applica-
tion sequences are large. Management of sequence data should remain efficient
regardless of the growing of the sequences. This implies challenges in almost
every aspect of a DBMS design, from physical storage organization, index
design, to query optimization. We shall address these issues in the correspond-
ing chapters.

1.3 Indexing

Since an essential part of this thesis is on indexing sequence data, this section
provides background knowledge on the concept of indexing in DBMSs.

Section 1.3 Indexing 9

1.3.1 Introduction to Indexing

As we all know, data in databases are usually of large volume; retrieval of data
can be very slow without an index. Basically, an index for a DBMS is like a cat-
alogue for a library. When we look for a book in a library, we look in the cata-
logue based on the author’s name, or the title, etc.

The idea of indexing in DBMSs is best illustrated by a simple example. Sup-
pose we have a relational databaseemployee(name, age, salary). We need to
find employees according to theirages. Then, we can build an index as shown
in Fig. 1.5, where the values in theage field are used askeys, and every key is
associated with data pointers that point to the corresponding employee records.
Therefore, if we want to find all employees that are of age 30, we can search the
index to find the entry “30” and follow the points to the data. Without this
“age” index, we have to scan the entire file, which will be very slow when the
file is large.

Many kinds of indexes exist in DBMSs. These indexes can be classified into
two categories: ordered indexes and hash indexes. The above example
(Fig. 1.5) is an ordered index where the index is based onthe ordering of the
keys (i.e., theage). Hash indexes, on the other hand, are based on distributions
of keys in different buckets according to some hash function. We will not dis-
cuss hash indexes here because they are not directly relevant to this thesis
work.

Brown 32 6000

David 28 5300

David 30 5600

Mary 30 6200

Peter 39 7000

Richard 40 6500

Richard 45 8000

Sara 40 7400

Fig. 1.5: An index on employee file, on the fieldage

28

30

32

39

40

45

Theemployee file
The index

keys data
pointers

10 Chapter 1 Introduction

Several structures can be used to implement an ordered index, such as an array
or a tree. The most popular index structure in DBMSs is the B+-tree [35]. Basi-
cally, a B+-tree is a balanced tree in which every path from the root to a leaf is
of the same length. All the keys appear in the leaf nodes. Each key is associated
with data pointers that point to the corresponding data items in the file. The
nonleaf nodes of a B+-tree form a multilevel (sparse) index on the leaf nodes.
The B+-tree implementation of the example index (Fig. 1.5) is shown in
Fig. 1.6. An important property of a B+-tree is that each node is at least half
full. Leaf nodes are linked together to allow sequential access.

The reason why the B+-tree is so popular in DBMSs is that it is a dynamic,
ordered index structure which maintains efficiency despite its insertion and
deletion.

1.3.2 Criteria of a Good Index

As mentioned before, many kinds of indexes exist in DBMSs. How do we
choose between different kinds of indexing methods for an application? What is
a good index design? The most important criteria are the following:

 • Access time— the time taken to find a particular data item using the index.
A good index should take very little time to find the data item needed, no
matter how large the database is.

 • Insertion time— the time taken to insert a new data item into the index. The
insertion time of a good index is expected to be small.

 • Deletion time— the time taken to remove a data item from the index. As for
the case of insertion time, the deletion time of a good index should be small.

39

32 40

28 30 32 39 40 45

data pointers to theemployee file

Fig. 1.6: The B+-tree implementation of theage index on Fig.1.5

Section 1.4 Main Contributions and Thesis Outline 11

 • Space overhead— the additional space occupied by the indexing structure.
By having an index, we gain performance improvement by sacrificing space.
Usually it is worth doing so since the performance improvement is usually
substantial. But space inefficiency of an index will inhibit it from practical
use.

The property of small insertion and search time is especially important for time
sequence applications. This is because time sequences are usually very long,
the property of small insertion and search time shouldscale up1 with the grow-
ing of sequences. On the other hand, index deletion time is less interesting
because deletion of a data item in time sequences occurs very seldom.

1.4 Main Contributions and Thesis Outline

In this section we summarize the main contributions and present the thesis out-
line.

1.4.1 Main Contributions

This thesis presents pioneering work on supporting value queries on 1-D
sequence data based on arbitrary user-defined interpolation functions. An inno-
vative indexing technique, the IP-index, is proposed. The motivation of the IP-
index is to support efficient calculation of implicit values of sequence data
under user-defined interpolation functions. The idea of the IP-index is general,
and it can be implemented on top of any ordered indexing structure such as a
B+-tree.

We have implemented the IP-index in both a disk-resident database system [22]
and a main-memory database system [49]. We measured the insertion and
search time of the IP-index and show that: for a time sequence with limited
range and precision (most real-life time sequences have this property), the
insertion andsearch time of the IP-index remainssmall regardless of the grow-
ing of the sequence. This indicates that the performance of the IP-index scales
up gracefully with the cardinality of the time sequence. We also investigated
the space usage of the IP-index to show that it is practical to build IP-indexes
for large sequences.

Based on the work of the IP-index, we introduce an extended SELECT opera-
tor, σ*, on a time sequence (TS). Theσ* operator, σ* cond(TS), retrieves sub-
sequences (time intervals) where the values inside those intervals satisfy the

1. The term “scale up” here means the insertion and search time should staysmall
regardless of the growing of the time sequence.

12 Chapter 1 Introduction

condition cond. The σ* operator supports arbitrary user-defined interpolation
functions on TS. Experiments made on SHORE [22] using both synthetic and
real-life time sequences show that theσ∗ operator (supported by the IP-index)
dramatically improves the performance of value queries. The performance gain
is even more dramatic for large sequences withsmall answer sets, while most
submitted value queries in real-life applicationsare for small answer sets.
Another promising observation is that the performance ofσ∗ for the first few
answers is stable, regardless of thepositions where the first few answers appear
in the time sequence. This shows that the IP-index is essential in the situations
when the time sequence is long and the query processing time is limited.

On query optimization, we develop a cost model for theσ∗ operator in order to
be able to optimize complex queries. An interesting observation is that the cost
of a range queryσ∗v>v’(TS) is nearly thesame as the cost of the exact query
σ* v=v’(TS). This indicates that processingrange queriesis very efficient using
the IP-index, especially for large sequences. We also investigate optimizations
of time window queries and complex value queries. Time window queries can
be optimized by pushing thetime window into the IP operator (a component of
the σ∗ operator), thus reducing the number of anchor-states retrieved. Complex
queries (sequence joins) can be optimized by choosing a good join order
according to the cost and the selectivity factors [107] of theσ∗ operators
involved. Experiments are performed to verify the above optimization strate-
gies.

On physical organization, we propose a multi-level dynamic array structure for
dynamic, irregular time sequences. The highlight of this data structure is that it
is highly space efficient and supports bothefficient random access and fast
appending. Other relevant issues such as management of large objects in
DBMSs, physical organization of secondary indexes, and the impact of main-
memory or disk-resident DBMSs on sequence data structures are also investi-
gated.

Related work is discussed in depth in this thesis. Extensive research on similar-
ity search on time series complements our work nicely. Similarity search is
based on the generalshapes (features) of a sequence, while our work is based
on individual values of a sequence. These two aspects of support for sequence
data are both highly needed in real-life applications. Research on object-rela-
tional DBMSs to support the abstract data type oftime series is covered. Our
work contributes specifically to this area by the extension of supporting value
querieson time series, which was a neglected issue up till now. A sequence
database system, SEQ, also indicates the need of the IP-index.

A thorough application study [83] on “terrain-aided navigation” is presented to
show that the IP-index is applicable to other application domains. The IP-index
improves the performance of terrain-aided navigation by finding thestarting

Section 1.4 Main Contributions and Thesis Outline 13

positions for the matching algorithm (the bayesian approach [20]) efficiently.
Experiments on a real terrain map and simulated track files are performed to
verify the efficiency of the approach.

The work presented in this thesis is based on the following publications:

I. L. Lin, T. Risch, M. Sköld, and D. Badal
Indexing Values of Time Sequences
Proceedings of 5th International Conference on Information and Know-
ledge Management, Rockville, USA, Nov. 1996.

II. L. Lin and T. Risch

Using a Sequential Index in Terrain-aided Navigation

Proceedings of 6th International Conference on Information and

Knowledge Management, Las Vegas, USA, Nov. 1997.

III. L. Lin

Implementing the IP-index in SHORE

Linköping Electronic Press,Vol. 2, No. 17, 1997.

IV. L. Lin

Study of Supporting Sequences in DBMS — Data Models, Query

Languages, and Storage Management

Linköping Electronic Press, Vol. 3, No. 4, 1998.

V. L. Lin and T. Risch

Querying Continuous Time Sequences

Proceedings of 24th International Conference on Very Large Data Bases,

New York City, USA, August, 1998.

Publication I is the first paper that appeared at an international conference
where the idea of theIP-index is introduced.

Publication II presents how the IP-index can be applied toterrain-aided navi-
gation to improve the real-time performance.

Publication III documents how the IP-index is implemented in a persistent
object system SHORE [22] using SDL (a variant of the ODMG ODL) and C++.

Publication IV summarizes recent research on supportingsequence data in
DBMSs, covering issues such as data models, query languages, query optimiza-
tion, and storage management. A sequence database system SEQ is described.

14 Chapter 1 Introduction

Publication V proposes the extended SELECT operator, σ∗ operator, for the
abstract data type oftime sequences in an extensible DBMS. Theσ∗ operator
retrievessub-sequences (time intervals) in a time sequence TS where the values
inside those sub-sequences satisfy some conditions. User-defined interpolation
functions are supported. Theσ∗ operator is efficiently supported by the IP-
index. Query optimization issues are investigated and verified by experiments
on SHORE.

1.4.2 Thesis Outline

This thesis is organized as follows:

Chapter 1 (this chapter) provides background knowledge for understand of this
thesis work and points out the motivations and main contributions of this thesis.

Chapter 2 introduces thetime sequence data model, which serves as the data
model of this thesis. Different types of time sequences are classified based on
properties such asregularity, static/dynamic, and theinterpolation function
applied.

Chapter 3 is the essence of the thesis. It introduces the idea of theIP-index
based on the time sequence data model. The central concept is theanchor-state
sequence. The insertion and search algorithms of the IP-index are presented.
The important relationship between the IP-index and the precision of values vis
are investigated. The IP-index is compared with conventional secondary
indexes and related indexes in the area of temporal databases, spatial databases
and computational geometry.

Chapter 4 demonstrates the highlights of the IP-index: fast insertion, fast
search, andspace efficiency. These properties show that the IP-index is not only
an elegant idea but also a practical solution for large sequence data. Experimen-
tal results on both a main-memory database system and a disk-based database
system are presented. This chapter shows that an index on the value domain of
a time sequence is not necessary expensive and impractical, as claimed by
[117].

Chapter 5 shows how to solve various kinds ofvalue queries efficiently by
using the IP-index. In particular, it demonstrates the importance of the IP-index
for range queries(i.e., sub-sequence extraction based on a value range). Other
queries that benefit from the IP-index include time window queries, and ampli-
tude-sensitive shape queries.

Chapter 6 introduces the extended SELECT operator, σ∗, which retrievessub-
sequences (time intervals) where the values inside those intervals satisfy some

Section 1.4 Main Contributions and Thesis Outline 15

conditions. Performance measurements made on SHORE[22] using both synthetic
and real-life time sequences with large cardinalities are presentedto demon-
strate the efficiency of theσ∗ operator.The σ∗ operator is compared to related
operators proposed in the area of temporal databases.

Chapter 7 investigates relevant physical organization issues, including physical
organization of time sequences, physical structure of secondary indexes, and
physical organization of anchor-state sequences. We propose amulti-level array
structure for dynamic, irregular time sequences. This data structure meets the
challenge of supporting bothfast appendingandefficient random access. Other
relevant issues such as storage management of large objects and the impact of
main-memory or disk-resident DBMSs on sequence data structures are also
investigated.

Chapter 8 is about query optimization. The cost model of theσ∗ operator is
developed. Optimizations of time window queries and complex sequence que-
ries are investigated and verified by experiments.

Chapter 9 discusses related work in depth.

Chapter 10 presents a thorough application study where the IP-index is applied
to terrain-aided navigation.

Chapter 11 concludes this thesis and discusses future work.

16 Chapter 1 Introduction

Chapter 2

Time Sequences

This chapter introduces the data model oftime sequences. This data model
aims at capturing the ordered semantics of temporal data and defining operators
over them. It is independent of any existing data model (such as the relational
data model or the object-oriented data model) and serves as the basic data
model of this thesis work. Properties of time sequences are studied in this chap-
ter, such as time granularity, lifespan, regularity, static/dynamic, and interpola-
tion assumptions.

A relevant issue is the modelling oftime in DBMSs. We discuss discrete/con-
tinuous time models and point out why interpolation is important for both mod-
els.

2.1 The Time Sequence Data Model

The data model of “time sequence” was proposed in the middle of 1980s when
research on temporal databases [134] started. This data model first appeared in
the paper “Temporal Data Management” [117] and later appeared as a chapter
[105] in the first book on temporal databases [134]. In this data model, a tem-
poral data value for an object is defined as a triplet <s, t, a>, wheres is the
objectsurrogate, t is the time, anda is the attribute value fors at timet. Thus,
the history of data values for the objects is defined as <s, (t, a)*>. The
sequence(t, a)* is termed atime sequence (TS). An example time sequence is
the following: suppose that an employee ‘John’ has been working in a certain
company for many years, and he has received salary raises several times, then
his salary information could form a time sequence as the following:

18 Chapter 2 Time Sequences

Example 2.1: (01/05/95, 1200), (09/20//96, 1400), (05/13//97, 2300),...

A collection of time sequences for the same surrogate class is defined as atime
sequence collection (TSC). For example, the salary histories of all employees in
a certain company would form a time sequence collection.

Compared to most research work on temporal databases that extends existing
data models (e.g., the relational data model, the object-oriented data model, or
the functional data model) to support temporal features, the work of [105][117]
takes a different approach. They start with the understanding and specification
of the semantics of temporal data, thus leading to a precise characterization of
the properties of temporal data, and define operators over them. In this way
their work is not influenced by traditional models that were not specially
designed for modelling temporal information.

Several properties of time sequences were studied in [105][117]. They are:

 • Time Granularity

The time granularity specifies the granularity of the time points of a TS, that
is, the points in time that can potentially have data values. Two time granu-
larities were identified in [106] —ordinal andcalendar. The ordinal repre-
sentation simply signifies that the potential time points are counted by

integer ordinal position (1st, 2nd, 3rd,....). The calendar representation can
assume the usual calendar time hierarchy values: year, month, day,..., sec-
ond, and so on.

 • Lifespan

The lifespan of a TS is specified by astart_time and anend_time defining
the range of valid time points of that TS. Thestart_times andend_times can
be represented as either ordinal or calendar.

 • Regularity

A time sequence can be either regular or irregular. A regular TS is a TS
where the values are measured in regular time intervals. Otherwise the TS is
irregular. The regularity of TS is very important and most relevant to our
work. It is further discussed in Section 2.1.1.

 • Type

The type of a TS determines the data values of the TS for time points that do
not have explicit data values. In general, there is an interpolation function
associated with each TS. Some of the interpolation functions are very com-
mon, which will be discussed in Section 2.1.3.

Section 2.1 The Time Sequence Data Model 19

Data manipulation on time sequences is defined by operators over time
sequence collections (TSCs) in [106]. Every operator over one or more source
TSCs will produce a single target TSC. The most important operators in [106]
are:

 • Selection

The selection operator extracts parts of a TSC that satisfy a predicate refer-
encings and/ort and/ora values. For interpolated time sequences, selection
based on a predicate referencinga values would need the IP-index.

 • Aggregation

The aggregation operator can be applied over groups in the time dimension
or the surrogate dimension. For aggregation over the time dimension, the
new time points in the target TSC will be of granularity higher than that of
the source TSC.

 • Composition

The composition operator enables manipulation of related data that are part
of two TSCs (in pair-wise manner). For example, composition of a daily
price and a dailyquantity time sequence (for a certain product) will give a
daily revenue time sequence (for this product).

In the rest of this section we discuss those properties of time sequences that are
relevant to our work.

2.1.1 Regularity

As mentioned above, a regular TS is a TS where the values are measured in
regular time intervals [117]. Examples of regular time sequences are stock
prices (where values are obtained for every business day), scientific experi-
ments or simulations (where values arepulled at regular time intervals by some
mechanism or computer programs), etc.Irr egular time sequences usually result
from manual measurements or from unpredictable events, such as the failure of
a detector. Business transaction data, such as items sold in a store, or the salary
history of an employee, are typically irregular time sequences as well.

The reason for distinguishing between regular and irregular TSs is that this
property affects the physical design of a time sequence profoundly. For exam-
ple, a regular time sequence (ti, ai)* can be stored as an array v[i] = ai where the
time stamps are “factored out”. This is because ti can becomputed by ti = t0 + i
* ∆t (∆t is a constant for a regular TS). The retrieval of any data value given its
time stamp ti is easy because the time stamp ti can be easily mapped into the
corresponding position i in the array, i.e., i = (ti - t0) / ∆t. On the other hand,
irregular time sequences are more difficult to support. First of all, all time

20 Chapter 2 Time Sequences

stamps have to be explicitly stored. Secondly, the retrieval of any data value
given its time stamp has to be supported by someindexes on the time domain.
Physical organization of time sequences is further studied in Chapter 7.

Note that in regular time sequences data values can benull (missing or
unknown). A regular TS containing a large number ofnull values is considered
as anirr egular TS. The reason is that it is preferable to consider this TS as
composed of thosenon-null (ti, ai) pairs (an irregular TS) instead of as a regular
TS with many null values.

In addition to affecting physical organization, regularity implies semantic val-
ues as well. In fact, most statistical methods for analyzing time sequences can
only be applied to regular TSs. This issue will be further discussed in Chapter
2.1.4, where we discuss the differences between a time sequence and a time
series.

2.1.2 Static/Dynamic

Another aspect of a time sequence which affects its physical organization is
whether it is static or dynamic. Bystatic we mean the sequence is fully col-
lected, no more data will be added at the end of the sequence. Bydynamic we
mean the sequence is continuously growing.

Static TSs are easy to implement since we can allocate storage space in advance
based on the size of the TS. Dynamic TSs are difficult to implement since the
size of storage cannot be determined, yet we would still like to have fast ran-
dom access to any element in the sequence. This challenging issue will be fur-
ther explored in Chapter 7, where we develop a multi-level dynamic array
structure for dynamic, irregular time sequences.

2.1.3 Interpolation

As mentioned earlier, interpolation functions are often needed in order to
derive those values that are not explicitly stored in a TS. In [105][117], the fol-
lowing interpolation assumptions are classified as the most commonly used
ones:

 • Step-wise constant—

If (ti, ai) and (tk, ak) are two consecutive pairs in a TS such thatti < tk, then
aj = ai for ti ≤ tj <tk. An example of step-wise constant TS is the salary his-

tory of an employee (salary value stays the same until the next change
occurs), see Fig.2.1.

Section 2.1 The Time Sequence Data Model 21

 • Continuous—

A continuous function is assumed between (ti, ai) and (tk, ak) that assignsaj

to tj (ti ≤ tj ≤ tk) based on a curve-fitting function. An example of a continu-
ous TS is the sensor data representing measurements of a magnetic field at
regular intervals, see Fig.2.2.

 • Discrete—

Implicit values cannot be interpolated. An example of a discrete TS is stock
price, where values between two sold points cannot be interpolated, see
Fig. 2.3.

 • User-defined—

time

value

1500

750

1200
950

Fig. 2.1: Salary history— step-wise constant

time

Fig. 2.2: Magnetic field— continuous

value

time

Fig. 2.3: Stock price— discrete

value

22 Chapter 2 Time Sequences

Implicit values in a TS are computed based on user-defined interpolation
functions. For example, some applications only require a simple interpola-
tion function such as linear interpolation while other applications may
require a higher degree of interpolation function such as moving average or
least square.

Therefore, it is important for a DBMS to understand the semantics of a time
sequence and support system-defined or user-defined interpolation assump-
tions.

Actually, the importance of associating interpolation methods with temporal
data was pointed out in the early 1980s by Clifford et al. [33] as the “Compre-
hension Principle”, i.e. “under any reasonable interpretation a historical data-
base defined over a sequence of states <S1, S2,..., Sn > should be considered as
modelling an enterprise completely over the entire closed interval [S1, Sn]”. It
was also mentioned that the mapping from a finite set of moments < S1, S2,...,
Sn > into the dense interval [S1, Sn], termed as the “Continuity Assumption”,
could be a accomplished by various interpolation methods.

Although it was pointed out long ago that it is important to support interpola-
tion assumptions, very few implementation issues have been addressed. For
example: how to support queries based on arbitrary user-defined interpolation
assumptions; how to process these queriesefficiently, especially when the time
sequences are very long. These are the motivations for this thesis.

2.1.4 Time Sequences or Time Series?

The difference between the termtime series and time sequence has not been
very clear in research literature. Some researchers use these two termsinter-
changeably in the literature. Here we try to clarify the differences between
these two terms.

Generally speaking, the termtime sequence is moregeneral than the termtime
series. As mentioned in Section 2.1, time sequences can be classified intoregu-
lar andirr egular ones. Regular time sequences are those time sequences where
values are measured in regular time intervals. The termtime series refers only
to thoseregular time sequences.

Note: The termtime series refers only to regular time sequences.

Examples of time series are stock prices (collected on every trading day), or
scientific data (collected by sensors on regular time intervals). The term time
serieshas actually been used for a long time by statisticians. Most analytical
methods (such as those provided by special purpose systems such as FAME

Section 2.2 Discrete or Continuous Time? 23

[52]) can only be applied totime series, not to irregular time sequences. The
reason is that these methods assume some regularity between data points in the
sequence. For example, the method “moving average” would assume that the
data values under manipulation are measured in regular intervals. The method
“cross-correlation” would assume that the two source sequences are not only
regular but also based on the same time calendar.

Stock data are normally collected on the time unit ofday. Notice that stock data
do not exist on weekends, they only exist on business days. If one generates a
time series for the stock market, all the days that the market is closed (week-
ends and holidays) are removed. In this a regular time sequence (time series) is
obtained. Therefore, theregular property of stock data is interpreted on the
base ofbusinesscalendars only.

Throughout this thesis, we shall use the term time sequences when describing
our work. This is because our work applies to general time sequences including
regular/irregular, andstatic/dynamicones. The work on management of regu-
lar time sequences, i.e.,time series,will be covered separately in Section 9.3.

2.2 Discrete or Continuous Time?

Another issue related to the time sequence data model is to understand the
semantics oftime. As Clifford and Tansel [32] point out:

Time is something so taken for granted that its exact nature is
highly elusive. It might not be technically difficult to come up with
a consistent model having various algebraic operations defined,
intuitively it is far from obvious which operations are appropriate,
meaningful, and correct.

The basic questions concerning the modelling of time include the following:
what kinds of objects are the members of the set of times? What properties will
this set have?

One property of time with little dissension is: time has alinear order, i.e., for
any two time points t1 and t2, either t1 equals t2, t1 is-less-than t2, or t2 is-less-
than t1. This ordering is perhaps time’s essential property.

As for the members of the set of times, there has been less agreement. Accord-
ing to “A Glossary of Temporal Database Concepts” [67],three models of time
have been defined:discrete, dense, andcontinuous.

Intuitively, discrete models of time are isomorphic to the natural numbers, i.e.,

24 Chapter 2 Time Sequences

every time moment corresponds to a natural number, which has an unique suc-
cessor. Dense models of time are isomorphic to either the real or rational num-
bers, with the property that between any two moments of time there is always
another time moment.Continuous models of time are isomorphic to the real
numbers, i.e., both dense and also, unlike the rational numbers, with no “gaps”.

Most research literature has adopted thediscrete time model. Clifford and Tan-
sel [32] argue two reasons for this: 1) it is clear that any recording instrument
must have at best a finite sampling quantum; 2) any practical domain (or lan-
guage) that we might define for time attributes in a historical database would
have at most a countably infinite set of names for time moments or time inter-
vals. In [32], it is argued that while it may be philosophically or theoretically
interesting to consider a continuum of moments of time, from a practical stand-
point the natural numbers seem a more useful candidate for modelling database
time.

On the other hand, some research chooses thedense or continuous time model,
such as [33]. The reason is simple, thediscrete time model is inadequate in the
face of the generally accepted notion of continuous time. Clifford and Warren
proposed two assumptions— the Comprehension Principle and theContinuity
Assumption [33] (see Section 2.1.3) to view a historical database as modelling
an enterprise completely over an interval of the real-time line, and to answer
crucial questions such as what are the values of those implicit states that are not
explicitly defined (stored).

In a survey by Chomicki on temporal query languages [29], it is argued that the
dense temporal domain is very useful in many applications but is difficult to
implement efficiently since the set of time instances is very large. By develop-
ing the IP-index, we provide the ability toderive the dense instances from the
original discrete sequence, saving both storage space and query processing
time.

2.2.1 Interpolation for Discrete/Continuous Time Model

At first glance it might seem that interpolation is only needed for the continu-
ous time model. But this is not true. Interpolation is also important for the dis-
crete time model. Why? Recall that a regular TS can have missing values
(Section 2.1.1). For example, a stock price sequence may have missing values
for some trading days. The only way to obtain those values is to apply some
interpolation function. For irregular time sequences, interpolation is also
important. For example, a salary history is interpreted as “step-wise constant”
(Fig. 2.1).

Therefore, supporting interpolation is required for both the continuous and dis-

Section 2.2 Discrete or Continuous Time? 25

crete time model. Clifford and Tansel [32] propose a discrete time model and
emphasize the importance of supporting interpolation for “time-varying
attributes” (attributes that vary over time, such as “salary”). They point out:

Users must be able to query the database at will with respect to
time points or periods, and yet the database cannot possibly store
values for every attribute at every point in time. Thus, each
attribute must have an associated interpolation function, so that
the database system can reconstruct an entire time series over the
lifespan of each object from the partial specification store.

Among the very limited research that addresses interpolation issues on tempo-
ral data, most of them assume the simple interpolation function— “step-wise
constant”. And most of this work addresses semantic issues only, no implemen-
tation is done. Our contribution to this area consists of two aspects: 1) we
addressimplementation issues such as physical organization and query optimi-
zation; 2) it is the first time thatuser-defined interpolation functions are truly
supported.

2.2.2 Precision of Time Points

A tricky issue in the modelling oftime is theprecision of time points. Since all
measurement instruments (such as clocks) have a certain precision, all time
stamps stored in the database have a limited precision. Furthermore, all implicit
time points that can be interpolated from the explicit time points also have a
certain precision limit due to the precision of the explicit points and the preci-
sion of real numbers in the computer.

The precision of time points was mentioned in “A Glossary of Temporal Data-
base Concepts” [67]. There a “time point” or “time moment” was named as a
chronon and defined as “the shortest duration of time supported by a temporal
DBMS — it is a nondecomposable unit of time”. A particularchronon is a
subinterval of fixed duration on the time-line. The reason for naming it a
chronon is, according to [67], clocking instruments invariably report the occur-
rence of events in terms of time intervals, not time points. Hence, events, even
so-called “instantaneous” events, can best be measured as having occurred dur-
ing an interval.

In Section 6.1.1 we define an interpolated time sequence as aninfinite set.The
reasons are: 1) theset concept comes from the fact that time points in the con-
tinuous time model will constitute a set eventually due to the precision limit; 2)
the infinite concept comes from the fact that the precision can be as high as the
measurement instruments and the computers possibly have. We do not assume
any precision beforehand.

26 Chapter 2 Time Sequences

2.3 Summary

This chapter introduced thetime sequence data model. This data model is inde-
pendent of any existing data models (such as the relational data model or the
object-oriented data model) and serves as the basic data model of this thesis
work. Different properties of time sequences were studied, such asregularity,
static/dynamic, and theinterpolation assumptions. The importance ofinterpo-
lation on time sequences was stressed. The termstime sequence andtime series
were clarified based on the author’s understanding of relevant literature.

We also discussed two different time models:discrete and continuous. The
interesting point is that interpolation is needed for both the discrete and contin-
uous time models.

Chapter 3

IP-index

This chapter introduces the idea of the IP-index. Generally speaking, the IP-
index is designed to support efficient calculation ofimplicit (interpolated) val-
ues in large time sequences (or any 1-D sequence data) under user-defined
interpolation functions. The insertion and search algorithms of the IP-index are
presented. The important relationship between the performance of the IP-index
and the precision of values in time sequences are investigated. A comparison of
the IP-index with conventional secondary indexes is given. The IP-index is
compared to related indexes such as temporal indexes, spatial indexes, and
indexes in computational geometry.

3.1 Motivation

As pointed out in Chapter 1, time sequences appear in many application
domains. Examples of time sequences include stock price indexes, scientific
measurements collected from sensors, or temperature readings of patients in a
hospital. In concept, a time sequence (TS) can be modelled as a sequence of
states Si* where Si = (ti, vi) (recall thetime sequence data model in Section 2.1).

Many applications require time sequences to be seen ascontinuous under arbi-
trary user-defined interpolation functions. In other words, the discrete
sequences need to be seen ascontinuous where implicit values can be derived
from explicit values by the interpolation assumption. For example, suppose
Fig. 3.1 represents a patient’s temperature reading in a hospital, a physician
will be interested to know:

 • When did the patient have the temperature 38°C?

28 Chapter 3 IP-index

It can be seen from Fig.3.1 that there are no explicit (stored) time points in the
temperature sequence when the values are equal to 38. However, if we apply
linear interpolation on this TS, there will be three time points t’, t’’ and t’’’ that
satisfy this query.

These kind of queries are termedvalue queries [86] (Section 1.2.2). We intro-
duce two notations to denote value queries— F(t’) andF-1(v’) : F(t’) denotes
the value at any time point t’, and F-1(v’) denotes the time point(s) when the
value(s) are equal to v’. Therefore, the above query would be denoted as F-

1(38).

The key to processing value queries is to find the neighbor-states where the
user-defined interpolation function can be applied. For example, the time point
t’ in Fig. 3.1 can be calculated by applying linear interpolation on the neighbor
states S1 and S2, the time point t’’ can be calculated by applying linear interpo-
lation on the neighbor states S6 and S7, and the time point t’’’ can be calculated
by applying linear interpolation on the neighbor states S10 and S11. How can we
find these neighbor states efficiently? Obviously, without a suitable index, the
only solution is to scan the whole sequence to find those states Sis where
Si.value≤ v’ < Si+1.value. This is very slow when sequences are long. For this
reason, we developed the IP-index.

3.2 IP-index

The idea of the IP-index is as follows. Each state Si in TS is viewed as a point
in the two-dimensional planet-v as shown in Fig.3.2. Each consecutive states
Si, Si+1 constitute a line segment Sgi. Then, if we can find all segments Sgi that
intersect the line v = v’, we can answer value queries. For example, in Fig.3.2,
the segments which intersect the line v = v’ are <Sg2, Sg3>. The answer to the

t

v

v’ =38

t’ t’’ t’’’

Sg1
Sg6 Sg10

S1

S6

S10

Fig. 3.1: Illustration of a value query

S2

S7

S11

linear interpolation

Section 3.2 IP-index 29

query F-1(v’) will then be:

 • If the “step-wise” constantor “discrete” assumptionis applied, then
F-1(v’) = nil, since there is no value defined between S2, S3 and S3, S4
respectively.

 • If the “continuous” or “user-defined” interpolation assumption is applied,
then F-1(v’) = <t’, t’ ’>, where t’ and t’’ are calculated by applying some
interpolation function (e.g. linear interpolation, or least square) on the states
around the segments Sg2 andSg3 respectively.

So, the problem of value queries is transformed into the problem offinding all
the intersecting segments for the line v= v’. A naive way to solve this problem
is to scan the entire TS to check if any two consecutive states Si, Si+1 “contain”
v’, i.e. if vi ≤ v’ < v i+1, or vi+1 ≤ v’ < v i. Such an algorithm, however, has the
complexity of Θ(N), whereN is the cardinality of the TS. Below we propose an
indexing technique to speed up value queries.

3.2.1 Anchor-State Sequence

If we project each line segment Sgi on the v-axis, we get non-overlapping inter-
vals Ij = [kj, kj+1), where each kj is a distinct value of vi (see k1...k4 in Fig. 3.3).
We can see that all values that belong to one interval have the same sequence of
intersecting segments (marked to the left in Fig.3.3). We propose an index,
termed theIP-index, in which each interval [kj, kj+1) is associated with all seg-
mentsSgi that span1 it. A simple illustration of the IP-index is shown in
Fig. 3.3, where we associate each interval [kj, kj+1) with the sequence of span-

1. We say a segment Sgi spans an interval Ii when the projection of Sgi on the v-axis
spans the interval Ii, i.e. if Sgi = ((ts, vs), (te, ve)) and Ii = (va, vb), thenvs ≤ va andve
≥ vb.

t

v

Sg1

Sg3
Sg2

S1

S2

S3

S4

t’ t’’

v’

Fig. 3.2: An example of a value query

30 Chapter 3 IP-index

ning segments Sgi.

Since the segments are consecutive, each segment Sgi is uniquely identified by
its starting state Si. We use Si to represent the segment Sgi in the IP-index. We
term the starting states of each segments that intersect the line v = v’ as the
anchor-states of v’ . Then, the sequence of intersecting segments can be repre-
sented as the sequence of anchor-states, which is termed theanchor-state
sequence. The anchor-state sequence of the queried value v’ is denoted as
A(v’) . An anchor-state sequence is a state sequence ordered by time.

Since each interval [kj, kj+1) is uniquely identified by its starting point kj, we
use kj to represent the interval [kj, kj+1) in the IP-index.

Suppose that k1 < k2 < ... < kj < ... are the ordered, distinct values of vi in TS.
Then each index entry Nj in the IP-index has the form (key, anchors) where

 • Nj.key = kj.

 • Nj.anchors is the anchor-state sequence for all v’ such that v’≥ kj and v’ <
kj+1. It is also denoted as anchors(kj).

For example, the anchor-state sequences for the simple TS in Fig.3.3 are:

The cardinality of an anchor-state sequence is also stored in the IP-index,

t

v

Sg1

Sg3
Sg2

k1

k2

k3

k4

S1

S2

S3

S4

<Sg1, Sg2>

<Sg2>

<Sg2, Sg3>

Fig. 3.3: Illustration of anchor-state sequences

anchors(k1) = <S1, S2>

anchors(k2) = <S2>

anchors(k3) = <S2, S3>

anchors(k4) = nil

Section 3.2 IP-index 31

denoted ascard(A(ki)). For example, in the above IP-index in Fig. 3.3, we have:
card(A(k1))=2, card(A(k2))=1, card(A(k3))=2, and card(A(k4))=0.

The reason for storing cardinality information is that it can be used in query
optimization. This will be illustrated in Chapter 8 where optimizations on
sequence queries are discussed.

3.2.2 The Limitation of the IP-index

We should point out that if the interpolation method introduces new extreme
points (and thus introduces extra segments) to the original time sequence, the
IP-index needs to be modified to include the extra segments as well. For exam-
ple, applying least square interpolation in Fig.3.4 (TS = <S1, S2, S3, S4>) leads
to some interpolated values (such as v’) in the time interval [t2, t3) exceeding
the range [v2, v3]. One way to fix this problem is to include the new extreme
point P in the IP-index, i.e., include the new segments S2P and PS3 (replacing
the old segment S2S3). Another possible solution is to replace the query F-1(v’)
by the approximate query F-1(v’-e<v<v’+e) (see Fig.3.4) so that the anchor-
state of v’ can be located. The choice of the value of e’ is dependent on the
application data. The bigger the value e’ is, the more possibility there is to
cover the extreme point P.

Fortunately, most applications assume simple forms of interpolation functions
such as step-wise constant or linear interpolation. These interpolation functions
will not introduce extreme points, thus the IP-index works perfectly well for
them. For moving average interpolation functions, a 2-point moving average is
no problem because the average of value vi and vi+1 will always be between the
range [vi, vi+1] (suppose vi < vi+1). A 3-point moving average, on the other
hand, may introduce extreme points.

t

v

v’

S1

S2

S3

S4

v’-e

v’+e P

Fig. 3.4: The limitation of the IP-index

t2 t3

32 Chapter 3 IP-index

3.3 Algorithms

This section presents the insertion and search algorithms of the IP-index.

3.3.1 Insertion Algorithm

Suppose that in Fig.3.3 the first three states S1, S2, and S3 have already been
inserted into the IP-index. Now let us see how to insert the new state S4.
According to the definition of the IP-index (Section 3.2), we already have three
index entries with keys v1 (= k2), v2 (= k1), and v3 (= k4) respectively, and we
also have anchors(k1) = <S1, S2>, anchors(k2) = <S2>, and anchors(k4) = nil.
To insert the state S4 = (t4, v4) we need to do the following:

1. The new state S4 creates a new index entry with the key v4 (= k3). This inex
entry divides the existing interval [k2, k4) into two intervals, [k2, k3) and
[k3, k4).

The segments that span the new interval [k2, k3) are the same as the seg-
ments that spanned the old interval [k2, k4) (which are already present in the
IP-index), i.e., anchors(k2) = <S2> stay unchanged.

The segments that span the new interval [k3, k4) are the segments that
spanned the old interval [k2, k4) plus the new segment Sg3, i.e.,
anchors(k3) = anchors(k2) +1 S3 = <S2> + S3 = <S2, S3>.

2. For all the entries in the IP-index with keys inside the interval [k3, k4) (in
Fig. 3.3 there happens to be no such key), append S3 to the end of their asso-
ciated anchor-state sequences. This is because Sg3 spans all the sub-inter-
vals inside the interval [k3, k4).

The result of the insertion conforms with Fig.3.3.

The pseudo-code for the IP-index insertion is given in Fig.3.5. The notation
and functions used in the algorithm are:

 • tree — the index tree (e.g. a B+-tree) storing the IP-index.

 • N — an index entry in the IP-index tree.

 • ts — the array storing the time sequence.

1. We use ‘+’ to denote adding a new element to the end of a sequence.

Section 3.3 Algorithms 33

 • Si = (ti, vi) — the new state to be inserted into the IP-index.

 • insert_ts(ts, i, Si) — inserts the state Si into arrayts where ts[i]=(ti, vi).

 • exist_key(tree, vi) — returns TRUE if there already exists an index entry in
the IP-index with the key vi.

 • get_lower(tree, vi) — searches the IP-index tree to find the index entry NL
where NL.key= max{Ni.key | Ni.key ≤ vi, 1 ≤ i ≤ size(tree)}.

This function is used to find the existing interval which needs to be split into
two parts; e.g. in Fig.3.3,get_lower(tree, v4).key = k2. The function returns
nil if no index entry is found.

 • insert_entry(tree, k) — inserts a new index entry into the IP-index tree with
key = k.

 • N.anchors — the anchor-state sequence associated with the index entry N.

 • N.anchor_card — the cardinality of N.anchors.

 • append(seq, Si) — appends the state Si at the end of the state sequenceseq.

3.3.2 Search Algorithm

To search the IP-index is to find the index entry which records the anchor-state
sequence of the value v’, i.e., we need to find the index entry NL where

NL.key= max{ Ni.key | Ni.key ≤ v’, 1 ≤ i ≤ size(tree)}

Then NL.anchors contains the anchor-state sequence for the value v’.

How to find the index entry NL? The search algorithm is actually dependent on
how the IP-index is implemented. Suppose the IP-index is implemented as a
B+-tree, then the entry NL can be found by using the “index scan” facility
which is provided by most B+-tree implementations. An index scan opens a
“cursor” to indicate the index entries that are inside a specified key range
(lower_bound, upper_bound). If only upper bound is specified, the lower bound
can be denoted asnil. The conditions for the upper_bound or the lower_bound
can be specified as ‘<‘, ‘>=’, etc. The pseudo-code of the IP-index search algo-
rithm for a B+-tree implementation is given in Fig.3.6. The notations used in
the algorithm are similar to those used in Fig.3.5. The new functions are
explained as follows:

 • open_inverse_index_scan(tree, b1, b2, c1, c2) — performs an inverse index
scan with lower_boundb1, upper_boundb2, lower_bound conditionc1,
upper_bound conditionc2. This function opens a “cursor” to indicate the

34 Chapter 3 IP-index

Fig. 3.5: The IP-index insertion algorithm

insert_ip(tree, ts, ti, vi):

Si = (ti, vi)

insert_ts(ts, i, Si)

/* insert the state into the array which stores the time sequence */

if not exist_key(tree, vi)

NL = get_lower(tree, vi) (part 1)

if NL = nil

N = insert_entry(tree, vi)

N.anchors =nil

N.anchors_card = 0

else

N = insert_entry(tree, vi)

N.anchors= NL.anchors

N.anchors_card= NL.anchors_card

/* insert a new index entry, copy the anchor-state
sequencefrom the “lower” index entry */

endif

endif

if i > 1

/* if not the first state in the time sequence */

for each entry Nj where Nj.key lies inside (part 2)

the interval (min(vi-1,vi), max(vi-1,vi))

Nj.anchors =append(Nj.anchors, Si-1)

Nj.anchors_card = Nj.anchors_card + 1

/* add the new anchor state to the corresponding anchor
state sequences*/

end for each

endif

Section 3.4 IP-index versus the Precision of vis 35

current index entry which is inside the specified range. This function needs
to be activated by the next function next(iter) in order to get the first ele-
ment.

 • next(iter) — retrieves the next index entry that is inside the range (specified
by the cursoriter). The first call of this function retrieves the first index
entry inside the specified range.

Fig. 3.6: The IP-index search algorithm

The C++ code corresponding to this pseudo-code (for the implementation on
SHORE [22]) can be found in the appendix.

3.4 IP-index versus the Precision of vis

An interesting observation is that the insertion of the IP-index can be made
very fast regardless of the growing of the TS, if the precision of values in the
TS is limited.

3.4.1 How Does the Precision of vis Affect the IP-index?

The algorithm inFig. 3.5 contains two parts. Algorithm analysis shows that Part
1 takes Θ(LogM) time (M is the total number of index entries in the IP-index)
since they are actually IP-index tree search operations. Furthermore, Part 2
takesm* append_time wherem is the number of intervals which are spanned by
the new segment and theappend_time is the time taken to add the new state to
the end of an anchor-state sequence. Theappend_time can be madealmost con-
stant by using a data structure which supports fast appending (for example, the
multi-level dynamic array structure in Section 7.3.2).

Furthermore, if we limit the parametersM andm, we can reduce the insertion
time of the IP-index. This can be achieved by limiting the precision of the
measured values. The reason is: for a time sequence with range =R and preci-

search_ip(tree, v’):

iter = open_inverse_index_scan(tree, nil, v’, nil, ‘<=’);

N = next(iter);

/* find the first index entry that is inside the range */

return N.anchors;

lower bound upper bound

36 Chapter 3 IP-index

sion =P in the value domain, the number of index_entries will be less thanR /
P. So, the lower the precision (the larger the value ofP) is, the smaller the value
of M andm will be. Thus, we canreduce the insertion time by limiting the pre-
cision of the values. This speculation will be verified by experiments in Chapter
4.

The above observation is practical since 1) normally measured time sequences
have a limited range on the value domain, 2) the original precision of the meas-
ured data can always be limited due to errors and uncertainty in measurements.
Furthermore, some applications do not need very high precision. For example,
when measuring temperatures of a patient, the value range is the temperatures
that the human body can possibly be alive at, and at a precision that represent
changes that affect the well-being of the patient. Therefore, even if the ther-
mometer used to measure the temperature of a patient has the precision of
0.001°C, we can still limit the precision to 0.1°C, which will both improve the
performance of the IP-index and still be reasonable for the application.

The conclusion is that the insertion of the IP-index can be madeefficient
regardless of the size of the time sequences. This is done by limiting the preci-
sion of the values in the time sequence.

Related work by Lum et al. [89] suggested a “linked list” data structure to store
historical data. It pointed out that an additional access path (a secondary index)
for the linked list is needed to support fast random access of elements in this
linked list (to avoid scanning). The IP-index is perfect for this purpose. Lum et
al. [89] also mentioned that when the index tree grows too large, the values can
be grouped into intervals. For example, all values between 0 and 5 have index
value 1, and 5 to 10 have index value 2, etc. This is similar to our idea of limit-
ing the precision of values (in order to limit the size of the IP-index tree).

From the above discussions we can see that the IP-index is not suitable for
some unusual time sequences, e.g. periodic time sequences withunlimited pre-
cision, or signals which oscillate with anincreasing amplitude over time
(which makes theM parameter large). It is also not suitable for those time
sequences with many “big jumps” in vis (since this will make the parameterm
large). Fortunately, most time sequences from real applications do not have
these properties.

3.5 Comparison with a Conventional Secondary Index

This section explains why the IP-index is needed even though conventional sec-
ondary indexes are available. The reason why the IP-index is compared with
conventional secondary indexes is that the IP-index is essentially a secondary
index as well. A secondary index is a “nonclustering index”, as defined in

Section 3.5 Comparison with a Conventional Secondary Index 37

[118]. TSs are normally clustered by time stamps, not by values. Therefore, all
indexes on the value domain of a TS are considered to be secondary indexes.

Suppose that Fig.3.7 represents a patient’s temperature reading sequence (TS),
andlinear interpolation is assumed to transform the TS into a continuous func-
tion. A conventional secondary index on the value domain will use the distinct
values of vis as keys kj and record all the (ti, vi) pairs where vis equal to the key
kj. By contrast, the IP-index associates the keys kjs with their anchor-state
sequences (Section 3.2.1). Let us compare the IP-index with the conventional
secondary index in dealing with the following value queries:

1. When did the patient have the temperature 38°C?

A conventional secondary index will return nil since there are noexplicit
values equal to 38. By contrast, by using the IP-index we will get <t’, t’’>.

2. When did the patient have the temperature 39°C?

A conventional index will only return t4 (suppose v4 = 39), while the correct
answer (if we want to support the interpolation assumption) should include
an implicit point as well, that is between S5 and S6 (marketed as a cross in
Fig. 3.7).

3. During what time period did the patient have a temperature higher than
38°C (i.e., have a fever)?

By using the IP-index, this query will return the time interval (t’, t’’). There
is no way to return this interval by using conventional indexes since t’ and
t’’ are implicit.

Now let us drop the “continuous” assumption and assume that the time
sequence is discrete. Then the answer to this query would be [t3, t6], where
no implicit time points are involved any more. It seems that the conventional
secondary index would work now. Well, it returns a set of discrete states

t

v

t’ t’’

S2

S6S3

S4
S5

S7

v=39

v=38

an implicit answer

Fig. 3.7: Comparing the IP-index with a conventional secondary index

linear interpolation

38 Chapter 3 IP-index

{S3, S4, S5, S6} (since these states have values greater than 38). Grouping
these states into the time interval [t3, t6] is not a trivial task, especially when
the answer containsseveral intervals, or in the situation when the time
sequence is large.

To conclude, the IP-index has the following advantages over a conventional
secondary index:

1. The IP-index supports not only explicit values but also implicit values. This
is achieved by the concept of the anchor-state sequences, A(v’).

2. The IP-index keeps theordering semantics of the original time sequence.
The Sis in the A(v’) are ordered by time as they are in the original time
sequence. A conventional secondary index destroys the ordering of the orig-
inal TS.

3. For range queries such as F-1(v>v’), the IP-index is essential for efficiency
even when the TS is viewed asdiscrete.

3.6 Related Indexes

Related indexes include temporal indexes, spatial indexes, and computational
indexes. This section provides an overview of relevant indexing techniques and
compares them with the IP-index.

3.6.1 Temporal Indexes

In the area of temporal databases [134], several indexing methods have been
proposed to speed up temporal queries (a short overview of temporal databases
can be found in Section 9.4). The common aspect of temporal indexes and our
IP-index is that they all deal with indexing of temporal data. But there is a
major difference, i.e., temporal indexes aim at indexing the time domain of
temporal data, while the IP-index aims at indexing thevalue domain. Neverthe-
less, it is highly interesting to compare temporal indexes with our IP-index.

Elmasri et al. [47] propose an index structure termed the Time Index. The Time
Index supports efficient retrieval of temporal data based on (valid) timestamps
(the concept ofvalid timestamps can be found in [67]). A set of indexing points
is created based on the starting and ending points of valid time intervals and
these points are used to build an indexing structure. At each indexing point, all
object versions that are valid during that point can be retrieved via a bucket of
pointers. The Time Index is implemented by a B+-tree. The differences between
the Time Index and a regular B+-tree is that the Time Index is based on objects
whose search values areintervals rather than points.

Section 3.6 Related Indexes 39

 • The similarity of the Time Index and our IP-index is that they both view
temporal operations asinterval intersection problems. However, in the Time
Index the interval intersection is on the time domain while in the IP-index
the interval intersection is on the value domain.

In [47], another index named theMonotonic B+-tree is proposed. The Mono-
tonic B+-tree differs from the Time Index in the sense that it assumes time
grows monotonically (it deals with transaction time), which allows for better
space utilization and better search performance.

In [69] some indexing methods for temporal aggregates are proposed. For unor-
dered relations, theAggregation Tree was introduced to build a binary tree for
the constant intervals to support efficient aggregate operations. For k-ordered
relations, the k-ordered Aggregation Tree was introduced as a variation of the
Aggregation Tree with the ability of garbage collection of tree nodes.

 • The similarity of the Aggregation Tree compared to our IP-index is that they
both transform temporal queries intointerval search problems. However,
the Aggregation Tree deals with interval aggregation on the time domain
while the IP-index deals with interval range search on the value domain.

Gunadhi and Segev [58] present theAP-Tree which is a hybrid of an ISAM
index and a B+-tree. An AP-tree aims at indexing interval timestamps for
append-only databases. It supports event-join optimization and temporal que-
ries. An AP-tree is different from a regular B+-tree in several respects: 1) If the
tree is of degree d, then there is no constraint that a node must have at leastd/
2 children, 2) there is no node splitting when a node gets full, and 3) the on-
line maintenance of the tree is performed by accessing the right-most leafs.

The difference between the AP-tree and the Monotonic B+-tree is that the
Monotonic B+-tree also takes care of migration of data (migration to optical
disks). Nonetheless, they are very similar in design.

 • The similarity between the AP-tree and the IP-index is that both support
append-only databases. However, the AP-tree indexes on the time domain
while the IP-index indexes on the value domain.

Shen et al. [113] introduce theTP-index (Time Polygon index) to support tem-
poral operations. The TP-index maps the temporal data into a two-dimensional
temporal space where the data can be clustered based on time.

3.6.2 Spatial Indexes

Efficient search of spatial data is required in geo-data applications or computer-

40 Chapter 3 IP-index

aided design. Traditional indexing methods are not well-suited for data objects
located in multi-dimensional spaces. For example, structures based on exact
matching of values, such as hash tables, are not useful in spatial search prob-
lems since a range search is required. Structures using one-dimensional order-
ing of key values, such as B-trees and ISAM indexes, do not work for spatial
data since the search space is multi-dimensional.

Guttman [61] proposed a dynamic indexing structure named theR-tree to sup-
port efficient range search of spatial data. The main assumption of an R-tree is
that the objects to be indexed can be modelled by means of the smallest rectan-
gles, called Minimum Bounding Rectangles (MBRs), that contain them. R-trees
are multi-dimensional generalizations of B-trees. They are paginated and bal-
anced. The leaf nodes point to the actual data records. Non-leaf nodes either
point to leaf nodes or represent a super-MBR that encompasses other super-
MBRs or MBRs. To search for an MBR that overlaps (intersects with) a refer-
ence MBR in the R-tree, one starts from the root traversing each sub-tree that
intersects with the reference MBR until the leaf node (possibly several) is
reached. Each entry is then compared to the reference MBR and is returned as
part of the response if it intersects with the reference MBR.

The R+-Tree [108] and R*-Tree [18] are both variants of the original R-tree.
They are both superior to the original R-tree structure. The R+-Tree “clips” the
MBR in such a way that no super-MBR has any overlap with any other super-
MBR in the internal nodes of the structure. This enhances query-processing
time (i.e., the number of tree nodes accessed) significantly. The R*-tree takes a
different approach. The main idea of the R*-Tree is: whenever a node split is to
occur, delete some of the nodes about to split and re-insert them. This will
avoid splitting while ensuring good properties of the R-tree, hence improving
the performance considerably.

In [72] a new indexing technique termedSR-Tree (Segment R-Tree) was pro-
posed. A SR-tree is a combination of a Segment Tree [19] and an R-tree. The
SR-Tree is used to index spatial data composed of multi-dimensional intervals
that have non-uniform length distributions. It was shown that the SR-Tree
improves the performance over conventional indexing techniques for both rec-
tangle and line segment data.

 • The similarity of the SR-Tree and the IP-index is that they both deal with
spatial search of multi-dimensional intervals.

 • We do not adapt an R-tree or a SR-Tree directly in the problem of value que-
ries since the segments in time sequences (those Sgi in Fig. 3.3) have the
special property that the end point of Sgi is the starting point of Sgi+1. This
property makes our index algorithmmuch simpler than that of the R-tree or
SR-Tree. In other words, our indexing method can be implemented on top of
any regular one-dimensional ordered index such as a B-tree, while an R-tree

Section 3.6 Related Indexes 41

requires a complicated algorithm for handling boundary conditions between
regions.

3.6.3 Indexes in Computational Geometry

In the area of computational geometry, there are several data structures for
indexing interval data. They are all based on variations of binary search trees.
Examples are theSegment Tree [19], theInterval Tree [43], thePriority Search
Tree [91], and the Persistent Search Tree [100]. Most of these data structures
are designed with the assumption that the entire structure is contained in main
memory.

 • We do not adapt the above indexing structures in the problem of value que-
ries since the segments in time sequences (the Sgi in Fig. 3.3) have the spe-
cial property that the end point of Sgi is the starting point of Sgi+1 (i.e. Si+1).
This property can be used to make our index algorithm simpler than that of
the Segment Tree or Interval Tree.

 • Furthermore, the Segment Tree and Interval Tree are both just for main-
memory implementation, while our IP-index can be implemented in disk-
resident DBMSs as well.

3.6.4 SIQ-Index for Value Queries

Interestingly enough, inspired by our work of the IP-index [82], Nanopoulos
and Manolopoulosa [93] propose a similar approach to deal with value queries.
In [93], a time sequence is divided into sub-sequences and an R*-tree is used to
index the MBRs (minimum boundary regions) of each sub-sequences. In this
way the number of index entries can be made smaller than that of the IP-index.
The index in [93] is named theSIQ-index.

The direct advantage of the SIQ-index [93] is that the space usage will be
smaller than of the IP-index because there are fewer index entries. This also
leads to shorter index insertion time [93]. On the other hand, the disadvantage
is that the index search time will be slower. There are two reasons for this: 1)
There might be more than one leaf node in the R*-tree need to be searched; 2)
The sub-sequences found by the SIQ-index need to be scanned to check where
the intersecting segments really occur [93]. If the sub-sequence is long, this
may lead to more than one disk access to read in the entire sub-sequence, not to
say the time spent in scanning in main-memory. On the other hand, by using the
IP-index, we guarantee one disk access for one result because every anchor-
state records one intersecting segment (Section 3.2.1).

Another advantage of the IP-index over the approach of [93] is that the IP-

42 Chapter 3 IP-index

index is based on the B+-tree structure. B+-trees are available in most commer-
cial database systems. This means one can implement the IP-index on available
database systems without the need to modify the system. On the contrary, R*-
trees are not available in most current database systems. This leads to complex-
ity in implementing the SIQ-index.

3.7 Generalized IP-index

Note that the idea of the IP-index can be generalized to include any forms of
pre-processing in the time sequences (such as dividing the sequence into sub-
sequences or limiting the precision of vis) and index on the transformed time
sequences. We can also keep the original precision of the values in the time
sequences and use lower precision of values as keys in the IP-index. In this way
the index size can be made smaller while not affecting the original precision of
values in the TS.

3.8 Summary

This chapter introduces the idea of theIP-index based on thetime sequence
data model. The central concept is theanchor-state sequence, which records
the intersecting segments for the queried value v’. The insertion and search
algorithms of the IP-index were presented. The important relationship between
the performance of the IP-index and the precision of values in the TS were
investigated. It was shown that the insertion and search time of the IP-index can
be made very fast regardless of the growing of the TS. We also introduced the
generalized form of the IP-index which includes any forms of preprocessing of
the TS (such as dividing the sequence into sub-sequences or limiting the preci-
sion of vis) and index on the transformed TS.

The IP-index was compared to conventional secondary indexes to show why
conventional secondary indexes cannot deal with the problem of value queries.
The IP-index was also compared to related indexes in the area of temporal data-
bases, spatial databases and computational geometry.

Chapter 4

Insertion/Search Time and
Space Usage

As pointed out in Chapter 1, a good index is expected to have small insertion/
search time, and space efficiency. In this chapter, we measure how the insertion
and search time of the IP-index grows with the cardinality of time sequences.
The measurements are made in both a main-memory and a disk-resident data-
base system using both synthetic and real-life time sequences. The space usage
of the IP-index is also investigated to show that it is practical to build the IP-
index for large time sequences.

4.1 Performance in a Main-Memory Database System

This section presents the insertion and search time of the IP-index on a main-
memory database system AMOS [49].

4.1.1 Implementation Notes

To evaluate how the IP-index performs in a main-memory database system, we
have implemented the IP-index in an object-relational main-memory database
system AMOS [49]. A time sequence TS was implemented as an arrayts, where
ts[i] = (ti, vi). The IP-index was implemented on top of anAVL-tree [2]. The
reason why we chose the AVL-tree is that it has small re-balancing time [2].
The reason why we need to consider re-balancing time is that the keys vi (Sec-
tion 3.3) do not arrive in order, which means that the tree needs to be re-bal-

44 Chapter 4 Insertion/Search Time and Space Usage

anced constantly during insertion. Therefore, each index entry in the insertion
algorithm (Fig. 3.5) corresponds to a node in the AVL-tree. The anchor-state
sequence was implemented as a linked list of integers (with a pointer to the end
of the list in order to achieve fast appending). These integers denote indices of
the array ts. Fig. 4.1 illustrates the implementation of the IP-index for the
example TS in Fig. 3.3, i.e.,

Fig. 4.1: The AVL-tree implementation of the IP-index in Fig. 3.3

4.1.2 Time Sequences Used in the Measurements

We measured1 the insertion and search time of the IP-index (using the AVL-tree
implementation) in AMOS [49]. The following three time sequences (cardinal-
ity = 10K) were used in the measurements.

1. A simulated periodic sequence, sin(t/100) (t = 1, 2...10K), plotted in
Fig. 4.2.

1. All measurements were made on an HP9000/710 with 32M main memory and running
HP/UX.

anchors(k1)=<S1, S2>

anchors(k2)=<S2>

anchors(k3)=<S2, S3>

anchors(k4)=nil

k2

k1

k3

k4

<S2>

<S1, S2>

<S2, S3>

nil

(t1, v1) (t2, v2) (t4, v4)(t3, v3)
S1 S2 S3 S4 The array ts

1 2 3 4 The indices of ts

The AVL-tree

anchors=

anchors=

anchors=

anchors=

Section 4.1 Performance in a Main-Memory Database System 45

The reason why we chose this time sequence is that it represents strictly
periodic time sequences. Since most application time sequences are peri-
odic, we chose to test the IP-index on a strictly periodic time sequence to
see how it performs.

2. A time sequence from a real-life application [68] (measurements of the
pressure in a fluidized bed), plotted in Fig.4.3.

The reason for choosing this time sequence is to see how the IP-index per-
forms for real-life time sequences.

3. A simulated time sequence with a largely monotonic trend (notstrictly
monotonic), plotted in Fig.4.4.

The reason for choosing this time sequence is to see how the IP-index per-
forms for non-periodic time sequences.

4.1.3 Insertion Time

Fig. 4.5 and Fig.4.6 show the insertion time of the IP-index for the two time
sequences shown in Fig.4.2 and Fig.4.3 respectively. The insertion time is
measured as the sequences grow.

 • The curves labelled “Original Value Insert” show the insertion time of the
IP-index. For the pressure data the value range is [-6, 10] and the precision
is 10-6. For the sine data the value range is [-1, 1] and the precision is 10-6.

Fig. 4.2: Sine Data

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F(

t)

time (t)

46 Chapter 4 Insertion/Search Time and Space Usage

It can be seen that the insertion time increases linearly with the size (cardi-
nality) of the sequence. This is because the parametersM andm (see Section
3.4) both grow with the size of the sequence.

 • For the curves labelled “Limited Precision Insert” the precision of the val-

Fig. 4.3: Pressure Data

-6

-4

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F(

t)

time (t)

Fig. 4.4: Monotonic Trend Data

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F(

t)

time (t)

Section 4.1 Performance in a Main-Memory Database System 47

ues were limited to 10-3 for both TSs. It can be seen that the insertion time
becomes constant after the total number of index entries has been inserted
into the IP-index. This is because:

1) The number of nodes in the AVL-tree does not grow any more; only the

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

tim
e

t(n
) [

m
s]

sequence size

Original Value Insert
Limited Precision Insert

Fig. 4.5: Sine Data Insertion

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

tim
e

t(n
) [

m
s]

sequence size

Original Value Insert
Limited Precision Insert

Fig. 4.6: Pressure Data Insertion

48 Chapter 4 Insertion/Search Time and Space Usage

anchor-state sequence associated with each node grows with the time
sequence.

2) We use a linked list structure to implement the anchor-state sequence,
which makes the parameterappend-time (see Section 3.4) constant.

3) The limited precision ensures that them parameter (number of intervals
spanned by the new segment, as discussed in Section 3.4) has an upper limit,
which leads to an upper limit on the insertion time as well.

The conclusion is that for a periodic time sequence with a limited range and
precision on the value domain, an upper bound on the IP-index insertion time
can be achieved.

4.1.4 Search Time

In Fig. 4.7, we compare the approaches of using the IP-index or linear scanning
TS to find the anchor-state sequence A(v’) for some randomly generated value
v’ . The measurements were performed on the sine sequence as plotted in
Fig. 4.2. The difference between the IP-index search time and the linear scan-
ning time was measured as the sequence grows. The results show that differ-
ence between using the IP-index or not is dramatic. Note that the results are
displayed inlogarithmic scale since the difference is too great to display on a
linear scaled axis. (Note that the curve labelled “IP-index Search” in Fig.4.7 is
the same as the one labelled “Original Value Search” in Fig.4.8, they do not
look the same because they are displayed on differently scaled axes.)

1

10

100

1000

10000

1000 10000

tim
e

t(n
) [

m
s]

sequence size

IP-index Search
Scanning Time Sequence

Fig. 4.7: Compare the IP-index with Linear Scanning

Section 4.1 Performance in a Main-Memory Database System 49

Fig. 4.8 and Fig.4.9 show the IP-index search time for two periodic TSs. After
every 1000 insertions, the IP-index search time for A(v’) for some randomly
generated value v’ were measured. The results show that the search time is log-
arithmic due to the AVL-tree implementation (see the curves labelled “Original
Value Search”). However, in the case of “limited range and precision”, the IP-
index search time is bounded regardless of the growing of TS (see the curve
labelled “Limited Precision Search”). The reason is the same as in the insertion
case: the number of nodes (the parameterM) of the AVL-tree does not increase
after all index entries have been inserted, only the anchor-state sequences asso-
ciated with each node grow, so the search time for A(v’) stays constant at
Θ(LogM) (whereM stays constant).

4.1.5 Largely Monotonic Time Sequences

Fig. 4.10 shows the insertion and search time of the IP-index for the largely
monotonic trend sequence plotted in Fig.4.4. It can be seen that both the inser-
tion and search time are approximately logarithmic to the cardinality of the TS.
This is due to the AVL-tree implementation. In this case, since the value range
cannot be limited (the value range grows with the TS), the “upper bound” on
insertion and search time cannot be achieved.

Note that astrictly monotonic time sequence does not need an IP-index. This is
because the value domain is then monotonic just as the time domain is, which
means that conventional indexes on the time domain can be applied to the value

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000

tim
e

t(n
) [

m
s]

sequence size

Original Value Search
Limited Precision Search

Fig. 4.8: Sine Data Search

50 Chapter 4 Insertion/Search Time and Space Usage

domain.

To conclude this section, we have shown that the IP-index exhibits good per-
formance in a main-memory DBMS.

Fig. 4.9: Pressure Data Search

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000

tim
e

t(n
) [

m
s]

sequence size

Original Value Search
Limited Precision Search

Fig. 4.10: Monotonic Trend Data

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000

tim
e

t(n
) [

m
s]

sequence size

AVL-tree Insert
AVL-tree Search

Section 4.2 Performance in a Disk-Resident Database System 51

4.2 Performance in a Disk-Resident Database System

We also measured the performance of the IP-index in the disk-resident database
system SHORE [22]. SHORE is an object-oriented database system. The reason
why we did not choose a relational DBMS is that, as pointed out by Stone-
braker [131], it is not a good choice to implement a time sequence as a rela-
tional table due to time and space inefficiency.

4.2.1 Implementation Notes

The reason why we chose SHORE is that recent work by Seshadri et al. [110]
demonstrates that a SHORE array of records is a good choice for implementing
sequential data. Therefore, we chose to implement a time sequence TS as an
array of records (ti, vi) in SHORE. For simplicity (without affecting the per-
formance) we use integersi (4-bytes) to store the time stamp ti (instead of using
the SQL timestamp value such as “1997/20/01”). The vis are stored as 4-byte
floating point numbers.

The IP-index was implemented as a B+-tree in SHORE. The keys in the B+-tree
are the floating numbers vis and each key is associated with a pointer to its
anchor-state sequence. The anchor-state sequences were implemented as arrays
of integers (not arrays of records (ti, vi)). For example, if A(v’) = <S1, S6, S10>,
then <1, 6, 10> (an array of integers) is stored. There are two reasons for this:
1) We only store (ti, vi) in the original time sequence array. It will be redundant
to store (ti, vi) in every A(v’). 2) The anchor-states only indicate the positions in
the TS where to applyifn. To applyifn, all neighbour states need to be retrieved
from TS (so it does not help if (ti, vi) is stored duplicated in A(v’)).

Since anchor-state sequences are expected to be of dynamic length, these arrays
were implemented as SHORE large objects which can grow arbitrarily large.
For further details of implementations, please refer to the appendix— SHORE
Implementation Notes. All measurements were made on a SPARC 20 machine
with 64M main memory. The SHORE buffer pool size was set to 40 8K pages.

4.2.2 Time Sequences Used in the Measurements

Time sequences used in the measurements were the same as in the last section:
1) the sine sequence (Fig.4.2): a simulated time sequence sin(t/100) (t = 1,
2,...10K) with the value range [-1, 1] and the precision of 10-6; 2) the pressure
sequence (Fig.4.3): the time sequence from a real-life application representing
the measurements of the pressure in a fluidized bed. The value range was [-6,
10] and the precision was 10-6. The cardinality of both time sequences was
10K. The insertion and search time of the IP-index were measured as the

52 Chapter 4 Insertion/Search Time and Space Usage

sequences grow.

In the “limited precision” measurement, both time sequences were rounded to a
precision of 10-3.

4.2.3 Insertion Time

Since all SHORE operations are performed insidetransactions, we had to
decide where to “commit” when building the IP-index for large time sequences.
For the time sequences with size 10K, it is not possible to do the 10K insertions
inside one transaction (the buffer pool is not big enough). We chose to divide
each sequence into size = 100 sub-sequences (thus there will be 100 sub-
sequences). The insertion of the sub-sequences [n*100+1, n*100+100] (n = 0,
1, 2...) was then done inside a transaction. The reason why we chose size = 100
as the size of sub-sequences (i.e., as the amount of work done in one transac-
tion) is that: 1) For size < 100 it will be too slow to build the IP-index for the
whole TS since we have to commit very frequently; 2) For size > 100 much
work will be lost if the transaction is aborted. Also it needs more log space.
(The sub-sequence size of 100 was chosen approximately to satisfy the above
constraints. It does not have to be exactly 100, of course.)

The results are shown in Fig.4.11 and Fig.4.12.

Original Value Insert
Limited Precision Insert

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

140

160

180

sequence size

av
er

ag
e

in
se

rti
on

 ti
m

e
[m

s]

sinus data

Fig. 4.11: Sine Data Insertion

Section 4.2 Performance in a Disk-Resident Database System 53

4.2.4 Search Time

To measure how the IP-index search time grows with the cardinality of the TS,
we measured the average search time for A(v’) for some randomly generated
value v’ after every [n*500+1, n*500+500] (n = 0, 1, 2...) sub-sequence was
inserted into the IP-index. The results are shown in Fig.4.13 and Fig.4.14.

Fig. 4.12: Pressure Data Insertion

Original Value Insert
Limited Precision Insert

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

450

sequence size

av
er

ag
e

in
se

rt
io

n
tim

e
[m

s]

real data

Fig. 4.13: Sine Data Search

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

sequence size

av
er

ag
e

in
se

rt
io

n
tim

e
[m

s]

sinus data

Original Value Search
Limited Precision Search

54 Chapter 4 Insertion/Search Time and Space Usage

The measurement results show that the performance of the IP-index in SHORE
is similar to the performance in the main-memory implementation (Section
4.1). That is: for original precision the insertion and search time grows with the
size of the sequences; for limited precision the insertion and search time stays
almost constant.

Note that several parameters affect the resulting measurement figures. Among
these parameters there are the buffer pool size, the log space of the SHORE ser-
ver, and the number of insertions in one transaction. Finally the operating sys-
tem (I/O processing) and the different versions of SHORE release will also
affect the measurement results.

4.3 Space Usage

After showing that the IP-index has small insertion and search time, we should
investigate space usage of the IP-index, especially forlarge time sequences. Is
it practical to build IP-indexes for large time sequences with regard to space
usage and efficiency issues? Recall that the IP-index contains an index tree and
many anchor-state sequences. We investigated how the size of the IP-index tree
(the number of index entries) and the lengths of the anchor-state sequences,
i.e., the cardinalities of A(v’)s (denoted as card(A(v’))s), grow with the cardi-
nality of the TS.

Fig. 4.14: Pressure Data Search

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

sequence size

av
er

ag
e

se
ar

ch
 ti

m
e

[m
s]

real data

Original Value Search
Limited Precision Search

Section 4.3 Space Usage 55

4.3.1 Time Sequences Used in the Experiments

The time sequence used in this experiment was the real-life pressure sequence
in Fig. 1.4 (Chapter 1), with the cardinality of 100K and the value range (-0.5,
2.5).

The first 1K, 10K and 100K of the pressure sequence were used in the measure-
ments in order to vary the cardinality of the TS. The precision of values (vis)
was varied from 10-1, 10-2 to 10-3. An IP-index was built for every combination
of the above variations (e.g., the first 1K sequence with precision 10-1, the first
10K sequence with precision 10-1, etc.).

4.3.2 Experimental Results

The size of the IP-index (the index tree) with respect to the cardinality of the
TS and the precision of vis are plotted in Fig.4.15. The cardinality of A(v’)
with respect to the cardinality of the TS and the precision of vis are plotted in
Fig. 4.16.

Fig. 4.15 shows that: 1) the lower the precision is, the smaller the index tree
will be; 2) for a specific value precision, the size of the IP-index tree (the
number of index entries) does not grow much with the cardinality of the TS.
(For the precision 0.1 and 0.01 the index tree size stays constantly small regard-
less of the growing of the time sequence.) The reason for the slow growing of

Fig. 4.15: How the size of the index tree grows with the cardinality of TS

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

200

400

600

800

1000

1200

size of TS

si
ze

 o
f t

he
 in

de
x

tr
ee

precision 0.1
precision 0.01
precision 0.001

56 Chapter 4 Insertion/Search Time and Space Usage

the index tree is that there are repeated values in a non-monotonic time
sequence. For a specific precision and value range of vis, there is a limited
number of possible keys in the index tree (Section 3.4). This investigation
shows that it is practical to build IP-indexes for large time sequences with
regard to space usage. Meanwhile, since the index tree will generally be small,
searching the IP-index to find A(v’) will be very fast.

Fig. 4.16 shows how the card(A(v’)) grows with the cardinality of TS. For
every precision the maximum card(A(v’)) was plotted as the worst case behav-
iour. Maximum card(A(v’)) occurs when v’ = -0.25 where the values are very
noisy, as can be seen from Fig.1.4. The card(A(-0.25)) is 4945 for the 100K
pressure sequence, resulting in the ratio of 4945/100K = 5% (worst case). This
only happens when the values are very noisy around v’. In most applications
the time sequence will generally have much shorter A(v’)s, especially in the
case of monotonic trend time sequences such as stock prices.

Fig. 4.16 shows that: 1) the lower the precision is, the smaller the maximum
card(A(v’)) will be; 2) the maximum card(A(v’)) grows linearly with the cardi-
nality of the pressure sequence. This is again because of the periodic property
of the pressure sequence. The longer the TS is, the more number of segments
will probably cross the line v = v’ (Section 3.2). This indicates that A(v’) will
normally grow with the size of TS for any value v’.

We also measured thetotal space usage of the IP-index (the index tree plus all

Fig. 4.16: How the maximum cardinality of A(v’)s grows with
the cardinality of TS

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

1000

2000

3000

4000

5000

6000

size of TS

m
ax

im
um

 le
ng

th
 o

f a
nc

ho
r−

st
at

e
se

qu
en

ce
s

precision 0.1
precision 0.01
precision 0.001

Section 4.3 Space Usage 57

anchor-state sequences) for the pressure sequence in Fig.1.4. The precision of
values was set to 0.01. The results are: the total number of anchor-state
sequences is 262 (i.e., there are 262 index entries in the IP-index), the sum of
the cardinalities for these A(v’)s is 69663, the average of card(A(v’)) is 266
(with the maximum of card(A(v’)) 4965). Therefore, the sumof card(A(v’))s is
approximately 70% (69663/100,000) of the cardinality of the original TS. In
other words, the total space used to store all A(v’)s in the IP-index is 70% of
the space used to store the TS. This indicates that the total space overhead of
the IP-index is small (at least in this case). Of course the ratio ‘70%’ is depend-
ent on several factors such as the characteristics of the sequence (how the val-
ues go up and down in the sequence), and the precision of the values (0.01 in
the above measurement). The total space overhead of the IP-index for different
application data is an interesting topic for future work.

Some readers may wonder why the sum of card(A(v’)) is even smaller than the
cardinality of TS in this case. The reason is: limiting the precision of vis in TS
results in some vi equal to vi+1 (where for the original precision vi ≠ vi+1).
Recall in Section 5.2.1 that horizontal segments (vi = vi+1) are not recorded in
the IP-index. Therefore, limiting precision will make A(v’) shorter (but it will
not affect the cardinality of the original TS). That is why the sum of
card(A(v’)) is even smaller than the cardinality of TS in this case.

In the case of a long TS, the older part of the TS (i.e., the part of the TS that has
time stamps t < t’) can be archived (or vacuumed [129]) to tape storage. The
corresponding IP-index can be archived easily by copying the B+-tree and
archiving the parts of the A(v’)s that are inside the time window t < t’.

The Case of Monotonic T rend Sequences

For monotonic trend time sequences such as stock prices, the size of the IP-
index tree will be relati vely large compared to a periodic time sequence due to
the less number of repeated values. By contrast, all anchor-state sequences will
then be much shorter than those of periodic time sequences. The overall effect,
i.e., the total space usage (the index tree plus the anchor-state sequences) will
be generally smaller than that of periodic time sequences.

Our experiments show that the claim in [117], i.e., “a secondary index over the
data values is not needed in most applications— such an index can potentially
be very expensive in terms of storage, because the number of entries for such an
index is in the order of the number of data value” is not necessary true. We have
shown that the size of the IP-index tree is generally small, and by limiting the
precision of vis the index tree can be made even smaller. Since value queries
are very common in real-life applications, it is essential to have a secondary
index on the value domain such as the IP-index to achieve a good performance.

58 Chapter 4 Insertion/Search Time and Space Usage

4.4 Summary

This chapter presents experimental results on the insertion/search time of the
IP-index and its space usage. Experiments were made on both a main-memory
and a disk-resident database system using both synthetic and real-life time
sequences. The experiments demonstrate the highlights of the IP-index: fast
insertion, fast search, and space efficiency. These properties show that the IP-
index is not only an elegant idea but also a practical solution for large sequence
data. This chapter shows that an index on the value domain of a time sequence
is not necessary expensive and impractical, as claimed by [117].

Chapter 5

Various Forms of Value Queries

This chapter shows how to compute various kinds ofvalue queries using the
IP-index. These queries include:exact queries, approximate queries, range
queriesand time window queries. In particular, we show the importance of the
IP-index for range queries (i.e., sub-sequence extraction based on a value
range). The importance of the IP-index for range queries also holds fordiscrete
time sequences where interpolation is not required.

5.1 Exact Queries

An exact query asks when the value was equal to v’ in a time sequence. Sup-
pose the time sequence in Fig.5.1 represents a patient’s temperature reading in
a hospital. An exact query could be:

 • When did the patient have the temperature 38°C?

t

v

v’ =38

t’ t’’ t’’’

Sg1
Sg6 Sg10

S1

S6

S10

Fig. 5.1: Illustration of a value query

60 Chapter 5 Various Forms of Value Queries

As pointed out in Section 3.1, this kind of query is denoted as F-1(v’). It can be
seen from Fig.5.1 that there are noexplicit (stored) time points when the val-
ues were equal to 38. To efficiently process this query, we would need the IP-
index. Recall that the IP-index records theanchor-state sequencefor any value
v’ (Section 3.2.1). By applying the interpolation function on each anchor-state
of v’, we can calculate all the time points when the values were equal to v’ in
the TS.

The anchor-state sequence of the value v’ can be found by searching the IP-
index to find the index entryNL where

NL.key= max{ Ni.key | Ni.key ≤ v’}

Then NL.anchors contains the anchor-state sequence for the value v’ , denoted
as A(v’) (Section 3.2.1). The algorithm for computing F-1(v’) using the IP-
index is given in Fig.5.2. It can be seen that this algorithm is similar to the IP-
index search algorithm in Fig.3.6, except that the interpolation functionifn is
applied to every anchor-state. The notations used in the algorithm are the same
as explained in Section 3.3.

The definition ofsurrounding_states(Si) in Fig. 5.2 is determined by the inter-
polation function ifn. For example: a) If ifn is “linear interpolation”, then
surrounding_states(Si) = {Si, Si+1}; b) If ifn is moving-average over three
states, thensurrounding_states(Si) = {Si-1, Si, Si+1} (or perhaps {Si, Si+1,
Si+2}). In the simplest case of the “step-wise constant” assumption, we have
surrounding_states(Si) = {Si}.

5.2 Range Queries

In this section we show how to use the IP-index to compute range queries. A
simple range query could be: “find the sub-sequences when the values inside
those sub-sequences are greater than a thresholdv’”. The result of a range
query issub-sequences, denoted as time intervals.

5.2.1 Interpolated Range Queries

First we look at the cases when some interpolation function is assumed on the
TS (the case of a discrete TS will be discussed later). Given the temperature
sequence TS = <S1, S2,...S8> as shown in Fig.5.3 (assume linear interpolation),
an example range query could be:

 • During what time intervals were the values greater than v’?

This kind of query is denoted as F-1(v>v’) (or F-1(v<v’)) [82]. It can be seen

Section 5.2 Range Queries 61

Algorithm “Exact_query”:

Computing the time points when the values were equalto v’ for an
interpolated time sequence.

Input:

ts — the time sequence (an array)

tree — the IP-index for ts (e.g., a B+-tree or an AVL-tree)

v’ — the queried value

ifn — the interpolation function assumed onts

Output:

The sequence of time pointst* where the values at those points were
equal tov’ for ts under the interpolation assumptionifn.

Exact_query (ts, tree, v’, ifn):

F-1(v’) = nil

/* initialize the result */

find the index entry NL where
NL.key = max{Ni.key | Ni.key ≤ v´, 1 ≤ i ≤ size(tree)}

/* find the entry that stores the anchor-state sequence of v’ */

for each state Si in NL.anchors

F-1(v’) = F-1(v’) + ifn-1(v’, surrounding_states(Si))

/* surrounding_states(Si) can be retrieved from the ts array */

end for each

return F-1(v’)

Fig. 5.2: Computing F-1(v’)

t

v

v’

t’ 2 t’ 3 t’ 4

S1

S3

S2

S4
S5

S6 S7

S8

t’ 1

Fig. 5.3: Illustration of a range query

62 Chapter 5 Various Forms of Value Queries

from Fig. 5.3 that:

 • F-1(v>v’) = <(t’ 1, t’2), (t’3, t’4)>

 • F-1(v<v’) = <(t1, t’1), (t’2, t’3), (t’4, t8)>

where t1 = S1.time (the first time point of TS, denoted as ts) and t8 = S8.time
(the last time point of TS, denoted as te). The observations are:

1. F-1(v>v’) (or F-1(v<v’)) returns a sequence of time intervals.

2. Each time interval of F-1(v>v’) (or F-1(v<v’)) is composed only of those

time points returned by F-1(v’) (plus ts and te).

Now let us see how to compose the timeintervals of F-1(v>v’) (or F-1(v<v’))
using the time points returned from F-1(v’). First, let us define the “direction”
of an implicit time pointt’ as the following:

 • direction(t’) = ’+’ if Si+1.value > Si.value

 • direction(t’) = ’-’ if Si+1.value < Si.value

This is illustrated in Fig.5.4. Notice that we do not store segments with
Si+1.value = Si.value in the IP-index since we only record intersecting (non-
horizontal) segmentsSgi.

It can be seen from Fig.5.3 that:

 • F-1(v>v’)=(t’ i, t’ i+1)* wheredirection(t’ i) =’+’

 • F-1(v<v’)=(t’ i, t’ i+1)* wheredirection(t’ i)=’-’

Si

Si+1

v’

t’

Sj

Sj+1

direction= ’+’ direction= ’-’

v’

t’

Fig. 5.4: The “direction” of interpolated time points

Section 5.2 Range Queries 63

(The time intervals concerning ts and te have to be treated specially by compar-
ing S1.value and S8.value with v’ .) Therefore, the algorithm of F-1(v>v’) is
shown in Fig.5.5. The functionnext(t’, seq) returns the time point inseq (a
sequence of time points) that follows t’ .

The algorithm of F-1(v<v’) is similar to the one shown in Fig.5.5 (simply
replace “direction(t’) = ‘+’” with “ direction(t’) = ’-’”).

5.2.2 Discrete Range Queries

The IP-index was originally designed for time sequences with interpolation
assumptions. Interestingly enough, it turns out that the IP-index is essential for
discrete time sequences as well. An example is given below.

Seshadri et al. [110] gave an example of calculating the monetary value of
Stock1 traded in each hour when the low price fell below 50. The query was
expressed as:

SELECT1 ((A.high + A.low)/2) * A.volume
FROM Stock1 A
WHERE A.low < 50

It was argued in [110] that selection push-down (A.low<50) should be applied
here so that the calculation of “((A.high+A.low)/2)*A.volume” only needs to be
done for those states whose low values are below 50. But, without an index, the
whole time sequence has to bescanned to find these states. One may argue that
a conventional secondary index on the “low” value will help. Unfortunately it
does not work, as explained in Section 3.5.

By viewing the time sequence as continuous (by applying linear interpolation
function), and posing the query F-1(v<50) (see Fig.5.6), the time points t’ and
t’’ (Fig. 5.6) can be calculated efficiently. Then, the calculation of
“ ((A.high+A.low)/2)*A.volume” can be applied to only those states Sis that are
inside the range(t’, t’ ’) . In this way the IP-index plays an important role on
range queries ondiscrete time sequences.

In some applications (e.g., the terrain-aided navigation in Chapter 10), it is
desirable to return the “state intervals” instead of the time intervals for the
range queryF-1(v>v’) (or F-1(v<v’)). For example, in Fig.5.3 the state intervals
returned fromF-1(v>v’) are [S2, S3] and [S6, S7]. This is trivial given that we
can calculateF-1(v>v’) (or F-1(v<v’)). Because, these “state intervals” can be
found by rounding2 the time intervals. For example, rounding (t’1, t’2) in

1. In [110] the term ‘PROJECT’ was used instead of the SQL keyword SELECT.

64 Chapter 5 Various Forms of Value Queries

Fig. 5.3 results in [S2, S3].

5.2.3 Approximate Queries

Since the values in time sequences are often sampled with errors and uncer-
tainty in measurements, many applications do not require to know when the
values wereexactly equal tov’ , instead, it is more interesting to know when the
values wereapproximately equal tov’ . For example, given the temperature
sequence in Fig.5.1, if we are interested in “when did the patient have a tem-
perature 38”, we would pose the query:

 • When did the patient have a temperaturearound 38°C?

This kind of query is termed anapproximate query and denoted asF-1(v’-e<v<
v’+e). Approximate queries can be processed easily once we can process range
queries. This is because

F-1 (v’<v<v’’) = F -1 (v>v’) ∩ F -1 (v<v’’)

where ‘∩’ means “interval intersection”.

For example, in Fig.5.7, F-1(v>v’)=<(t’ 1, t’2), (t’3, t’4)>, F-1(v<v’’)=<(ts, t’’ 1),
(t’’ 2, t’’ 3), (t’’ 4, te)>. There we see that F-1(v’<v<v’ ’)=<(t’ 1, t’’ 1), (t’’ 2, t’2), (t’3,
t’’ 3), (t’’ 4, t’4)>, which is the interval intersection of F-1(v>v’) and F-1(v<v’’).

Therefore, the calculation ofF-1(v’<v<v’ ’) is performed by the following:

1. Calculate F-1(v >v’).

2. Here “rounding” means finding the largest state interval that is inside the time inter-
val.

t

50

t’ t’’

price

Fig. 5.6: A stock price sequence

Section 5.2 Range Queries 65

Algorithm “Range_query”:

Computing the time intervals when the values were greaterthan v’ for
an interpolated time sequence.

Input:

ts -- the time sequence (an array)

tree -- the IP-index built for ts (a B+-tree or an AVL-tree)

v’ -- the queried value

ifn -- the interpolation function assumed on ts

Output:
The sequence of time intervals (t’, t’ ’)* where the values inside those
intervals were greater than v’ for tsunder the interpolation assumption
ifn.

Range_query (ts, tree, v’, ‘>’, ifn):

seq = nil /* initialize a sequenceseq */

find the entry NL where

NL.key = max{Ni.key | Ni.key ≤ v´, 1 ≤ i ≤ size(tree)}

/* find the entry that stores the anchor-state sequence of v’ */

for each state Si in NL.anchors

t’ = ifn-1(v’, surrounding_states(Si))

/* surrounding_states(Si) can be retrieved from the ts array */

if Si+1.value > Si.value

direction(t’) = ‘+’

else

direction(t’) = ‘-’

endif

seq = seq + (t’, direction(t’))

/* seq stores the time points of F-1(v’) and their directions */

end for each

F-1(v>v’) = (t’, next(t’, seq))

for those t’ in seq wheredirection(t’) = ‘+’

/* combine the time points inseq into time intervals */

return F-1(v>v’)

Fig. 5.5: Computing F-1(v>v’)

66 Chapter 5 Various Forms of Value Queries

2. Calculate F-1(v <v’’).

3. Apply interval intersection to the results returned from 1 and 2.

5.3 Time-Window Queries

Some value queries only concern a part of the time sequence, i.e., atime win-
dow. An example of a time window query could be:

 • When did the patient have a fever in the last few days (denoted as t > t’)?

This query can be denoted as F-1(v>38 AND t>t’). The answer to this query is
marked by the two crosses in Fig.5.8. A naive way to process this query is to
first calculate F-1(v>38) and then check for each resulting time point t if t > t’
holds. An optimized way is to retrieve those states Si in A(38) where Si.time >
t’, and apply the interpolation function to the surrounding states of Si. Optimi-
zation of time window queries will be further illustrated in Chapter 8.

t

v

v’

t’ ’ 1 t’ ’ 2 t’ 3 t’ 4

S1

S3S2

S4
S5

S6
S7

v’ ’

S8

t’ 1 t’ 2 t’ ’ 3 t’ ’ 4

Fig. 5.7: Illustration of an approximate query

t

v

38

t’

t > t’

Fig. 5.8: A time window query

Section 5.4 Amplitude-Sensitive Shape Queries 67

5.4 Amplitude-Sensitive Shape Queries

Some kind of shape queries, i.e., “amplitude-sensitive” shape queries, can be
processed efficiently by using the IP-index.

In [112] it was mentioned that one of the symptoms of Hodkin’s disease is a
temperature pattern, known as “goalpost fever”, that peaks exactly twice within
24 hours.

The IP-index can be used to find this temperature pattern in a time sequence. It
contains two steps:

1. Compute F-1(v>38) (which are the periods of “fever”).

The result returned is a sequence of time intervals during which the patient
has a fever. (This sequence is usually short, which means the query process-
ing time of step 2 will be fast.)

2. Check if there exist two time intervals in the “fever” periods that have the
distanced of 24 hours.

The distance between two time intervals can be defined either as the dis-
tance between the starting points of both intervals or as the distance
between the mid-points of both intervals.

5.5 Summary

In this chapter we have shown how to solve various kinds ofvalue queries effi-
ciently by using the IP-index. In particular, we demonstrated the importance of
the IP-index for range queries (i.e., sub-sequence extraction based on a value
range). Other queries that benefit from the IP-index include time window que-
ries and amplitude-sensitive shape queries.

t

v

38

Fig. 5.9: The “goalpost fever” pattern

24 hours

68 Chapter 5 Various Forms of Value Queries

In a survey by Chomicki on temporal query languages [29], it is argued that the
densed temporal domain is very useful in many applications but is difficult to
implement efficiently since the set of time instances is very large. The IP-index
provides the ability toderive the densed instances from the original discrete
sequence, saving both storage space and query processing time. The actual
number of time instances (termed “states” in this paper) needed to be stored are
determined by the range and precision of the values in the sequence. Also the
sampling frequency can change during different periods, higher frequency can
be used for interesting value ranges and lower frequency can be used for unin-
teresting ranges. Different interpolation functions can also be applied to differ-
ent sub-sequences.

Chapter 6

The σ* Operator

This chapter introduces an extended SELECT operator, σ*, which retrieves
sub-sequences (time intervals) in a time sequence TS where the values inside
those sub-sequences satisfy some conditions. Theσ∗ operator supports user-
defined interpolation functions on TS.

In this chapter, the implementations of theσ∗ operator for various selection
conditions are presented. The efficiency of theσ* operator is demonstrated by
experiments made on SHORE[22]. Related work is studied to compare theσ∗
operator with other relevant operators.

6.1 Formal Definitions

In this section, the formal definitions of a time sequences TS and its interpo-
lated (derived) time sequenceTS under an interpolation function ifn are given.
Then two SELECT operators,σ∗ andσ, which work on TS andTS respectively,
are introduced.

6.1.1 The Definition of TS and TS

As defined in Section 2.1, atime sequence is a sequence of values ordered by
time. Formally, a time sequence can be defined as the following:

Definition 6.1: A time sequence TS is a sequence of states where each state
has a time stamp and a value, i.e.,

70 Chapter 6 The s* Operator

TS = <S1, S2,...Sn> where Si = (ti, vi) (i = 1, 2...n), and ti <
ti+1.

An example time sequence is shown in the left side of Fig.6.1, which repre-
sents the temperature reading of a patient in a hospital.

Many applications require a discrete time sequence to be seen ascontinuous
where implicit values can be derived from explicit values by applying some
user-defined interpolation functions. For example, a patient’s temperature read-
ing can be seen as a continuous curve by applying linear interpolation on the
discrete TS, as shown in the right side of Fig.6.1.

In order to formally define a continuous time sequence, let us first define a con-
tinuous time interval [t1, t2].

Definition 6.2: A closed interval [t1, t2] is defined as the infinite set of all real
number time points between and including t1 and t2, i.e.,
[t1...t2] = {t | t ∈ R and t1 ≤ t ≤t2}.

(Notice that the appropriately modified definitions for [t1, t2), (t1, t2] and (t1, t2)
are assumed, and the general term ‘interval’ will sometimes be used to refer to
any of these.)

A continuous time sequence can be formally defined accordingly. For a time
sequence TS, the notationTS is used to denote its derived (interpolated) time
sequence under any user-defined interpolation function ifn . Intuiti vely, TS
defines theinfinite set of all states defined over the time interval [t1, t2] (just as
[t1, t2] defines the infinite set of all time points between and including t1 and
t2).

t

v

S1

S2

S3
S4

S5

S6

S7

t

v

S1

S2

S3
S4

S5

S6

S7

Fig. 6.1: Time sequences - from discrete to continuous

discrete TS continuous TS

linear
interpolation

Section 6.1 Formal Definitions 71

The precise definition ofTS is the following:

Definition 6.3: Given the discrete time sequence TS =<S1, S2,...Sn> where Si
= (t i, vi) (i = 1, 2...n) . TS denotes the interpolated time
sequence defined over the closed interval [t1, tn] by applying
an interpolation function ifn on TS, i.e.,

TS 1 = <(t1, f(t1))...(t n, f(tn))> = {(t, f(t)) | t ∈ R and t1 ≤ t ≤ tn,
for any t where Si.time ≤ t <Si+1.time,

f(t) = ifn(t, surrounding_states(Si)).

The definition of surrounding_states(Si) is determined by the interpolation
function ifn. For example: a) If ifn is “linear interpolation”, then
surrounding_states(Si) = {Si, Si+1}; b) If ifn is moving-average over three
states, thensurrounding_states(Si) = {Si-1, Si, Si+1} (or perhaps {Si, Si+1 ,
Si+2}). In the simplest case of the “step-wise constant” assumption, we have
surrounding_states(Si) = {Si}.

An informal but intuitive notation would be

TS = ifn(TS)

denoting TS is the interpolated TS.

Continuous and Non-Continuous Inter polation Functions

We shall point out that some interpolation functions arecontinuous while oth-
ers are not. An example of a continuous interpolation function is linear interpo-
lation, as illustrated in the left part of Fig. 6.2. An example of a non-continuous
interpolation function is “step-wise constant” interpolation, as illustrated in the
right part of Fig. 6.2. The reason why it is not continuous is that there is a
“jump” in e very state Si when Si.value ≠ Si+1.value.

In this thesis, when we claim that “TS denotes thecontinuous time sequence by
applying some interpolation function ifn”, the implication of “continuous” here
does not mean a “continuous function”. Instead, it denotes thatTS is defined
over the densed interval [t1, tn] (see Definition 6.3). This “continuous” notion
comes from [33] “Formal Semantics of Time in Databases”. In [33], two con-
cepts concerning interpolation on a historical database are defined, i.e., the
comprehension principle and thecontinuity assumption.

1. A precise notation should beTSifn where ifn is the interpolation function used to
interpolate TS. We omit ifn for the sake of clarity. We assume that a system-defined
(default) interpolation function (e.g. linear interpolation) is used.

72 Chapter 6 The s* Operator

1. The comprehension principle: under any reasonable interpretation a histori-
cal database defined over a sequence of states <S1, S2,...Sn> should be con-
sidered as modelling an enterprise completely over the entire closed interval
[S1, Sn]. All information about the objects of interest to the enterprise can
be assumed to be contained in or implied by the historical database for the
entire interval [S1, Sn].

2. Thecontinuity assumption: any assumption which extends a mapping from a
finite set of moments {S1, S2,...Sn} (ordered as in the sequence <S1,
S2,...Sn>) into a set of individuals, into a mapping from all moments in the
closed, dense interval [S1, Sn], into that set of individuals, will in general be
called acontinuity assumption. Although it was pointed out in [33] that
there are many possible ways to interpolate the states inside the interval [S1,
Sn], only “step-wise constant” was assumed in [33] for simplicity.

Therefore, by “continuous” we meanTS is defined over the dense interval [t 1,
tn] (i.e., assuming some interpolation functions).TS does not have to be a “con-
tinuous function”.

Some readers might wonder why we do not simply defineTS as a function, i.e.,
TS is denoted by a function v = f(t). There are several reasons for this. 1) In
many real-life applications, dif ferent interpolation functions can be assumed on
dif ferent parts of a time sequence, depending on the sampling frequency, value
distribution, etc. Therefore, it is not appropriate to defineTS as a single func-
tion v = f(t); 2) Many real-life time sequences are usually very long, it is not
feasible to calculate the function definition f; 3) For the same time sequence
TS, there might be different kinds of interpolation functions assumed on it,
depending on the application requirement, the resources available, etc. There-
fore, we define TS as an infinite set of states (Definition 6.3) where each
implicit state is calculated by applying the interpolation function (required by

t

v

S1

S4

Fig. 6.2: Examples of continuous and not continuousTS

S2

S3

S5 S6

t

v

S1

S4

S5
S6

ContinuousTS Non-continuousTS

S2

S3

linear interpolation step-wise constant

Section 6.1 Formal Definitions 73

the application) on the neighboring explicit states. This is a more reasonable
and flexible approach.

6.1.2 The Definition of σ

Traditional SELECT operatorσ [118] (in the relational algebra) retrieves tuples
that are explicitly stored in a relational table. For time sequence applications,
retrieving explicit (stored) v alues is far from adequate. As mentioned earlier, a
discrete time sequence TS is often interpreted as the continuous sequenceTS
by assuming some user-defined interpolation functions. Therefore, selection on
a time sequence should be defined over TS instead of TS.

Therefore, we introduce a new SELECT operator, σ, to denote selection on the
continuous sequenceTS (i.e., supporting interpolation on TS). Unlike the tradi-
tional σ operator which returns a subset from a discrete set (i.e., a relational
table), σ returns sub-sequences (denoted by time intervals) of the continuous
sequenceTS. A sub-sequence ofTS defined over the time interv al (t’, t’ ’) 1 is
denoted asTS | (t’, t’ ’).

To formally define the σ operator, let us first define aselection condition. Since
TS has two dimensions, the time dimensiont and the value dimension v, a
selection condition, denoted bycond, is a conjunction of the termst Θ C or v Θ
C (C denotes a constant), where the operatorΘ contains the following rela-
tional comparison operators, {=, >, <, ≥, ≤}. Examples ofcond are:

 • t = t’ (here t’ is a constant and t is a variable, the same holds for the follow-
ing examples)

 • t < t’

 • t’ < t < t’’

 • v = v’

 • v < v’

 • v’ < v < v’’

A state S = (t, v) inTS is said to satisfy the condition cond if the time stamp t
and the value v satisfy cond, denoted as Pcond(S) = TRUE. For example, a state
S = (1, 2) satisfiesconds such as t = 1 or v = 2. A sub-sequenceTS | (t’, t’ ’) is
said to satisfy cond if f for any state S where S∈ TS | (t’, t’ ’), Pcond(S) = True.

1. Here we useopen intervals to denote sub-sequences. A sub-sequence that includes
end points is accordingly denoted asTS | [t’, t’ ’].

74 Chapter 6 The s* Operator

The formal definition of theσ operator is the following:

Definition 6.4: A σ operator on TS retrieves the sub-sequences that satisfy
the condition cond , i.e,:

σcond(TS) = TS | (t’, t’ ’)*, iff for any state S∈ TS | (t’, t’ ’),
Pcond(S) = TRUE.

For example, in Fig.6.3, we have σv>v'(TS) = TS | <(t1, t’1), (t’2, t’3)>, which are
those sub-sequences ofTS that have values greater than v’.

In the degenerated case, theσ operator returnsstates instead of sub-sequences.
For example, in Fig. 6.3, σt=t’1(TS) = (t’1, v’). A state S = (t’, v’) can be seen as
a degenerated case of a sub-sequence, i.e., S =TS|[t’, t’].

6.1.3 The Definition of σ*

To directly support σ(TS) is not feasible since TS represents a function, not a
discrete set. In other words, it is impossible to generate all states S’s in TS and
store them in the database. Therefore, we introduce an operatorσ*, which
works on the discrete TS, to implement theσ operator. First we start with infor-
mal discussion to show the relationship between theσ* and σ operator. Then
give the formal definition of the σ* operator.

Recall that TS can be informally re written as TS = ifn(TS), therefore we have
(informally)

σ(TS) = σ(ifn(TS)) = σ ° ifn(TS)

This indicates that the implementation of theσ operator can be accomplished
by a new operator (σ ° ifn) (i.e., the composition of σ and ifn) which works on
the discrete TS. Thus, we introduce a new operator σ* on the discrete TSwhere
σ* = σ ° ifn, denoting that the semantics ofσ* is first applying ifn on TS, then
performing the selection σ (on the interpolated TS). The formal definition of
σ* is the following:

Definition 6.5: A σ* operator, when applied to TS, generates the same result
as applying σ on the correspondingTS, i.e.,

σ*cond(TS)1 = σcond(TS).

The cond clause specifies the selection condition, as in Definition6.4.

Section 6.2 Implementations of s* 75

The σ* operator can be efficiently implemented by using the IP-index. In the
next section we will show how the σ∗ operator is implemented for various
selection conditions.

6.2 Implementations of σ∗

In this section we discuss how the σ∗ operator is implemented for selections
such asσ* t=t'(TS) andσ* v=v'(TS).

6.2.1 σ* t=t' (TS)

Intuitively, σ* t=t'(TS) returns the part ofTS where the time stamp is equal to t’.
Now let us see how to calculate σ* t=t'(TS).

1. According to Definition 6.5, σ∗t=t'(TS) = σt=t’ (TS).

2. According to Definition 6.4, σt=t’ (TS) = TS|[t’, t’].

3. TS|[t’, t’] is a de generated case of a sub-sequence, i.e.,TS|[t’, t’] = S’ = (t’
f(t’)), where f(t’) = ifn(t’, surrounding_states(Si)) (Definition 6.3).

To further calculate f(t’), we need to locate the state Si in TS. This can be done
by linearly searching TS to find the state Si where Si.time ≤ t’ < Si+1.time. More
efficient location methods take advantage of the physical organization of TS
and available indexes. For example, If TS is implemented by an array [84], then
a binary search will do.

The efficiency of computingf(t’) is determined by the interpolation function, of
course. For most applications, simple interpolation functions such as step-wise
constant or linear interpolation will do. In these cases, computingf(t’) is very
fast. Some applications might require higher order interpolation functions such
as least square.

In the simplest case of the “step-wise constant” interpolation, there is no need
to applyifn. We have f(t’) = Si.value = vi.

1. A precise notation should beσ∗t=t'(TS, ifn) whereifn is the user-defined interpolation
function. We omit the argumentifn assuming that a system-defined (default) interpo-
lation function (e.g., linear interpolation) is used.

76 Chapter 6 The s* Operator

6.2.2 σ* v=v'(TS)

Intuitively σ∗v=v'(TS) returns the part ofTS where the value is equal to v’. It cor-
responds to the following query:

 • When was the value equal to v’?

Normally the result of σ∗v=v'(TS) is a sequence of states. For example, in
Fig. 6.3, σ∗v=v’ (TS) = <(t’1, v’), (t’ 2, v’), (t’ 3, v’)>, which corresponds to the
three implicit states SA, SB, and SC in Fig. 6.3. The time points of these states,
t’ i (i = 1, 2, 3), are calculated by the algorithm of F-1(v’) in Fig. 5.2 (in Section
5.1). Recall that the computation of F-1(v’) is composed of two steps:

1. Find theanchor-state sequence of v’ in the IP-index.

2. Applying ifn-1 over the neighbor-states of every anchor-state.

It can be seen that the first step is independent of the interpolation functionifn.
Therefore, we define it as an operator termed theIP operator.

IP Operator

The IP operator, IPv=v’(TS), returns the anchor-state sequence of v’ (i.e.,
A(v’)). Intuiti vely, the IP operator returns thenearest neighbor states of the
value v’ in order to apply the interpolation functionifn-1.

Therefore, σ∗t=t'(TS) is implemented by the sequential execution of the
IPv=v’(TS) andifn-1, as illustrated as Fig.6.4.

A naive way to implement IPv=v'(TS) is to linearly scan TS to find the state Si
where Si.value ≤ v’< Si+1.value. Since the IP-index stores A(v’) (Section 3.2),
the IPv=v'(TS) operator can be implemented efficiently by searching the IP-
index to find the key ki where ki ≤ v’ < k i+1 and return A(ki).

t

v

v’

t’1 t’2 t’3

S1

S6

S10

SA SC
SB

Fig. 6.3: Illustration of value queries on a TS

Section 6.2 Implementations of s* 77

Since A(ki) is an ordered sequence of state_ids (see Section 3.2.1), IPv=v'(TS)
can be implemented as astreamwhere the next element of IPv=v'(TS) is imple-
mented by retrieving the next state in A(ki). Therefore, theσ∗v=v'(TS) can be
implemented as a stream as well: thenext state of theσ∗v=v'(TS) is generated by
applying ifn-1 over thenext state returned from IPv=v'(TS) (Fig. 6.4). More on
stream processing can be found in Section 8.1 where query optimization of
sequence data is discussed.

Get the First F ew Answers Quickly

By implementing σ∗v=v'(TS) as a stream we can generate thefirst few answers
[16] quickly. This is especially important when card(A(v’)) (i.e., the cardinality
of A(v’), see Section 3.2.1) is large. To generate the first few answers, the inter-
polation functionifn-1 is applied to only the first few states in A(v’). In particu-
lar, the first answer of σ∗v=v'(TS) can be generated quickly since the first
state_id in A(v’) denotes the position in the TS where to applyifn-1.

By contrast, linearly scanning TS will take a very long time to get the first
answer when the first answer appears late in the TS. This is demonstrated by
experiments shown in Section 6.3.2.

The Exceptional Cases

In some exceptional casesσ∗v=v'(TS) will return sub-sequences (time intervals).
For example, if Si.value = Si+1.value, then applying linear interpolation we will
have σ∗v=v'(TS) = [ti, ti+1], see the left side of Fig.6.5. This case can be
detected easily when we calculate F-1(v’). According to the definition of linear
interpolation, we have

t’ = t i + (v’-v i) * (t i+1 -t i) / (v i+1 -v i)

This expression will trigger the “divided by zero” error if vi+1 - vi = 0. When-
ever this error is caught, we return the sub-sequenceTS | [t i, t i+1] as the result

σ∗v=v’

IPv=v’

ifn-1

=

Fig. 6.4: The relationship between theσ∗ operator and the IP operator

78 Chapter 6 The s* Operator

instead.

Another case whenσ∗v=v'(TS) returns sub-sequences is whenifn is the “step-
wise constant” assumption, see the right side of Fig.6.5. In this case,
σ∗v=v'(TS) return sub-sequences (intervals) for all v’ = vi; σ∗v=v'(TS) returnnil
for all v’ ≠ vi.

Actually if ifn is the “step-wise constant” assumption, we would not need the
IP-index to calculateσ∗v=v'(TS). This is because F-1(v’) can be calculated easily
by using a conventional secondary index (see Section 3.5). However, this does
not lead to the conclusion that the IP-index is not useful in the case of the
“step-wise constant” assumption. The reason is thatrange queries on time
sequences would require the IP-index for the sake of efficiency, see Section 5.2.
There we show the IP-index is essential for range queries, no matter what kind
of interpolation is assumed. This also holds for discrete time sequences.

6.2.3 σ* t>t’ (TS)

Intuitively, σ∗t>t'(TS) returns the sub-sequences inTS where the time stamps
are greater than t’. According to Definition 6.5, σ∗t>t'(TS) = σt>t’ (TS) = TS|(t’,
tn), where tn = Sn.time (the last explicit time stamp in TS). For example, in
Fig. 6.6, we have σ∗t>t'(TS) = TS|(t’, t 10).

Inside the time interval (t’, tn), the value v for any time point t can be calculated
by the definition of TS (see Definition 6.3), i.e., f(t) = ifn(t,
surrounding_states(Si)).

Note that the values v inside the sub-sequenceTS|(t’, t n) are normally non-
monotonic, which means they normally do not reside inside the value range
(f(t’), f(t n)). Calculating the value range of TS|(t’, t n) is not tri vial, since the
maximum and minimum points inside the interpolated sub-sequenceTS|(t’, t n)

Si Si+1
v’

ti ti+1

v
Si+1

Si

Si+2

t t

v

ti+1

Fig. 6.5: Exceptional cases ofσ∗v=v’ (TS)

Section 6.2 Implementations of s* 79

have to be found, see Fig.6.6.

6.2.4 σ*v>v’(TS)

Intuitively, σ∗v>v’(TS) returns the sub-sequences inTS where the v alues are
greater than v’. It corresponds to the following query:

 • When was the value greater than v’?

In Section 5.2, we showed how to calculate range queries F-1(v>v’) (Fig. 5.5).
Therefore,σ∗v>v’(TS) can be processed easily. For example, in Fig.6.7, since
F-1(v>v’) = <(t1, t’1), (t’2, t’3)>, so we have σ∗v>v'(TS) = TS|<(t1, t’ 1), (t’ 2,
t’ 3)>.

t

v

S1

S6

S10

t’

vmin

vmax

t > t’
t10

Fig. 6.6: Illustration ofσ∗t>t'(TS)

t

v

v’

t’1 t’2 t’3

S1

S6

S10

Fig. 6.7: Illustration ofσ∗v>v’(TS)

t1

v > v’

80 Chapter 6 The s* Operator

Discrete Range Selection

Recall from Section 5.2.2 that range queries can also be posed ondiscrete time
sequences. For example, in Fig. 6.7, if we assumeno interpolation function,
then σ∗v>v'(TS) will return a set of states {S1, S7, S8, S9, S10}. How can we cal-
culate these states? There are three steps involved:

1. Assume linear interpolation on TS. Pose the range queryσ∗v>v'(TS), the
time intervals (t1, t’1) and (t’2, t’3) will be returned.

2. By rounding these time intervals we get the state intervals [S1, S1] and [S7,
S10] (see Section 5.2.2).

3. Return all states inside these state intervals. That is: {S1, S7, S8, S9, S10}.

Therefore, the IP-index is essential for range queries on time sequences, even
for discrete sequences.

6.3 Performance Measurements on SHORE

To measure the performance of theσ* operator, we performed substantial
experiments on SHORE [22]. The implementation notes (on how the IP-index
and time sequences were implemented in SHORE) can be found in Section 4.2.
In brief, the IP-index was implemented on top of a B+-tree in SHORE. Anchor-
state sequences were implemented as SHORE large objects which can grow
arbitrarily large. Time sequences were implemented as an array of records (ti,
vi). All measurements were made on a SPARC 20 machine with 64M main
memory. The SHORE buffer pool size was set to 40 8K pages.

6.3.1 σ∗v=v’ (TS) — Using the IP-index or Scanning the TS?

As pointed out in Section 5.1, the alternate way to calculateσ∗v=v’(TS) without
the IP-index is to linearly scan the TS. To demonstrate the efficiency of
σ∗v=v’(TS) using the IP-index, we compared the time difference between using
the IP-index and linear scanning.

Recall that the operatorσ∗v=v’(TS) is achieved by IPv=v’(TS) andifn-1 (Section
6.2.2). To exclude the time spent inifn-1, we assume t’ = Si.time (step 2 in Sec-
tion 6.2.2) where Si is returned by the IP operator in step 1.In this case the exe-
cution time ofσ∗v=v’(TS) will exclude the time spent in interpolation, both for using
the IP-index and for linear scanning.

Section 6.3 Performance Measurements on SHORE 81

A detail is thatSi.time is not stored in A(v’); it has to be read from the time
sequence array by using the state_id Si (the state_id Si is stored in A(v’), see
Section 4.2.1).

Constructing the Synthetic T ime Sequence

In order to be able to control the properties of the time sequence used in the experi-
ments, we generated a synthetic time sequence

v(i) = m(i) * sin(k * i) (i = 1, 2...10K)

which is a periodic time sequence withgrowing amplitude, see Fig. 6.8. The func-
tion m(i) is used to control the vis so that 1) all vis are inside a limited value
range (it was [-10, 10] in the measurement) and 2) value ranges behave in the
“step-wise constant” pattern as shown in Fig.6.8. The reason for a limited
value range is to make the size of the B+-tree limited since we showed in Sec-
tion 4.3 that most real time sequences result in limited size of the IP-index tree.
The reason for the “step-wise constant” pattern of value ranges is that it makes
it easy to construct different cardinalities of A(v’)s by specifying the value of
v’. For example, in Fig.6.8 we have A(1.25) = 2*11 since 11 periods of sine
data intersect with the line v = 1.25. The smaller the value v’ is (v’ > 0), the
longer the A(v’) will be. The maximum card(A(v’)) occurs when v’ = 0. The
card(A(0)) was tuned to 2000 in the experiments by the parameterk (by tuning
the frequency of the TS). Compared to the cardinality of the whole sequence,
10K, it results in the ratio of 2K/10K = 20%, which is sufficient to model the
worst case behaviour. The reason is that we showed in Section 4.3 that the
worst-case of card(A(v’)) for the pressure sequence was only 5% of the cardi-
nality of TS, although values are very noisy around v’ = -0.25.

Experimental Results

We expect that the execution time of σ∗v=v’(TS) using the IP-index will be lin-
ear to card(A(v’)) since card(A(v’)) is the number of states needed to be visited
to get the results. By contrast, the execution time ofσ∗v=v’(TS) using linearly
scanning TS will be linear to the cardinality of the whole TS since every state
in the TS needs to be visited.

The selected v’s and their corresponding cardinalities used in the measurements are
listed in Table6.1. The execution times ofσ∗v=v’(TS) with regard to card(A(v’))s are
shown in Fig. 6.9. It verifies our “linear” speculation (above). It shows that the exe-
cution time ofσ∗v=v’(TS) by linearly scanning TS is the same for any value v’, no
matter how long the A(v’) is. By contrast, the execution time ofσ∗v=v’(TS)by using
the IP-index is linear to card(A(v’)). Thus,the smaller the card(A(v’)) is, the
more we gain by using the IP-index compared to linearly scanning TS. Note that
in most real life applications the submittedqueriesσ∗v=v’(TS) are normally for

82 Chapter 6 The s* Operator

short A(v’)s. For example, in Fig.1.4, we are interested in those peaks where v
> 1.5. Sinceσ∗v>1.5(TS) is processed byσ∗v=1.5(TS) (Section 6.2.4), the execu-
tion time is determined by the cardinality of A(1.5), which is then only 80 for
the 100K time sequence, resulting in the factor of 80/100K = 0.08%. In this
case the time difference between using the IP-index or not is dramatic.

Table 6.1: Selected v’s and the cardinalities of A(v’)s

Another interesting observation is that for the card(A(v’)) = 2000 (i.e., v’ = 0), the
query processing time ofσ∗v=v’(TS) by using the IP-index is approximately the same
as linearly scanning TS— we do not gain anything any more. The reason is thatto
retrieve those Sis whose state_ids are in A(0), all disk pages storing the TS have
to be visited since those Sis are evenly distributed in the disk pages that store
the TS (page divisions for the TS are illustrated in Fig.6.10). The cardinality of
the anchor-state sequence is then 20% (2000/10K) of the cardinality of the
original TS. The threshold of 20% is dependent on the page size, of course. The
bigger the page size is, the smaller the threshold will be.

v’ 9.4 9.2 9 8.4 7.3 4.9 3.0 0

cardinality 14 60 106 246 504 1064 1508 2000

Fig. 6.8: The synthetic sine sequence

1.25

0 50 100 150 200 250 300 350 400 450

−1.5

−1

−0.5

0

0.5

1

1.5

1.25

Section 6.3 Performance Measurements on SHORE 83

Fig. 6.9: The execution times ofσ∗v=v’(TS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cardinality of A(v)

ex
ec

ut
io

n
tim

e
(s

)

using the IP−index
linear scan the TS

Fig. 6.10: The page division of a portion of the sine sequence

1 page

0 50 100 150 200 250 300 350 400 450

−1.5

−1

−0.5

0

0.5

1

1.5

1.25

84 Chapter 6 The s* Operator

6.3.2 Getting the First Answer

We also measured the time to get the first answer ofσ∗v=v’(TS) by using the IP-
index, compared to linearly scanning TS.As mentioned in Section 6.2.2, it is
important to get the first answerquickly in real-time query processing.

Constructing the Experimental Data

By using the synthetic sine sequence it is easy to simulate the situation when
the first answer appears in different positions in the time sequence. The
selected v’s and the positions where they first appear in the TS (i.e., the state_id
of the first state in A(v’)) are listed in T able 6.2.

Table 6.2: Selected v’s and the positions where they first appear in the TS

Experimental Results

The execution times of getting the first answer toσ∗v=v’(TS) with regard to the
position where the first answer appears in the TS are shown in Fig.6.11. It
shows that by using the IP-index the time to get the first answer is constant
regardless of the position of the first anchor-state (because the first state_id in
A(v’) indicates where to retrieve the state Si in TS). By contrast, the time for
linear scanning to get the first answer can be very slow when the first anchor-
state appears late in the TS.

The conclusion is that it is essential to have the IP-index in real-time query
processing.

6.4 Related Work

In this section, we present the work related to theσ∗ operator.

6.4.1 The Original σ* Operator

First of all, we would like to point out that our notation ofσ* is actually “bor-
rowed” from an early paper on temporal databases— “Formal Semantics of
Time in Databases” [33]. In [33], the operatorσ* was defined as “a historical
database select”, denoting selection ofimplicit states from <S1, S2,..., Sn >

v’s 1.0 2.9 5.1 7.3 8.5

first appears in position 122 2342 4912 7482 8882

Section 6.4 Related Work 85

(note that a state Si in [33] actually means the time stamp ti, not the pair (ti, vi)
as we mean in this thesis). Since the“step-wise constant”assumption was
assumed, [33] has the following formula for calculatingσ* STATE = S:

σ*STATE = s, A = x(ri) = σSTATE = [S], A = x(ri)

Here r i denotes a relation and A denotes an attribute domain of this relation.
The above formula basically says that: since “step-wise constant” is assumed
on the relationr i, the attribute at an implicit state S is equal to the attribute at
the explicit state [S], where

[S] = max(Si), where S1 < Si < Sn and Si ≤ S

However, in [33], only the formal semantics of theσ* operator were given, no
implementation issue was discussed. Also theσ* in [33] only supports the
“step-wise constant” assumption.

In this thesis we extend theσ* operator in [33] to support arbitrary user-defined
interpolation functions. The strategy is to separate theσ* operator from the
interpolation functionifn-1 (by introducing the IP operator, see Section 6.2.2).
In this way different kinds of interpolation functions can be supported. In con-
trast, in the above formulaσ* STATE = S, the interpolation function (“step-wise
constant”) is “hard coded” into the definition of theσ* operator so that only the

Fig. 6.11: The execution times of getting the first answer toσ∗v=v’(TS)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

the position of the first answer

ex
ec

ut
io

n
tim

e
(s

)

using the IP−index
linear scan the TS

86 Chapter 6 The s* Operator

pre-defined interpolation function is supported (also note that for more sophis-
ticated interpolation functions, it will be difficult if not impossible to hard code
them into the definition of theσ* operator).

6.4.2 The “System Query” Q’

Bettini et al. [21] address a problem in temporal databases [134] which is simi-
lar to the problem of value queries, i.e., deriving implicit information from
explicitly stored information in DBMSs. In [21] it is pointed out that “when
querying a temporal database, a user often makes certain semantic assumptions
on stored temporal data”. Two types of semantic assumptions are formalized in
[21]: point-based and interval-based. The point-based assumptions are “those
semantic assumptions that can be used to derive information at certain ticks of
time based on the information explicitly given at different ticks of the same
temporal type (i.e., temporal granularities)”. Theinterval-based assumptions
include those that involve different temporal types (time granularities). Each
assumption is viewed as a way to derive certain implicit data from the explicit
data stored in the database.

In [21], the approach to evaluate queries concerning implicit data is the follow-
ing: By assuming an interpolation assumption, a database DB can be seen as a
larger databaseDB that contains both explicit and implicit information. A user
query Q is then translated into a system query Q’ such that the answer to Q’
over the explicit data is the same as the answer to Q over the explicit and the
implicit data. The central point of this approach is that the interpolation
assumption (“step-wise constant”) is hidden inside the system query Q’.

By contrast, our approach is to associate the interpolation assumptionifn with
the SELECT operatorσ instead, resulting in theσ* operator. In this way there is
no need to transform the database DB toDB or the user query Q to Q’.

The main contribution of [21] is on formalization of semantic assumptions and
how to transform a user query into a system query. Query evaluation, on the
other hand, is listed as a “future work” in [21]. By contrast, our w ork deal with
implementation issues such as query evaluation and how to achieve efficiency
(in addition to the formal definitions of TS and the σ* operator). Another dif-
ference is that we support more sophisticated interpolation functions such as
linear interpolation or moving average, while in [21], only “step-wise constant”
or the average of two neighbor points are supported.

6.4.3 Relevant Operators in T emporal Databases

In the research literature on temporal databases, we have found several opera-

Section 6.4 Related Work 87

tors (e.g., [32]) that have semantics very similar to theσ* operator.

To introduce these operators, we have to explain the data model in [32] first. In
[32], the relational data model is extended by allowing an attribute to be atime-
varying attribute (TVA) (an attribute whose values vary over time). For exam-
ple, in Fig.6.12, the attribute HEAD in the temporal relation STUDIOS is a
TVA. A TVA is represented asfunctions from the time domain to the attribute
domain, such as “1924—> Mayer”. The same holds for the relation LAWYERS
in Fig. 6.13.

The σ Operator

Since an attribute in [32] can be of a structured domain (i.e., functions from
TIME to a simple domain), the definition of the traditional σ operator is signif-

STUDIOS
(STUDIO HEAD NUM_FILMS
MCM 1924—> Mayer 1924—> 6

1948—> Schary 1925—> 10
1956—> NULL 1970—> 15
1970—> Aubrey
1974—> NULL

Paramount 1919—> Cukor 1919—> 2
1925—> Schulberg 1925 --> 12
1935—> NULL 1936—> 10

RKO 1945—> Schary 1945—> 10
1948—> Hughes 1946—> 11
1957—> NULL 1947—> 12

Warner Br. 1923—> J. Warner
1969—> Ashley NULL
1927—> NULL

Universal 1912—> Laemmle 1930—> 6
1936—> Blumberg 1937—> 9
1946—> Spitz 1965—> 11
1952—> Rackmil
1955—> Hunter
1965—> Wasserman

Fig. 6.12: The STUDIOS relation

88 Chapter 6 The s* Operator

icantly affected. Consider the following example:

σ(Studio(1925) = MGM)(LAWYERS)=
(Lawyer Studio Salary)
Howell 1924 —> MGM 1924 —> 30K

1930 —> Paramont 1925 —> 35K
1937 —> MGM 1937 —> 40K
1940 —> NULL 1940 —> NULL

This example highlights the need for an interpolation function for TVAs. As
Clif ford and Tansel [32] point out: “Users must be able to query the database at
will with respect to time points or periods, and yet the database cannot possibly
store values for every attribute at every point at time. Thus, each attribute must
have an associated interpolation function, so that the database system can
reconstruct an entire time series over the lifespan of each object from the par-
tial specification stored.” In [32] “step-wise constant” was assumed on the TVA
Studio, hence the selection

σ(Studio(1925) = MGM)(LAWYERS)

yields the first tuple (in the relation LAWYERS) as shown above.

LAWYERS
(LAWYER STUDIO SALARY
Howell 1924 --> MGM 1924 --> 30K

1930 --> Paramount 1925 --> 35K
1937 --> MGM 1937 --> 40K
1940 --> NULL 1940 --> NULL

Rosen 1912 --> Universal 1945 --> 70K
1923 --> Warner Br. 1953 --> NULL
1930 --> NULL
1945 --> RKO
1953 --> NULL

McManus 1923--> Warner Br. 1923 --> 35K
1930 --> NULL 1926 --> 40K

1930 --> NULL

Fig. 6.13: The LAYWERS relation

Section 6.4 Related Work 89

The τ Operator

Another relevant operator in [32] is the Time Slice (τ) operator. A Time Slice
operator retrieves thesnapshot state of a relation R at a certain timet (refer to
[3][102] for more general discussions about the Time Slice operator). In [32] it
is stated that: “In a sense, theτ operator is a kind of σ, in which a value from
the domain of a TVA is gi ven. However, it is more general in that it allows the
selection across all of the attributes in the relation”. Consider the following
example:

τ(1925)(STUDIOS) =
(Studio Head Num_Films)
MGM 1925 --> Mayer 1925 --> 10
Paramont 1925 --> Schulberg 1925 --> 12
Warner Br. 1925 --> J. Warner NULL
Universal 1925 --> Laemmel NULL

This example shows that there are different ways of modelling data over time.
The attributeHead is interpolatable, and uses a simple step-wise constant inter-
polation. However, the attribute Num_Films is inherently non-interpolatable.
From the value of Num_Films at a given time point, we cannot infer anything
about its value at any other time point. Therefore the retrieved values of
Num_Films areNULL (unknown) for certain tuples, as shown above.

The τ operator is similar to theσ∗t=t' or σ∗t>t' operator. They both retrieve the
values (attributes) at a certain time point or time intervals. However, in [32],
only the semantics of theτ operator are addressed, no implementation (query
evaluation) is addressed. The purpose of [32] is on extending the relational data
model to incorporate the temporal dimension. By contrast, our work on the
σ∗t=t' and σ∗t>t' operators address not only formal definitions but also imple-
mentation issues. Another difference is that theτ operator only supports “step-
wise constant” interpolation or the non-interpolatable assumption (the returned
NULL values in the above example), while theσ∗t=t' or σ∗t>t' operators support
arbitrary user-defined interpolation functions.

The Ω Operator

In [32], there is a time-related operatorWHEN (Ω), which provides a mecha-
nism for naming time values not simply with constants (like 1983) but with
expressions (like WHEN A = v in the relation R). This unary operator on rela-
tions, unlike the other relational operators, yields as a result a set oftimes
rather than a relation. It is used to form temporal expressions which can serve
as components of aτ or σ operator in [32]. The result of an Ω is a set of time
intervals. Consider the following example:

90 Chapter 6 The s* Operator

Ω(Studio = Paramount, Head = Cukor)(STUDIOS) = [1919, 1925]

The Ω operator is similar to theσ∗v=v' operator in the sense that they both
retrieve the time stamps when the values (“attributes” in [32]) satisfy some con-
ditions. The main difference is that theΩ operator only retrieves the explicit
(stored) time stamps (more specifically, valid timestamps) while theσ*v=v'
operator can also retrieve the implicit (interpolated) time stamps according to
the user-defined interpolation function.

6.5 Proposing New Functions for the ADT of Time Sequences

As Stonebraker [131] points out, modelling time series in relational databases
has drawbacks on both query processing time and space usage. Here is an
example. The Wall Street financial center manages closing price of stocks for
over 5000 securities. The traditional way of constructing this application is to
form a table for each security, such as this table for IBM:

create table IBM (
date date,
price float);

Then, if we wish to find the difference between IBM’s five-day moving average
and its 200-day moving average on July 15, 1995, we would have to write the
following program:

main ()
{
find July 16th IBM record;
until 5 records seen

{
read previous IBM record;
update 5 day average;
update 200 day average;
}

until 195 records seen
{
update 200 day average;
}

return (5 day average - 200 day average);
}

This application requires a custom program as well as a sequential scan of 200
records. In addition, suppose we wanted to perform the calculation for all
stocks. In this case, we must put the above logic inside an outer loop that iter-
ates over 5000 securities. Now, there are many records examined in 5000 dif-

Section 6.5 Proposing New Functions for the ADT of Time Sequences 91

ferent tables.

Therefore, Stonebraker [131] suggests that a time series should be modelled as
anabstract data type in object-relational database systems. At the time this the-
sis is written, time series have already been implemented in several commercial
database systems as a new data type, such as Informix’s time-series DataBlade
[65], Oracle’s time-series DataCartrige [95], and IBM’s time-series DataEx-
tender (althoughvalue queries are not supported in any of these systems, and
some issues such as physical organization of time sequences and query optimi-
zations might need further investigation). For example, the time series data type
in Informix consists of the following information:

 • calendar obeyed by the time series

 • starting time of the time series

 • stride between values (for example, daily or monthly)

 • data types of elements (for example, float or polygon)

 • legal time series values in order

With this data type, the following stock table can replace the 5000 tables dis-
cussed earlier:

create table stock {
name varchar(30);
prices time_series of floats);

Here we have one table, not 5000 tables, and one record per stock, not one
record per stock per date.

In Informix, there are 40 or so legal operations on time series. These include
constructing a moving average, extracting a subset of the time series, and
aggregating the time series to coarser granularity. With these operations, the
above query can be formulated as follows:

select moving_avg (prices, 5, ‘1995-07-15’) -
moving_avg (prices, 200, ‘1995-07-15’)

from stock
where name = ‘IBM’;

This introduces two main advantages over the previous representation. First, it
can be completely expressed in SQL, making it easier for the user to code the
functionality. Second, it runs much faster than the previous representation
because only one row of one table needs be examined. Moreover, the code that

92 Chapter 6 The s* Operator

walks down the time series is very efficient and has a low overhead relative to
the code that examines records in a relational system.

Therefore, time sequences should be modelled as an abstract data type instead
of as relational tables. In addition to the above functions defined for time
series, we propose the following functions which support interpolation assump-
tions on TS:

get_time_stamps(TS, ‘=’, v’) (1)

// assume default interpolation assumption

or:

get_time_stamps(TS, ‘=’, v’, ifn)

// assume user-defined interpolation assumptionifn

The above functions return the time points when the value is equal to v’ for a
continuous TS. This function is translated to theσ∗v=v'(TS) operator and it is
efficiently supported by the IP-index.

To support range queries on continuous time sequences, we propose the func-
tion:

get_time_intervals(TS, ‘>’, v’)

// assume default interpolation assumption

or:

get_time_intervals(TS, ‘>’, v’, ifn))

// assume user-defined interpolation assumptionifn

to return those time intervals when the values are greater than v’. This function
is translated to theσ∗v>v'(TS) operator and is efficiently supported by the IP-
index.

The data type of time sequences is just one example of an extension to base
types in DBMSs. There are other application data which can be modelled as
abstract data types as well. Examples are spatial objects (points, lines, poly-
gons, etc.) and multimedia data such as images or videos. As Silberschatz et al.
[118] point out, the object-relational DBMS allows complex types, nested rela-
tions, and object-oriented features. Standardizing queries on complex types in
SQL3 is under way.

Section 6.6 Summary 93

6.6 Summary

In this chapter we have presented the extended SELECT operator, σ∗, which
retrievessub-sequences (time intervals) in a time sequence TS where the values
inside those sub-sequences satisfy some conditions. Theσ∗ operator supports
arbitrary user-defined interpolation functions on TS. The implementations of
the σ∗ operator for various selection conditions were presented. Theσ∗ opera-
tor is applicable to any 1-D sequence data.

We have performed extensive experiments on SHORE[22] using both synthetic
and real-life time sequences. The experiments show that theσ∗ operator (sup-
ported by the IP-index) dramatically improves the performance of value queries
on time sequences. The performance gain is even more dramatic for large
sequences withsmall answer sets, while most submitted value queries in real-
life applicationsare for small answer sets. Another promising observation is
that the performance ofσ∗ for the first few answers is stable, regardless of the
positions where the first few answers appear in the time sequence. This shows
that the IP-index is essential in the situations when the time sequence is long
and the query processing time is limited.

Related work to theσ∗ operator was discussed. Theσ∗ operator was compared
to other proposed operators in temporal databases. The main advantages of the
σ∗ operator is in twofold: 1) the implementation issues are fully investigated;
2) it supports arbitrary user-defined interpolation functions (while most other
operators only support “step-wise constant” interpolation).

We also proposed some new functions for the abstract data type of time
sequences. The unique feature of these functions is that they support user-
defined or system-defined interpolation assumptions on time sequences.

94 Chapter 6 The s* Operator

Chapter 7

Physical Organization

Physical organization [137] determines the efficiency of a database system.
Physical organization addresses many issues in DBMSs such as data structures,
index design, file format, data transfer between main-memory and disks, buffer
management, etc. In this chapter we are particularly interested in the following
issues:

 • Physical organization of time sequences.

Time sequences are usually very large in volume, and many of them are
dynamically growing. Designing a good data structure for large, dynamic
time sequences is challenging since one needs to minimize the amount of
storage used while maintaining reasonable access time. In Section 7.2.3, we
present a persistent data structure which scales up gracefully with the grow-
ing of the time sequence and supports fast random access in the time
domain.

 • Physical organization of secondary indexes:

What distinguishes the IP-index from conventional secondary indexes is the
anchor-state sequences, A(v’)s. For one particular time sequence, A(v’)s are
dynamically growing, and vary much in length for different values of v’.
Thus it is important to have a good data structure for A(v’). The design goal
is not to waste space for small A(v’)s and to support fast random access for
large A(v’)s.

 • Physical organization of large objects:

Many application data result in large objects in DBMSs, such as time series,
image, and video data. In Section 7.4, we provide an overview of how large

96 Chapter 7 Physical Organization

objects are managed in various systems, including relational DBMSs and
object-oriented DBMSs.

 • The impact of main-memory or disk resident DBMSs on physical data
organization and index design.

Main-memory resident DBMSs and disk-resident DBMSs have different
properties that affect almostevery aspect of system design and implementa-
tion. In Section 7.5, we investigate how these different properties affect
physical implementation issues in DBMSs such asindex design and data
structures, especially for sequence data.

7.1 Database Access Time

This section provides a background todatabase access time.

Conventional database systems aredisk-resident (DRDBs), i.e., data is stored
permanently on disks. Data are moved into main-memory for processing and
moved back to disks when they are no longer needed. Space on a disk is allo-
cated in the unit ofblocks (or pages), whose size ranges from 512 bytes to sev-
eral kilobytes (depending on how the disk is configured). A key concept is that
the transfer of data between disks and main-memory is in the unit ofblocks, not
in the exact size of the data that is needed. For example, if we wish to retrieve a
4-byte integer from a disk where the block size is 4K, then the whole block
(size 4K) where this integer resides will be brought into main memory.

Currently, one disk I/O takes approximately 10ms, and one main-memory
access takes approximately 0.1µs. Therefore, disk I/O is in orders of magnitude
slower than the access of data in main-memory, which makes disk I/O the bot-
tleneck of the database access time in a DBMS. In estimating database access
time, we normally ignore operations in main-memory, count only the time
spent on disk I/O. Since disk I/O is in the unit of blocks, this makes the cost of
physical database access determined by thenumber of blocks accessed.

Therefore, the goal of physical database design in disk-resident database sys-
tems is to minimize the number of disk blocks accessed.

As main-memory becomes cheaper and the capacity of main-memory becomes
larger, memory-resident database systems (MMDBs) are becoming more and
more popular nowadays. The design of a main-memory DBMS is significantly
different than that of a disk-resident DBMS [56]. We will discuss the differ-
ences in Section 7.5. For now, we assume that all of our discussions are based
on conventional, disk-resident DBMSs.

Section 7.2 Physical Organization of Time Sequences 97

7.2 Physical Organization of Time Sequences

Since time sequences are usually very large in volume, storage efficiency is the
key to the practicality of time sequence support in DBMSs. To design a good
data structure for time sequences, we have to understand their properties first.

7.2.1 Properties of Time Sequences

A time sequence normally has the following properties:

1. A time sequence isordered by time.

The order of values in a time sequence is important, and thus should be pre-
served in the physical structure.

2. Time sequences are usually very long [117].

This indicates that the data structure should be aimed at disk storage (i.e.,
persistent data structure) instead at main memory storage.

3. Time sequences are mostly append only [117]. Updates or deletes are rare
compared to insert.

This indicates that anon-updatable data structure can be used in order to
achieve better storage and access efficiency. In other words, deletion can be
sacrificed in favour of insertion.

4. Time sequences can be dynamic (Section 2.1).

This indicates that the data structure shouldscale up gracefully with the
growing of the time sequence.

7.2.2 Arrays for Time Sequences

Considering the above properties, we suggest that anarray structure is a good
choice for storing a time sequence. An array structure iscompact in storage, in
the mean time it provides fast random access to any element. Let us see how
arrays can be used to store different kinds of time sequences.

Regular/Irr egular T ime Sequences

Recall that a time sequence can beregular/irr egular (Section 2.1). This prop-
erty affects physical organization substantially. For example, if we store aregu-
lar time sequence in an array, then we would not need to store the time stamps
(see Fig.7.1). This is because the time stamp ti can becomputed by ti = t1 + (i-
1)* ∆t (∆t is a constant for a regular time sequence). Also, because of the rela-

98 Chapter 7 Physical Organization

tionship between a time stamp ti and the position of the record in the array, ran-
dom access of any value given its time stamp ti can be computedwithout the
need to build an index on the time domain.

Supportingirregular time sequences is more complex. Normally the (ti, vi) pair
has to be stored in the array (see Fig.7.1). There are two consequences of this
approach. First. the ability to “factor out” time stamps (i.e., time stamps need
not be stored) in regular time sequences is lost. Secondly, the simple indexing
capability over the time domain that exists in the regular case is lost. This indi-
cates that there is a need to build an index on the time domain for irregular time
sequences in order to support fast random access.

Static/Dynamic T ime Sequences

The static/dynamic property (see Section 2.1) of a time sequence affects physi-
cal organization in the sense that adynamic time sequence requires a data struc-
ture which is dynamically gr owing . Therefore, a simple, staticarray structure
will not do. An alternati ve is to allocate a small array first, then double the size
whenever the array becomes full. This requires copying the previous allocated
array to the newly allocated array each time the array is expanded. Performance
is apparently bad for large sequences. Therefore, we propose amulti-le vel
dynamic arr ay structure in the next section to meet this challenge.

7.2.3 The Multi-Le vel Dynamic Array Structur e

The initial moti vation that led to this work came from our experiments in
SHORE [86]. We found in SHORE a persistent, dynamic data structure named
sequence which seemed to be a perfect choice for implementing time
sequences.Sequence is a built-in data type in SHORE. It is basically a dynamic
array that can grow arbitrarily large and supports operations (methods) such as

v2 v3 v4 v5 v6 v7v1

(t1, v1)

Fig. 7.1: Regular/Irregular TS stored in an array

Regular TS

Irregular TS

......

......(t2, v2) (t3, 31) (t4, v4) (t5, v5) (t6, v6) (t7, v7)

1)*∆tti = t1 + (i-

TS

TS

Section 7.2 Physical Organization of Time Sequences 99

insert, delete, and update. Unfortunately, we found out that when one ele-
ment of asequence is accessed, theentire sequence is read into main-memory.
This is certainly very inefficient when the time sequence is long (e.g., 100K).
The reason for this surprising behaviour is that, as stated in one of SHORE’s
manuals [115], demand-paging forsequence is not implemented in the current
version (version 1.1).

Therefore, we started to investigate a good data structure for large, dynamically
growing time sequences. Our first idea was to partition the large time sequence
into arrays (each array fits in one disk page) and use a B+-tree [35] to index
these arrays. In this case only one disk page needs to be read into main memory
when one element is accessed. Another advantage of this data structure is that it
supports fast random access through the B+-tree.

Further investigations indicate that a B+-tree is not really needed. The reason is
that these arrays are allocated in order (because a time sequence is ordered),
while a B+-tree is normally needed for keys that do not arrive in order (that is
why a B+-tree is adynamic data structure). Taking into account that a time
sequence is an ordered sequence, a simpler solution is to usearrays instead of a
tree to index these arrays.

The Data Structur e

Therefore, we propose amulti-level dynamic array structure (Fig. 7.2), which
meets the challenge of supporting bothfast appending and efficient random
access.

The multi-level dynamic array structure consists ofbase arrays and index
arrays. Each base array or index array fits in one disk page. The base arrays are

(t1, v1)

Fig. 7.2: The multi-level dynamic array structure for a dynamic, irregular TS

index

base arrays(t2, v2) (t3, v3)

(t1, (t4, (t7,

(t4, v4) (t5, v5) (t6, v6) (t7, v7) (t8, v8) (t9, v9)

)))

(t1, (t10, (t19,)))

.....

(storing TS)

.....

.....

arrays

(t10, (t13, (t16,)))

100 Chapter 7 Physical Organization

used to store (ti, vi) pairs in the TS, see Fig.7.2 (there we assume three (ti, vi)
pairs fit in one page). The index arrays are for indexing base arrays. The first-
level index arrays have the form (tj, pointer) wherepointer points to the base
array with the starting time stamp tj, see Fig.7.2. The second-level index arrays
have the form (tj, pointer) wherepointer points to the first-level index array
with the starting time stamp tj. The multi-level dynamic array structure grows
from bottom to top as TS grows. Random access of any element of TS can be
achieved easily by a search starting from the top-level index array and follow-
ing the pointers down to the lower level index arrays until a base array is
reached. Fast appending is assured because only the right-most arrays in each
level needs to be accessed when a new (ti, vi) pair is inserted into TS.

The advantage of using an array as an index instead of a B+-tree is that it is
more efficient in terms of both space and time. The reason for space efficiency
is that a node in a B+-tree is not always full (> 50%), while our index arrays
will be mostly full (except those belonging to the right-most chain). The reason
for time efficiency is that we do not need to performnode balancing as in a B+-
tree when new keys are inserted. When a new array is allocated, only the point-
ers in the right-most arrays need to be adjusted.

Now let us see how this data structure scales up with the growing of the time
sequence. Suppose that a pointer and a value vi (a floating point number) takes
4-bytes each, a timestamp ti takes 8-bytes [124], then a 4K page will hold
approximately 333 (≅ 4K/12) elements for either abase array or anindex array.
By using a 2-level dynamic array structure, we can store a TS withcardinality
up to 3332 ≅ 111K (the size of this time sequence will then be 111K * 12≅
1.3MB). By using a 3-level dynamic array structure, we can store a TS with
cardinality up to 3333 ≅ 37M (the size of the time sequence will then be 37M *
12 ≅ 444 MB). Thus, the multi-level dynamic array structure scales upgrace-
fully with the growth of the time sequence.

Notice that this estimation is pessimistic because most large time sequences are
regular ones, i.e.,time series (Section 2.1.4). For regular time sequences, only
values need to be stored (time stamps are factored out, see Section 7.2.2). An
example of the multi-level dynamic array structure for a regular time sequence
is shown in Fig.7.3. There, in base arrays, only values vi are stored. In the first
level index arrays, (i, pointer) pairs are stored wherepointer points to the base
array whose first element is vi.

In this case a 4K page will hold 1K (4K/4) elements for a base array, and 500
(4K/8) elements for an index array. Then a 3-level dynamic array structure can
hold a TS with cardinality of 5002 * 1K = 250M. The size of the time sequence
will then be 250M * 4 = 1 GB. See the “capacity” of the multi-level dynamic
array structure in Table7.1.

Section 7.2 Physical Organization of Time Sequences 101

In Table7.1 the space usage of theindex arrays is also listed for each case. It
can be of great interest to compare the size of the index arrays with the size of
the TS. It can be seen that in the worst case (i.e., the case for irregular TSs), the
space usage of the index arrays is 0.3% compared to base arrays. In the best
case (regular TSs), the space usage of the index arrays is 0.2% compared to
base arrays. Therefore, the space overhead of indexing a TS using the multi-
level dynamic array structure is negligible.

Notice that for a small TS that fits in one page, we do not need the index arrays.
One base array will do. This is a degenerate case of a multi-level dynamic array
structure.

Insertion

Insertion into the multi-le vel dynamic array is very straightforward. We will
illustrate the insertion process in Fig.7.4 and Fig.7.5. In our discussions we

v1

Fig. 7.3: The multi-level dynamic array structure for a dynamic, regular TS

index

base arraysv2 v3

(1, (4, (7,

v4 v5 v6 v7 v8 v9

)))

(1, (10, (19,)))

.....

(storing TS)

.....

.....

arrays

(10, (13, (16,)))

Table 7.1: Capacity of the multi-level dynamic array (page size: 4K)

Levels Regularity TS Size Index size % index size
TS size

Irregular 1.3MB 4KB 0.3

2 Regular 2MB 4KB 0.2

Irregular 444MB 1.3MB 0.3

3 Regular 1GB 2MB 0.2

102 Chapter 7 Physical Organization

assume one disk page holds 300 elements (≅ 333 above). However, for illustra-
tive reasons, in Fig.7.4 and Fig.7.5, we assume 3 elements for each page.

Let us start with an empty TS. When the pair (t1, v1) arrives, we allocate a base
array (let us call it base_array_1) and store (t1, v1) in the first element. In the
meantime we allocate an index array (let us call it index_array_1) with the first
element (t1, pointer) where pointer points to the base_array_1, see Fig.7.4.
Suppose one disk page holds 300 pairs, then the insertion of the remaining (ti,
vi) (i = 2, 3, 4...300) can be done easily by just storing them in base_array_1
without any further operation. When (t301, v301) arrives, we allocate a new base
array (let us call it base_array_2) and fill in the second element in
index_array_1 with (t301, pointer) where pointer points to base_array_2.
Repeating this procedure, we can store the time sequence with cardinality 3002

without creating a new index array.

Now, when the No. 3002+1 element in TS arrives, we have to allocate a new
base array (illustrated as base_array_4 in Fig.7.4) and a new index array (illus-
trated as index_array_2, see Fig.7.4). The new base array is used to store the
new (ti, vi) pair and the new index array is used to index this new base array and
the old index arrays. The current structure is illustrated in Fig.7.4. If you view
it as a tree structure (with index arrays as internal nodes and base arrays as leaf
nodes), then the tree is unbalanced because thelevel of the right sub-tree
(which is 2) is less than that of the left sub-tree (which is 3).

The insertions of the remaining 299 elements can be done easily by filling the
base_array_4. When the 3002+301 element in TS arrives, the multi-level
dynamic array will appear as in Fig.7.5. At this moment the tree structure is
balanced.

(t1, v1)

Fig. 7.4: Insertion in the multi-level dynamic array (unbalanced structure)

index

(t2, v2) (t3, v3)

(t1, (t4, (t7,

(t4, v4) (t5, v5) (t6, v6) (t7, v7) (t8, v8) (t9, v9)

)))

(t1, (t10,))

arrays

(t10, v11)

index_array_2

base_array_1

index_array_1

base_array_3base_array_2 base_array_4

Section 7.2 Physical Organization of Time Sequences 103

The insertion continues until the tree structure in Fig.7.5 is full. Then a new,
higher level index array will be needed. In this way the tree structure grows
with the TS. Notice that, as we calculated in the last section, a 3-level dynamic
array structure (as in Fig.7.5) will be able to hold a TS with a considerable
large cardinality. Therefore we normally donot need to allocate higher level
index arrays.

Migration

When TS grows very long, old parts of the sequence can be migrated to tapes or
other off-line storage easily. For example, in Fig. 7.5, we could migrate the left
sub-tree whose root is index_array_1 to tapes, and shift every (ti, pointer) pairs
in index_array_2 one element left (or we can simply let the pointer (t1 pointer)
points to nil). This migration will not af fect the right sub-tree at all. Therefore,
it can done easily without rebalancing the tree or adjusting other pointers in the
sub-trees.

Search

Search in the multi-level dynamic array can be done efficiently gi ven a time
stamp t. Normally we would lik e to retrieve the (ti, vi) pairs in TS where the tis
are close to the given time stamp t (such as ti ≤ t < t i+1). This can be done by
performing binary search in each relevant array, starting from the root array
(index_array_2 in Fig.7.5), and traversing down the tree structure until a leaf
node is reached. In the leaf node (a base array), binary search is performed to
find the positions where the “closest” (ti, vi) pairs reside.

The cost will be, of course, determined by the level of the structure (which is

(t1, v1)

Fig. 7.5: Insertion in the multi-level dynamic array (balanced structure)

index

(t2, v2) (t3, v3)

(t1, (t4, (t7,

(t10, v10) (t11, v11) (t12, v12)

))

(t1, (t10,))

arrays

(t13, v13)

index_array_2

base_array_1

index_array_1

base_array_4 base_array_5

(t10, (t13,))

................

index_array_3

)

104 Chapter 7 Physical Organization

determined by the cardinality of the TS). For a 3-level dynamic array, the cost
of retrieving (ti, vi) pairs given a time stamp will be 2 disk I/Os since the root
array is always kept in the main memory.

To facilitate linear scanning or sub-sequence retrieving, the leaf nodes (base
arrays) can be linked together in allocating order. This is the same in most B+-
tree implementations.

7.2.4 Related Work

Although little work has been done in data structures of temporal data or time
sequences, we found some related work on indexing temporal data. Some of
this work is very close to the idea of our approach (such as the PLI-tree below).
We compare work related to the multi-level dynamic array structure in this sec-
tion.

Comparison with the PLI-tr ee and the AP-tr ee

The closest related work to our multi-le vel dynamic array structure is perhaps
the I-tree [135], the PLI-tree [135] and the AP-tree [58]. These tree structures
are all designed for efficient access of append-only temporal data. The I-tree
and the PLI-tree are designed for indexing the transaction timestamps [67] of
entries in a backlog [135] to efficiently support differential computation of
timeslices [135] (a PLI-tree is an improved version of an I-tree [135] where
pointer s in each tree node arecomputed instead of stored). The AP-tree is
designed for indexing interval timestamps of temporal relations to support
event-join optimization [104]. A PLI-trees bares very similar structure to an
AP-tree. They are both multiway search trees that are hybrid of an ISAM inde x
and a B+-tree. The main difference is that the PLI-tree favours insertion more
than the AP-tree and completely sacrifices deletion. That is also the reason why
pointers can be computed in a PLI-tree but not in an AP-tree. By saving the
space for pointers, a PLI-tree node has morefanout than an AP-tree node.
Therefore a PLI-tree takes less space than an AP-tree. (According to [135], a
PLI-tree is approximately 33% smaller than an AP-tree when indexing 1 mil-
lion pages.)

If we compare the I-tree (or PLI-tree) with our multi-le vel dynamic array struc-
ture, we see that the I-tree structure is very similar to the part of the index
arrays in Fig. 7.2. Actually, if we replace the backlog in [135] with the base
arrays in Fig. 7.2, then, an I-tree can be used to index the base arrays in the
same way as they are used to index the backlog. The way the index arrays grow
with the TS (Section 7.2.3) is also very similar to the way how an I-tree grows
with the backlog. A minor dif ference is that the structure of a “node” is differ-
ent between these two index structures. In the multi-level dynamic array struc-

Section 7.2 Physical Organization of Time Sequences 105

ture, a node is anarray structure so that binary search can be performed.

As we mentioned before, an I-tree is used to index a backlog [135] while a
multi-level dynamic array structure is used to index time sequences (stored in
base arrays). Let us look at the difference between a backlog and a TS. A
record in a backlog [135] takes approximately 128 bytes [135], while arecord
in irregular TSs (i.e., (ti, vi)) takes 12 bytes (since ti, takes 8 bytes and vi takes
4 bytes). Therefore, for a backlog and a TS with thesame cardinality, the
number of pages used to hold the backlog will be 10 times more than the
number of pages used to hold the irregular TS (the ratio will be even bigger if
TS is regular). Therefore, the size of an I-tree (i.e., the number of tree nodes)
for the backlog will be much bigger than the number of the index arrays needed
for the TS. This is the reason why [135] uses computed pointers to increase the
fanout of each node of the tree (thereby reducing the size of the tree). In our
case, as we calculated before, a 3-level dynamic array will be able to hold a
regular TS with size of 1G (assume 4K page size). Therefore, we do not need to
investigate a “pointless” version of the multi-level dynamic array.

Another difference between the PLI-tree and the multi-level dynamic array is
that the PLI-tree is more suitable for indexing long backlogs, while the multi-
level dynamic array structure is suitable for bothlong and short time
sequences. The reason is that in a PLI-tree, diskextents are allocated to store
the nodes of the tree. To decide the size of the extent is tricky: too big a size
will w aste space for small trees (in the situation of short backlogs), too small a
size will make the size of the array [135] that contains starting addresses of all
extents (this array needs to be kept in main memory, as stated in [135]) rather
large. Therefore, the PLI-tree is not suitable in the situation when both long and
short backlogs need to be supported (unless the size of a disk extent can be
madedynamic for different sizes of backlogs and this dynamic information is
maintained somewhere as meta-data).

Linked List

Shoshani and Kawagoe [117] suggested a simple approach to store dynamic,
irregular time sequences. That is, allocate pages (blocks) in order for the grow-
ing time sequence and use an ordered list of (page_number start_time) to index
these pages. Given a time stamp ti, such an index can be searched to find the
page that holds the corresponding value vi. In this case the access of an element
requires two steps: one to determine the appropriate page, and one to locate the
position of the value in that page.

This approach, compared to our multi-level dynamic array structure, has the
drawback that it has to do linear scanning on the list (page_number , start_time)
to find the corresponding page (and linear scan the page to find vi). This will be
slow when TS is long.

106 Chapter 7 Physical Organization

Arrays versus Relational T ables

Arrays are used to implementtime series (i.e., regular time sequences, see Sec-
tion 2.1.4) in some commercial DBMSs and special-purpose management sys-
tems. Examples are the object-relational DBMS Informix [65] and the special
purpose management system FAME [52]. Compared to our multi-le vel dynamic
array, arrays in these systems are simple,static structures, with no support for
dynamic TSs. Neither do they support page faulting for lar ge arrays. As Dreyer
et al. point out in [41]: FAME “has many useful features, but search and
retrieval facilities are very poor”. In a paper on managing temporal financial
data in extensible database systems [28], it is pointed out that: “storage meth-
ods for temporal objects encountered in trading applications is an open prob-
lem. Although there have been several proposals in the literature for efficient
storage and retrieval of temporal and multi-dimensional data, it is not clear
which proposal is the best or whether a completely new approach is required.”

Due to the limitation of the current array implementations, some systems
choose to implement time series asrelational tables instead. An example is
Oracle’s TimeSeries DataCartrige [95]. The reasons for their choice are, as
Lory claims in his tutorial “Managing Financial T ime Series: Object-Relational
and Object Database Systems” [140]: 1) Storing time series as relational tables
provides relational access to time series data. On the other hand, arrays are
opaque in SQL. 2) Tables support fast incremental loading (this implies that
arrays do not support incremental loading well).

We have shown that by developing a dynamic array structure such as the multi-
level dynamic array, fast incremental loading is well supported. Also, using the
object-relational technology [131], corresponding access methods can be asso-
ciated with the dynamic array structure. This will make the array access trans-
parent to SQL [131].

On Access P atter ns

We found [117] probably the earliest work addressing the issue of data models
and physical organization of time sequences . Since physical organization of any
data is heavily dependent on the expected access patterns, the following
assumptions on access patterns on time sequences were made in [117]:

1. “The order of values in a time sequence is important, and thus should be
preserved in the physical structure. One needs to minimize the number of
disk pages (blocks) read from secondary storage for range queries in the
time domain.”

2. “We wish to have random access in the time domain. While in some applica-
tions one can envision accessing entire time sequences, we believe that effi-

Section 7.3 IP-index 107

cient access to parts of the sequences is necessary. Thus, some indexing
methods on the time domain is necessary.”

3. “A secondary index over the data values is not needed in most applications.
Such an index can potentially be very expensive in terms of storage, because
the number of entries for such an index is in the order of the number of data
values. In any case, such an index provides a marginal benefit in situations
where the typical access to the data involves restrictions on the time
domains. We will assume that such indexes (if absolutely necessary) would
use conventional indexing methods.”

Our multi-level dynamic array structure satisfies the above requirements 1 and
2 well, i.e., the order of values in the time sequence is physically preserved in
every base array, and the index on the time domain is achieved by the index
arrays. Meanwhile, we argue that the third assumption isnot true. The reasons
are that, as stated in Section 1.2.2, a secondary index is definitely needed in the
value domain for time sequences, and a conventional secondary index is not
capableof dealing with value queries (Section 3.5). We have shown that it is
possible to develop indexes such as the IP-index where the number of entries in
the index can be small even for large time sequences (see Section 3.4 and Sec-
tion 4.3).

By developing the IP-index and the multi-level dynamic array structure, we
have shown that management of time sequences (or time series) can be sup-
ported well in a DBMS. Efficient search based on time stamps (or time inter-
vals) is supported by the multi-level dynamic array structure, and efficient
search based on value constraints is supported by the IP-index. Dynamic grow-
ing of time sequences is also supported by the multi-level dynamic array struc-
ture.

7.3 IP-index

In this section we discuss the physical organization of the IP-index. First of all,
we have to make it clear the two properties of the IP-index: 1) the IP-index is
an ordered index; 2) the IP-index is a secondary index.

To understand why the IP-index is an ordered index is easy. As defined by
[137], an ordered index is an index based on a sorted ordering of the values.
The IP-index is based on the sorted ordering of the vis in the TS, thus it is an
ordered index.

Why the IP-index is considered as a secondary index is not that obvious. We
shall start with the definition of a primary index and a secondary index.

108 Chapter 7 Physical Organization

7.3.1 Primary Indexes and Secondary Indexes

There are basically two kinds of ordered indexes. An index that determines the
location of the records in a file is called aprimary index [118]. Generally, a pri-
mary index is based on a key for the file, but not necessarily theprimary key
[118]. Thus, a primary index should not be interpreted as an index based on a
primary key.

Primary indexes are also calledclustering indexes, because the key in the pri-
mary index determines the clustering of a file. An example of a primary index
is shown in Fig.7.6. There we have a relational tableemployee (name, age, sal-
ary) stored as a file, clustered on the key filed name. Therefore the index based
on the fieldname is a primary index.

Given the valuev of a field other than the key that determines the clustering of
the file, to find all records that have valuev in that field, we would need asec-
ondary index. A secondary index is an index that does not determine the loca-
tion of records in a file, also called anonclustering index. An example of
secondary indexes is shown in Fig.7.7, where the secondary index is built on
the fieldage (the file is clustered on the fieldname).

Now we shall see why the IP-index is a secondary index. Since a time sequence
TS = (ti, vi) is normally clustered by the time stamps tis, all indexes that are
based on the value domain vis are consideredsecondary indexes (nonclustering
indexes) for a time sequence. So is the IP-index.

Brown 32 6000

David 28 5300

David 30 5600

Mary 30 6200

Peter 39 7000

Richard 40 6500

Richard 45 8000

Sara 40 7400

Fig. 7.6: A primary index on employee file, on the key field name

Brown

David

Mary

Peter

Richard

Sara

Theemployee fileThe index

Section 7.3 IP-index 109

7.3.2 IP-index as a Secondary Index

A primary index and a secondary index have different structures. As shown in
Fig. 7.6, a primary index consists of pairs

(<key_value>, <block_address>)

to indicate where the (first) record with the key equals tokey_value resides. A
secondary index on a fieldF, on the other hand, consists of

(v, reference*)

to indicate where the record (or records) whose values in the fieldF equal tov
reside. Thereference can be implemented in one of the following two ways:

1. A pointer to the record in question.

2. The key value of the record in question.

In Fig. 7.7 we use the first approach, i.e.,reference* are pointers to the records
in question. This approach has the advantage that getting to the intended
records is faster than the second approach, i.e., usingkey values. With a key
value we have to use the primary index structure to get the record. On the other
hand, using key values rather than pointers prevents the records from becoming
pinned (A pinned record cannot move freely around the storage space, see

Brown 32 6000

David 28 5300

David 30 5600

Mary 30 6200

Peter 39 7000

Richard 40 6500

Richard 45 8000

Sara 40 7400

Fig. 7.7: A secondary index on employee file, on the fieldage

28

30

32

39

40

45

Theemployee fileThe index

110 Chapter 7 Physical Organization

[137]).

In the case of the IP-index, we chose to use thekey value (i.e., the state_id) of
the record as the reference to the record. For example, if A(v’) = <S1, S6, S10>,
then we store the integers 1, 6 and 10 in the IP-index (i.e., we have A(v’) = <1,
6, 10>). An alternative could be to store the pointers to the blocks whereS1, S6
and S10 reside. The reason we chose to store the state_ids instead of block
addresses is that we would like to have the IP-index independent of the physical
organization of the time sequence.

How to Implement the Anchor -State Sequences?

Having shown that an anchor-state sequence A(v’) in an IP-index is a sequence
of integers, let us see how to implement this integer sequence. This is actually
the most tricky part of the IP-index implementation. The challenge comes from
the fact that for a time sequence, the anchor-state sequences A(v’)s can vary
much in length for dif ferent values v’ (see Fig.10.4 in Section 10.3) The design
goal is in twofold: 1) not to waste space for small A(v’)s; 2) to achieve fast ran-
dom access on large A(v’)s (random access of A(v’) is needed in the case of
time window queries, as shown in Section 5.3). Suppose we have an IP-index as
follo ws:

k1, 1, 2, 6, k2, 1, 5, k3, 6, 7, k4, 6

The first approach is topack the (ki, A(ki)) pairs into blocks in order and then
use some index structure (such as a B+-tree) to index these blocks, as shown in
Fig. 7.8. There we assume that six elements of any type fit in one block.

2 6 1 5 6 7

k1 k2 k3 k4

a B+-tree index

k1 1 k2 k3 k4 6 packed blocks

Fig. 7.8: Packed blocks for secondary indexes

Section 7.3 IP-index 111

This approach has the advantage that the number of blocks used to store the
A(ki)s are minimized (because all A(ki)s are packed together.) But it is not suit-
able in the case of dynamic time sequences. For a dynamic time sequence,
A(ki)s will grow dynamically with TS. Therefore it is impossible to pack all
A(ki)s together as in Fig.7.8.

The second approach to implement the (ki, A(ki)) pairs is to use separate stor-
age for every A(ki), as shown in Fig.7.9. Every A(ki) is implemented as achain
of blocks. In Fig. 7.9, each of the A(ki) fits on one block. In general, an A(ki)
could cover many blocks.

Recall that we would like to have fast random access in A(v’) in order to sup-
port time window queries (Section 5.3). Therefore we need to build some kind
of index on these chained blocks. This leads to the idea of using themulti-level
dynamic array structure (Section 7.2.3) to store A(v’) instead. Suppose we
have an anchor-state sequence as follows (the integers in the anchor-state
sequence represents state_ids:

A(v’) = <3, 5, 6, 8, 10, 15, 18, 20, 21, 24, 25, 27, 30, 32>

This anchor-state sequence will be organized as a dynamic array as illustrated

6

k1 k2 k3 k4

a B+-tree

1 2

51

6 7

6

Fig. 7.9: Separate-storage structure for secondary indexes

112 Chapter 7 Physical Organization

in Fig. 7.10 (suppose six integers fit in one page). There we store the state_ids
in the base arrays and use an index array to index the base arrays by recording
the starting state_id of every base array.

It can be seen that implementing anchor-state sequences as multi-level dynamic
arrays has two advantages: 1) It does not waste space for small A(v’)s; 2) It
guarantees fast random access for large A(v’)s.

7.4 Storage Management for Large Objects

The reason why we investigate storage management forlarge objects is that
many application data result in large objects in DBMSs, such as time series, image
and video data. Among them, we are particularly interested in large sequence data.
Most commercial database systems allow a sequence to be represented as a
‘BLOB’ (binary large object) [131]. Since a BLOB is treated as an uninter-
preted sequence of bytes, no data structure is supported. For example, there is
no support for operations such asget_element(i), get_next() as that for
thesequence structure in SHORE (see the Appendix). In other words, it is up
to the application program to interpret the structure of the BLOB. Some object-
oriented systems like O2 [14] provide array and list constructs but do not sup-
port query languages over them.

In this section, we will give an overview of how large objects are managed in various
systems, including relational DBMSs and object-oriented DBMSs.

3 5 6

18 27252420

15

21

108

the index array

the base arrays

30 32

1, 7, 15,

A(v’) = <3, 5, 6, 8, 10, 15, 18, 20, 21, 24, 25, 27, 30, 32>

Fig. 7.10: A two-level dynamic array for an anchor-state sequence A(v’)

Section 7.4 Storage Management for Large Objects 113

7.4.1 In Relational DBMSs

Physically, a database is a collection of records stored in a file. For example, in
relational DBMSs, atuple in a relational table is stored as arecord, and an
attribute in the tuple is stored as afield of the corresponding record.

In relational DBMSs, records are composed of fields which are normally con-
strained to 255 bytes. Larger fields present problems to the databaserecord
manager, so they must be managed separately. Usually the work is done by the
long field manager (the term long fields is used to refer to large objects in the
relational world).

The first SQL relational database system, System R [12], managed long fields
as alinked list of records, each 255 bytes in length. Operations were restricted
to reading and writingentire long fields; partial reads or updates were not sup-
ported. The maximum length of a long field in System R was restricted to
32,767 bytes.

Later, an extension to SQL was proposed that provided operators for manipulat-
ing long fields [62]. A new interface, the long fieldcursor, provided the ability
for partial reading and updating of long fields. A storage mechanism was pro-
posed that stored long fields as a sequence of 4K data pages (rather than the
previous scheme of a linked list of 255 byte records). The maximum length of a
long field in extended SQL was about 2 gigabytes. This approach, compared to
the one in system R, has the improvement that partial read/write is supported
for long fields (although it is slow).

The Wisconsin Storage System (Wiss) [30] used a similar mechanism for stor-
ing long fields. A Wiss long field was split into 4K pages, calledslices. To
reduce internal fragmentation, acrumb, a partially filled slice managed simi-
larly to a database record, was used to hold the last segment of a long field if it
did not occupy a full slice. A long field was represented by a directory of slices,
plus a crumb. Wiss long fields had a size limit of 1.6 megabytes. Compared to
the previous approach, it has the advantage that space utilization is better due to
the introduction ofcrumbs. Partial read/write is supported by a mechanism sim-
ilar to a cursor, therefore it is still slow.

Starburst [103] is an extensible relational database system developed at IBM
Almaden Research Center that supports extensions of data types and proce-
dures. The Starburst long field manager [74] aims at managing those large
objects that appear in modern applications such as voice, image and video data.
The size of large objects is expected to be in the order of 100 megabytes. The
design goal is tominimizedisk seeks in disk I/O, and optimize time and space
in allocating anddeallocating a long field. The approach chosen was thebuddy
system [70] that was taken from some file systems (such as the Dartmouth Time

114 Chapter 7 Physical Organization

Sharing System [71]). It is characterized by the use of continuous disk space
(termed diskextents, which can be much larger than the size of a disk page) to
allocate large objects. In this way disk seeks are minimized when read/write a
large object. This approach has the limitation that it only supports trimming/
appendingat the end of a large object, update in themiddle of an object is diffi-
cult to support (due to the use of disk extents). However, Schwarz et al. [103]
claim that applications such as those involving voice, image, sound, or video,
will normally require read/write theentire long fields, and partial updates are
normally only needed at the end of the long field (i.e.,trim or append).

7.4.2 In Object-Oriented DBMSs

In object-oriented DBMSs, large objects are managed more gracefully than in
relational DBMSs. This is perhaps due to the different data models of these two
kinds of systems. For example, in OODBMSs, there is no such limit as the
length of afield as in the relational DBMS case.

In the OODBMS world, the most successful system in dealing with large
objects is probably EXODUS [25], which supports fast insertion, deletion, and
retrieval at any position for a large object. EXODUS later evolved into the dis-
tributed object system SHORE [22]. In what follows we describe the data struc-
ture for large objects in this system.

Conceptually, a large object in EXODUS is an uninterpreted sequence of bytes;
physically, it is represented on disk as a B+-tree index on byte positions within
the object, plus a collection of leaf (data) blocks. Fig.7.11 shows an example
of a large object in EXODUS. The root of the tree (the object header) contains
a number of (count, page #) pairs, one for each child of the root. The count
value associated with each child pointer gives the maximum byte number
stored in the subtree rooted at that child; the count for the rightmost child
pointer is therefore also the size of the object. Internal nodes are similar, being
recursively defined as the root of another object contained within its parent
node. Thus, an absolute byte offset within a child translates to a relative offset
within its parent node. The left child of the root in Fig.7.11 contains bytes 1-
421, and the right child contains the rest of the object (bytes 422-786). The
rightmost leaf node in the figure contains 173 bytes of data. Byte 100 within
this leaf node is byte 192 + 100 = 292 within the right child of the root, and it is
byte 421 + 292 = 713 within the object as a whole.

The leaf blocks in a large storage object contain pure data— no control infor-
mation is required since the parent of a leaf contains the byte counts for each of
its children. The size of a leaf block is a parameter of the data structure, and it
is an integral number of contiguous disk pages. For often-updated objects, leaf
blocks can consist of several contiguous pages to lower the I/O cost of scanning

Section 7.4 Storage Management for Large Objects 115

long sequences of bytes within such objects. As in B+-trees, leaf blocks are
allowed to vary from half full to completely full.

Associated with this large object storage structure are algorithms tosearch for
a range of bytes, toinsert a sequence of bytes at a given position in the object,
to append a sequence of bytes at the end of the object, and todelete a sequence
of bytes from a given position in the object. These algorithms [23] are designed
to achieve best-case storage utilization. According to [23], leaf blocks in this
storage structure are at least 80% full, and internal nodes are at least 50% full.
(To be more precise, the algorithms guarantee all but the last two leaf blocks to
be completely full. This is important for space utilization since large objects
are often created dynamically.) The reason why they pay more attention to the
utilization of leaf nodes than internal nodes is that internal node utilization is
not as critical as leaf node utilization because of the large fanout of internal
nodes.

Table7.2 shows examples of the approximate object size ranges that can be
supported by trees of height two and three, assuming two different leaf block
sizes. The table assumes 4k-byte disk pages, 4-byte pointers, and 4-byte counts,
so the internal pages contain between 255 and 511 (count, pointer) pairs. It can
be seen that two or three levels will suffice for most large objects.

Compare the EXODUS large object storage structure with our multi-level
dynamic array structure: the main difference is that the EXODUS structure sup-
ports update in themiddle of a large object, while our structure assumes
append-only (sequentially growing) data. The flexibility of the EXODUS data
structure is obtained by paying the price for a more complex insertion algo-

421 786

192 365282120 421

OID

Header(Root)

Internal

120 162 139 192 173

Pages

Leaf
Blocks

Fig. 7.11: An example of a large object on disk

116 Chapter 7 Physical Organization

rithm (taking care of node balancing, etc.).

The conclusion from the above discussions on large object management is that
the design of data structures for large objects should be based on the expected
operation patterns such as random/sequential access, delete/update frequency,
the granularity of read/write, etc. Trade-offs exist between space utilization and
complexity of insertion, search algorithms.

7.5 Main Memory DBMSs versus Disk-Resident DBMSs

The implementation of the IP-index in both a main memory database system
(Section 4.1) and a disk-resident database system (Section 4.2) made it interest-
ing to compare how these two kinds of database systems differ. In this section
we investigate how these differences affect physical implementation issues
such as index design and data structures, especially for sequence data.

7.5.1 Background

As pointed out in Chapter 7.1, a main memory database system (MMDB) is a
database system where data reside permanently in main memory; while a disk-
resident database system (DRDB) is a database system where data reside per-
manently on disk. Most commercial DBMSs are disk-resident since disks are
more stable and have more capacity than main memory. However, as main
memory becomes more stable (and cheaper also) and the capacity of main-
memory becomes larger, MMDBs are becoming more and more popular nowa-
days. Examples of MMDBs are OBE [10], MM-DBMS [76] and AMOS [49].

Why it is so crucial to distinguish between MMDBs and DRDBs? The reason is
that main memory and disks have different properties that have profound impli-
cations on the design and performance of a database system. According to [56],

Table 7.2: Some examples of object sizes

No. of Tree Levels Leaf Block Size Object Size Range

1 8KB - 2MB

2 4 32KB - 8MB

1 2MB - 1GB

3 4 8MB - 4GB

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 117

the most crucial differences are:

 • Retrieving disk-based data is often block-based. On the contrary, main-
memory access is record-based.

 • The access time of main-memory is in orders of magnitude less than that for
disk storage.

 • The layout of data on a disk is much more critical than the layout of data in
main memory, sincesequential access of a disk is much faster than random
access. In other words, sequential access (clustering) is a critical issue for
disk-resident data, but not for main-memory resident data.

 • Main memory is normally volatile, while disk storage is more stable.

In the following sections we shall discuss the impact of these differences on
physical organization issues such as index design and data structures.

7.5.2 Impact on Index Design

Index structures designed for main memory are different from those designed
for disk-based systems. The primary goals of a disk-oriented index structure are
to minimize the number ofdisk accesses and disk storage. In contrast, the pri-
mary goals of a main memory index structure are to minimizeprocessing time
(CPU time) and main memory space usage.

Main-Memory Index Structur es

A wide variety of index structures have been proposed for main memory data-
bases [37][75][138]. These include arrays, various forms of hashing and trees
(such as AVL-trees, B-trees and T-trees). The main limitation of hashing, com-
pared to trees, is that it does not support range queries. We will not discuss
hashing here since it is not relevant to our IP-index.

Arrays are used as index structures in IBM’ s OBE project [10]. The advantage
is that they use minimum space, providing that the size is known in advance.
The drawback is that data movement isO(N) for each update, so it appears to be
only useful for a read-only or non-update (e.g., time sequences) environment.
Using arrays to store time sequences TS = (ti, vi) indirectly pro vides an index
on the time domain since binary search can be performed on the array to find
any element given the time stamp t.

AVL-tr ees [2] (Fig. 7.12) were used as index structures in the AT&T Bell
Laboratory’s Silicon Database Machine [77]. The AVL-tree was designed as an
internal memory data structure because it uses a binary search structure.

118 Chapter 7 Physical Organization

Searching an AVL-tree is very fast in main memory since the binary search is
intrinsic to the tree structure (no arithmetic calculations are needed, as in the
array case). Updates always affect a leaf node and may result in an unbalanced
tree, so the tree is kept balanced by rotation operations. One disadvantage of
the AVL-tree is its poor space utilization, because each tree node holds only
one data item but two pointers (the left child pointer and the right child
pointer). The ratio of pointer to data is large compared to multi-way tree struc-
tures.

The B-tree and its variations [35] were originally designed for disk-resident
database systems, because the primary goal of this index structure is to mini-
mize the number of blocks (pages) accessed. However, the structure of a B-tree
can also be used in main memory databases to index data (see Fig.7.13). A B-
tree is a multi-way balanced tree. Compared to an AVL-tree, a main-memory B-
tree is better in storage utilization because the pointer to data ratio is small, as
leaf nodes hold only data items and they comprise a large percentage of the
tree. However, searching and update will not be as efficient as an AVL-tree
[75].

The T-tree [75] (Fig. 7.14) was introduced in 1986 as a data structure evolved
from AVL-trees and B-trees. The T tree is a binary tree with many elements in a
node. Since the T-tree is a binary tree, it retains the intrinsic binary search
nature of the AVL-tree. Also, because a node in the T-tree contains many ele-
ments, the T-tree has the storage efficiency of the B-tree. Data movement is
required for insertion and deletion, but it is usually needed only within a single
node. Rebalancing is done using rotations similar to those of the AVL-tree, but
it is done much less often than in an AVL-tree due to the possibility of intra-
node data movement. According to [75], the T-tree over-performs both the B-
tree and AVL-tree.

In our main-memory implementation of the IP-index, we chose to use the AVL-
tree since the AVL-tree has a small rebalancing time.

Fig. 7.12: AVL-tree index structure

AVL-Tree Node

Left Ptr Right Ptr

Data

Control

AVL-Tree

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 119

B-Tree

Fig. 7.13: B-tree index structure

data1 data2 datan

A B-Tree Node

data1 data2 datandata3
......

A T-Tree Node

Parent Ptr

Left Child Ptr Right Child Ptr

T-Tree

Fig. 7.14: T-Tree index structure

120 Chapter 7 Physical Organization

Disk-Based Index Structures

Disk-based index structures are optimized to minimize the number of disk
blocks accessed and disk space utilization. Compared to main memory tree
structures such as AVL-trees, they are characterized asshort , bushy structures
and requirefew node accesses to retrieve a value.

The most popular tree structure in a disk-resident database system is theB-tree
and its variants [35]. (Actually the original publication on B-trees is [17],
although it is not frequently referenced). The structure of the B-tree looks the
same as the main-memory version in Fig. 7.13, except that every node is allo-
cated in a separate disk page (block). Therefore, thepointer s in the B-tree
nodes are block addr esses (logical or physical) instead of main memory
addresses as in Fig.7.13.

The reason why the B-tree is well suited for disk-based database systems is that
the depth (the maximum levels of nodes) of a B-tree is much smaller than that
of an AVL-tree or a T-tree for the same set of data to be indexed. This indicates
that there are less disk I/Os when a B-tree is used to access data.

Given an example IP-index with k eys {k i | i = 1, 2...8} = <1, 3, 5, 7, 10, 12, 15,
22> and the corresponding A(ki)s, the B-tree implementation of this IP-index is
shown in Fig. 7.15 (where we assume thefanout - the maximum number of
keys in each node is 2). Notice that the implementation of A(ki)s is not shown
in Fig. 7.15 (it was discussed in Section 7.3.2), we are only concerned with the
index tree structure here. It can be seen from Fig.7.15 that the characteristics
of a B-tree are: 1) both internal nodes and leaf nodes store pointers to A(ki)s; 2)
every key value ki appears only once in the B-tree. (Note that normally the
nodes in a B-tree are only more than 50% full, space utilization is not as good
as shown in the figure.)

Most database systems use a variant of the B tree, the B+-tree instead. Com-

5 12

1 3 7 10 15 22

A(5) A(12)

A(1) A(3) A(10)A(7) A(23)A(15)

Fig. 7.15: B-tree implementation of the example IP-index

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 121

pared to a B-tree, a B+-tree keeps all of the actual data in the leaves of the tree.
Thus internal nodes are only used toindex these data. For example, the B+-tree
implementation of the same IP-index is shown in Fig.7.16, where only leaf
nodes store pointers to the anchor-state sequences. In this way internal nodes
can store more elements than the B-tree implementation (Fig.7.15). Since all
pointers to A(v’)s are stored in leaf nodes, rebalancing the tree (which is
needed in the process ofinsertion or deletion) is easier than that of a B-tree.
(Note that normally B+-tree nodes are only more than 50% full, space utiliza-
tion is not as good as shown in the figure.)

The advantage of the B+-tree structure over the B-tree is that the B+-tree is easy
to maintain (i.e., the insertions and deletions are more efficient). Moreover,
since the fanout of a B+-tree node is larger than that of a B-tree node, the depth
of a B+-tree is smaller than that of a B-tree. This leads to better search time in a
B+-tree than a B-tree. The slight disadvantage of the B+-tree is its space ineffi-
ciency, because in a B-tree every key value appears only once, while in a B+-
tree some key values appear in both non-leaf nodes and leaf nodes. But the
space advantage of B-trees is marginal for large indexes, and usually does not
overweigh the disadvantages that we have discussed. Thus, the structural sim-
plicity of a B+-tree is preferred by many database system implementors.

In the case of main memory DBMSs, however, the B-tree is preferable to the
B+-tree. This is because, in main memory, there is no advantage in keeping all
of the data pointers in leaves— it only wastes space.

In our disk implementation of the IP-index, we chose to use a B+-tree instead
of a B-tree for the above reasons.

5 10

1 3 5 7 10 12

A(5) A(12)A(1) A(3) A(10)A(7) A(23)A(15)

15 22

15

internal nodes hold more elements than that of a B-tree

Fig. 7.16: B+-tree implementation of the example IP-index

122 Chapter 7 Physical Organization

7.5.3 Impact on Data Structures

Data structures designed for main memory DBMSs are different from those
designed for disk-based DBMSs. A data structure that exhibits good perform-
ance in main memory may turn out to be very inefficient when implemented on
disks. For example, an array is a good data structure for storing sequence data
in main memory, because random access is very efficient. For an array of size
n, the access of any element takesO(1) time. This is the reason why we chose
to implement a time sequence as an array in our main-memory implementation
(see Section 4.1). However, when a large array is stored on disk, the situation is
different. A large array stored on disk normally has to be partitioned into sev-
eral disk pages. To access one element, we have to find the right page that con-
tains the element, and read it in main memory. If chained pages are used to
store the array (such as the “linked list” approach in Section 7.2.4), then a scan
of this chain is needed in order to find the right page. The access time will be
O(N), whereN is the number of pages allocated to store the array. If we build
someindex for the pages such as theindex arrays for the multi-level dynamic
array structure, then the access time will be determined by the level of the
index arrays. In any case the access time will not beO(1) any more. In our disk
implementation of time sequences, we proposed the multi-level dynamic array
structure. We believe that this data structure is an optimal solution for storing
dynamic, irregular time sequences on disk.

Another complication ispointers which affect data structures such as alist, or
references between objects. In our IP-index structure, pointers (or references)
play an important role. There are pointers in the IP-index which associate each
key ki in the index tree with the corresponding anchor-state sequence A(ki), and
each element in A(ki) is a reference to a state Si in the TS (see Section 7.3.2).
Implementation of these pointers (references) is thus an important issue. A
pointer in a main-memory structure is easier— it is simply a main-memory
address. A pointer in a disk-based structure is more complicated. It can be a
logical or physical [137] block address. Using the physical address on disk will
make the object pinned [137], but is faster in access compared to the logical
address. In our disk implementation of A(ki)s (see Section 7.3.2), we chose to
use the logical address (state_id) instead of physical address of Si. The reason
is that we would like to have the implementations of the IP-index and time
sequences independent of each other.

Another relevant issue isswizzling [26]. When a disk data structure is brought
into main-memory, disk addresses have to be transformed into main-memory
addresses.

Section 7.6 Is the IP-index Practical for Large Time Sequences? 123

7.6 Is the IP-index Practical for Large Time Sequences?

After the discussion on physical organization in this chapter, we are able to
answer several questions which concern the practical application of the IP-
index.

Question 1:

Since TS can be very long, the IP-index can grow very large. Is it practical
to build the IP-index for large time sequences?

Answer:

We have proved in Chapter 4 that it is not necessarily true that a large TS
results in a large IP-index tree. The reason is that most real-life TSs appear
periodic and there is a rangeR and precisionP in the value dimension,
which result in the total number of keys kis in the IP-index being less than
R/P. By lowering the precision we can get an even smaller index. Therefore,
it is practical to build the IP-index for large time sequences.

Question 2:

The anchor-state sequence can grow very long which makes the IP-index
take lots of space. Does it make the IP-index impractical?

Answer:

It is true that the anchor-state sequence can grow very long. But this does
not imply that the IP-index is not practical. There are two reasons for this:
1) A long anchor-state sequence just indicates that the size of the answer set

of F-1(v’) is large (Section 5.1). There is nothing we can do about it. How-
ever, techniques such as stream processing (Section 6.2.2) can be used to
prevent materializing the whole answer set. 2) The space to store the
anchor-state sequences is independent of the space to store the index tree,
which means the index tree can still be small and fetching A(v’)s can still be
fast. (Notice that only in the case of time window queries do we need to
search A(v’).) 3) We have shown in Section 4.3 that the total space overhead
of the IP-index for the pressure sequence (Fig.1.4) is rather small.

Question 3:

In the case ofmany time sequences, is it true that building an IP-index for
every time sequence will take too much space?

Answer:

124 Chapter 7 Physical Organization

It is true that it takes space to build an IP-index for each TS. But, as in the
case of any kind of indexes, having an index or not is always a trade-off
between time and space. Consider a database that contains many relational
tables, building an index for every table will take much space. One may
argue that a relational table does not grow as quickly as a TS. The point is:
the size of the IP-index tree is not proportional to the size of the TS, instead
it is proportional to the number of distinct vis, which isR/P as explained in
the answer to Question 1 above. This indicates that a long TS does not nec-
essarily result in a large IP-index tree. Furthermore, the space to store
A(v’)s is very compact as explained in Section 7.3.2. Therefore, it is still
practical to build IP-indexes for many TSs.

Question 4:

In the case ofmany time sequences, is it too time consuming to build an IP-
index for every time sequence?

Answer:

We have measured the insertion time of the IP-index in both main-memory
and disk implementations (see Chapter 4). The experiments show that to
build an IP-index is very fast even for large time sequences. For limited pre-
cision of vis in TS, the insertion time can stay almost constant regardless of
the growing of the TS. Therefore, it is practical to build the IP-indexes for
many time sequences.

7.7 Summary

In this chapter we investigated physical organization issues. We are mostly
interested in physical data structures fordynamic, irregular time sequences.
The challenge is to support bothfast appendingand efficient random access.
We developed a multi-level dynamic array structure which meets this chal-
lenge. Related work was compared with this data structure.

Physical structures of secondary indexes were also discussed. In the case of the
IP-index (which is a secondary index), the challenge is how to store theanchor-
state sequences, because they are dynamic and vary widely in length. The
multi-level dynamic array structure is also a good choice for storing anchor-
state sequences. It does not waste space for short A(v’)s and guarantees fast
random access for large A(v’)s.

Other relevant issues such as storage management of large objects, the impact
of main-memory or disk-resident DBMSs on data structures were also investi-
gated.

Chapter 8

Query Optimization

Query optimization for sequence data is an important issue since sequences
are usually very long. In this chapter, several optimization techniques forvalue
queries are discussed. First, we show that the technique ofstream processing
can be used in processing the operatorσ∗v=v’(TS) when card(A(v’)) is large. Sec-
ondly, we investigate thecost models andselectivity factors [107] for selections
such asσ∗v=v’(TS) and σ∗v>v’(TS). These information can be used to optimize
complex value queries (sequence joins) by choosing a good join order. Optimi-
zations of time window queries are also investigated and verified by experi-
ments.

8.1 Stream Processing

Stream processing is an important technique in sequence query optimization
since sequences are usually very long. Stream processing is used in SEQ [110]
to optimize sequence queries: “each sequence is read in a single continuous
pipelined stream without materializing it.” This is accomplished by associating
buffers with each operator, to cache some relevant portion of the most recent
data from its inputs. In this section we shall see how stream processing can be
used to process the operatorσ∗v=v’(TS).

As pointed out in Section 6.2.2,σ∗v=v’(TS) is implemented by the sequential
execution of the two operators: 1) IPv=v’(TS), and 2) ifn-1 (Fig. 8.1). The
IPv=v’(TS) operator returns the anchor-state sequence of v’, A(v’), and the
inverse interpolation functionifn-1 is applied to each state in A(v’). Since the
cardinality of A(v’) can be large, to materialize the result of the operator

126 Chapter 8 Query Optimization

IPv=v’(TS) (i.e., to materialize the sequence A(v’)) can be time consuming.
Instead, we propose to implement the operator IPv=v'(TS) as astreamwherethe
next element of IPv=v'(TS) is implemented by retrieving thenext state in A(v’).
Therefore, theσ∗v=v'(TS) can be implemented as a stream as well: thenext state
of theσ∗v=v'(TS) is generated by applyingifn-1 over thenext state returned from
IPv=v'(TS).

Notice that the stream ofσ∗v=v'(TS) and IPv=v'(TS) can be generated in the
reverse order as well, i.e., the states with newer time stamps come out first.
This is useful in many applications since newer states are usually more interest-
ing than older ones.

Another benefit of stream processing is that we are able to generate thefirst few
answers [16] quickly. To generate the first few answers, the interpolation func-
tion ifn-1 is applied to only the first few states in A(v’). In particular, the first
answer of σ∗v=v'(TS) can be generated quickly since the first state_id in A(v’)
denotes the position in the TS to applyifn-1. The benefit of this approach has
been demonstrated by experiments in Section 6.3.2.

8.2 The Cost Model ofσ∗v=v’(TS)

Since time sequences can be very long, it is important to be able to estimate the
cost of a value queryσ∗v=v'(TS). As pointed out in the last section,σ∗v=v'(TS) is
implemented by stream processing of the two operators: 1) IPv=v’(TS), and 2)
ifn-1 (Fig. 8.1) — the IPv=v’(TS) operator returns A(v’), andifn-1 is applied to
every state in A(v’). One could predict that the cost ofσ∗v=v'(TS) will be deter-
mined by the cardinality of A(v’). The longer A(v’) is, the more time it will
take to processσ∗v=v'(TS) since the answer set will be larger. Is this a valid pre-
diction? Let us see the experimental results.

We have performed experiments on SHORE to investigate the cost ofσ∗v=v'(TS)
for different time sequences and different values of v’. The IP-index was imple-
mented on top of a B+-tree. Anchor-state sequences were implemented as

σ∗v=v’

IPv=v’

ifn-1

=

Fig. 8.1: Streaming processing of theσ∗ operator and the IP operator

Section 8.2 The Cost Model of s*v=v’(TS) 127

SHORE large objects which can grow arbitrary large. Time sequences were
implemented as arrays of records (ti, vi). All measurements were done on a
SPARC 20 machine with 64M main memory. The SHORE buffer pool size was
set to 40 8K pages.

Both a synthetic and real-life time sequence were used in the measurements.
The synthetic time sequence was v(i) = m(i) * sin(k * i) (i = 1, 2...10K) (intro-
duced inSection 6.3.1) as shown in Fig. 8.2. The reason for constructing this
sequence was to easily control the length of A(v’) by varying the values of v’,
as explained in Section 6.3.1. The real-life time sequence was the pressure
sequence introduced in Section 1.2.2, as shown in Fig.8.3.

8.2.1 The Linear Case

To measure the relationship between the execution time ofσ∗v=v’(TS) and the car-
dinality of A(v’), we chose different values of v’ in the synthetic sine sequence
(Fig. 8.2) with varying card(A(v’))s. The selected v’s and the corresponding
card(A(v’))s are listed in Table8.1. The execution times ofσ∗v=v’(TS) with regard to
card(A(v’))s are shown in Fig. 8.4. It verifies our “linear” speculation above. It
shows that the execution time ofσ∗v=v’(TS) by using the IP-index is linear to
card(A(v’)).

Fig. 8.2: The synthetic sine sequence

0 50 100 150 200 250 300 350 400 450

−1.5

−1

−0.5

0

0.5

1

1.5

1.25

128 Chapter 8 Query Optimization

Table 8.1: Selected v’s and the cardinalities of A(v’)s

v’ 9.4 9.2 9 8.4 7.3 4.9 3.0 0

cardinality 14 60 106 246 504 1064 1508 2000

Fig. 8.3: The pressure sequence

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−0.5

0

0.5

1

1.5

2

2.5

Fig. 8.4: The execution times ofσ∗v=v’(TS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cardinality of A(v)

ex
ec

ut
io

n
tim

e
(s

)

using the IP−index
linear scan the TS

Section 8.2 The Cost Model of s*v=v’(TS) 129

8.2.2 The Non-Linear Case

We also performed experiments on the real-life time sequence as shown in
Fig. 8.3. The cardinality of the sequence as 100K and the precision of values
was 10-2. The selected v’s and the corresponding cardinalities of A(v’)s are listed
partly in Table8.2 and partly in Table8.3.

Table 8.2: Selected v’s and the cardinalities of A(v’)s (part 1)

Table 8.3: Selected v’s and the cardinalities of A(v’)s (part 2)

The execution times ofσ∗v=v’(TS) with regard to card(A(v’))s are shown in Fig. 8.5.
It is not a clean “linear” curve any more.What is surprising is that the execution
time of σ∗v=v’(TS) for shorter A(v’)s can be bigger than the execution time of
σ∗v=v’(TS) for longer A(v’)s.This leads to thecost model of σ∗v=v’(TS) in the
next section.

v’ -0.26 -0.25 -0.24 0.03 -0.23 -0.13

cardinality 4 30 92 284 504 758

v’ -0.14 -0.18 -0.22 -0.21 -0.2

cardinality 1590 2081 2939 4357 4945

Fig. 8.5: The execution times ofσ∗v=v’(TS) for the pressure sequence

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6

8

10

12

cardinality of A(v)

ex
ec

ut
io

n
tim

e
(s

)

using the IP−index
linear scan the TS

130 Chapter 8 Query Optimization

8.2.3 Cost Model

After investigating the reasons why Fig. 8.4 and Fig.8.5 look so different, we
came to the conclusion that the nice “linear” property in Fig.8.4 is only valid
when the states in A(v’) tend to reside in the same page as the sine sequence
does. Fig.8.6 illustrates this. Suppose that the portion of the sine sequence in
Fig. 8.6 (defined over the time interval [0, 460]) occupies 4 pages, then all the
states in A(1.25) will reside in the same page (the last page). And all states in
A(1.20) will reside in two pages. In this case the number of pages visited is lin-
ear to the cardinality of A(v’). In reality most time sequences do not have this
nice property. States in A(v’) are “scattered” in different pages instead of clus-
tered together. For example, states in A(1.5) in the pressure sequence (Fig.8.3)
are scattered instead of clustered. In this case the execution time ofσ∗v=v’(TS)
using the IP-index will not be linear to the cardinality of A(v’), instead it will
be linear to the number of disk pages visited.

This indicates that to estimate the cost ofσ∗v=v’(TS) using the IP-index, we
need to have knowledge of the distributions of those Sis in A(v’) in addition to
the cardinality of A(v’). The statistics on distributions of Sis in A(v’) can be
maintained as meta-data in DBMSs (the cardinalities of A(v’)s are stored in the
IP-index). In the worst case we have to assume every Si in A(v’) resides in a
different disk page.

Fig. 8.6: The page division of a portion of the sine sequence

1 page

0 50 100 150 200 250 300 350 400 450

−1.5

−1

−0.5

0

0.5

1

1.5

1.25

Section 8.3 Cardinalities of Range Queries 131

8.3 Cardinalities of Range Queries

The selectivity factor [107] plays an important role in traditional query optimi-
zation. In the classical paper “Access Path Selection in a Relational Database
Management System” [107], the cost of an execution plan is estimated as a
weighted sum of I/O pages fetched and CPU time. In the case of using an index
scan [107], the selectivity factor of a predicate can be used to estimate the
number of I/O pages fetched. A selectivity factor of a predicate,F(pred), is
defined as “the expected fraction of tuples which will satisfy the predicate”. For
example, if we have a query such as “find the employees whose names are
‘John’”, then, using a clustered index on the attribute name on theemployee

relation, the cost of executing this query would be

F(pred) * (NINDX(I) + TCARD) + W * RSICARD

where F(pred) is the selectivity factor of the predicatename = ‘John’,

(NINDX(I) + TCARD) is the total number of index pages and data pages that
hold all tuples in the relation, andRSICARD is the estimated CPU time. The
number of index pages and data pages for theemployee relation is stored as
meta-data in the DBMS. The selectivity factor, F(pred), can therefore be cal-
culated by using those statistics such as the number of distinct keys in the index
I and the number of index pages [107].

Therefore, selectivity factors play an important role in estimating the cost of a
query when index scan is used. This is because the selectivity factor indicates
how many disk pages (including index pages and data pages) will need to be
fetched (see the above formula). (In the case where no index is available, the
cost of scanning the entire relation will be the same as the numberTCARD above,
no selectivity factor will be involved any more.)

In the case of a 2-way join (a join involves two relations), the cost of the join is
estimated by the cost of scans on each relation (could beindex scans or segment
scans, see [107]) and the cardinalities of the results of scans. For example, if a
nested loop join method is used, then the cost is estimated by

C(path1, path2) = C_outer(path1) + N * C_inner(path2)

whereC_outer(path1) is the cost of scanning the outer relation [107] via path
1, C-inner(path2) is the cost of scanning the inner relation [107] via path 2,
andN is the estimated cardinality of the tuples in the outer relation that satisfy
the join predicate [107]. The numberN is calculated by the formulaF(pred) *

NCARD(T) (whereNCARD(T) is the cardinality of the outer relation, stored as
statistics in the DBMS). Therefore, aside from affecting the cost of an index
scan, the selectivity factor F(pred) is an important factor in choosing a good

132 Chapter 8 Query Optimization

join order as well.

It is interesting to consider the selectivity factors for value queries. For exam-
ple, what would the cardinalities of the results ofσ∗v=v'(TS) andσ∗v>v'(TS) be?
In the case ofσ∗v=v'(TS) on time sequences, the estimated cardinality of the
answer set will be the same as the cardinality of A(v’) (recall that card(A(v’))
is stored in the IP-index, see Section 3.2.1). The reason is that every answer of
σ∗v=v'(TS) is produced by applyingifn-1 on an anchor-state of v’, seeFig. 8.1. How-
ever, for a range queryσ∗v>v'(TS), there are two kinds of cardinalities of the
result set. When the sequence TS is viewed as continuous, the cardinality of
σ∗v>v'(TS) is the number of time intervals returned. When TS is viewed as dis-
crete, the cardinality ofσ∗v>v'(TS) is the number of states inside those time
intervals. These will be further illustrated in the following paragraphs.

For a continuous TS, the results ofσ∗v>v'(TS) will be a sequence of time intervals.
These time intervals (when the values are greater than v’) can be computed by the
algorithm ofF-1(v>v’) in Fig. 5.5. Sincethe time intervals of F-1(v>v’) is com-
posed by grouping thetime points of F-1(v’) into corresponding intervals, the
cardinality ofσ∗v>v'(TS), i.e., the number of time intervals returned, is determined
by the cardinality of A(v’). For example, in the following time sequence which repre-
sents the temperature reading of a patient in a hospital, we pose the query:

 • When did the patient have a temperature higher than 38?

The cardinality of this query will be 2, because there are two time intervals
(i.e., (t1, t’) and (t’’, t’ ’’)) returned. On the other hand, if we view the time
sequence asdiscrete, then the query:

 • At what time points did the patient have the temperature higher than 38?

would yield cardinality of 5, because there are 5 explicit time points{t 1, t7, t8, t9,
t10} where the temperature was higher than 38.

t

v

v’ =38

t’ t’’ t’’’

Sg1
Sg6 Sg10

S1

S6

S10

Fig. 8.7: Illustration of a value query

Section 8.4 The Cost Model of s*v>v’(TS) 133

Therefore, there are two cardinalities of the range queryσ∗v>v'(TS), one is the
number of sub-sequences returned, the other one is the number of (explicit)
states inside those sub-sequences. Which one to use in the query optimization
depends on whether the time sequence is viewed as discrete or continuous.

8.4 The Cost Model ofσ∗v>v’(TS)

A relevant issue is thecost model of σ* v>v’(TS). As we mentioned above,
σ* v>v’(TS) is computed by F-1(v>v’). Fig. 5.5 shows that the cost of computing
F-1(v>v’) is nearly the same as the cost of computing F-1(v’), because thetime
intervals of F-1(v>v’) are composed by grouping thetime points of F-1(v’) into
corresponding intervals. Therefore, the cost ofσ* v>v’(TS) is nearly the same as
the cost ofσ* v=v’(TS).

This is surprising because we tend to think that the cost of a range query is pro-
portional to the size of the range. The reason why the cost ofσ∗v>v'(TS) is not
linear to the number of states in the range v > v’ is that the semantics of theσ∗
operator is different from the semantics of the conventional σ operator. The
σ∗v>v'(TS) retrieves thesub-sequences that have values greater than v’. The cost is
linear to the number of the sub-sequences returned, which has no direct relationship
with the number of (explicit) states inside thosesub-sequences.

The property that the cost ofσ* v>v’(TS) is nearly the same as the cost of
σ* v=v’(TS) makes the IP-index especially suitable for large sequences, because
the cost of range queries does not grow with the number of states inside those
ranges.

8.5 Time Window Queries

This section discusses time window queries. Time window queries are those
value queries that only concern a part of the time sequence, i.e., a time window.
An example of a time window query could be:

 • When did the patient have a fever in the last few days (denoted as t > t’)?

Using the new functions proposed for the data type of time sequence (Section
6.5), this query can be expressed as the following:

SELECT t
FROM Temperature_seq TS
WHERE t IN get_time_stamps(TS, ‘=’ 1, 38)

AND t > t’

134 Chapter 8 Query Optimization

The answer of this query is marked by the two crosses in Fig.8.8. This query
can be processed in two steps: 1)σ∗v=38(TS); 2) σ∗t>t’(TS). The first step,
σ∗v=38(TS), generates all (explicit or implicit) states S’ where S’.value = 38.
Then, in the second step, every state S’ fromσ∗v=38(TS) can be checked to see
if it is in the time interval (t’, now). If it is, then S’ is returned as a result.

8.5.1 Optimization of Time Window Queries

When many states are returned fromσ∗v=38 and the resulting states are very few
(the time window is small), it might be a waste to calculate all S’s and check
the condition later. Recall that the operatorσ∗v=38(TS) is accomplished by
IPv=38(TS) andifn (illustrated as (a) in Fig.8.9), the selectionσ∗t>t’(TS) can be
“pushed down” to the IPv=38(TS) operator, resulting in theIPv=38 AND t>t’ opera-
tor (see (b) in Fig.8.9). The new operator, IPv=38 AND t>t’, can be processed effi-
ciently by searching A(38) to find those states Sis where Si.time > t’. In this
way only a part of the anchor-state sequence A(38) (the part that is inside the
time window) is involved in query processing.

Time window queries for the window condition t < t’ can be optimized simi-
larly by pushing the condition t < t’ down to the IP operator as shown in
Fig. 8.9. However, no search on A(v’) is needed here since the starting position
is the first state in A(v’). The stream output of the IP operator is terminated
when the condition Si.time < v’ does not hold any more.

Another possible optimization strategy for “σ∗v=38 AND t>t’(TS)” is to generate
σ∗v=38(TS) as areversestream(as described in Section 8.1) and terminate when
t > t’ does not hold any more. This strategy is optimal when the time window is

1. In reality we should use ‘>’ instead of ‘=’ since a fever means body temperature >
38°C. All the discussions will hold.

t

v

38

t’

t > t’

Fig. 8.8: A time window query

Section 8.5 Time Window Queries 135

t > t’ (i.e., the window is with a lower bound), but it does not help when the
time window is t < t’ (i.e., the window is with anupper bound).

If we compare the strategy of generating areverse stream with the strategy
illustrated in Fig.8.9, we see that generating a reverse stream has the limitation
that the output stream is not in the same (time) order as the input stream. There-
fore, this strategy (i.e., generating a reverse stream) cannot be used in methods
such as sort-merge joins. Also note that ageneral time window query t’ < t < t’’
(i.e., a time window with both upper and lower borders) would normally
require search on A(v’) to efficiently find the positions of t’ and t’’.

In the next section we present a performance comparison of these different
strategies with experiments on SHORE.

8.5.2 Experiments

We measured the three different strategies above for optimization of time win-
dow queries. The three strategies are: 1) Scanning A(v’) to calculate all t’s and
check the condition later; 2) binary searching A(v’); 3) reversely scanning
A(v’).

The time sequences used in the experiments were the synthetic sine sequence in
Fig. 8.2 (cardinality = 10K) and the real-life pressure sequences Fig.8.3 (cardi-
nality = 100K).

The time window was defined as t > t’. The window size was varied from 100,
500, 1K, 5K to 10K for the sine sequence and 1K, 5K, 10K, 50K to 100K for

σ∗v=38

σ∗t>t’

IPv=38

σ∗t>t’

ifn-1

IPv=38 AND t>t’

ifn-1

=
optimized to

(a) (b)

Fig. 8.9: Optimization of time window queries

136 Chapter 8 Query Optimization

the pressure sequence. Every window size results in a different number of
anchor-states visited (Section 8.5.1). These numbers are plotted as the x-axis in
Fig. 8.10 and Fig.8.11. The experimental results are shown in Fig.8.10 and
Fig. 8.11.

The measurements show that: 1) reverse scanning of A(v’) is the most efficient
strategy since no extra overhead is needed; 2) binary searching A(v’) (to get
close to the position of t > t’) performs almost as efficiently as reverse scan-
ning; 3) when the time window is small, the difference between not searching
A(v’) and binary search A(v’) issubstantial.

The conclusion is that it is very important to optimize time window queries by
pushing the condition t > t’ into the IP operator (Section 8.5) when the window
is small.

Some readers may wonder why we do not simply perform binay search on the
original TS to find the sub-sequence that is inside the time window t > t’ and
perform σ* v=v’(TS) on this sub-sequence. The reason is that this strategy will
always be slower than the strategy 2 above, i.e., binary searching A(v’) (or
strategy 3 above, i.e., reverse scanning A(v’)), because A(v’) is normally much
shorter than the whole TS.

Fig. 8.10: The time window query for the sine sequence (10K)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

window size

ex
ec

ut
io

n
tim

e
(s

)

not search A(v)
binary search A(v)
backward scan A(v)

Section 8.6 Complex Queries 137

8.6 Complex Queries

This section shows possible ways to optimize complex value queries. A com-
plex value query contains more than oneσ∗ operator.

Suppose that for the pressure sequence (see Fig.8.3) we are interested in find-
ing the pattern where “a small peak follows a big peak”. Suppose a small peak
means v=1.5, a big peak means v=2.2, and “follows” means the time difference
is around 30 seconds (i.e., one period of this time sequence, see Section 1.2.2).
Then this query can be expressed as Fig.8.12.

The variablee is a small value that denotes thevariation of a period (around 30
seconds). Sinceσ∗v=v’(TS) results in a stream of (explicit or implicit) states,

Fig. 8.11: The time window query for the pressure sequence (100K)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

window size

ex
ec

ut
io

n
tim

e
(s

)

not search A(v)
binary search A(v)
backward scan A(v)

SELECT t1, t2
FROM Pressure_seq S
WHERE t1 IN get_time_stamps(S, 1.5)

AND t2 IN get_time_stamps(S, 2.2)
AND 30 - e < t1 - t2 < 30 + e

Fig. 8.12: An example complex query

138 Chapter 8 Query Optimization

the functionget_time_stamps(TS, v’) results in a stream of time points. There-
fore, there are two streams of time points generated from this query:t1* gener-
ated from get_time_stamps(TS, 1.5), and t2* generated from
get_time_stamps(TS, 2.2). These two streams will be joined by the condition 30
- e < t1 - t2 < 30 + e. There are three possible ways to join these two streams:

 • Query Plan1: Streamσ∗v=1.5(TS) andσ∗v=2.2(TS), performing join on these
two streams using the predicate “30 - e < t1 - t2 < 30 + e” in lock step (sim-
ilar to a sorted-merge join). This query plan is illustrated in Fig.8.13.

This plan has to go throughevery element in both stream. It might be ineffi-
cient when any of the streams is long.

 • Query Plan 2: Streamσ∗v=1.5(TS). For every output t1, using (t1-30-e, t1-
30+e) as the window to pose the time window query “σ∗v=2.2 AND t1-30-

e<t<t1-30+e(TS)”. This plan is illustrated in Fig.8.14.

 • Query Plan 3: (Symmetric to Plan 2) Streamσ∗v=2.2(TS). For every output
t2, using (t2+30-e, t2+30+e) as the window to pose the time window query
“ σ∗v=1.5 AND t2+30-e<t<t2+30+e(TS)”. This plan is illustrated in Fig.8.15.

Which plan is the best? It depends on several factors. For example, if the esti-
mated cost ofσ∗v=1.5(TS) andσ∗v=2..2(TS) are both small (the cost model can be
found in Section 8.2), then Plan 1 will a good choice since the condition 30 - e
< t1 - t2 < 30 + e can be checked easily while the two streamsσ∗v=1.5(TS) and

Pressure_seq

σ∗v=2.2

output

σ∗v=1.5

t1-t2<30

Pressure_seq

Fig. 8.13: Query Plan 1

Section 8.6 Complex Queries 139

σ∗v=2..2(TS) can be generated quickly. If the estimated cost ofσ∗v=2..2(TS) is
small but the estimated cost ofσ∗v=1.5(TS) is big, then Plan 3 is a better choice
since the expensive operatorσ∗v=1.5(TS) will be replaced by a time window
query “σ∗v=1.5 AND t2+30-e<t<t2+30+e(TS)”, which only concerns a (hopefully
small) part of TS. However, this will only be a good choice when the window
sizee is small, and the cardinality ofσ∗v=2..2(TS) (the number of time points t2
returned) is small as well. The reason is that: if the number of the time points t2
returned fromσ∗v=2..2(TS) is large, then the time window query σ∗v=1.5 AND

t2+30-e<t<t2+30+e(TS) will be posed on TS many times, resulting in an expensive
query plan.

Plan 1 can be seen as analogous to thesorted-merge join [107] strategy in rela-
tional query optimization, while Plan 2 and Plan 3 can be seen as analogous to
the two possible choices of outer and inner relations [107] in a relational
nested-loop join. Which plan is better depends on the cost and the cardinalities
of the result sets of theσ∗ operators.The cardinality of the result set ofσ∗v=v’(TS)
is the same as the cardinality of A(v’), which is stored in the IP-index (Section
3.2.1). Note that the cardinality of different anchor-state sequences in a TS can
vary very much. For example, in Fig.8.3, the cardinality of A(1.5) is less than
10 and the cardinality of A(-0.2) is several thousand. So it is very important to
optimize sequence queries using the cardinality information.

Pressure_seq

output

σ∗v=1.5

σ∗v=2.2 ANDt1-30-e<t<t1-30+e

Pressure_seq

Fig. 8.14: Query Plan 2

140 Chapter 8 Query Optimization

Even the above seemingly simple query is not trivial when it comes to query
optimization. The reason is that optimization of complex value queries depends
on several factors such as the cost ofσ∗v=v’(TS), the cardinality of the answer
set, and the time window size, etc. Optimization of complex value queries is an
interesting topic for future work.

8.7 Summary

Query optimization is an important issue in managing sequence data. In this
chapter we have discussed several possible optimization techniques forvalue
queries. First we showed thatstream processing can be utilized in processing
the σ∗v=v’(TS) operator when the cardinality of A(v’) is large (which results in
a large answer set). Secondly, a cost model ofσ∗v=v’(TS) was developed. It
shows that the cost ofσ∗v=v’(TS) is determined by two factors: 1) thecardinal-
ity of A(v’); 2) how the anchor-states in A(v’) aredistributed in disk pages.
This indicates that somestatistics on the value distribution of the sequence are
needed in order to estimate the cost of theσ∗ operator. Another interesting
issue is thecardinality of range queries. In contrast to the traditional case, the
cardinality of range queries on a continuous sequence isnot linear to thesize of
the value range or the size of the sub-sequences retrieved. Instead, it is linear to

Fig. 8.15: Query Plan 3

Pressure_seq

output

σ∗v=2.2

σ∗v=1.5 AND t2+30-e<t<t2++e

Pressure_seq

Section 8.7 Summary 141

the number of sub-sequences returned. This indicates that processing range
queries is very efficient using the IP-index, especially for large sequences. We
also investigated optimizations of time window queries and complex value que-
ries. Time window queries can be optimized by pushing thetime window into
the IP operator (a component of theσ∗ operator), reducing the number of
anchor-states retrieved before applyingifn-1. Complex value queries (sequence
joins) can be optimized by choosing a good join order according to the cardi-
nalities and the cost of theσ∗ operators involved. Experiments were performed
to verify the above optimization strategies.

142 Chapter 8 Query Optimization

Chapter 9

Related Work

This chapter discusses related work in general. More closely related work,
such as work related to the IP-index, or work related to theσ* operator, can be
found in corresponding chapters.

The most relevant related work is a database system named SEQ, which
addresses the design and implementation issues of supporting sequence data in
DBMSs. We shall provide an overview of the SEQ system, including its data
model, query language, and query optimization techniques, and point out what
is relevant to our work.

Other closely related work includessimilarity search on time series, i.e., find-
ing similar patterns in different time series. Research in this area has been very
active in the recent years. Various methods have been proposed, such as those
using the Discrete Fourier Transformation (DFT) to compare time series in the
frequency domain, or transforming time series into some feature-preserved
functions. We shall point out pros and cons of each approach and compare them
with our work.

Since time series in trading or financial business have special requirements that
cannot be met by conventional DBMSs, most time series data are managed by
special-purpose management systems. In this chapter, we shall provide an over-
view of time series management systems such as FAME [52] and CALANDA
[42].

Since a time series is a special case of temporal data, research ontemporal
databases is discussed, including temporal data models, temporal query lan-

144 Chapter 9 Related Work

guages, and temporal indexes.

9.1 SEQ — A Sequence DBMS

As pointed out in the introduction, sequence data appear in many application
domains such as stock prices, product sales, scientific measurements, medical
data, and event processing. Traditional database systems are based on the
model of sets, not sequences. Consequently, expressing sequence queries is
very tedious in SQL and query execution is very inefficient [109]. For this rea-
son, Seshadri et al. [110] designed a sequence database system SEQ, which
address the special issue of supporting sequence data in DBMSs.

SEQ [110] is based on a sequence data model SEQ [109]. This data model aims
at capturing theordering semantics of sequence data and specifies common
operators on them. A sequence query language,SEQUIN, was proposed. Query
optimization and physical organization were also addressed in [110].

The SEQ system later evolved into PREDATOR [111] to support other types of
non-traditional data types such as image, audio, and spatial data. In this section
we shall provide an overview of the SEQ system and point out what is relevant
to our work.

9.1.1 The SEQ Data Model

The data model which the SEQ system is based on is also named SEQ [109].
This data model consists of anordering domain and a record domain (see
Fig. 9.1). The ordering domain can be composed of any kind of ordered data
such as integers, time stamps, etc. Each element in theordering domain is
called aposition. Records in the record domain can be of any data type such as
floating values, strings, or complex data types. The relationship between the
ordering domain and the record domain is “many to one”. That is, different
positions in the ordering domain can be mapped to the same record, but every
record can only be mapped to one position.

There can be “holes” in the ordering domain, which results insparse
sequences. Sparse sequences correspond to real-life sequences where there are
missing values in measurements.

In SEQ, operations over sequences include the following:

 • transform

— apply a functionfn on each record in the sequence

Section 9.1 SEQ — A Sequence DBMS 145

 • binary

— e.g., two sequences join

 • offset

— e.g., shift in the ordering or record domain

 • aggregate

— e.g.,moving average, max, min

 • zooming

— transform sequences according to different granularity in the ordering
domain. In the SEQ data model [109], acollapse operation is defined to
transform from a coarse domain to a finer domain (e.g., from weeks to
days), and anexpansion operation as the inverse. Certain well-known col-
lapses and expansions on the ordering domain are pre-defined.

Based on the SEQ data model, Seshadri et al. [110] designed a sequence data-
base system SEQ. In SEQ, sequence data are supported by extending DBMSs
with abstract data types (ADTs). ADTs in extensible DBMSs are discussed in
the next section.

9.1.2 Abstract Data Type (ADT)

Traditional DBMSs have limited support for data types, i.e., only simple types

ordering domain record domain

Fig. 9.1: The SEQ data model

1-many relationship

many-1 relationship

.....

.....

.....

.....
.....

146 Chapter 9 Related Work

such asscalar or strings are supported. To meet the requirements of modern
applications, new generation DBMSs support type extension— new data types
can be added to the system without changes to the existing codes.

The basic technology used is that ofAbstract Data Types (ADTs). The concept
of ADTs was adapted from programming languages (such as [9][60][87]) in the
1980s in the database system Postgres [129] (see also [128][132]). In this
approach, the DBMS maintains a table of ADTs, and new ADTs may be added
by a database developer or user. Each ADT provides methods that implement a
common internal interface through which the system can access values of that
type. The internal interface includes methods for the storage and indexed
retrieval of values. Each ADT can also declare primitive operations for manipu-
lating or querying values of that type. For example, an ADT for images might
provide operations such asRotate(I, Angle), Clip(I, Region), and Oerlay(I1,
I2). Libraries of primitive operations for each ADT are sometimes called
“datablades” [65], “data cartridges” [95], or “data extenders” [27].

In SEQ, sequence data are modelled as a new data type namedsequence. Meth-
ods defined onsequences are:OpenScan(Cursor), GetNext(Cursor), and Clos-
eScan(Cursor), which provide a scan of the sequence in the forward order of
the ordering domain. Any positions in the domain which are not mapped to a
record are ignored in the scan.GetElem(Pos) is used to find the record at the
specified position in the sequence (or fails if none exists at that position).

In SEQ, each ordering domain is modelled as a data type associated with some
additional methods. Methods defined for ordering domains are:LessThan(Pos1,
Pos2), Equal(Pos1, Pos2), and GreaterThan(Pos1, Pos2), which allow compari-
sons to be made among positions.Collapse is an operator used to transform
sequences between different granularity in the ordering domain. In addition, all
ordering domains can be organized into a hierarchical relationship to model the
relationship between them. Fig.9.2 shows one set of hierarchical relationships
between common temporal ordering domains. Acollapse operation is defined
to map a position in one ordering domain to a position or set of positions in
another domain.

9.1.3 Physical Organization of Sequences

As mentioned in Chapter 7, physical organization determines the efficiency of a
database system. Let us take a look at how sequences are physically imple-
mented in SEQ.

In SEQ [110], a sequence was implemented as anarray of records. The array
was implemented using a single SHORE large object, which can grow arbitrar-
ily large and supports insertion or deletion in the middle of the object. Since

Section 9.1 SEQ — A Sequence DBMS 147

sequences can be irregular (i.e., have empty positions), acompressed array rep-
resentation was used to reduce space used for empty positions. This compres-
sion makes some operations within a sequence (such as position lookup, insert
and delete) more expensive to implement.

Compared to our approach of using the multi-level dynamic array to store
sequence data (Section 7.2), this compressed array implementation has the fol-
lowing drawbacks: 1) In the current SHORE version, page faulting for large
objects is not supported. This implies that when one record is needed, the
whole sequence has to be brought into main-memory. This leads to very slow
retrieval for large sequences. By contrast, in our approach, only one disk page
(one base array) is read into main-memory when one record is needed. 2) Even
if page faulting is supported in SHORE, two kinds of indexes need to be main-
tained for fast retrieval of a record: an index that records the mapping between
the record_ids and the page_ids, and an index that records the mapping
between the values in theordering domain andpage_ids. By using our multi-
level dynamic array structure, these two kinds of indexes are naturally sup-
ported by theindex arrays.

Therefore, our approach is a superior one compared to the compressed array
described in [110]. Our multi-level dynamic array structure supports both fast
random access and page-faulting.

9.1.4 SEQUIN Query Language

The query language in SEQ is namedSEQUIN [110]. SEQUIN is similar in fla-
vour to SQL. It is a declarative language for sequence queries. The result of a
query inSEQUIN is always of the typesequence.

Years

Months

Days

Hours

Weeks

Fig. 9.2: Sample ordering hierarchy on times in SEQ

148 Chapter 9 Related Work

The following examples give a flavour of SEQUIN. Two stock price sequences
Stock1 and Stock2 are used in the examples. Both sequences have the same
schema: {time: Hour, high: Double,low: Double,volume: Integer}.

 • Estimate the monetary value of Stock1 traded in each hour when the low
price fell below 50.

Project1 ((A.high + A.low) / 2) * A.volumn
From Stock1 A
Where A.low < 50 . (1)

 • Find the 24-hour moving average of the difference between the prices of the
two stocks.

Project avg(A.high - B.high)
From Stock1 a, Stock2 B
Over $P - 23 TO $P (2)

 • Zoom:

Project min(A.volume)
From Stock1 A
Zoom days (3)

Example (1) examines the sub-sequences of Stock1 where the low prices are
below 50. Example (2) applies a 24-hour moving average over the sequence.
Example (3) demonstrates thezooming operation (zooms from hours to days).

9.1.5 Query Optimization

Several query optimization techniques were discussed in [110]. The most
important ones are listed below.

Propagating Ranges of Inter ests

This class of optimization deals with the use of information that limits the
range of positions of interest in the query answer. It is similar to the “selection
push-down” technique in the relational DBMS. Selection push-down for
sequence queries can be applied to either theordering domain or the record
domain . Selection based on theordering domain can be illustrated by the fol-
lowing example:

1. In [110] ‘project’ is used instead of the standard SQL syntax ‘select’.

Section 9.1 SEQ — A Sequence DBMS 149

Project count(*)
From Stock S
Where S.time > “<timestamp>”
Zoom All;

This query can be optimized by pushing the selection predicate (S.time >
“<timestamp>”) into the scan of the sequence (for performing the “count” oper-
ation). In SEQ, this is achieved by performing aweighted binary search in the
compressed array (the array which stores the stock sequence, see Section 9.1.3)
to get close to the starting position of the range (S.time > “<timestamp>”).
Since this array is implemented as a SHORE large object [110] and page-fault-
ing is not supported in the current SHORE version, theentire compressed array
has to be read into main-memory in order to do binary search. This is ineffi-
cient, especially in the situation when the sequence is long but the relevant
range is small (for example, the stock sequence consists of data accumulated
for several years while this query is only interested in the data of thelast few
weeks).

This query demonstrates the importance of anindex on theordering domain.
Our multi-level dynamic array structure (Section 7.2) is a better choice in this
situation. This is because locating the starting position of the range S.time >
“<timestamp>” can be done efficiently by searching the index arrays instead of
bringing the entire sequence into main-memory.

Selection push-down on therecord domain is illustrated by the following exam-
ple:

Project1 ((A.high + A.low) / 2) * A.volume
From Stock1 A
Where A.low < 50 .

In [110] it is claimed that selection push-down (A.low<50) should be applied
here so that the calculation of “((A.high+A.low)/2)*A.volume” only needs to be
done for those states whose low values are below 50. But, without an index, the
whole time sequence has to bescanned to find these states. By contrast, using
the IP-index, we can easily calculated the time intervals (t, t’’)* where the
prices inside those time intervals are below 50 (Section 5.2.2). Therefore, the
calculation of “((A.high+A.low)/2)*A.volume” only needs to be applied to the
states inside those time intervals.

Therefore, we conclude that our work on 1) the IP-index; and 2) the multi-level
dynamic array structure, contributes to the current research field on managing
sequence data in DBMSs.

1. In [110] ‘project’ is used instead of the standard SQL syntax ‘select’.

150 Chapter 9 Related Work

Incremental Computation of Aggr egate Operators

The second strategy on query optimization in [110] is incremental computation
of aggregate operators. For example, consider the 3-position moving average of
a sequence 1, 2, 3, 4, 5. Once the sum 1 + 2 + 3 has been computed as 6, this
computation can be used to reduce the work done for the next aggregate.
Instead of adding 2 + 3 + 4, one could instead computing 6 - 1 + 4. Due to the
small aggregation window in this example, there is little benefit. However,
when the window becomes larger and the operations are more expensive, there
can be significant improvements due to this approach. Importantly, the time
required for aggregation is independent of the size of the window.

Other query optimization techniques include detectingcommon sub-e xpres-
sions (and evaluating them once), andoperator pipeline . Operator pipeline
(stream access [109]) is crucial for sequence processing. In this technique, each
sequence is read in a single continuous pipelined stream without materializing
it. This is accomplished by associating buffers with each operator, to cache
some relevant portion of the most recent data from its inputs. We use a similar
approach in processingσ* v=v’(TS) operator in Section 6.2.2.

9.1.6 Comparison With Illustra

Seshadri et al. [110] compared SEQ with Illustra [64] (Illustra has now been
acquired by Informix [65]). Illustra supports time series as an ADT and defines
common functions on it. It is claimed in [110] that queries based on functional
composition (as in the case of Illustra) have aprocedural semantics instead of
declarative semantics (as in the case ofSEQUIN). Seshadri et al. [110] also
claim that in Illustra, little or nointer-function optimization is performed. For
example, the following optimizations are not supported by Illustra:

 • pipeline operations on two functions

 • identifying common sub-expressions in function compositions

 • selection push down

According to [110], query processing in SEQ results in overall performance
improvements of approximately two orders of magnitude compared to Illustra.

9.1.7 Conclusions

To conclude, we have provided an overview of the design and implementation
of the sequence database system SEQ. The main contributions of SEQ are: 1) it
proposed a general data model for sequence data; 2) it designed a sequence

Section 9.2 Similarity Search on Time Sequences 151

query languageSEQUIN; 3) it addressed query optimization techniques for
sequence data.

The weakness of SEQ is in physical organization. The data structure proposed
in [110] is inefficient in lookup and retrieving sequence data, especially when
the sequence is large. Another limitation is that SEQ does not provide index
access on therecord domain.

Our multi-level dynamic array structure and the IP-index complement the work
in SEQ by providing a good physical structure of 1-D sequence data and an
indexing method for value queries.

9.2 Similarity Search on Time Sequences

Another closely related research field issimilarity search on time sequences,
i.e., finding similar patterns in different time series. Similarity search is essen-
tial in discovering and predicting the risk, causality, and trend associated with a
specific pattern. More examples can be found in identifying companies with
similar growth patterns, products with similar selling patterns, stocks with sim-
ilar price movement, images with similar weather patterns, etc.

Several approaches have been suggested to deal with similarity search. In what
follows we present an overview of this work and discuss pros and cons of each
approach and see what is relevant to our work.

9.2.1 Using the Discrete Fourier Transform

It seems that the work by Agrawal et al. [4] is the first one addressing similarity
search on time sequences. In [4], the similarity of two sequences is measured
by theEuclidean distance between them. A sequence is considered to be simi-
lar to a query pattern if the Euclidean distance between them is less than the
user-specified errorδ, see Fig.9.3. To measure the Euclidean distance between
two time sequences, the Discrete Fourier Transform (DFT) is applied to each
time sequence, and the first few coefficients are used to map each time
sequence into apoint in a multi-dimensional space. Then, an R*-tree is used to
index these points and similarity of sequences is measured by the Euclidean
distance between these points. This approach is based on two assumptions: 1)
low frequencies constitute data, and high frequencies are noise; 2) DFT pre-
serves the Euclidean distance between sequences in the time or frequency
domain. Apparently, this work only deals with a preliminary notion ofsimilar-
ity because: 1) It does not deal with sub-sequence matching (all sequences have
to be the same length); 2) It does not deal with amplitude shift or time shift (see
Fig. 9.5).

152 Chapter 9 Related Work

Faloutsos et al. [51] extend the work of [4] by addressing the issue ofsub-
sequence matching. The goal is to locate 1-D sub-sequences within a collection
of sequences such that the sub-sequences match a given (queried) pattern
within a specified tolerance. Based on the work of [4], Faloutsos et al. [51] use
a sliding window over the sequence and generate atrail instead of a point (as in
[4]) in a multi-dimensional space. To save storage space and speed up indexing,
not every point of the trail is stored in the database. Instead, the trail is divided
into sub-trails and approximated by theirminimum bounding rectangles (MBR).
These MBRs are organized in a R+-tree and similarity search is performed by
searching intersecting MBRs. This method may introducefalse matches
because it may happen that some sub-trails do not intersect with the queried
region while their MBRs do. This is dealt with in a post-processing process.

The work of [4] and [51] has the limitation that they cannot detect similarity
under transformations in thefrequency domain, such as dilation (frequency
reduction) or contraction (frequency increase). This is because the DFT is sen-
sitive to the frequency. Also, the problem of amplitude scaling and offset trans-
lation are not addressed.

Li et al. [80] extend the work of [51] in sub-sequence matching. In [80], the
Discrete Fourier Transform is also used to get the first few coefficients to repre-
sent the feature of the sequence. However, instead of using Euclidean distance
of these coefficients to measure the similarity of two sequences, Li et al. [80]
use correlations of these coefficients. Unfortunately, no comparison with
related work such as [51] was mentioned in [80]. Only comparison to linear
scanning was performed.

In [5]1 a different notion ofsimilarity for time sequences is suggested. There,
two time sequences are similar if they have enough non-overlapping sub-

1. In the original paper the term “time series” was used to mean “time sequences”.

f(t)

t

1

2

3

Fig. 9.3: A notion of similarity between sequences

-δ

+δ

1 2 3 4 5 6 7

Section 9.2 Similarity Search on Time Sequences 153

sequences that are similar. The main goal of [5] is to deal with outliers in
sequences, and amplitude scaling and offset translation. The algorithm contains
three major phases: 1) atomic matching; 2) window stiching; and 3) sub-
sequence ordering. Although experiments were performed to show that the
algorithms actually worked, no measurements on theefficiency of the approach
were performed. Therefore it remains a question is this method is practical con-
sidering time sequences are usually very large in volume.

9.2.2 Function Approximation

Shatkey and Zdonik [112] suggest a different strategy to deal with similarity
search. The example of the “goalpost fever” pattern was used in [112] (see
Fig. 9.4). Shatkey and Zdonik [112] claim to support many feature-preserved
transformations as shown in Fig.9.5 such asscaling (1, 2, 3, 4),contraction (1,
2, 4), dilation (3), shift in time (2), andshift in amplitude (4). The idea is to
break sequences into meaningful sub-sequences and represent them using some
feature-preserving functions such as regression lines or linear interpolation.
Queries are approximated by features and performed on the function represen-
tations of sequences. The major advance of this work, compared to the older
ones, is to suggest a strategy to handle approximate queries which is both
amplitude-and frequency-independent. Also, using function approximations to
represent a sequence saves storage space, compared to the normal approach
where all the points in a sequence are stored. However, this approach has the
main drawback that a large amount of work needs to be done in the pre-process-
ing process where sequences are broken into meaningful sub-sequences and
approximated by functions (although this can be done off-line). Also this
approach is sensitive to the functions used (linear regression and linear interpo-
lation were used in [112]), and the mount of work will be substantial when
higher degree functions (such as polynomials) are used.

time

temperature

Fig. 9.4: A pattern of “2-peaks”

154 Chapter 9 Related Work

Relevance to Our A pproach

An interesting observation is that the example used in [112] — finding the
“goalpost fever” pattern in a temperature sequence, can be dealt with more nat-
urally by theσ∗ operator and the IP-index (see Section 5.4). Compared to the
approach in [112], our approach covers all the cases listed in [112] easily, such
asscaling, contraction, dilation, shift in time, andshift in amplitude.

9.2.3 Shape Languages

Agrawal et al. [6]1 use a different approach which was taken from text string
matching technique. There, a sequence is transformed into a sequence ofsym-
bols from a pre-defined alphabet (such as “up”, “down”, “stable”, etc.). This
alphabet describes the shapes of the sequence. Sequences are indexed by the
symbols and the positions where they appear in the sequences. Sub-sequence
matching is performed by searching this index. A shape query language, SDL,
has been defined in [6]. SDL is equivalent in expressive power to the regular
expressions. We believe that this approach is very sensitive to the alphabet
used. The definition of the alphabet is dependent on the application (such as
when to consider a slope as an “up” and when to consider it as a “stable” state).
This makes one alphabet set (and the correspondingly built index) only useful
for one kind of application. Also no index insertion algorithm or performance
measurement were mentioned in [6].

1. In the original paper the term “history” is used to mean “time sequences”.

amplitude

time

4
2

1

3

Fig. 9.5: Various 2-peaked sequences under transformations

Section 9.3 Time Series Management Systems 155

9.2.4 Conclusions

Research on similarity search on time series complements our work nicely.
Similarity search is based on the generalshapes (features) of a sequence, while
our work is based on individual values of a sequence. These two aspects of sup-
port for sequence data are both highly needed in real-life applications.

9.3 Time Series Management Systems

In Section 2.1.4, we mentioned that a time series is a “regular” time sequence.
Actually, a time series in the trading business has more complicated structure
than the time sequence data model TS = (ti, vi). An example time series is
shown in Fig.9.6 [101], which represents the stock exchange history for the
Union Bank of Switzerland (UBS) registered.

In Fig. 9.6, we see that atime series consists of two parts: 1) a general descrip-
tion: such as the name, the starting and ending date of the time series, the cal-
endar type used in the time series, etc.; 2) a chronologically ordered sequence
of observations: such as low, high values, and values at every “tick” for every
trading day. The general description is called theheader [101], and the chrono-
logically ordered observations are calledevents [101]. In what follows we dis-
cuss the special requirements on time series management in the trading
business.

Name: UBS registered

Security_number: 136 102

Start_date: 11.10.93

End_date: 23.12.93

Calendar: Business week

Date Low High Ticks

11.10.1993 78 85 79, 78, 77, 80, 83, 85,...

12.10.1993 80 84 84, 82, 80, 83,...

13.10.1993 82 86 84, 82, 83, 85, 86,...

......

Fig. 9.6: An example time series

156 Chapter 9 Related Work

Multivariate T ime Series

A time series is multivariate. It consists of a header and events , as shown in
Fig. 9.6. The header consists of common attributes characterizing the whole
time series. Events model data collected over successive points in time. Data
fields in events can have scalar types (such asintegers for the low/high values
in Fig. 9.6) or structured types (such as thearray for the sequence of trading
prices at each tick).

An important aspect of time series analysis is the transformation of events
between different periodicities (e.g., transforming daily data to monthly data
and vice versa). Different kinds of values require different periodicity transfor-
mations. For example, for the high price, the monthly value is themaximum of
all daily v alues. For the closing price, the monthly value will be the value of the
last day . For the cash flow, the monthly value will be the sum of all daily v al-
ues.

Since time series are usually subject to statistical evaluations in which matrix
algebra plays a central role, time series management systems should provide
the data type of arrays (vectors, matrices, and even arrays of higher dimen-
sions) and support operations on them. Another important capability is the der-
ivation of new time series from existing ones, e.g., by computing the difference
of two time series, calculating a moving average or aggregating events for a
coarser granularity.

Groups

In databases with a large number of time series, detecting the data relevant to
the interests of a user is an important issue. Normally one needs to partition the
set of time series into categories or groups according to various criteria (e.g., a
set of share price series might be categorized along branches, country and/or
size of company). For this, a time series management system must support a
flexible, powerful grouping mechanism. It is desirable that a group can recur-
sively contain other groups, that elements can belong to more than one group
and that participation in a group is by enumeration or by condition.

Calendars

Each time series is associated with acalendar that expresses the mapping
between the events and their corresponding points in time. A time series man-
agement system must support a variety of calendars, taking into account vari-
ous base calendar s (lik e the Gregorian calendar, Islamic calendar, etc.),
dif ferent granularities (lik e daily, weekly, or quarterly calendars), business and
non-business calendars and calendars with local holidays. For non-periodic

Section 9.3 Time Series Management Systems 157

time series, concepts like an ordinal calendar (just representing time units by
natural numbers) and enumerated calendars (enumerating irregular sequences
of dates) should be supported. Calendar-related functionality must include
operations to define all these calendars, to transform time units between calen-
dars, to scan calendars sequentially, to compare and do arithmetic calculations
involving dates and time spans.

Because of the above special requirements on time series management, conven-
tional DBMSs cannot be used to manage time series data in the trading busi-
ness. For this reason, special-purpose management systems have been
developed to manage time series in finance and trading. We discuss the most
important time series management systems below.

9.3.1 FAME

FAME [52] is currently the most mature commercial system specialized for
time series management. The name “FAME” stands for “Forecasting, Analysis
and Modeling Environment”. It was developed by FAME Software Corporation,
a subsidiary of the Citybank in Switzerland.

Data objects available in FAME are scalars, univariate time series, and com-
puted time series described by formulas. Time series may be defined with vari-
ous frequencies from seconds up to multiples of a year. Each time series is
described by a standard header with information like frequency, first and last
date recorded, and aggregation type (summed, averaged, etc.). FAME offers
powerful specialized functionality for statistical evaluation and forecasting
(such as linear regression, Box-Jenkins, moving average, Monte Carlo Analy-
sis, and many others). There are also a number of functions to produce graphi-
cal output and reports in various formats. Import from and export to a variety of
file formats is supported. FAME is a very comprehensive system as to calcula-
tions on and presentation of time series. Query capacities consist in finding
data objects by name (including a wild card facility) and retrieving events by
time stamp. Time series can be grouped by so-called name lists (e.g., all time
series related to earnings could be named “*.earnings”, where ‘*’ is a wild card
for the name of each company).

Operations on time series in FAME can be classified as follows: 1) data prepa-
ration: interpolation of missing values and time scale conversion; 2) queries:
moving averages, cumulative sums, discretizing (e.g., rank the revenues by
whether they are in the top third, the middle third, or the bottom third), statisti-
cal functions (e.g., correlation between two series), etc.; 3) forecasting: statisti-
cal or data mining-based extrapolation.

To interpret missing values in FAME, all values are divided into two categories:

158 Chapter 9 Related Work

1) Level values: these kinds of values stay the same from on period to the next
in the absence of activity. For example, inventory is a level value, because
inventory stays the same if you neither buy or sell. 2)Flow values: these kinds
of values are zero in the absence of activity. For example, expenses go to zero if
you buy nothing. Other interpolation methods such as cubic spline can also be
used to derive missing values.

FAME has several limitations. According to Dreyer et al. [41], FAME has poor
search and retrieval facilities, and no mechanisms for data quality management
and data consistency control. The data model is not powerful enough: each
event may have only one scalar field, and the group concept is too limited—
group members can only be selected by pattern matching with simple wild-
cards, not by content. Finally, the 4GL requires special training and a lot of
experience.

9.3.2 CALANDA

Another special-purpose management system for time series is CALANDA
[42] developed at the Union Bank of Switzerland. CALANDA has an object-
oriented data model with special root classes to model time series and groups of
time series. All the usual object-oriented features like inheritance, method defi-
nition, overloading, etc., are supported. CALANDA supports multivariate time
series with an arbitrary number of attributes per event. Besides simple attribute
domains, multidimensional array types are an important modeling instrument
for statistical applications. Each time series consists of a sequence of events
and a header which is a record with a user-defined attribute structure. There are
predefined operations for filtering time series, frequency transformation, array
manipulation, etc. Of course, the user can extend this functionality by defining
his/her own methods.

Groups are supported as a flexible instrument for categorizing and aggregating
time series. The large set of time series can be structured by building up a
directed acyclic graph which can be used for navigation, querying, and set
operations. Grouping is not restricted to time series that describe one semantic
entity, but can be applied to any set of time series that fulfill common criteria
(e.g., all time series of securities which are currently above/below a market
index, all time series of companies in a given country, and so on). CALANDA
offers extensive calendar functionality providing data arithmetic, holidays,
business weeks, calendar transformation, etc. CALANDA also offers a graphi-
cal user interface that resembles a spreadsheet or 4GL tools for relational
DBMSs.

Section 9.4 Temporal Databases 159

9.3.3 Informix TimeSeries DataBlade

The commercial system Informix (former Illustra) is an object-relational
DBMS where Abstract Data Types (ADTs) (Section 9.1.2) are supported for
various application domains. Among all ADTs supported by Informix, “Time-
Series DataBlade” offers functionalities for time series management.

In Informix’s TimeSeries DataBlade, two new data types are supported, namely
time series andcalendar. A time series is modelled as an n-ary vector and asso-
ciated with a set of additional information such as its frequency, life span, etc.
Time series can be multivariate, i.e., consist of an arbitrary number of recorded
attributes. Time series can have various granularities and be associated with
different calendars. Access to data is based on an SQL extension, which allows
combining time series and other relational data in one query. In addition to the
general SQL facility, about 40 predefined functions are supplied, e.g., to aggre-
gate time series, compute a time lag, clip a predefined interval, etc. Further
analysis functions can be defined by the user by way of the abstract data type
feature of the ORDBMS. The limitation of Informix’s TimeSeries DataBlade is
that there is no grouping mechanism to structure the set of time series.

9.3.4 Conclusions

Time series in financial and trading have special requirements that conventional
DBMSs cannot meet. Most time series data are managed by special-purpose
management systems such as FAME.

Object-relational DBMSs or object-oriented DBMSs provide a way to manage
time series data by treating time series as a new data type and defining opera-
tions on them. An example is Informix’s TimeSeries DataBlade. Our work con-
tributes to this area by proposing a good physical structure for time series
(Section 7.2) and providing an indexing method (the IP-index) for efficient
processing ofvalue queries on time series.

9.4 Temporal Databases

Conventional database management systems were designed to capture the most
recent data which model the real world. As new data became available through
updates, the existing data values were usually removed from the database or
delegated to archival storage. This is because it was expensive or impractical to
store and access large volume of temporal data on-line. Therefore, applications
had to manage temporal information in an ad-hoc manner.

Since the 1980s, the cost of main memory and magnetic disks has been decreas-

160 Chapter 9 Related Work

ing, and new storage media such as optical disks are emerging. Therefore, man-
aging temporal data in DBMSs has become feasible. As a consequence,
research on temporal databases has been active for the last decade. According
to the first book on temporal databases [134]: the general definition of a tempo-
ral database is the following:

A database that maintains past, present, and future data is called
a temporal database.

In what follows we shall provide an overview of research work done on tempo-
ral databases, and discuss the relationship between temporal databases and time
series management.

9.4.1 Time Dimensions

After the research on temporal databases started (1985), it was quickly discov-
ered that there are different notions oftime associated with data values.
According to [67], “A Glossary of Temporal Database Concepts”, there are the
following dimensions of time in temporal databases:

 • transaction time—

The time when the information isstored in the database (normally time
points).

 • valid time—

The time when the information istrue in the modelled reality (can be a set
of time points or intervals).

 • User-defined time—

The uninterpreted attribute domain of data and time. It is maintained by
application programs (not supported by DBMSs). In contrast, bothtransac-
tion timeand valid time are supported by DBMSs.

In [67] the termtemporal database is defined as “a database that supports some
aspect of time, not counting user-defined time”. In other words, a temporal
database supports eithertransaction time or valid time, or both. In contrast, the
term bitemporal database [67] is used to refer to a database system that “sup-
ports exactly onevalid timeand one transaction time”.

9.4.2 Research on Temporal Databases

Research on temporal databases has been active for more than one decade.
Most of the effort was dedicated to proposing suitable data models and devel-

Section 9.4 Temporal Databases 161

oping general-purpose, declarative temporal query languages. Relatively less
work has been done on implementations, such as physical organization of tem-
poral data, indexing, and query optimization.

Since relational DBMSs still dominate the database market, it is perhaps not
surprising that— despite the well-known limitations of the relational data
model — many of the proposals attempt to extend therelational data model
with temporal support. As a consequence, relational query languages are
extended with special syntax to deal with temporal semantics. These proposals
culminate in the TSQL2 standard [125], which is the extension of SQL2 stand-
ard with temporal support. (Currently, there is also an on-going effort to extend
the unfinished SQL3 standard with temporal features.)

Other proposals attempt to extend theobject-oriented data model with temporal
support. In what follows we compare these two different approaches by exam-
ples.

Extending the Relational Data Models

There are two basic approaches to extending a relational model with time
information: tuple time-stamping [134] and attrib ute time-stamping [134]:

 • Tuple timestamping —

Timestamps are added to tuples to specify the time for which the tuples are
defined.

Example 9.1: employee (name, salary, dept, time_stamp).

The time_stamp in a tuple refers to thevalid time or thetransaction time of
the tuple (i.e., the information of an employee). Note that atimestamp [67]
can be eithertime points or time intervals.

 • Attribute timestamping —

Timestamps are added to attributes of a tuple to record the history of the
changes of attributes.

Example 9.2: employee (name, (salary, time_stamp1), (dept,
time_stamp2))

Here (salary, time_stamp1) constitutes the salary history of this employee,
and the(dept, time_stamp2) records the departments where this employee
has been worked in.

Tuple timestamping keeps the relation in the first-normal-form (1NF) [46].
Thus it benefits from all the advantages of traditional database theory and tech-

162 Chapter 9 Related Work

nology. Attribute timestamping, on the other hand, requires non-first-normal-
form (N1NF, nested) relations [46]. N1NF relations are naturally more complex
and difficult to implement than 1NF relations. However, attribute timestamping
provides more modelling power since each attribute can have its own times-
tamp which is independent of others.

Several temporal query languages have been suggested, based on either tuple
timestamping or attribute timestamping. The basic approaches are the same,
i.e., by introducing special-purpose operators to the query languages for query-
ing temporal data. These new operators include “when” [32][55][121], “as-of”
[121], “joins” [55], “slice” [32] and “shift” [55].

The example below is the temporal query language TQuel [121]. It is a superset
of Quel, the query language of the INGRES system [127]. The first example
shows a query with respect to valid time (using awhen clause), and the second
example shows a query with respect to the transaction time (using anas-of
clause). Both examples are based on a temporal relationf.

Example 9.3: What was Mary’s salary in October 1993?

retrieve (f.salary)
where f.name=”Mary”
when f overlap “October 1993”

Example 9.4: What was Mary’s salary according to the information stored in
the database in October 1993?

retrieve (f.salary)
where f.name=”Mary”
as of “October 1993”

The common issues in designing temporal query languages are: temporal selec-
tion and projection, definition of the Cartesian product operation, expressive
power of the query language, homogeneity of tuples, and ease of use.

On implementation aspects of temporal, relational DBMS, several approaches
have been suggested to improve the performance of temporal queries:

 • Temporal partitioning

Separate thehistorical data, which grow monotonically, from the current
data, whose size is fairly stable and whose accesses are more frequent [89].
This separation was shown to significantly improve the performance of
some queries [8]. This approach was later generalized to allow multiple
cached states, which further improves performance [66].

 • Temporal joins

Section 9.4 Temporal Databases 163

For temporal databases,join operations become more complex. This is
because the data model contains temporal semantics. New join algorithms
proposed for temporal databases includetime-join, time-equijoin (TE-join)
[31], event-join, TE-outerjoin [59], contain-join, contain-semijoin, and
intersect-join [78]. They are extensions of nested loop or merge joins that
exploit sort orders or local workspace. In [79] a join algorithm for multi-
processors has been proposed.

 • Temporal indexes

Since temporal data tend to be large in volume, designing suitable indexing
methods is more crucial in temporal DBMSs than in conventional DBMSs.
Many temporal indexes have been suggested to speed up query processing
time. These include the Time Index [45][47], the Append-Only Tree [58],

the Monotonic B+-tree[44], the Time-Split B-tree[88], the Interval B-tree
[11], the Time-Polygon index (TP-index)[113], the I-tree [135] and PLI-tree
[135], and the Segment Index [72].

Most of these indexes are designed for thetransaction time (such as the

Append-Only Tree, the Monotonic B+-tree, the I-tree, and the Time-Split B-
tree), others are designed for thevalid time (such as the Time Index, the
Segment Index, and the Time-Polygon index). Most of the indexes use only
the timestamp (transaction time or valid time) as the key, others can include
a non-temporal attribute as part of the key as well. For example, in the Time

Index [45] a two-level index has been proposed where non-temporal keys
are indexed in an upper level and temporal keys are indexed in a lower level.

 • Query optimization techniques

Leung and Muntz [78] suggest using the stream processing technique in
temporal query evaluation and optimization. There, temporal join and tem-
poral semi-join operations are carried out with a single pass over the input
streams, and the amount of workspace required can be small.

Extending the Object-Oriented Data Model

This section shows an example of extending the object-oriented data model to
incorporate temporal dimension. The example data model is OODAPLEX [36]
that is based on the DAPLEX functional data model [114][120]. OODAPLEX
uses the concept ofobjects to model real-world entities, and functions to model
properties, relationships, and operations of objects; other object-oriented fea-
tures, such as user-defined abstract data types, sub-typing and inheritance, pol-
ymorphism, and late bindings are also supported.

To extend the model in OODAPLEX to deal with temporal data, two generic
object types, time point and time point set , are defined that carry the most gen-
eral semantics of time. The special semantics for time required by specific

164 Chapter 9 Related Work

applications are then introduced through abstract data types that are subtypes of
these generic time types. The time-varying behavior of an object is modelled by
functions that relate time objects to the object.

Example 9.5: The employee type (corresponding to Example 9.2) is defined
by the following:

type employee is person
function name (e:employee -> n:string)
function salary (e:employee ->

f:(t: time -> s:money))
function dept (e: employee ->

f:(t: time -> d:department))

In this example temporal information forsalary anddepartment are modelled
as functions that take time as arguments.

An example of the query language based on this data model is given below. The
function extent(employee) returns all the objects of typeemployee, the function
lifespan(e) returns all the time points at which the objecte is defined in the
database.

Example 9.6: When did John get a salary raise?

for the e in extent(employee)
where name(e) = “John”

for each t in lifespan(e)
where salary(e)(t) > salary(e)(t-1)

end
name(e)

end

It can be seen that in the data model of OODAPLEX, no special time-oriented
constructs are needed in the query language. This is because: 1) non-temporal
and temporal data are treated in the same way (as objects and types); 2) all the
properties and behavior of objects, including the time-varying aspects, are uni-
formly modelled by functions. Hence, the retrieval and manipulation of tempo-
ral and non-temporal information areuniformly expressed. Some queries that
cannot be expressed in the extended relational languages can be expressed in
this model. Therefore, this query language is rather general and powerful in
expressing temporal queries. The price to pay is the difficulty in query process-
ing.

Section 9.4 Temporal Databases 165

9.4.3 Temporal Databases and Time Series Management

At first glance, one might think that time series are just a special case of tempo-
ral data which can be managed easily by temporal database management sys-
tems (TDBMSs). Unfortunately, it is not true. According to the research paper
“Time Series, a Neglected Issue in Temporal Databases Research?” [101], it is
argued that the current status of temporal database management systems does
not satisfy the requirement of time series management. The reasons are as fol-
lows:

Structual aspects

The majority of temporal data models are straightforward extensions of the
relational data model in that tuples are associated with some sort of time stamp
(mostly intervals). Hence, these data models inherit the well-known limitations
of the relational model, in particular the requirement of the first-normal-form
(1NF). This is not good since an atomic single-valued attribute which varies
over time could naturally be viewed as one complex multi-v alued attribute
instead of being scattered over a relation.

For example, Fig. 9.7 shows an approach to modelling a time series as a tempo-
ral relation:

It can be seen that this is a simple and efficient organization. However, for a
database containing many thousands of time series, this approach would end up
with many thousands of relations. Current TDBMSs usually are not well suited
for this since they are designed to work efficiently with hundreds to thousands
of relations, but not with ten or a hundred thousand. Furthermore, for every
deletion and instantiation of a time series, one would have to change the
schema of the database, which is cumbersome.

Another approach would be to define one relation per time series type (see

t att 1 att 2 ...

1 14 “x3” ...

2 36 “y7” ...

3 23 “z3” ...

...

Fig. 9.7: Modelling a time series as a temporal relation

166 Chapter 9 Related Work

Fig. 9.8). Because time series are usually read sequentially, it makes sense to
sort such a relation by time series identifier and by date. Normally, time series
data are rarely updated, with the exception that new events are appended at the
end. However, to sort this relation makes appends rather expensive. Not to sort
the relation in this way makes appends cheap but sequential access rather
expensive. Therefore, neither organization is really satisfying. With a clever
primary organization of the relation and with the addition of indexes, some of
the drawbacks may be reduced. Unfortunately, usually only some operations
benefit while others become more costly, and additional disk space is neces-
sary.

Other possible approaches to modeling time series as temporal relations are
discussed in [101]. None of the approaches is satisfactory. The reason is that
when we assume that the attributes in a relation are only simple values, the
semantics of a time series (each attribute is an atomic single-valued attribute
which varies over time) in DBMSs is lost. Therefore, update, retrieval, or phys-
ical organization of time series are inefficient and cumbersome for end-users.
The solution is to allow arrays as attributes. Unfortunately, current temporal
DBMSs do not support array valued attributes. One could store arrays as
BLOBs. However, in this case, no functionality is available to manipulate them.

Time Model

Another difficulty appears in the difference between the time models of tempo-
ral databases and time series. Temporal data models typically associate time
intervals with the facts stored in the database, given that many values remain
constant over long periods of time. Time series instead have the property that
data values are collected at specific points in time, and the lifespan of a data
value is normally very short. Actually, some data values even change continu-
ously. Therefore, operations such astempor al joins are often meaningless in
collections of time series because the notion of “concurrent events” is often dif-

t ts_id att 1 att 1 ...

1 “TS_1” 14 “x3” ...

2 “TS_1” 36 “y7” ...

1 “TS_2” 234 “uip” ...

2 “TS_2” 327 “ytb” ...

...

Fig. 9.8: One temporal relation per time series type

Section 9.4 Temporal Databases 167

ficult if not impossible to define. Furthermore, the notion of acalendar is a cru-
cial abstraction in time series applications, because it defines the mapping from
time points to positions (indices) within a time series. Although TSQL2 [125]
supports the definition of calendars by the user, the proposed internal times-
tamp format is often too general for time series applications. A related point is
that in time series applications, the lifespan of a data value may be very short,
as for example, in some stock exchange applications. Therefore, the value of
some quantify may be completely unknown except for the few sampling points
represented in the database. Moreover, different time series may be associated
with different, incompatible calendars.

Functional Aspect

According to [101], temporal DBMSs are not adequate in managing time series
in the functional aspect. For example, statistical transformation methods such
as moving average are often needed to be applied to time series; while temporal
DBMSs (TDBMSs) do not provide the possibility to implement user-defined
procedures or methods. TDBMSs rely on a declarative language for data
manipulation, which is not suitable for formulating the necessary statistical
transformations. Furthermore,arrays are not part of the data model of current
TDBMSs, functions on array manipulations are missing as well. However, sta-
tistical functions are often array manipulations. Therefore, even to carry out
basic transformations, the data have to be extracted into some application and
stored back into the database afterwards.

With respect to interpolation, TDBMSs often assume the “step-wise constant”
to interpret missing values. It is not possible to choose any other interpolation
function (lik e linear or spline interpolation, etc.). Fig. 9.9 illustrates this dis-
crepancy between TDBMSs and time series management systems.

a b

v(a)

v(b)

time series

(linear, spline,...)

Temporal DBMS:
(“step-wise constant”)

 management system

Fig. 9.9: Interpolation approaches in TDBMSs and
time series management systems

168 Chapter 9 Related Work

To conclude, TDBMSs based on extensions of therelational data model do not
satisfy the special requirements of time series applications: mapping time
series into snapshot and temporal relations is intricate, performance is problem-
atic, functionality is only partly adequate, and the capability to organize time
series into groups is missing. It seems thatobject-oriented DBMSs or object-
relational DBMSs are more suitable in management of time series information.

It remains an open question whether a DBMS (e.g., Informix’s TimeSeries
DataBlade) can replace special-purpose management systems (e.g., FAME) in
time series applications.

9.5 Summary

In this chapter, we have discussed work related to this thesis in general.

The most relevant related work is the sequence database system SEQ. In SEQ,
sequence data were modelled as anabstract data type (ADT), and supported by
common operators such as subsequence extraction, aggregation, and composi-
tion. A sequence query language,SEQUIN, was developed to express sequence
queries. Important issues such as query optimization were investigated. This
system later evolved into PREDATOR [111] to support other types of non-tra-
ditional data types such as image, audio, and spatial data.

Another closely related field issimilarity search on time series, i.e., finding
similar patterns in different time series. We presented an overview of various
approaches, such as those using the Discrete Fourier Transform (DFT), or
transforming time series into some feature-preserved functions, or defining
some shape languages to express feature queries. We have pointed out pros and
cons of each approach and compare them with our work.

We also provided an overview of time series management systems such as
Informix’s TimeSeries DataBlade, FAME, and CLANADA. These systems
demonstrate the special requirements on time series managements that are not
met by conventional DBMSs.

This chapter also includes an overview of research ontemporal databases,
including temporal data models, temporal query languages, and temporal
indexes. We have shown that temporal database management systems based on
extensions on therelational data model are not adequate for managing time
series data. Instead, theobject-oriented and object-relational data models are
more suitable for time series management.

Chapter 10

Application Study

This chapter presents a thorough application study onterrain-aided naviga-
tion [20] to show that the IP-index is applicable to other application domains.
The IP-index improves the performance of a matching algorithm (the bayesian
approach [20]) in terrain-aided navigation by efficiently filtering out sub-areas
in a map where the terrain elevations inside these areas are inside some value
range (h’, h’’). The efficiency of this approach is verified by experiments.

10.1 What is Terrain-Aided Navigation

Terrain-aided navigation is to use the terrain height over the mean sea level,
the terrain elevation, to draw conclusions about the position of an aircraft. The
idea is: A map with sampled terrain elevation measured in a uniformly spaced
grid is stored onboard the aircraft. Flying over an area, the aircraftaltitudeover
mean sea-level is measured with a barometric sensor and theground clearance
is measured with a radar. The difference between the altitude and the ground
clearance is an estimate of theterrain elevation, which can be compared to the
stored values in the map to determine the position of the aircraft, see Fig.10.1.

Gathering samples as the aircraft flies over an area will produce a trajectory of
measured elevations. The more samples gathered, the more likely it is that the
trajectory is unique and that a good position estimate may be found when com-
paring the trajectory with the stored elevations in the map.

Errors and uncertainty exist in the measurements of the barometric sensor and
radar. For example, flying through different local weather conditions will cause

172 Chapter 10 Application Study

the barometric sensor to produce biased errors. Thus, the measured terrain ele-
vation is an approximation of thereal terrain elevation. In order to locate the
position of the aircraft on the map, a non-linear matching algorithm (the baye-
sian approach [20]) which takes into account the probability density function of
the measured elevation has been developed [20]. This matching algorithm
needs to be applied to every grid of the map and each new measured elevation
in the trajectory needs to be processed recursively [20].

10.2 Using the IP-index in Terrain-Aided Navigation

Since the matching algorithm is expensive and has to be applied to every grid
of the map, it becomes very inefficient when the number of grids in the map
becomes large (see [20]). Therefore, we propose to use the IP-index. The idea
is to filter out those sub-areas whose terrain elevations are in some range
around the measured valuesh. We use a confidence interval (h-10, h+10) where
the probability that the true elevation value is inside this interval is higher than
99.99% according to the probability density function. Then, the sub-areas
whose terrain elevations are inside the interval (h-10, h+10) can be used as
starting positions of the matching algorithm (this approach will be further illus-
trated in Section 10.2.1).

One may argue that a conventionally ordered secondary index is sufficient to
efficiently find those sub-areas where the terrain elevations are inside the inter-
val (h-10, h+10). Refer to Section 3.5 for detailed discussions on the differ-
ences between the IP-index and a conventional secondary index to see why a
conventional secondary index does not work well here.

Mean sea-level

Terrain elevation

Ground clearanceAltitude

Fig. 10.1: Illustration of the terrain-aided navigation

Section 10.2 Using the IP-index in Terrain-Aided Navigation 173

10.2.1 The Approach

Since the IP-index is designed for 1-D sequences, it cannot be directly applied
to the two-dimensional map. The approach is: we view each row of the map as
a time sequence (see Fig.10.2). That is, each grid corresponds to a state in a
time sequence, the position identifierij corresponds to the timestampt, and the
elevation hij corresponds to the value v. For each time sequence, we pose the
interval queryF-1(h-10 <v<h+10) to get the position intervals (ij_pos’, ij_pos’’)
where the values inside these intervals are inside the range (h’, h’’). By round-
ing these intervals (see Section 5.2) we can get corresponding column intervals
[ij’, ij’ ’]. These column intervals are the sub-areas in this row whose terrain ele-
vations are inside the interval (h-10, h+10).

Now let us look at how the IP-index can improve the efficiency of the matching
algorithm in terrain-aided navigation. As we mentioned earlier, the matching
algorithm finds the true position of the aircraft by applying a non-linear algo-
rithm to the whole map recursively for each measured elevation in the trajec-
tory. Taking a trajectory of elevation measurements <h1, h2,......hk>, we can use
the IP-index to find the sub-areas in the map whose terrain elevations are inside
the interval (h1-10, h1+10) (this interval is based on the probability density
function as explained earlier), thus providing starting positions for the match-
ing algorithm. Since the matching algorithm does not have to be applied to the
whole map, efficiency is improved.

10.2.2 Cardinality

We define thecardinality of an interval (hi-10, hi+10) as the number of grids in
the map whose terrain elevations are inside this interval. In the measurements

h11

hm1

h12 h1n

hm2 hmn

h21 h22 h2n

The map (m*n)

Fig. 10.2: Transformation between the map and the sequences

The sequences

<h11, h12,......h1n>

<h2n, h12,......h2n>

<hm1, hm2,......hmn>

174 Chapter 10 Application Study

we found that for a trajectory <h1, h2,......hk>, the cardinalities of (hi-10, hi+10)
vary widely (see Fig.10.4). Since the matching algorithm does not really have
to start from the first measurementh1, i.e., it can start from any sub-areas
returned from the interval (hi-10, hi+10) (i ≤ k) and apply the non-linear algo-
rithm backwards (hi-1, hi-2,......h1) and forwards (hi+1 , hi+2 ,......hk), we do not
always have to take the first interval (h1-10, h1+10) to return the sub-areas.
Instead we take an interval (hi-10, hi+10) in the trajectory which returns a small
cardinality (this will be further illustrated in the next section). The matching
algorithm starts from these small areas (and applies the non-linear algorithm
backwards and forwards in the trajectory) will be much more efficient than
starting from the whole map.

The cardinality of the interval (hi-10, hi+10) can be computed easily from the
IP-index since the cardinality information is stored in the IP-index (Section
3.1). The cardinality of the interval (h’-10, h’ ’+10) can be computed by adding
togethercardinality(kj) for those keys kj in the IP-index that satisfy the condition
h’-10 < kj < h’ +10. This is efficient since the IP-index is an ordered index.

10.3 Measurements

We have performed performance measurements on a real map and simulated
track files to see how efficient the above approach is. In this section we
describe the experimental results.

10.3.1 The Real Map

To make the measurements as close to reality as possible, we use a real map
over a part of Sweden (see Fig.10.3) which consists of 101 by 101 samples in a
uniformly spaced grid. (It is sampled with 50 m distance between each two
sample points, yielding an area of 25 km2 of terrain.) The elevation of each grid
in the map is not the average elevation value over the grid but the measured ter-
rain elevation rather exactly in the center of the grid. Some interpolation
method (e.g., linear interpolation) could easily be applied to the map to produce
any terrain elevation between the sampled points. As seen in Fig.10.3, the ter-
rain elevations have different characteristics in different parts of the map. For
example, the flat area in the upper left corner of the map is a lake.

10.3.2 The Track Files

50 elevation track files were randomly generated in order to cover different
parts of the map. The starting positions of these tracks were uniformly distrib-
uted along the leftmost line of the map. Likewise their final positions were uni-
formly distributed along the parallel finish line on the other side of the grid (see

Section 10.3 Measurements 175

Fig. 10.3). Each track file represents a trajectory of an aircraft and it contains
80 sampled terrain elevation measurements.

10.3.3 Cardinality

For a trajectory <h1, h2,......hk>, the cardinality of each interval (hi-10, hi+10)
can vary widely, as shown in Fig.10.4. As we mentioned in Section 10.2, we
would like to take an interval (hi-10, hi+10) in the trajectory which returns a
rather small cardinality. The more samples (in a trajectory) we take, the higher
the probability will be to find a small cardinality. To measure the relationship
between the minimum cardinality found and the size of the tracks, we calculate
the cardinalities (see Section 10.2) for the first i * 10 (i = 1...8) samples for
each track file. We recorded the minimum cardinality found and the corre-
sponding size of the track. Thus, for each track we get a sequence
of minimum cardinality mini (i = 1...8) and the correspondingsizei = i

* 10 (i = 1...8). Fig.10.5 shows theavg(mini) over the 50 tracks. It shows that:
1) The minimum cardinality decreases with the size of the tracks; 2) After
approximate 30 samples, the average of the minimum cardinality reaches a sta-
ble value (i.e., a value around 609).

Fig. 10.3: The real map

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0

50

100

176 Chapter 10 Application Study

Fig. 10.4: Cardinality distribution for a sample track

0 10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

6000

7000

each interval in the track

ca
rd

in
al

iti
es

 o
f e

ac
h

in
te

rv
al

s
cardinalities in a sample track file

Fig. 10.5: The relationship between the number of samples taken and
the average of the minimum cardinality found

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

track size (*10)

av
er

ag
e

of
 m

in
_c

ar
d

fo
un

d

the relationship between min_card and the size of tacks

Section 10.3 Measurements 177

10.3.4 The Settling Time of the IP-index

Thus we can use the value 609 as the “converge” threshold for the IP-index,
i.e., we say the IP-index has settled when it finds a cardinality less than 609.
Taken a trajectory of elevation measurements <h1, h2,...hk>, it is interesting to
see how fast the IP-index settles. We tested the IP-index on the 50 tracks and
recorded the number of samples needed to reach the converge threshold 609.
The histogram is shown in Fig.10.6.

Fig. 10.6 shows that the settling time of the IP-index is generally small. For
most tracks less than 10 samples are needed. Notice that when the track does
not cover areas with small cardinalities (for example, when the aircraft is flying
over flat areas such as lakes), the cardinality threshold cannot be reached even
if the whole track is checked. That is the reason why some tracks are located in
the rightmost line (where the settling time is 80) inFig. 10.6.

10.3.5 Conclusions

Note that the measurement results are affected by the application data. For
example, the value of the “converge” threshold (609) used in these measure-
ments is dependent on the elevation values in the terrain map and the position
of the tracks (in the map). It should be tuned for different application data sets.
This value in turn affects the settling time of the IP-index.

Fig. 10.6: The histogram of the settling time of the IP-index

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

the number of samples taken

th
e

nu
m

be
r

of
 tr

aj
ec

to
rie

s

178 Chapter 10 Application Study

Nevertheless, these measurements show how the IP-index should be used in the
navigation application to find good starting positions for the matching algo-
rithm. The approach is: for any track file we calculate the cardinality for each
samplehi, and stop either when we find the first cardinality that is lower than
the threshold (i.e. 609 in the example), or when the IP-index reaches its “con-
verge threshold” (i.e. 30 samples in the example since the minimum cardinality
will not continue to decrease based on statistics shown in Fig. 10.5). Suppose
we stop at the samplehs in the trajectory, then we pose the range query
F-1(hs-10<v<hs+10) to find the sub-areas in the map whose terrain elevations
are inside the interval (hs-10, hs+10). These sub-areas are returned to the
matching algorithm to serve as the starting positions (recall in Section 10.2 that
the matching algorithm can work backwards and forwards). Since the number
of grids inside these areas is guaranteed to be small, the matching algorithm
will always bemuch more efficient than starting from the whole map.

10.4 Summary

To conclude this chapter, we have shown that the IP-index is applicable to other
applications domains such asterrain-aided navigation[20]. The IP-index
improves the performance of the bayesian approach [20] in terrain-aided navi-
gation by efficiently filtering out sub-areas in a map where the terrain eleva-
tions inside these areas are inside some range (h’, h’’). The efficiency of this
approach was verified by experiments.

Chapter 11

Conclusions and Future Work

In this chapter we conclude this thesis and point out possible future work.

11.1 Concluding Remarks

To conclude this thesis, we have shown that: although considerable research
has been dedicated to supportingsequence data in DBMSs in the last decade,
some important requirements from applications areneglected, i.e., how to sup-
port sequence data viewed ascontinuous under arbitrary user-defined interpola-
tion assumptions; and how to perform sub-sequence extraction efficiently based
on the conditions on thevalue domain (instead of on the ordering domain). To
address this challenging problem, we have performed extensive research which
results in this thesis. Our main contributions consist of the following:

 • We have developed an innovative index, the IP-index, which supports effi-
cient calculation of implicit values of sequence data under arbitrary user-
defined interpolation functions. The idea of the IP-index is general and it
can be implemented on top of an ordered index such as a B+-tree.

 • We have implemented the IP-index in both a disk-resident database system
and a main-memory database system. We have demonstrated by experiments
that the insertion and search time of the IP-index remains small regardless
of the growing of the time sequence. We also investigated the space usage of
the IP-index to show that it is practical to build IP-indexes for large
sequences.

 • We introduced an extended SELECT operator, σ*, for the abstract data type

180 Chapter 11 Conclusions and Future Work

of time sequences. Theσ* operator, σ* cond(TS), retrieves sub-sequences
(time intervals) where the values inside those intervals satisfy the condition
cond. Experiments made on SHORE [22] using both synthetic and real-life
time sequences showed that theσ∗ operator (supported by the IP-index) dra-
matically improves the performance of value queries.

 • We developed a cost model for theσ∗ operator. We also showed that the cost
of a range queryσ∗v>v’(TS) is nearly thesame as the cost of the exact query
σ* v=v’(TS). This indicates that processing range queries is very efficient
using the IP-index, especially for large sequences.

 • We investigated optimizations of time window queries and complex value
queries (sequence joins). The optimization techniques were verified by
experiments.

 • We proposed a multi-level dynamic array structure for dynamic, irregular
time sequences. The highlight of this data structure is that it is highlyspace
efficient and supports bothefficient random access andfast appending.

 • We investigated issues such as management of large objects in DBMSs,
physical organization of secondary indexes, and the impact of main-memory
or disk-resident DBMSs on sequence data structures and indexes.

 • We performed a thorough application study on “terrain-aided navigation”
[83] to show that the IP-index is applicable to other application domains.
Experiments on a real terrain map and simulated track files were performed
to verify the efficiency of the approach.

We also performed an extensive study on related work to give the readers an
overview of research work done in this area. Closely related work was studied
in depth.

11.2 Future Work

For future work, we would like to further investigate optimizations for complex
sequence queries when theσ* operator is involved. Query optimization for
sequence data is an interesting and challenging issue, especially forcontinuous
sequences when user-defined interpolation functions are supported. For exam-
ple, optimization of sequence joins (see Section 8.6) would require the com-
bined knowledge on the cost and selectivity factors of theσ* operators
involved, and different join techniques.

Another interesting direction for future work would be to investigate how to
extend the idea of the IP-index to multi-dimensional sequence data. This is cer-
tainly a highly challenging subject.

Appendix

SHORE Implementation Notes

This appendix describes how the IP-index and time sequences were imple-
mented on SHORE (to complement Section 4.2.1).

SHORE (Scalable Heterogeneous Object REpository) [22] is a persistent object
system developed at the University of Wisconsin. SHORE represents a merger
of object-oriented databases and file system technology. SHORE evolved from
an earlier object-oriented database system called EXODUS [25].

SHORE is a peer-to-peer distributed system (see Fig.1). Each node where
objects are stored or where an application program wishes to execute contains a
SHORE server process that talks to other SHORE servers, interfaces to locally
executing applications, and cashes data pages and locks in order to improve
system performance. A SHORE server communicates with the local application
through RPC and shared-memory.

To allow databases built by an application written in one language (e.g. C++) to
be accessed and manipulated by applications written in other object-oriented
languages (e.g., Smalltalk), SHORE defines its type system in SHORE Data
Language,SDL. SDL is quite similar to ODL (the Object Definition Language)
proposed from the ODMG consortium.

All persistent objects in SHORE are defined in SDL as instances ofinterface
types. An interfacedefinition is similar to a class definition in C++. Interface
types can have attributes, methods, and relationships. Theattribute of an inter-
face type can be of one of the primitive types (e.g., integer, character, real), or
they can be of constructed types. SHORE provides the usual type of construc-
tors: enumeration, structures, arrays, andreferences (which are used to define
relationships). In addition, SHORE provides a variety of bulk types, including
lists, sets. andsequences, that enable a SHORE object to contain a collection of

182 Appendix

references to other objects. In particular, a sequence is a homogeneous
sequence of values of a base type. A sequence can grow arbitrarily large.

SHORE also provides the notion ofmodules, to enable related types to be
grouped together for name scoping and type management purpose.

Interface Types in SDL

To implement the IP-index and the data type oftime sequence in SHORE, the
first thing is to define theinterface types for them. The IP-index was imple-
mented using the B+-tree interface [116] provided by SHORE. In SHORE, indexes
such as B+-trees or R-treesare declared in SDL asindex<keytype, valtype>

varnam e. A B+-tree in SHORE is initialized by theinit(index_type) state-
ment where the parameterindex_type can be“BTree” or “UniqueBTree ” .
Scanning the index is accomplished by the template classIndexScanIter(const

Index<key, val> idx). This template opens a “cursor” to indicate the current
(key, value) pair in the range and a next member function to move the cursor to the
next pair. Range bound may be specified bySetUB andSetLB member function.

A time sequence was modelled as an array of records (ti, vi) (for reasons see Sec-
tion 4.2.1). Since anchor-state sequences are dynamically growing, they cannot
be modelled as static objects such as fixed-sized arrays or unordered objects
such as sets or bags. Instead, they are implemented as a sequence data structure
Seq [116] in SHORE.Seq is a dynamic array (variable-length array) stored on
disk. It supports operations such asappend_elt , get_ele , get_size ,

SHORE

Fig. 1: The SHORE process architecture

SHORE

SHORE

SHORE

Server 1 Server 2

Workstation 1 Workstation 2

App

App App App

Appendix 183

delete_elt, etc.

Member functions that do not update the contents of an object are flagged as
const in their SDL definition.

1. TheTime_sequence interface:

A time sequence is implemented as an array of state_ids where each state_id
Si is a pointer that points to where the pair (ti, vi) is stored. There are three
methods defined on the time sequence interface type: insert(v),
get_state_value(i),and print_time_sequence().

interface Time_sequence {
public:

typedef ref<State> state_id;
attribute state_id state_ids[100000];

// an array of references to the “state” object!
attribute int curr_length;

// current length!
int insert(in float v);

// “in” means this function will not modify the argu-
ment!

void print_time_sequence() const;
float get_state_value(in int i) const;

// retrieves the value v i given the state_id i!
};

2. The Anchor_state_sequences interface:

An anchor-state sequence is stored using a sequence data structure in
SHORE. This interface contains four methods:initialize(), initialize(seq),
append(s),and print_anchors(). The methodinitialize() initializes a nil
sequence and the methodinitialize(seq) initializes the anchor-state sequence
with a known sequenceseq (by copying that sequence).

interface Anchor_state_sequence {
public:

attribute sequence<int> anchors;
// sequence of state_id!

void initialize();
// initialize with nil!

void initialize(in sequence<int> seq);
// initialize with sequence “seq”!

void append(in int s);
void print_anchors() const;

};

3. The IP_index interface:

The IP-index is stored asindex<float, ref<Anchor_state_sequence>>. The

184 Appendix

structure index<float, ref<Anchor_state_sequence>> indicates that this
index has floating point numbers as keys and each key is associated with a
pointer that points to anAnchor_state_sequence. The IP_index interface
has the following methods: initialize(), insert(i, v), search(v),
print_ip_index(), modify_ip_index(v1, v2, s), get_left_entry(v), and
simulate_back_scan(v).The methodinsert(i, v) inserts a new state (ti, vi)
into the IP-index where ti = i (for simplicity we use integers as time stamps,
see Section 4.2.1). The methodsearch(v) searches the IP-index to find the
anchor-state sequence A(v) for the value v. The methodprint_ip_index()
prints the IP-index by traversing the IP-index tree. The method
modify_ip_index(v1, v2, s) appends the anchor-state sequences of those kis
wherev1 < ki < v2 with the state s. The method get_left_entry(v)returns the
entry in the IP-index with the key value ki where ki ≤ v < ki+1. The method
simulate_back_scan(v) will be explained in the section “C++ binding” later.
For now we can ignore it.

interface IP_index {
public:

attribute index<float, ref<Anchor_state_sequence> > ind;
void insert(in int i, in float v);
void search(in float v) const;
leftmost get_left_entry(in float v) const;
leftmost simulate_back_scan(in float v) const;
void modify_ip_index(in float v1, in float v2, in int s);
void initialize();
void print_ip_index() const;

// “const” means this function will not modify the
object!

 };

The IP_index Module

There is only one module in this implementation. The module name is
IP_index. The IP_index module contains the following interface types and
data structures:

module ip_index {
interface IP_index;
interface Anchor_state_sequence;
interface Time_sequence;

struct leftmost {
char flag;
sequence<int> anchors;

};
};

Appendix 185

All interface types in this module have been explained in the previous section.
The structureleftmost is mainly used to store the anchor-state sequence
returned by the methodget_left_entry(v). (Theflag field is used to mark some
internal conditions in the program.) TheIP_index module is stored in a file
namedip_index.sdl. This file is compiled into a C++ header fileip_index.h,
which can be included in C++ programs, see the next section.

C++ Binding

SHORE is designed to allow databases built by an application written in one
language (e.g., C++) to be accessed and manipulated by applications written in
other object-oriented languages as well (e.g., Smalltalk). This capability is
important for large-scale applications, where different modules are probably
written in different languages. In SHORE, the methods associated with SDL
interfaces can therefore be written using any of the languages for which a
SHORE language binding exists. Currently, only the C++ binding is supported.
For the SDL fileip_index.sdl (the last section), part of the generated header file
ip_index.h file is shown in Fig.2.

Some of the data types in Fig.2 correspond directly to SDL types, as C++
offers direct support for those simple types. For SDL types with no correspond-
ing C++ types, like sequences andreferences, SHORE uses pre-defined, macro-
based classes (similar to parameterized types) such asRef andSequence. For
example, the SDL typeref<Anchor_state_sequence> is compiled into the
classRef(Anchor_state_sequence>; C++ overloading features make it behave
like a pointer to a read-only instance ofAnchor_state_sequence . The class
Sequence<long> encapsulates a data structure containing a sequence of long
integers and provides member functions that enable its contents to be accessed
(such asappend_elt , get_ele , get_size , anddelete_elt).

Given the header file generated by the binder, the application program can
implement the operations associated with each interface type. For example, the
following C++ code implements the member functionprint_time_sequence()
for the classTime_sequence:

void Time_sequence::print_time_sequence() const {
int i;
float v;

for (i = 0; i<curr_length; i++) {
v = this->get_state_value(i);
cout << v;
cout << “ “;

 }
}

186 Appendix

The above const flag for this function denotes that this function does not
update the contents of the object. To modify an object, the C++ application
must first call a special generated member function,update(), which returns
a read-write reference. For example:

Ref<Time_sequence> ts;
ts.update()->insert(v);

The functionupdate() coerces the type ofts from Ref<Time_sequence> to
(non const) Time_sequence *. It also has the runtime effect of marking
the referenced object as “dirty” so that changes will be transmitted to the server
when the transaction commits.

class IP_index: {
public:

Index<float, Ref<Anchor_state_sequence> > ind;
virtual void insert(long i, float v);
virtual void search(float v) const;
virtual struct leftmost get_left_entry(float v) const;
virtual struct leftmost simulate_back_scan(float v) const;
virtual void modify_ip_index(float v1, float v2, long s);
virtual void initialize();
virtual void print_ip_index() const;

};

class Anchor_state_sequence: {
public:

Sequence<long> anchors;
virtual void initialize(Sequence<long> seq);
virtual void initialize();
virtual void append(long s);
virtual void print_anchors() const;

};

class Time_sequence: {
public:

typedef Ref<State> state_id;
Ref<State> state_ids[100000];
long curr_length;
virtual long insert(float v);
virtual void print_time_sequence() const;
virtual float get_state_value(long i) const;

};

Fig. 2: The ip_index.h file (generated fromip_index.sdl)

Appendix 187

The B+-tree in SHORE

The IP-index is implemented on top of a B+-tree in SHORE. A B+-tree in
SHORE is initialized by theinit(index_type) statement where the parame-
ter index_type can be“BTree” or “ UniqueBTree ” . Scanning the index is
accomplished by the template classIndexScanIter(const Index<key,

val> idx) which opens a “cursor” to indicate the current (key, value) pair in
the range and anext member function to move the cursor to the next pair.
Range bound may be specified bySetUB andSetLB member function.

An IP-index is initialized by the following code:

void IP_index::initialize() {
SH_DO(ind.init(UniqueBTree));

}

The macroSH_DO [116] is used for calling functions that are not expected to
fail. It evaluates its argument and verifies that the result is valid. If not, it prints
an error message and aborts the program.

An index scan is accomplished by the following code:

IndexScanIter<float, Ref<Anchor_state_sequence> >
iter(this->ind);

iter.SetLB(v);
iter.SetLowerCond(geOp);
rc = iter.next();

The above code sets the lower bound tov (no upper bound is specified). The
condition for the lower bound is ‘>=’ (the parameter “geOp” above). The limi-
tation of scanning a B+-tree in SHORE (given a key range) is that scanninghas
to start from the lower (key) bound and moves toward the upper bound. Back-
ward scanning (scanning that starts from the upper bound and moves toward the
lower bound) is not supported. Unfortunately, in the algorithm of the IP-index
(see Section 3.3), we need backward scanning (see the functionget_lower(tree,
vi) in Section 3.3) to find the firstki whereki ≤ vi (of course we could start
scanning from the minimum key value to find thelast ki whereki ≤ vi, but this
will certainly be very slow). In order to be able to get the right measurement
figures, we had to simulate the situation when the backward scan was available.
This is why we have the methodsimulate_back_scan(v) in the IP_index inter-
face. The code for this method can be found in [84].

188 Appendix

Conclusions

SHORE is a state-of-the-art OODBMS designed for distributed applications. Its
separation between the SDL language and implementation languages conforms
to the spirit of the ODMG standard for open systems. However, there are sev-
eral limitations in the current version of SHORE. For example, page faulting
for large objects is not supported, and index scan starting from the upper bound
toward the lower bound is not available.

Bibliography

1. H. Abelson and G. J. Sussman, “Structure and Interpretation of Computer Pro-
grams.” MIT Press, 1985.

2. G. M. Adelson-Velskii and E. M. Landis, “Doklady Akademia Nauk SSSR”, 146,
1962, pp. 263-266; English translation inSoviet Math, 3, pp. 1259-1263.

3. M. E. Adiba and B. G. Lindsay, “Database Snapshots,” Proceedings of 6th VLDB
Conference, pp. 86-91, 1980.

4. R. Agrawal, C. Faloutsos and A. Swami, “Efficient Similarity Search in
Sequence Databases,” in Proceedings of the 4th International Conference on
Foundations of Data Organization and Algorithms, pp. 69-84, Chicago, Oct.
1993.

5. R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim, “Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases,” in Pro-
ceedings of 21st VLDB Conference, pp. 490-501, 1995.

6. R. Agrawal, G. Psaila, D. L. Wimmers and M. Zaït, “Querying Shapes of Histo-
ries,” in Proceedings of 21st VLDB Conference, pp. 502-514, 1995.

7. I. Ahn and R. Snodgrass, “Performance Analysis of Temporal Queries,” in Infor-
mation Science, vol. 49, pp. 103-146, 1989.

8. I. Ahn and R. Snodgrass, “Partitioned Storage for Temporal Databases,” in Infor-
mation Systems, 13(4):369-391, 1988.

9. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “Data Structures and Algorithms.”
Addition-Wesley, 1987.

10. A. Ammann, M. Hanrahan and R. Krishnamurthy, “Design of a Memory Resi-
dent DBMS,” in Proceedings of IEEE COMPCON, San Francisco, February,
1985.

11. C-H. Ang and K-P. Tan, “The interval B-tree”, in Information Processing Let-
ters, 53(2): 85-89, Jan. 1995.

190 Bibliography

12. M. Astrahan et al., “System R: Relational Approach to Database Management,”
in ACM TODS, Vol. 1, No. 2, June 1976.

13. M. Atkinson, et al., “The Object-Oriented Database System Manifesto,” in Pro-
ceedings of the Fir st International Conference on Deductive and Object-Ori-
ented Databases, Kyoto, Japan, Dec. 1989.

14. F. Bancilhon, C. Delobel, and P. Kanellakis (eds), “Building an Object-Oriented
Database System: The Story of O2”. Mor gan Kaufmann Publishers, 1992.

15. D. S. Batory, T. Y. C. Leung, and T. E. Wise, “Implementation Concepts For an
Extensible Data Model and Data Language”, inACM Transactions on Database
Systems, 13(3):231-262, Sept. 1988.

16. R. J. Bayardo Jr., D. P. Miranker, “Processing Queries for First-Few Answers,” in
Proceedings of 5th International Conference on Information and Knowledge
Management, pp 45-52, Maryland, USA, Nov. 1996.

17. R. Bayer and E. McCreight, “Organization and Maintenance of Large Ordered
Indices,” Technical Report No. 20, Boeing Scientific Research Laboratories,
July, 1970.

18. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-T ree: A Effi-
cient and Robust Access Method for Points and Rectangles,” in Proceedings of
the 1990 ACM SIGMOD Conference, pp. 322-331, June 1990.

19. J. L. Bently, “ Algorithms for Klee’ s Rectangle Problems”, Technical Report,
Computer Science Department, Carnegie-Mellon Uni versity, Pittsburgh, 1972.

20. N. Bergman, “A Bayesian Approach to Terrain-Aided Navigation”, Technical
Report, LiTH-ISY -R-1903, Linköping Uni versity, Oct. 1996.

21. C. Bettini, X. S. Wang, E. Bertino and S. Jajoda, “Semantic Assumptions and
Query Evaluation in Temporal Databases,” in Proceeding of the 1995 SIGMOD
Conference on the Management of Data,May 1995.

22. M. J. Carey, et. al, “Shoring Up Persistent Applications,” in Proceeding of the
1994 SIGMOD Conference on the Management of Data, Minneapolis, MN, May
1994.

23. M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita, “Storage Manage-
ment for Objects in EXODUS,” in “ Object-Oriented Concepts, Databases, and
Applications,” by W. Kim and F. Lochovsky, eds., Addison-Wesley Publishing
Co., 1989.

24. M. J. Carey, D. J. DeWitt, J. e. Richardson, and E. J. Shekita, “Object and File
Management in the EXODUS Extensible Database System,” in Proceedings of
the 12th VLDB Conference, Kyoto, Japan, 1986.

25. M. Carey et. al, “The Architecture of the EXODUS Extensible DBMS,” in Pro-
ceedings of the International Workshop on Object-Oriented Database Systems,
Asilomar, Califonia, 1986.

Bibliography 191

26. R. G. G. Cattel, “Object Data Management”. 2nd edition, Addison-Wesley Pub-
lishing Company, ISBN 0-201-54748-1, 1994.

27. D. Chanberlin, “Using the New DB2.” Morgan Kaufmann, 1996.

28. R. Chandra and A. Segev, “Managing Temporal Financial Data in an Extensible
Database,” in Proceedings of 19th VLDB Conference, Dublin, 1993.

29. J. Chomicki, “Temporal Query Languages: a Survey,” in Proceedings of the
International Conference on Temporal Logic, Bonn, Germany, July 1994.

30. H-T Chou et. al, “Design and Implementation of the Wisconsin Storage System,”
in Software Practice and Experience, Vol. 15, No. 10, Oct. 1985.

31. J. Clifford and A. Croker, “The historical relational data model (HRDM) and
algebra based on lifespans,” in Proceedings of the 3rd International Conference
on Data Engineering, pp. 528-537, Log Angeles, CA, Feb. 1987.

32. J. Clifford and A. U. Tansel, “On an algebra for historical relational databases:
Two views,” in Proceedings of ACM SIGMODConference, pp. 247-265, Austin,
TX, May 1985.

33. J. Clifford and D. S. Warren, “Formal Semantics for Time in Databases,” in ACM
Transactions on Database System, Vol 8, No. 2, June 1983.

34. E.F Codd, “A Relational Model of Data for Large Shared Data Banks,” in Com-
munications of the ACM. 13(6):377-387, June 1970.

35. D. Comer, “The Ubiquitous B-Tree,” in ACM Computing Surveys, vol. 11, No. 2,
pp. 121-137, June 1979.

36. U. Dayal, “Queries and Views in an Object-Oriented Data Model,” in Proceed-
ings of the 2nd Workshop on Database Programming languages, 1989.

37. D. J. Dewitt et al., “Implementation techniques for Main Memory Database Sys-
tems,” in Proceedings of ACM SIGMOD Conference, June, 1984.

38. D. J. Dewitt, N. Kabra, J. Luo, J. M. Patel and J. Yu, “Client-Server Paradise,” in
Proceedings of VLDB Conference, Santiago, Chile, 1994.

39. K. Dittrich, A. Kotz, and J. Mulle (editors),Proceedings of the International
Workshop on Object-Oriented Database Systems, IEEE CS, Pacific Grove, Cali-
fornia, September 1986.

40. W. Dreyer, A. K. Dittrich, and D. Schmidt, “An Object-Oriented Data Model for
a Time Series Management System,” in Proceedings of International Conference
on Scientific and Statistic Database Management, Charlottesville, Virginia,
USA, 1994.

41. W. Dreyer, A. K. Dittrich, and D. Schmidt., “Research Perspectives for Time
Series Management Systems,” in SIGMOD Record 23(1): 10-15 (1994).

192 Bibliography

42. W. Dreyer, A. K. Dittrich, and D. Schmidt., “Using the CALAND A Time Series
Management System,” in Proceedings of ACM SIGMOD, San Jose, CA, 1995.

43. H. Edelsbrunner, “ Dynamic Rectangle Intersection Searching,” Technical
Report, Institute for Information Processing, Rept. 47, Technical University of
Graz, Graz, Austria.

44. R. Elmasri, M. Jaseemuddin, and V. Kouramajian, “Partitioning of T ime Index
for Optical Disks”. In Proceedings of the 8th International Conference on Data
Engineering, Feb. 1992.

45. R. Elmasri, Y. J. Kim, and G. T. J. Wuu, “Efficient Implementation Techniques
for the Time Index.” In Proceedings of the 7th International Conference on Data
Engineering, pp. 102-111, 1991.

46. R. Elmasri and S. B. Navathe, “Fundamentals of Database Systems.” The Ben-
jamin/Cummings Publishing Company, Inc. ISBN -201-53090-2. 2nd edition,
1994.

47. R Elmasri, G. T. J. Wuu and V. Kouramaijian, “The Time Index and the Mono-
tonic B+-tree,” in [134], pp. 433-455.

48. Lars Eriksson and Lars Nielsen, “Ionization Current Interpretation for Ignition
Control in Internal Combustion Engines,” in IFAC Control Engineering Practice,
Vol. 5, No. 8, August. 1997.

49. G. Fahl, T. Risch and M. Sköld, “An Architecture for Acti ve Mediators,” in Pro-
ceedings of the International Workshop on Next Generation Information Tech-
nologies and Systems, Haifa, Israel, 1993.

50. E. T. Falkenroth, “Computational Indexes for Time Series,” in Proceedings of 8th
International Conference on Scientific and Statistical Database Management,
pp. 18-23, Stockholm, Sweden, June 1996.

51. C. Faloutsos, M. Ranganathan and Y. Manolopoulos, “Fast Subsequence Match-
ing in Time-Series Databases,” in Proceedings of 1994 ACM SIGMOD, Minneap-
olis, Minnesota, May, 1994.

52. FAME Softw are Corporation, “User’s Guide to FAME,” 1990.

53. R. A. Finkel and J. L. Bentley, “Quad trees: a data structure for retrieval on com-
posite keys,” in Acta Informatica, 4(1), 1-9.

54. D. H. Fishman et. al, “Overview of the Iris DBMS”, in W . Kim, F. H. Lochovsky
(eds.), “Object-Oriented Concepts, Databases and Applications,” A CM Press,
Addison-Wesley Publishing Co., 1989.

55. S.K. Gadia and C. S. Yeng, “A Generalized Model for a Relational Temporal
Databases,” in Proceedings of 1988 ACM SIGMOD, Chicago, IL, June 1988.

Bibliography 193

56. H. Garcia-Molina, and K. Salem, “Main Memory Database Systems: A Over-
view”, in IEEE Transactions of Knowledge and Data Engineering, Vol. 4, No. 6,
Dec. 1992.

57. N. H. Gehani, H. V. Jagadish, and O. Shmueli, “Composite Event Specification
in Active Databases: Model and Implementation,” in Proceedings of the Interna-
tional Conference on Very Large Databases, 1992.

58. H. Gunadhi and A. Segev, “Efficient Indexing Methods for Temporal Relations,”
in Transactions of Knowledge and Data Engineering, Vol. 5, No. 3, pp. 496-509,
June 1993.

59. H. Gunadhi and A. Segev, “Query Processing Algorithms for Temporal Intersec-
tion Joins,” in Proceedings of the 7th International Conference on Data Enginee-
ring, Kobe, Japan, 1991.

60. J. Guttag, “Abstract Data Types and the Development of Data Structures,” in
Communications of the ACM, June 1997.

61. A. Guttman, “R-Tree: A Dynamic Index Structure for Spatial Searching,” in Pro-
ceedings of ACM SIGMOD Conference, Boston, MA, June 1984.

62. R. L. Haskin and R. A. Lorie, “On Extending the Functions of a Relational Data-
base System,” in Proceedings of ACM SIGMOD, June, 1982.

63. IBM Almaden’s research group on data mining, “http://www.almaden.ibm.com/
cs/quest/”.

64. Illustra Information Technologies, “Illustra User’s Guide.” June 1994.

65. Informix Software.Informix Time Series DataBlade Module. 1997.

66. C. S. Jensen, L. Mark, N. Roussopoulos, and T. K. Sellis, “Using Cashing, Cache
Indexing, and Differential Techniques to Efficiently Support Transaction Time,”
in VLDB Journal, 1992.

67. C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T. Snodgrass, “A Glossary
of Temporal Database Concepts,” in SIGMOD RECORD, Vol 21, No. 3, pp. 35-
43, Sept. 1992.

68. F. Johnsson, R. C. Zijerveld, C. M. van den Bleek, J. C. Schouten and B. Leck-
ner, “Characterization of Fluidization Regimes in Circulating Fluidized Beds -
time series analysis of pressure fluctuations.” , Technical Report, Chalmers Insti-
tute of Technology, Sweden, 1996 (submitted for publication).

69. N. Kline and R. Snodgrass, “Computing Temporal Aggregates,” in Proceedings
of Data Engineering Conference, pp. 222-231, 1995.

70. D. E. Knuth, “The Art of Computer Programming, Vol. 1, Fundamental Algo-
rithms”, Addison-Wesley Publishing Co., 1969.

194 Bibliography

71. P. D. L. K och, “Disk File Allocation Based on the Buddy System,” in ACM
TOCS, Vol. 5, No. 4, November 1987.

72. C. P. Kolovson and M. Stonebraker, “Segment Indexes: Dynamic Indexing Tech-
niques for Multi-Dimensional Interv al Data,” in Proceedings of ACM SIGMOD
Conference, pp. 138-148, 1991.

73. R. Laurini and D. Thompson, “Fundamentals of Spatial Information Systems.”
Academic Press, 1992.

74. T. J. Lehman and B. G. Lindsay, “The Starburst Long Field Manager,” in Pro-
ceedings of the 15th VLDB Conference, Amsterdam, 1989.

75. T. J. Lehman and M. J. Carey “A Study of Index Structures for Main Memory
Database Management Systems,” in Proceedings of the 12th International Con-
ference on Very Large Data Bases, Kyoto, Japan, August, 1986.

76. T. J. Lehman and M. J. Carey, “Query Processing in Main Memory Database
Management Systems,” in Proceedings ACM SIGMOD Conference, Washington
DC, May, 1986.

77. M. Leland and W. Roome, “The Silicon Database Machine,” in Proceedings of
4th International Workshop on Database Machines, Grand Bahama Island,
March 1985.

78. T. Y. C. Leung and R. R. Muntz, “Generalized Data Stream Indexing and Tempo-
ral Query Processing,” in 2nd International Workshop on Research Issues in
Data Engineering: Transaction and Query Processing, Feb. 1992.

79. T. Y. C. Leung and R. R. Muntz, “Temporal Query Processing and Optimization
in Multiprocessor Database Machines,” in Proceedings of the 1992 VLDB Con-
ference, Vancouver, Canada, 1992.

80. C. S. Li, P. S. Yu and V. Castelli, “HierachyScan: A Hierachical Similarity
Search Algorithm for Databases of Long Sequences,” in Proceedings of Data
Engineering Conference, Feb. 1996.

81. L. Lin, T . Risch, and D. Badal, “Indexing Interpolated Time Sequences.” Techni-
cal Report, LiTH-ID A-R-96-03, Linköping Uni versity, Jan. 1996.

82. L. Lin, T . Risch, M. Sköld, and D. Badal, “Indexing Values of Time Sequences,”
in Proceedings of 5th International Conference on Information and Knowledge
Management, Rockville, USA, No v. 1996.

83. L. Lin and T. Risch, “Using a Sequential Index in Terrain-aided Navigation,” in
Proceedings of 6th International Conference on Information and Knowledge
Management, Las Vegas, USA, Nov. 1997.

84. L. Lin, “Implementing the IP-inde x in SHORE”, in Linköping Electronic Press,
“http://www .ep.liu.se/ea/cis/1997/017/”, 1997.

Bibliography 195

85. L. Lin, “Study of Supporting Sequences in DBMSs— Data Model, Query Lang-
uage, and Storage Management,” in Linköping Electronic Press, Vol. 3, Nr. 4,
1998.

86. L. Lin and T. Risch, “Querying Continuous Time Sequences,” in Proceedings of
24th International Conference on Very Large Data Bases, New York City, USA,
August, 1998.

87. B. Liskov and S. Zilles, “Programming with Abstract Data Types,” in SIGPLAN
Notices, April 1974.

88. D. B. Lomet and B. Salzberg, “The Performance of a Multiversion Access
Method,” in Proceedings of ACM SIGMOD Conference, Atlantic City, NJ, May
1990.

89. V. Lum, P. Dadam, R. Erbe, J. Guenauer, P. Pistor, G. Walch, H. Werner, and J.
Woodfill, “Designing DBMS Support for the Temporal Dimension,” in Proceed-
ings of ACM SIGMOD Conference, Boston, MA, July 1984.

90. P. Lyngbaek et al., “OSQL, A Language for Object Databases.” Technical
Report, HP Labs., HPL-DTD-91-4, Jan. 1991.

91. E. McCreight, “Priority Search Trees,” in SIAM Journal of Computing,
14(2):257-276, May 1985.

92. Z. Michalewics (ed.), “Statistical and Scientific Databases.” The Ellis Horwood
Limited, ISBN 0-13-850652-3, 1991.

93. A. Nanopoulos and Y. Manolopoulos, “Indexing Time-Series Databases for
Inverse Queries,” in 1998 International Conference on Database and Expert Sys-
tem applications, Vienna, Austria, 1998.

94. K. Ooi, B. McDonell and R. Sacks-Davis, “Spatial kd-tree: Indexing Mechanism
for Spatial Database,” in IEEE COMPSAC 87, 1987.

95. Oracle Corporation, “Oracle Time Series Cartridge User’s Guide.” 1997.

96. D. S. Parker, “Stream Data Analysis in Prolog,” in The Practice of Prolog. MIT
Press, Cambridge, MA, 1990.

97. D. S. Parker, R. R. Muntz, and H. L. Chau, “The Tangram Stream Query Process-
ing System,” in Proceedings of the International Conference on Data Enginee-
ring, Los Angels, CA, Feb. 1989.

98. PREDATOR project web page, “http://simon.cs.cornell.edu/Info/Projects/PRED-
ATOR”.

99. F. P. Preparata and M. I. Shamos. “Computational Geometry.” Springer-Verlag,
ISBN 3-540-96131-3, 1985.

100. N. Sarnak and R. Tarjan, “Planar Point Location Using Persistent Search Trees,”
in Communications of ACM, 29(7):669-679, 1986.

196 Bibliography

101. D. Schmidt, A. K. Dittrich, W . Dreyer, and R. Marti, “T ime Series, a Neglected
Issue in Temporal Database Research?” inProceedings of the International
Workshop on Temporal Databases, Zurich, Switzerland, Sept. 1995.

102. B. Schueler, “Update Reconsidered,” in G.M. Nijssen (ed.), “ Architecture and
Methods in Data Base Management Systems.” North Holland, 1977.

103. P. Schwarz et. al, “Extensibility in the Starburst Database System,” in Proceed-
ings of the International Workshop on Object-Oriented Database Systems, Asilo-
mar, Califonia, 1986.

104. A. Segev and H. Gunadhi, “Event-join optimization in temporal relational data-
bases,” in Proceedings International Conference Very Large Data Bases, Sept.,
1989.

105. A. Segev and A. Shoshani, “A Temporal Data Model Based on Time Sequences,”
in [134], pp. 248-269.

106. A. Segev and R. Chandra, “A Data Model for T ime-Series Analysis,” in W ork-
shop on Current Issues in Databases and Applications, Rutgers Univ., Oct. 1992.
Appear in: “Advanced Database Systems.” Editors: N. Adam and B. Bargrava.
Lectures Notes in Computer Science Series, Springer Verlag, 1993.

107. P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R A. Lorie, and T. G. Price,
“Access Path Selection in a Relational Database Management System,” in Pro-
ceedings of ACM SIGMOD Conference, Boston, MA, May 1979.

108. T. Sellis, N. Roussopoulos, and C. Faloutsos, “The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects ,” in Proceedings of 1987 VLDB Conference,
Brighton, England, Sept. 1987.

109. P. Seshadri, M. Livny, and R. Ramakrishnan, “‘Sequence Query Processing,” in
Proceedings of ACM SIGMOD’94, Minneapolis, MN, May 1994.

110. P. Seshadri, M. Livny, and R. Ramakrishnan, “The Design and Implementation of
a Sequence Database System,” in Proceedings of the 22nd VLDB Conference,
Mumbai, India, 1996.

111. P. Seshadri, M. Livny, and R. Ramakrishnan, “The case for Enhanced Abstract
Data Types,” in Proceedings of the 23rd VLDB Conference, Athens, Greece,
1997.

112. H. Shatkay, S. B. Zdonik, “Approximate Queries and Representations for Large
Data Sequences,” in Proceedings of 1996 Data Engineering Conference, Feb.
1996.

113. H. Shen, B. C. Ooi, and H. Lu, “The TP-Index: A Dynamic and Efficient Index-
ing Mechanism for Temporal Databases,” in Proceedings of 1994 Data Enginee-
ring Conference, 1994.

114. D. W. Shipman, “The Functional Data Model and the Data Language DAPLEX,”
in ACM Transactions on Database Systems. 6(1):140-173, March 1981.

Bibliography 197

115. SHORE project document, “An Overview of SHORE.” Computer Science Depart-
ment, University of Wisconsin-Madison, August, 1996.

116. SHORE project on-line information, “http://www.cs.wisc.edu/shore/”.

117. A. Shoshani and K. Kawagoe, “Temporal Data Management,” in Proceedings of
the 12th VLDB Conference, Kyoto, Japan, Aug. 1986.

118. A. Silberschatz, H. F. Korth and S. Sudarshan, “Database System Concepts.” The
McGraw-Hill Companies, Inc. ISBN 0-07-044756-X, 1996.

119. J. M. Smith and P. Y. T. Chang, “Optimizing the Performance of a Relational
Algebra Database Interface,” in Communications of ACM, 18(10):568-579, Oct.
1975.

120. J. M. Smith, S. A. Fox, and T. A. Landers, “DAPLEX: Rationale and Reference
Manual.” Technical Report CCA-83-08, Computer Corporation of America, May
1983.

121. R. Snodgrass, “The Temporal Query Language TQuel,” in ACM Transactions on
Database Systems, 12(2): 247-198, July 1987.

122. R. Snodgrass and I. Ahn, “Temporal Databases”, inIEEE Computer, pp. 35-42,
Sept. 1986.

123. R. Snodgrass and I. Ahn, “A Taxonomy of Time in Databases”, inProceedings of
ACM SIGMOD Conference, Austin, TX, May 1985.

124. R. Snodgrass, “Temporal Databases,” in A. U. Frank, I. Campari, and U. For-
mentini, eds.,Theories and Methods of Spatio-Temporal Reasoning In Geo-
graphic Space. Spring-Verlag, Lecture Notes in Computer Science 639, pp. 22-
64, 1992.

125. R. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Y. C. Leung, N.
Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada, “TSQL2
Language Specification,” in SIGMOD RECORD, 23(1):65-86, March 1994.

126. S. M. Sripada, B. L. Rosser, J. M. Bedford and R. A. Kowalski, “Temporal Data-
base Technology for Air Traffic Flow Management,” in Proceedings of the 1st
International Conference on Applications of Databases, Vadstena, Sweden, June
1994.

127. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The Design and Implementa-
tion of INGRES”, in ACM Transactions on Database Systems, 1(3):189-222,
Sept. 1976.

128. M. Stonebraker, “Inclusion of New Types in Relational Data Base Systems,” in
Proceedings of 1986 Data Engineering, 1986.

129. M. Stonebraker, “The Design of the POSTGRES Storage System,” in Proceed-
ings of the 13rd VLDB Conference, Sep. 1987.

198 Bibliography

130. M. Stonebraker, “The Implementation of POSTGRES,” in IEEE Transactions on
Knowledge and Data Engineering, March 1990.

131. M. Stonebraker, “Object-Relational DBMSs.” The Morgan Kaufmann Publish-
ers. ISBN 1-55860-397-2, 1996.

132. M. Stonebraker, B. Rubenstein, and A. Guttman, “Application of Abstract Data
Types and Abstract Indices to CAD Data Bases.,” in Proceedings of the Enginee-
ring Applications Stream of Database Week, San Jose, CA, May 1983.

133. M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman, “Document
Processing in a Relational Database System,” in ACM Transactions on Office
Information Systems, vol. 1, No. 2, April 1983.

134. A. U. Tansel et al. (editors), “Temporal Databases, Theory Design and Imple-
mentation.” The Benjamin/Cummings Publishing Company, Inc. ISBN 0-8053-
2413-5, 1993.

135. K. Torp, L. Mark and C. S. Jensen, “Efficient Dif ferential Timeslice Computa-
tion,” in IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 4,
July 1998.

136. V. J. Tsotras and N. Kangelaris, “The Snapshot Index, and I/O Optimal Access
Method for Timeslice Queries,” in Information Systems,3(20): 237-260, 1995.

137. J. D. Ullman, “ Principles of Database and Knowledge-Base Systems.” The Com-
puter Science Press. ISBN 0-7167-8158-1, 1988.

138. K. Y. Wang and R. Krishnamurthy, “Query Optimization in a Memory Resident
Domain Relational Calculus System,” in ACM Transactions on Database Sys-
tems,Vol. 15, No. 1, pp. 67-95. March 1990.

139. G. Özsoyoglu and R. Snodgrass, “Temporal and Real-Time Databases: A Sur-
vey,” in IEEE Transactions on Knowledge and Data Engineering, Vol. 7, No. 4,
August 1995.

140. VLDB’98 Tutorial Notes, 24th International Conference on VLDB, New York
City, USA, Aug. 1998.

Index

4GL 158-159

—A—

A(v’). See anchor-state sequences
abstract data type (ADT)3, 6, 91, 145,

159
Aggregation Tree39
AMOS 43, 116
anchor-state sequences30, 111

cardinality30
Append-Only Tree163
approximate queries65
AP-Tree39, 104
as-of162
attribute time-stamping161
AVL-tree 43, 117

—B—

B+-tree10, 114, 120
bayesian approach12, 172
bitemporal databases160
BLOB 112, 166
B-tree117, 119

—C—

C++ 13
CALANDA 158
card(A(v’)) 30, 81
cardinality30, 55, 173, 175
chronon25
clustering index 108
computational geometry14
contain-join163

contain-semijoin163
cost model126, 129

—D—

DAPLEX 163
DBMS 1, 8, 13

disk-resident DBMS96, 116
main-memory DBMS96, 116
object-oriented DBMS3, 114
object-relational DBMS3, 91
relational DBMS2

Discrete Fourier Transform (DFT)5,
151

disk extents113
disk-resident DBMS96
dynamic, irregular time sequences12,

180

—E—

event-join163
exact queries59
EXODUS114

—F—

FAME 106, 157
fanout120
feature-preserving functions153
first few answers12, 77, 126
first-normal-form (1NF)162, 165

—I—

IBM
TimeSeries DataExtender6

200 Index

Illustra 4, 150
implicit values11, 179
incremental computation150
indexing 8

hash index 9
ordered index 9
secondary index 8

Informix 106, 150, 159
TimeSeries DataBlade6, 91, 159

INGRES162
interpolation8, 11, 22, 25, 167
intersect-join163
Interval B-tree163
Interval Tree41
IP operator76
IP-index 8, 11-12, 14, 24, 28, 107, 172

anchor-state sequences30
cardinality30
comparison with conventional sec-

ondary indexes36
comparison with SIQ-index 41
generalized IP-index 42
insertion algorithm32
limitations31
precision35
search algorithm33

I-tree104, 163

—J—

join 162

—L—

large objects12, 112, 180
linear interpolation167
long field113
long field manager113

—M—

main-memory DBMS96, 116
minimum bounding rectangles (MBR)

152
Monotonic B+-tree39, 163
multi-level dynamic array structure99,

111

—N—

nonclustering index 108
non-first-normal-form (N1NF)162

—O—

O2 112
OBE 116-117
Object Data Management Group

(ODMG) 4
ODL 13
OODAPLEX 163
OQL 4
Oracle

TimeSeries DataCartrige6, 106
ordered indexes107

—P—

Persistent Search Tree41
physical organization12, 15
pinned109
PLI-tree104, 163
Postgres146
precision14, 57
precision of time points25
PREDATOR 6
primary index 107
Priority Search Tree41
probability density function172

—Q—

query optimization14-15

—R—

R*-Tree40
R*-tree152

R+-Tree40
range queries14, 60, 132
relational data model161, 167
R-tree40

Index 201

—S—

σ* operator11, 13, 69, 74, 180
secondary indexes36, 57, 107-108
Segment Index 163
Segment Tree41
selection push-down 148
selectivity 139
SEQ6, 12-13, 125, 144

SEQ data mode144
SEQUIN 6, 147

sequence data4, 13, 150
1-D sequence data11

shape queries
amplitude-sensitive shape queries14

shift 162
SHORE12-14, 51, 80, 114, 180

SDL 13
sequence98

similarity search5, 12, 151
SIQ-index 41
slice162
spatial databases14
spatial indexes40
special purpose management systems5
spline interpolation158, 167
SQL23, 161
SQL33, 92, 161
SR-Tree40
Starburst113
step-wise constant20, 25, 167
stream processing77, 125, 150
sub-sequences6, 11, 14, 79, 152, 180
swizzling122
System R113

—T—

telecom4
temporal databases14, 160

temporal database management sys-
tem (TDBMS)165

temporal indexes38, 163
temporal joins163
temporal partitioning162
TE-outerjoin163
terrain-aided navigation12, 15, 171,

180
time 17, 23, 160

continuous24
dense24
discrete23
transaction time160
user-defined time160
valid time160

Time Index 38, 163
time sequence (TS)17

continuous70
granularity18
interpolation20
life span18
regularity 14, 18-19, 97
static/dynamic14, 20, 98
time sequences v.s. time series22
type18

time sequence collection (TSC)19
operators19

time series4, 6, 91, 100, 155
calendars157
events156
grouping156
header156
multivariate156
time series v.s. time sequences22

time series management system165
Time Slice (t) operator89
time window queries14, 66, 133

optimization133
time-equijoin163
time-join 163
Time-Polygon index 163
Time-Split B-tree163
time-varying attribute (TVA) 87
TP-index 39
TQuel162
transaction time160, 163
TSQL2161, 167
T-tree117
tuple time-stamping161

—U—

user-defined interpolation functions8,
11, 22, 25

202 Index

user-defined time160

—V—

valid time160, 163
value queries8, 11, 28, 59

—W—

WHEN operator89, 162
Wisconsin Storage System (Wiss)113

