Management of 1-D Sequence
Data —

From Discrete to Continuous

by

Ling Lin

Mar. 25th, 1998

Abstract

Data oser ordered domains such as time or linear positions are tessqeehce

data. Sequence data require special treatments which are notedoby tradi-
tional DBMSs. Modelling sequence data in traditional (relational) database sys-
tems often results invekward query gpressions and bad performancer Ehis
reason, considerable research has been dedicated to supporting sequence data
in DBMSs in the last decade. Unfortunatedpme important requirements from
applications are ngected, i.e., ha to support sequence datawed ascontin-

uous under usedefined interpolation assumptions, andvhtow perform sub-
sequence xdraction eficiently based on the conditions on thaluwe domain.

We term these kind of queries e ue queries (in contrast tesshape queries that

look for general patterns of sequences).

This thesis presents pioneeringork on supportingvalue queries on 1-D
sequence data based on arbitrary wefimed interpolation functions. An inno-
vative inding technique, termed tH®-index, is proposed. The mattion for
the IP-ind& is to support dicient calculation of implicit alues of sequence
data under usedefined interpolation assumptions. The IP-indan be imple-
mented on top of anexisting ordered indeng structure such as a'Bree. W\
have implemented the IP-indein both a disk-resident database system
(SHORE) and a main-memory database system (AMOS). The highlights of the
IP-index — fast insertion, dst search, and spacefiegiency are \erified by
experiments. These properties of the IP-indeake it particularly suitable for
large sequence data.

Based on the ark of the IP-ind&, we introduce anx@éended SELECT opera-
tor, o*, for sequence data. The* operator o*.,o(TS), retrieves sub-
sequences (time intenals) where the alues inside those inteals satisfy the
condition cond. Experiments made on SHORE using both synthetic and real-
life time sequences sthwthat theaoperator (supported by the IP-indedra-
matically impraes the performance ofalue queries. A cost model for tlwél
operator is deeloped in order to be able to optimize comptpieries. Optimi-
zations of time winde queries and sequence joins areeisticated and erified

by experiments.

Another contrilation of this thesis is on pisical oganization of sequence data.
We propose a multi-leel dynamic array structure fatynamic irregular time
sequences. This data structure is highly spafieiexit and meets the challenge
of supporting bottefficient andom accesand fast appendingOther relgant
issues such as management ofiéaobjects in DBMS, pfsical oganization of
secondary indees, and the impact of main-memory or disk-resident DBMS on
sequence data structures are als@shigated.

A thorough application study on “terrain-aidedvigamtion” is presented to
shawv that the IP-inde is applicable to other application domains.

Acknowledgements

First of all, | would like to express my deep gratitude to my supervigerof.
Tore Risch, for guiding me into the area of databases and being supphrti
ing my four years of graduate study at Linkdping wémsity. His extensie
knowledge and endless enthusiasm in researatk \Wmas alvays been an inspi-
ration for me. | am also indebted to him for his unflaggirgdg of encourage-
ment wheneer he thinks | needed them, and higrm recommendations which
helped me to find my ideal job in industry (although reuld prefer me to stay
in academia).

| would also lile to thank my co-supervisderof. Zebo Peng, for pvading val-
uable comments for both my Licentiate and doctoral thesessaoding inter-
est in my vork. | also appreciate the interesting discussions withP2rOlof
Fjallstrém on algorithms and compléy during the early stage of my research.
Special thanks to bn Rankin for checking the English in this thesis.

| would like to thank all my (current and former) colleagues for coutidins

and help. Among them, | am especially grateful to Martin Skéld and Magnus
Werner who hae shavn the utmost patience with my maguestions during

the early stage of my research and sty technical discussions, lould like

to thank Olof Johansson for suggesting the “slab method” which led to the idea
of the IP-inde&, and Henrik André-Jonsson for discussions on similarity search
on time sequences. Marthanks to Martin Skdld who has shared with me all
the frustration and>eitement during my research, andestd his kindly help
wheneer he could.

| had the great fortune to meet Prof. Richard Snodgrass/(0hiArizona) at a
summer school in Italy in 1995. Prof. Snodgrass hasigead me insightful
comments on my wrk and helped shape my research direction despiteulsis b
schedule. | wuld like also to thank Prof. Christian S. Jensen at Aalbdmi-
versity, Denmark, for reading my doctoral thesis and for willing to be my oppo-
nent.

Being a member of the ISIS project, buld especially lik to thank Prof. Len-
nart Ljung and Niclas Bgman at the Dept. of Electrical Engineering (ISY) for
pleasant and inspiring discussions on applying database techniques in terrain-

aided naigation.

| am also grateful to all stisf at the Dept. of Computer Science Q) espe-
cially Lillemor Wallgren and Anne Eskilsson, for creating a friendikarm
ervironment for foreign students. | am indebted to. Bnders Toérne, who
accepted me as a guest student at tbey beginning (otherwise this thesis
would not hae existed).

| consider myself gry fortunate because of the friendship vdaxperienced.
Among my former colleagues, lould like to thank Magnus (and his wife Per-
nilla) for being supportie when | needed friendship; and Gustior teaching
me tennis and sharing laughté&kmong my Chinese friends, lomld like to
thank YuCheng, RongFeng, Dan, LijahRuo, Man, and manothers, for being
supportve and sharing a colourful lifeansy from China. | am also indebted to
my swedish “hostdmily” — Ms. Christina Grill, who has shared my tears and
laughter all these years.

Among the man blessings that v& happened to me during the lastfgears
when | was pursuing my doctoral deee, the best part is that | met anderful
man— my fiancé Martin Skéld. Martin has helped me a great dealénye
aspect of my life in Sweden, including my studyy research, and my personal
life. Where would | be without him?

Finally, | would like to thank my parents and my sister for their encouragement,
their endless support, andaalys beli@ing in me.

Ling Lin

Linkdping
December 1998

Contents

1 Introduction 1
11 DBMS . 1
1.1.1 Historical Overview i, 1

1.1.2 Object-Relational DBMS 3

1.2 SequenceDatauiiii 4
1.2.1 Active Researchon SequenceData 5

122 WhatisMissing? 6

1.3 INdeXing ... 8
1.3.1 IntroductiontoIndexing 9

1.3.2 CriteriaofaGoodIndex 10

1.4 Main Contributions and ThesisOutline 11
1.4.1 Main Contributions 11

142 ThesisOutline 14

2 TiMeSEeqUENCES. u vttt e 17
2.1 TheTimeSequenceDataModel 17
211 Regularity ... 19

212 Static/DynamiCi 20

2.1.3 Interpolationc..iii 20

2.1.4 Time Sequencesor TimeSeries? 22

2.2 Discreteor Continuous Time? 23

2.2.1 Interpolation for Discrete/Continuous Time Model24
2.2.2 Precisionof TimePoints 25

vi

Conents

2.3 SUMMAY .. 26
[P-index. 27
3.1 Motivation 27
3.2 IP-INdeX ... 28
3.2.1 Anchor-StateSequencec. . 29
3.2.2 ThelLimitation of thelP-index 31

3.3 Algorithms 32
3.3.1 Insertion Algorithm 32
3.3.2 Search Algorithm 33

3.4 |P-index versusthe Precisionof vis...................... 35
3.4.1 How Doesthe Precision of v;s Affect the IP-index? ... 35

3.5 Comparison with a Conventional Secondary Index 36
3.6 RelatedIndexes. i 38
3.6.1 TemporalIndexes i, 38
3.6.2 Spatial Indexes i 40
3.6.3 Indexesin Computational Geometry 41
3.6.4 SIQ-Index for ValueQueries 41

3.7 Generalized IP-index, 42
3.8 SUMMaAIY .. 42
Insertion/Search Time and SpaceUsage 43
4.1 Performancein aMain-Memory Database System 43
4.1.1 Implementation Notes 43
4.1.2 Time Sequences Used in the Measurements 44
413 InsertionTime, 45
414 SearchTime, 48
4.1.5 Largely Monotonic Time Sequences 48

4.2 Performance in a Disk-Resident Database System 51
4.2.1 ImplementationNotes 51
4.2.2 Time Sequences Used in the Measurements 51
423 InsertionTime 52
424 SearchTime ... e 52

4.3 SpacelUsageo 55
4.3.1 Time Sequences Used in the Experiments 55
4.3.2 Experimental Results 55

A4 SUMMAY .ttt e e 58

Contents vii
5 VariousFormsof ValueQueries 59
5.1 EXaCt QUENIES ot e h9.
5.2 Range QUENESot 60 .
5.2.1 Interpolated Range Queries. 61
5.2.2 Discrete Range Queries. 63
5.2.3 Approximate Queries. 65
5.3 Time-Window Queries, 66.
5.4 Amplitude-Sensitive Shape Queries 67
5.5 Summary. 68. .
6 Theo* Operator...........c..uiiiiiiiinnnnnnn.. 69
6.1 Formal Definitions. 69.
6.1.1 The Definitionof TSand@S 69
Continuous and Non-Continuous Interpolation Functions71
6.1.2 The Definitionof @ 73
6.1.3 The Definitionof o* 74
6.2 Implementationsofa* 75
621 0% p(TS) . o oot 75.
6.2.2 0%y (TS) - o 76.
IPOperator. 76
Get the First Few Answers Quickly. 7
6.2.3 0%p(TS) oo 78.
6.2.4 0% sy (TS) .o 79.
Discrete Range Selection. 80
6.3 Performance Measurements on SHORE. 80
6.3.1 0*,=,(TS) — Using the IP-index or Scanning the TS30
Constructing the Synthetic Time Sequence. 81
Experimental Results. 81
6.3.2 Getting the First Answer. 84
Constructing the Experimental Data. 84
Experimental Results. 84
6.4 Related Work. e 84 .
6.4.1 The Originalo* Operator. 84
6.4.2 The “System Query” Q. 86
6.4.3 Relevant Operators in Temporal Databases. 86
Theo Operator 87.
Thet Operator. i, 89.

TheQ Operator. 89.

viii Conents

6.5 Proposing New Functions for the ADT of Time Sequences 90

6.6 SUMMArY 92
7 Physical Organization., 95
7.1 Database ACCESSTIME 96
7.2 Physical Organization of TimeSequences 97
7.2.1 Propertiesof TimeSequences 97
7.2.2 Arraysfor TimeSequences 97
Regular/lrregular Time Sequences 97
Static/Dynamic Time Sequences 98

7.2.3 The Multi-Level Dynamic Array Structure 98
TheDataStructure 99

INSertion 101

Migration 103

Search 103

724 RelatedWork 104
Comparison with the PLI-tree and the AP-tree 104

Linked List 105
Arraysversus Relational Tables 105
OnAccessPaiterns i 106

7.3 AP-index ... 107
7.3.1 Primary Indexes and Secondary Indexes 107
7.3.2 |IP-index asaSecondary Index 108
How to Implement the Anchor-State Sequences? 110

7.4 Storage Management for LargeObjects 112
741 InRelationd DBMSSs i, 112
7.4.2 InObject-Oriented DBMSs 114

7.5 Main Memory DBM Ss versus Disk-Resident DBMSs 116
7.5.1 Background 116
7.5.2 ImpactonindexDesign 117
Main-Memory Index Structures 117

Disk-Based Index Structures 119

7.5.3 Impacton DataStructures 121

7.6 IsthelP-index Practical for Large Time Sequences? 122
T.7 SUMMATY ottt et e e e 124
8 QueryOptimizationciiiiinn... 125

8.1 StreamProcessingcuiiiiiii 125

Contents [¢
8.2 The Cost Model 06* =\ (TS) oo 126
8.2.1 ThelLinearCase. 127
8.2.2 The Non-LinearCase. 128
8.2.3 CostModel 129

8.3 Cardinalities of Range Queries 130
8.4 The Cost Model 06* 5 (TS)o oo 133
8.5 Time Window QUEres 133
8.5.1 Optimization of Time Window Queries 134
8.5.2 EXperiments 135

8.6 CompleX QUErIES e e 137
8.7 SUMMAIY. . . . 140.
9 Related Work 143
9.1 SEQ —ASequenceDBMS........... 144
9.1.1 TheSEQDataModel....................... 144
9.1.2 Abstract Data Type (ADT) 145
9.1.3 Physical Organization of Sequences. 146
9.1.4 SEQUIN Query Language. 147
9.1.5 Query Optimization. 148
9.1.6 Comparison With lllustra 150
9.1.7 Conclusions. 151

9.2 Similarity Search on Time Sequences. 151
9.2.1 Using the Discrete Fourier Transform........... 151
9.2.2 Function Approximation. 153
Relevance to Our Approach. 153

9.2.3 Shapelanguages..............c ... 154
9.2.4 Conclusions. 155

9.3 Time Series Management Systems. 155
9.3.1 FAME 157
9.3.2 CALANDA 158
9.3.3 Informix TimeSeries DataBlade. 159
9.3.4 Conclusions. 159

9.4 Temporal Databases. 159
9.4.1 TimeDimensions 160
9.4.2 Research on Temporal Databases 161
9.4.3 Temporal Databases and Time Series Managementl65

9.5 Summary. 168.

10

11

12

13

Application Study 171
10.1 What is Terrain-Aided Navigation 171
10.2 Using the IP-index in Terrain-Aided Navigation 172
10.2.1 TheApproach 173
10.2.2 Cardinalityc 173
10.3 MEAsUrementsottt e e 174
10.3.1 TheReaAl Mapt 174
10.3.2 TheTrack Files. 174
10.3.3 Cardinality 175
10.3.4 The Settling Time of thelP-index 177
10.3.5 ConcClusSioNSot 177
10.4 SUMMAY ..ot 178
Conclusionsand FutureWork 179
11.1 ConcludingRemarkso i 179
11.2 Future Worko 180
AppendiX. 181
SHORE Implementation Notes 181
Bibliography 189

Chapter 1

| ntroduction

The motvation for this thesis is to address aleeted issue in database man-
agement systems- to support sequence datawed ascontinuousunder arbi-
trary userdefined interpolation assumptionsorFunderstanding of this thesis
work, this chapter pnades background kwaedge such as thevelution of
database technologyhe application domains for sequence data, and the con-
cept of indging. The main contribtions and thesis outline are listed at the end
of this chapter

1.1 DBMS

In concept, adatabase margement systefDBMS) is a general-purpose soft-
ware system thagtilitates the processes of storing and manipulating data. The
primary goal of a DBMS is to pumde the user with botleorvenientand effi-

cient access to lge wlume of complg data. In addition, a DBMS must pro-
vide the safety of the information stored in case of system crashes or
unauthorized access. Other services such as datgitgteoncurrent access of
shared information, are also carried out by the DBMS.

1.1.1 Historical Overview
The e/olution of DBMS technology is illustrated in Fif.1.

In the 1960s, data managemergsacarried out dile processingevel by con-
ventional operating systems. Inasl files preided a simple &y to store

2 Chapter 1 Introduction

records on disk withast look up &cility. The adanced indeed file systems
provide the most basic features of modern database systems such as managing
fixed-length records with arious types, pndding persistent storage and
indexes, and performing locking for concurrent access.

1950 1960 1970 1980 1990 2000
| | | | | |
Files
HDBMS SQL (ANSI)
NDBMS SQL2
RDBMS ... OQL, SQL3
OODBMS
ORDBMS

Fig. 1.1: The e/olution of DBMS technology

In the 1970s, the first complete database management systems appeared, using
the network (NDBMS) andhierarchical (HDBMS) data models [46]. Thepro-

vided the preious facilities of file systems plus geral more sophisticated

ones: record identifiers and link structures between records, multiple files
treated as a single database, user authorization, and transactions for database
recovery and consistenyc

In the 1980srelational DBMSs (RDBMSSs) [46]started to dominate the data-
base product masgt. The relational data model is basedreéations. A relation

is a table consisting abws andcolumns, where each column contains a partic-
ular data type. Therefore,ralational database consists of a set of tables, and
each table consists of a set of columns. Aareple of a relational tableauld

be employee(name, age, salary). This table manages information about enyplo
ees in a certain compgn

Operations on relational tables constitute tiebational algebra [34]. The

major operations in the relational algebra inclusection, projection, and

join. A selection retrieves the ravs in a table where the columns in thoseso
satisfy some predicates (amagnple predicate could bendme = ‘John’™). A

projection returns its agument table with certain attubes left out. Ajoin

combines tables by connecting theiwswhere the columns of thesewo sat-
isfy some predicates (axa&mple of a join predicate could be “empée.name
= managename”).

The relational DBMS achied its popularity by itssimplicity in database

Section 1.1 DBMS 3

design, its datandependency between phsical and logical keel, and a high-

level query language (SQL). Compared to earlier database management sys-
tems such as NDBMSs or HDBMSs, the query language SQL frees the end-user
from getting into the lav-level storage details. In thisay the application pro-
grams do not need to bewstten when lov level implementations change.

Starting from late 1980s, neapplication domains such as compuaéied
design, scientific and statistic applications, multimedia applications for image,
audio, and video data, require more capabilities than relational DBMSs pro-
vide. These n& requirements include compestructures for objects, nedata
types, and n& access methods. As a consequence,va generation of data-
base technology— theobject-oriented DBMS (OODBMS) [39] emeged.

Most OODBMSs are implemented bytending some object-oriented program-
ming languages (e.g., C++ or Smalltalk) with database functionalities such as
data persistence, concurrgncontrol, and receery. Compared to RDBMSs,
OODBMSs are more peerful in data modelling and ka higher performance.

For example, objects in OODBMSs may \fea arbitrary comple structures;
while information about a compteobject in RDBMSs is oftescattered over

mary relations or records, leading to a loss of direct correspondence between a
real-world object and its database representationwéer, OODBMSs nor-
mally do not hae the declarative access pwer and dataindependency as
RDBMSs do. Dataecurity is also a problem in OODBMSs because application
programs and the database share the same address space [39].

It can be seen that RDBMSs and OODBMSs bhotlehtheir strength and weak-
ness. RDBMSs are more suitable for traditionadihess applications which are
characterized in ad-hoc queries, short-duration transactions, high throughputs,
and high securityOODBMSs are more suitable for applications with comple
data, high performance and long transactions such as CAD.

1.1.2 Object-Relational DBMS

To combine the strength from both RDBMSs and OODBMSs yvageneration
of database technologtheobject-relational DBMS (ORDBMS) emeged in the
1990s. ORDBMSs can be seen as a marriage of the dectaeicess poer
from the relational wrld and the comple data modelling pwer from the
object world.

In the relational wrld, theabstract data type (ADT) [128] is the ley technol-

ogy to tending relational DBMSs with more werful modelling and process-

ing capabilities. The relational query language standa@i2, is under vay to

be etended to a ne standardSQL3, which supports object-oriented concepts
such as object identifiers, classes, type hierarchies and inheritance. According

4 Chapter 1 Introduction

to the preliminary draft of SQL3 (which is Bky to be finished in a fe years),
columns in a relation can ha complex types, the structure of a relation is
extended to allw nested relations, type hierarchies and inheritance are also
supported. See [118] for details about tix¢éeasions. Thesexéensions bring
challenges to almostvery aspect of a relational DBMS, including its data
model, query processing techniques, and storage managemeatt,lm frela-
tional DBMS has to be redesigned from scratch in order to eelgeod per-
formance. An gample of this kind of system is lllustra [64].

In the object wrld, the Object Data Management Group (ODMG) is proposing
a standardized query language for OODBMSs, na@@td. OQL has features
in common with SQL3. It can be seen that relational DBMSs (RDBMSs) and
object-oriented DBMSs (OODBMSs) are marg into object-relational
DBMSs (ORDBMSSs), which is the future trend of the database technology

The ORDBMS technology is not mature yet. b&cf, may extensible database
systems claim that tlyeare object-relational Ui they are not. According to
Stonebrakr [39], an object-relational database system should include the fol-
lowing features: 1) support for base typegensions in an SQL comntg 2) sup-

port for comple objects in an SQL comt& 2) support for inheritance in an
SQL contet; 4) support for a production rule system.

Among the nw data types that ORDBMSs support, the most widely studied
one istime series, serving lisiness applications such as stock price xedeand

bank interest rates, or scientific applications where data are generated from
sensors. From the discussion of thetnsection, we shall see that some impor-
tant requirements from the time series applications aweelooked in both
research prototypes and commercial products.

1.2 Sequence Data

Data over ordered domains such as timdioear positions are termesquence

data. The most commonly seen sequence datdiameesequences (time series)1

where data are ordered ltyme. Time sequences appear in rgaapplication
domains: 1) bsiness applications such as stock price, product sales, or bank
interest rates; 2) scientific data from sensor readings such as climate measure-
ments or collision of particle beams; 3) medical data such as temperature read-
ings of patients or cardiology data; 4Jemt sequences in automatic control,
process supervision, or telecom netk monitoring. An &le time
sequence is shwn in Fig.1.2, which represents the temperature reading of a
patient in a hospital.

1. The subtle dference between thesedwerms will be discussed in Chapter 2. In this
chapter these tw terms are used interchangeably

Section 1.2 Sequence Data 5

Fig. 1.2: The temperature reading of a patient in a hospital

Sequence data require special treatments which are matpdoby traditional
DBMSs. Modelling sequence data in traditional (relational) database systems
often results inwkward query gpressions and bad performance [110].dotf

most sequence data in real-life applications are managételsystemsr spe-

cial purpose mangement systemiastead of by DBMSs.

Realizing this deficieng considerable research has been dedicated to support-
ing sequence data in DBMSs in the last decade. In whats]lawe shall gie

an overview of that work and point out what is missing. This will bring out the
motivations for the thesis.

1.2.1 Active Research on Sequence Data

Sgyev and Shoshani [105] proposed the “time sequence” data model to model
temporal information. Aime sequence (T$ denoted ass, (t, a)*> wheres
denotes aurrogate and(t, a)* denotes the sequence @&flwes associated with

the surrogte. A collection of time sequences for the same sateoglass is
defined as aime sequence collection (TSCPperations wer TSCs were
defined in [105], such axtraction of sub-sequenceaggregation, composition

of two sequences, etc. Storage management of time sequeasestwdied in
[117]. The time sequence data model is independenty®sdnting data mod-

els (such as the relational data model) andeseas the data model of this the-
sis work. This data model will be discussed more in detail in Chapter 2.

An active research area on time sequences deals sintllarity seach, i.e.,
finding similar patterns in diérent time series. Similarity search is essential in
discovering and predict the risk, causalignd trend associated with a specific
pattern. Seeral approaches kia been suggested. Agval et al. [4][51] use
Discrete Burier Transform and compare the firsmwfecoeficients in a multi-
dimensional space to check the similarity of time series. In [112] time series
are transformed into some feature-presdriunctions to achie eficiencgy in
storage and indeéng. In [6] a shape language has been definecpoess time
series and feature queries.

6 Chapter 1 Introduction

Seshadri et al. [110] deloped a sequence database system named SHQ®. V

ous issues in managing sequence data in DBMSs such as data models, query
languages, and implementations weneesticated. In SEQ, sequence data were
modelled as amabstract data type (ADT), and supported by common operators
such assubsequence extraction, aggregate, and composition. A sequence query
language,SEQUIN, was deeloped to specify these operations. Important
issues such as query optimization wergestigated. This system as later
evolved to PREBTOR [111] which supports other types of non-traditional
data types such as image, audio, and spatial data.

Supporting of sequence data has been aneactisearch subject in ORDBMSs.
In fact, may commercial database systemwyédeen gtended to support the
time series data type. Examples are InformsxTimeSeries DataBlade [65],
Oracles TimeSeries DataCartrige [95], and IB8/TimeSeries DataExtender
Clearly there is a high demand from applications to support sequence data.

1.2.2 What isMissing?

It can be seen from the alm overview that supportingsequence data has
attracted substantial research interest during the lasyéars. Unfortunately

an important requirement from applicationsniglected, i.e., hav to support
sequence data waed ascontinuous under arbitrary usedefined interpolation
assumptions. In most research literature, sequences are treated as discrete
points and operations on sequences are defined on the discrete model. Among
the fev research papers ([21][32][33]) that address interpolation issues, only
the “step-wise constant” interpolation is assumed, while most real-life applica-
tions require more sophisticated interpolation functions such as linear interpo-
lation or mwing average. Therefore, it is important that a DBMS should
understand the semantics of a continuous sequence and suppedefised
interpolation functions.

Another interesting issue is Woto extract sub-sequences based on the condi-
tion on thevalue domain. Most research on constructing sub-sequences is
based on the condition on tbedering domain (such asme domain). Havever
constructing sub-sequences based on conditions ovatbhe domain is highly
desirable for real-life applicationswd examples are gien belav.

1. The Temperature Sequence shoin Fig.1.3.

In [112] an &le is g¥en to find the pattern of “goalpostvir” in a
patients temperature reading. “Goalpostée” is one of the symptoms of
Hodgkin's disease, bekimg as tw consecutie fevers during 24 hours.
This query vas formulated as a shape query in [112] as “finding those sub-
sequences withxactly two peaks”.

However, since a “fger” means the body temperature is higher thatC38

Section 1.2 Sequence Data 7

this query can also be formulated as “finding the time intenals when
the values inside the interals are greater than 38 and the distance between
them is less than 24 hours”.

|
l
|
‘@— 24 hours —»,| T

Fig. 1.3: The “goalpost fever” pattern

2. The Engine Sequence stioin Fig.1.4.

Fig. 1.4 shavs a periodic time sequence representing the pressureytifia c

der inside an engine. The data is collected by a sensor in a real-life applica-
tion [48]. The pressure of theylinder changes with its angle periodically
(360°) and reaches a peak once el period. On monitoring the beha

iour of the engine, an interesting querpwd be “when did the pressure
reach its peak invery period?” [48].

It can be seen from Fid..4 that all peaks lva the property that v > 1.5. So
this query could be reformulated as “when were vhhies greater than
1.5?".

2.5

15 — — — | — | — — — — —

L L L L L L L L L
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 1.4: The pressure sequence

These tw examples demonstrate the importance of supporting sub-sequence
extraction based on the conditions on tladue dimension. \&term the queries

8 Chapter 1 Intoduction

concerning the alue dimension of a sequencevadue querieqin contrast to
shape querieshat look for general patterns in the sequence). In most applica-
tions, alue queries wolve implicit valuesintroduced by interpolation assump-
tions on the sequence.

It is difficult to support wlue queriegfficiently becausdinear scanningseems
like the only olsious solution, which will result in bad performance, especially
for large sequences. Clearly speed up processing time @flwe queries, some
kind of secondary inde[118] has to be dilt for sequence data. [117] is one of
the \ery few research papers mentioning the issue afi® queries. Unfortu-
nately it claims that “a secondary indever the data &lues is not needed in
most applications— such an inde can potentially be ery expensve in terms

of storage, because the number of entries for such ar iade the order of the
number of data alue”. It also claims that “such inges (if absolutely neces-
sary) would use cowentional ind&ing methods”.

Although the abwe claims seem reasonably true at first glance, weeam this
thesis that the are actually not. First of all, we claim that a secondary»ride
definitely neededn the \alue dimension for most sequence data. This is
because queries on a sequence are often based on the conditionsvalu¢he
dimension rather than on the ordering dimension, and theesfcy issue is
essential for long sequences. Secondlg will shav that a comentional sec-
ondary inde& cannotdeal with \alue queries. The main reason is that aveon
tional secondary indedoes not preseevthe ordering semantics of a sequence
and cannot support interpolation.

In this thesis we propose an inmaive inding technique, termed thiP-
index, to eficiently support alue queries based on ustafined interpolation
functions. Surprisinglythe IP-ind& is not &pensve in terms of storage as
[117] predicated. Indct, the size of the IP-indes generally smallven for
large sequences. Meanwhile, the IP-irde very eficient, i.e., the indeinser-
tion and search time isvy small, gen for lage sequence data.

Theefficiencyrequirement for sequence data is essential because most applica-
tion sequences are . Management of sequence data should reméuaiesit
regardless of the gming of the sequences. This implies challenges in almost
every aspect of a DBMS design, from y#ical storage @anization, indg
design, to query optimization. &shall address these issues in the correspond-
ing chapters.

1.3 Indexing

Since an essential part of this thesis is on X sequence data, this section
provides background kivadedge on the concept of indi@ag in DBMSs.

Section 1.3 Indexing 9

1.3.1 Introduction to Indexing

As we all knav, data in databases are usually ofjakolume; retrigal of data
can be ery slow without an indg. Basically an inde for a DBMS is lile a cat-
alogue for a libraryWhen we look for a book in a librgrwe look in the cata-
logue based on the authemame, or the title, etc.

The idea of indeing in DBMSs is best illustrated by a simpleaeple. Sup-
pose we hee a relational databassmployee(name, age, salary). We need to
find employees according to theages. Then, we canudild an index as shan

in Fig. 1.5, where the alues in theage field are used akeys, and e@ery key is
associated with data pointers that point to the corresponding gegptecords.
Therefore, if we vant to find all emplgees that are of age 30, we can search the
index to find the entry “30” and foll the points to the data. i¥Mout this
“age” inde, we hae to scan the entire file, which will beny slov when the

file is lamge.

Theemployee file

The inde
Brown 32 6000
28 | o > David 28 5300
30 o—1 -
David 30 5600
32 | oo Mary 30 6200
39 | o Peter 39 7000
40 | oo Richard 40 6500
45 | o Richard 45 8000
T ? Sara 40 7400
keys data
pomters

Fig. 1.5: An index on employee file, on the fieldage

Many kinds of indees «ist in DBMSs. These ind@s can be classified into
two catgories: ordered indexes and hash indexes. The abwe eample
(Fig. 1.5) is an ordered indewhere the inde is based orihe ordering of the
keys (i.e., theage). Hash ind&es, on the other hand, are based on distidns
of keys in different luckets according to some hash functione Will not dis-
cuss hash indes here because thare not directly relant to this thesis
work.

10 Chapter 1 Introduction

Several structures can be used to implement an ordered,isdeh as an array

or a tree. The most popular indstructure in DBMSs is the Btree [35]. Basi-
cally, a B*-tree is a balanced tree in whicheey path from the root to a leaf is

of the same length. All theel¢s appear in the leaf nodes. Eadly ks associated
with data pointers that point to the corresponding data items in the file. The
nonleaf nodes of a Btree form a multileel (sparse) indeon the leaf nodes.
The B'-tree implementation of thexample inde& (Fig.1.5) is shan in

Fig. 1.6. An important property of a*Btree is that each node is at least half
full. Leaf nodes are linkd together to alle sequential access.

ol 28]q 30[o;pig] 32| | o p{q 39] |
v v v

data pointers to themployee file

Fig. 1.6: The B'-tree implementation of thage index on Fig.1.5

The reason wyr the B'-tree is so popular in DBMSs is that it is a dynamic,
ordered indr structure which maintains fefiency despite its insertion and
deletion.

1.3.2 Criteria of a Good | ndex

As mentioned before, mgnkinds of indees «ist in DBMSs. Hav do we
choose between ddrent kinds of indeing methods for an application? What is
a good inde design? The most important criteria are the fwihg:

¢ Access time— the time takn to find a particular data item using the xde
A good ind should tak very little time to find the data item needed, no
matter hev large the database is.

¢ Insertion time— the time takn to insert a ne data item into the inde The
insertion time of a good indds expected to be small.

« Deletion time— the time takn to remwoe a data item from the ingeAs for
the case of insertion time, the deletion time of a goodxsth@uld be small.

Section 1.4 Main Contributions and Thesis Outline 11

¢ Space werhead— the additional space occupied by the ixidg structure.
By having an inde&, we quin performance imprement by sacrificing space.
Usually it is worth doing so since the performance imgrment is usually
substantial. But space irfigfiency of an inde will inhibit it from practical
use.

The property of small insertion and search time is especially important for time
sequence applications. This is because time sequences are usugllpng,

the property of small insertion and search time shscdtie up® with the grov-

ing of sequences. On the other hand, ideletion time is less interesting
because deletion of a data item in time sequences oceysgldom.

1.4 Main Contributions and Thesis Outline

In this section we summarize the main conttibns and present the thesis out-
line.

1.41 Main Contributions

This thesis presents pioneeringork on supportingvalue queries on 1-D
sequence data based on arbitrary wedimed interpolation functions. An inno-
vative indeing technique, the IP-indeis proposed. The maeftion of the IP-
index is to support dicient calculation of implicit alues of sequence data
under usedefined interpolation functions. The idea of the IP-indegeneral,
and it can be implemented on top ofyasrdered indeing structure such as a
B*-tree.

We hare implemented the IP-indén both a disk-resident database system [22]
and a main-memory database system [49F Wveasured the insertion and
search time of the IP-indeand shw that: for a time sequence with limited
range and precision (most real-life time sequences hhis property), the
insertion andsearch time of the IP-inde remainssmall regardless of the gre-

ing of the sequence. This indicates that the performance of the IR$cdées
up gracefully with the cardinality of the time sequences &0 iwvesticated
the space usage of the IP-ixd® shav that it is practical to bild IP-indexes

for large sequences.

Based on the ark of the IP-ind&, we introduce anx¢ended SELECT opera-
tor, o*, on a time sequence (TS). Th& operator 0* .q(TS), retrieves sub-
sequences (time intenals) where the alues inside those inteals satisfy the

1. The term “scale up” here means the insertion and search time shousthathy
regardless of the gming of the time sequence.

12 Chapter 1 Intoduction

condition cond The o* operator supports arbitrary usdefined interpolation
functions on TS. Experiments made on SHORE [22] using both synthetic and
real-life time sequences skidhat thecOoperator (supported by the IP-inge
dramatically imprees the performance ohiue queries. The performancaig

is even more dramatic for lge sequences witbmall answer sefsvhile most
submitted walue queries in real-life applicatiorere for small answer sets.
Another promising obseation is that the performance oflfor the first few
answes is stable, rgardless of thgositionswhere the first f& answers appear

in the time sequence. This sh®that the IP-indeis essential in the situations
when the time sequence is long and the query processing time is limited.

On query optimization, we delop a cost model for theldoperator in order to
be able to optimize comptequeries. An interesting obsetion is that the cost
of a range querwyl.,(TS) is nearly thesameas the cost of thexact query
o*,=(TS). This indicates that processingnge queriess very eficient using
the IP-ind&, especially for lage sequences. &\also ivestigate optimizations
of time windav queries and compkevalue queries. ime windov queries can
be optimized by pushing thheme windowinto the IP operator (a component of
the cOoperator), thus reducing the number of anestates retrieed. Compl&
gueries (sequence joins) can be optimized by choosing a good join order
according to the cost and the seleityi factors [107] of theoU operators
involved. Experiments are performed terify the ab@e optimization strate-
gies.

On ptysical oganization, we propose a multiviel dynamic array structure for
dynamic, iregular time sequences. The highlight of this data structure is that it
is highly space difcient and supports botkfficient random accessnd fast
appending Other relgant issues such as management ofjdapbjects in
DBMSs, plysical oganization of secondary inges, and the impact of main-
memory or disk-resident DBMSs on sequence data structures are \asti-in
gated.

Related vork is discussed in depth in this thesis. Extemsesearch on similar-

ity search on time series complements owrkvnicely Similarity search is
based on the generahapes(features) of a sequence, while ounrl is based

on individual valuesof a sequence. Thesedvaspects of support for sequence
data are both highly needed in real-life applications. Research on object-rela-
tional DBMSs to support the abstract data typdimfie seriesis corered. Our

work contritutes specifically to this area by thetension of supportingalue
guerieson time series, which &as a nglected issue up till ne. A sequence
database system, SEQ, also indicates the need of the I®-inde

A thorough application study [83] on “terrain-aided/igation” is presented to
show that the IP-inde is applicable to other application domains. The IP-inde
improves the performance of terrain-aidedvigation by finding thestarting

Section 1.4 Main Contribdions and Thesis Outline 13

positionsfor the matching algorithm (the bayesian approach [2GiEiehtly.
Experiments on a real terrain map and simulated track files are performed to
verify the eficiency of the approach.

The work presented in this thesis is based on the fdHg publications:

l. L. Lin, T. Risch, M. Skéld, and D. Badal
Indexing Values of Tme Sequences
Proceedings of 5th International Conérce on Information and Know-
ledge Management Rockville, USA, Na. 1996.

. L. Lin and T Risch
Using a Sequential Indein Terrain-aided Naigation
Proceedings of 6th International Conésrce on Information and
Knowledg Manajement Las \&gas, USA, Ne. 1997.

. L. Lin
Implementing the IP-indein SHORE
Link6éping Electonic Press,Vol. 2, No. 17, 1997.

IV. L. Lin
Study of Supporting Sequences in DBMS — Data Models, Query
Languages, and Storage Management
Linképing Electonic Press Vol. 3, No. 4, 1998.

V. L. Lin and T Risch
Querying Continuousime Sequences
Proceedings of 24th International Conéeice on ¥ry Laige Data Bases
New York City, USA, August, 1998.

Publication | is the first paper that appeared at an international conference
where the idea of thi#P-index is introduced.

Publication Il presents mothe IP-inde can be applied tterrain-aided navi-
gationto improve the real-time performance.

Publication Il documents o the IP-inde is implemented in a persistent
object system SHORE [22] using SDL (ariant of the ODMG ODL) and C++.

Publication IV summarizes recent research on supporeguence datan
DBMSs, cwering issues such as data models, query languages, query optimiza-
tion, and storage management. A sequence database system SEQ is described.

14 Chapter 1 Intoduction

Publication V proposes thextended SELECT operatool] opemator, for the
abstract data type dime sequencem an etensible DBMS. Thes[d opemrtor
retrievessub-sequence@ime intenals) in a time sequence TS where tladues
inside those sub-sequences satisfy some conditions-dé$i@ed interpolation
functions are supported. Th&el] operator is diciently supported by the IP-
index. Query optimization issues arevasticated and grified by eperiments
on SHORE.

1.4.2 ThesisOutline
This thesis is aganized as follws:

Chapter 1 (this chapter) prides background knwaedge for understand of this
thesis work and points out the mefitions and main contriltions of this thesis.

Chapter 2 introduces th#me sequencelata model, which seeg as the data
model of this thesis. Diérent types of time sequences are classified based on
properties such asegularity, static/dynami¢c and theinterpolation function
applied.

Chapter 3 is the essence of the thesis. It introduces the idea &P-thdex
based on the time sequence data model. The central conceptisdtiog-state
sequenceThe insertion and search algorithms of the IP-indee presented.
The important relationship between the IP-ind&d the precision ofalues ys

are irvesticated. The IP-inde is compared with cormntional secondary
indexes and related indes in the area of temporal databases, spatial databases
and computational geometry

Chapter 4 demonstrates the highlights of the IPsindast insertion, fast
searh, andspace dfciency These properties shathat the IP-inde is not only

an el@ant idea bt also a practical solution for ige& sequence data. Experimen-

tal results on both a main-memory database system and a disk-based database
system are presented. This chaptemghthat an inde on the alue domain of

a time sequence is not necessarpensve and impractical, as claimed by
[117].

Chapter 5 shes hav to solwe various kinds ofvalue queriesefficiently by
using the IP-inde. In particular it demonstrates the importance of the IP-inde
for range querieg(i.e., sub-sequencexgaction based on aalue range). Other
gueries that benefit from the IP-indclude time windw queries, and ampli-
tude-sensitie shape queries.

Chapter 6 introduces thextended SELECT operatoo[] which retrieves sub-
sequencesgtime intenals) where the alues inside those inteals satisfy some

Section 1.4 Main Contribdions and Thesis Outline 15

conditions Performance measurements made on SHRREusing both synthetic
and real-life time sequences with dar cardinalities are presentéa demon-
strate the efficiency of thed operator.The o operator is compared to related
operators proposed in the area of temporal databases.

Chapter 7 imesticates relgant plysical oganization issues, including psical
organization of time sequences, yslical structure of secondary inds, and
physical oganization of anchestate sequences.afpropose aulti-level array
structure for dynamic, irgular time sequences. This data structure meets the
challenge of supporting bofast appending@ndefficient andom accesther
relevant issues such as storage management g¢ labjects and the impact of
main-memory or disk-resident DBMSs on sequence data structures are also
investicated.

Chapter 8 is about query optimization. The cost model ofcti@perator is
developed. Optimizations of time windoqueries and compkesequence que-
ries are inestigated and grified by eperiments.

Chapter 9 discusses relatednk in depth.

Chapter 10 presents a thorough application study where the IR-imapplied
to terrain-aided navigation

Chapter 11 concludes this thesis and discusses futome w

16

Chapter 1 Introduction

Chapter 2

Time Sequences

This chapter introduces the data modeltiofie sequences. This data model

aims at capturing the ordered semantics of temporal data and defining operators
over them. It is independent of yamxisting data model (such as the relational
data model or the object-oriented data model) andesens the basic data
model of this thesis ark. Properties of time sequences are studied in this chap-
ter, such as time granularitlifespan, rgularity, static/dynamic, and interpola-

tion assumptions.

A relevant issue is the modelling ¢ffme in DBMSs. We discuss discrete/con-
tinuous time models and point out whnterpolation is important for both mod-
els.

2.1 TheTime Sequence Data Model

The data model of “time sequenceasvproposed in the middle of 1980s when
research on temporal databases [134] started. This data model first appeared in
the paper “€mporal Data Management” [117] and later appeared as a chapter
[105] in the first book on temporal databases [134]. In this data model, a tem-
poral data wlue for an object is defined as a triples § a>, wheres is the
objectsurrogate, t is the time, and is the attrilnte value fors at timet. Thus,

the history of data alues for the object is defined as s (t, a)*>. The
sequencdt, a)* is termed aime sequence (TS). An example time sequence is

the following: suppose that an empkee ‘John’ has beenavking in a certain
compaly for mary years, and he has reced salary raises geral times, then

his salary information could form a time sequence as thewaolilp:

18 Chapter 2 Tme Sequences

Example2.1: (01/05/95, 1200), (09/20//96, 1400), (05/13//97, 2300),...
m]

A collection of time sequences for the same suateglass is defined adime
sequence collection (TS(or example, the salary histories of all empé®s in
a certain companwould form a time sequence collection.

Compared to most researclork on temporal databases thatends &isting

data models (e.g., the relational data model, the object-oriented data model, or
the functional data model) to support temporal features, tirk of [105][117]

takes a diferent approach. Tlyestart with the understanding and specification

of the semantics of temporal data, thus leading to a precise characterization of
the properties of temporal data, and define operatees them. In this ay

their work is not influenced by traditional models that were not specially
designed for modelling temporal information.

Several properties of time sequences were studied in [105][117} &te

e Time Granularity

The time granularity specifies the granularity of the time points of a TS, that
is, the points in time that can potentiallyveadata alues. Wo time granu-
larities were identified in [106] —erdinal andcalendar The ordinal repre-
sentation simply signifies that the potential time points are counted by

integer ordinal position (%, 2nd, S'd,....). The calendar representation can
assume the usual calendar time hiergrealues: yearmonth, day.., sec-
ond, and so on.

e Lifespan

The lifespan of a TS is specified bystart_timeand anend_timedefining
the range of &lid time points of that TS. Th&art_timesandend_timesan
be represented as either ordinal or calendar

* Raularity

A time sequence can be eitheguéar or irrgular A regular TS is a TS
where the alues are measured ingtdar time interals. Otherwise the TS is
irregular. The rgularity of TS is ery important and most relent to our
work. It is further discussed in Section 2.1.1.

e Type

The type of a TS determines the dasdues of the TS for time points that do
not hare explicit data \alues. In general, there is an interpolation function
associated with each TS. Some of the interpolation functionseayecom-
mon, which will be discussed in Section 2.1.3.

Section 2.1 Theiffie Sequence Data Model 19

Data manipulation on time sequences is defined by operates time
sequence collections (TSCs) in [106].dey operator wer one or more source
TSCs will produce a single tget TSC. The most important operators in [106]
are:

» Selection

The selection operatoxtacts parts of a TSC that satisfy a predicate refer-
encings and/ort and/ora values. Br interpolated time sequences, selection
based on a predicate referencmgalues wuld need the IP-inde

* Aggregation

The aggrgation operator can be appliegley groups in the time dimension
or the surrogte dimension. & aggrgation over the time dimension, the
new time points in the taret TSC will be of granularity higher than that of
the source TSC.

» Composition

The composition operator enables manipulation of related data that are part
of two TSCs (in paHwise manner). & example, composition of a daily
price and a dailyquantitytime sequence (for a certain product) wilgia

daily revenuetime sequence (for this product).

In the rest of this section we discuss those properties of time sequences that are
relevant to our vork.

2.1.1 Regularity

As mentioned abee, aregular TS is a TS where thealues are measured in
regular time interals [117]. Examples of galar time sequences are stock
prices (where alues are obtained fowvery husiness day), scientificxperi-

ments or simulations (whereles argulled at regular time interals by some
mechanism or computer programs), étcegular time sequences usually result
from manual measurements or from unpredictabbnts, such as thailure of

a detectarBusiness transaction data, such as items sold in a store, or the salary
history of an emplgee, are typically irrgular time sequences as well.

The reason for distinguishing betweergutar and irrgular TSs is that this
property afects the plisical design of a time sequence profoundigr exam-
ple, a rgular time sequence;(ig)* can be stored as an array Vv[i] rvehere the
time stamps are &ctored out”. This is becausecan becomputedby § =ty + i

* At (At is a constant for a regular TS)he retrigal of ary data alue gven its
time stamp jtis easy because the time stampan be easily mapped into the
corresponding position i in the arraiye., i = (} - tp) / At. On the other hand,
irregular time sequences are morefidiflt to support. First of all, all time

20 Chapter 2 Tme Sequences

stamps hee to be &plicitly stored. Secondlythe retri@al of ary data alue
given its time stamp has to be supported by sordexeson the time domain.
Physical oganization of time sequences is further studied in Chapter 7.

Note that in rgular time sequences datalwes can benull (missing or
unknawvn). A regular TS containing a lge number ohull values is considered

as anirregular TS. The reason is that it is preferable to consider this TS as
composed of thoseon-null (t;, &) pairs (an irrgular TS) instead of as agelar

TS with mary null values.

In addition to aflecting plysical oganization, rgularity implies semanticai-

ues as well. Indct, most statistical methods for analyzing time sequences can
only be applied to ular TSs. This issue will be further discussed in Chapter

2.1.4, where we discuss the féifences between a time sequence and a time

series.

2.1.2 Static/Dynamic

Another aspect of a time sequence whicfe@st its plysical oganization is
whether it is static or dynamic. Bstatic we mean the sequence is fully col-
lected, no more data will be added at the end of the sequenady/rBynicwe
mean the sequence is continuouslyvgra.

Static TSs are easy to implement since we can allocate storage spacanoeadv
based on the size of the TS. Dynamic TSs arkcdif to implement since the
size of storage cannot be determined, yet voaild still like to hae fast ran-
dom access to grelement in the sequence. This challenging issue will be fur-
ther plored in Chapter 7, where we widop a multi-leel dynamic array
structure for dynamic, irgular time sequences.

2.1.3 Interpolation

As mentioned earlierinterpolation functions are often needed in order to
derive those wlues that are nowelicitly stored in a TS. In [105][117], the fol-
lowing interpolation assumptions are classified as the most commonly used
ones:

e Step-wise constart

If (tj, &) and €, &) are two consecutie pairs in a TS such thgt< t,, then
g = g for t; < t; <t,. An example of step-wise constant TS is the salary his-

tory of an emplgee (salary &lue stays the same until thexhechange
occurs), see Fie.1.

Section 2.1 Theiffie Sequence Data Model 21

value

1500 1200

750 950

>
time

Fig. 2.1: Salary history— step-wise constant

¢ Continuous—

A continuous function is assumed betwegng) and €, ac) that assigns,
tot; (tj < t; <t) based on a cuevfitting function. An @ample of a continu-

ous TS is the sensor data representing measurements of a magnetic field at
regular intenals, see Fig2.2.

value

time

Fig. 2.2: Magnetic field— continuous

* Discrete—

Implicit values cannot be interpolated. Axaenple of a discrete TS is stock
price, where glues between te sold points cannot be interpolated, see
Fig. 2.3.

value

time

Fig. 2.3: Stock price— discrete

¢ Userdefined—

22 Chapter 2 Tme Sequences

Implicit values in a TS are computed based on -dgdined interpolation
functions. or example, some applications only require a simple interpola-
tion function such as linear interpolation while other applications may
require a higher dgee of interpolation function such as viragy average or
least square.

Therefore, it is important for a DBMS to understand the semantics of a time
sequence and support system-defined or-deéned interpolation assump-
tions.

Actually, the importance of associating interpolation methods with temporal
data vas pointed out in the early 1980s by @iifl et al. [33] as theCompe-
hension Principlg, i.e. “under ay reasonable interpretation a historical data-
base definedwer a sequence of statesS,,..., §,> should be considered as
modelling an enterprise completelyar the entire closed inteal/ [S;, §]". It

was also mentioned that the mapping from a finite set of momen{s $,S.,

S, > into the dense intead [S;, S], termed as the Continuity Assumptidh
could be a accomplished byanous interpolation methods.

Although it was pointed out long ago that it is important to support interpola-
tion assumptions, ery few implementationissues hee been addressedoi-
example: hev to support queries based on arbitrary udgfined interpolation
assumptions; he to process these queriefiiciently, especially when the time
sequences areewy long. These are the maditions for this thesis.

2.1.4 Time Sequencesor Time Series?

The diference between the tertime seriesandtime sequencéhas not been
very clear in research literature. Some researchers use theserwsinter-
changeably in the literature. Here we try to clarify the féifences between
these two terms.

Generally speaking, the tertime sequencé moregeneml than the terntime
series As mentioned in Section 2.1, time sequences can be classifietdnto

lar andirregular ones. Rgular time sequences are those time sequences where
values are measured ingedar time interals. The terntime seriesefers only

to thoseregular time sequences.

Note: The terntime seriegefers only to rgular time sequences.

Examples of time series are stock prices (collectedvemyetrading day), or
scientific data (collected by sensors ogular time interals). The termtime
serieshas actually been used for a long time by statisticians. Most analytical
methods (such as those pided by special purpose systems such AME

Section 2.2 Disete or Continuousime? 23

[52]) can only be applied ttime series not to irrgular time sequences. The
reason is that these methods assume somdaity between data points in the
sequence. & example, the method “muing average” would assume that the
data \alues under manipulation are measured gular intenals. The method
“cross-correlation” wuld assume that the dasource sequences are not only
regular lut also based on the same time calendar

Stock data are normally collected on the time undayf Notice that stock data
do not «ist on weelknds, thg only exist on lusiness days. If one generates a
time series for the stock mark all the days that the maxtkis closed (week-
ends and holidays) are rexwea. In this a rgular time sequence (time series) is
obtained. Therefore, theegular property of stock data is interpreted on the
base ofbusinesscalendas only.

Throughout this thesis, we shall use the t¢ime sequencewhen describing
our work. This is because ourork applies to general time sequences including
regular/irregular, andstatic/dynamioones. The wrk on management of ga-

lar time sequences, i.@ime serieswill be covered separately in Section 9.3.

2.2 Discrete or Continuous Time?

Another issue related to the time sequence data model is to understand the
semantics ofime. As Clifford and Rnsel [32] point out:

Time is something so tak for ganted that its xact natue is
highly elusive It might not be temnically dificult to come up with
a consistent model having various algaic opeations defined,
intuitively it is far fom obvious whit opertions ae appopriate,
meaningful, and cogct.

The basic questions concerning the modelling of time include thewfolip
what kinds of objects are the members of the set of times? What properties will
this set hae?

One property of time with little dissension is: time halsnaar order i.e., for
any two time points { and b, either § equals 4, t; is-less-than4, or t, is-less-
than 4. This ordering is perhaps tingeéssential property

As for the members of the set of times, there has been less agreement. Accord-
ing to “A Glossary of Emporal Database Concepts” [6#}jree models of time
have been definedliscrete denseandcontinuous

Intuitively, discrete models of time are isomorphic to the natural numbers, i.e.,

24 Chapter 2 Time Sequences

every time moment corresponds to a natural numbkich has an unique suc-
cessorDense models of time are isomorphic to either the real or rational num-
bers, with the property that betweenyawo moments of time there isvedys
another time momentContinuous models of time are isomorphic to the real
numbers, i.e., both dense and also, untike rational numbers, with nodps”.

Most research literature has adopteddtserete time model. Cliford and &n-

sel [32] ague two reasons for this: 1) it is clear thatyarecording instrument

must hae at best a finite sampling quantum; 2y qmmactical domain (or lan-
guage) that we might define for time attribs in a historical databaseowd

have at most a countably infinite set of names for time moments or time inter-
vals. In [32], it is agued that while it may be philosophically or theoretically
interesting to consider a continuum of moments of time, from a practical stand-
point the natural numbers seem a more useful candidate for modelling database
time.

On the other hand, some research chooseddimse or continuous time model,
such as [33]. The reason is simple, thecrete time model is inadequate in the
face of the generally accepted notion of continuous timefo@difand Varren
proposed tw assumptions— the Comprehension Principle and theContinuity
Assumption [33] (see Section 2.1.3) to wiea historical database as modelling
an enterprise completelywer an interal of the real-time line, and to answer
crucial questions such as what are thires of those implicit states that are not
explicitly defined (stored).

In a surey by Chomicki on temporal query languages [29], it iguad that the
dense temporal domain isery useful in mayp applications bt is difficult to
implement eficiently since the set of time instances &xwlage. By deelop-

ing the IP-ind&, we proside the ability toderive the dense instances from the
original discrete sequence,véag both storage space and query processing
time.

2.2.1 Interpolation for Discrete/Continuous Time M odel

At first glance it might seem that interpolation is only needed for the continu-
ous time model. But this is not true. Interpolation is also important for the dis-
crete time model. W§? Recall that a gular TS can ha missing alues
(Section 2.1.1). &r example, a stock price sequence mayehaissing alues

for some trading days. The onlyay to obtain thosealues is to apply some
interpolation function. Br irregular time sequences, interpolation is also
important. or example, a salary history is interpreted as “step-wise constant”
(Fig. 2.1).

Therefore, supporting interpolation is required for both the continuous and dis-

Section 2.2 Disete or Continuousime? 25

crete time model. Clibrd and Bnsel [32] propose a discrete time model and
emphasize the importance of supporting interpolation for “tirmesng
attributes” (attritutes that ary over time, such as “salary”). Tieoint out:

Users must be able to query the database at will wéhbpect to
time points or periods, and yet the database cannot possiblg stor
values for ®ery attritute at eery point in time Thus, eak
attribute must have an associated interpolation function, so that
the database system cagconstruct an enté time serieser the
lifespan of eal object fom the partial specification ster

Among the ery limited research that addresses interpolation issues on tempo-
ral data, most of them assume the simple interpolation funetidistep-wise
constant”. And most of this evrk addresses semantic issues pntyimplemen-
tation is done. Our contriltion to this area consists of awaspects: 1) we
addressmplementatiorissues such as psical oganization and query optimi-
zation; 2) it is the first time thatserdefined interpolation functionare truly
supported.

2.2.2 Precision of Time Points

A tricky issue in the modelling dfmeis theprecisionof time points. Since all
measurement instruments (such as clocksjeha certain precision, all time
stamps stored in the database&éa limited precision. Furthermore, all implicit
time points that can be interpolated from thgléit time points also hae a
certain precision limit due to the precision of thelécit points and the preci-
sion of real numbers in the computer

The precision of time pointsas mentioned inA Glossary of Emporal Data-
base Concepts” [67]. There a “time point” or “time momentswnamed as a
chrononand defined as “the shortest duration of time supported by a temporal
DBMS — it is a nondecomposable unit of time”. A particudarononis a
subinteral of fixed duration on the time-line. The reason for naming it a
chrononis, according to [67], clocking instrumentsamiably report the occur-
rence of gents in terms of time inteals, not time points. Henceyents, @en
so-called “instantaneous¥ents, can best be measured agioccurred dur-

ing an interal.

In Section 6.1.1 we define an interpolated time sequence iadigite set.The
reasons are: 1) theetconcept comes from thadt that time points in the con-
tinuous time model will constitute a satemtually due to the precision limit; 2)
theinfinite concept comes from thadt that the precision can be as high as the
measurement instruments and the computers possibl. Mg do not assume
any precision beforehand.

26 Chapter 2 Time Sequences

2.3 Summary

This chapter introduced théme sequence data model. This data model is inde-
pendent of ay existing data models (such as the relational data model or the
object-oriented data model) and sesvas the basic data model of this thesis
work. Different properties of time sequences were studied, sucegalarity,
static/dynamic, and theinterpolation assumptions. The importance ofnterpo-
lation on time sequencesas stressed. The terrime sequence andtime series
were clarified based on the autl®understanding of relant literature.

We also discussed twdifferent time modelsdiscrete and continuous. The
interesting point is that interpolation is needed for both the discrete and contin-
uous time models.

Chapter 3

| P-index

This chapter introduces the idea of the IP-md@enerally speaking, the IP-
index is designed to supportfafient calculation oimplicit (interpolated) al-

ues in lage time sequences (oryari-D sequence data) under uskfined
interpolation functions. The insertion and search algorithms of the |F-ise
presented. The important relationship between the performance of the ¥P-inde
and the precision ofalues in time sequences argeasticated. A comparison of

the IP-inde& with corventional secondary indes is gven. The IP-inde is
compared to related ingdes such as temporal indss, spatial indees, and
indexes in computational geometry

3.1 Motivation

As pointed out in Chapter 1, time sequences appear iny maplication
domains. Examples of time sequences include stock pricexasdecientific
measurements collected from sensors, or temperature readings of patients in a
hospital. In concept, a time sequence (TS) can be modelled as a sequence of
states § where § = (t;, v;) (recall thetime sequence data model in Section 2.1).

Many applications require time sequences to be se@ordgmuous under arbi-
trary userdefined interpolation functions. In otherovds, the discrete
sequences need to be seerca#inuous where implicit \alues can be deséd
from explicit values by the interpolation assumptioror Fexample, suppose
Fig. 3.1 represents a patiesttemperature reading in a hospital, aygibian
will be interested to kne:

e When did the patient va the temperature 38?

28 Chapter 3 IP-inde

It can be seen from Fi®.1 that there are noplicit (stored) time points in the
temperature sequence when thedues are equal to 38. Wever, if we apply
linear interpolation on this TS, there will be three time points’tarid t”* that
satisfy this query

linear interpolation

‘A

v'=38 + -

Fig. 3.1: lllustration of a alue query

These kind of queries are termedlue queried86] (Section 1.2.2). W intro-
duce two notations to denotealue queries— F(t') andF1(v'): F(t') denotes
the \alue at ag time point t', and F(v') denotes the time point(s) when the
\1/alue(s) are equal to v'. Therefore, the edauery vould be denoted as F
(38).

The key to processing alue queries is to find the neighbstates where the
userdefined interpolation function can be appliedr Example, the time point

t" in Fig. 3.1 can be calculated by applying linear interpolation on the neighbor
states $and S, the time point t'can be calculated by applying linear interpo-
lation on the neighbor stateg &nd S, and the time point’t’can be calculated

by applying linear interpolation on the neighbor statgga®d §;. How can we

find these neighbor statedfiefently? Olviously, without a suitable inde the

only solution is to scan the whole sequence to find those staewlfgre
Sj.value< v’ < §;;q.value. This is ery slov when sequences are longrRhis
reason, we deeloped the IP-inde

3.2 IP-index

The idea of the IP-indeis as follavs. Each state;Sn TS is viaved as a point
in the two-dimensional planév as shwn in Fig.3.2. Each consecwe states
S, S+, constitute a line sament Sg Then, if we can find all ggnents Sgthat
intersect the line v = v’, we can answerlwe queries. & example, in Fig.3.2,
the sgments which intersect the line v = v’ are sS§g>. The answer to the

Section 3.2 IP-inde 29

query Fi(v') will then be:

Fig. 3.2: An example of a alue query

¢ If the “step-wise” constantor “discrete” assumptioris applied, then
Fl(v’) = nil, since there is noalue defined between,SS; and §, S,
respectely.

» If the “continuous” or“userdefined” interpolation assumption is applied,
then Fl(v’) = <t’, t'’>, where t’ and t’" are calculated by applying some
interpolation function (e.g. linear interpolation, or least square) on the states
around the sgments SgandSg; respectiely.

So, the problem ofalue queries is transformed into the problenfieding all
the intesecting sgments for the line ¥ v'. A naive way to sole this problem
is to scan the entire TS to check ifyamo consecutie states $ S “contain”
V', i.e.if vi V' < v orvigg <V < v Such an algorithm, heever, has the
complity of ©(N), whereN is the cardinality of the TS. Belowe propose an
indexing technique to speed uplue queries.

3.2.1 Anchor-State Sequence

If we project each line ggnent Sgon the v-axis, we get nonverlapping inter-
vals | = [k, ki+1), where each ks a distinct alue of y (see k...k, in Fig. 3.3).
We can see that alllues that belong to one intahhave the same sequence of
intersecting sgments (mar&d to the left in Fig3.3). We propose an inde
termed theP-index, in which each interal [k;, kj,1) is associated with all ge
mentsSg that spaﬁ it. A simple |Ilustrat|on of the IP-indeis shavn in
Fig. 3.3, where we associate each intarfk;, k1) with the sequence of span-

1. We say a sgment Sgspans an inteal |; when the projection of S®n the v-axis
spans the inteal |;, i.e. if Sg = ((ts, Vo), (te, Vo)) @and | = (v, V), thenvg< v, andvg
> Vb

30 Chapter 3 IP-inde

ning s@ments Sg

Fig. 3.3: lllustration of anchoistate sequences

Since the sgments are consecué, each sgment Sgis uniquely identified by
its starting state ;SWe use $to represent the genent Sgin the IP-ind&. We
term the starting states of eaclgs®nts that intersect the line v = v’ as the
anchor-statesof v'. Then, the sequence of intersectingreents can be repre-
sented as the sequence of anestates, which is termed thanchor-state
sequence The anchostate sequence of the queriedlue v’ is denoted as
A(V") . An anchofstate sequence is a state sequence ordered by time.

Since each intead [k;, Kj+1) is uniquely identified by its starting poinf, kve
use K to represent the inteaV [kj, k1) in the IP-inde.

Suppose thatk< ky < ... <k < ... are the ordered, distincalues of yin TS.
Then each indeentry N in the IP-ind& has the form (&, anchors) where

. Njkey = kj

* Nj.anchors is the anchstate sequence for all v’ such thatxvk; and v’ <

Kj+1. It is also denoted as anchorg(k

For example, the anchestate sequences for the simple TS in Bi@. are:

anchors(k) = <S;, S,>
anchors(k) = <S,>

anchors(k) = <S,, Sz>

anchors(l) = nil

The cardinality of an anchoistate sequence is also stored in the IPsinde

Section 3.2 IP-inde 31

denoted asard(A(k)). For example, in the abee IP-inde in Fig. 3.3, we hae:
card(A(ky))=2, card(A(k))=1, card(A(k))=2, and card(A(K))=0.

The reason for storing cardinality information is that it can be used in query
optimization. This will be illustrated in Chapter 8 where optimizations on
sequence queries are discussed.

3.2.2 TheLimitation of the | P-index

We should point out that if the interpolation method introduces edreme
points (and thus introducextea sgments) to the original time sequence, the
IP-index needs to be modified to include thdra sgments as well. & exam-
ple, applying least square interpolation in B¢ (TS =<§, S, S, $4>) leads
to some interpolatedaues (such as Vv’) in the time intait, t3) exceeding
the range [y v3]. One way to fix this problem is to include the wmextreme
point P in the IP-inde i.e., include the ne sggments $P and P§ (replacing
the old sgment $S3). Another possible solution is to replace the que

by the approximate query ®v'-e<v<v'+e) (see Fig3.4) so that the anchor
state of v’ can be located. The choice of tledue of e’ is dependent on the
application data. The bigger thalue e’ is, the more possibility there is to
cover the atreme point P

VA

Fig. 3.4: The limitation of the IP-inde x

Fortunately most applications assume simple forms of interpolation functions
such as step-wise constant or linear interpolation. These interpolation functions
will not introduce e&treme points, thus the IP-indevorks perfectly well for
them. For moving average interpolation functions, a 2-point viveg average is

no problem because theeaage of alue y and y,; will always be between the
range [y, Vvi+1] (suppose y¥< vi;q1). A 3-point mwing average, on the other
hand, may introducexéreme points.

32 Chapter 3 1P-index

3.3 Algorithms

This section presents the insertion and search algorithms of the I#-inde

3.3.1 Insertion Algorithm

Suppose that in Fid.3 the first three states,SS,, and S have already been
inserted into the IP-inde Now let us see he to insert the ng state $.
According to the definition of the IP-ind€Section 3.2), we already W& three
index entries with kys v; (= k), v, (= kq), and \ (= k) respectvely, and we
also hae anchors(k = <S;, S;>, anchors(k) = <S,>, and anchors(® = nil.
To insert the state,S (t4, v4) we need to do the folwing:

1. The nev state 3 creates a v index entry with the ky v, (= k3). This ine
entry divides the gisting intenal [ky, k,) into two intenals, [k, k3) and
[k, Ka).

The sgments that span the weinterval [k,, k3) are the same as thegse
ments that spanned the old intekyk,, k,) (which are already present in the
IP-index), i.e., anchors(® = <S> stay unchanged.

The sgments that span the weinterval [ks, k;) are the sgments that
spanned the old inteaV [ko, k) plus the n& sgment Sg, i.e.,

anchors(k) = anchors(k) +! S3 = <S> + §3= <S,, S3>.

2. For all the entries in the IP-indewith keys inside the intemad [k3, kg) (in
Fig. 3.3 there happens to be no suéy)k append §to the end of their asso-
ciated anchostate sequences. This is becausg §gans all the sub-inter-
vals inside the intea [k3, Ky).

The result of the insertion conforms with F&)3.

The pseudo-code for the IP-indénsertion is gren in Fig.3.5. The notation
and functions used in the algorithm are:

+ tree — the inde tree (e.g. a B-tree) storing the IP-inde
« N — an ind« entry in the IP-inde tree.

« ts— the array storing the time sequence.

1. We use ‘+' to denote adding awmelement to the end of a sequence.

Section 3.3 Algorithms 33

e § = (&, v;) — the nev state to be inserted into the IP-ixde
* insert_ts(ts, i, §) — inserts the state; $1to arrayts where ts[i]=(f, vj).

o exist_key(tree, v;) — returns TRIE if there already»dsts an indg entry in
the IP-inde with the ley v;.

» get_lower(tree, v;) — searches the IP-ingdree to find the indeentry N
where N .key= max{N;.key | Nj.key < v;, 1< i < sizefree)}.

This function is used to find th&isting intenal which needs to be split into
two parts; e.g. in Fig3.3, get_lower(tree, v,).key = k,. The function returns

nil if no index entry is found.

e insert_entry(tree, k) — inserts a n@ index entry into the IP-indetree with
key = k.

* N.anchors — the anchatate sequence associated with the xneletry N.
e N.anchor_card — the cardinality of N.anchors.

* append(seq, §) — appends the state & the end of the state sequeseg.

3.3.2 Search Algorithm

To search the IP-indeis to find the inde entry which records the anchstate
sequence of thealue v’, i.e., we need to find the indentry N where

N .key= max{N;.key | Nj.key < v', 1 <i < size(tree)}

Then N .anchors contains the anchstate sequence for thalue v’

How to find the indg entry N ? The search algorithm is actually dependent on
how the IP-ind& is implemented. Suppose the IP-irdis implemented as a
B*-tree, then the entry Ncan be found by using the “indescan” fcility
which is praided by most B-tree implementations. An inslescan opens a
“cursor” to indicate the inde entries that are inside a specifiedy kkange
(lower_bound, upper_bound). If only upper bound is specified, therlbound
can be denoted asl. The conditions for the upper_bound or thevdo _bound
can be specified as ‘<‘, ‘>=’, etc. The pseudo-code of the IPxiséarch algo-
rithm for a Bf-tree implementation is gén in Fig.3.6. The notations used in
the algorithm are similar to those used in . The nw functions are
explained as follws:

» open_inverse_index_scan(tree, bl, b2, cl, c2) — performs an imerse ind&
scan with lever_boundbl, upper_boundb2, lower_bound conditioncl,
upper_bound conditio2. This function opens a “cursor” to indicate the

34 Chapter 3 1P-index

linsert_ip€ree, ts, t;, v;): \
| Si = (8, vi) |
| insert_ts(ts, i, §) |
/* insert the state into the array which stores the time sequen
if not exist_key(tree, v;) \
N = get_lower(tree, v;) (part 1)
if N_ = nil
N = insert_entry(tree, v;)
N.anchors =il
N.anchors_card =0

else
N =insert_entry(tree, v;)
N.anchors= N, .anchors
N.anchors_care N .anchors_card
/* insert a n& index entry, copy the anchoisstate
endif
endif
ifi>1

/* if not the first state in the time sequence */
for each entry N where N.key lies inside (part 2)
the intenal (min(vi.1,v;), max(y.1,v;))
Nj.anchors =append(N;.anchors, %)

/* add the nes anchor state to the corresponding angt
state sequences

end for each

\
\
|
\
\
\
|
\
|
\
\
\
|
\
\
\ sequencdrom the “lover” index entry */
\
\
|
\
\
|
\
\
\
|
\
|
\
| endif
\

\
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
|
Nj.anchors_card =jNanchors_card +1 ‘
¢
\
\
\
\

Fig. 3.5: The IP-inde insertion algorithm

Section 3.4 IP-index versus the Precision of v;s 35

current inde entry which is inside the specified range. This function needs
to be actvated by the ne function next(iter) in order to get the first ele-
ment.

* next(iter) — retrieves the ngt index entry that is inside the range (specified
by the cursoriter). The first call of this function retnes the first inde
entry inside the specified range.

search_iptfee, v'): lower bound upper bound

iter = open_inverse_index_scan(tree, nil, v’, nil, ‘<=");

[* find the first inde& entry that is inside the range */

return N.anchors;

|
|
|
|
| N = next(iter);
|
|
|
|
|

Fig. 3.6: The IP-inde& search algorithm

The C++ code corresponding to this pseudo-code (for the implementation on
SHORE [22]) can be found in the appendix.

3.4 IP-index versusthe Precision of v;s

An interesting obseation is that the insertion of the IP-indean be made
very fast re@ardless of the gming of the TS, if the precision ofalues in the
TS is limited.

3.41 How Doesthe Precision of vjs Affect the | P-index?

The algorithm inFig. 3.5 contains tw parts. Algorithm analysis stws that Rrt

1 takes®(LogM) time (M is the total number of inadeentries in the IP-ind@
since thg are actually IP-inde tree search operations. FurthermoreytP2
takesm* append_time wherem is the number of inteals which are spanned by
the nev sggment and theppend time is the time takn to add the e state to
the end of an ancheatate sequence. Tkappend_time can be madalmost con-
stant by using a data structure which suppoestfappending (forample, the
multi-level dynamic array structure in Section 7.3.2).

Furthermore, if we limit the parameteké andm, we can reduce the insertion
time of the IP-inde. This can be achied by limiting the precision of the
measured &lues. The reason is: for a time sequence with rangenrd preci-

36 Chapter 3 IP-inde

sion =P in the \alue domain, the number of indeentries will be less thaR/

P. So, the laver the precision (the lger the walue ofP) is, the smaller thealue
of M andm will be. Thus, we carreduce the insertion time by limiting the pre-
cision of the wlues. This speculation will beevified by experiments in Chapter
4.

The ab@e obseration is practical since 1) normally measured time sequences
have a limited range on thealue domain, 2) the original precision of the meas-
ured data can alays be limited due to errors and uncertainty in measurements.
Furthermore, some applications do not needywhigh precision. & example,

when measuring temperatures of a patient, thleevrange is the temperatures
that the human body can possibly bevalat, and at a precision that represent
changes that &ct the well-being of the patient. Thereforeee if the ther-
mometer used to measure the temperature of a patient has the precision of
0.00T°C, we can still limit the precision to ®.C, which will both improe the
performance of the IP-indeand still be reasonable for the application.

The conclusion is that the insertion of the IP-indean be madeefficient
regardless of the size of the time sequences. This is done by limiting the preci-
sion of the walues in the time sequence.

Related vork by Lum et al. [89] suggested a “lie#t list” data structure to store
historical data. It pointed out that an additional access path (a secondaty inde
for the linked list is needed to suppomst random access of elements in this
linked list (to aoid scanning). The IP-indeis perfect for this purpose. Lum et
al. [89] also mentioned that when the indece gravs too lage, the alues can

be grouped into inteals. For example, all alues between 0 and 5vminde
value 1, and 5 to 10 ke ind value 2, etc. This is similar to our idea of limit-
ing the precision of alues (in order to limit the size of the IP-ixdiee).

From the abwe discussions we can see that the IP-xngenot suitable for
some unusual time sequences, e.g. periodic time sequencegnhittited pre-
cision, or signals which oscillate with aincreasing amplitude w@er time
(which males theM parameter laye). It is also not suitable for those time
sequences with mgri‘big jumps” in vs (since this will ma& the parameten
large). Fortunately most time sequences from real applications do nwoe ha
these properties.

3.5 Comparison with a Conventional Secondary Index

This section gplains wty the IP-inde is neededwen though coventional sec-
ondary indees are waailable. The reason whthe IP-ind& is compared with
corventional secondary indes is that the IP-indeis essentially a secondary
index as well. A secondary indeis a “nonclustering ind€, as defined in

Section 3.5 Comparison with a Gemtional Secondary Inde 37

[118]. TSs are normally clustered by time stamps, notddyes. Therefore, all
indexes on the alue domain of a TS are considered to be secondaryxesde

Suppose that Fig3.7 represents a patiesttemperature reading sequence (TS),
andlinear interpolation is assumed to transform the TS into a continuous func-
tion. A corventional secondary indeon the \alue domain will use the distinct
values of ys as leys k and record all the (tv;) pairs where s equal to thedy

kj. By contrast, the IP-indeassociates thees ks with their anchostate
sequences (Section 3.2.1). Let us compare the IP<indd the corentional
secondary indein dealing with the follving value queries:

vk linear interpolation an implicit answer
v=39— Ag
v=38- - — - — - S5 T T *‘C&
B
‘ T

Fig. 3.7: Comparing the IP-indewith a cowentional secondary inde

1. When did the patient lva the temperature 387

A corventional secondary indewill return nil since there are nexplicit
values equal to 38. By contrast, by using the IPxnde will get <t’, t">.

2. When did the patient va the temperature 387

A corventional inde will only return { (suppose y = 39), while the correct
answer (if we vant to support the interpolation assumption) should include
animplicit point as well, that is between; &nd § (marketed as a cross in
Fig.3.7).

3. During what time period did the patientyeaa temperature higher than
38°C (i.e., hae a fever)?

By using the IP-inde this query will return the time inteal (t’, t”’). There

is no way to return this intead by using comentional inde&es since t' and

t'"’ are implicit.

Now let us drop the “continuous” assumption and assume that the time
sequence is discrete. Then the answer to this quenydabe [§, tg], where

no implicit time pointsare irvolved ary more. It seems that the ocamtional
secondary inde would work nav. Well, it returns a set of discrete states

38 Chapter 3 1P-index

{S3. &4 S5, Sg} (sincethese states ke values greater than 38). Grouping
these states into the time intah\ts, tg] is not a trvial task, especially when
the answer containseveral intervals, or in the situation when the time
sequence is lge.

To conclude, the IP-indehas the follving adwantages wer a comentional
secondary inde

1. The IP-inde supports not only»plicit values lut also implicit \alues. This
is achieed by the concept of the anchstate sequences, A(V).

2. The IP-ind& keeps theordering semantics of the original time sequence
The Ss in the A(v’) are ordered by time as yhare in the original time
sequence. A comentional secondary indedestrgys the ordering of the orig-
inal TS.

3. For range queries such asl@>V’), the IP-inde is essential for ditiency
even when the TS is weed asdiscrete.

3.6 Related | ndexes

Related indres include temporal indes, spatial indees, and computational
indexes. This section prades an werview of relevant indeing techniques and
compares them with the IP-inxle

3.6.1 Temporal Indexes

In the area of temporal databases [134},esal indeing methods hee been
proposed to speed up temporal queries (a shanveew of temporal databases
can be found in Section 9.4). The common aspect of temporataadend our
IP-index is that thg all deal with ind&ing of temporal data. But there is a
major diference, i.e., temporal inges aim at indeing the time domain of
temporal data, while the IP-ind@ims at indring thevalue domain. Neverthe-
less, it is highly interesting to compare temporal wegewith our IP-inde.

Elmasri et al. [47] propose an indstructure termed th&@me Index. The Time
Index supports dfcient retrieval of temporal data based oma{id) timestamps
(the concept ofalid timestamps can be found in [67]). A set of ingimg points
is created based on the starting and ending pointalid ¥ime intenals and
these points are used taild an indeing structure. At each inageng point, all
object \ersions that arealid during that point can be retvied via a bicket of
pointers. The fime Inde is implemented by a Btree. The diferences between
the Time Index and a rgular B'-tree is that the ime Index is based on objects
whose searchalues aréntervals rather than points.

Section 3.6 Related Indexes 39

e The similarity of the Tme Index and our IP-inde is that thg both viev
temporal operations dnterval intersection problems. Hwever, in the Time
Index the intenal intersection is on the time domain while in the IP-imde
the intenal intersection is on thealue domain.

In [47], another inde named theMonotonic B*-tree is proposed. The Mono-
tonic B'-tree difers from the Tme Inde in the sense that it assumes time
grows monotonically (it deals with transaction time), which aHofor better
space utilization and better search performance.

In [69] some indring methods for temporal aggyates are proposedoFunor-
dered relations, th&ggregation Tree was introduced todild a binary tree for
the constant inteals to support dicient aggrgate operations. df k-ordered
relations, the k-ordered Agggation Tree was introduced as aaviation of the
Aggregation Tree with the ability of grbage collection of tree nodes.

» The similarity of the Aggrgation Tree compared to our IP-inglés that thg
both transform temporal queries intoterval search problems. Hwever,
the Aggre@ation Tree deals with inteml aggrgation on the time domain
while the IP-ind& deals with interal range search on thale domain.

Gunadhi and Sgev [58] present theAP-Tree which is a tybrid of an ISAM
index and a B-tree. An AP-tree aims at ingimg interval timestamps for
append-only databases. It suppontgré-join optimization and temporal que-
ries. An AP-tree is dferent from a rgular B'-tree in sgeral respects: 1) If the
tree is of dgree d, then there is no constraint that a node muwst &aleastd/
20children, 2) there is no node splitting when a node gets full, and 3) the on-
line maintenance of the tree is performed by accessing the right-most leafs.

The diference between the AP-tree and the MonotonietrBe is that the
Monotonic B'-tree also tak&s care of migration of data (migration to optical
disks). Nonetheless, thare \ery similar in design.

¢ The similarity between the AP-tree and the IP-ide that both support
append-only databases. Heever, the AP-tree indees on the time domain
while the IP-inde& indexes on the &lue domain.

Shen et al. [113] introduce tld>-index (Time Polygon inde) to support tem-
poral operations. The TP-indenaps the temporal data into aohdimensional
temporal space where the data can be clustered based on time.

3.6.2 Spatial Indexes

Efficient search of spatial data is required in geo-data applications or computer

40 Chapter 3 1P-index

aided design. faditional ind&ing methods are not well-suited for data objects
located in multi-dimensional spacesorFexample, structures based owaet
matching of alues, such as hash tables, are not useful in spatial search prob-
lems since a range search is required. Structures using one-dimensional order-
ing of key values, such as B-trees and ISAM irds, do not wrk for spatial

data since the search space is multi-dimensional.

Guttman [61] proposed a dynamic ixileg structure named thig-tree to sup-

port eficient range search of spatial data. The main assumption of an R-tree is
that the objects to be inded can be modelled by means of the smallest rectan-
gles, called Minimum Bounding Rectangles (MBRSs), that contain them. R-trees
are multi-dimensional generalizations of B-trees. yThee paginated and bal-
anced. The leaf nodes point to the actual data records. Non-leaf nodes either
point to leaf nodes or represent a supBR that encompasses other super
MBRs or MBRs. D search for an MBR thatverlaps (intersects with) a refer-
ence MBR in the R-tree, one starts from the rootdraing each sub-tree that
intersects with the reference MBR until the leaf node (possibherad is
reached. Each entry is then compared to the reference MBR and is returned as
part of the response if it intersects with the reference MBR.

The R'-Tree [108] and R*-Tee [18] are both ariants of the original R-tree.
They are both superior to the original R-tree structure. Th&Re “clips” the

MBR in such a vay that no supeMBR has ag overlap with ay other super

MBR in the internal nodes of the structure. This enhances query-processing
time (i.e., the number of tree nodes accessed) significdrtty R*-tree taks a
different approach. The main idea of the Re& is: wheneer a node split is to
occur, delete some of the nodes about to split and re-insert them. This will
avoid splitting while ensuring good properties of the R-tree, hence wingo

the performance considerably

In [72] a nev indexing technique terme®R-Tree (Sggment R-Tee) was pro-
posed. A SR-tree is a combination of gg®ent Tee [19] and an R-tree. The
SR-Tree is used to indespatial data composed of multi-dimensional insdsv
that hae non-uniform length distriltions. It was shan that the SR-flee
improves the performancever corventional inde&ing techniques for both rec-
tangle and line ggment data.

e The similarity of the SR-fiee and the IP-indeis that thg both deal with
spatial search of multi-dimensional intervals.

¢ We do not adapt an R-tree or a SRed directly in the problem ofalue que-
ries since the gpgnents in time sequences (thosg BgFig. 3.3) hae the
special property that the end point of; 8ythe starting point of $Sg;. This
property maks our indg algorithmmuch simpler than that of the R-tree or
SR-Tree. In other wrds, our inding method can be implemented on top of
ary regular one-dimensional ordered inde such as a B-tree, while an R-tree

Section 3.6 Related Indexes 41

requires a complicated algorithm for handling boundary conditions between
regions

3.6.3 Indexesin Computational Geometry

In the area of computational geometthere are sesral data structures for
indexing intenal data. The are all based onaviations of binary search trees.
Examples are th8egment Tree [19], thelnterval Tree [43], thePriority Search

Tree [91], and thePersistent Search Tree [100]. Most of these data structures
are designed with the assumption that the entire structure is contained in main
memory

* We do not adapt the abe indeing structures in the problem oéle que-
ries since the ggnents in time sequences (the 8gFig. 3.3) have the spe-
cial property that the end point of Sg the starting point of Sg; (i.e. S4+1)-
This property can be used to nea&ur inde algorithm simpler than that of
the Sgment Tee or Interal Tree.

¢ Furthermore, the $gnent Tee and Interal Tree are both just for main-
memory implementation, while our IP-indean be implemented in disk-
resident DBMSs as well.

3.6.4 SIQ-Index for Value Queries

Interestingly enough, inspired by oumork of the IP-ind& [82], Nanopoulos
and Manolopoulosa [93] propose a similar approach to deal witfevqueries.

In [93], a time sequence isuidled into sub-sequences and an R*-tree is used to
index the MBRs (minimum boundary geons) of each sub-sequences. In this
way the number of indeentries can be made smaller than that of the IPxinde
The inde in [93] is named th& Q-index.

The direct adantage of the SIQ-inde[93] is that the space usage will be
smaller than of the IP-indebecause there arewer inde entries. This also
leads to shorter indeinsertion time [93]. On the other hand, the disatdage

is that the inde search time will be sieer. There are tw reasons for this: 1)
There might be more than one leaf node in the R*-tree need to be searched; 2)
The sub-sequences found by the SIQ-ideed to be scanned to check where
the intersecting gaments really occur [93]. If the sub-sequence is long, this
may lead to more than one disk access to read in the entire sub-sequence, not to
say the time spent in scanning in main-mem@wy the other hand, by using the
IP-index, we guarantee one disk access for one result becagsg anchor

state records one intersectinggseent (Section 3.2.1).

Another adantage of the IP-indeover the approach of [93] is that the IP-

42 Chapter 3 1P-index

index is based on the Btree structure. Btrees areailable in most commer-
cial database systems. This means one can implement the bPeindgeailable
database systems without the need to modify the system. On the coRfrary
trees are notvailable in most current database systems. This leads to comple
ity in implementing the SIQ-inde

3.7 Generalized | P-index

Note that the idea of the IP-indean be generalized to includeyaforms of
pre-processing in the time sequences (suchddidg the sequence into sub-
sequences or limiting the precision gé)and indg on the transformed time
sequences. ¥ can also &ep the original precision of thealues in the time
sequences and useaner precision of glues as &ys in the IP-indg. In this way
the index size can be made smaller while noeating the original precision of
values in the TS.

3.8 Summary

This chapter introduces the idea of tHeindex based on thdime sequence
data model. The central concept is #rehor-state sequence, which records
the intersecting ggnents for the queriedalue v'. The insertion and search
algorithms of the IP-indewere presented. The important relationship between
the performance of the IP-indeand the precision ofalues in the TS were
investigated. It wvas shavn that the insertion and search time of the |P-inciEn

be made gry fast r@ardless of the gwing of the TS. W also introduced the
generalized form of the IP-indevhich includes ay forms of preprocessing of
the TS (such as vdiding the sequence into sub-sequences or limiting the preci-
sion of ys) and indg on the transformed TS.

The IP-ind& was compared to ceentional secondary indes to shao why
conventional secondary indes cannot deal with the problem aflue queries.
The IP-ind& was also compared to related imde in the area of temporal data-
bases, spatial databases and computational geametry

Chapter 4

| nsertion/Search Time and
Space Usage

As pointed out in Chapter 1, a good irds expected to hae small insertion/
search time, and spacdiefency. In this chapterwe measure o the insertion

and search time of the IP-inklgrows with the cardinality of time sequences.

The measurements are made in both a main-memory and a disk-resident data-
base system using both synthetic and real-life time sequences. The space usage
of the IP-inde is also iwvesticated to she that it is practical to hild the IP-

index for large time sequences.

4.1 Performancein a Main-Memory Database System

This section presents the insertion and search time of the IR-omda main-
memory database system AMOS [49].

4.1.1 Implementation Notes

To evaluate hav the IP-inde performs in a main-memory database system, we
have implemented the IP-indein an object-relational main-memory database
system AMOS [49]. A time sequence Tasvimplemented as an arrisy where
ts[i] = (tj, v;). The IP-ind& was implemented on top of aAV/L-tree [2]. The
reason wi we chose the ¥L-tree is that it has small re-balancing time [2].
The reason wywe need to consider re-balancing time is that #es ki (Sec-
tion 3.3) do not arvie in order which means that the tree needs to be re-bal-

44 Chapter 4 Insertion/Search Time and Space Usage

anced constantly during insertion. Therefore, each index entry in the insertion
algorithm (Fig. 3.5) corresponds to a node in the AVL-tree. The anchor-state
sequence was implemented as a linked list of integers (with a pointer to the end
of the list in order to achieve fast appending). These integers denote indices of
the array ts. Fig. 4.1 illustrates the implementation of the IP-index for the
example TSin Fig. 3.3, i.e,,

anchors(ky)=<S,, S,>
anchors(ky)=<S,>
anchors(kg)=<S,, S3>
anchors(kg)=nil

anchors=<S,>

' ID anchors=<S,, S;> — The AVL-tree !

' anchors=<S;, S,>

; S S S | S R
; (tp, vo) | (t2, Vo) | (t3, V3)| (ta: V) Thearray ts ;
1 2 3 4 — Theindicesof ts

Fig. 4.1: The AVL-tree implementation of the IP-index in Fig. 3.3

4.1.2 Time Sequences Used in the M easurements

We measured? the insertion and search time of the IP-index (using the AV L-tree
implementation) in AMOS [49]. The following three time sequences (cardinal-
ity = 10K) were used in the measurements.

1. A simulated periodic sequence, sin(t/100) (t = 1, 2...10K), plotted in
Fig. 4.2.

1. All measurements were made on an HP9000/710 with 32M main memory and running
HP/UX.

Section 4.1 Performance in a Main-Memory Database System 45

value F(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
time (t)

Fig. 4.2: Sine Data

The reason w we chose this time sequence is that it represents strictly
periodic time sequences. Since most application time sequences are peri-
odic, we chose to test the IP-inden a strictly periodic time sequence to
see hw it performs.

2. A time sequence from a real-life application [68] (measurements of the
pressure in a fluidized bed), plotted in Hg3.

The reason for choosing this time sequence is to seetth® IP-inde per-
forms for real-life time sequences.

3. A simulated time sequence with a daty monotonic trend (nostrictly
monotonic), plotted in Figd.4.

The reason for choosing this time sequence is to seett® IP-inde per-
forms for non-periodic time sequences.

4.1.3 Insertion Time

Fig. 4.5 and Fig4.6 shav the insertion time of the IP-indefor the two time
sequences sk in Fig.4.2 and Fig4.3 respectiely. The insertion time is
measured as the sequencesagro

* The cunes labelled “Original Wlue Insert” she the insertion time of the
IP-index. For the pressure data thalue range is [-6, 10] and the precision
is 10°. For the sine data thealue range is [-1, 1] and the precision is610

46 Chapter 4 Insertion/Search Time and Space Usage

value F(t)

-6 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
time (t)

Fig. 4.3: Pressure Data

60000 T T T T T T T T T

50000

40000

30000

value F(t)

20000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000
time (t)

Fig. 4.4: Monotonic Trend Data

It can be seen that the insertion time increases linearly with the size (cardi-
nality) of the sequence. This is because the paramitarsdm (see Section
3.4) both grav with the size of the sequence.

e For the cures labelled “Limited Precision Insert” the precision of tlaé- v

Section 4.1 Performance in a Main-Memory Database System

35

30

25

20

15

time t(n) [ms]

10

50
45
40
35
30
25
20

time t(n) [ms]

15
10

Original Value Insert
Limited Precision Insert -

2000 4000 6000 8000
sequence size

10000

Fig. 4.5: Sine Data Insertion

Original Value Insert ——
Limited Precision Insert -+

2000 4000 6000 8000
sequence size

10000

Fig. 4.6: Pressure Data I nsertion

47

ues were limited to 10" for both TSs. It can be seen that the insertion time
becomes constant after the total number of index entries has been inserted
into the IP-index. Thisis because:

1) The number of nodes in the AVL-tree does not grow any more; only the

48 Chapter 4 Insertion/Seah Time and Space Uge

anchorstate sequence associated with each nodevgreith the time
sequence.

2) We use a linkd list structure to implement the anclstate sequence,
which males the parametappend-timgsee Section 3.4) constant.

3) The limited precision ensures that tlneparameter (number of inteals
spanned by the mesggment, as discussed in Section 3.4) has an upper limit,
which leads to an upper limit on the insertion time as well.

The conclusion is that for a periodic time sequence with a limited range and
precision on the alue domain, an upper bound on the IP-indesertion time
can be achied.

4.1.4 Search Time

In Fig. 4.7, we compare the approaches of using the IPxinddinear scanning

TS to find the anchestate sequence A(v’) for some randomly generatddes

v'. The measurements were performed on the sine sequence as plotted in
Fig. 4.2. The diference between the IP-indsearch time and the linear scan-
ning time was measured as the sequencengroThe results sho that difer-

ence between using the IP-inder not is dramatic. Note that the results are
displayed inlogarithmic scale since the dd#rence is too great to display on a
linear scaled axis. (Note that the carmabelled “IP-indg Search” in Fig4.7 is

the same as the one labelled “Originalie Search” in Figd.8, thg do not

look the same because yhare displayed on dirently scaled as.)

10000 ¢ 5
E IP-index Search ——]
Scanning Time Sequence -+--
4+
et
1000 [I 4
E T
e
= I
E
g 100 ¢ =
) F 3
=
10 ¢ 3
1 1 1 1 1 1 1 1 1
1000 10000

sequence size

Fig. 4.7: Compare the IP-indewith Linear Scanning

Section 4.1 Performance in a Main-Memory Database System 49

Fig. 4.8 and Fig4.9 shav the IP-ind& search time for te periodic TSs. After
every 1000 insertions, the IP-indesearch time for A(v’) for some randomly
generated alue v’ were measured. The resultswhbat the search time is log-
arithmic due to the ¥AL-tree implementation (see the cesvlabelled “Original
Value Search”). Hwever, in the case of “limited range and precision”, the IP-
index search time is boundedgardless of the gming of TS (see the cuev
labelled “Limited Precision Search”). The reason is the same as in the insertion
case: the number of nodes (the parambteof the A/L-tree does not increase
after all index entries hge been inserted, only the anckgiate sequences asso-
ciated with each node gnp so the search time for A(v’') stays constant at
O(LogM) (whereM stays constant).

3.5 T T

imited Precision Search -+-- _|

—————————— B e L

time t(n) [ms]

O | | | |
0 2000 4000 6000 8000 10000
sequence size

Fig. 4.8: Sine Data Search

4.15 Largely Monotonic Time Sequences

Fig. 4.10 shws the insertion and search time of the IP-inder the lagely
monotonic trend sequence plotted in Hg4. It can be seen that both the inser-
tion and search time are approximatelyddthmic to the cardinality of the TS.
This is due to the YAL-tree implementation. In this case, since tlaue range
cannot be limited (thealue range gnes with the TS), the “upper bound” on
insertion and search time cannot be achie

Note that astrictly monotonic time sequence does not need an IPxintl@s is
because thealue domain is then monotonic just as the time domain is, which
means that carentional indees on the time domain can be applied to thlele

50

time t(n) [ms]

time t(n) [ms]

domain.

[N
o

O B N W b~ O O N 00 ©

Chapter 4 Insertion/Search Time and Space Usage

T T T
iginal Value Search ——
| Limited Precision Search -+-- _|
B Al St - A 3
,4"’4—‘7
1 1 1 1
0 2000 4000 6000 8000 10000
sequence size
Fig. 4.9: Pressure Data Search
T T T T
B AVL-tree B
-trée Search -+--
[T] 3
- U g - - i
/7‘{‘7‘
/ 1 1 1 1
0 2000 4000 6000 8000 10000

sequence size

Fig. 4.10: Monotonic Trend Data

To conclude this section, we have shown that the IP-index exhibits good per-
formance in a main-memory DBMS.

Section 4.2 Performance in a Disk-Resident Database System 51

4.2 Performancein a Disk-Resident Database System

We also measured the performance of the IPxndehe disk-resident database
system SHORE [22]. SHORE is an object-oriented database system. The reason
why we did not choose a relational DBMS is that, as pointed out by Stone-
braker [131], it is not a good choice to implement a time sequence as a rela-
tional table due to time and space fi@éncy.

4.2.1 Implementation Notes

The reason wy we chose SHORE is that recenvnk by Seshadri et al. [110]
demonstrates that a SHORE array of records is a good choice for implementing
sequential data. Therefore, we chose to implement a time sequence TS as an
array of records (tv;) in SHORE. Br simplicity (without afecting the per-
formance) we use ingersi (4-bytes) to store the time stamgibstead of using

the SQL timestampalue such as “1997/20/01"). Thesvare stored as 4-byte
floating point numbers.

The IP-inde& was implemented as aBree in SHORE. Thedys in the B-tree

are the floating numberssvand each dy is associated with a pointer to its
anchorstate sequence. The ancistate sequences were implemented as arrays
of integers (not arrays of records, (¥;)). For example, if A(V’) =<S;, S, Sio>,

then <1, 6, 10> (an array of imfers) is stored. There aredweasons for this:

1) We only storef, v;) in the original time sequence arrdywill be redundant

to store {j, v;) in every A(v’). 2) The anchostates only indicate the positions in
the TS where to applifn. To applyifn, all neighbour states need to be reteigd
from TS (so it does not help if(v)) is stored duplicated in A(v’)).

Since anchostate sequences angpected to be of dynamic length, these arrays
were implemented as SHORE dar objects which can gnoarbitrarily lage.
For further details of implementations, please refer to the apperddHORE
Implementation Notes. All measurements were made onARGSFR20 machine
with 64M main memoryThe SHORE bffer pool size vas set to 40 8K pages.

4.2.2 Time Sequences Used in the M easurements

Time sequences used in the measurements were the same as in the last section:
1) the sine sequence (Fi4.2): a simulated time sequence sin(t/100) (t = 1,
2,...10K) with the walue range [-1, 1] and the precision ofG!tGZ) the pressure
sequence (Figd.3): the time sequence from a real-life application representing
the measurements of the pressure in a fluidized bed. dlve vange as [-6,

10] and the precision &g 108. The cardinality of both time sequenceasw

10K. The insertion and search time of the IP-imdeere measured as the

52 Chapter 4 Insertion/Search Time and Space Usage

sequences gva

In the “limited precision” measurement, both time sequences were rounded to a
precision of 10°.

4.2.3 Insertion Time

Since all SHORE operations are performed insidmsactions, we had to
decide where to “commit” whenuldding the IP-ind& for large time sequences.

For the time sequences with size 10K, it is not possible to do the 10K insertions
inside one transaction (thautber pool is not big enough). &/chose to dide

each sequence into size = 100 sub-sequences (thus there will be 100 sub-
sequences). The insertion of the sub-sequences [n*100+1, n*100+100] (n = O,
1, 2...) vas then done inside a transaction. The reasgnwéhchose size = 100

as the size of sub-sequences (i.e., as the amounorif done in one transac-
tion) is that: 1) Br size < 100 it will be too sle to kuild the IP-ind& for the
whole TS since we Iva to commit ery frequently; 2) Br size > 100 much
work will be lost if the transaction is aborted. Also it needs more log space.
(The sub-sequence size of 10@svchosen approximately to satisfy the abo
constraints. It does not @ to be gactly 100, of course.)

The results are sk in Fig.4.11 and Fig4.12.

sinus data
180 T T

160F |7~ Original Value Insert A
—— Limited Precision Insert

= P =
© o N ‘N
S <] o S
T T T T
AN
\
\
AN
\
L L L L

average insertion time [ms]
N

[or}
o
T
\
L

40+ - |

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sequence size

Fig. 4.11: Sine Data Insertion

Section 4.2 &formance in a Disk-Resident Database System 53

real data
450 T T
400 - erglnal Valu.e.lnserl |
—— Limited Precision Insert 4
/
7/
3501 0
7/
7/

o /
E,300F , |
o /
£ /
2501 K]
o
£ PN ,
Q _ - ~ N ,
2200 P ~ |
(] _ -
2 -
g .
2150+ P b
e >

100 7 i

-
50F -~ i

0 | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sequence size

Fig. 4.12: Pressure Data Insertion

424 Search Time

To measure he the IP-inde& search time gnes with the cardinality of the TS,
we measured thevarage search time for A(v’) for some randomly generated
valuev’ after every [n*500+1, n*500+500] (n = 0, 1, 2...) sub-sequen@sw
inserted into the IP-inde The results are sham in Fig.4.13 and Fig4.14.

sinus data
18 T T T T
--- Original Value Search
16 _— Limited Precision Search
141 o ---T7 i
w12F -7 4
B -
= R
E. .~
=101 J
S
b~
[
2
£ gl i
o
>
s
S
© 6F |
a4l i
Pys i
o | | | | | | | |
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

sequence size

Fig. 4.13: Sine Data Search

54 Chapter 4 Insertion/Search Time and Space Usage

real data
18 T T T T

--- Original Value Search
—_— Limited Precision Search|

16

14+ _--1

-
N
T
\
\

I

average search time [ms]
B
e o
T T
L L

o)
T
I

I
T
I

2k 4

0 I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
sequence size

Fig. 4.14: Pressure Data Search

The measurement results shthat the performance of the IP-inden SHORE

is similar to the performance in the main-memory implementation (Section
4.1). That is: for original precision the insertion and search timegvath the

size of the sequences; for limited precision the insertion and search time stays
almost constant.

Note that seeral parameters fct the resulting measurement figures. Among
these parameters there are thffdr pool size, the log space of the SHORE ser-
ver, and the number of insertions in one transaction. Finally the operating sys-
tem (/O processing) and the fdifent \ersions of SHORE release will also
affect the measurement results.

4.3 Space Usage

After shaving that the IP-inde has small insertion and search time, we should
investicate space usage of the IP-indespecially folarge time sequences. Is

it practical to kuild IP-indexes for lage time sequences withgard to space
usage and étiency issues? Recall that the IP-indeontains an indetree and
mary anchorstate sequences.aNivestigated hav the size of the IP-indetree
(the number of inde entries) and the lengths of the anclstate sequences,
i.e., the cardinalities of A(v')s (denoted as card(A(v’))s),vgwwith the cardi-
nality of the TS.

Section 4.3 Space Usage 55

431 Time Sequences Used in the Experiments

The time sequence used in thigperiment vas the real-life pressure sequence
in Fig. 1.4 (Chapter 1), with the cardinality of 100K and tleue range (-0.5,
2.5).

The first 1K, 10K and 100K of the pressure sequence were used in the measure-
ments in order toary the cardinality of the TS. The precision @lues (ys)

was \aried from 10%, 102 to 103, An IP-inde was huilt for every combination

of the abwe variations (e.g., the first 1K sequence with precisioi, e first

10K sequence with precision 0etc.).

4.3.2 Experimental Results

The size of the IP-inde(the inde tree) with respect to the cardinality of the
TS and the precision ofiw are plotted in Figd.15. The cardinality of A(v’)
with respect to the cardinality of the TS and the precisionj®five plotted in
Fig. 4.16.

1200 T

--- precision 0.1
_— precision 0.01
— - precision 0.001 |

1000 - — - B

800 - - q

600 [7

size of the index tree

400 - q

size of TS 4

Fig. 4.15: How the size of the indetree grevs with the cardinality of TS

Fig. 4.15 shavs that: 1) the lwer the precision is, the smaller the irndeee
will be; 2) for a specific &lue precision, the size of the IP-ixd&ee (the
number of indg entries) does not gnwo much with the cardinality of the TS.
(For the precision 0.1 and 0.01 the irdece size stays constantly smalyjaed-
less of the grewing of the time sequence.) The reason for thevgoowving of

56 Chapter 4 Insertion/Search Time and Space Usage

6000 T T

- - - precision 0.1

—— precision 0.01
- - precision 0.00]
5000 - 4

4000 - 4

3000 P P

2000 - - - q

maximum length of anchor-state sequences

1000 - 2 - B

size of TS 4

Fig. 4.16: How the maximum cardinality of A(v')s gres with
the cardinality of TS

the ind tree is that there are repeatedlues in a non-monotonic time
sequence. & a specific precision andalue range of g, there is a limited
number of possible dys in the ind& tree (Section 3.4). This vestication
shaws thatit is practical to build IP-indexes for large time sequences with
regard to space usage. Meanwhile, since the inddree will generally be small,
searching the IP-indeto find A(v’) will be very fast.

Fig.4.16 shavs hov the card(A(v')) gravs with the cardinality of TS. ¢t
every precision the maximum card(A(v’))as plotted as the avst case bela
iour. Maximum card(A(v’)) occurs when v’ = -0.25 where thalues are &ry
noisy, as can be seen from Fiy4. The card(A(-0.25)) is 4945 for the 100K
pressure sequence, resulting in the ratio of 4945/100K = S8ts{wase). This
only happens when thealues are @ry noisy around v’. In most applications
the time sequence will generallyveamuch shorter A(v’)s, especially in the
case of monotonic trend time sequences such as stock prices.

Fig. 4.16 shas that: 1) the lwver the precision is, the smaller the maximum
card(A(v")) will be; 2) the maximum card(A(v")) gves linearly with the cardi-
nality of the pressure sequence. This iaiagbecause of the periodic property
of the pressure sequence. The longer the TS is, the more numbemnudrte
will probably cross the line v = v’ (Section 3.2). This indicates that A(v’) will
normally grav with the size of TS for anvalue v'.

We also measured thetal space usage of the IP-ind&he inde tree plus all

Section 4.3 Space Usage 57

anchorstate sequences) for the pressure sequence il BigThe precision of
values vas set to 0.01. The results are: the total number of arsthte
sequences is 262 (i.e., there are 262 jxneletries in the IP-indg, the sum of
the cardinalities for these A(v’)s is 69663, theemge of card(A(v’)) is 266
(with the maximum of card(A(v’)) 4965). Therefore, the saftard(A(v’))s is
approximately 70% (69663/100,000) of the cardinality of the original TS. In
other words, the total space used to store all A(v’)s in the IPxrider0% of

the space used to store the TS. This indicates that the total spatead of
the IP-inde is small (at least in this case). Of course the ratio ‘70%’ is depend-
ent on seeral factors such as the characteristics of the sequenee tfie\al-

ues go up and dm in the sequence), and the precision of takies (0.01 in
the abe@e measurement). The total spaceread of the IP-indefor different
application data is an interesting topic for futurerk

Some readers mayaomder wly the sum of card(A(v’)) is\ven smaller than the
cardinality of TS in this case. The reason is: limiting the precisionsirvTS
results in some jvequal to vi,q (where for the original precision; ¥ vj.1).
Recall in Section 5.2.1 that horizontalgseents (y = vi;1) are not recorded in
the IP-ind&. Therefore, limiting precision will makA(v’) shorter (lot it will
not afect the cardinality of the original TS). That is ywhhe sum of
card(A(v')) is even smaller than the cardinality of TS in this case.

In the case of a long TS, the older part of the TS (i.e., the part of the TS that has
time stamps t < t') can be areled (or \acuumed [129]) to tape storage. The
corresponding IP-inde can be arcivied easily by coying the B'-tree and
archiing the parts of the A(v’)s that are inside the time windo< t'.

The Case of Monotonic T rend Sequences

For monotonic trend time sequences such as stock prices, the size of the IP-
index tree will be relatively large compared to a periodic time sequence due to
the less number of repeated alues. By contrast, all anchorstate sequences will
then be much shorter than those of periodic time sequences. Theerall effect,
i.e., the total space usage (the indetree plus the anchorstate sequences) will
be generally smaller than that of periodic time sequences.

Our experiments shav that the claim in [117], i.e., “a secondary index over the
data values is not needed in most applications— such an index can potentially
be very expensive in terms of storage, because the number of entries for such an
index is in the order of the number of data \alue” is not necessary true. V& have
shown that the size of the IP-index tree is generally small, and by limiting the
precision of v;s the index tree can be made een smaller Since value queries
are very common in real-life applications, it is essential to have a secondary
index on the value domain such as the IP-inde to achieve a good performance.

58 Chapter 4 Insertion/Seah Time and Space Uge

4.4 Summary

This chapter presents experimental results on the insertion/search time of the
IP-index and its space usage. Experiments were made on both a main-memory
and a disk-resident database system using both synthetic and real-life time
sequences. The experiments demonstrate the highlights of the IP-index: fast
insertion, fast seah, and space dfciency These properties show that the IP-
index is not only an elegant idea but also a practical solution for large sequence
data. This chapter shows that an index on the valuedomain of atime sequence
iS not necessary expensive and impractical, as claimed by [117].

Chapter 5

Various Forms of Value Queries

This chapter sh@s hav to compute arious kinds ofvalue queriesusing the
IP-index. These queries includesxact queries, apmximate queries, ange
gueriesandtime window queriesln particular we shav the importance of the
IP-index for range queries (i.e., sub-sequenceraction based on aale
range). The importance of the IP-ind®r range queries also holds fdiscrete
time sequences where interpolation is not required.

5.1 Exact Queries

An exact query asks when thalue was equal to v’ in a time sequence. Sup-
pose the time sequence in F&gl represents a patiesttemperature reading in
a hospital. An gact query could be:

* When did the patient va the temperature 387

I I
I I
I I
I I
I I
t t

T o

Fig. 5.1: lllustration of a alue query

60 Chapter 5 ¥rious Forms of \dlue Queries

As pointed out in Section 3.1, this kind of query is denoted §s'F. It can be
seen from Fig5.1 that there are nexplicit (stored) time points when thalv
ues were equal to 380oTeficiently process this querye would need the IP-
index. Recall that the IP-inderecords thenchor-state sequenci®r ary value
V' (Section 3.2.1). By applying the interpolation function on each anstaie
of v', we can calculate all the time points when tlues were equal to v’ in
the TS.

The anchosstate sequence of thalue v’ can be found by searching the IP-
index to find the ind& entryN, where

Ni-key= max N;.key | Nj.key < v’}

Then N, .andhors contains the anchestate sequence for thaluev’, denoted

as A(V') (Section 3.2.1). The algorithm for computing'(#') using the IP-
index is given in Fig.5.2. It can be seen that this algorithm is similar to the IP-
index search algorithm in Fig3.6, except that the interpolation functidfn is
applied to gery anchosstate. The notations used in the algorithm are the same
as «plained in Section 3.3.

The definition ofsurrounding_statgs) in Fig.5.2 is determined by the inter-
polation functionifn. For example: a) Ififn is “linear interpolation”, then
surrounding_statess;)) = {S;, S+q}; b) If ifn is moving-average wer three
states, thersurrounding_statelS) = {Si.1, §, S+1} (or perhaps {$ Si1,
Si+2})- In the simplest case of the “step-wise constant” assumption, we ha
surrounding_statels;) = {S;}.

5.2 Range Queries

In this section we shvo how to use the IP-indeto compute range queries. A
simple range query could be: “find the sub-sequences whenatbhesvinside
those sub-sequences are greater than a threstibldhe result of a range
guery issub-sequenceslenoted asime intervals

5.2.1 Interpolated Range Queries

First we look at the cases when some interpolation function is assumed on the
TS (the case of a discrete TS will be discussed latererGthe temperature
sequence TS = 5SS,,...§> as shwn in Fig.5.3 (assume linear interpolation),

an xample range query could be:

« During what time interals were the alues greater than v'?

This kind of query is denoted aslfv>v’) (or F1(v<v’)) [82]. It can be seen

Section 5.2 RamgQueries 61

Algorithm “Exact_query”:

Computing the time points when thalues were equalto v’ for an
interpolated time sequence.

Input:
ts — the time sequence (an array)
tree— the IP-inde for ts (e.g., a B-tree or an NL-tree)
— the queried &lue

%
ifn — the interpolation function assumed t3n

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Output: :
The sequence of time pointswhere the alues at those points Wel’&?

equal tov’ for tsunder the interpolation assumptidn. |

|

Exact_queryts, treg v, ifn): }

Fi(v) = nil |

¥ initialize the result */ |

|

|

|

|

find the inde& entry N where
N_.key = max{N;.key | N;.key < Vv’, 1<i < size(tee}

[* find the entry that stores the ancksiate sequence of v’ *‘/

for each state $in N, .anchors 1
Flv) = Fi(v’) +ifn"l(v’, surrounding_states;)) :

I* surrounding_stategs;) can be retrieed from the ts array ’i‘/

end for each 3
return F(v’) |

|
|
|
|
t'y ts s Uy t

Fig. 5.3: lllustration of a range query

62 Chapter 5 ¥rious Forms of \dlue Queries

from Fig.5.3 that:
o F'l(v>v’) =<(t'q, U)), (', t'y)>
o Flvsv) = <(ty, t'y), (2 '3), (U4, t)>

where § = S;.time (the first time point of TS, denoted asdnd g = Sg.time
(the last time point of TS, denoted gk The obserations are:

1. Fi(v>v') (or F1(v<v’)) returns a sequence of time intats.

2. Each time interal of F(v>v') (or Fi(v<v’)) is composed only of those
time points returned by Kv’) (plus tsand t).

Now let us see he to compose the timiatervals of F1(v>v') (or Fl(v<v’))
using the time points returned froni'f’). First, let us define the “direction”
of an implicit time point’ as the follaving:

« direction(t’)="+" if Sj;;.value > S.value
o direction(t’) =’-" if Sj;;.value < S.value
This is illustrated in Fig5.4. Notice that we do not store gseents with

Si+1-value = Sj.value in the IP-inde since we only record intersecting (non-
horizontal) sgmentsSg.

direction="+ direction="-'

Fig. 5.4: The “direction” of interpolated time points

It can be seen from Fi.3 that:
o Flv>v))=(t';, t'ix1)* wheredirection(t';) ="+’

o Flvev))=(t';, t'i11)* wheredirection(t'))="-’

Section 5.2 RamgQueries 63

(The time interals concerninggtand ¢ have to be treated specially by compar-
ing S;.value and §value withv’'.) Therefore, the algorithm of Rv>v') is
shown in Fig.5.5. The functiomext(t’, seq)returns the time point iseq(a
sequence of time points) that fole t’.

The algorithm of F(v<v’) is similar to the one shen in Fig.5.5 (simply
replace tlirection(t’) = ‘+” with “ direction(t’) = *-™).

5.2.2 Discrete Range Queries

The IP-inde was originally designed for time sequences with interpolation
assumptions. Interestingly enough, it turns out that the IPxirslessential for
discretetime sequences as well. ArRample is gien belav.

Seshadri et al. [110]age an @ample of calculating the monetaryalue of
Stockl traded in each hour when thevlprice fell belav 50. The query as
expressed as:

SELECT! ((A high + Alow/2) * A vol une
FROM St ockl A
WHERE A | ow < 50

It was agued in [110] that selection pushsdo (A.low<50) should be applied
here so that the calculation of(A.high+A.low)/2)*A.volume” only needs to be
done for those states whosevlgalues are bels 50. But, without an inde the
whole time sequence has to ssannedo find these states. One magae that
a corventional secondary indeon the “lav” value will help. Unfortunately it
does not wrk, as &plained in Section 3.5.

By viewing the time sequence as continuous (by applying linear interpolation
function), and posing the queryv<50) (see Fig5.6), the time point$ and

t’ (Fig.5.6) can be calculated fafiently. Then, the calculation of
“((A.high+A.low)/2)*A.volume” can be applied to only those statgs that are
inside the rangédt’, t"’). In this way the IP-indg plays an important role on
range queries odiscretetime sequences.

In some applications (e.g., the terrain-aidedigation in Chapter 10), it is
desirable to return the “state intats” instead of the time inteals for the
range quenFL(v>v') (or F(v<v')). For example, in Fig5.3 the state inteats
returned fromF(v>v') are [S, S3] and [S5, S7]. This is trivial given that we
can calculate=}(v>v') (or Fi(v<v’)). Because, these “state intals” can be
found by rounding the time interals. For example, rounding (f, t'5) in

1. In[110] the term ‘PRJECT’ was used instead of the SQkykvord SELECT

64 Chapter 5 ¥rious Forms of \dlue Queries

Fig. 5.6: A stock price sequence
Fig. 5.3 results in [§, S3].

5.2.3 Approximate Queries

Since the wlues in time sequences are often sampled with errors and uncer-
tainty in measurements, marapplications do not require to kwowhen the
values werexactly equal tov’, instead, it is more interesting to kmaevhen the
values wereapproximately equal tov’'. For example, gven the temperature
sequence in Figh.1, if we are interested in “when did the patienteha tem-
perature 38", we wuld pose the query:

* When did the patient wa a temperaturaround38°C?

This kind of query is termed approximate queryand denoted a8 1(v'-e<v<
v'+e). Approximate queries can be processed easily once we can process range
gueries. This is because

FL(v<vv’)=F Twsv) nFLvey)
where ‘n’ means “interal intersection”.
For example, in Fig5.7, FY(v>v')=<(t' 1, t'5), (t'3, t'4)>, FYv<v)=<(tg t" 1),
(t”z, t”3), (t”4, te)>. There we see thafkv’<V<V”):<(t, 1r t”]_), (t”2, tlz), (t'3,

t"3), (t"4 t'4)>, which is the interal intersection of B(v>v’) and Fi(v<v").

Therefore, the calculation (ﬁl(v’<v<v”) is performed by the follwing:

1. Calculate F(v >Vv).

2. Here “rounding” means finding the ¢gast state inteal that is inside the time inter-
val.

Section 5.2 RamgQueries 65

Algorithm “Range_query”: !
|
Computing the time inteals when the alues were greatehan v’ for

an interpolated time sequence.

|
|
Input: :
ts -- the time sequence (an array) }
tree-- the IP-inde built for ts (a B'-tree or an NL-tree) |

v’ -- the queried &lue :

ifn -- the interpolation function assumed on ts :

|

|

Output:

The sequence of time inteals ¢, t'")* where the alues inside those
intervals were greater than v’ for tsxder the interpolation assumpti:c

ifn. |
Range_queryt§, tree v’, >’, ifn): 3
seqg= nil /* initialize a sequenceeq*/ :
find the entry N where }

N .key = max{N;.key | Nj.key < V', 1<i < size(tree)} l

/* find the entry that stores the anctgiate sequence of v’ */ 1

for each state $in N_.anchors :

t = ifn'l(v’, surrounding_states;)) :

/* surrounding_states(can be retrieed from the ts array *:

if Si41.value > S.value |
direction(t’) = ‘+' }

else 1
direction(t’) = *-’ :

endif |
seqg=seq+ (t’, direction(t’)) :

I* seqstores the time points of ¥v') and their directions */3

end for each :
Flv>v') = (t, next(t', seq)) |
for thoset’ in seqwheredirection(t’) = ‘+’ }

/* combine the time points iseqinto time interals */ l

|
|
|

return Fi(v>v’)

Fig. 5.5: Computing F1(v>v’)

66 Chapter 5 Various Forms of Value Queries

Fig. 5.7: lllustration of an approximate query

2. Calculate F(v <v").

3. Apply interval intersection to the results returned from 1 and 2.

5.3 Time-Window Queries

Some alue queries only concern a part of the time sequence, itieneavin-
dow. An example of a time windw query could be:

« When did the patient va a feverin the last few days (denoted as t > t')?

This query can be denoted a‘éL(E>38 AND t>t’). The answer to this query is
marked by the tw crosses in Figh.8. A nave way to process this query is to
first calculate Fl(v>38) and then check for each resulting time point tift > t’
holds. An optimized way is to retrige those states; 81 A(38) where Stime >

t’, and apply the interpolation function to the surrounding states.d@@&imi-
zation of time windw queries will be further illustrated in Chapter 8.

Fig.5.8: A time window query

Section 5.4 Amplitude-Sensitive Shape Queries 67

5.4 Amplitude-Sensitive Shape Queries

Some kind of shape queries, i.e., “amplitude-sevsitshape queries, can be
processed @&tiently by using the IP-inde

In [112] it was mentioned that one of the symptoms of Hodkidisease is a
temperature pattern, kmm as “goalpost feer”, that peaks>actly twice within
24 hours.

‘@— 24 hours —»)| T

Fig. 5.9: The “goalpost fever” pattern

The IP-inde& can be used to find this temperature pattern in a time sequence. It
contains two steps:

1. Compute Fi(v>38) (which are the periods of ‘fer”).

The result returned is a sequence of time irgksrduring which the patient
has a feer. (This sequence is usually short, which means the query process-
ing time of step 2 will bedst.)

2. Check if there gist two time interals in the “feer” periods that hee the
distanced of 24 hours.

The distance between twime intenals can be defined either as the dis-
tance between the starting points of both ind¢gvor as the distance
between the mid-points of both intats.

5.5 Summary

In this chapter we ha& shavn haw to solwe various kinds ofvalue queries effi-
ciently by using the IP-inde In particular we demonstrated the importance of
the IP-index for range queries (i.e., sub-sequencexgaction based on aalue
range). Other queries that benefit from the IP-inohelude time windw que-
ries and amplitude-sensid@ shape queries.

68 Chapter 5 Various Forms of Value Queries

In a suney by Chomicki on temporal query languages [29], it igusd that the
densed temporal domain ieny useful in may applications bt is difficult to
implement eficiently since the set of time instances &wlamge. The IP-inde
provides the ability toderive the densed instances from the original discrete
sequence, s@ng both storage space and query processing time. The actual
number of time instances (termed “states” in this paper) needed to be stored are
determined by the range and precision of thkigs in the sequence. Also the
sampling frequenccan change during dédrent periods, higher frequencan

be used for interestingalue ranges andeer frequeng can be used for unin-
teresting ranges. Ofgrent interpolation functions can also be applied téedif

ent sub-sequences.

Chapter 6

The o* Operator

This chapter introduces arxtended SELECT operatoo*, which retrieves

sub-sequences (time intenals) in a time sequence TS where tladues inside
those sub-sequences satisfy some conditions.dlheperator supports user
defined interpolation functions on TS.

In this chapterthe implementations of thel operator for arious selection
conditions are presented. Thdigkncy of theo* operator is demonstrated by
experiments made on SHORE?2]. Related wrk is studied to compare the]
operator with other rel@nt operators.

6.1 Formal Definitions

In this section, the formal definitions of a time sequences TS and its interpo-
lated (denved) time sequenc€S under an interpolation function ifn are given.

Then two SELECT operators,cl0and g, which work on TS andTS respectively,

are introduced.

6.1.1 The Definition of TSand TS

As defined in Section 2.1, atime sequence is a sequence of alues ordered by
time. Formally, a time sequence can be defined as the folldng:

Definition 6.1: A time sequence TS is a sequence of states where each state
has a time stamp and aalue, i.e.,

70 Chapter 6 The s* Opator

TS = <§, S,,...§> where $= (§, vj) (i = 1, 2...n), and;t<
tiv1.
o

An example time sequence is st in the left side of Fig6.1, which repre-
sents the temperature reading of a patient in a hospital.

v Y,
s, S s, ¥
o i o ‘
082 %5 o ~ linear \OSZ 305 o
S interpolation) S
o © N ‘o - 2
S3 Sy —7 S3 Sy
- >
discrete TS continuous TS

Fig. 6.1: Time sequences - from discrete to continuous

Many applications require a discrete time sequence to be seeandsuous
where implicit \alues can be demd from eplicit values by applying some
userdefined interpolation functions.oF example, a patiens’ temperature read-
ing can be seen as a continuous euby applying linear interpolation on the
discrete TS, as shm in the right side of Fig6.1.

In order to formally define a continuous time sequence, let us first define a con-
tinuous time interal [ty, to].

Definition 6.2: A closed intervalty, t;] is defined as the infinite set of all real
number time points between and including and 4, i.e.,

[ty..t] = {t |t DR and { < t <t,}.
m]

(Notice that the appropriately modified definitions far), (t1, to] and (4, t,)
are assumed, and the general term ‘ird€rwill sometimes be used to refer to
ary of these.)

A continuous time sequence can be formally defined accordifglya time
sequence TS, the notatidis is used to denote its derived (interpolated) time
sequence under ay userdefined interpolation function ifn. Intuiti vely, TS
defines theinfinite set of all states defined over the time interval [t 4, t,] (just as
[t1, t] defines the infinite set of all time points between and including § and

ty).

Section 6.1 &rmal Definitions 71

The precise definition ofS is the following:

Definition 6.3: Given the discrete time sequence TS =<$S,,...S,> where §
= (t, v;) (i = 1, 2..n). TSdenotes the interpolated time
sequence defined wer the closed intenal [t4, t,] by applying
an interpolation function ifn on TS, i.e.,

TS = <(ty, f(ty)..-(tn, ft)> ={t, fV) [t DRandg<t<ty,
for any t where S.time <t <Sj;4.time,
f(t) = ifn(t, surrounding_states;)).
O

The definition ofsurrounding_states) is determined by the interpolation
function ifn. For example: a) If ifn is “linear interpolation”, then
surrounding_state§) = {S, S+1}; b) If ifn is moving-average woer three
states, themsurrounding_states) = {S.1, S, S+1} (or perhaps §, Si1,
S+2}). In the simplest case of the “step-wise constant” assumption, we ha
surrounding_state§) = {S}.

An informal kut intuitive notation would be
TS =ifn(TS)
denoting TS is the interpolated TS.

Continuous and Non-Continuous Inter polation Functions

We shall point out that some interpolation functions arecontinuous while oth-

ers are not. An xample of a continuous interpolation function is linear interpo-
lation, as illustrated in the left part of Fig. 6.2. An example of a non-continuous
interpolation function is “step-wise constant” interpolation, as illustrated in the

right part of Fig. 6.2. The reason wly it is not continuous is that there is a
“jump” in e very state S when S.value # S;,;.value.

In this thesis, when we claim thal'S denotes thecontinuoustime sequence by
applying some interpolation function ifn”, the implication of “continuous” here
does not mean a “continuous function”. Instead, it denotes thalS is defined
over the densed interal [tq, t,] (see Definition 6.3). This “continuous” notion
comes from [33] “Formal Semantics of Time in Databases”. In [33], two con-
cepts concerning interpolation on a historical database are defined, i.e., the
comprehension principle and the continuity assumption

1. A precise notation should BES;, where ifn is the interpolation function used to
interpolate TS. W omitifn for the sak of clarity We assume that a system-defined
(default) interpolation function (e.g. linear interpolation) is used.

72 Chapter 6 The s* Operator

linear interpolation step-wise constant

\Y

Sy S5 \‘ Se St Ss 5 S
O_: Q—'
1 I
So—
SZ\ 84 SZ | 84 :
O/O dH—
3 S;
| |
ContinuousTs t Non-continuoud'S

Fig. 6.2: Examples of continuous and not continudiss

1. Thecomprehension principle: under ag reasonable interpretation a histori-
cal database defineder a sequence of states;Sy,...§,> should be con-
sidered as modelling an enterprise completelrdhe entire closed inteal/

[S1, S\]- All information about the objects of interest to the enterprise can
be assumed to be contained in or implied by the historical database for the
entire interal [S;, S].

2. Thecontinuity assumption: ary assumption whichxends a mapping from a
finite set of moments {§ S,,...§} (ordered as in the sequence xS

S,,...§>) into a set of indiiduals, into a mapping from all moments in the
closed, dense inteaV [S;, S], into that set of indiiduals, will in general be
called acontinuity assumption. Although it was pointed out in [33] that
there are manpossible vays to interpolate the states inside the iraefg,

S, only “step-wise constant” as assumed in [33] for simplicity

Therefore, by “continuous” we medrs is defined over the dense intenal [t 4,
t,] (i.e., assuming some interpolation functions).TS does not hae to be a “con-
tinuous function”.

Some readers might vender why we do not simply define TS as a function, i.e.,
TS is denoted by a functionv = f(t). There are several reasons for this. 1) In
mary real-life applications, dif ferent interpolation functions can be assumed on
different parts of a time sequence, depending on the sampling frequenoralue
distribution, etc. Therefore, it is not appropriate to defineTS as asingle func-
tion v = f(t); 2) Many real-life time sequences are usually ery long, it is not
feasible to calculate the function definition f; 3) For the same time sequence
TS, there might be different kinds of interpolation functions assumed on it,
depending on the application requirement, the resourcesvailable, etc. There-
fore, we define TS as an infinite set of states (Definition 6.3) where each
implicit state is calculated by applying the interpolation function (required by

Section 6.1 &rmal Definitions 73

the application) on the neighboringpicit states. This is a more reasonable
and flxible approach.

6.1.2 The Definition of o

Traditional SELECT operatoro [118] (in the relational algebra) retrieves tuples
that are explicitly stored in a relational table. For time sequence applications,
retrieving explicit (stored) v alues is far from adequate. As mentioned earliera
discrete time sequence TS is often interpreted as the continuous sequentg
by assuming some usedefined interpolation functions. Therefore, selection on
a time sequence should be definedver TS instead of TS.

Therefore, we introduce a ne&v SELECT operator, g, to denote selection on the
continuous sequencds (i.e., supporting interpolation on TS). Unlike the tradi-
tional o operator which returns a subset from a discrete set (i.e., a relational
table), o returns sub-sequencegdenoted by time intervals) of the continuous
sequenceTS. A sub-sequence of TS defined over the time interval (t, t ") 1is
denoted asTS | (t', t').

To formally define the o operator, let us first define aselection condition. Since
TS has two dimensions, the time dimensiont and the value dimensionv, a
selection condition, denoted bycond, is a conjunction of the termst © C or v ©
C (C denotes a constant), where the operato® contains the following rela-
tional comparison operators, {=, >, <,>, <}. Examples ottondare:

« t=1 (heret’ is a constant and t is ariable, the same holds for the fallo
ing examples)

e t<t

° t1<t<tn

° V1<V<Vn

A state S = (t, v) ifTS is said to satisfy the condition cond if the time stamp t
and the \alue v satisfy cond, denoted as R,,q(S) = TRJE. For example, a state
S = (1, 2) satisfiesondssuch as t = 1 or v = 2. A sub-sequeA&| (t, t' ") is
said to satisfy cond iff for any state S where SO TS| (t', t"°), PcondS) = True.

1. Here we us®penintenals to denote sub-sequences. A sub-sequence that includes
end points is accordingly denoted &8 | [t', t' ’].

74 Chapter 6 The s* Operator

The formal definition of the operator is the following:

Definition 6.4: A o operator on TS retrie ves the sub-sequences that satisfy
the condition cond, i.e,:

Ocond(TS) =TS | (t, t'7)*, iff for any state SO TS| (', t'),

Peond(S) = TRUE. ,

For example, in Fig6.3, we hae 0,5,(TS) = TS| <(t;, t'y), (', t'3)>, which are
those sub-sequencesTd that hae values greater than v'.

In the dgenerated case, tleeoperator returnsstates instead of sub-sequences.
For example, in Fig. 6.3, 0,-¢1(TS) = (t'4, V'). A state S = (t’, v’) can be seen as
a degenerated case of a sub-sequence, i.e.TS|E, t].

6.1.3 The Definition of o*

To directly support o(TS) is not feasible since TS represents a function, not a
discrete set. In other words, it is impossible to generate all states & in TS and
store them in the database. Therefore, we introduce an operatar*, which
works on the discrete TS, to implement thes operator. First we start with infor-
mal discussion to shav the relationship between thec* and o operator. Then
give the formal definition of the o* operator.

Recall that TS can be informally re written as TS = ifn(TS), therefore we have
(informally)

o(TS) = a(ifn(TS)) = 0 o ifn(TS)

This indicates that the implementation of theo operator can be accomplished
by a new operator (o ° ifn) (i.e., the composition of o and ifn) which works on
the discrete TS. Thus, we introduce a ne@ operator o* on the discrete TSwhere
o* = 0 o ifn, denoting that the semantics ofo* is first applying ifn on TS, then
performing the selection ¢ (on the interpolated TS). The formal definition of
o* is the following:

Definition 6.5: A o* operator, when applied to TS, generates the same result
as applying o on the correspondingTs, i.e.,

o* cond(TS)l = acond(T_s)- o

Thecond clause specifies the selection condition, as in Definioh.

Section 6.2 Implementations of s* 75

The o* operator can be ffiently implemented by using the IP-indeln the
next section we will shay how the o0 operator is implemented foravious
selection conditions.

6.2 Implementations ofall

In this section we discuss Wwothe o] operator is implemented for selections
such aso*—¢(TS) ando*,=(TS).

6.2.1 0* ¢ (TS)

Intuitively, o* —¢(TS) returns the part ofS where the time stamp is equal to t".
Now let us see hav to calculate o* —¢(TS).

1. According to Definition6.5,00_¢(TS) = 0-¢(T9S).
2. According to Definition6.4, o, (TS) = TY[t’, t].

3. TY|[t’, t'] is a de generated case of a sub-sequence, i.&L9|[t’, t] =S = (
f(t')), where f(t') = ifn(t’, surrounding_stategS;)) (Definition 6.3).

To further calculate f(t'), we need to locate the state $in TS. This can be done
by linearly searching TS to find the state $where S.time<t < §,4.time More
efficient location methods takadwantage of the pfsical oganization of TS
and aailable indaes. or example, If TS is implemented by an array [84], then
a binary search will do.

The eficiency of computingf(t’) is determined by the interpolation function, of
course. Br most applications, simple interpolation functions such as step-wise
constant or linear interpolation will do. In these cases, comptiigs very

fast. Some applications might require higher order interpolation functions such
as least square.

In the simplest case of the “step-wise constant” interpolation, there is no need
to applyifn. We have f(t') = S;.value = y.

1. A precise notation should lm&}_(TS, ifn) whereifn is the usedefined interpolation
function. We omit the agumentifn assuming that a system-defined @éf) interpo-
lation function (e.g., linear interpolation) is used.

76 Chapter 6 The s* Opator

6.2.2 0* - (TS)

Intuitively o03,-,(TS) returns the part ofS where the \alue is equal to v'. It cor-
responds to the folloving query:

* When was the \alue equal to v'?

VA

1

Fig. 6.3: Illustration of \alue querieson a TS

Normally the result of oli-,(TS) is a sequence of statesorFexample, in
Fig. 6.3, o= (TS) = <(t';, V'), (t'5, V'), ('3, V')>, which corresponds to the
three implicit states § Sg, and & in Fig. 6.3. The time points of these states,
t'; (i=1, 2, 3), are calculated by the algorithm o]f(F’) in Fig. 5.2 (in Section
5.1). Recall that the computation of'@) is composed of tw steps:

1. Find theandchor-state sequencef v’ in the IP-inde.

2. Applying ifn"! over the neighbostates of eery anchorstate.

It can be seen that the first step is independent of the interpolation fuifation
Therefore, we define it as an operator termedRhepenator.

IP_Operator

The IP operator, IP,-,,(TS), returns the anchatate sequence of v’ (i.e.,
A(V"). Intuitively, the IP operator returns theearest neighbor statesf the
value V' in order to apply the interpolation functign™L.

Therefore, o[-¢(TS) is implemented by the sequentiakeeution of the
IPy=y(TS) andifnl, as illustrated as Fig.4.

A naive way to implement IR-,(TS) is to linearly scan TS to find the state S
where Svalue< v'< Sj,q.value. Since the IP-indestores A(v’) (Section 3.2),
the IR-(TS) operator can be implementedfieiently by searching the IP-
index to find the ley kj where k< v’ < ki1 and return A(R.

Section 6.2 Implementations of s* 77

Fig. 6.4: The relationship between tlwéloperator and the IP operator

Since A(k) is an ordered sequence of state_ids (see Section 3.2,1)(TB)

can be implemented asstreamwherethe next element of IR-(TS) is imple-
mented by retrieing the next state in A(K). Therefore, theo[-(TS) can be
implemented as a stream as well: tiet state of thes[-(TS)is generated by
applyingifn'1 over thenext state returned from |[R(TS) (Fig.6.4). More on
stream processing can be found in Section 8.1 where query optimization of
sequence data is discussed.

Get the First F ew Answers Quickly

By implementing ol-«(TS) as a stream we can generate fingt fev answes
[16] quickly. This is especially important when card(A(v’)) (i.e., the cardinality
of A(V’"), see Section 3.2.1) is lge. To generate the firstfeanswers, the inter-
polation functionifn™ is applied to only the first fe states in A(v’). In particu-
lar, the first answerof alj-,(TS) can be generated quickly since the first
state_id in A(v’) denotes the position in the TS where to a'ﬁptﬂ;.

By contrast, linearly scanning TS will taka \ery long time to get the first
answer when the first answer appears late in the TS. This is demonstrated by
experiments shwn in Section 6.3.2.

The Exceptional Cases

In some exceptional casesol,-,(TS) will return sub-sequences (time intats).
For example, if S.value = $.4.value, then applying linear interpolation we will
have o0,-(TS) = [t, t.1], see the left side of Fig.5. This case can be
detected easily when we calculaté(’). According to the definition of linear
interpolation, we hee

t=t j +(V-v)t wt i)/ V)

This expression will trigger the “diided by zero” error if ¢ - v; = 0. When-
ever this error is caught, we return the sub-sequai®E[t;, t;;1] as the result

78 Chapter 6 The s* Opator

instead.

Another case wheo[-(TS) returns sub-sequences is whiém is the “step-
wise constant” assumption, see the right side of &ig. In this case,
o,=(TS) return sub-sequences (intats) for all v’ = \; olQ-(TS) returnnil
for all v’ £ v;.

vA VA
Si+1 Si+2
, S Sit1 @ °
vV —-— I
| | Si |
| | o — 9
| |
| | |
| | |
. . > .
4 gt tiva "

Fig. 6.5: Exceptional cases @[], (TS)

Actually if ifn is the “step-wise constant” assumption, wewd not need the
IP-index to calculateol-(TS). This is because HV') can be calculated easily
by using a cowmentional secondary inde(see Section 3.5). Kever, this does
not lead to the conclusion that the IP-irdis not useful in the case of the
“step-wise constant” assumption. The reason is tlaape querieson time
sequences awuld require the IP-indefor the sak of eficiency, see Section 5.2.
There we she the IP-inde is essential for range queries, no matter what kind
of interpolation is assumed. This also holds for discrete time sequences.

6.2.3 0%y (TS)

Intuitively, c0s¢(TS) returns the sub-sequencesTi® where the time stamps
are greater than t'. According to Definition 6.5, 60¢(TS) = 0y (TS) = TS|(t,
t,), where t, = S,.time (the last explicit time stamp in TS). For example, in
Fig. 6.6, we hare a}-+(TS) =TS|(t', t 10)-

Inside the time inte (t', t,), the value v for ag time point t can be calculated
by the definition of TS (see Definition 6.3), i.e., f(t) = ifn(t,
surrounding_stategs)).

Note that the values v inside the sub-sequencdS|(t, t) are normally non-

monotonic, which means thg normally do not reside inside the \alue range
(f(t), f(t). Calculating the value range of TS|(t, t) is not tri vial, since the
maximum and minimum points inside the interpolated sub-sequenc&S|(t’, t)

Section 6.2 Implementations of s* 79

Vmax —

Vmin

Fig. 6.6: llustration of 6[}5¢(TS)

have to be found, see Fi§.6.

6.2.4 G* 5 (TS)

Intuitively, o[}5,+(TS) returns the sub-sequencesTi8 where the v alues are
greater than v'. It corresponds to the followving query:

¢ When was the \alue greater than v'?

In Section 5.2, we shaved how to calculate range queries Ft(v>Vv’) (Fig. 5.5).
Therefore,ol,s,(TS) can be processed easibpr example, in Fig6.7, since
FLv>v) = <(ty, t'y), (', '3)>, S0 we hae 00 (TS) = TS|<(ty, t' 1), (t' 5,
t'3)>.

|
|
|
|
|
|
tl

Fig. 6.7: Illustration of o[(TS)

80 Chapter 6 The s* Operator

Discrete Range Selection

Recall from Section 5.2.2 that range queries can also be posed alnscr ete time
sequences. Br example, in Fig. 6.7, if we assumeno interpolation function,
then ol,-(TS) will return a set of states {SS;, Sg, S, S;0}- How can we cal-
culate these states? There are three ste$vied:

1. Assume linear interpolation on TS. Pose the range qouEy,(TS), the
time intenals (t1, t}) and (t5, t'3) will be returned.

2. By rounding these time inteals we get the state interls [§, S;] and [S;,
S10] (see Section 5.2.2).

3. Return all states inside these state iraésvThat is: {$, S7, S, S, Si0}-

Therefore, the IP-indeis essential for range queries on time sequences) e
for discrete sequences.

6.3 Performance Measuements on SHORE

To measure the performance of tb& operator we performed substantial
experiments on SHORE [22]. The implementation notes (om tie IP-ind&

and time sequences were implemented in SHORE) can be found in Section 4.2.
In brief, the IP-indg was implemented on top of a Bree in SHORE. Ancher

state sequences were implemented as SHORge labjects which can gno
arbitrarily lage. Time sequences were implemented as an array of recgrds (t
vj). All measurements were made on aABE 20 machine with 64M main
memory The SHORE bffer pool size ws set to 40 8K pages.

6.3.1 o,-,(TS)— Using the IP-index or Scanning the TS?

As pointed out in Section 5.1, the alternat@ywo calculatesl,-, (TS) without
the IP-inde is to linearly scan the TS.oTdemonstrate the fefiency of
o= (TS) using the IP-inde we compared the time dérence between using
the IP-inde and linear scanning.

Recall that the operatal.-(TS) is achiged by IR~ (TS) andifn™t (Section
6.2.2). © exclude the time spent irin™, we assume t’ =;Sime (step 2 in Sec-
tion 6.2.2) where Ss returned by the IP operator in steprithis case thexe-
cution time ofal,--(TS) will exclude the time spent in interpolation, both for using
the IP-ind& and for linear scanning.

Section 6.3 @&formance Meas@ments on SHORE 81

A detall is thatS;.time is not stored in A(V’); it has to be read from the time
sequence array by using the state_jdtBe state_id Sis stored in A(Vv’), see
Section 4.2.1).

Constructing the Synthetic T _ime Sequence

In order to be able to control the properties of the time sequence used xpehe e
ments, we generated a synthetic time sequence

v(i) = (i) * sin(k * i) (i =1, 2...10K)

which is a periodic time sequence wittowing amplitude, se&ig. 6.8. The func-
tion m(i) is used to control the;& so that 1) all }& are inside a limitedalue
range (it vas [-10, 10] in the measurement) and a)ue ranges beka in the
“step-wise constant” pattern as shoin Fig.6.8. The reason for a limited
value range is to makthe size of the Btree limited since we shed in Sec-
tion 4.3 that most real time sequences result in limited size of the IR-iree
The reason for the “step-wise constant” patternalie ranges is that it mak

it easy to construct dérent cardinalities of A(v’)s by specifying thalue of

v’'. For example, in Fig6.8 we hae A(1.25) = 2*11 since 11 periods of sine
data intersect with the line v = 1.25. The smaller thlue v’ is (v’ > 0), the
longer the A(v’) will be. The maximum card(A(v’)) occurs when v’ = 0. The
card(A(0)) was tuned to 2000 in thexgeriments by the parametkrby tuning
the frequenyg of the TS). Compared to the cardinality of the whole sequence,
10K, it results in the ratio of 2K/10K = 20%, which is fstiEnt to model the
worst case bel@our. The reason is that we sked in Section 4.3 that the
worst-case of card(A(v’)) for the pressure sequenas enly 5% of the cardi-
nality of TS, although @lues are @ry noisy around v’ = -0.25.

Experimental Results

We expect that the execution time of o[-, (TS) using the IP-indewill be lin-

ear to card(A(v’)) since card(A(v’)) is the number of states needed to be visited
to get the results. By contrast, theeeution time ofol-, (TS) using linearly
scanning TS will be linear to the cardinality of the whole TS sinegyestate

in the TS needs to be visited.

The selected &' and their corresponding cardinalities used in the measurements are
listed in Table6.1. The gecution times 06[,-,,(TS) with regard to card(A(v’))s are
shawvn in Fig. 6.9. It verifies our “linear” speculation (abe). It shevs that the xe-

cution time ofc[,=,(TS) by linearly scanning TS is the same foy amlue v’, no
matter hav long the A(v’) is. By contrast, thexecution time ob[,-,,(TS) by using

the IP-inde is linear to card(A(v")). Thusthe smaller the cal(A(v’)) is, the

more we gain by using the IP-indeompaed to linearly scanning T®lote that

in most real life applications the submittqderiescl,-,,(TS) are normally for

82 Chapter 6 The s* Operator

15 q

125 — SEdsEdmEds

-15r- q

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450

Fig. 6.8: The synthetic sine sequence

short A(v’)s. For example, in Fig.1.4, we are interested in those peaks where v
> 1.5. Sinceol»1 fTS) is processed byl-; TS) (Section 6.2.4), thexecu-
tion time is determined by the cardinality of A(1.5), which is then only 80 for
the 100K time sequence, resulting in tleetbr of 80/100K = 0.08%. In this
case the time diérence between using the IP-ixder not is dramatic.

Table 6.1: Selected 8 and the cardinalities of A(v')s

V' 9.4 9.2 9 8.4 7.3 4.9 3.0 0
cardinality 14 60 106 246 504 1064 | 1508 | 2000

Another interesting obseation is that for the card(A(v’)) = 2000 (i.e., v’ = 0), the
query processing time of_},-,(TS) by using the IP-indeis approximately the same

as linearly scanning TS- we do not gin arything ary more. The reason is thiat
retrieve those S whose state_ids are in A(0), all disk pages storing the V& ha

to be visited since thosgsSare genly distrituted in the disk pages that store

the TS (page disions for the TS are illustrated in Fi§.10). The cardinality of

the anchosstate sequence is then 20% (2000/10K) of the cardinality of the
original TS. The threshold of 20% is dependent on the page size, of course. The
bigger the page size is, the smaller the threshold will be.

Section 6.3 Performance Measurements on SHORE

0.9

o
©

R
F9O- -6 - - - -0

L
G --0

using the IP—inde%(

linear scan the T:

o
3

o
o

o
3

execution time (s)

I
»

0.3

0.2

0.1

0 I I I I I I
200 400 600 800 1000 1200

cardinality of A(v)

I I I
1400 1600 1800 2000

Fig. 6.9: The ecution times ob[,-,(TS)

0.57

|
I
|
|
|
|
|
|
|
|
|
|
|
I

Fig. 6.10: The page diision of a portion of the sine sequen:

150 200

250 300

400

450

84 Chapter 6 The s* Operator

6.3.2 Getting the First Answer

We also measured the time to get the first answepf,,(TS) by using the IP-
index, compared to linearly scanning TAs mentioned in Section 6.2.2, it is
important to get the first answaquickly in real-time query processing.

Constructing the Experimental Data

By using the synthetic sine sequence it is easy to simulate the situation when
the first answer appears in diferent positions in the time sequence. The
selected v's and the positions where the first appear in the TS (i.e., the state_id
of the first state in A(Vv")) are listed in T able 6.2.

Table 6.2: Selected 8 and the positions where yhiirst appear in the TS

A 1.0 29 5.1 7.3 8.5
first appears in position| 122 2342 4912 7482 8882

Experimental Results

The «ecution times of getting the first answeraiq,-,,(TS) with regard to the
position where the first answer appears in the TS arwrsho Fig.6.11. It
shows that by using the IP-indethe time to get the first answer is constant
regardless of the position of the first anclatate (because the first state_id in
A(v’) indicates where to retrie@ the state Sn TS). By contrast, the time for
linear scanning to get the first answer can bey\slov when the first ancher
state appears late in the TS.

The conclusion is that it is essential toveahe IP-indg in real-time query
processing.

6.4 Related Work

In this section, we present theowk related to theoperator

6.4.1 TheOriginal o* Operator

First of all, we would like to point out that our notation of is actually “bor-
rowed” from an early paper on temporal databasesFormal Semantics of
Time in Databases” [33]. In [33], the operawt was defined as “a historical
database select”, denoting selectioniwplicit states from <§ S,,..., §, >

Section 6.4 Relateddfk 85

o
©

— using the IP-inde
G - -0 linear scan the TSp|

o
©
T

execution time (s)

o I o o I
w iS 0 o ~
T T T T T

\
\
\
N
\
\
L L L L L

o
N
T
\
|

o
o
T

\

o2 ¥ . o
N[— ‘ ‘ ‘ * ‘ ‘ ‘

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
the position of the first answer

Fig. 6.11: The ecution times of getting the first answeraiq,-,, (TS)

(note that a state; $1 [33] actually means the time stampriot the pair (f v;)
as we mean in this thesis). Since tlsep-wise constant”’assumption &s
assumed, [33] has the follong formula for calculatin@* gate = §

O*staTE =s, A=x(i) = OstatE = (g, A=x(Ti)

Herer; denotes a relation and A denotes an aiteébdomain of this relation.
The abee formula basically says that: since “step-wise constant” is assumed
on the relatiorr;, the attritute at an implicit state S is equal to the atitébat

the «plicit state [S], where

[S] = max(S)), where S; < S <S,and § < S

However, in [33], only the formal semantics of tlw& operator were gien, no
implementation issue &s discussed. Also the* in [33] only supports the
“step-wise constant” assumption.

In this thesis wexdend theo* operator in [33] to support arbitrary useefined
interpolation functions. The strafg is to separate the* operator from the
interpolation functiorifn™t (by introducing the IP operatosee Section 6.2.2).

In this way different kinds of interpolation functions can be supported. In con-
trast, in the abwe formulac* gaTE = 5 the interpolation function (“step-wise
constant”) is “hard coded” into the definition of tbeoperator so that only the

86 Chapter 6 The s* Operator

pre-defined interpolation function is supported (also note that for more sophis-
ticated interpolation functions, it will be di¢ult if not impossible to hard code
them into the definition of the* operator).

6.4.2 The “System Query” Q’

Bettini et al. [21] address a problem in temporal databases [134] which is simi-
lar to the problem of alue queries, i.e., deting implicit information from
explicitly stored information in DBMSs. In [21] it is pointed out that “when
guerying a temporal database, a user oftenema&lertain semantic assumptions
on stored temporal data”wb types of semantic assumptions are formalized in
[21]: point-based andinterval-based. The point-based assumptions are “those
semantic assumptions that can be used toreénformation at certain ticks of
time based on the informatiorx@icitly given at diferent ticks of the same
temporal type (i.e., temporal granularities)”. Tirgerval-based assumptions
include those that wolve different temporal types (time granularities). Each
assumption is viged as a wy to derve certain implicit data from thexplicit
data stored in the database.

In [21], the approach tovaluate queries concerning implicit data is the faHo

ing: By assuming an interpolation assumption, a database DB can be seen as a
larger databas®B that contains both eplicit and implicit information. A user

query Q is then translated into a system query Q' such that the answer to Q’

over the explicit data is the same as the answer to Q\eer the explicit and the

implicit data. The central point of this approach is that the interpolation
assumption (“step-wise constant”) is hidden inside the system query Q'.

By contrast, our approach is to associate the interpolation assumptioifn with
the SELECT operatoro instead resulting in thes* operator In this way there is
no need to transform the database DB®®or the user query Q to Q'.

The main contribution of [21] is on formalization of semantic assumptions and
how to transform a user query into a system queryQuery evaluation, on the
other hand, is listed as a “future work” in [21]. By contrast, our w ork deal with
implementation issues such as query\aluation and hav to achieve efficiency
(in addition to the formal definitions of TS and the o* operator). Another dif-
ference is that we support more sophisticated interpolation functions such as
linear interpolation or moving average, while in [21], only “step-wise constant”
or the average of two neighbor points are supported.

6.4.3 Relevant Operators in T emporal Databases

In the research literature on temporal databases, we ha found several opera-

Section 6.4 Related Work 87

tors (e.g., [32]) that hee semanticsery similar to theo* operator

To introduce these operators, werbdo plain the data model in [32] first. In
[32], the relational data model istended by allwing an attrilute to be dime-
varying attribute (TVA) (an attritute whose &lues \ary over time). For exam-
ple, in Fig.6.12, the attrihte HEAD in the temporal relation STUDIOS is a
TVA. A TVA is represented asinctions from the time domain to the attrite
domain, such as “1924-> Mayer”. The same holds for the relationWXERS

in Fig.6.13.

STUDIOS

(STUDIO HEAD NUM_FILMS

MCM 1924—> Mayer 1924—> 6
1948—> Schary 1925—> 10
1956—> NULL 1970—> 15
1970—> Aubrey
1974—> NULL

Paramount 1919—> Cukor 1919—> 2
1925—> Schulbeg 1925 --> 12
1935—> NULL 1936—> 10

RKO 1945—> Schary 1945—> 10
1948—> Hughes 1946—> 11
1957—> NULL 1947—> 12

Warner Br 1923—> J. Warner
1969—> Ashley NULL
1927—> NULL

Universal 1912—> Laemmle 1930—> 6
1936—> Blumbeg 1937—> 9
1946—> Spitz 1965—> 11
1952—> Rackmil
1955—> Hunter
1965—> Wasserman

Fig. 6.12: The STUDIOS relation

The o Operator

Since an attribute in [32] can be of a structured domain (i.e., functions from
TIME to a simple domain), the definition of the traditional o operator is signif-

88

Chapter 6 The s* Operator

Fr—_,—_—,—_—_—_—_—_—_— e —— —

\ |
! LAWYERS :
! (LAWYER STUDIO SALARY !
' Howell 1924 --> MGM 1924 --> 30K |
! 1930 --> Rramount 1925 --> 35K :
: 1937 --> MGM 1937 --> 40K :
! 1940 --> NULL 1940 --> NULL !
| |
: Rosen 1912 --> Unversal 1945 --> 70K :
: 1923 --> Warner Br 1953 --> NULL
! 1930 --> NULL :
! 1945 --> RKO !
| 1953 --> NULL |
| |
| McManus 1923--> Warner Br 1923 --> 35K :
! 1930 --> NULL 1926 --> 40K :
| 1930 --> NULL
| |

Fig. 6.13: The LAYWERS relation

icantly afected. Consider the foleing example:

O(st udi 0o(1925) = M) (LAVWERS) =

(Lawyer Studio Sal ary)

Howel | 1924 —> MaM 1924 —> 30K
1930 —> Paranont 1925 —> 35K
1937 —> MaM 1937 —> 40K
1940 —> NULL 1940 —> NULL

This example highlights the need for an interpolation function foAIVAs
Clifford and &nsel [32] point out: “Users must be able to query the database at
will with respect to time points or periods, and yet the database cannot possibly
store \alues for gery attribute at @ery point at time. Thus, each atwiie must

have an associated interpolation function, so that the database system can
reconstruct an entire time seriegeo the lifespan of each object from the par-
tial specification storetlin [32] “step-wise constant” as assumed on the AV

St udi o, hence the selection

O(studio(1925) = M) (LAWERS)

yields the first tuple (in the relation MAYERS) as shan abore.

Section 6.4 Related Work 89

The 1 Operator

Another relevant operator in [32] is the Time Sice (1) operator. A Time Sice
operator retrieves thesnapshot state of a relation R at a certain timet (refer to
[3][102] for more general discussions about the Tme Slice operator). In [32] it
is stated that: “In a sense, ther operator is a kind of g, in which a value from
the domain of a TVA is given. However, it is more general in that it allows the
selection across all of the attritutes in the relation”. Consider the following
example:

T(1925) (STUDI C§) =
(Studio Head Num Fi | rs)
MaM 1925 --> Mayer 1925 --> 10
Par anont 1925 --> Schul berg 1925 --> 12
VWarner Br. 1925 --> J. Warner NULL
Uni ver sal 1925 --> Laenmel NULL

This example shws that there are ddrent ways of modelling datawer time.

The attritute Head is interpolatable, and uses a simple step-wise constant inter-
polation. Havever, the attrilute Num Fi I ns is inherently non-interpolatable.
From the alue of Num Fi | ns at a gven time point, we cannot infer hing
about its alue at agp other time point. Therefore the retrexdl \alues of
Num Fi | ms areNULL (unknawn) for certain tuples, as swa abore.

The t operator is similar to thel[j-; or aljs operator They both retriee the
values (attrilites) at a certain time point or time intals. Havever, in [32],

only the semantics of the operator are addressed, no implementation (query
evaluation) is addressed. The purpose of [32] isxdereding the relational data
model to incorporate the temporal dimension. By contrast, arkwn the
o=y and oljsy operators address not only formal definitiong hlso imple-
mentation issues. Another tifence is that the operator only supports “step-
wise constant” interpolation or the non-interpolatable assumption (the returned
NULL values in the abee excample), while theo[-; or oli.+ operators support
arbitrary userdefined interpolation functions.

The Q Operator

In [32], there is a time-related operatorWHEN (Q), which provides a mecha-
nism for naming time values not simply with constants (like 1983) kut with

expressions (like WHEN A = v in the relation R). This unary operator on rela-
tions, unlike the other relational operators, yields as a result a set ofimes

rather than a relation. It is used to form temporal &pressions which can sere
as components of ar or g operator in [32]. The result of an Q is a set of time
intervals. Consider the following example:

90 Chapter 6 The s* Operator

Q(Studi 0 = Paranount, Head = O.Jkor)(STUJ Cs) = [1919, 1925]

The Q operator is similar to thel-,, operator in the sense that yhboth
retrieve the time stamps when thalues (“attrilutes” in [32]) satisfy some con-
ditions. The main dference is that th€ operator only retriges the gplicit
(stored) time stamps (more specificallalid timestamps) while the*,.-,
operator can also retsie the implicit (interpolated) time stamps according to
the userdefined interpolation function.

6.5 Proposing New Functionsfor the ADT of Time Sequences

As Stonebrakr [131] points out, modelling time series in relational databases
has dravbacks on both query processing time and space usage. Here is an
example. The \ll Street financial center manages closing price of stocks for
over 5000 securities. The traditionabw of constructing this application is to
form a table for each securjtyuch as this table for IBM:

create table | BM (
date date,
price float);

Then, if we wish to find the ddrence between IBM’five-day meing average
and its 200-day mang average on July 15, 1995, weowld hare to write the
following program:

mai n ()
{
find July 16th | BMrecord;
until 5 records seen
{
read previous |BMrecord,;
update 5 day average;
updat e 200 day aver age;

}
until 195 records seen
{
updat e 200 day aver age;
}
return (5 day average - 200 day average);

}

This application requires a custom program as well as a sequential scan of 200
records. In addition, suppose weanted to perform the calculation for all
stocks. In this case, we must put theabtogic inside an outer loop that iter-
ates @er 5000 securities. Ng there are manrecords gamined in 5000 dif-

Section 6.5 Proposing New Functions for the ADT of Time Sequences 91

ferent tables.

Therefore, Stonebrak [131] suggests that a time series should be modelled as
anabstract data type in object-relational database systems. At the time this the-
sis is written, time series ha already been implemented inveeal commercial
database systems as ewrdata type such as Informix time-series DataBlade
[65], Oracles time-series DataCartrige [95], and IBMtime-series DataEx-
tender (althougtvalue queries are not supported in grof these systems, and
some issues such asysiical oganization of time sequences and query optimi-
zations might need furthervastication). For example, the time series data type

in Informix consists of the follwing information:

calendar obged by the time series

» starting time of the time series

» stride betweenalues (for ample, daily or monthly)
« data types of elements (foxample, float or polygon)

» legal time series @alues in order

With this data type, the folleing stock table can replace the 5000 tables dis-
cussed earlier:

create table stock {
name varchar(30);
prices time_series of floats);

Here we hae one table, not 5000 tables, and one record per stock, not one
record per stock per date.

In Informix, there are 40 or sodal operations on time series. These include
constructing a mang average, gtracting a subset of the time series, and
aggreyating the time series to coarser granularityith these operations, the
above query can be formulated as folls:

select moving_avg (prices, 5, ‘1995-07-15’) -
moving_avg (prices, 200, ‘1995-07-15")

from stock

where name = ‘IBM’;

This introduces tw main adantages wer the prgious representation. First, it
can be completelyxpressed in SQL, making it easier for the user to code the
functionality Second, it runs muchaster than the pwéus representation
because only one woof one table needs baamined. Morewer, the code that

92 Chapter 6 The s* Operator

walks davn the time series isevy eficient and has a @ overhead relatie to
the code thatxamines records in a relational system.

Therefore, time sequences should be modelled as an abstract data type instead
of as relational tables. In addition to the abofunctions defined for time
series, we propose the foling functions which support interpolation assump-
tionson TS:

get_time_stamps(TS, =, V) (D
/I assume defult interpolation assumption
or:
get_time_stamps(TS, ‘=, Vv, i fn)

/[assume usetefined interpolation assumptidn

The abwee functions return the time points when tredue is equal to v’ for a
continuous TS. This function is translated to tig§-,(TS) operator and it is
efficiently supported by the IP-inde

To support range queries on continuous time sequences, we propose the func-
tion:

get_time_intervals(TS, >, V')
/I assume delllt interpolation assumption
or:
get_time_intervals(TS, >, v/, i fn))

/[assume usetefined interpolation assumptidn

to return those time inteals when the alues are greater than v’. This function
is translated to thel.,(TS) operator and is #¢iently supported by the IP-
index.

The data type of time sequences is just ox@&rele of an rtension to base
types in DBMSs. There are other application data which can be modelled as
abstract data types as well. Examples are spatial objects (points, lines, poly-
gons, etc.) and multimedia data such as images or videos. As Silberschatz et al.
[118] point out, the object-relational DBMS alls compl& types, nested rela-
tions, and object-oriented features. Standardizing queries on conyples in

SQL3 is under ay.

Section 6.6 Summary 93

6.6 Summary

In this chapter we hee presented thextended SELECT operatoo which
retrievessub-sequencedime intenals) in a time sequence TS where tladues
inside those sub-sequences satisfy some conditionsolloperator supports
arbitrary usemefined interpolation functions on TS. The implementations of
the c0operator for arious selection conditions were presented. dhe@pera-

tor is applicable to an1-D sequence data.

We hare performed tensive experiments on SHORE2] using both synthetic
and real-life time sequences. Theperiments shw that theoOoperator (sup-
ported by the IP-indg dramatically imprees the performance ohilue queries

on time sequences. The performanangis esen more dramatic for lge
sequences witemall answer sefswvhile most submittedalue queries in real-

life applicationsare for small answer sets. Another promising oba#ion is

that the performance afifor the first fev answes is stable, rgardless of the
positionswhere the first fi@ answers appear in the time sequence. Thisvsho
that the IP-inde is essential in the situations when the time sequence is long
and the query processing time is limited.

Related vork to thecOoperator vas discussed. Th&loperator vas compared
to other proposed operators in temporal databases. The maintages of the
oUoperator is in twfold: 1) the implementation issues are fullwyesticated;

2) it supports arbitrary usatefined interpolation functions (while most other
operators only support “step-wise constant” interpolation).

We also proposed some wefunctions for the abstract data type of time
sequences. The unique feature of these functions is thatstngport user
defined or system-defined interpolation assumptions on time sequences.

94

Chapter 6 The s* Operator

Chapter 7

Physical Organization

Physical oganization [137] determines thefiefency of a database system.
Physical oganization addresses maissues in DBMSs such as data structures,
index design, file format, data transfer between main-memory and disKer b
management, etc. In this chapter we are particularly interested in theifajlo
issues:

» Physical oganization of time sequences.

Time sequences are usuallgry lage in wlume, and man of them are
dynamically greving. Designing a good data structure forger dynamic

time sequences is challenging since one needs to minimize the amount of
storage used while maintaining reasonable access time. In Section 7.2.3, we
present a persistent data structure which scales up gracefully with the gro
ing of the time sequence and supporéstfrandom access in the time
domain.

» Physical oganization of secondary inges:

What distinguishes the IP-indérom corventional secondary indes is the
anchorstate sequences, A(v')soFone particular time sequence, A(v’)s are
dynamically greving, and ary much in length for diérent \alues of v'.
Thus it is important to hee a good data structure for A(v’). The design goal
is not to waste space for small A(v’)s and to supp@stfrandom access for
large A(V’)s.

» Physical oganization of lage objects:

Many application data result in lge objects in DBMSs, such as time series,
image, and video data. In Section 7.4, wevpde an @erview of how large

96 Chapter 7 Physical Organization

objects are managed iranous systems, including relational DBMSs and
object-oriented DBMSs.

e The impact of main-memory or disk resident DBMSs orygital data
organization and indedesign.

Main-memory resident DBMSs and disk-resident DBMSsehdifferent
properties that &ct almostevery aspect of system design and implementa-
tion. In Section 7.5, we uesticate hav these diferent properties &ct
physical implementation issues in DBMSs suchiadex design and data
structures, especially for sequence data.

7.1 Database Access Time
This section preides a background tdatabase access time.

Corventional database systems aliek-resident (DRDBS), i.e., data is stored
permanently on disks. Data are wed into main-memory for processing and
moved back to disks when there no longer needed. Space on a disk is allo-
cated in the unit oblocks (or pages), whose size ranges from 512 bytes te-se
eral kilobytes (depending on Wahe disk is configured). Ady concept is that
the transfer of data between disks and main-memory is in the uslibais, not

in the exact size of the data that is neededr Bcxample, if we wish to retriee a
4-byte intger from a disk where the block size is 4K, then the whole block
(size 4K) where this intger resides will be brought into main memory

Currently one disk 1/O taks approximately 10ms, and one main-memory
access tals approximately Ouls. Therefore, disk 1/0O is in orders of magnitude
slower than the access of data in main-memanyich males disk 1/0 the bot-
tleneck of the database access time in a DBMS. In estimating database access
time, we normally ignore operations in main-memocgunt only the time

spent on disk 1/O. Since disk I/O is in the unit of blocks, thisesake cost of
physical database access determined byntimber of blocks accessed.

Therefore, the goal of pisical database design in disk-resident database sys-
tems is to minimize the number of disk blocks accessed.

As main-memory becomes cheaper and the capacity of main-memory becomes
larger, memory-resident database systems (MMDBs) are becoming more and
more popular nwadays. The design of a main-memory DBMS is significantly
different than that of a disk-resident DBMS [56]eW/ill discuss the diér-

ences in Section 7.5.0F nov, we assume that all of our discussions are based
on corventional, disk-resident DBMSs.

Section 7.2 Physical Organization of Time Sequences 97

7.2 Physical Organization of Time Sequences

Since time sequences are usuakywlamge in wolume, storage &tiency is the
key to the practicality of time sequence support in DBMSs.d€sign a good
data structure for time sequences, weeht understand their properties first.

7.2.1 Properties of Time Sequences
A time sequence normally has the falimg properties:

1. Atime sequence ierdered by time.
The order of @lues in a time sequence is important, and thus should be pre-
sened in the plgsical structure.

2. Time sequences are usuallgry long [117].
This indicates that the data structure should be aimed at disk storage (i.e.,
persistent data structure) instead at main memory storage.

3. Time sequences are mostly append only [117]. Updates or deletes are rare
compared to insert.

This indicates that aon-updatable data structure can be used in order to
achieve better storage and accesficédncy. In other words, deletion can be
sacrificed in &vour of insertion.

4. Time sequences can be dynamic (Section 2.1).

This indicates that the data structure shosddle up gracefully with the
growing of the time sequence.

7.2.2 Arraysfor Time Sequences

Considering the ab@ properties, we suggest that @may structure is a good
choice for storing a time sequence. An array structucergact in storage, in
the mean time it pnadesfast random access to prelement. Let us see Wwo
arrays can be used to storefeient kinds of time sequences.

Regular/lrr egular T ime Sequences

Recall that a time sequence can beegular/irr egular (Section 2.1). This prop-
erty affects physical organization substantially. For example, if we store aregu-
lar time sequence in an arraythen we would not need to store the time stamps
(see Fig.7.1). This is because the time stamp;tcan becomputed by t; = t; + (i-
1)*At (At is a constant for a regular time sequence). Also, because of the rela-

98 Chapter 7 Physical Organization

tionship between a time stampand the position of the record in the arrean-
dom access of gnvalue gien its time stamp; ttan be computedithout the
need to bild an inde on the time domain.

Vi Vs V3 Vg Vs Vg V7| TS
Regular TS — tj =ty + (i-1)*At
(ty, v1) [(t2, Vo) | (t3, 3) [(tg, Vi) |(ts, VB) | (te, V6) |(t7, V7) | oo TS
Irregular TS

Fig. 7.1: Regular/Irregular TS stored in an array

Supportingirregular time sequences is more compl®&ormally the (t, v;) pair
has to be stored in the array (see Fid.). There are ta consequences of this
approach. First. the ability to dEtor out” time stamps (i.e., time stamps need
not be stored) in gular time sequences is lost. Secondhe simple indeing
capability over the time domain thaiests in the rgular case is lost. This indi-
cates that there is a need tald anindex on the time domain for irgular time
sequences in order to suppaasf random access.

Static/Dynamic T _ime Sequences

The static/dynamic property (see Section 2.1) of a time sequence #dcts physi-
cal organization in the sense that alynamic time sequence requires a data struc-
ture which is dynamically gr owing. Therefore, a simple, staticarray structure
will not do. An alternati ve is to allocate a small array first, then double the size
whenever the array becomes full. This requires coping the previous allocated
array to the newly allocated array each time the array is &panded. Performance
is apparently bad for lage sequences. Therefore, we propose aulti-level
dynamic arr ay structure in the next section to meet this challenge.

7.2.3 TheMulti-Le vel Dynamic Array Structur e

The initial moti vation that led to this work came from our experiments in
SHORE [86]. We found in SHORE a persistent, dynamic data structure named
sequence which seemed to be a perfect choice for implementing time
sequencessSequence is a huilt-in data type in SHORE. It is basically a dynamic
array that can gme arbitrarily lage and supports operations (methods) such as

Section 7.2 Physical @anization of Tme Sequences 929

insert, delete, andupdate. Unfortunately we found out that when one ele-
ment of asequence is accessed, thentire sequence is read into main-memory
This is certainly ery ineficient when the time sequence is long (e.g., 100K).
The reason for this surprising betaur is that, as stated in one of SHORFE’
manuals [115], demand-paging fegquence is not implemented in the current
version (\ersion 1.1).

Therefore, we started tovastigate a good data structure fordar dynamically
growing time sequences. Our first ideasvto partition the Ige time sequence

into arrays (each array fits in one disk page) and usé-aeR [35] to ind&

these arrays. In this case only one disk page needs to be read into main memory
when one element is accessed. Anothemathge of this data structure is that it
supports &st random access through thétBee.

Further ivestigations indicate that a*Btree is not really needed. The reason is
that these arrays are allocated in order (because a time sequence is ordered),
while a B'-tree is normally needed forks that do not arve in order (that is

why a B+-tree is adynamicdata structure). dking into account that a time
sequence is an ordered sequence, a simpler solution is oragsinstead of a

treeto inde these arrays.

The Data Structur e

Therefore, we propose amulti-level dynamic array structure (Fig. 7.2), which
meets the challenge of supporting bothfast appending and efficient random
access

| (tq, /O)|(thv C{)| (t19’ o)|]

index
S arrays

| (o Ci)| (t4 | (t7, Q) (t13.0)| (tleo) |

N

[t)| (2 v) 153 | 10 W) (5 v9)| 16, ¥0) | 7, 0| tg. W0t v9)| ----- <«— base arrays
(storing TS

Fig. 7.2: The multi-level dynamic array structure for a dynamic, guéar TS

The multi-level dynamic array structure consists ofbase arrays and index
arrays. Each base array or indg array fits in one disk page. The base arrays are

100 Chapter 7 Physical @anization

used to store {tv;) pairs in the TS, see Fi@.2 (there we assume threg)
pairs fit in one page). The indarrays are for indéng base arrays. The first-
level index arrays hae the form (t pointer) wherepointer points to the base
array with the starting time stamp see Fig7.2. The second-lel index arrays
have the form (t pointer) wherepointer points to the first-leel index array
with the starting time stamp. fThe multi-level dynamic array structure gms
from bottom to top as TS gns. Random access of aelement of TS can be
achieved easily by a search starting from the togeléndex array and follev-
ing the pointers don to the laver level index arrays until a base array is
reached. Bst appending is assured because only the right-most arrays in each
level needs to be accessed whenwa (g v;) pair is inserted into TS.

The adantage of using an array as an ixndestead of a B-tree is that it is
more eficient in terms of both space and tintTéhe reason for spacefiefency

is that a node in a Btree is not alvays full (> 50%), while our indearrays

will be mostly full (except those belonging to the right-most chain). The reason
for time eficiengy is that we do not need to perfomode balancings in a B-

tree when ne keys are inserted. When awarray is allocated, only the point-
ers in the right-most arrays need to be adjusted.

Now let us see he this data structure scales up with thewgirg of the time
sequence. Suppose that a pointer andlaevy (a floating point number) tals
4-bytes each, a timestamptakes 8-bytes [124], then a 4K page will hold
approximately 333[{4K/12) elements for eitherlzase aray or anindex array.

By using a 2-lgel dynamic array structure, we can store a TS wiéidinality

up to 33% 0 111K (the size of this time sequence will then be 111K *112
1.3MB). By using a 3-leel dynamic array structure, we can store a TS with
cardinality up to 333037M (the size of the time sequence will then be 37M *
12 0444 MB). Thus, the multi-kel dynamic array structure scales giace-
fully with the gravth of the time sequence.

Notice that this estimation is pessimistic because mogé lame sequences are
regular ones, i.etime seriegSection 2.1.4). & regular time sequences, only
values need to be stored (time stamps aotoired out, see Section 7.2.2). An
example of the multi-leel dynamic array structure for agwar time sequence
is shavn in Fig.7.3. There, in base arrays, onlglves y are stored. In the first
level index arrays, {, pointer) pairs are stored whepminter points to the base
array whose first element is.v

In this case a 4K page will hold 1K (4K/4) elements for a base ,aaray 500
(4K/8) elements for an indearray Then a 3-leel dynamic array structure can
hold a TS with cardinality of 530¢ 1K = 250M. The size of the time sequence
will then be 250M * 4 = 1 GB. See the “capacity” of the multtdedynamic
array structure in dble7.1.

Section 7.2 Physical Organization of Time Sequences 101

[@o)]@oq)| @eo) -
/ Y index
Sarrays
| a, 9)| (49)| (7,q)| |(10,Q) (13,o)| (160)|
r/ \\ 1
|"1|"2|V3||V4 V5|V6||V7|V8|V9| ----- <— base arrays
(storing TS

Fig. 7.3: The multi-level dynamic array structure for a dynamicguéar TS

Table 7.1: Capacity of the multi-leel dynamic array (page size: 4K)

Levels | Regularity TS Size Index size % index size
TS size
Irregular 1.3MB 4KB 0.3
2 Regular 2MB 4KB 0.2
Irregular 444MB 1.3MB 0.3
3 Regular 1GB 2MB 0.2

In Table7.1 the space usage of thwlex arrays is also listed for each case. It
can be of great interest to compare the size of thexinadgays with the size of
the TS. It can be seen that in therat case (i.e., the case for grgar TSs), the
space usage of the indarrays is 0.3% compared to base arrays. In the best
case (rgular TSs), the space usage of the mderays is 0.2% compared to
base arrays. Therefore, the spagerbead of indeing a TS using the multi-
level dynamic array structure is glégible.

Notice that for a small TS that fits in one page, we do not need the andeys.
One base array will do. This is agbmerate case of a multiviel dynamic array
structure.

Insertion

Insertion into the multi-level dynamic array is very straightforward. We will
illustrate the insertion process in Fig.7.4 and Fig.7.5. In our discussions we

102 Chapter 7 Physical Organization

assume one disk page holds 300 elemei33@ abee). Havever, for illustra-
tive reasons, in Fidgl.4 and Fig7.5, we assume 3 elements for each page.

Let us start with an empty TS. When the pajr () arrives, we allocate a base
array (let us call it base_array_1) and stoke \{{) in the first element. In the
meantime we allocate an indarray (let us call it inde array_1) with the first
element (1, pointer) where pointer points to the base_array_1, see High.
Suppose one disk page holds 300 pairs, then the insertion of the remajning (t
vj) (i = 2, 3, 4...300) can be done easily by just storing them in base_array_1
without ary further operation. Whend3,, v3gq) arrives, we allocate a mebase
array (let us call it base_array 2) and fill in the second element in
index_array_1 with (§91, pointer) where pointer points to base_array_2.
Repeating this procedure, we can store the time sequence with cardinafity 300
without creating a ne index array

Now, when the No. 30%+1 element in TS awes, we hae to allocate a e
base array (illustrated as base_array_4 in Fig) and a n& index array (illus-
trated as inde_array_2, see FigZ.4). The ne base array is used to store the
new (t;, v;) pair and the ng index array is used to indethis nev base array and
the old inde arrays. The current structure is illustrated in Figt. If you viev

it as a tree structure (with indarrays as internal nodes and base arrays as leaf
nodes), then the tree is unbalanced becausdeil® of the right sub-tree
(which is 2) is less than that of the left sub-tree (which is 3).

index_array_2
SRR CN
] index

S arrays

index_array_1

| (ty, 9)| (t4,)| (tz, C\)

N\

|(t1, V1)| (tz, V2)| (ta, V3)| | (ta, V4)| (ts, V5)| (te: V6)| | (t7, V7)| (ts, V8)| (to, V9)| |(t10, v11)| | |

base_array_1 base_array 2 base_array_3 base_array_4

Fig. 7.4: Insertion in the multi-leel dynamic array (unbalanced structure

The insertions of the remaining 299 elements can be done easily by filling the
base_array 4. When the 36301 element in TS awmeés, the multi-leel
dynamic array will appear as in Fig.5. At this moment the tree structure is
balanced.

Section 7.2 Physical Organization of Time Sequences 103

index_array_2

[(.9)]to o) |
/ \Z\] index
_ _ arrays
index_array_1 index_array_ S
EXIRIEEY | (o 9) (o) |
! :' /
! |
A / |
| (tl’ V1)| (th V2)| (t3’ V3)| (tlov VlO) (tllr Vll) (tlZv VlZ) |(t13, V13)| | |
base_array 1 base_array_4 base_array_5

Fig. 7.5: Insertion in the multi-leel dynamic array (balanced structure)

The insertion continues until the tree structure in Fi§.is full. Then a na,
higher level index array will be needed. In thisay the tree structure gns
with the TS. Notice that, as we calculated in the last section, aeBdgnamic
array structure (as in Fig.5) will be able to hold a TS with a considerable
large cardinality Therefore we normally doot need to allocate higherJel
index arrays.

Migration

When TS graws very long, old parts of the sequence can be migrated to tapes or
other off-line storage easily. For example, in Fig. 7.5, we could migrate the left
sub-tree whose root is inde_array_1 to tapes, and shift gery (t;, pointer) pairs

in index_array_2 one element left (or we can simply let the pointer (f pointer)
points to nil). This migration will not af fect the right sub-tree at all. Therefore,

it can done easily without rebalancing the tree or adjusting other pointers in the
sub-trees.

Sear ch

Search in the multi-level dynamic array can be done diciently given a time

stamp t. Normally we would lik e to retrieve the (§, v;) pairs in TS where the {s

are close to the given time stamp t (such asjt< t < tj;1). This can be done by
performing binary search in each ned@t array starting from the root array
(index_array_2 in Fig7.5), and traersing devn the tree structure until a leaf
node is reached. In the leaf node (a base array), binary search is performed to
find the positions where the “closest}, (;) pairs reside.

The cost will be, of course, determined by theeleof the structure (which is

104 Chapter 7 Physical Organization

determined by the cardinality of the TSprFa 3-level dynamic arraythe cost
of retrieving (§, v;) pairs gien a time stamp will be 2 disk 1/Os since the root
array is alvays lept in the main memory

To facilitate linear scanning or sub-sequence reimig the leaf nodes (base
arrays) can be lirdd together in allocating ordeFhis is the same in most'B
tree implementations.

7.2.4 Related Work

Although little work has been done in data structures of temporal data or time
sequences, we found some relategrkvon indexing temporal data. Some of
this work is very close to the idea of our approach (such as the PLI-treebelo
We compare wrk related to the multi-keel dynamic array structure in this sec-
tion.

Comparison with the PLI-tr eeand the AP-tr ee

The closest related vork to our multi-le vel dynamic array structure is perhaps
the I-tree [135], the PLI-tree [135] and the AP-tree [58]. These tree structures
are all designed for eficient access of append-only temporal data. The I-tree
and the PLI-tree are designed for indging the transaction timestamps [67] of
entries in a backlog [135] to efficiently support differential computation of
timedlices [135] (a PLI-tree is an improved version of an I-tree [135] where
pointer s in each tree node arecomputed instead of stored). The AP-tree is
designed for indexing interval timestamps of temporal relations to support
event-join optimization [104]. A PLI-trees bares very similar structure to an
AP-tree. They are both multiway search trees that are ybrid of an ISAM inde x
and a B'-tree. The main difference is that the PLI-tree Bvours insertion more
than the AP-tree and completely sacrifices deletion. That is also the reason wh
pointers can be computed in a PLI-tree bt not in an AP-tree. By saving the
space for pointers, a PLI-tree node has mordanout than an AP-tree node.
Therefore a PLI-tree takes less space than an AP-tree. (According to [135], a
PLI-tree is approximately 33% smaller than an AP-tree when indging 1 mil-
lion pages.)

If we compare the I-tree (or PLI-tree) with our multi-le vel dynamic array struc-
ture, we see that the I-tree structure is gry similar to the part of the index
arrays in Fig. 7.2. Actually, if we replace the backlog in [135] with the base
arrays in Fig. 7.2, then, an I-tree can be used to indethe base arrays in the
same way as they are used to index the backlog. The way the index arrays grow
with the TS (Section 7.2.3) is also \ery similar to the way how an I-tree grows
with the backlog. A minor dif ference is that the structure of a “node” is difer-
ent between these tw index structures. In the multi-level dynamic array struc-

Section 7.2 Physical Organization of Time Sequences 105

ture, a node is aarray structure so that binary search can be performed.

As we mentioned before, an I-tree is used to xndebacklog [135] while a
multi-level dynamic array structure is used to irRdame sequences (stored in
base arrays). Let us look at thefdience between a backlog and a TS. A
record in a backlog [135] tads approximately 128 bytes [135], whileezord

in irregular TSs (i.e., (t v;)) takes 12 bytes (since, takes 8 bytes and;vakes

4 bytes). Therefore, for a backlog and a TS with shme cardinality, the
number of pages used to hold the backlog will be 10 times more than the
number of pages used to hold the gutar TS (the ratio will beven bigger if

TS is reyular). Therefore, the size of an I-tree (i.e., the number of tree nodes)
for the backlog will be much bigger than the number of thexrateays needed

for the TS. This is the reason whl35] uses computed pointers to increase the
fanout of each node of the tree (thereby reducing the size of the tree). In our
case, as we calculated before, a Bledynamic array will be able to hold a
regular TS with size of 1G (assume 4K page size). Therefore, we do not need to
investicate a “pointless” grsion of the multi-leel dynamic array

Another diference between the PLI-tree and the multieledynamic array is

that the PLI-tree is more suitable for ixileg long backlogs, while the multi-
level dynamic array structure is suitable for bolbng and short time
sequences. The reason is that in a PLI-tree, eidats are allocated to store

the nodes of the treeoTdecide the size of thexent is trick: too big a size

will waste space for small trees (in the situation of short backlogs), too small a
size will male the size of the array [135] that contains starting addresses of all
extents (this array needs to bet in main memoryas stated in [135]) rather
large. Therefore, the PLI-tree is not suitable in the situation when both long and
short backlogs need to be supported (unless the size of axiieskt €an be
madedynamic for different sizes of backlogs and this dynamic information is
maintained someghere as meta-data).

Linked List

Shoshani and Kavagoe [117] suggested a simple approach to store dynamic,
irregular time sequences. That is, allocate pages (blocks) in order for the gws
ing time sequence and use an ordered list opage _number start_time) to index
these pages. Gien a time stamp {, such an inde can be searched to find the
page that holds the corresponding alue v;. In this case the access of an element
requires two steps: one to determine the appropriate page, and one to locate the
position of the value in that page.

This approach, compared to our multi-leeel dynamic array structure, has the
drawback that it has to do linear scanning on the list page_number, start_time)
to find the corresponding page (and linear scan the page to find)v This will be
slow when TS is long.

106 Chapter 7 Physical Organization

Arrays versus Relational T ables

Arrays are used to implementime series (i.e., regular time sequences, see Sec-
tion 2.1.4) in some commercial DBMSs and special-purpose management sys-
tems. Examples are the object-relational DBMS Informix [65] and the special
purpose management systemAME [52]. Compared to our multi-le vel dynamic
array, arrays in these systems are simplestatic structures, with no support for
dynamic TSs. Neither do theg support page fulting for large arrays. As Dreyer
et al. point out in [41]: FAME “has many useful features, hut search and
retrieval facilities are very poor”. In a paper on managing temporal financial
data in extensible database systems [28], it is pointed out that: “storage meth-
ods for temporal objects encountered in trading applications is an open prob-
lem. Although there have been sgeral proposals in the literature for eficient
storage and retrizal of temporal and multi-dimensional data, it is not clear
which proposal is the best or whether a completely n& approach is required.

Due to the limitation of the current array implementations, some systems
choose to implement time series agelational tables instead. An example is
Oracle’s TimeSeries DataCartrige [95]. The reasons for their choice are, as
Lory claims in his tutorial “Managing Financial T ime Series: Object-Relational
and Object Database Systems” [140]: 1) Storing time series as relational tables
provides relational access to time series data. On the other hand, arrays are
opaque in SQL. 2) Tables support st incremental loading (this implies that
arrays do not support incremental loading well).

We have shavn that by developing a dynamic array structure such as the multi-
level dynamic array, fast incremental loading is well supported. Also, using the
object-relational technology [131], corresponding access methods can be asso-
ciated with the dynamic array structure. This will make the array access trans-
parent to SQL [131].

On Access P atter ns

We found [117] probably the earliest work addressing the issue of data models
and physical organization of time sequences . Since physical organization of any
data is heaily dependent on the epected access patterns, the follwing
assumptions on access patterns on time sequences were made in [117]:

1. “The order of values in a time sequence is important, and thus should be
presened in the ptysical structure. One needs to minimize the number of
disk pages (blocks) read from secondary storage for range queries in the
time domain.”

2. “We wish to have random access in the time domain. While in some applica-
tions one can ewision accessing entire time sequences, we bele that effi-

Section 7.3 IP-index 107

cient access to parts of the sequences is necesBamg, some indeng
methods on the time domain is neces$ary

3. “A secondary inde over the data @lues is not needed in most applications.
Such an inde can potentially beery expensve in terms of storage, because
the number of entries for such an indse in the order of the number of data
values. In ap case, such an inderovides a maginal benefit in situations
where the typical access to the dataoimes restrictions on the time
domains. V& will assume that such inkes (if absolutely necessarypwld
use comentional indging methods.

Our multi-level dynamic array structure satisfies thewaboequirements 1 and

2 well, i.e., the order ofalues in the time sequence isyplcally presered in
every base arrgyand the inde on the time domain is achied by the inde
arrays. Meanwhile, we gue that the third assumptionrist true. The reasons
are that, as stated in Section 1.2.2, a secondary iisd#efinitely needed in the
value domain for time sequences, and aveational secondary indeis not
capableof dealing with alue queries (Section 3.5).aAhave shavn that it is
possible to deelop indees such as the IP-indevhere the number of entries in
the index can be smallven for lage time sequences (see Section 3.4 and Sec-
tion 4.3).

By developing the IP-inde and the multi-leel dynamic array structure, we
have shavn that management of time sequences (or time series) can be sup-
ported well in a DBMS. Hicient search based on time stamps (or time inter-
vals) is supported by the multidel dynamic array structure, andfiefent
search based omilue constraints is supported by the IP-d@ynamic grav-

ing of time sequences is also supported by the mulgtldynamic array struc-
ture.

7.3 IP-index

In this section we discuss theyslical oganization of the IP-inde First of all,
we have to male it clear the tw properties of the IP-inde 1) the IP-ind® is
an ordered inde 2) the IP-ind& is a secondary inde

To understand wh the IP-inde is an ordered indeis easy As defined by
[137], an ordered indeis an ind& based on a sorted ordering of thaues.

The IP-inde is based on the sorted ordering of the m the TS, thus it is an
ordered indg.

Why the IP-inde is considered as a secondary ixdg not that olsious. We
shall start with the definition of a primary indand a secondary inge

108 Chapter 7 Physical Organization

7.3.1 Primary Indexes and Secondary I ndexes

There are basically twkinds of ordered ind@s. An ind& that determines the
location of the records in a file is calle¢h@amary index [118]. Generallya pri-
mary inde is based on ady for the file, lut not necessarily thprimary key
[118]. Thus, a primary indeshould not be interpreted as an iRdmsed on a

primary key.

Primary indees are also calledustering indexes, because theey in the pri-
mary inde determines the clustering of a file. Aragnple of a primary inde
is shavn in Fig.7.6. There we hee a relational tablemployee (hame, age, sal-
ary) stored as a file, clustered on they Kiled name. Therefore the indebased
on the fieldname is a primary inde.

The inde Theemployee file

> Brown 32 6000
own | Ty | David 28 5300
David] David 30 5600
Mary ———— [Mary 30 6200
Peter [Peter 39 7000
Richard > | Richard 40 6500
Sara ™ Richard 45 8000

\‘ Sara 40 7400

Fig. 7.6: A primary index on employee file, on the ley field name

Given the aluev of a field other than theel that determines the clustering of
the file, to find all records that W& valuev in that field, we wuld need asec-
ondary index. A secondary indeis an inde that does not determine the loca-
tion of records in a file, also called ronclustering index. An example of
secondary indees is shwn in Fig.7.7, where the secondary indes kuilt on
the fieldage (the file is clustered on the fiefcime).

Now we shall see whthe IP-ind& is a secondary inde Since a time sequence
TS = (4, vj) is normally clustered by the time stamps, fall indexes that are
based on thealue domain js are considereskcondary indexes (nonclustering
indexes) for a time sequence. So is the IP-inde

Section 7.3 IP-index 109

The inde Theemployee file
Brown 32 6000
ii N David 28 5300
- David 30 5600
32 | ~ Mary 30 6200
3 | + Peter 39 7000
40] Richard 40 6500
4 | T Richard 45 8000
Sara 40 7400

Fig. 7.7: A secondary inde on employee file, on the fieldage

7.3.2 |P-index as a Secondary Index

A primary inde and a secondary ingéhave different structures. As sha in
Fig. 7.6, a primary inde consists of pairs

(<key_value>, <block_address>)

to indicate where the (first) record with theykequals tdkey value resides. A
secondary indeon a fieldF, on the other hand, consists of

(v, reference*)

to indicate where the record (or records) whoakies in the field= equal tov
reside. Theaeference can be implemented in one of the foliog two ways:

1. A pointer to the record in question.

2. The key value of the record in question.

In Fig. 7.7 we use the first approach, i.eeference* are pointers to the records
in question. This approach has the adtage that getting to the intended
records is dster than the second approach, i.e., ugmgvalues. WWith a key
value we hge to use the primary indestructure to get the record. On the other
hand, using &y values rather than pointers peats the records from becoming
pinned (A pinned record cannot m® freely around the storage space, see

110 Chapter 7 Physical Organization

[137]).

In the case of the IP-indewe chose to use tHey value (i.e., the state_id) of

the record as the reference to the recont.&kample, if A(V') =<S;, &, Si5>s

then we store the ingers 1, 6 and 10 in the IP-indé@.e., we hae A(V’) = <1,

6, 10>). An alternatie could be to store the pointers to the blocks witgs&;

and §g reside. The reason we chose to store the state_ids instead of block
addresses is that weowld like to hae the IP-indg independent of the plysical
organization of the time sequence.

How to I mplement the Anchor -State Sequences?

Having shown that an anchorstate sequence A(V’) in an IP-inde is a sequence
of integers, let us see hw to implement this integer sequence. This is actually
the most tricky part of the IP-index implementation. The challenge comes from
the fact that for a time sequence, the anchestate sequences A(V')s can &ry

much in length for different values v’ (see Fig.10.4 in Section 10.3) The design
goal is in twofold: 1) not to waste space for small A(v')s; 2) to achieve fast ran-

dom access on lage A(v')s (random access of A(V') is needed in the case of
time window queries, as shavn in Section 5.3). Suppose we hae an IP-index as

follows:

Ky, 1,2, 6,ky, 1,5, kg, 6,7, Ky, 6

The first approach is topack the (k;, A(k;)) pairs into blocks in order and then
use some inde structure (such as a B-tree) to index these blocks, as shan in
Fig. 7.8. There we assume that six elements of artype fit in one block.

a B'-tree inde

/
Ll [l)[Rl] LRl |]

|kl 1] 2] 6ky| 1| | 5]|ks| 6] 7] ks 6] < pacled blocks

Fig. 7.8: Packed blocks for secondary inges

Section 7.3 IP-index 111

This approach has the aamhvtage that the number of blocks used to store the
A(kj)s are minimized (because alll§)s are pac&d togethej But it is not suit-
able in the case of dynamic time sequences. & dynamic time sequence,
A(kj)s will grow dynamically with TS. Therefore it is impossible to pack all
A(k;)s together as in Fig..8.

The second approach to implement tke A(k;)) pairs is to use separate stor-
age for @ery A(k;), as shwn in Fig.7.9. Every A(kj) is implemented as ehain

of blocks. In Fig.7.9, each of the Af) fits on one block. In general, an Y
could corer maty blocks.

a B'-tree

Fig. 7.9: Separate-storage structure for secondaryxase

Recall that we wuld like to hae fast random access in A(v’) in order to sup-
port time windev queries (Section 5.3). Therefore we needuddosome kind

of index on these chained blocks. This leads to the idea of usinguhelevel
dynamic array structure (Section 7.2.3) to store A(V’) instead. Suppose we
have an anchostate sequence as folle (the intgers in the anchestate
sequence represents state_ids:

A(v') = <3, 5, 6, 8, 10, 15, 18, 20, 21, 24, 25, 27, 30, 32>

This anchorstate sequence will be ganized as a dynamic array as illustrated

112 Chapter 7 Physical Organization

in Fig. 7.10 (suppose six ingers fit in one page). There we store the state_ids
in the base arrays and use an inderay to ind& the base arrays by recording
the starting state_id ofvery base array

[1,9]7, o] 15q|<— theindearray

— — — —_— — —

/
|3|5|6|8|10|15|

)

\

| -

| the base array
\

\

]

\
\
\
| | 1:1 20| 21|24|25| 27|
\
|

[3ds2)01

~

A(Vv') =<3, 5, 6, 8, 10, 15, 18, 20, 21, 24, 25, 27, 30, 32>

Fig. 7.10: A two-level dynamic array for an anchorstate sequence A(V’)

It can be seen that implementing anchktate sequences as multi<é dynamic
arrays has te adwantages: 1) It does notaste space for small A(v)s; 2) It
guaranteesast random access for ¢gr A(v')s.

7.4 Storage Management for Large Objects

The reason wy we irvestigate storage management fi@rge objects is that
mary application data result in ige objects in DBMSs, such as time series, image
and video data. Among them, we are particularly interestedga saquence data.
Most commercial database systems wlla sequence to be represented as a
‘BLOB’ (binary large object) [131]. Since a BLOB is treated as an uninter-
preted sequence of bytes, no data structure is supporte@x&mple, there is

no support for operations suchgest el ement (i), get next () as that for
thesequence structure in SHORE (see the Appendix). In otherds, it is up

to the application program to interpret the structure of the BLOB. Some object-
oriented systems |l&k O2 [14] preide array and list constructaibdo not sup-
port query languagesver them.

In this section, we will gie an @erview of hawv large objects are managed iarious
systems, including relational DBMSs and object-oriented DBMSs.

Section 7.4 Stage Manajement for Lage Objects 113

7.4.1 In Relational DBMSs

Physically, a database is a collection of records stored in a fileefample, in
relational DBMSs, auple in a relational table is stored asrecod, and an
attributein the tuple is stored asfi@ld of the corresponding record.

In relational DBMSs, records are composed of fields which are normally con-
strained to 255 bytes. Lger fields present problems to the databeessrd
managerso thg must be managed separatdljsually the work is done by the
long field manger (the term bng fieldsis used to refer ttarge objectsin the
relational world).

The first SQL relational database system, System R [12], managed long fields
as alinked listof records, each 255 bytes in length. Operations were restricted
to reading and writingntire long fields; partial reads or updates were not sup-
ported. The maximum length of a long field in System &swestricted to
32,767 bytes.

Later, an extension to SQL &s proposed that pvied operators for manipulat-

ing long fields [62]. A n& interface, the long fiel@dursor, provided the ability

for partial reading and updating of long fields. A storage mechaniasnpno-

posed that stored long fields as a sequence of 4K data pages (rather than the
previous scheme of a lirdd list of 255 byte records). The maximum length of a
long field in extended SQL s about 2 gigbytes. This approach, compared to

the one in system R, has the impement that partial read/write is supported

for long fields (although it is s\o).

The Wisconsin Storage System (¥8) [30] used a similar mechanism for stor-
ing long fields. A Wiks long field vas split into 4K pages, calleslices To
reduce internal fragmentation,caumh a partially filled slice managed simi-
larly to a database recordaw used to hold the lastggeent of a long field if it
did not occup a full slice. A long field was represented by a directory of slices,
plus a crumbWiss long fields had a size limit of 1.6 gadytes. Compared to
the previous approach, it has the ahtage that space utilization is better due to
the introduction otrumbs Partial read/write is supported by a mechanism sim-
ilar to a cursagrtherefore it is still sha.

Starturst [103] is an xtensible relational database systenveleped at IBM
Almaden Research Center that suppontteesions of data types and proce-
dures. The Statbst long field manager [74] aims at managing thosgelar
objects that appear in modern applications suchoaeyimage and video data.
The size of lage objects isxpected to be in the order of 100 gabytes. The
design goal is taninimizedisk seeksn disk 1/0, and optimize time and space
in allocatinganddeallocatinga long field. The approach choseasahebuddy
systen]70] that was talen from some file systems (such as the DartmoutieT

114 Chapter 7 Physical @anization

Sharing System [71]). It is characterized by the use of continuous disk space
(termed diskextents which can be much lger than the size of a disk page) to
allocate lage objects. In this ay disk seeks@are minimized when read/write a
large object. This approach has the limitation that it only supports trimming/
appendingat the end of laige object, update in thaiddleof an object is dff-

cult to support (due to the use of diskents). Havever, Schvarz et al. [103]
claim that applications such as thoseailving voice, image, sound, or video,

will normally require read/write thentire long fields, and partial updates are
normally only needed at the end of the long field (i#m or append.

7.4.2 In Object-Oriented DBM Ss

In object-oriented DBMSs, Ige objects are managed more gracefully than in
relational DBMSs. This is perhaps due to thded#nt data models of thesedw
kinds of systems. ¢t example, in OODBMSSs, there is no such limit as the
length of afield as in the relational DBMS case.

In the OODBMS world, the most successful system in dealing withgear
objects is probably EXODUS [25], which supporést insertion, deletion, and
retrieval at any positionfor a lage object. EXODUS latervelved into the dis-
tributed object system SHORE [22]. In what fell®we describe the data struc-
ture for lage objects in this system.

Conceptuallya lage object in EXODUS is an uninterpreted sequence of bytes;
physically, it is represented on disk as 4-Bee ind& on byte positions within

the object, plus a collection of leaf (data) blocks. Fig.l shavs an gample

of a laige object in EXODUS. The root of the tree (the object header) contains
a number of (count, page #) pairs, one for each child of the root. The count
value associated with each child pointewas the maximum byte number
stored in the subtree rooted at that child; the count for the rightmost child
pointer is therefore also the size of the object. Internal nodes are sib@iag
recursively defined as the root of another object contained within its parent
node. Thus, an absolute bytdsst within a child translates to a relatioffset
within its parent node. The left child of the root in Figll contains bytes 1-
421, and the right child contains the rest of the object (bytes 422-786). The
rightmost leaf node in the figure contains 173 bytes of data. Byte 100 within
this leaf node is byte 192 + 100 = 292 within the right child of the root, and it is
byte 421 + 292 = 713 within the object as a whole.

The leaf blocks in a lge storage object contain pure datano control infor-
mation is required since the parent of a leaf contains the byte counts for each of
its children. The size of a leaf block is a parameter of the data structure, and it
is an intgral number of contiguous disk pagesr Bften-updated objects, leaf
blocks can consist of geral contiguous pages tower the I/O cost of scanning

Section 7.4 Storage Management for Large Objects 115

oID
Header(Root) || 421 786 |

Pages. ||| 120 |l| 282 | \I\‘421| [\[192]] 365 |

ceal o [[120]| |[162]| |[139] (102]| |[173]

Fig. 7.11: An example of a large object on disk

long sequences of bytes within such objects. As TrtrBes, leaf blocks are
allowed to \ary from half full to completely full.

Associated with this lge object storage structure are algorithmsearch for

a range of bytes, timsert a sequence of bytes at asgm position in the object,

to append a sequence of bytes at the end of the object, add éte a sequence

of bytes from a gien position in the object. These algorithms [23] are designed
to achiee best-case storage utilization. According to [23], leaf blocks in this
storage structure are at least 80% full, and internal nodes are at least 50% full.
(To be more precise, the algorithms guaranteeltiie last tw leaf blocks to

be completely full. This is important for space utilization sincgdaobjects

are often created dynamicallyThe reason whthey pay more attention to the
utilization of leaf nodes than internal nodes is that internal node utilization is
not as critical as leaf node utilization because of thgeldanout of internal
nodes.

Table7.2 shavs examples of the approximate object size ranges that can be
supported by trees of height dwand three, assuming iwdifferent leaf block

sizes. The table assumes 4k-byte disk pages, 4-byte pointers, and 4-byte counts,
so the internal pages contain between 255 and 511 (count, pointer) pairs. It can
be seen that twor three lgels will sufice for most lage objects.

Compare the EXODUS lge object storage structure with our multéé
dynamic array structure: the mainfeifence is that the EXODUS structure sup-
ports update in themiddle of a lage object, while our structure assumes
append-only (sequentially gmdng) data. The fleibility of the EXODUS data
structure is obtained by paying the price for a more compisertion algo-

116 Chapter 7 Physical Organization

Table 7.2: Some examples of object sizes

No. of Tree Levels Leaf Block Size Object Size Range
1 8KB - 2MB

2 4 32KB - 8MB
1 2MB - 1GB

3 4 8MB - 4GB

rithm (taking care of node balancing, etc.).

The conclusion from the above discussions on large object management is that
the design of data structures for large objects should be based on the expected
operation patterns such as random/sequential access, delete/update frequency,
the granularity of read/write, etc. Trade-offs exist between space utilization and
complexity of insertion, search algorithms.

7.5 Main Memory DBM Ss ver sus Disk-Resident DBM Ss

The implementation of the IP-index in both a main memory database system
(Section 4.1) and a disk-resident database system (Section 4.2) made it interest-
ing to compare how these two kinds of database systems differ. In this section
we investigate how these differences affect physical implementation issues
such as index design and data structures, especially for sequence data.

7.5.1 Background

As pointed out in Chapter 7.1, a main memory database system (MMDB) is a
database system where data reside permanently in main memory; while a disk-
resident database system (DRDB) is a database system where data reside per-
manently on disk. Most commercial DBMSs are disk-resident since disks are
more stable and have more capacity than main memory. However, as main
memory becomes more stable (and cheaper also) and the capacity of main-
memory becomes larger, MM DBs are becoming more and more popular nowa-
days. Examples of MMDBs are OBE [10], MM-DBMS [76] and AMOS [49].

Why it is so crucial to distinguish between MMDBs and DRDBs? The reason is
that main memory and disks have different properties that have profound impli-
cations on the design and performance of a database system. According to [56],

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 117

the most crucial dferences are:

» Retrieving disk-based data is often block-based. On the contraain-
memory access is record-based.

¢ The access time of main-memory is in orders of magnitude less than that for
disk storage.

» The layout of data on a disk is much more critical than the layout of data in
main memory sincesequential access of a disk is muchdter than random
access. In other ovds, sequential access (clustering) is a critical issue for
disk-resident data,ut not for main-memory resident data.

* Main memory is normally eatile, while disk storage is more stable.

In the following sections we shall discuss the impact of theskemihces on
physical oganization issues such as ixdgesign and data structures.

7.5.2 Impact on Index Design

Index structures designed for main memory ardeddnt from those designed
for disk-based systems. The primary goals of a disk-oriented istdlecture are
to minimize the number adisk accesses and disk storage. In contrast, the pri-
mary goals of a main memory irkistructure are to minimizprocessing time
(CPU time) and main memory space usage.

Main-Memory Index Structur _es

A wide variety of index structures have been proposed for main memory data-
bases [37][75][138]. These include arrays, arious forms of hashing and trees
(such as A/L-trees, B-trees and Ftrees). The main limitation of hashing, com-
pared to trees, is that it does not support range queries. 8will not discuss
hashing here since it is not relgant to our IP-index.

Arrays are used as inde structures in IBM’s OBE project [10]. The advantage
is that they use minimum space, preiding that the size is known in advance.
The drawback is that data maement isO(N) for each update, so it appears to be
only useful for a read-only or non-update (e.g., time sequences) &ronment.
Using arrays to store time sequences TS =(tv;) indirectly pro vides an index
on the time domain since binary search can be performed on the array to find
any element given the time stamp t.

AVL-trees [2] (Fig. 7.12) were used as inde structures in the AT&T Bell
Laboratory’s Silicon Database Machine [77]. The A/L-tree was designed as an
internal memory data structure because it uses a binary search structure.

118 Chapter 7 Physical Organization

Searching an ¥L-tree is \ery fast in main memory since the binary search is
intrinsic to the tree structure (no arithmetic calculations are needed, as in the
array case). Updatesvadys afect a leaf node and may result in an unbalanced
tree, so the tree iselpt balanced by rotation operations. One digatlvge of

the A/L-tree is its poor space utilization, because each tree node holds only
one data item ht two pointers (the left child pointer and the right child
pointer). The ratio of pointer to data isdarcompared to multi-ay tree struc-
tures.

AVL-Tree Node AVL-Tree

Data

Control

Leftptr |L° | ©J_ RightPtr EBD EBD
\

Fig. 7.12: AVL-tree inde structure

The B-tree and its ariations [35] were originally designed for disk-resident
database systems, because the primary goal of thig stdecture is to mini-

mize the number of blocks (pages) accessedvader, the structure of a B-tree

can also be used in main memory databases toidd& (see Figr.13). A B-

tree is a multi-vay balanced tree. Compared to anLAtree, a main-memory B-

tree is better in storage utilization because the pointer to data ratio is small, as
leaf nodes hold only data items andyth®mprise a lage percentage of the
tree. Havever, searching and update will not be adicéént as an XL-tree

[75].

The T-tree [75] (Fig. 7.14) was introduced in 1986 as a data structwah\ed
from AVL-trees and B-trees. The T tree is a binary tree withyredements in a
node. Since the -Tree is a binary tree, it retains the intrinsic binary search
nature of the XL-tree. Also, because a node in thdr&e contains manele-
ments, the free has the storagefiefency of the B-tree. Data mement is
required for insertion and deletionythit is usually needed only within a single
node. Rebalancing is done using rotations similar to those of\thetike, tut

it is done much less often than in aNlAtree due to the possibility of intra-
node data meement. According to [75], the-ffee orer-performs both the B-
tree and NL-tree.

In our main-memory implementation of the IP-ixd&e chose to use the/A-
tree since the ¥AL-tree has a small rebalancing time.

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 119

A B-Tree Node
))/D| data1|p|data2|?| |c< datan|@\1\
(A

B-Tree

Fig. 7.13: B-tree index structure

A T-Tree Node

* Parent Ptr

5
| datay | datay| datag

1O | Q&

Left Childi/ \qght Child Ptr

Fig. 7.14: T-Tree index structure

120 Chapter 7 Physical Organization

Disk-Based | ndex Structures

Disk-based index structures are optimized to minimize the number of disk
blocks accessed and disk space utilization. Compared to main memory tree
structures such as KL-trees, they are characterized asshort, bushy structures
and requirefew node accesses to retriee a value.

The most popular tree structure in a disk-resident database system is tBetr ee
and its variants [35]. (Actually the original publication on B-trees is [17],
although it is not frequently referenced). The structure of the B-tree looks the
same as the main-memory ersion in Fig. 7.13, except that every node is allo-
cated in a separate disk page (block). Therefore, thgointer s in the B-tree
nodes are block addresses (logical or physical) instead of main memory
addresses as in Fig7.13.

The reason wly the B-tree is well suited for disk-based database systems is that
the depth (the maximum levels of nodes) of a B-tree is much smaller than that
of an AVL-tree or a T-tree for the same set of data to be indeed. This indicates
that there are less disk I/Os when a B-tree is used to access data.

ol 1ol 3 fopfgl 7 Jp 10 7l 15 Jo| 22 [
v v v v v v
A AR A A10) ACS) A23)

Fig. 7.15: B-tree implementation of thexample IP-ind&

Given an xample IP-index with keys {k; |i=1, 2...8} =<1, 3, 5, 7, 10, 12, 15,
22> and the corresponding A(K)s, the B-tree implementation of this IP-index is
shown in Fig. 7.15 (where we assume thdanout - the maximum number of
keys in each node is 2). Notice that the implementation of A(k)s is not shavn
in Fig. 7.15 (it was discussed in Section 7.3.2), we are only concerned with the
index tree structure here. It can be seen from Fig7.15 that the characteristics
of a B-tree are: 1) both internal nodes and leaf nodes store pointers to AfJs; 2)
every key value k appears onlyonce in the B-tree. (Note that normally the
nodes in a B-tree are only more than 50% full, space utilization is not as good
as shavn in the figure.)

Most database systems use aaviant of the B tree, the B*-tr ee instead. Com-

Section 7.5 Main Memory DBMSs versus Disk-Resident DBMSs 121

pared to a B-tree, a'Btree keeps all of the actual data in thevea of the tree.
Thus internal nodes are only usedndex these data.dt example, the B-tree
implementation of the same IP-indés shavn in Fig.7.16, where only leaf
nodes store pointers to the anclstate sequences. In thisayinternal nodes
can store more elements than the B-tree implementation {Hig). Since all
pointers to A(v')s are stored in leaf nodes, rebalancing the tree (which is
needed in the process bfsertion or deletion) is easier than that of a B-tree.
(Note that normally B-tree nodes are only more than 50% full, space utiliza-
tion is not as good as sha in the figure.)

internal nodes hold more elements than that of a B-

55 [gl 10 5] 15 o]

-

ol 1 [3 o 5[5 7 Pl 0[] 12 H—» 150 22
v v vy v v

AL) AB) AGB) A®7) A(10) A(12) A(15) A(23)

Fig. 7.16: B*-tree implementation of thexample IP-ind&

The adwantage of the Btree structure wer the B-tree is that the'Bree is easy

to maintain (i.e., the insertions and deletions are mofieiexit). Morewer,

since the &nout of a B-tree node is layer than that of a B-tree node, the depth

of a B'-tree is smaller than that of a B-tree. This leads to better search time in a
B*-tree than a B-tree. The slight disadvage of the Btree is its space inff
cieng, because in a B-treevery key value appears only once, while in 4-B

tree some & values appear in both non-leaf nodes and leaf nodes. But the
space adantage of B-trees is mginal for lage indexes, and usually does not
overweigh the disadantages that we ka discussed. Thus, the structural sim-
plicity of a B*-tree is preferred by mgrdatabase system implementors.

In the case of main memory DBMSs,wever, the B-tree is preferable to the
B*-tree. This is because, in main memathere is no adwntage in keping all
of the data pointers in lgas— it only wastes space.

In our disk implementation of the IP-indewe chose to use a‘Rree instead
of a B-tree for the ahw reasons.

122 Chapter 7 Physical Organization

7.5.3 Impact on Data Structures

Data structures designed for main memory DBMSs arferdifit from those
designed for disk-based DBMSs. A data structure tRhibéts good perform-
ance in main memory may turn out to bery ineficient when implemented on
disks. or example, an array is a good data structure for storing sequence data
in main memorybecause random access &weficient. For an array of size

n, the access of gnelement taks O(1) time. This is the reason whve chose

to implement a time sequence as an array in our main-memory implementation
(see Section 4.1). Keever, when a lage array is stored on disk, the situation is
different. A lage array stored on disk normally has to be partitioned inte se
eral disk pages.draccess one element, wevhao find the right page that con-
tains the element, and read it in main memdfychained pages are used to
store the array (such as the “leklist” approach in Section 7.2.4), then a scan
of this chain is needed in order to find the right page. The access time will be
O(N), whereN is the number of pages allocated to store the atfaye huild
someindex for the pages such as thadex arrays for the multi-level dynamic

array structure, then the access time will be determined by tted ¢d the

index arrays. In ay case the access time will not ®€1) any more. In our disk
implementation of time sequences, we proposed the muki-ynamic array
structure. V@ believe that this data structure is an optimal solution for storing
dynamic, irrgyular time sequences on disk.

Another complication ipointers which afect data structures such asist, or
references between objects. In our IP-indetructure, pointers (or references)
play an important role. There are pointers in the IPxndhich associate each

key k; in the inde tree with the corresponding anchsiate sequence &, and

each element in Af) is areference to a state Sin the TS (see Section 7.3.2).
Implementation of these pointers (references) is thus an important issue. A
pointer in a main-memory structure is easiterit is simply a main-memory
address. A pointer in a disk-based structure is more complicated. It can be a
logical or physical [137] block address. Using the ydical address on disk will
make the object pinned [137],ub is faster in access compared to the logical
address. In our disk implementation ofkAé (see Section 7.3.2), we chose to
use the logical address (state_id) instead gfsplal address of;SThe reason

is that we would like to hae the implementations of the IP-indand time
sequences independent of each ather

Another releant issue iswizzling [26]. When a disk data structure is brought
into main-memory disk addresses ha to be transformed into main-memory
addresses.

Section 7.6 Isthe IP-index Practical for Large Time Sequences? 123

7.6 IsthelP-index Practical for Large Time Sequences?

After the discussion on pkical oganization in this chaptemwe are able to
answer seeral questions which concern the practical application of the IP-
index.

Question 1.

Since TS can beery long, the IP-inde can grav very lage. Is it practical
to build the IP-inde& for large time sequences?

Answer:

We have proved in Chapter 4 that it is not necessarily true that gelars
results in a lage IP-ind& tree. The reason is that most real-life TSs appear
periodic and there is a rand® and precisionP in the \alue dimension,
which result in the total number ok¥s ks in the IP-inde being less than
R/P. By lowering the precision we can get area smaller inde. Therefore,

it is practical to hild the IP-inde for large time sequences.

Question 2:

The anchosstate sequence can grovery long which ma&s the IP-inde
take lots of space. Does it makhe IP-indg impractical?

Answer:

It is true that the anchestate sequence can gravery long. But this does
not imply that the IP-indeis not practical. There are oweasons for this:
1) A long anchoistate sequence just indicates that the size of the answer set

of F1(v’) is large (Section 5.1). There is nothing we can do about itv-Ho

ever, techniques such as stream processing (Section 6.2.2) can be used to
prevent materializing the whole answer set. 2) The space to store the
anchorstate sequences is independent of the space to store thetiade
which means the indetree can still be small and fetching A(v")s can still be
fast. (Notice that only in the case of time windqueries do we need to
search A(v’).) 3) V@ hare shavn in Section 4.3 that the total spacethead

of the IP-ind& for the pressure sequence (Flg4) is rather small.

Question 3:

In the case ofmany time sequences, is it true thatilding an IP-inde& for
every time sequence will taktoo much space?

Answer:

124 Chapter 7 Physical @anization

It is true that it taks space toWwld an IP-inde& for each TS. But, as in the
case of ap kind of indees, haing an ind& or not is alvays a trade-df
between time and space. Consider a database that contaigsehaional
tables, lilding an inde for every table will tale much space. One may
argue that a relational table does notwras quickly as a TS. The point is:
the size of the IP-indetree is not proportional to the size of the TS, instead
it is proportional to the number of distincsy which isR/P as &plained in
the answer to Question 1 alm This indicates that a long TS does not nec-
essarily result in a lge IP-ind& tree. Furthermore, the space to store
A(V’)s is very compact asxplained in Section 7.3.2. Therefore, it is still
practical to lild IP-indexes for mag TSs.

Question 4:

In the case ofmanytime sequences, is it too time consuming uddan IP-
index for everytime sequence?

Answer .

We hare measured the insertion time of the IP-de both main-memory
and disk implementations (see Chapter 4). Thpeements shw that to
build an IP-inde& is very fast een for lage time sequencesoFlimited pre-
cision of ys in TS, the insertion time can stay almost constagerdess of
the graving of the TS. Therefore, it is practical taild the IP-indees for
mary time sequences.

7.7 Summary

In this chapter we westigated plysical oganization issues. ¥/ are mostly
interested in pysical data structures fadynamic, iregular time sequences.
The challenge is to support bothst appendingand efficient andom access
We dereloped a multi-leel dynamic array structure which meets this chal-
lenge. Related ark was compared with this data structure.

Physical structures of secondary ings were also discussed. In the case of the
IP-index (which is a secondary ingg the challenge is hoto store thendor-
state sequencesdecause theare dynamic andary widely in length. The
multi-level dynamic array structure is also a good choice for storing anchor
state sequences. It does naaste space for short A(v')s and guarantesest f
random access for Ige A(v')s.

Other rel@ant issues such as storage management gé labjects, the impact
of main-memory or disk-resident DBMSs on data structures were alsetin
gated.

Chapter 8

Query Optimization

Query optimization for sequence data is an important issue since sequences
are usually ery long. In this chaptesereral optimization techniques fealue
gueries are discussed. First, we shdahat the technique dadtream processing

can be used in processing the operatqr,,(TS) when card(A(v)) is laye. Sec-

ondly, we investicate thecost models andselectivity factors [107] for selections

such asol-(TS)and ol (TS). These information can be used to optimize
complex value queries (sequence joins) by choosing a good join .ofgeimi-
zations oftime window queries are also imesticated and grified by eperi-
ments.

8.1 Stream Processing

Stream processing is an important technique in sequence query optimization
since sequences are usualbry long. Stream processing is used in SEQ [110]

to optimize sequence queries: “each sequence is read in a single continuous
pipelined stream without materializing”iThis is accomplished by associating
buffers with each operatpto cache some ralant portion of the most recent
data from its inputs. In this section we shall sew Istream processing can be
used to process the operatoy,-, (TS).

As pointed out in Section 6.2.8[-,(TS) is implemented by the sequential
execution of the tw operators: 1) I2,/(TS), and 2)ifn! (Fig.8.1). The

IPy=(TS) operator returns the anchstate sequence of v, A(v’), and the
inverse interpolation functioifn™® is applied to each state in A(v'). Since the
cardinality of A(v’) can be laye, to materialize the result of the operator

126 Chapter 8 Query Optimization

IPy=(TS) (i.e., to materialize the sequence A(v’)) can be time consuming.
Instead, we propose to implement the operatQcL JTS) as astreamwherethe

next element of IR-(TS) is implemented by retriéng thenext state in A(v’).
Therefore, thes[j,-,(TS) can be implemented as a stream as wellnéxe state

of theol,-(TS)is generated by applyinién ! over thenext state returned from
IPy=y(TS).

Fig. 8.1: Streaming processing of tleéloperator and the IP operator

Notice that the stream af(j-,(TS) and IR-(TS) can be generated in the
reverse order as well, i.e., the states withwes time stamps come out first.
This is useful in mayapplications since meer states are usually more interest-
ing than older ones.

Another benefit of stream processing is that we are able to generditest tiev
answes [16] quickly. To generate the first ieanswers, the interpolation func-
tion ifn"t is applied to only the first fe states in A(v’). In particularthe first
answerof oli,-,(TS) can be generated quickly since the first state_id in A(V’)
denotes the position in the TS to app‘ly‘l. The benefit of this approach has
been demonstrated bymeriments in Section 6.3.2.

8.2 The Cost Model ofol,-(TS)

Since time sequences can wlong, it is important to be able to estimate the
cost of a alue queryol-,(TS). As pointed out in the last sectiooL-(TS)is
implemented by stream processing of the twperators: 1) I\I?T(TS), and 2)
ifn" (Fig. 8.1) — the IR,z (TS) operator returns A(v’), anidin™ is applied to
every state in A(v’). One could predict that the costj-,(TS) will be deter-
mined by the cardinality of A(v’). The longer A(V’) is, the more time it will
take to process[j-(TS) since the answer set will be ¢gr. Is this a walid pre-
diction? Let us see thegerimental results.

We have performed eperiments on SHORE tovestigate the cost o60,-,(TS)
for different time sequences andféient \alues of v. The IP-ind& was imple-
mented on top of a Btree. Anchorstate sequences were implemented as

Section 8.2 The Cost Model of,s5(TS) 127

SHORE lage objects which can gmoarbitrary lage. Time sequences were
implemented as arrays of recordg (). All measurements were done on a
SFARC 20 machine with 64M main memoryhe SHORE bffer pool size vas
set to 40 8K pages.

Both a synthetic and real-life time sequence were used in the measurements
The synthetic time sequenceasw(i) = m(i) * sin(k * i) (i = 1, 2...10K) (intro-
duced inSection 6.3.1as shwn in Fig. 8.2. The reason for constructing this
sequence @as to easily control the length of A(v’) byarying the alues of v’,

as «plained in Section 6.3.1. The real-life time sequen@s whe pressure
sequence introduced in Section 1.2.2, aswhim Fig.8.3.

15 q

128 — — — — — — — - - - — — 4 I [y iy

0.5

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450

Fig. 8.2: The synthetic sine sequence

8.2.1 ThelLinear Case

To measure the relationship between tkecation time ool,-,,(TS) and the car-
dinality of A(v’), we chose dfferent \alues of v’ in the synthetic sine sequence
(Fig. 8.2) with varying card(A(v’))s. The selected ¥ and the corresponding
card(A(v"))s are listed indble8.1. The gecution times obl,-,,(TS) with regard to
card(A(v))s are shwan in Fig. 8.4. It verifies our “linear” speculation abe. It
shaws that the wecution time ofo[-,(TS) by using the IP-indeis linear to
card(A(V")).

128 Chapter 8 Query Optimization

25
2L |
15~ 4+— — _ — — — — | — -
L |
0.5 4
of 4
_0'50 10‘00 20‘00 30‘00 40‘00 50‘00 60‘00 70‘00 80‘00 90‘00 10000
Fig. 8.3: The pressure sequence
Table 8.1: Selected s and the cardinalities of A(v')s
v’ 9.4 9.2 9 8.4 7.3 4.9 3.0 0
cardinality 14 60 106 246 504 1064 | 1508 | 2000
1 T T T T
#— using the IPfinde%(
0.9 & - -0 linearscanthe TS |
0.8
0.7

execution time (s)
o ° ° °
w S o1 =
T T T T

[=
[N
T

1
1800

0 1 1 1 1 1
0 200 400 600 800 1000 1200

cardinality of A(v)

1
1400 1600 2000

Fig. 8.4: The «ecution times ob[,-,(TS)

Section 8.2 The Cost Model of,s5(TS) 129

8.2.2 TheNon-Linear Case

We also performedx@eriments on the real-life time sequence aswshin
Fig. 8.3. The cardinality of the sequence as 100K and the precisiormloks
was 102 The selected & and the corresponding cardinalities of A(V')s are listed
partly in Table8.2 and partly in able8.3.

Table 8.2: Selected \8 and the cardinalities of A(v')s (part 1)

v’ -0.26 | -0.25 | -0.24 | 0.03 -0.23 | -0.13
cardinality 4 30 92 284 504 758

Table 8.3: Selected \8 and the cardinalities of A(v’)s (part 2)

\% -0.14 -0.18 -0.22 -0.21 -0.2
cardinality 1590 2081 2939 4357 4945

The «ecution times obl,-,, (TS) with regard to card(A(v"))s are sk in Fig. 8.5.
It is not a clean “linear” cury ary more.What is surprising is that thexecution
time of alj-,(TS) for shorter A(v)s can be bigger than theeeution time of
o= (TS) for longer A(v')s.This leads to theost modelof o[-, (TS) in the
next section.

12 T T T T
— using the IP-inde:
& — -0 linear scan the T:
bo 0-0 —0 - — — — — 0---0-=---- O— - —— - ——— = [
101 1
sk |
=
(]
£
5 °or 1
5
3
Q
8
]
ab |
oL |
OA L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

cardinality of A(v)

Fig. 8.5: The eecution times ob[j,-,,(TS) for the pressure sequence

130 Chapter 8 Query Optimization

8.2.3 Cost Model

After investicating the reasons whFig. 8.4 and Fig8.5 look so diferent, we
came to the conclusion that the nice “linear” property in Big.is only \alid

when the states in A(v’) tend to reside in the same page as the sine sequence
does. Fig8.6 illustrates this. Suppose that the portion of the sine sequence in
Fig. 8.6 (defined wer the time interal [0, 460]) occupies 4 pages, then all the
states in A(1.25) will reside in the same page (the last page). And all states in
A(1.20) will reside in two pages. In this case the number of pages visited is lin-
ear to the cardinality of A(v’). In reality most time sequences do ned bias

nice property States in A(v’) are “scattered” in éfrent pages instead of clus-
tered togetherFor example, states in A(1.5) in the pressure sequence 853).

are scattered instead of clustered. In this casexéeugion time ofol,-,(TS)

using the IP-inde will not be linear to the cardinality of A(v"), instead it will
belinear to the number of disk pages visited.

05

I
|
|
|
|
|
|
|
|
|
|
|
|
I

0 50 100 150 200 250 300 350 400 450

Fig. 8.6: The page diision of a portion of the sine sequenc

This indicates that to estimate the costadf-, (TS) using the IP-inde we

need to hae knovledge of the distribtions of those S in A(v’) in addition to

the cardinality of A(v’). The statistics on distutions of $s in A(v’) can be
maintained as meta-data in DBMSs (the cardinalities of A(v’)s are stored in the
IP-index). In the worst case we h& to assumewvery § in A(v’) resides in a
different disk page.

Section 8.3 Cardinalities of Range Queries 131

8.3 Cardinalities of Range Queries

The selectivity factor [107] plays an important role in traditional query optimi-
zation. In the classical papeAccess Bth Selection in a Relational Database
Management System” [107], the cost of ate@ution plan is estimated as a
weighted sum of 1/0 pages fetched and CPU time. In the case of using an inde
scan [107], the seleeity factor of a predicate can be used to estimate the
number of 1/0O pages fetched. A seledyy factor of a predicatel(pred), is
defined as “the>xgected fraction of tuples which will satisfy the predicatedr F
example, if we hae a query such as “find the empé®s whose names are
‘John’, then, using a clustered ind@n the attrilbite name on theemployee
relation, the cost ofb@cuting this query wuld be

F(pred) * (NINDX(I) + TCARD) + W * RSICARD

where F(pred) is the selectiity factor of the predicat@ame = ‘John,
(NINDX(l) + TCARD) is the total number of indepages and data pages that
hold all tuples in the relation, an@SICARDis the estimated CPU time. The
number of indg pages and data pages for #mployee relation is stored as
meta-data in the DBMS. The selagty factor F(pred), can therefore be cal-
culated by using those statistics such as the number of distéyxirkthe indz

| and the number of in&kepages [107].

Therefore, selectity factors play an important role in estimating the cost of a
guery when inde scan is used. This is because the selagtfactor indicates
how mary disk pages (including indepages and data pages) will need to be
fetched (see the abe formula). (In the case where no indis available, the
cost of scanning the entire relation will be the same as the nurabababove,

no selectivity factor will be involved ary more.)

In the case of a 2-ay join (a join ivolves two relations), the cost of the join is
estimated by the cost of scans on each relation (couidde® scans or segment
scans, see [107]) and the cardinalities of the results of scamsefample, if a
nested loop join method is used, then the cost is estimated by

C(pathl, path2) = C_outer(pathl) + N * C_inner(path2)

whereC_outer(pathl) isthe cost of scanning the outer relation [107] via path
1, C-inner(path2) is the cost of scanning the inner relation [107] via path 2,
andN is the estimated cardinality of the tuples in the outer relation that satisfy
the join predicate [107]. The numbmiis calculated by the formul(pred) *
NCARD(T) (whereNCARD(T) is the cardinality of the outer relation, stored as
statistics in the DBMS). Therefore, aside fronfieafing the cost of an inde
scan, the seledtity factorF(pred) is an importantdctor in choosing a good

132 Chapter 8 Query Optimization

join order as well.

It is interesting to consider the seletty factors for alue queries. & exam-

ple, what vould the cardinalities of the results @f,-,(TS) andol-(TS) be?

In the case obl,-,(TS) on time sequences, the estimated cardinality of the
answer set will be the same as the cardinality of A(v’) (recall that card(A(v"))
is stored in the IP-inde see Section 3.2.1). The reason is thatrg answer of
o4,=(TS) is produced by applyirin ! on an anchestate of v', se€ig. 8.1. How-

ever, for a range queryl.(TS), there are tw kinds of cardinalities of the
result set. When the sequence TS isw&d as continuous, the cardinality of
os(TS) is the number of time inteals returned. When TS is vied as dis-
crete, the cardinality 060-,(TS) is the number of states inside those time
intervals. These will be further illustrated in the follmg paragraphs.

For a continuous TS, the resultsaifl,..(TS) will be a sequence of time intervals.
These time intervals (when the values are greater than v’) can be computed by the
algorithm ofF'l(v>v’) in Fig. 5.5. Sincethe time intervalsof Fl(v>v’) is com-

posed by grouping théme pointsof Fl(v‘) into corresponding intemls, the
cardinality ofo,»,(TS), i.e., the number of time intervals returned, is determined
by the cardinality of A(v’). For example, in the following time sequence which repre-
sents the temperature reading of a patient in a hospital, we pose the query:

¢ When did the patient lwa a temperature higher than 38?

Fig. 8.7: lllustration of a alue query

The cardinality of this query will be 2, because there are tiwe intenals
(i.e., (%, t') and (t*, t'"")) returned.On the other hand, if we view the time
sequence adiscrete then the query:

e At what time points did the patientVvethe temperature higher than 38?

would yield cardinality of 5, because there are 5 explicit time péipist;, tg, tg,
t1o} where the temperature was higher than 38.

Section 8.4 The Cost Model of,s5(TS) 133

Therefore, there are twcardinalities of the range queoy].(TS), one is the
number of sub-sequences returned, the other one is the numbetpbti(e

states inside those sub-sequences. Which one to use in the query optimization
depends on whether the time sequence iweikas discrete or continuous.

8.4 The Cost Model ofol, (TS)

A relevant issue is theost modelof 0%, (TS). As we mentioned abe,
o*,s (TS) is computed by B(v>V'). Fig. 5.5 shavs that the cost of computing
Fl(v>v') is nearly the same as the cost of computift{?), because théime
intervalsof F1(v>v’) are composed by grouping thiene pointsof F1(v’) into
corresponding interls. Therefore, the cost of., (TS) is nearly the same as
the cost ofo* -, (TS).

This is surprising because we tend to think that the cost of a range query is pro-
portional to the size of the range. The reasoy Wie cost ofol.,(TS) is not

linear to the number of states in the range v > v’ is that the semantics @flthe
operator is difierent from the semantics of the a@mtional o operator. The
olsy(TS) retrieves thesub-sequencethat have values greater than v'. The cost is
linear to the number of theub-sequence®turned, which has no direct relationship
with the number of (explicit) states inside thgsd-sequences.

The property that the cost af*,., (TS) is nearly the same as the cost of
o*,=,(TS) males the IP-inde especially suitable for lge sequences, because
the cost of range queries does notvgwith the number of states inside those
ranges.

8.5 Time Window Queries

This section discusses time windajueries. Tne windav queries are those
value queries that only concermart of the time sequence, i.e., a time windo
An example of a time winde query could be:

* When did the patient lva a feverin the last fev days(denoted as t > t")?

Using the ne functions proposed for the data type of time sequence (Section
6.5), this query can bexpressed as the folldng:

SELECT t

FROMTemperature_seq TS

VHERE t | Nget time_stamps(TS, ‘=’ 1,38)
ANDt>t

134 Chapter 8 Query Optimization

The answer of this query is mark by the tw crosses in Fig3.8. This query
can be processed in twsteps: 1)ol,=34(TS); 2) os¢(TS). The first step,
oQ=35(TS), generates all xplicit or implicit) states S’ where S’alue = 38.
Then, in the second stepyegy state S’ fronol-34(TS) can be chedd to see
if it is in the time interal (t', now). If it is, then S’ is returned as a result.

VA .<7t>t’—>

38 - — I X — -

Fig. 8.8: A time window query

8.5.1 Optimization of Time Window Queries

When may states are returned froowj,-3g and the resulting states arery few

(the time windav is small), it might be a aste to calculate all §’and check
the condition later Recall that the operatasl-3g(TS) is accomplished by
IP,=3g(TS) andifn (illustrated as (a) in Fig.9), the selectiowl.+(TS) can be
“pushed dwn” to the IR,-3¢(TS) operataorresulting in thdP,_3g AnD >+ OPEra-

tor (see (b) in Fig8.9). The ne operatorIP,-3g anD t>t» C8N be processedfief
ciently by searching A(38) to find those states 8here $time > t'. In this
way only a part of the anchatate sequence A(38) (the part that is inside the
time windaw) is involved in query processing.

Time windav queries for the winde condition t < t' can be optimized simi-
larly by pushing the condition t < t' @ to the IP operator as sho in

Fig. 8.9. Havever, no search on A(V’) is needed here since the starting position
is thefirst state in A(v’). The stream output of the IP operator is terminated
when the condition Sime < v’ does not hold anmore.

Another possible optimization strape for “olj,=33 anp t+(TS)” is to generate
o=3¢(TS) as aeversestream(as described in Section 8.1) and terminate when
t > t' does not hold anmore. This stratgy is optimal when the time winaois

1. In reality we should use ‘>’ instead of ‘=" since ade means body temperature >
38°C. All the discussions will hold.

Section 8.5 Time Window Queries 135

- - - - - - - - - - - - - = /7 = -
\ 0-[{>t’ ‘
| ol T ifn-1 |
| I optimized to |
\ ://ifn'l\\ —_— T \
| -7 \ |
- = - \
‘ ‘/ 0'1/:38 T)I IPV=38 AND t>t' ‘
\ /
o IPy=3g ~ |
\ STt \
‘ (@) (b) |
Lo - _

Fig. 8.9: Optimization of time winde queries

t >t (i.e., the windw is with alower bound), lut it does not help when the
time windav is t < t’ (i.e., the windw is with anupper bound).

If we compare the stragg of generating aeverse stream with the stratgy
illustrated in Fig.8.9, we see that generating &eese stream has the limitation

that the output stream is not in the same (time) order as the input stream. There-
fore, this stratgy (i.e., generating a verse stream) cannot be used in methods
such as sort-mge joins. Also note thatgeneral time windav query t' <t <t

(i.e., a time windw with both upper and i@er borders) wuld normally
require search on A(v’) to i€iently find the positions of t' and’t’

In the net section we present a performance comparison of the$eretfit
stratgyies with experiments on SHORE.

8.5.2 Experiments

We measured the three fifent stratgies abeoe for optimization of time win-
dow queries. The three strates are: 1) Scanning A(v’) to calculate aB &nd
check the condition later; 2) binary searching A(v’); 3yemsely scanning
A(V).

The time sequences used in tkkperiments were the synthetic sine sequence in
Fig. 8.2 (cardinality = 10K) and the real-life pressure sequences8Rgcardi-
nality = 100K).

The time windav was defined as t > t'. The windosize was \aried from 100,
500, 1K, 5K to 10K for the sine sequence and 1K, 5K, 10K, 50K to 100K for

136 Chapter 8 Query Optimization

the pressure sequence. ey windav size results in a dérent number of
anchorstates visited (Section 8.5.1). These numbers are plotted as the x-axis in
Fig.8.10 and Fig8.11. The gperimental results are siwa in Fig.8.10 and

Fig. 8.11.

+-= =+ notsearch A(v)
1r *+—* binary search A(v) |
& — -0 backward scan A(V

execution time (s)

0 Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 2000
window size

Fig. 8.10: The time windav query for the sine sequence (10k

The measurements skidhat: 1) reerse scanning of A(V’) is the mosffiefent
stratgy since no etra overhead is needed; 2) binary searching A(v’) (to get
close to the position of t > t’) performs almost aficeédntly as reerse scan-
ning; 3) when the time windwo is small, the difierence between not searching
A(V’) and binary search A(Vv’) isubstantial.

The conclusion is that it isevy important to optimize time windoqueries by
pushing the condition t > t’ into the IP operator (Section 8.5) when the windo
is small.

Some readers mayamder wly we do not simply perform binay search on the
original TS to find the sub-sequence that is inside the time wirtds® t' and
performo*,-,(TS) on this sub-sequence. The reason is that this gyratél
always be slwer than the stratyy 2 abwoe, i.e., binary searching A(v’) (or
stratgy 3 abwe, i.e., r#erse scanning A(V’)), because A(V’) is normally much
shorter than the whole TS.

Section 8.6 Complex Queries 137

55 T T

+— =+ notsearch A(v)
*—— binary search A(v) |
& - -0 backward scan A

execution time (s)

0 Il Il Il Il Il Il Il
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
window size

Fig. 8.11: The time windav query for the pressure sequence (100}

8.6 Complex Queries

This section shes possible \ays to optimize complevalue queries. A com-
plex value query contains more than osi@operator

Suppose that for the pressure sequence (se8RBpwe are interested in find-

ing the pattern where “a small peak fall® a big peak”. Suppose a small peak
means v=1.5, a big peak means v=2.2, and “fedtfomeans the time dérence

is around 30 seconds (i.e., one period of this time sequence, see Section 1.2.2).
Then this query can bepressed as Fig.12.

SELECT t1, t2
' FROM Pressure_seq S '
; WHERE t1 | N get_tinme_stanps(S, 1.5) '
AND t2 I N get_time_stanps(S, 2.2)
AND 30 - e <tl - t2<30 +e

Fig. 8.12: An example comple query

The ariablee is a small alue that denotes thariation of a period (around 30
seconds). Sincel-,,(TS) results in a stream ofXelicit or implicit) states,

138 Chapter 8 Query Optimization

the functionget_time_stamps(TS, v’) results in a stream of time points. There-
fore, there are ta streams of time points generated from this quelrygener-
ated from get time stamps(TS, 1.5), and t2* generated from
get_time_stamps(TS, 2.2). These tarstreams will be joined by the condition 30
-e<tl-t2<30+e. There are three possitdgsimo join these tw streams:

* Query Planl: Stream,-1 5(TS) ando,-, TS), performing join on these
two streams using the predicate “30 - e <tl - t2 <30 + e” in lock step (sim-
ilar to a sorted-mee join). This query plan is illustrated in Fig.13.

This plan has to go througvery element in both stream. It might be ifief
cient when an of the streams is long.

e Query Plan 2: Strearaj,-; g(TS). For every output t1, using (t1-30-e, t1-
30+e) as the winde to pose the time windw query ‘6= » AND t1-30-
e<t<t1-30+41S)". This plan is illustrated in Fid.14.

* Query Plan 3: (Symmetric to Plan 2) Streal,-, ,(TS). For every output
t2, using (t2+30-e, t2+30+e) as the wimdto pose the time windwo query
“O-Ell=l.5 AND t2+3o_e<t<t2+30+€rS)”. This plan is illustrated in Fl@ls

output
X t1-t2<30
ol=22 OH=15

Fig. 8.13: Query Plan 1

Which plan is the best? It depends omnegal factors. Br example, if the esti-
mated cost 060 = {TS) andolj,-, ATS) are both small (the cost model can be
found in Section 8.2), then Plan 1 will a good choice since the condition 30 - e
<tl -t2 < 30 + e can be chamk easily while the te streams[,-1 §TS) and

Section 8.6 Complex Queries 139

OL{=2.2 ANDt1-30-e<t<t1-30+e

Fig. 8.14: Query Plan 2

ol=» ATS) can be generated quicklyf the estimated cost adl,—, ATS) is

small lut the estimated cost @fj,-; gTS) is big, then Plan 3 is a better choice
since the epensve operatorol-; TS) will be replaced by a time windo
query ‘001 5 AND (2+30-e<t<t2+30+6TS)", Which only concerns a (hopefully
small) part of TS. Hwaever, this will only be a good choice when the windo
sizee is small, and the cardinality @f,-, ATS) (the number of time points t2
returned) is small as well. The reason is that: if the number of the time points t2
returned fromolj-, ATS) is lamge, then the time windo query o,-1 5 aAnD
t2+30-e<t<t2+30+6T S) Will be posed on TS martimes, resulting in anx@ensve
guery plan.

Plan 1 can be seen as analogous tostihed-merge join [107] stratgy in rela-

tional query optimization, while Plan 2 and Plan 3 can be seen as analogous to
the two possible choices of outer and inner relations [107] in a relational
nested-loop join. Which plan is better depends on the cost and the cardinalities
of the result sets of thelJoperatorsThe cardinality of the result setof]-,,(TS)

is the same as the cardinality of A(v'), which is stored in the IP-in8&ct{on

3.2.7). Note that the cardinality of ddrent anchosstate sequences in a TS can
vary very much. er example, in Fig.8.3, the cardinality of A(1.5) is less than

10 and the cardinality of A(-0.2) iswral thousand. So it isevy important to
optimize sequence queries using the cardinality information.

140 Chapter 8 Query Optimization

OL{=1.5 AND t2+30-ett2++e

Pressure_seq 0= »

Fig. 8.15: Query Plan 3

Even the abwe seemingly simple query is notuial when it comes to query
optimization. The reason is that optimization of complalue queries depends
on se&veral factors such as the cost of,-(TS), the cardinality of the answer
set, and the time windosize, etc. Optimization of complevalue queries is an
interesting topic for future ark.

8.7 Summary

Query optimization is an important issue in managing sequence data. In this
chapter we hee discussed seral possible optimization techniques flue
queries. First we shwed thatstream processing can be utilized in processing
the o=, (TS) operator when the cardinality of A(v’) is ¢g (which results in

a lage answer set). Secondlg cost model ob[,-,(TS) was deeloped. It
shows that the cost adlj,-,(TS) is determined by twfactors: 1) theardinal-

ity of A(v’); 2) how the anchoistates in A(v’) aredistributed in disk pages.
This indicates that somaatistics on the value distribution of the sequence are
needed in order to estimate the cost of dieoperator Another interesting
issue is thecardinality of range queries. In contrast to the traditional case, the
cardinality of range queries on a continuous sequeneet isnear to thesize of

the value range or the size of the sub-sequences vettidnstead, it is linear to

Section 8.7 Summary 141

the number of sub-sequences returned. This indicates that processing range
gueries is ery eficient using the IP-inde especially for lage sequences. &/

also irvesticated optimizations of time windoqueries and compkevalue que-

ries. Time windov queries can be optimized by pushing three window into

the IP operator (a component of tlw&l operator), reducing the number of
anchorstates retrieed before applyingfnt. Comple value queries (sequence
joins) can be optimized by choosing a good join order according to the cardi-
nalities and the cost of th&operators iwolved. Experiments were performed

to verify the abee optimization stragges.

142 Chapter 8 Query Optimization

Chapter 9

Related Work

This chapter discusses relatedrw in general. More closely relatedowk,
such as wrk related to the IP-inde or work related to the* operator can be
found in corresponding chapters.

The most releant related wrk is a database system named SEQ, which
addresses the design and implementation issues of suppsatjmnce data in
DBMSs. We shall preide an @erview of the SEQ system, including its data
model, query language, and query optimization techniques, and point out what
is relevant to our verk.

Other closely related ork includessimilarity search on time series, i.e., find-

ing similar patterns in diérent time series. Research in this area has begn v
active in the recent years.avious methods & been proposed, such as those
using the Discrete durier Transformation (DFT) to compare time series in the
frequeny domain, or transforming time series into some feature-prederv
functions. W shall point out pros and cons of each approach and compare them
with our work.

Since time series in trading or financialsiness hee special requirements that
cannot be met by ceentional DBMSs, most time series data are managed by
special-pur pose management systems. In this chapterwe shall prgide an wer-

view of time series management systems suchfddB-[52] and CALANDA

[42].

Since a time series is a special case of temporal data, reseatempmnal
databases is discussed, including temporal data models, temporal query lan-

144 Chapter 9 Related Work

guages, and temporal irxcks.

9.1 SEQ— A Sequence DBMS

As pointed out in the introduction, sequence data appear ity mgplication
domains such as stock prices, product sales, scientific measurements, medical
data, and eent processing. raditional database systems are based on the
model of sets, not sequences. Consequentlyexpressing sequence queries is
very tedious in SQL and querxecution is ery ineficient [109]. For this rea-

son, Seshadri et al. [110] desighed a sequence database system SEQ, which
address the special issue of supporting sequence data in DBMSs.

SEQ [110] is based on a sequence data model SEQ [109]. This data model aims
at capturing theordering semantics of sequence data and specifies common
operators on them. A sequence query langu8g®UIN, was proposed. Query
optimization and pysical oganization were also addressed in [110].

The SEQ system latervelved into PREBTOR [111] to support other types of
non-traditional data types such as image, audio, and spatial data. In this section
we shall preide an @erview of the SEQ system and point out what is vale

to our work.

9.1.1 The SEQ Data Model

The data model which the SEQ system is based on is also named SEQ [109].
This data model consists of amdering domain and a record domain (see

Fig. 9.1). The ordering domain can be composed of wrkind of ordered data
such as intgers, time stamps, etc. Each element in ¢ehdering domain is

called aposition. Records in theecord domain can be of ap data type such as
floating \alues, strings, or comptedata types. The relationship between the
ordering domain and therecord domain is “mary to one”. That is, dferent
positions in the ordering domain can be mapped to the same recioreleby

record can only be mapped to one position.

There can be “holes” in the ordering domain, which resultssparse
sequences. Sparse sequences correspond to real-life sequences where there are
missing \alues in measurements.

In SEQ, operationsver sequences include the follmg:

¢ transform

— apply a functiorfn on each record in the sequence

Section 9.1 SEQ — A Sequence DBMS 145

o \ 1-mary relationship | -----

o N

o1] e
o T U
°© mary-1 relationshipr |
---------- AN
ordering domain record domain

Fig. 9.1: The SEQ data model

e binary
— e.g., two sequences join

« offset

— e.g., shift in the ordering or record domain

* aggregate
— e.g.,moving aveage, max, min

e zooming

— transform sequences according tofeliént granularity in the ordering
domain. In the SEQ data model [109]callapse operation is defined to
transform from a coarse domain to a finer domain (e.g., from weeks to
days), and amxpansionoperation as the uwerse. Certain well-knen col-
lapses and)g@ansions on the ordering domain are pre-defined.

Based on the SEQ data model, Seshadri et al. [110] designed a sequence data-
base system SEQ. In SEQ, sequence data are supportedebgiang DBMSs

with abstract data typegADTs). ADTs in etensible DBMSs are discussed in

the net section.

9.1.2 Abstract Data Type (ADT)

Traditional DBMSs hee limited support for data types, i.e., only simple types

146 Chapter 9 Related Work

such asscalar or strings are supported. d meet the requirements of modern
applications, n& generation DBMSs support typg&tension— new data types
can be added to the system without changes toxis¢éireg codes.

The basic technology used is thatAdfstract Data Types (ADTs). The concept

of ADTs was adapted from programming languages (such as [9][60][87]) in the
1980s in the database system Postgres [129] (see also [128][132]). In this
approach, the DBMS maintains a table of ADTs, and A®Ts may be added

by a database #eloper or userEach ADT preides methods that implement a
common internal intedce through which the system can accessies of that
type. The internal inteafce includes methods for the storage and xade
retrieval of values. Each ADT can also declare pringtioperations for manipu-
lating or querying &lues of that type.d¥ example, an ADT for images might
provide operations such aRotate(l, Angle), Clip(l, Region), and Oerlay(l1,

12). Libraries of primitve operations for each ADT are sometimes called
“datablades” [65], “data cartridges” [95], or “datetenders” [27].

In SEQ, sequence data are modelled asmadsdta type namesequence. Meth-
ods defined orsequences are: OpenScan(Cursor), GetNext(Cursor), and Clos-
eScan(Cursor), which proride a scan of the sequence in the faravorder of
the ordering domain. Anpositions in the domain which are not mapped to a
record are ignored in the sca@etElem(Pos) is used to find the record at the
specified position in the sequence (ail if none aists at that position).

In SEQ, each ordering domain is modelled as a data type associated with some
additional methods. Methods defined for ordering domainslLassThan(Posl,

Pos2), Equal (Posl, Pos2), and Greater Than(Pos1, Pos2), which allov compari-

sons to be made among positio@allapse is an operator used to transform
sequences between fdifent granularity in the ordering domain. In addition, all
ordering domains can begamized into a hierarchical relationship to model the
relationship between them. Fig.2 shavs one set of hierarchical relationships
between common temporal ordering domainscoNapse operation is defined

to map a position in one ordering domain to a position or set of positions in
another domain.

9.1.3 Physical Organization of Sequences

As mentioned in Chapter 7, péical oganization determines thefigiency of a
database system. Let us ¢ak look at ha sequences are psically imple-
mented in SEQ.

In SEQ [110], a sequenceaw implemented as array of records. The array
was implemented using a single SHORE&Dbbject, which can gwarbitrar-
ily large and supports insertion or deletion in the middle of the object. Since

Section 9.1 SEQ — A Sequence DBMS 147

| Weeks| | Months |

By

Hours

Fig. 9.2: Sample ordering hierargton times in SEQ

sequences can be ig@ar (i.e., hge empty positions), aompessedarray rep-
resentation w&s used to reduce space used for empty positions. This compres-
sion males some operations within a sequence (such as position lookup, insert
and delete) morex@ensve to implement.

Compared to our approach of using the muléeledynamic array to store
sequence data (Section 7.2), this compressed array implementation has the fol-
lowing dravbacks: 1) In the current SHOREension, page dulting for lage
objects is not supported. This implies that when one record is needed, the
whole sequence has to be brought into main-menibhnis leads to ery slav
retrieval for lage sequences. By contrast, in our approach, only one disk page
(one base array) is read into main-memory when one record is needeen?) Ev
if page fulting is supported in SHORE, tvkinds of indees need to be main-
tained for &st retri@al of a record: an indethat records the mapping between
the record_ids and thepage_ids and an inde that records the mapping
between the alues in theordering domainandpage_ids By using our multi-

level dynamic array structure, theseotwinds of indees are naturally sup-
ported by théndex arrays

Therefore, our approach is a superior one compared to the compressed array
described in [110]. Our multi-leel dynamic array structure supports boastf
random access and pagaifting.

9.1.4 SEQUIN Query Language

The query language in SEQ is nam@EQJIN [110]. SEQUIN is similar in fla-
vour to SQL. It is a declarat language for sequence queries. The result of a
qguery inSEQJIN is aways of the typesequence

148 Chapter 9 Related Work

The following examples gie a flavour of SEQUIN. Two stock price sequences
Stockl and Stock2 are used in theamples. Both sequencesvieathe same
schema: {ime: Hour, high: Double,low: Double,volume: Integer}.

« Estimate the monetaryalue of Stockl traded in each hour when the lo
price fell belav 50.

Project® ((Ahigh + Alow / 2) * A volum
From Stockl A
Where A low < 50 . (1)

¢ Find the 24-hour mdng average of the dférence between the prices of the
two stocks.

Proj ect avg(A high - B.high)
From Stockl a, Stock2 B
Over $P - 23 TO $P (2)

e Zoom:

Proj ect m n(A. vol une)
From Stockl A
Zoom days (3)

Example (1) gamines the sub-sequences of Stockl where tivepkices are
belov 50. Example (2) applies a 24-hour vitg average oer the sequence.
Example (3) demonstrates tk@oming operation (zooms from hours to days).

9.1.5 Query Optimization

Several query optimization techniques were discussed in [110]. The most
important ones are listed b&lo

Pr opagating Ranges of Inter ests

This class of optimization deals with the use of information that limits the
range of positions of interest in the query answerlt is similar to the “selection
push-dovn” technique in the relational DBMS. Selection push-davn for
sequence queries can be applied to either therdering domain or the record
domain. Selection based on theordering domain can be illustrated by the fol-
lowing example:

1. In [110] ‘project’ is used instead of the standard SQL syntax ‘select’.

Section 9.1 SEQ — A Sequence DBMS 149

Pr oj ect count(*)

Fr omStock S

Wher e S.time > “<timestamp>"
ZoomAll;

This query can be optimized by pushing the selection predicate (S.time >
“<timestamp>") into the scan of the sequence (for performing the “count” oper-
ation). In SEQ, this is achied by performing aveighted binary seah in the
compessed aray (the array which stores the stock sequence, see Section 9.1.3)
to get close to the starting position of the range (S.time > “<timestamp>").
Since this array is implemented as a SHOREBdasbject [110] and pagexilt-

ing is not supported in the current SHOR& sion, theentire compressed array
has to be read into main-memory in order to do binary search. This fs inef
cient, especially in the situation when the sequence is langhe rel@ant
range is small (for>ample, the stock sequence consists of data accumulated
for several years while this query is only interested in the data of lhst few
week3.

This query demonstrates the importance ofiradex on theordering domain

Our multi-level dynamic array structure (Section 7.2) is a better choice in this
situation. This is because locating the starting position of the range S.time >
“<timestamp>" can be donefafiently by searching the indearrays instead of
bringing the entire sequence into main-memory

Selection push-den on therecord domainis illustrated by the follwing exam-
ple:

Proj ect 1 ((A.high + A.low) / 2) * A.volume
Fr omStockl A
Wher e Alow <50

In [110] it is claimed that selection pushwdo (A.low<50) should be applied
here so that the calculation of(A.high+A.low)/2)*A.volume” only needs to be
done for those states whosevlgalues are bels 50. But, without an inde the
whole time sequence has to deannedo find these states. By contrast, using
the IP-ind&, we can easily calculated the time int@s/ (t, t)* where the
prices inside those time inteals are below 50 (Section 5.2.2). Therefore, the
calculation of {(A.high+A.low)/2)*A.volume” only needs to be applied to the
states inside those time intats.

Therefore, we conclude that ouprk on 1) the IP-inde and 2) the multi-leel
dynamic array structure, conttites to the current research field on managing
sequence datan DBMSs.

1. In [110] ‘project’ is used instead of the standard SQL syntax ‘select’.

150 Chapter 9 Related Work

I ncremental Computation of Aggr _egate Operators

The second stratgy on query optimization in [110] is incremental computation

of aggregate operators. Br example, consider the 3-position mwing average of

a sequence 1, 2, 3, 4, 5. Once the sum 1 + 2 + 3 has been computed as 6, this
computation can be used to reduce the ark done for the next aggregate.
Instead of adding 2 + 3 + 4, one could instead computing 6 - 1 + 4. Due to the
small aggregation window in this example, there is little benefit. However,
when the window becomes lager and the operations are morexpensive, there
can be significant improvements due to this approach. Importantlythe time
required for aggregation is independent of the size of the windaev.

Other query optimization techniques include detectingcommon sub-e Xxpres-
sions (and evaluating them once), andoperator pipeline . Operator pipeline
(stream access [109]) is crucial for sequence processing. In this technique, each
sequence is read in a single continuous pipelined stream without materializing
it. This is accomplished by associating luffers with each operator to cache
some relevant portion of the most recent data from its inputs. V& use a similar
approach in processingo*,,-,(TS) operator in Section 6.2.2.

9.1.6 Comparison With Illustra

Seshadri et al. [110] compared SEQ with Illustra [64] (lllustra has been
acquired by Informix [65]). lllustra supports time series as an ADT and defines
common functions on it. It is claimed in [110] that queries based on functional
composition (as in the case of Illustra)vhaaprocedural semantics instead of
declarative semantics (as in the case 8QUIN). Seshadri et al. [110] also
claim that in Illustra, little or nonter-function optimization is performed. Br
example, the follwing optimizations are not supported by lllustra:

* pipeline operations on twfunctions
< identifying common subs»eressions in function compositions

« selection push den

According to [110], query processing in SEQ results werall performance
improvements of approximately worders of magnitude compared to lllustra.

9.1.7 Conclusions

To conclude, we hee provided an eerview of the design and implementation
of the sequence database system SEQ. The main agitrib of SEQ are: 1) it
proposed a general data model for sequence data; 2) it designed a sequence

Section 9.2 Similarity Search on Time Sequences 151

guery languageSEQUIN; 3) it addressed query optimization techniques for
sequence data.

The weakness of SEQ is inysical oganization. The data structure proposed
in [110] is ineficient in lookup andretrieving sequence data, especially when
the sequence is lge. Another limitation is that SEQ does not yad® indec
access on theecord domain.

Our multi-level dynamic array structure and the IP-irdmmplement the ark
in SEQ by preiding a good pisical structure of 1-D sequence data and an
indexing method for alue queries.

9.2 Similarity Search on Time Sequences

Another closely related research fieldsigiilarity search on time sequences,
i.e., finding similar patterns in ddrent time series. Similarity search is essen-
tial in discorering and predicting the risk, causalignd trend associated with a
specific pattern. Morexamples can be found in identifying companies with
similar gravth patterns, products with similar selling patterns, stocks with sim-
ilar price mowement, images with similar weather patterns, etc.

Several approaches lia been suggested to deal with similarity search. In what
follows we present anverview of this work and discuss pros and cons of each
approach and see what is nedat to our verk.

9.2.1 Usingthe Discrete Fourier Transform

It seems that the avk by Agraval et al. [4] is the first one addressing similarity
search on time sequences. In [4], the similarity af sequences is measured

by the Euclidean distance between them. A sequence is considered to be simi-
lar to a query pattern if the Euclidean distance between them is less than the
userspecified errod, see Fig9.3. To measure the Euclidean distance between
two time sequences, the Discreteufier Transform (DFT) is applied to each
time sequence, and the firstwfecoeficients are used to map each time
sequence into point in a multi-dimensional space. Then, an R*-tree is used to
index these points and similarity of sequences is measured by the Euclidean
distance between these points. This approach is basedooassumptions: 1)

low frequencies constitute data, and high frequencies are noise; 2) DFT pre-
senes the Euclidean distance between sequences in the time or frgquenc
domain. Apparentlythis work only deals with a preliminary notion eifmilar-

ity because: 1) It does not deal with sub-sequence matching (all sequevees ha
to be the same length); 2) It does not deal with amplitude shift or time shift (see
Fig. 9.5).

152 Chapter 9 Related Work

~Y

[[[[[[17
1 2 3 4 5 6
Fig. 9.3: A notion of similarity between sequences

Faloutsos et al. [51]»x@end the wrk of [4] by addressing the issue sib-
sequence matching. The goal is to locate 1-D sub-sequences within a collection
of sequences such that the sub-sequences matckhea (fueried) pattern
within a specified tolerance. Based on tharkvof [4], Faloutsos et al. [51] use

a sliding windaev over the sequence and generateadl instead of a point (as in
[4]) in a multi-dimensional spaceoTsave storage space and speed up iz,

not every point of the trail is stored in the database. Instead, the traiitedi

into sub-trails and approximated by thgimimum bounding rectangles (MBR).
These MBRs are ganized in a R-tree and similarity search is performed by
searching intersecting MBRs. This method may introddigkse matches
because it may happen that some sub-trails do not intersect with the queried
region while their MBRs do. This is dealt with in a post-processing process.

The work of [4] and [51] has the limitation that the&annot detect similarity
under transformations in th&#equency domain, such as dilation (frequenc
reduction) or contraction (frequenincrease). This is because the DFT is sen-
sitive to the frequenc Also, the problem of amplitude scaling andset trans-
lation are not addressed.

Li et al. [80] tend the wrk of [51] in sub-sequence matching. In [80], the
Discrete Burier Transform is also used to get the firsvfeoeficients to repre-
sent the feature of the sequencewéeer, instead of using Euclidean distance
of these codicients to measure the similarity of éansequences, Li et al. [80]
use correlations of these coditients. Unfortunately no comparison with
related vork such as [51] ws mentioned in [80]. Only comparison to linear
scanning vas performed.

In [5]* a different notion ofsimilarity for time sequences is suggested. There,
two time sequences are similar if théhave enough nonaerlapping sub-

1. In the original paper the term “time seriesdswsed to mean “time sequences”.

Section 9.2 Similarity Sear on Tme Sequences 153

sequences that are similafrhe main goal of [5] is to deal with outliers in
sequences, and amplitude scaling arfdedftranslation. The algorithm contains
three major phases: 1) atomic matching; 2) wimdstiching; and 3) sub-
sequence ordering. Althoughxpmeriments were performed to sthahat the
algorithms actually wrked, no measurements on tficiencyof the approach
were performed. Therefore it remains a question is this method is practical con-
sidering time sequences are usuakywlamge in wlume.

9.2.2 Function Approximation

Shatley and Zdonik [112] suggest a tBfent stratgy to deal with similarity
search. The xample of the “goalpost fer” pattern vas used in [112] (see

Fig. 9.4). Shatky and Zdonik [112] claim to support marieature-preserd
transformations as stm in Fig.9.5 such ascaling(1, 2, 3, 4) contraction (1,

2, 4),dilation (3), shift in time(2), andshift in amplitude(4). The idea is to
break sequences into meaningful sub-sequences and represent them using some
feature-preserving functions such agression lines or linear interpolation.
Queries are approximated by features and performed on the function represen-
tations of sequences. The major adee of this wrk, compared to the older
ones, is to suggest a strgyeto handle approximate queries which is both
amplitude-andfrequency-independenilso, using function approximations to
represent a sequencevea storage space, compared to the normal approach
where all the points in a sequence are storedveder, this approach has the
main dravback that a laye amount of wrk needs to be done in the pre-process-
ing process where sequences are broknto meaningful sub-sequences and
approximated by functions (although this can be dorfelimd). Also this
approach is sensite to the functions used (lineamgression and linear interpo-
lation were used in [112]), and the mount obrlw will be substantial when
higher dgree functions (such as polynomials) are used.

temperature

time

Fig. 9.4: A pattern of “2-peaks”

154 Chapter 9 Related Work

amplitude A

time

Fig. 9.5: Various 2-peatd sequences under transformatiol

Relevanceto Our A ppr oach

An interesting obsenation is that the example used in [112] — finding the
“goalpost fever” pattern in a temperature sequence, can be dealt with more nat-
urally by theoOoperator and the IP-indgsee Section 5.4). Compared to the
approach in [112], our approachvaws all the cases listed in [112] easdyuch
asscaling, contraction, dilation, shift in time, andshift in amplitude.

9.2.3 Shape Languages

Agrawal et al. [6] use a diferent approach which as talen from tet string
matching technique. There, a sequence is transformed into a sequexyoe of
bols from a pre-defined alphabet (such as “up”, wad, “stable”, etc.). This
alphabet describes the shapes of the sequence. Sequences =ed imgehe
symbols and the positions where yh&ppear in the sequences. Sub-sequence
matching is performed by searching this ird& shape query language, SDL,

has been defined in [6]. SDL is ewqalent in &pressve paver to the rgular
expressions. W beliese that this approach isew sensitie to the alphabet
used. The definition of the alphabet is dependent on the application (such as
when to consider a slope as an “up” and when to consider it as a “stable” state).
This males one alphabet set (and the correspondinglit lndex) only useful

for one kind of application. Also no ingénsertion algorithm or performance
measurement were mentioned in [6].

1. In the original paper the term “history” is used to mean “time sequences”.

Section 9.3 Time Series Management Systems 155

9.2.4 Conclusions

Research on similarity search on time series complements otk micely.
Similarity search is based on the genestslpes (features) of a sequence, while
our work is based on indidual values of a sequence. Thesedwaspects of sup-
port for sequence data are both highly needed in real-life applications.

9.3 Time Series Management Systems

In Section 2.1.4, we mentioned that a time series is gufeg” time sequence.
Actually, a time series in the tradingisiness has more complicated structure
than the time sequence data model TS;=\). An example time series is
shavn in Fig.9.6 [101], which represents the stockckange history for the
Union Bank of Switzerland (UBS) géstered.

|

} Name: UBS raistered

: Security_number: 136 102

1 Start_date: 11.10.93

} End_date: 23.12.93

l Calendar: Business week

l

i Date Low High | Ticks

: 11.10.1993 | 78 85 79, 78, 77, 80, 83, 85,...
: 12.10.1993 | 80 84 84, 82, 80, 83,...

: 13.10.1993 | 82 86 84, 82, 83, 85, 86,...
|

I T T

|

Fig. 9.6: An example time series

In Fig. 9.6, we see that thme series consists of tw parts: 1) a general descrip-

tion: such as the name, the starting and ending date of the time series, the cal-
endar type used in the time series, etc.; 2) a chronologically ordered sequence

of obserations: such as o, high values, and alues at eery “tick” for every
trading day The general description is called tieader [101], and the chrono-
logically ordered obsentions are calle@vents [101]. In what follavs we dis-

cuss the special requirements on time series management in the trading

business.

156 Chapter 9 Related Work

Multivariate T ime Series

A time series is multivariate. It consists of aheader and events, as shavn in

Fig. 9.6. The header consists of common attribtes characterizing the whole
time series. Events model data collected @er successie points in time. Data
fields in events can hae scalar types (such asntegers for the low/high values
in Fig. 9.6) or structured types (such as tharray for the sequence of trading
prices at each tick).

An important aspect of time series analysis is the transformation of eents
between different periodicities (e.g., transforming daily data to monthly data
and vice versa). Different kinds of values require different periodicity transfor-
mations. For example, for the high price, the monthly value is the maximum of
all daily v alues. For the closing price, the monthly value will be the value of the
last day . For the cash flav, the monthly value will be the sum of all daily v al-
ues.

Since time series are usually subject to statistical waluations in which matrix
algebra plays a central role, time series management systems should pide
the data type ofarrays (vectors, matrices, and gen arrays of higher dimen-
sions) and support operations on them. Another important capability is the der-
ivation of new time series from existing ones, e.g., by computing the diference
of two time series, calculating a mwing average or aggrgating events for a
coarser granularity

Groups

In databases with a lage number of time series, detecting the data relant to
the interests of a user is an important issue. Normally one needs to partition the
set of time series into catgories or groups according to \arious criteria (e.g., a
set of share price series might be catprized along branches, country and/or
size of compary). For this, a time series management system must support a
flexible, powerful grouping mechanism. It is desirable that a group can recur-
sively contain other groups, that elements can belong to more than one group
and that participation in a group is by enumeration or by condition.

Calendars

Each time series is associated with acalendar that expresses the mapping
between the &ents and their corresponding points in time. A time series man-
agement system must support aariety of calendars, taking into account \ari-
ous base calendar s (like the Gregorian calendar Islamic calendar, etc.),
different granularities (lik e daily, weekly, or quarterly calendars), lusiness and
non-business calendars and calendars with local holidays. d¥ non-periodic

Section 9.3 Time Series Management Systems 157

time series, concepts Bkan ordinal calendar (just representing time units by
natural numbers) and enumerated calendars (enumeratimgglaresequences

of dates) should be supported. Calenddated functionality must include
operations to define all these calendars, to transform time units between calen-
dars, to scan calendars sequentjaidycompare and do arithmetic calculations
involving dates and time spans.

Because of the alve special requirements on time series managementgnen
tional DBMSs cannot be used to manage time series data in the trading b
ness. Br this reason,special-purpose management systems have been
developed to manage time series in finance and tradiregdidcuss the most
important time series management systemsvaelo

9.3.1 FAME

FAME [52] is currently the most mature commercial system specialized for
time series management. The namANME" stands for “Forecasting, Analysis
and Modeling Enironment”. It was deeloped by ARME Software Corporation,

a subsidiary of the Citybank in Switzerland.

Data objects \ailable in AME are scalars, umariate time series, and com-
puted time series described by formulasn& series may be defined withn-

ous frequencies from seconds up to multiples of a.yEach time series is
described by a standard header with informatioe lilequeny, first and last
date recorded, and aggetion type (summed,varaged, etc.). AME offers
powerful specialized functionality for statisticaivaduation and forecasting
(such as linear gression, Box-Jenkins, ming average, Monte Carlo Analy-
sis, and may others). There are also a number of functions to produce graphi-
cal output and reports imvious formats. Import from ancjeort to a \ariety of

file formats is supported AME is a \very comprehenseé system as to calcula-
tions on and presentation of time series. Query capacities consist in finding
data objects by name (including a wild caetifity) and retriging events by
time stamp. Tme series can be grouped by so-called name lists (e.g., all time
series related to earnings could be named “*.earnings”, where *’ is a wild card
for the name of each compgn

Operations on time series iMME can be classified as folis: 1) data prepa-
ration: interpolation of missingalues and time scale cearsion; 2) queries:
moving averages, cumulate sums, discretizing (e.g., rank theverues by
whether thg are in the top third, the middle third, or the bottom third), statisti-
cal functions (e.g., correlation betweerotgeries), etc.; 3) forecasting: statisti-
cal or data mining-basedciapolation.

To interpret missingalues in RME, all values are diided into two cat@ories:

158 Chapter 9 Related Work

1) Level values: these kinds of alues stay the same from on period to thetne

in the absence of awity. For example, iventory is a leel value, because
inventory stays the same if you neithetybor sell. 2)Flow values: these kinds

of values are zero in the absence of\dtti For example, &penses go to zero if

you huy nothing. Other interpolation methods such as cubic spline can also be
used to dexie missing alues.

FAME has segeral limitations. According to Dyer et al. [41], AME has poor
search and retrial facilities, and no mechanisms for data quality management
and data consistepccontrol. The data model is not werful enough: each
event may hge only one scalar field, and the group concept is too limited
group members can only be selected by pattern matching with simple wild-
cards, not by content. Fina)lghe 4GL requires special training and a lot of
experience.

9.3.2 CALANDA

Another special-purpose management system for time series is CARAND
[42] developed at the Union Bank of Switzerland. CALANDhas an object-
oriented data model with special root classes to model time series and groups of
time series. All the usual object-oriented features likheritance, method defi-
nition, overloading, etc., are supported. CALARBupports multrariate time
series with an arbitrary number of atuites per eent. Besides simple atttile
domains, multidimensional array types are an important modeling instrument
for statistical applications. Each time series consists of a sequencerdb e
and a header which is a record with a udefined attrilnte structure. There are
predefined operations for filtering time series, freqyemansformation, array
manipulation, etc. Of course, the user caterd this functionality by defining
his/her avn methods.

Groups are supported as axflde instrument for caggorizing and aggmgating

time series. The lge set of time series can be structured hijlding up a
directed agclic graph which can be used forwigation, querying, and set
operations. Grouping is not restricted to time series that describe one semantic
entity, but can be applied to grset of time series that fulfill common criteria
(e.g., all time series of securities which are currentlyvaelizelav a marlet
index, all time series of companies in avgn country and so on). CALANB
offers etensve calendar functionality pwiding data arithmetic, holidays,
business weeks, calendar transformation, etc. CALANIDso ofers a graphi-

cal user intedce that resembles a spreadsheet or 4GL tools for relational
DBMSs.

Section 9.4 Temporal Databases 159

9.3.3 Informix TimeSeries DataBlade

The commercial system Informix (former lllustra) is an object-relational
DBMS where Abstract Dataypes (ADTs) (Section 9.1.2) are supported for
various application domains. Among all ADTs supported by Informixmer
Series DataBlade” &drs functionalities for time series management.

In Informix’s TimeSeries DataBlade, tnnev data types are supported, namely
time series andcalendar. A time series is modelled as an n-agcior and asso-
ciated with a set of additional information such as its frequelife span, etc.
Time series can be muldriate, i.e., consist of an arbitrary number of recorded
attributes. Tme series can la various granularities and be associated with
different calendars. Access to data is based on an S@hson, which allws
combining time series and other relational data in one quergddition to the
general SQL dcility, about 40 predefined functions are supplied, e.g., to aggre-
gate time series, compute a time lag, clip a predefined imteetc. Further
analysis functions can be defined by the user hy of the abstract data type
feature of the ORDBMS. The limitation of Inform&TimeSeries DataBlade is
that there is no grouping mechanism to structure the set of time series.

9.3.4 Conclusions

Time series in financial and tradinguveaspecial requirements that e@mtional
DBMSs cannot meet. Most time series data are managed by special-purpose
management systems such A8viE.

Object-relational DBMSs or object-oriented DBMSs yd®e a way to manage
time series data by treating time series asva data type and defining opera-
tions on them. Anxample is Informixs TimeSeries DataBlade. Ouronk con-
tributes to this area by proposing a goodygibal structure for time series
(Section 7.2) and pwiding an ind&ing method (the IP-indg for efficient
processing ofalue queries on time series.

9.4 Temporal Databases

Corventional database management systems were designed to capture the most
recent data which model the reabrhd. As nev data becamevailable through
updates, thexasting data alues were usually remed from the database or
delegated to archial storage. This is because iasvexpensve or impractical to

store and access tg wlume of temporal data on-line. Therefore, applications
had to manage temporal information in an ad-hoc manner

Since the 1980s, the cost of main memory and magnetic disks has been decreas-

160 Chapter 9 Related dvk

ing, and ne storage media such as optical disks are gmgr Therefore, man-
aging temporal data in DBMSs has become feasible. As a consequence,
research on temporal databases has beeweaftti the last decade. According

to the first book on temporal databases [134]: the general definition of a tempo-
ral database is the follng:

A database that maintains pastegent, and futwr data is called
a tempoal database

In what follovs we shall preide an werview of research wrk done on tempo-
ral databases, and discuss the relationship between temporal databases and time
series management.

9.4.1 TimeDimensions

After the research on temporal databases started (19853sitjuickly disce-
ered that there are défrent notions oftime associated with dataalues.
According to [67], A Glossary of Emporal Database Concepts”, there are the
following dimensions of time in temporal databases:

e transaction time—
The time when the information istored in the database (normally time
points).

¢ valid time—
The time when the information tsue in the modelled reality (can be a set
of time points or interals).

¢ Userdefined time—

The uninterpreted attribute domain of data and time. It is maintained by
application programs (not supported by DBMSSs). In contrast, tratisac-
tion timeandvalid timeare supported by DBMSs.

In [67] the termtempoarl databasds defined as “a database that supports some
aspect of time, not counting useefined time”. In other wrds, a temporal
database supports eitheansaction timeor valid time or both. In contrast, the
term bitempoal database[67] is used to refer to a database system that “sup-
ports eactly onevalid timeand onetransaction timé

9.4.2 Research on Temporal Databases

Research on temporal databases has beeweaftir more than one decade.
Most of the efort was dedicated to proposing suitable data models awel-de

Section 9.4 Temporal Databases 161

oping general-purpose, declaretitemporal query languages. Relaty less
work has been done on implementations, such gsipal oganization of tem-
poral data, indeing, and query optimization.

Since relational DBMSs still dominate the database etarik is perhaps not
surprising that— despite the well-knen limitations of the relational data
model— mary of the proposals attempt txtend therelational data model

with temporal support. As a consequence, relational query languages are
extended with special syntax to deal with temporal semantics. These proposals
culminate in the TSQL2 standard [125], which is tlkéeasion of SQL2 stand-

ard with temporal support. (Currentihere is also an on-goingfeft to extend

the unfinished SQL3 standard with temporal features.)

Other proposals attempt tatend theobject-oriented data model with temporal
support. In what follws we compare these ewdifferent approaches byam-
ples.

Extending the Relational Data M odels

There are two basic approaches to xending a relational model with time
information: tuple time-stamping [134] and attrib ute time-stamping [134]:

e Tupletimestamping —
Timestamps are added to tuples to specify the time for which the tuples are
defined.

Example 9.1: employee (name, salary, dept, time_stamp).

Thetime_stamp in a tuple refers to thealid time or thetransaction time of
the tuple (i.e., the information of an empé®e). Note that éimestamp [67]
can be eithetime points or time intervals.

 Attribute timestamping —

Timestamps are added to attribs of a tuple to record the history of the
changes of attriltes.

Example 9.2: employee (name, (salary, time_stampl), (dept,
time_stamp?2))
m]
Here (salary, time_stampl) constitutes the salary history of this emyse,
and the(dept, time_stamp2) records the departments where this empé
has been warked in.

Tuple timestamping d&eps the relation in the first-normal-form (1NF) [46].
Thus it benefits from all the admatages of traditional database theory and tech-

162 Chapter 9 Related Work

nology. Attribute timestamping, on the other hand, requires non-first-normal-
form (N1NF nested) relations [46]. NINF relations are naturally more comple
and dificult to implement than 1NF relations. Wever, attribute timestamping
provides more modelling peer since each attrite can hee its avn times-
tamp which is independent of others.

Several temporal query languagesvkabeen suggested, based on either tuple
timestamping or attrilie timestamping. The basic approaches are the same,
i.e., by introducing special-purpose operators to the query languages for query-
ing temporal data. Theseweperators include “when” [32][55][121], “as-of”
[121], “joins” [55], “slice” [32] and “shift"[55].

The example belwv is the temporal query language TQuel [121]. It is a superset
of Quel, the query language of the INGRES system [127]. The fteanple
shows a query with respect talid time (using avhen clause), and the second
example shws a query with respect to the transaction time (usingasaof
clause). Bothxxamples are based on a temporal relafion

Example 9.3: What was Marys salary in October 19937

retrieve (f.salary)
wher e f.name="Mary”
whenf overl ap “October 1993"

Example 9.4: What was Marys salary according to the information stored in

the database in October 19937
m]

retrieve (f.salary)
wher e f.name="Mary”
as of “October 1993"

The common issues in designing temporal query languages are: temporal selec-
tion and projection, definition of the Cartesian product operatigpressve
power of the query language, homogeneity of tuples, and ease of use.

On implementation aspects of temporal, relational DBMS8esd approaches
have been suggested to impeothe performance of temporal queries:

e Temporal partitioning

Separate thdistorical data, which grav monotonically from thecurrent
data, whose size isifly stable and whose accesses are more frequent [89].
This separation as shan to significantly impree the performance of
some queries [8]. This approachasvlater generalized to allomultiple
cached states, which further impes performance [66].

e Temporal joins

Section 9.4 Temporal Databases 163

For temporal database$pin operations become more comyleThis is
because the data model contains temporal semanties.jdie algorithms
proposed for temporal databases incltigae-join, time-equijoin (TE-join)
[31], event-join, TE-outerjoin [59], contain-join, contain-semijoin, and
intersect-join [78]. They are etensions of nested loop or nger joins that
exploit sort orders or local @rkspace. In [79] a join algorithm for multi-
processors has been proposed.

* Temporal indges

Since temporal data tend to bedarin wolume, designing suitable inkiag
methods is more crucial in temporal DBMSs than investional DBMSs.
Many temporal indges hae been suggested to speed up query processing
time. These include theife Inde [45][47], the Append-Only fiee [58],

the Monotonic B-tree[44], the Tme-Split B-tree[88], the Intenl B-tree
[11], the Time-Polygon inde (TP-inde)[113], the I-tree [135] and PLI-tree
[135], and the Sgment Ind& [72].

Most of these indees are designed for theansaction time (such as the

Append-Only Tee, the Monotonic Btree, the I-tree, and therfie-Split B-
tree), others are designed for thalid time (such as the ifne Indg, the
Sgyment Inde, and the Tme-Polygon indg). Most of the indres use only
the timestamp (transaction time aali time) as the &y, others can include
a non-temporal attrilte as part of thedy as well. For example, in the Tme

Index [45] a two-level index has been proposed where non-temporsisk
are indeed in an upper kel and temporal éys are indged in a laver level.

¢ Query optimization techniques

Leung and Muntz [78] suggest using the stream processing technique in
temporal queryaluation and optimization. There, temporal join and tem-
poral semi-join operations are carried out with a single pass the input
streams, and the amount obsspace required can be small.

Extending the Object-Oriented Data M odel

This section shavs an example of extending the object-oriented data model to
incorporate temporal dimension. The @ample data model is OOBAPLEX [36]
that is based on the APLEX functional data model [114][120]. OOD APLEX
uses the concept obbjects to model real-world entities, and functions to model
properties, relationships, and operations of objects; other object-oriented fea-
tures, such as usedefined abstract data types, sub-typing and inheritance, pol-
ymorphism, and late bindings are also supported.

To extend the model in OODAPLEX to deal with temporal data, two generic
object types, time point andtime point set , are defined that carry the most gen-
eral semantics of time. The special semantics for time required by specific

164 Chapter 9 Related Work

applications are then introduced through abstract data types that are subtypes of
these generic time types. The timarying behsior of an object is modelled by
functions that relate time objects to the object.

Example 9.5: Theemployee type (corresponding to Example 9.2) is defined
by the follawing:
u]
t ype employee i s person
f unct i on name (e:employee -> n:string)
functi on salary (e:employee ->
f:(t: time -> s:money))
f uncti on dept (e: employee ->
f:(t: ime -> d:department))

In this example temporal information fogalary and department are modelled
asfunctions that tale time as aguments.

An example of the query language based on this data modelés delav. The
function extent(employee) returns all the objects of typnployee, the function
lifespan(e) returns all the time points at which the objecis defined in the
database.

Example 9.6: When did John get a salary raise?

for thee in extent(employee)
wher e name(e) = “John”
for eacht i n lifespan(e)
wher e salary(e)(t) > salary(e)(t-1)
end
name(e)
end

It can be seen that in the data model of ®DEX, no special time-oriented
constructs are needed in the query language. This is because: 1) non-temporal
and temporal data are treated in the sarag (&s objects and types); 2) all the
properties and bek&r of objects, including the timeavying aspects, are uni-
formly modelled by functions. Hence, the retaéand manipulation of tempo-

ral and non-temporal information aumiformly expressed. Some queries that
cannot be epressed in thextended relational languages can b@ressed in

this model. Therefore, this query language is rather general amdrfud in
expressing temporal queries. The price to pay is thiecdlfy in query process-

ing.

Section 9.4 Temporal Databases 165

9.4.3 Temporal Databases and Time Series Management

At first glance, one might think that time series are just a special case of tempo-
ral data which can be managed easily by temporal database management sys-
tems (TDBMSs). Unfortunatelyit is not true. According to the research paper
“Time Series, a Ngected Issue in@mporal Databases Research?” [101], it is
argued that the current status of temporal database management systems does
not satisfy the requirement of time series management. The reasons are as fol-
lows:

Structual aspects

The majority of temporal data models are straightforvard extensions of the
relational data model in that tuples are associated with some sort of time stamp
(mostly intervals). Hence, these data models inherit the well-kman limitations
of the relational model, in particular the requirement of the first-normal-form
(INF). This is not good since an atomic single-alued attribute which varies
over time could naturally be viewed as one compl& multi-v alued attribute
instead of being scattered wer a relation.

For example, Fig. 9.7 shows an approach to modelling a time series as a tempo-
ral relation:

t att 1 att 2
1 14 “x3"
2 36 “y7"
3 23 “z3"

Fig. 9.7: Modelling a time series as a temporal relation

It can be seen that this is a simple and étient organization. However, for a

database containing may thousands of time series, this approach wuld end up

with many thousands of relations. Current TDBMSs usually are not well suited
for this since they are designed to vork efficiently with hundreds to thousands
of relations, but not with ten or a hundred thousand. Furthermore, for eery

deletion and instantiation of a time series, one wuld have to change the
schema of the database, which is cumbersome.

Another approach would be to define one relation per time series type (see

166 Chapter 9 Related Work

Fig. 9.8). Because time series are usually read sequentibiltyales sense to
sort such a relation by time series identifier and by date. Normatlg series
data are rarely updated, with theception that n& events are appended at the
end. Havever, to sort this relation mas appends rathexgensve. Not to sort
the relation in this \wy males appends cheapubsequential access rather
expensve. Therefore, neither ganization is really satisfying. Wh a clever
primary oganization of the relation and with the addition of irde, some of
the dravbacks may be reduced. Unfortunatelisually only some operations
benefit while others become more costiynd additional disk space is neces-
sary

t ts_id att 1 att 1
1 “TS_17 14 “x3”
2 “TS_17 36 y7’
1 “TS_2" 234 “uip”
2 “TS_2” 327 “ytb”

Fig. 9.8: One temporal relation per time series type

Other possible approaches to modeling time series as temporal relations are
discussed in [101]. None of the approaches is satisfy The reason is that
when we assume that the attribs in a relation are only simplalues, the
semantics of a time series (each attute is an atomic singlealued attrilnte

which varies wer time) in DBMSs is lost. Therefore, update, rataie or ptys-

ical organization of time series are itfieient and cumbersome for end-users.
The solution is to all arrays as attrilutes. Unfortunatelycurrent temporal
DBMSs do not support arrayalued attrilntes. One could store arrays as
BLOBs. Havever, in this case, no functionality ivailable to manipulate them.

Time M odel

Another difficulty appears in the difference between the time models of tempo-
ral databases and time series. dmporal data models typically associate time
intervals with the facts stored in the database, gen that mary values remain
constant over long periods of time. Time series instead hae the property that
data values are collected at specific points in time, and the lifespan of a data
value is normally very short. Actually, some data alues even change continu-
ously. Therefore, operations such agempor al joins are often meaningless in
collections of time series because the notion of “concurrenteents” is often dif-

Section 9.4 Temporal Databases 167

ficult if not impossible to define. Furthermore, the notion oél@ndar is a cru-

cial abstraction in time series applications, because it defines the mapping from
time points to positions (indices) within a time series. Although TSQL2 [125]
supports the definition of calendars by the uskee proposed internal times-
tamp format is often too general for time series applications. A related point is
that in time series applications, the lifespan of a dataevmay be ery short,

as for &kample, in some stockxehange applications. Therefore, thalue of
some quantify may be completely unkvio except for the fev sampling points
represented in the database. Ma@p different time series may be associated
with different, incompatible calendars.

Functional Aspect

According to [101], temporal DBMSs are not adequate in managing time series
in the functional aspect. For example, statistical transformation methods such
as moving average are often needed to be applied to time series; while temporal
DBMSs (TDBMSs) do not provide the possibility to implement userdefined
procedures or methods. TDBMSs rely on a declarate language for data
manipulation, which is not suitable for formulating the necessary statistical
transformations. Furthermore,arrays are not part of the data model of current
TDBMSs, functions on array manipulations are missing as well. Havever, sta-
tistical functions are often array manipulations. Therefore, @en to carry out
basic transformations, the data hee to be etracted into some application and
stored back into the database afterards.

With respect to interpolation, TDBMSs often assume the “step-wise constant”
to interpret missing values. It is not possible to choose an other interpolation
function (lik e linear or spline interpolation, etc.). Fig. 9.9 illustrates this dis-
crepang/ between TDBMSs and time series management systems.

time series
management system

(linear, spline,...)

v(b)

Temporal DBMS:
(“step-wise constant”)

v(a)

a b

Fig. 9.9: Interpolation approaches in TDBMSs and
time series management systems

168 Chapter 9 Related Work

To conclude, TDBMSs based ortensions of theelational data model do not
satisfy the special requirements of time series applications: mapping time
series into snapshot and temporal relations is intricate, performance is problem-
atic, functionality is only partly adequate, and the capability gawoize time
series into groups is missing. It seems tblgect-oriented DBMSs or object-
relational DBMSs are more suitable in management of time series information.

It remains an open question whether a DBMS (e.g., InfosnikineSeries
DataBlade) can replace special-purpose management systems AMG)
time series applications.

9.5 Summary
In this chapterwe hae discussed wrk related to this thesis in general.

The most releant related wrk is the sequence database system SEQ. In SEQ,
sequence data were modelled asbstract data type (ADT), and supported by
common operators such as subsequenteetion, aggrgation, and composi-
tion. A sequence query langua@EQUIN, was deeloped to Bpress sequence
gueries. Important issues such as query optimization wemestigated. This
system later wlved into PREBTOR [111] to support other types of non-tra-
ditional data types such as image, audio, and spatial data.

Another closely related field ismilarity search on time series, i.e., finding
similar patterns in dférent time series. Wpresented anverviev of various

approaches, such as those using the Discreigiér Transform (DFT), or
transforming time series into some feature-presériunctions, or defining
some shape languages t@eess feature queries.eaMave pointed out pros and
cons of each approach and compare them with @sk.w

We also preided an eerview of time series management systems such as
Informix’s TimeSeries DataBlade,AME, and CLANADA. These systems
demonstrate the special requirements on time series managements that are not
met by cornentional DBMSs.

This chapter also includes arvesview of research ortemporal databases,
including temporal data models, temporal query languages, and temporal
indexes. W& hasre shavn that temporal database management systems based on
extensions on theelational data model are not adequate for managing time
series data. Instead, tlobject-oriented and object-relational data models are
more suitable for time series management.

Chapter 10

Application Study

This chapter presents a thorough application studyeorain-aided naviga-
tion [20] to shav that the IP-inde is applicable to other application domains.
The IP-inde improves the performance of a matching algorithm (the bayesian
approach [20]) in terrain-aided vigation by eficiently filtering out sub-areas

in a map where the terrain ghlgions inside these areas are inside soaiaev
range [’, h"). The eficiency of this approach iserified by eperiments.

10.1 What is Terrain-Aided Navigation

Terrain-aided navigations to use the terrain heighver the mean seavel,

the terrain eleation, to drav conclusions about the position of an aircraft. The
idea is: A map with sampled terrain e&ion measured in a uniformly spaced
grid is stored onboard the aircraft. Flyingeo an area, the aircradttitude over
mean sea-kel is measured with a barometric sensor andgtbend cleaance

is measured with a radafhe diference between the altitude and the ground
clearance is an estimate of ttegrain elevation, which can be compared to the
stored \alues in the map to determine the position of the aircraft, sed Gigy.

Gathering samples as the aircraft flie®ioan area will produce a trajectory of
measured el@ations. The more sampleatfpered, the more Ity it is that the
trajectory is unique and that a good position estimate may be found when com-
paring the trajectory with the stored ed¢ions in the map.

Errors and uncertaintyxest in the measurements of the barometric sensor and
radar For example, flying through diérent local weather conditions will cause

172 Chapter 10 Application Study

Altitude Ground clearance

Terrain eleation

Mean sea-leel

Fig. 10.1: lllustration of the terrain-aided megation

the barometric sensor to produce biased errors. Thus, the measured terrain ele-
vation is an approximation of theal terrain eleation. In order to locate the
position of the aircraft on the map, a non-linear matching algorithm (the baye-
sian approach [20]) which tek into account the probability density function of

the measured efation has been deloped [20]. This matching algorithm
needs to be applied tovery grid of the map and eachweneasured elation

in the trajectory needs to be processed reeahgi[20].

10.2 Using the IP-index in Terrain-Aided Navigation

Since the matching algorithm ixmensve and has to be applied teesy grid

of the map, it becomesewy ineficient when the number of grids in the map
becomes lage (see [20]). Therefore, we propose to use the IPxintlee idea

is to filter out those sub-areas whose terrairnvaiens are in some range
around the measure@hesh. We use a confidence intexv(h-10, h+10) where

the probability that the true elation value is inside this inteal is higher than
99.99% according to the probability density function. Then, the sub-areas
whose terrain elations are inside the inteal (h-10, h+10) can be used as
starting positions of the matching algorithm (this approach will be further illus-
trated in Section 10.2.1).

One may ague that a corentionally ordered secondary indés suficient to
efficiently find those sub-areas where the terraivaliens are inside the inter-
val (h-10, h+10). Refer to Section 3.5 for detailed discussions on tHerdif
ences between the IP-indand a cowentional secondary inaeto see wl a
corventional secondary indedoes not wrk well here.

Section 10.2 Using the IP-indén Terrain-Aided Navigation 173

10.2.1 The Approach

Since the IP-indeis designed for 1-D sequences, it cannot be directly applied
to the two-dimensional map. The approach is: wewieach rev of the map as

a time sequence (see Fi.2). That is, each grid corresponds to a state in a
time sequence, the position identifieccorresponds to the timestamand the
elevation h; corresponds to thealuev. For each time sequence, we pose the
interval queryF1(h-10 <v<h+10) to get the position inteals (j_pos’, ij_pos’)
where the wlues inside these inteaks are inside the rangh’(h”). By round-

ing these interals (see Section 5.2) we can get corresponding column aiserv
[ij’,ij ']. These column inteals are the sub-areas in thiswavhose terrain ele-
vations are inside the inteal/(h-10, h+10).

The map in*n) The sequences
hya| M2 hyp| ———— = <hi hpe g
h21 h22 h2n B — . <h2n, hlz, h2n>
hml hm2 hmn —_—— <hml1 hmz, hmn>

Fig. 10.2: Transformation between the map and the sequence

Now let us look at he the IP-ind& can imprae the eficiency of the matching
algorithm in terrain-aided wégation. As we mentioned earliethe matching
algorithm finds the true position of the aircraft by applying a non-linear algo-
rithm to the whole map recuxgly for each measured &kion in the trajec-
tory. Taking a trajectory of elation measurementshyg, h,,.....h>, we can use
the IP-inde to find the sub-areas in the map whose terraivatiens are inside
the intenal (h;-10, h;+10) (this interal is based on the probability density
function as gplained earlier), thus pwiding starting positions for the match-
ing algorithm. Since the matching algorithm does natehts be applied to the
whole map, dfciency is improved.

10.2.2 Cardinality

We define theardinality of an interal (h;-10, h;+10) as the number of grids in
the map whose terrain ef&tions are inside this inteal; In the measurements

174 Chapter 10 Application Study

we found that for a trajectoryhg, h,,.....h >, the cardinalities oft(-10, h;+10)
vary widely (see Figl0.4). Since the matching algorithm does not reallyeha
to start from the first measuremel, i.e., it can start from ansub-areas
returned from the intenl (h;-10, h;+10) (< k) and apply the non-linear algo-
rithm backvards 6.1, hi_p,.....h;) and forwards @j;q, hjss,.....h), we do not
always hae to tale the first interal (h;-10, hy+10) to return the sub-areas.
Instead we tad an interal (h;-10, h;+10) in the trajectory which returns a small
cardinality (this will be further illustrated in the xtesection). The matching
algorithm starts from these small areas (and applies the non-linear algorithm
backwards and forwards in the trajectory) will be much morefieiflent than
starting from the whole map.

The cardinality of the intead (h;-10, h;+10) can be computed easily from the
IP-index since the cardinality information is stored in the IP-ind&ection
3.1). The cardinality of the inteal (h'-10, h"’+10) can be computed by adding
togethercardinality(k)) for those kys k;j in the IP-index that satisfy the condition
h’-10 <k <h’ +10. This is eficient since the IP-indeis an ordered inde

10.3 Measurements

We have performed performance measurements on a real map and simulated
track files to see o efficient the abwe approach is. In this section we
describe the>gerimental results.

10.3.1 TheReal Map

To male the measurements as close to reality as possible, we use a real map
over a part of Sweden (see Fi).3) which consists of 101 by 101 samples in a
uniformly spaced grid. (It is sampled with 50 m distance between eazh tw
sample points, yielding an area of 25%af terrain.) The ehmtion of each grid

in the map is not thevarage eleation \alue wer the grid lnt the measured ter-

rain elevation rather gactly in the center of the grid. Some interpolation
method (e.g., linear interpolation) could easily be applied to the map to produce
ary terrain el@ation between the sampled points. As seen in Fig3, the ter-

rain elevations hae different characteristics in dérent parts of the map.oF
example, the flat area in the upper left corner of the map isea lak

10.3.2 The Track Files

50 elevation track files were randomly generated in order teecdlifferent
parts of the map. The starting positions of these tracks were uniformly distrib-
uted along the leftmost line of the map. &ikise their final positions were uni-
formly distributed along the parallel finish line on the other side of the grid (see

Section 10.3 Measurements 175

A0
0%

‘/‘:‘f"""i e
YOG
S

120

120

Fig. 10.3: The real map

Fig. 10.3). Each track file represents a trajectory of an aircraft and it contains
80 sampled terrain elation measurements.

10.3.3 Cardinality

For a trajectory K4, h,,.....h>, the cardinality of each inteal (h;-10, h;+10)

can vary widely as shwn in Fig.10.4. As we mentioned in Section 10.2, we
would like to tale an interal (h;-10, h;+10) in the trajectory which returns a
rather small cardinalityThe more samples (in a trajectory) wedathe higher

the probability will be to find a small cardinalitfo measure the relationship
between the minimum cardinality found and the size of the tracks, we calculate
the cardinalities (see Section 10.2) ftre firsti * 10 (i = 1...8) samples for
each track file. W recorded the minimum cardinality found and the corre-
sponding size of the track. Thus, for each track we get a sequence
of minimum cardinality min; (i = 1...8) and the correspondingize;, = i

* 10 (i = 1...8). Fig.10.5 shavs theavg(min;) over the 50 tracks. It sk that:

1) The minimum cardinality decreases with the size of the tracks; 2) After
approximate 30 samples, theeaage of the minimum cardinality reaches a sta-
ble value (i.e., a &lue around 609).

176 Chapter 10 Application Study

cardinalities in a sample track file
7000 T T T

6000 - ERRI : o 4

a
(=
o
o
T
I

4000} - o6 ° .

3000 © b

cardinalities of each intervals

£
&
&
9

1000 - : : : N

L L L
0 10 20 30 40 50 60 70 80
each interval in the track

Fig. 10.4: Cardinality distribution for a sample track

the relationship between min_card and the size of tacks
800 T T T T T

700+ q

600

a1
o
o
T
L

average of min_card found
w B
o o
o o
T T
Il Il

100 q

0 | | | | | | |
0 1 2 3 4 5 6 7 8

track size (*10)

Fig. 10.5: The relationship between the number of samples taken and
the average of the minimum cardinality found

Section 10.3 Measurements 177

10.3.4 The Settling Time of the I P-index

Thus we can use thealue 609 as the “coerge” threshold for the IP-inde
i.e., we say the IP-indehas settled when it finds a cardinality less than 609.
Taken a trajectory of elation measurementshg h,,...h >, it is interesting to
see hwv fast the IP-inde settles. & tested the IP-indeon the 50 tracks and
recorded the number of samples needed to reach theemgenthreshold 609.
The histogram is slven in Fig.10.6.

16

14t

= P
o N
T T

the number of trajectories
©
T

B 1111/ A— R

. . .
0 10 20 30 40 50 60 70 80
the number of samples taken

Fig. 10.6: The histogram of the settling time of the IP-irde

Fig. 10.6 shas that the settling time of the IP-indés generally small. &

most tracks less than 10 samples are needed. Notice that when the track does
not cover areas with small cardinalities (faxaanple, when the aircraft is flying

over flat areas such as k&), the cardinality threshold cannot be reachamhe

if the whole track is che@d. That is the reason wisome tracks are located in

the rightmost line (where the settling time is 80)ig. 10.6

10.3.5 Conclusions

Note that the measurement results arecéd by the application dataoi
example, the alue of the “comerge” threshold (609) used in these measure-
ments is dependent on thed&on values in the terrain map and the position
of the tracks (in the map). It should be tuned fofeddént application data sets.
This value in turn akects the settling time of the IP-inxle

178 Chapter 10 Application Study

Nevertheless, these measurementsashow the IP-inde should be used in the
navigation application to find good starting positions for the matching algo-
rithm. The approach is: for grtrack file we calculate the cardinality for each
sampleh;, and stop either when we find the first cardinality that vgelothan

the threshold (i.e. 609 in thexa&le), or when the IP-indereaches its “con-
verge threshold” (i.e. 30 samples in theaenple since the minimum cardinality
will not continue to decrease based on statisticsvehim Fig. 10.5. Suppose
we stop at the samplehg in the trajectory then we posethe range query
F1(hg10<v<hg+10) to find the sub-areas in the map whose terraivagiens

are inside the inteal (hg-10, hgt10). These sub-areas are returned to the
matching algorithm to seevas the starting positions (recall in Section 10.2 that
the matching algorithm canaxk backwards and forards). Since the number
of grids inside these areas is guaranteed to be small, the matching algorithm
will always bemud more eficient than starting from the whole map.

10.4 Summary

To conclude this chaptewe hae shavn that the IP-indeis applicable to other
applications domains such asrrain-aided navigation[20]. The IP-inde&
improves the performance of the bayesian approach [20] in terrain-aidéd na
gation by eficiently filtering out sub-areas in a map where the terrainaele
tions inside these areas are inside some rahgéh(). The eficiency of this
approach as \erified by eperiments.

Chapter 11

Conclusions and Future Work

I n this chapter we conclude this thesis and point out possible futirie w

11.1 Concluding Remarks

To conclude this thesis, we V& shavn that: although considerable research
has been dedicated to supportseguence data in DBMSs in the last decade,
some important requirements from applicationsragected, i.e., hav to sup-
port sequence data wed ascontinuous under arbitrary usedefined interpola-
tion assumptions; and twoto perform sub-sequenceateaction eficiently based
on the conditions on thealue domain (instead of on the ordering domain). T
address this challenging problem, wergerformed etensive research which
results in this thesis. Our main contrtibns consist of the folleing:

 We hare dereloped an inneative ind«, the IP-ind&, which supports &f
cient calculation of implicit alues of sequence data under arbitrary -user
defined interpolation functions. The idea of the IP-indke general and it
can be implemented on top of an ordered insiech as a Btree.

* We hare implemented the IP-indein both a disk-resident database system
and a main-memory database systers.NWae demonstrated byperiments
that the insertion and search time of the IP-indemains small mardless
of the graving of the time sequence.aNalso ivestigated the space usage of
the IP-ind& to shav that it is practical to hild IP-indexes for lage
sequences.

* We introduced anx¢ended SELECT operatoo*, for the abstract data type

180 Chapter 11 Conclusions and Fueuwbrk

of time sequences. The* operator o*.,,TS), retrieves sub-sequences
(time intenals) where the alues inside those inteais satisfy the condition
cond Experiments made on SHORE [22] using both synthetic and real-life
time sequences sthved that thes(operator (supported by the IP-indelra-
matically improses the performance okilue queries.

* We developed a cost model for tligloperator We also sheed that the cost
of a range quergl.,(TS)is nearly thesameas the cost of thexact query
o*,=(TS). This indicates that processing range queriesery ‘eficient
using the IP-inde, especially for lage sequences.

« We irnvestigated optimizations of time windo queries and compkevalue
gueries (sequence joins). The optimization techniques werdied by
experiments.

* We proposed a multi-leel dynamic array structure for dynamic, grdar
time sequences. The highlight of this data structure is that it is higlalye
efficientand supports bothfficientrandom accesandfast appending

« We investicated issues such as management aojeaobjects in DBMSs,
physical oganization of secondary inges, and the impact of main-memory
or disk-resident DBMSs on sequence data structures angesde

« We performed a thorough application study on “terrain-aidedgasion”
[83] to shav that the IP-inde is applicable to other application domains.
Experiments on a real terrain map and simulated track files were performed
to verify the eficiency of the approach.

We also performed anxtensive study on related evk to give the readers an
overview of research wrk done in this area. Closely relatednk was studied
in depth.

11.2 Future Work

For future work, we would like to further inestigate optimizations for compke
sequence queries when tlo& operator is inolved. Query optimization for
sequence data is an interesting and challenging issue, especiabnforuous
sequences when usdefined interpolation functions are supportedr Exam-

ple, optimization of sequence joins (see Section 8.@)l&/ require the com-
bined knavledge on the cost and selegty factors of theo* operators
involved, and diferent join techniques.

Another interesting direction for futureork would be to iwesticate hav to
extend the idea of the IP-ingg¢o multi-dimensional sequence data. This is cer-
tainly a highly challenging subject.

Appendix

SHORE Implementation Notes

This appendix describes Wwothe IP-ind& and time sequences were imple-
mented on SHORE (to complement Section 4.2.1).

SHORE (Scalable Heterogeneous Object REpository) [22] is a persistent object
system deeloped at the Unersity of Wisconsin. SHORE represents a ger

of object-oriented databases and file system technoBIdQPRE eolved from

an earlier object-oriented database system called EXODUS [25].

SHORE is a peeto-peer distribted system (see Fid). Each node where
objects are stored or where an application program wisheetute contains a
SHORE serer process that talks to other SHORE sesy interfices to locally
executing applications, and cashes data pages and locks in order tovémpro
system performance. A SHORE serxcommunicates with the local application
through RPC and shared-memory

To allow databasesuilt by an application written in one language (e.g. C++) to
be accessed and manipulated by applications written in other object-oriented
languages (e.g., Smalltalk), SHORE defines its type system in SHORE Data
LanguageSDL. SDL is quite similar to ODL (the Object Definition Language)
proposed from the ODMG consortium.

All persistent objects in SHORE are defined in SDL as instancéstesface
types. An interfacedefinition is similar to a class definition in C++. Intecé
types can hee attritutes, methods, and relationships. Htibute of an inter-
face type can be of one of the primétitypes (e.g., intger, characterreal), or
they can be of constructed types. SHOREwdes the usual type of construc-
tors: enumeration, structures, arrays, andreferences (which are used to define
relationships). In addition, SHORE ptides a variety of bulk types, including
lists, sets. andsequences, that enable a SHORE object to contain a collection of

182 Appendix

Workstation 1 Workstation 2
SHORHE«

- o —

Ej Sener 1 Sener 2

Fig. 1: The SHORE process architecture

references to other objects. In particular sequence is a homogeneous
sequence ofalues of a base type. A sequence cangadbitrarily lage.

SHORE also preides the notion ofmnodules, to enable related types to be
grouped together for name scoping and type management purpose.

Interface Typesin SDL

To implement the IP-indeand the data type dfme sequence in SHORE, the
first thing is to define thénterface types for them. The IP-ind& was imple-
mented using the Btree interfice [116] preided by SHORE. In SHORE, inges
such as B-trees or R-treeare declared in SDL dsdex<keytype, valtype>

varname. A B*-tree in SHORE is initialized by thit(index_type) state-
ment where the parameterdex_type can be‘BTree” or “UniqueBTree
Scanning the indeis accomplished by the template clastexScanlter(const
Index<key, val> idx). This template opens a “cursor” to indicate the current
(key, value) pair in the range anchaxt member function to me the cursor to the
next pair. Range bound may be specifieddstuB andSetLB member function.

A time sequence &as modelled as an array of records\() (for reasons see Sec-
tion 4.2.]. Since anchestate sequences are dynamicallyvgra, they cannot

be modelled as static objects such asdisized arrays or unordered objects
such as sets or bags. Insteadytaee implemented as a sequence data structure
Seq [116] in SHORE Seq is a dynamic array @riable-length array) stored on
disk. It supports operations such @&spend_elt , get_ele , get_size |,

Appendix 183

delete_elt, etc.

Member functions that do not update the contents of an object are flagged as
const in their SDL definition.

1. TheTime_sequence interface:

A time sequence is implemented as an array of state_ids where each state_id
S; is a pointer that points to where the pajr) is stored. There are three

methods defined on the time sequence iatEf type: insert(v),
get_state_value(i)andprint_time_sequence().

interface Time_sequence {
public:
typedef ref<State> state_id;
attribute state_id state_ids[100000];
/I an array of references to the “state” object!
attribute int curr_length;
/I current length!
int insert(in float v);
/'in” means this function will not modify the argu-
ment!
void print_time_sequence() const;
float get_state_value(in int i) const;
Il retrieves the value v i given the state_id !

2. The Anchor_state_sequences interface:

An anchorstate sequence is stored using a sequence data structure in
SHORE. This intedce contains four methodmitialize(), initialize(seq),
append(s),and print_andors(). The methodinitialize() initializes anil
sequence and the methidtialize(seg initializes the anchestate sequence

with a knavn sequencseq(by copying that sequence).

interface Anchor_state_sequence {
public:

attribute sequence<int> anchors;
Il sequence of state_id!

void initialize();
Il initialize with nil!

void initialize(in sequence<int> seq);
Il initialize with sequence “seq”!

void append(in int s);

void print_anchors() const;

b
3. ThelP_index interface:

The IP-ind« is stored asndex<float, ref<Anchor_state sequence>>The

184 Appendix

structure index<float, ref<Andor_state_sequence>>ndicates that this
index has floating point numbers asyls and eachdy is associated with a
pointer that points to alnchor_state_sequencéhe IP_index interface
has the follwing methods: initialize(), insert(i, v), seah(v),
print_ip_inde(), modify_ip_inde(vl, v2, s), gt_left_entry(v), and
simulate_bak_scan(v).The methodinsert(i, v) inserts a ng state (f v;)
into the IP-ind& where t =i (for simplicity we use intgers as time stamps,
see Section 4.2.1). The methedarch(v) searches the IP-ingeo find the
anchorstate sequence A(v) for thealue v. The methodprint_ip_inde()
prints the IP-inde by traversing the IP-inde tree. The method
modify_ip_ind&(vl, v2, s)appends the anchstate sequences of thosgs k
wherevl < k <v2 with the state s. The methaet_left_entry(vyeturns the
entry in the IP-inde with the ley value k where k< v < k4. The method

simulate_bak_scan(v)will be explained in the section “C++ binding” later
For nov we can ignore it.

interface IP_index {
public:
attribute index<float, ref<Anchor_state_sequence> > ind;
void insert(in int i, in float v);
void search(in float v) const;
leftmost get_left_entry(in float v) const;
leftmost simulate_back_scan(in float v) const;
void modify_ip_index(in float v1, in float v2, in int s);
void initialize();
void print_ip_index() const;
I “const” means this function will not modify the
object!

ThelP_index Module

There is only one module in this implementation. The module name is
IP_index. The IP_index module contains the folleing interface types and
data structures:

module ip_index {
interface IP_index;
interface Anchor_state_sequence;
interface Time_sequence;

struct leftmost {
char flag;
sequence<int> anchors;

Appendix 185

All interface types in this module ¥ been gplained in the préous section.
The structureleftmost is mainly used to store the ancksiate sequence
returned by the methoget_left_entry(v) (Theflag field is used to mark some
internal conditions in the program.) The index module is stored in a file
namedip_index.sdl This file is compiled into a C++ header file_index.h,
which can be included in C++ programs, see thd Bection.

C++ Binding

SHORE is designed to allodatabasesuilt by an application written in one
language (e.g., C++) to be accessed and manipulated by applications written in
other object-oriented languages as well (e.g., Smalltalk). This capability is
important for lage-scale applications, where féifent modules are probably
written in different languages. In SHORE, the methods associated with SDL
interfaces can therefore be written usingy aof the languages for which a
SHORE language bindingists. Currentlyonly the C++ binding is supported.

For the SDL fileip_index.sdl(the last section), part of the generated header file
ip_index.hfile is shavn in Fig. 2.

Some of the data types in Fig.correspond directly to SDL types, as C++
offers direct support for those simple typeer EDL types with no correspond-

ing C++ types, lik sequenceandreferences SHORE uses pre-defined, macro-
based classes (similar to parameterized types) su&eafaand Sequence. For
example, the SDL typeef<Anchor_state_sequence> is compiled into the
classRef(Anchor_state _sequence>; C++ overloading features makit behae

like a pointer to a read-only instance Afchor_state sequence . The class
Sequence<long> encapsulates a data structure containing a sequence of long
integers and preides member functions that enable its contents to be accessed
(such asappend_elt , get ele , get size , anddelete_elt).

Given the header file generated by the bindbe application program can
implement the operations associated with each iatertype. Br example, the
following C++ code implements the member functipmnt_time_sequence()
for the classTime_sequence:

void Time_sequence::print_time_sequence() const {
inti;
float v;

for (i = 0; i<curr_length; i++) {
v = this->get_state_value(i);
cout << v;

cout<<*“*

186 Appendix

r-- - - - - - - - 0 " 0 0 0 = = 1
class I P_index: {
public:
I ndex<fl oat, Ref<Anchor_state_sequence> > ind;
virtual void insert(long i, float v);

virtual void search(float v) const;

virtual struct leftmost get _left_entry(float v) const;
virtual struct |eftnost sinul ate_back_scan(float v) const;
virtual void modify_ip_index(float vl, float v2, long s);
virtual void initialize();

virtual void print_ip_index() const;

}

\ |
| \
| |
| |
| \
\ \
| |
| \
\ |
| cl ass Anchor_state_sequence: { |
| public: \
| Sequence<l| ong> anchors; \
‘ virtual void initialize(Sequence<long> seq); ‘
virtual void initialize();
| virtual void append(long s); |
| virtual void print_anchors() const; |
| |
| |
\ |
\ |
| \
| |
| |
| |
\ \

b
cl ass Ti ne_sequence: {
public:
typedef Ref<State> state_id;
Ref <St at e> state_i ds[100000] ;
long curr_Il ength;
virtual long insert(float v);
virtual void print_tine_sequence() const;
virtual float get_state_value(long i) const;
b
Lo - - _

Fig. 2: Theip_index.h file (generated fronp_index.sdl)

The abee const flag for this function denotes that this function does not
update the contents of the object modify an object, the C++ application
must first call a special generated member functiplat e(), which returns

a read-write reference oF example:

Ref <Ti ne_sequence> ts;
ts.update()->insert(v);

The functionupdat e() coerces the type afs from Ref <Ti me_sequence> to
(non const) Time_sequence *. It also has the runtime fefct of marking

the referenced object as “dirty” so that changes will be transmitted to ther serv
when the transaction commits.

Appendix 187

The B*-treein SHORE

The IP-inde is implemented on top of a’Bree in SHORE. A B-tree in
SHORE is initialized by théit(index_type) statement where the parame-
ter index_type can be‘BTree” or “UniqueBTree ". Scanning the indeis
accomplished by the template clagslexScanlter(const Index<key,

val> idx) which opens a “cursor” to indicate the currengy(kvalue) pair in
the range and aext member function to me the cursor to the wre pair.
Range bound may be specified $8tUB andSetLB member function.

An IP-index is initialized by the follaving code:

void IP_index::initialize() {
SH_DO(ind.init(UniqueBTree));
}

The macroSH_DO[116] is used for calling functions that are napected to
fail. It evaluates its ayjument and erifies that the result isalid. If not, it prints
an error message and aborts the program.

An index scan is accomplished by the follmmg code:

IndexScanlter<float, Ref<Anchor_state_sequence> >
iter(this->ind);

iter.SetLB(v);

iter.SetLowerCond(geOp);

rc = iter.next();

The abee code sets the wer bound tov (no upper bound is specified). The
condition for the laver bound is ‘>=" (the parameter “geOp” al®). The limi-
tation of scanning a Btree in SHORE (gien a ley range) is that scannirws

to start from the laver (key) bound and mees tavard the upper bound. Back-
ward scanning (scanning that starts from the upper bound avnelsnhavard the
lower bound) is not supported. Unfortunately the algorithm of the IP-ince
(see Section 3.3), we need baekd scanning (see the functiget_lower(tree,
vj) in Section 3.3) to find the fird; wherek; < v; (of course we could start
scanning from the minimumel value to find théast k; wherek; < v;, but this
will certainly be \ery slaw). In order to be able to get the right measurement
figures, we had to simulate the situation when the bac#wcan \as aailable.
This is wly we hare the methodimulate back scan(v) in the IP_index inter-
face. The code for this method can be found in [84].

188 Appendix

Conclusions

SHORE is a state-of-the-art OODBM S designed for distributed applications. Its
separation between the SDL language and implementation languages conforms
to the spirit of the ODMG standard for open systems. However, there are sev-
eral limitations in the current version of SHORE. For example, page faulting
for large objects is not supported, and index scan starting from the upper bound
toward the lower bound is not available.

Bibliography

10.

11.

H. Abelson and G. J. Sussmargtfuctue and Interpetation of Computer Pr
grams’ MIT Press, 1985.

G. M. Adelson-\lIskii and E. M. Landis,Doklady Akademia Nauk SSSR'46,
1962, pp. 263-266; English translationSoviet Math 3, pp. 1259-1263.

M. E. Adiba and B. G. LindsayDatabase Snapshdt®roceedings of 6th VLDB
Confeence pp. 86-91, 1980.

R. Agrawval, C. Rloutsos and A. Sami, “Efficient Similarity Search in
Sequence Databasesn Proceedings of the 4th International Cordace on
Foundations of Data @anization and Algorithmspp. 69-84, Chicago, Oct.
1993.

R. Agrawal, K. Lin, H. S. Sahney, and K. Shim, “lst Similarity Search in the
Presence of Noise, Scaling, andhfislation in Tme-Series Databasé&sn Pro-
ceedings of 21st VLDB Conéarce pp. 490-5011995.

R. Agrawal, G. Psaila, D. L. \Whmers and M. Zd, “Querying Shapes of Histo-
ries) in Proceedings of 21st VLDB Conésrce pp. 502-5141995.

I. Ahn and R. Snodgrass, “Performance Analysisahporal Queriesjn Infor-
mation Sciencevol. 49, pp. 103-146, 1989.

I. Ahn and R. Snodgrass, 8Ritioned Storage fordmporal Databasésn Infor-
mation Systemd3(4):369-391, 1988.

A. V. Aho, J. E. Hopcroft, and J. D. UllimanDé&ta Structues and Algorithm’.
Addition-Wesley, 1987.

A. Ammann, M. Hanrahan and R. KrishnamwyrttiDesign of a Memory Resi-
dent DBMS] in Proceedings of IEEE COMPCQNSan Francisco, February
1985.

C-H. Ang and K-PTan, “The interal B-tree”, inInformation Ppcessing Let-
ters, 53(2): 85-89, Jan. 1995.

190

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Bibliography

M. Astrahan et al., “System R: Relational Approach to Database Managemeiit,
in ACM TODS, Vol. 1, No. 2, June 1976.

M. Atkinson, et al., “The Object-Oriented Database System Manifestd,in Pro-
ceedings of the Rrst International Conference on Deductive and Object-Ori-
ented DatabasesKyoto, Japan, Dec. 1989.

F. Bancilhon, C. Delobel, and R Kanellakis (eds), “Building an Object-Oriented
Database System: The Story of 02 Mor gan Kaufmann Publishers, 1992.

D. S. Batory, T. Y. C. Leung, and T E. Wise, “Implementation Concepts For an
Extensible Data Model and Data Language”, inrACM Transactions on Database
Systems13(3):231-262, Sept. 1988.

R. J. Bayardo Jr, D. P. Miranker, “Processing Queries for First-Fev Answers,” in
Proceedings of 5th International Confeence on Information and Knowledg
Management pp 45-52, Maryland, USA, Nov. 1996.

R. Bayer and E. McCreight, “Organization and Maintenance of Lage Ordered
Indices,” Technical Report No. 20, Boeing Scientific Research Laboratories,
July, 1970.

N. Beckmann, H. Kriegel, R. Schneider and B. Seger, “The R*-T ree: A Effi-
cient and Rolust Access Method for Points and Rectangl€s in Proceedings of
the 1990 ACM SIGMOD Conference pp. 322-331, June 1990.

J. L. Bently, “Algorithms for Klee’s Rectangle Ppblems”, Technical Report,
Computer Science Department, Carrgie-Mellon Uni versity, Pittsburgh, 1972.

N. Bergman, “A Bayesian Apppoach to Terrain-Aided Navigation”, Technical
Report, LiTH-ISY -R-1903, Linkdping Uni versity, Oct. 1996.

C. Bettini, X. S. Wang, E. Bertino and S. Jajoda, “Semantic Assumptions and
Query Evaluation in Temporal Database$, in Proceeding of the 1995 SIGMOD
Conference on the Mangement of Data,May 1995.

M. J. Carey, et. al, “Shoring Up Persistent Applications;” in Proceeding of the
1994 SIGMOD Confeence on the Mangement of Datg Minneapolis, MN, May
1994.

M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J. Shekita, “Storage Manage-
ment for Objects in EXODUS;” in “ Object-Oriented Concepts, Databases, and
Applications,” by W. Kim and F. Lochovsky, eds., Addison-Wesley Publishing
Co., 1989.

M. J. Carey, D. J. DeWitt, J. e. Richardson, and E. J. Shekita, “Object and File
Management in the EXODUS Extensible Database Systefnin Proceedings of
the 12th VLDB Conference Kyoto, Japan, 1986.

M. Carey et. al, “The Architecture of the EXODUS Extensible DBMS,” in Pro-
ceedings of the International Workshop on Object-Oriented Database Systems
Asilomar, Califonia, 1986.

Bibliography 191

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

R. G. G. Cattel, Object Data Mangement. 2nd edition, Addison-WSsley Pub-
lishing Compap, ISBN 0-201-54748-1, 1994.

D. Chanberlin, Using the Nev DB2” Morgan Kaufmann, 1996.

R. Chandra and A. $ev, “Managing Bmporal Financial Data in an Extensible
Databasé,in Proceedings of 19th VLDB Conéasrce Dublin, 1993.

J. Chomicki, “Emporal Query Languages: a Sey¥V in Proceedings of the
International Confeence on @mpoarl Logic, Bonn, Germay, July 1994.

H-T Chou et. al, “Design and Implementation of thes¥dnsin Storage System,
in Softwae Practice and Experiengé/ol. 15, No. 10, Oct. 1985.

J. Clifford and A. Crolr, “The historical relational data model (HRDM) and
algebra based on lifespah#@ Proceedings of the 8rinternational Confeznce
on Data Engineeringpp. 528-537, Log Angeles, CA, FelP87.

J. Clifford and A. U. B&nsel, “On an algebra for historical relational databases:
Two views, in Proceedings of 8M SIGMODConfeence pp. 247-265, Austin,
TX, May 1985.

J. Clifford and D. S. \rren, “Formal Semantics forime in Databasesin ACM
Transactions on Database Systévo] 8, No. 2, June 1983.

E.F Codd, A Relational Model of Data for Lge Shared Data Banksn Com-
munications of the @M. 13(6):377-387, June 1970.

D. Comer “The Ubiquitous B-Tee} in ACM Computing Surwes, vol. 11, No. 2,
pp. 121-137, June 1979.

U. Dayal, “Queries and iéws in an Object-Oriented Data Modein Proceed-
ings of the 2nd Wtkshop on Database Bgramming languges 1989.

D. J. Davitt et al., “Implementation techniques for Main Memory Database Sys-
tems] in Proceedings of 8M SIGMOD Confeznce June, 1984.

D. J. Dewvitt, N. Kabra, J. Luo, J. M.&el and J. ¥, “Client-Sener Paradis€’, in
Proceedings of VLDB Confence Santigjo, Chile, 1994.

K. Dittrich, A. Kotz, and J. Mulle (editors)Proceedings of the International
Workshop on Object-Oriented Database SystelBEE CS, Rcific Grove, Cali-
fornia, September 1986.

W. Dreyer, A. K. Dittrich, and D. Schmidt,An Object-Oriented Data Model for
a Time Series Management Systéim, Proceedings of International Confarce
on Scientific and Statistic Database Maement Charlottesville, Vginia,
USA, 1994.

W. Dreyer, A. K. Dittrich, and D. Schmidt., “Research Perspessi for Tme
Series Management Systeimis, SIGMOD Recad 23(1): 10-15 (1994).

192 Bibliography

42. W. Dreyer, A. K. Dittrich, and D. Schmidt., “Using the CALAND A Time Series
Management Systeni,in Proceedings of M SIGMOD, San Jose, CA, 1995.

43. H. Edelsbrunner “Dynamic Rectangle Intesection Seaching,” Technical
Report, Institute for Information Processing, Rept. 47, Bchnical University of
Graz, Graz, Austria.

44, R. Elmasri, M. Jaseemuddin, and VY Kouramajian, “Partitioning of T ime Index
for Optical Disks”. In Proceedings of the 8th International Confeence on Data
Engineering, Feh 1992.

45, R. Elmasri, Y. J. Kim, and G. T. J. Wuu, “Efficient Implementation Techniques
for the Time Index.” In Proceedings of the 7th International Confeence on Data
Engineering, pp. 102-111, 1991.

46. R. Elmasri and S. B. Navathe, “Fundamentals of Database SystenisThe Ben-
jamin/Cummings Publishing Compary, Inc. ISBN -201-53090-2. 2nd edition,
1994.

47. R Elmasri, G. T. J. Wuu and V. Kouramaijian, “The Time Index and the Mono-
tonic B*-tree” in [134], pp. 433-455.

48. Lars Eriksson and Lars Nielsen, “lonization Current Interpretation for Ignition
Control in Internal Combustion Engines; in IFAC Control Engineering Practice,
Vol. 5, No. 8, August. 1997.

49, G. Fahl, T. Risch and M. Skold, “An Architecture for Acti ve Mediators! in Pro-
ceedings of the International Workshop on Next Genemtion Information Tech-
nologies and SystemsHaifa, Israel, 1993.

50. E. T. Falkenroth, “Computational Indexes for Time Series; in Proceedings of 8th
International Conference on Scientific and Statistical Database Mangement
pp- 18-23, Stockholm, Sweden, June 1996.

51. C. Faloutsos, M. Rangnathan and Y Manolopoulos, “Fast Subsequence Match-
ing in Time-Series Database$jn Proceedings of 1994 A£M SIGMOD, Minneap-
olis, Minnesota, May, 1994.

52. FAME Softw are Corporation, “User’s Guide to FAME,” 1990.

53. R. A. Finkel and J. L. Bentley, “Quad trees: a data structure for retri@al on com-
posite keys,” in Acta Informatica, 4(1), 1-9.

54. D. H. Fishman et. al, “Overview of the Iris DBMS”, in W . Kim, F. H. Lochovsky
(eds.), “Object-Oriented Concepts, Databases and Application$ ACM Press,
Addison-Wesley Publishing Co., 1989.

55. S.K. Gadia and C. S. ¥ng, “A Generalized Model for a Relational Temporal
Databases,in Proceedings of 1988 A£M SIGMOD, Chicago, IL, June 1988.

Bibliography 193

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

H. Garcia-Molina, and K. Salem, “Main Memory Database Systems: Ar-Ov
view”, in IEEE Transactions of Knowledgand Data Engineeringvol. 4, No. 6,
Dec. 1992.

N. H. Gehani, H. VJa@dish, and O. Shmueli, “Composite éat Specification
in Active Databases: Model and Implementation,Proceedings of the Interna-
tional Confeence on ¥ry Lamge Databases1992.

H. Gunadhi and A. Sgv, “Efficient Indexing Methods for Emporal Relations,
in Transactions of Knowledgand Data Engineeringvol. 5, No. 3, pp. 496-509,
June 1993.

H. Gunadhi and A. Sgv, “Query Processing Algorithms foremporal Intersec-
tion Joins; in Proceedings of the 7th International Cordace on Data Enginee-
ring, Kobe, Japan, 1991.

J. Guttag, Abstract Data ¥pes and the Delopment of Data Structurésin
Communications of the@M, June 1997.

A. Guttman, “R-Tee: A Dynamic Inde Structure for Spatial Searchifign Pro-
ceedings of B8M SIGMOD Confeznce Boston, MA, June 1984.

R. L. Haskin and R. A. Lorie, “On Extending the Functions of a Relational Data-
base Systerhjn Proceedings of @M SIGMOD June, 1982.

IBM Almaden’s research group on data mining, “http://walnaden.ibm.com/
cs/quest/”.

Illustra Information EBchnologies, Hlustra Users Guid€’ June 1994.
Informix Software.Informix Time Series DataBlade Modul&997.

C. S. Jensen, L. Mark, N. Roussopoulos, anl.TSellis, “Using Cashing, Cache
Indexing, and Diferential Techniques to Hiciently Support Tansaction Tme;
in VLDB Jurnal, 1992.

C. S. Jensen, J. Ciigrd, S. K. Gadia, A. Spv, and R. TSnodgrass A Glossary
of Temporal Database Conceptsy SIGMOD RECORDWVol 21, No. 3, pp. 35-
43, Sept. 1992.

F. Johnsson, R. C. Zijeeld, C. M. \an den Bleek, J. C. Schouten and B. Leck-
ner, “Characterization of Fluidization Rgmes in Ciculating Fluidized Beds -
time series analysis of @ssue fluctuations., Technical Report, Chalmers Insti-
tute of Technology Sweden, 1996 (submitted for publication).

N. Kline and R. Snodgrass, “Computingriiporal Aggrgates; in Proceedings
of Data Engineering Confence pp. 222-231, 1995.

D. E. Knuth, ‘The Art of Computer BPgramming \bl. 1, Fundamental Algo-
rithms’, Addison-Wesley Publishing Co., 1969.

194

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Bibliography

P. D. L. Koch, “Disk File Allocation Based on the Buddy System; in ACM
TOCS Vol. 5, No. 4, November 1987.

C. P. Kolovson and M. Stonebraler, “Segment Indexes: Dynamic Indexing Tech-
niques for Multi-Dimensional Interv al Data,” in Proceedings of ACM SIGMOD
Conference pp. 138-148, 1991.

R. Laurini and D. Thompson, “Fundamentals of Spatial Information Systems$
Academic Press, 1992.

T. J. Lehman and B. G. Lindsay “The Starburst Long Field Manager” in Pro-
ceedings of the 15th VLDB Confeence Amsterdam, 1989.

T. J. Lehman and M. J. Carg “A Study of Index Structures for Main Memory
Database Management Systenisin Proceedings of the 12th International Con-
ference on \éry Large Data Bases Kyoto, Japan, August, 1986.

T. J. Lehman and M. J. Carg, “Query Processing in Main Memory Database
Management System$,in Proceedings M SIGMOD Conference Washington
DC, May, 1986.

M. Leland and W. Roome, “The Silicon Database Machin€,in Proceedings of
4th International Workshop on Database Mabines, Grand Bahama Island,
March 1985.

T. Y. C. Leung and R. R. Muntz, “Generalized Data Stream Indeng and Tempo-
ral Query Processing; in 2nd International Workshop on Reseath Issues in
Data Engineering: Transaction and Query Pocessing Feh 1992.

T.Y. C. Leung and R. R. Muntz, “Temporal Query Processing and Optimization
in Multiprocessor Database Machines,in Proceedings of the 1992 VLDB Con-
ference Vancouwer, Canada, 1992.

C. S. Li, P. S. Yu and V. Castelli, “HierachyScan: A Hierachical Similarity
Search Algorithm for Databases of Long Sequencésjn Proceedings of Data
Engineering Conference Feh. 1996.

L. Lin, T. Risch, and D. Badal, “Indexing Interpolated Time Sequences T echni-
cal Report, LiTH-ID A-R-96-03, Linkdping Uni versity, Jan. 1996.

L. Lin, T. Risch, M. Skéld, and D. Badal, “Indexing Values of Time Sequences,
in Proceedings of 5th International Confeence on Information and Knowledg
Management Rockville, USA, Nov. 1996.

L. Lin and T. Risch, “Using a Sequential Inde in Terrain-aided Navigation,” in
Proceedings of 6th International Confeence on Information and Knowledg
Management Las Vegas, USA, Nov. 1997.

L. Lin, “Implementing the IP-inde x in SHORE”, in Linkdping Electronic Press,
“http://www .ep.liu.se/ea/cis/1997/017/", 1997.

Bibliography 195

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

L. Lin, “Study of Supporting Sequences in DBMSsData Model, Query Lang-
uage, and Storage Managemeim, Linképing Electonic Press Vol. 3, Nr. 4,
1998.

L. Lin and T Risch, “Querying Continuousiffie Sequencesin Proceedings of
24th International Confemce on ¥ry Lamge Data BasesNew York City, USA,
August, 1998.

B. Liskov and S. Zilles, “Programming with Abstract Datgp€s’ in SIGPLAN
Notices April 1974.

D. B. Lomet and B. Salzbgr “The Performance of a Multersion Access
Method? in Proceedings of 8M SIGMOD Confeznce Atlantic City, NJ, May
1990.

V. Lum, P Dadam, R. Erbe, J. Guenap®rPistor G. Walch, H. Werner and J.
Woodfill, “Designing DBMS Support for theemporal Dimensiofi,in Proceed-
ings of CM SIGMOD Confeznce Boston, MA, July 1984.

P. Lyngbaek et al., OSQL A Language for Object Databases Technical
Report, HP Labs., HPL-DTD-91-4, Jan. 1991.

E. McCreight, “Priority Search r€es; in SIAM burnal of Computing
14(2):257-276, May 1985.

Z. Michalewics (ed.), ‘Statistical and Scientific Database3he Ellis Horwood
Limited, ISBN 0-13-850652-3, 1991.

A. Nanopoulos and .YManolopoulos, “Indeing Time-Series Databases for
Inverse Querie%jn 1998 International Confeence on Database and Expert Sys-
tem applicationsVienna, Austria, 1998.

K. Ooi, B. McDonell and R. Sacks-Dis, “Spatial kd-tree: Indang Mechanism
for Spatial Databasein IEEE COMPSA& 87, 1987.

Oracle Corporation,Oracle Time Series Cartridg Users Guide” 1997.

D. S. Rarker, “Stream Data Analysis in Proldgn The Pactice of Polog. MIT
Press, Cambridge, MA, 1990.

D. S. Rarker, R. R. Muntz, and H. L. Chau, “Theafigram Stream Query Process-
ing Systent, in Proceedings of the International Conésice on Data Enginee-
ring, Los Angels, CA, Feb1989.

PREDATOR project web page, “http://simon.cs.cornell.edu/Info/Projects/PRED-
ATOR”.

F. P Preparata and M. |. Shamo<dmputational Geometfy SpringefVerlag,
ISBN 3-540-96131-3, 1985.

N. Sarnak and R.afjan, “Planar Point Location Using Persistent Seamsed
in Communications of @M, 29(7):669-679, 1986.

196

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Bibliography

D. Schmidt, A. K. Dittrich, W . Dreyer, and R. Marti, “Time Series, a Nglected
Issue in Temporal Database Research?” irProceedings of the International
Workshop on Temporal Databases Zurich, Switzerland, Sept. 1995.

B. Schueler, “Update Reconsidered; in G.M. Nijssen (ed.), “ Architecture and
Methods in Data Base Man@ement System$ North Holland, 1977.

P. Schwarz et. al, “Extensibility in the Starburst Database Systeni,in Proceed-
ings of the International Workshop on Object-Oriented Database System#silo-
mar, Califonia, 1986.

A. Segev and H. Gunadhi, “Event-join optimization in temporal relational data-
bases; in Proceedings International Confelence \éry Large Data Bases Sept.,
1989.

A. Segev and A. Shoshani, ‘A Temporal Data Model Based on Tme Sequences,
in [134], pp. 248-269.

A. Segev and R. Chandra, ‘A Data Model for Time-Series Analysis; in W ork-
shop on Current Issues in Databases and Applications, Rutgers Unj Oct. 1992.
Appear in: “Advanced Database SystenisEditors: N. Adam and B. Bargrava.
Lectures Notes in Computer Science Series, Springerérlag, 1993.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R A. Lorie, and T. G. Price,
“Access Rath Selection in a Relational Database Management Systehin Pro-
ceedings of ACM SIGMOD Conference Boston, MA, May 1979.

T. Sellis, N. Roussopoulos, and C. Bloutsos, “The R*-Tree: A Dynamic Index
for Multi-Dimensional Objects,” in Proceedings of 1987 VLDB Confeence
Brighton, England, Sept. 1987.

P. Seshadri, M. Livny, and R. Ramakrishnan, “Sequence Query Processirign
Proceedings of M SIGMOD’'94, Minneapolis, MN, May 1994.

P. Seshadri, M. Livny, and R. Ramakrishnan, “The Design and Implementation of
a Sequence Database Systefnin Proceedings of the 22nd VLDB Confegnce
Mumbai, India, 1996.

P. Seshadri, M. Livny, and R. Ramakrishnan, “The case for Enhanced Abstract
Data Types; in Proceedings of the 23d VLDB Conference Athens, Greece,
1997.

H. Shatkay, S. B. Zdonik, “Approximate Queries and Representations for Laye
Data Sequences$,in Proceedings of 1996 Data Engineering Confegnce Feh
1996.

H. Shen, B. C. Ooi, and H. Lu, “The TP-Index: A Dynamic and Efficient Index-
ing Mechanism for Temporal Database$,in Proceedings of 1994 Data Enginee-
ring Conference 1994.

D. W. Shipman, “The Functional Data Model and the Data Language RPLEX,”
in ACM Transactions on Database System$(1):140-173, March 1981.

Bibliography 197

115.

116.

117.

118.

1109.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

SHORE project documentAh Overview of SHORE.” Computer Science Depart-
ment, Unversity of Wisconsin-Madison, August, 1996.

SHORE project on-line information, “http://wwes.wisc.edu/shore/”".

A. Shoshani and K. Keagoe, “Emporal Data Managemehin Proceedings of
the 12th VLDB Conference, Kyoto, Japan, Aug. 1986.

A. Silberschatz, H. FKorth and S. SudarsharDatabase System Concepts.” The
McGraw-Hill Companies, Inc. ISBN 0-07-044756-X, 1996.

J. M. Smith and PY. T. Chang, “Optimizing the Performance of a Relational
Algebra Database Intex€e’; in Communications of ACM, 18(10):568-579, Oct.
1975.

J. M. Smith, S. A. Bx, and T A. Landers, DAPLEX: Rationale and Reference
Manual.” Technical Report CCA-83-08, Computer Corporation of America, May
1983.

R. Snodgrass, “Theemporal Query Language TQuellh ACM Transactions on
Database Systems, 12(2): 247-198, July 1987.

R. Snodgrass and I. Ahn, &mporal Databases”, iFEEE Computer, pp. 35-42,
Sept. 1986.

R. Snodgrass and I. AhrA‘Taxonomy of Tme in Databases”, iRroceedings of
ACM SIGMOD Conference, Austin, TX, May 1985.

R. Snodgrass, ‘@mporal Databasésin A. U. Frank, I. Campari, and U.of-
mentini, eds.,Theories and Methods of Spatio-Temporal Reasoning In Geo-
graphic Space. Spring-\érlag, Lecture Notes in Computer Science 639, pp. 22-
64, 1992.

R. Snodgrass, I. Ahn, G. AnaD. Batory J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen,.\Kéfer, N. Kline, K. Kulkarni, T Y. C. Leung, N.
Lorentzos, J. FRoddick, A. Sgev, M. D. Soo, and S. M. Sripada, “TSQL2
Language Specificatichin SGMOD RECORD, 23(1):65-86, March 1994.

S. M. Sripada, B. L. Rossei. M. Bedford and R. A. évalski, “Temporal Data-
base ‘€chnology for Air Taffic Flow Management,in Proceedings of the 1st
International Conference on Applications of Databases, Vadstena, Sweden, June
1994.

M. Stonebrakr, E. Wong, P Kreps, and G. Held, “The Design and Implementa-
tion of INGRES”, in ACM Transactions on Database Systems, 1(3):189-222,
Sept. 1976.

M. Stonebrakr, “Inclusion of Nev Types in Relational Data Base Systehis,
Proceedings of 1986 Data Engineering, 1986.

M. Stonebrakr, “The Design of the POSTGRES Storage System Proceed-
ings of the 13rd VLDB Conference, Sep. 1987.

198

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

Bibliography

M. Stonebraker, “The Implementation of POSTGRES; in IEEE Transactions on
Knowledge and Data Engineering March 1990.

M. Stonebraker, “Object-Relational DBMSs.” The Morgan Kaufmann Publish-
ers. ISBN 1-55860-397-2, 1996.

M. Stonebraker, B. Rubenstein, and A. Guttman, Application of Abstract Data
Types and Abstract Indices to CAD Data Bases'jn Proceedings of the Enginee-
ring Applications Stream of Database Wek San Jose, CA, May 1983.

M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman, “Document
Processing in a Relational Database Systefhjn ACM Transactions on Ofice
Information Systems,vol. 1, No. 2, April 1983.

A. U. Tansel et al. (editors), “Temporal Databases, Theory Design and Imple-
mentation” The Benjamin/Cummings Publishing Compayp, Inc. ISBN 0-8053-
2413-5, 1993.

K. Torp, L. Mark and C. S. Jensen, “Eficient Dif ferential Timeslice Computa-
tion,” in IEEE Transactions on Knowled@ and Data Engineering Vol. 10, No. 4,
July 1998.

V. J. Tsotras and N. Kangelaris, “The Snapshot Inde and I/O Optimal Access
Method for Timeslice Queries; in Information Systems,3(20): 237-260, 1995.

J. D. Ullman, “Principles of Database and Knowledg-Base System$The Com-
puter Science Press. ISBN 0-7167-8158-1, 1988.

K. Y. Wang and R. Krishnamurtly, “Query Optimization in a Memory Resident
Domain Relational Calculus Systent, in ACM Transactions on Database Sys-
tems,Vol. 15, No. 1, pp. 67-95. March 1990.

G. Ozsoyoglu and R. Snodgrass, “Emporal and Real-Tme Databases: A Sur-
vey,” in |IEEE Transactions on Knowledg and Data Engineering Vol. 7, No. 4,
August 1995.

VLDB'98 Tutorial Notes, 24th International Conference on VLDB, New York
City, USA, Aug. 1998.

| ndex

4GL 158159
—A—

A(V’). See anchostate sequences
abstract data type (ADD) 6, 91, 145,
159

Aggregation Tree39

AMOS 43, 116

anchorstate sequences, 111
cardinality30

Append-Only Tee163

approximate querie&s

AP-Tree39, 104

as-o0f162

attribute time-stampind61

AVL-tree 43, 117

—B—

B*-tree10, 114, 120
bayesian approact?, 172
bitemporal databasd$0
BLOB 112, 166
B-tree117, 119

—C—

C++13

CALANDA 158
card(A(v')) 30, 81
cardinality30, 55, 173, 175
chronon25

clustering inde 108
computational geometry4
contain-join163

contain-semijoin63
cost modeli26, 129

—D—

DAPLEX 163
DBMS 1, 8, 13
disk-resident DBM36, 116
main-memory DBM336, 116
object-oriented DBMS3, 114
object-relational DBMS3, 91
relational DBMS2
Discrete Burier Transform (DFT),
151
disk extents113
disk-resident DBMS6
dynamic, irrgular time sequencéz,
180

— E—

event-join 163
exact querie$9
EXODUS 114

—F—

FAME 106, 157

fanout120

feature-preserving functioris3
first few answerdl2, 77, 126
first-normal-form (1NFXL62 165

IBM
TimeSeries DataExtendér

200

lllustra 4, 150
implicit values11, 179
incremental computatiots0
indexing 8
hash indg 9
ordered inde 9
secondary inde8
Informix 106, 150, 159
TimeSeries DataBladg 91, 159
INGRES 162
interpolation8, 11, 22, 25, 167
intersect-join163
Interval B-tree163
Intenal Tree41
IP operatoi76
IP-index 8, 11-12, 14, 24, 28, 107, 172
anchorstate sequence®
cardinality30
comparison with corentional sec-
ondary indees36
comparison with SIQ-inde41
generalized IP-inde42
insertion algorithns2
limitations 31
precision35
search algorithng3
I-tree 104, 163

—J—
join 162
——

large objectdl2, 112, 180
linear interpolatior.67
long field113

long field managet13

—M—

main-memory DBM6, 116

minimum bounding rectangles (MBR)
152

Monotonic B+-tree39, 163

multi-level dynamic array structugs,
111

Index

—N—

nonclustering inde 108
non-first-normal-form (N1NF162

—0O—

02112

OBE 116117

Object Data Management Group
(ODMG) 4

ODL 13

OODAPLEX 163

OQL 4

Oracle

TimeSeries DataCartrigg 106
ordered indres 107

—p—

Persistent Searchrde41
physical oganization12, 15
pinned109

PLI-tree104, 163
Postgres46

precisionl14, 57

precision of time pointg5
PREDATOR 6

primary index 107

Priority Search flee41
probability density function72

—Q—
query optimizatiori4-15
—R—

R*-Tree40
R*-tree 152

R*-Tree40

range queries4, 60, 132
relational data moddl6l, 167
R-tree40

Index

—S—

o* operatorll, 13, 69, 74, 180
secondary indees36, 57, 107-108
Sgment Ind& 163
Segment Tee4l
selection push-den 148
selectvity 139
SEQ6, 12-13, 125 144
SEQ data mode44
SEQUIN 6, 147
sequence datg 13, 150
1-D sequence data
shape queries
amplitude-sensitie shape queriest
shift 162
SHORE12-14, 51, 80, 114, 180
SDL 13
sequences
similarity searclhs, 12, 151
SIQ-ind& 41
slice 162
spatial databases!
spatial indees40
special purpose management systéms
spline interpolatiori58, 167
SQL23, 161
SQL33, 92, 161
SR-Tree40
Starlurst113
step-wise constar2o, 25, 167
stream processingy, 125 150
sub-sequence 11, 14, 79, 152, 180
swizzling 122
System R113

S

telecom4
temporal databaseag, 160
temporal database management sys-

tem (TDBMS)165

temporal indges38, 163

temporal joinsL63

temporal partitioning.62

TE-outerjoin163

terrain-aided nadgation 12, 15, 171,

201

180
time 17, 23, 160
continuous24
dense24
discrete23
transaction timeL60
userdefined timel60
valid time 160
Time Inde 38, 163
time sequence (T
continuousr70
granularity18
interpolation20
life span18
regularity 14, 18-19, 97
static/dynamicl4, 20, 98
time sequencesss time serie@2
type 18
time sequence collection (TST)
operatorsl9
time seriest, 6, 91, 100, 155
calendard57
events156
grouping156
headern56
multivariate156
time series). time sequencex
time series management systeés
Time Slice (t) operatos9
time windav queriesl4, 66, 133
optimization133
time-equijoin163
time-join 163
Time-Polygon inde 163
Time-Split B-tree163
time-varying attrilute (T\A) 87
TP-index 39
TQuel162
transaction timeLl60, 163
TSQL2161, 167
T-tree117
tuple time-stamping 61

—U—

userdefined interpolation functiorgs
11, 22, 25

202

userdefined timel60
—\V—

valid time 160, 163
value queries, 11, 28, 59

—W—

WHEN operato9, 162
Wisconsin Storage System {(8¥) 113

I ndex

