

 1

Contents

1. Introduction 2

2. Background 3

 2.1 Relational Databases. 3

 2.2 High Energy Physics Application 8

3. Representing High Energy Physics Data in Relational Databases 9

3.1 Implementation of Analysis Queries 10

 3.1.1 Schema Dimension 11

 3.1.1.1 Tables Using Flags 11

 3.1.1.2 Replicated attributes 13

 3.1.1.3 All Particle Data in One 15

 3.1.2 Implementation Dimension 17

 3.1.2.1 Views 18

 3.1.2.2 Functions 24

3.2 Scalar Functions for Numerical Formulas 31

4. Performance Evaluation 33

 4.1 Setup Process 33

 4.2 Import Data Times 33

 4.3 Execution Times 41

 4.4 Discussion 52

5. Summary and Future Work 53

REFERENCES 54

 2

1. Introduction

The application area for this work is High Energy Physics (HEP), where large

quantities of data to be analyzed are generated. A particular case for these data

is the description of the effects from collisions of particles pairs. A description of a

collision is called an event. The analyzed data are sets of events, where each

event has properties that describe sets of particles of various types produced by

a collision. Scientists define the analyses in terms of these event properties. As

every collision is simulated independently of other collisions, the events are also

independent. The analyses are expressed as selections for events satisfying

certain conditions, called cuts. The query results are sets of interesting events

satisfying the cuts. A typical query is a conjunction of a number of cuts.

The purpose of the developed relational database, called Storing and Searching

Scientific Data with a Relational Database System (S3RDB), is to store and

query the data generated by simulation software from the Large Hadron Collider

(LHC) experiment ATLAS in a relational database. The scientist method specifies

the cuts as database queries, using the standard SQL query language. Query

optimization by the relational database management system (RDBMS) provides

scalability and high performance without any need for the scientist to spend time

on low-level programming. Furthermore, as queries are easily specified and

changed, new theories, e.g. implemented as filters, can be tested quickly [1].

Queries over events are complex since the cuts themselves are complex,

containing many predicates. The query conditions involve selections, arithmetic

operators, aggregations, projections, and joins. The aggregations compute

complex calculations derived event properties. This complexity makes queries

extremely expensive on time and recourses. For our application, this problem

was previously solved using an object-oriented database [1]; in the present we

implement it using Microsoft’s SQL Server RDBMS.

 3

2. Background

2.1 Relational Databases

Relational database technology is based on the relational model developed by

Edgar Frank Codd [2]. A relational database allows the definition of data

structures, storage and retrieval operations and integrity constraints. In these

databases the data and relations between them are organized in tables. A table

is a collection of records and each record in a table contains the same fields.

Properties of relational tables [3]:

- Values are atomic.

- Each row is unique.

- Column values are of the same kind.

- The sequence of columns is insignificant.

- The sequence of rows is insignificant.

- Each column as a unique name.

A relational database conforms to the relational model where data is represented

as a set of tables. A table is a set of data elements (values) that is organized

using horizontal rows, called tuples, and vertical columns, called attributes. The

attributes are identified by names, and tuples by the value of a particular attribute

(or set of attributes) called key. A unique key or primary key is a candidate key to

uniquely identify each tuple in a table. Depending on its design; a table may have

arbitrarily many unique keys but at most one primary key. A foreign key is a

reference from a tuple attribute to a key in another table inside the same

database.

The cardinality of one table with respect to another table is a critical aspect of

database design. For example, in a database designed to keep track of hospital

records there may be separate data tables keeping track of doctors and patients,

 4

with a many-to-one relationship between the records in the doctor table and

records in the patient table. Whether data tables are related as many-to-many

(M,N), many-to-one (M,1), or one-to-one (1,1) is said to be the cardinality of a

given relationship between tables [2].

The database schema represents the description of the structure of the

database. In a relational database, the schema defines the tables, the fields in

each table, and the relationships between fields and tables. In the common

architecture of three schemas the following schema levels are defined:

The internal schema describes the physical structure of how data is stored

in the database. This schema uses a model of physical data and gives

details for its storage, and also the access paths to the database.

The conceptual schema describes the structure of the complete database.

It hides the details of the storing physical structures and concentrates on

describing entities, data types, links, user operations, and restrictions.

The external level or user view includes various external schemas or user

views. Each external schema describes the parts of the databases that

are of the interest of a group of users and hide the rest of the database [2].

An entity-relationship model [2] is an abstract conceptual representation of

structured data; entity-relationship modeling is the process of generating these

models. The end product of the modeling process is an entity-relationship

diagram or ER diagram, a type of conceptual data model. An ER-diagram is a

high-level graphical notation used when designing relational databases.

Database design includes translating these ER-diagrams to relational database

schemas. For a given ER-diagram there are many possible relational database

schemas and the designer should choose the most suitable one. In the ER

model, entities are represented by squares, attributes by circles, relationship

 5

between entities by rhombus, the primary keys underlining the attributes and the

cardinalities expressing their respective values.

Extended entity-relationship diagrams (EER-diagram) extends basic ER-

diagrams with inheritance by mean of class hierarchies.

Class hierarchies consist of superclasses and subclasses, in which each

subclass has a relationship with its superclass. Subclasses inherit the attributes

and methods of their superclasses, and they may have additional attributes and

methods of their own. Based on that, the concept of specialization appears; this

defines a set of subclasses to one superclass.

With the concept of specialization appears two new concepts, the first one is the

disjoining or overlaping constraint. Disjoining define that a tuple in a superclass

can belong at most to one of their subclasses, and overlapping, that allows one

tuple in a superclass to belong to more than one subclass. And the second one is

the total or partial specialization. Total specialization specifies that all tuples in

the superclass must belong to at least one of the subclasses, and partial

specialization permits that tuples in the superclass to do not belong to one of the

subclasses

Queries specify how information is extracted from the relational database. The

term query is also used for SQL commands that update the database. Relational

queries are expressed using the query language SQL [2]. In this project, the

queries are implemented by T-SQL, which is the SQL dialect used in SQL Server

DBMS; it is based on the SQL-2003 standard

A selection is a mechanism to specify which data is needed from the database.

In SQL, selections have the structure SELECT, WHERE, FROM, e.g.:

 6

SELECT LastName

FROM Members

WHERE Age>30

SELECT specifies which attributes of the tuples are going to be taken; FROM,

from which table are the tuples taken; and WHERE, which conditions have to be

fulfilled.

A join is an operation performed on tables of data in a relational database in

which the data from two tables is combined in a larger, more detailed joined

table. A join clause in SQL combines records from two tables in a relational

database and presents the results as a table. Queries uses this joins in order to

navigate and combine different table to search for data that was asked for. [2]

Aggregation operators compute values based on sets of database values, e.g.

summing the incomes of employees in some department. [2]

A projection operation picks out listed columns from a relation and creates a new

relation consisting of these columns. It is mostly used to take atributes

necessaries from a query. [2]

A view is a virtual or logical table defined as a query. A view can be used in

queries and in other view definitions [4].

A stored procedure is a user program written in a query language running inside

the database server.

A database index is a data structure that improves the speed of operations in a

table. Indexes can be created using one or more atributes, providing the basis for

both rapid random lookups and efficient ordering of access to records [5].

 7

In SQL-2003 [6] functions were introduced into SQL. This version supports three

kinds of SQL functions:

1. Scalar functions.

Scalar functions return a single data value (not a table) with a RETURNS

clause. Scalar functions can use all scalar data types, with exception of

timestamp and user-defined data types [6]. For example:

Create function pt

 (@px real, @py real)

Returns Real

AS

BEGIN

Return (select sqrt(@px*@px + @py*@py))

END

2. Inline table-valued functions.

In-line table-valued functions return a result table defined by a single

SELECT statement [6]. For example:

Create function oppositeLeptons

 (@idevent INT)

Returns TABLE

AS

Return select l1.px as l1px, l1.py as l1py,

 l1.pz as l1pz, l1.ee as l1ee,

 l2.px as l2px, l2.py as l2py,

 l2.pz as l2pz, l2.ee as l2ee, l1.eventid

 from Leptons as l1, Leptons as l2

 where l1.kf = -l2.kf

 and l1.eventid = @idevent

 and l1.eventid=l2.eventid;

3. Multistatement table-valued functions.

 8

Multistatement table-valued functions return a table, which was built with

many SQL-2003 statements [6]. For example:

Create function dbo.f_LotsOfPeople(@lastNameA as nvarchar(50), @lastNameB as

nvarchar(50))

 returns @ManyPeople table

 (PersonID int, FullName nvarchar(101), PhoneNumber nvarchar(25))

 as

 begin

 insert @ManyPeople (PersonID, FullName, PhoneNumber)

 select ContactID. FirstName + ‘ ‘ + LastName, Phone

 from Person.Contact

 where LastName like (@lastNameA + ‘%’);

 return

end

2.2. High Energy Physics Application.

The data consist of events, which are collisions of different particles in High

Energy Physics (HEP), and all the particles that are involved in those events.

These events include three kinds of particles (electrons, muons and jets). The

SQL queries determine if the collisions fulfill certain conditions called cuts.

Figure 1 EER schema for Atlas Experiment [1]

The conceptual schema of the database storing LHC events is illustrated by the

EER-diagram in Figure 1. Events represent collisions in which a certain number

 9

of particles are involved. These events are represented in an entity called

Events, which have the attributes PxMiss and PyMiss. Every particle that belongs

to an event is represented by entity called Particles with the attributes Kf, Px, Py,

PZ and Ee. Particles are related to Events; also they are subdivided in the

subtypes Muons, Electron, and Jets. Muon and Electron are represented as

subclasses of the entity Leptons. Leptons and Jets are subclasses of entity

Particles. On the schema in Figure 1 arrows represents inheritance from the

superclasses, which mean that all attributes and keys from the superclasses are

inherited by the subclasses.

The cuts are the conditions that an event has to fulfill in order to produce a Higgs

Boson. The Higgs boson is a hypothetical massive scalar elementary particle

predicted to exist by the Standard Model of particle physics [7]. There are six

kinds of cuts, which are called JetVetoCut, zVetoCut, TopCut, MissEeCuts,

LeptonCuts, and threeLeptonsCut. In order to specify the cuts, several numerical

queries are defined; in other to be use to calculate cuts, E.g. Pt and ETA.

The numerical formulas of Pt and Eta are:

22
yx + and

−++

+++
•

zzyx

zzyx

222

222

ln5.0 respectively [1].

A search for the Higgs Boson according to one possible theory can be formulated

as {ev I jevVetoCut(ev) ^ zVetoCut(ev) ^ TopCut(ev) ^ MissEeCuts(ev) ^

LeptonCuts(ev) ^ ThreeLeptonCut(ev)}.

3. Representing HEP in a Relational DBMS

S3RDB stores all HEP events in a relational database and the cuts are

implemented as SQL queries. The purpose of the project is to evaluate the

 10

performance of the use of relational DBMS of for this kind of scientific

applications.

It was decided to use a Microsoft SQL Server 2005™ (MSSQL2005) as a

relational DBMS, using SQL and SQL-2003 as query languages. MSSQL2005

includes SQL-2003 facilities such as stored procedures and functions.

Several solutions were implemented and tested, to finally conclude which one of

them is the best solution for the chosen DBMS platform.

3.1 Implementation of Analysis Queries

The solutions are based on two kinds of dimensions: the database schema

dimension and the query implementation dimension. These dimensions are

explained in this section. Also the scalar functions used in the numerical

computations needed for the queries will be explained.

3.1.1 Schema Dimension

This dimension deals with how data is stored, which tables are used, which

attributes each table has, and how the tables are related.

Three different database schemas were created in order to investigate different

approaches to solve the problem and to determine the preferred one.

All schemas use identification of events and particles, where Events have their

own id called eventid and the attribute filename that indicates from which file the

event or a group of events were taken. Particles have the attributes id and idap,

id is the same id that comes from the source file. Due two different Particles

tuples could have the same id, the attribute idap is created to provide them a

 11

unique identification. Also they have the eventid of the event to which they

belong.

3.1.1.1 Tables Using Flags (RepeatID)

The first solution is based on ID flags. This means that the inheritance of the

subclasses is made by creating the tables of the subclasses and giving them the

same ID of the main superclass. All attribute values are given to the superclass

Particles. In this case, a tuple in the table Particles will have all the values of Px,

Py, Pz, Ee, and Kz. To indicate that a muon, electron, lepton or jetB are the

same particle on Particles, they must have the same ID. This attribute id on the

subclasses is used only in this schema to identify that a tuple in subclass in the

same instance in the superclass that it belongs.

In this schema Events are related to Particles by the eventid and Particles are

related to Leptons, Muons Electron and Jets by it idap. The inheritance is

represented by repeating idap in every subclass of Particles. This idap is a

unique key that identifies each particle, and allows identifying which tuple of

Lepton, Electron, Muon or Jet is related to which tuple in the table Particles, in

the subclasses this attribute is just called id. Also every tuple of Particle has an

eventid that represents the event that they belong to. The table Particles is

directly related to the table Events, and then is divided in two tables, the Leptons

table and the Jets table, at the same time the Leptons table is divided into an

Electrons table and a Muons table. The attributes Id and filename are together

the primary key on the Events table, and the attribute idevent is unique key for

every tuple in the same table. Idap is a primary key on the table Particles, and

Leptons, Muons, Electrons and Jets receive idap as a foreign key from Particles.

To query specific kind of particles on RepeatID the implementation could be done

using views that join specific particles tables with the main Particles table by their

ids

 12

The following is the SQL schema definition code used for defining the RepeatID

schema:

CREATE Table Events (

idevent INT IDENTITY(1,1) unique,

id INT not null,

PxMiss Real not null,

PyMiss Real not null,

filenames Varchar(50) not null);

Constraint pk_event Primary key(id,filenames);

CREATE Table Particles(

idap INT IDENTITY(0,1) primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint ParticlesId FOREIGN KEY (eventid)

REFERENCES Events (idevent) ON DELETE CASCADE;

Create Table Leptonaux(

id INT not null);

CONSTRAINT pk_leptonaux PRIMARY KEY (id);

Constraint leptonId FOREIGN KEY (id)

REFERENCES Particles (idap) ON DELETE CASCADE;

create view Leptons AS

Select Particles.*

From leptonaux

Inner JOIN Particles

ON leptonaux.id = Particles.idap;

Create Table Muonaux(

id INT not null);

CONSTRAINT pk_muonaux PRIMARY KEY (id);

Constraint muonId FOREIGN KEY (id)

REFERENCES Particles (idap) ON DELETE CASCADE;

create view Muons AS

Select Particles.*

From muonaux

Inner JOIN Particles

ON muonaux.id = Particles.idap;

 13

Create Table electronaux(

id INT not null);

CONSTRAINT pk_electronaux PRIMARY KEY (id);

Constraint electronId FOREIGN KEY (id)

REFERENCES Particles (idap) ON DELETE CASCADE;

create view Electrons AS

Select Particles.*

From electronaux

Inner JOIN Particles

ON electronaux.id = Particles.idap;

Create Table jetaux(

id INT not null);

CONSTRAINT pk_jetaux PRIMARY KEY (id);

Constraint jetId FOREIGN KEY (id)

REFERENCES Particles (idap) ON DELETE CASCADE;

create view Jets AS

Select Particles.*

From jetaux

Inner JOIN Particles

ON jetaux.id = Particles.idap;

3.1.1.2 Replicated attributes (DuplicateData)

This schema is similar to the RepeatID schema, with the difference that here

every tuple repeats all the information that the superclass has in every subclass

to have a faster access to all the attributes of a particle. This means that, for

example, a tuple in Muons with the value idap 1, will have all it data values stored

in it intances in Muons, Leptons, and Particles with the same idap 1. The same

way works for Electrons and Jets.

For DuplicateData, particles data could be selected directly from the specific

particles tables, because all particle data are physically stored inside them.

The following is the SQL schema definition code to define DuplicateData

schema:

CREATE Table Events (

idevent INT IDENTITY(1,1) primary key,

id INT not null,

 14

PxMiss Real not null,

PyMiss Real not null,

filenames Varchar(50) not null);

CREATE Table Particles(

idap INT IDENTITY(0,1) primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint particleId FOREIGN KEY (eventid)

REFERENCES Events (idevent) ON DELETE CASCADE;

CREATE Table Leptons (

idap INT primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint leptonId FOREIGN KEY (idap)

REFERENCES Particles (idap) ON DELETE CASCADE;

CREATE Table Muons (

idap INT primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint muonId FOREIGN KEY (idap)

REFERENCES Leptons (idap) ON DELETE CASCADE;

 CREATE Table Electrons(

idap INT primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint electronId FOREIGN KEY (idap)

REFERENCES Leptons (idap) ON DELETE CASCADE;

 15

CREATE Table Jets (

idap INT primary key,

id INT not null,

eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null);

Constraint jetId FOREIGN KEY (idap)
REFERENCES Particles (idap) ON DELETE CASCADE;

3.1.1.3 All Particle Data in One Table (BigTable)

The third and last solution presents only a single large table Particles with all the

particles and its attributes in it. As a difference with the other schemas, this has

only one table and extra special attribute that indicate which kind of particle is

stored.

This schema presents all particles data in only one table, which includes all the

information about these particles and an extra attribute called type that identifies

if the particle is a muon, an electron or a jet. Particles inherit the eventid from the

table Events, which are unique keys from Events, and Particles receive it as a

foreign key. Particles has idap as primary key.

For BigTable views could be used that select the particles depending of their

type.

The following is the SQL schema definition code to define a BigTable schema:

CREATE Table Events (

idevent INT IDENTITY(1,1) primary key,

id INT not null,

PxMiss Real not null,

PyMiss Real not null,

filenames Varchar(50) not null);

 16

CREATE Table Particles(

idap INT IDENTITY(0,1) primary key,

id INT not null,

Eventid INT not null,

Px Real not null,

Py Real not null,

Pz Real not null,

Kf Real not null,

Ee Real not null,

typ int not null);

constraint chk_typ check (typ in (1,2,3))

Constraint particleId FOREIGN KEY (eventid)

REFERENCES Events (idevent) ON DELETE CASCADE;

create view Jets

As

select idap,id,eventid,px,py,pz,kf,ee

from Particles

where typ=1;

create view Leptons

As

select idap,id,Eventid,px,py,pz,kf,ee

from Particles

where typ=2 or typ=3;

create view Muons

As

select idap,id,eventid,px,py,pz,kf,ee

from Particles

where typ=2;

create view Electrons

As

select idap,id,eventid,px,py,pz,kf,ee

from Particles
where typ=3;

For testing, the number of events and particles that are going to be introduced in

every schema will be the same. Physically all three schemas will present the

same quantity of tuples in Events and Particles tables, but BigTable will present

an extra attribute in each one of the tuples. Also for the RepeatID schema the id

attribute will be repeated twice for lepton (muons and electrons) and once for

jetbs. For the DuplicateData schema all particles data will be repeated twice for

leptons (muons and electrons) and once for jetbs.

..

 17

For the moment physical schemas only have the default indexing provided by

SQL-Server. It is recommended for future work to study the impact of further to

indexing.

3.1.2 Implementation Dimension.

This dimension deals with how data is accessed, searched and evaluated.

The query implementation dimension has two kinds of solutions. One of them

has the queries implemented as views and the other one has them implemented

in functions. In both schemas, the numerical formulas like Pt or Eta and others

are expressed in scalar functions.

The advantage of functions is that it is more natural and simple to express

numerical formulas. MSSQL2005 provides the possibility to create Inline table-

valued functions, which allow queries to return a table as result. Using views is

more complicated to write because it is not possible to parameterize them. The

ability for a function to act as a table gives developers the posibility to break out

complex logic into short code blocks, this will generally give the additional benefit

of making the code less complex and easier to write and maintain. In the case of

a Scalar User-Defined Function, the ability to use this function anywhere helps to

use a scalar of the same data type, which is also a very powerful tool [7].

On other hand, Complex queries can be stored in the form of a view, and data

from the view can be extracted using simple queries [8]. Views are opened by the

optimizer to optimize the entire query including views. This is different from

functions, which are kept closed.

 18

3.1.2.1 Views

With this implementation, a better optimization is expected for faster execution

times, because views can encapsulate very complex calculations and commonly

used joins. [9].

The following is the code implemented to define the views:

/**/

/**

 * Event should have exactly three isolated leptons with pt above

 * minPtOfAllThreeLeptons (7 GeV), one of them should have pt above

 * minPtOfTheHardestLepton (20 GeV), at the same time all of them

 * should have eta within etaRangeForAllThreeLeptons (2.4).

 */

/*

 * TTreeCut::ThreeLeptonCut, m_isolatedLeptons, allLeptonsWithinEtaRange

 * m_minPtOfAllThreeLeptons: minPtL

 * m_etaRangeForAllThreeLeptons: etaL

 */

create view isolatedLeptons

AS

select l.*

from Leptons as l

where dbo.pt(l.px,l.py) > 7.0 and

abs(dbo.eta(l.px,l.py,l.pz))<2.4;

/**

 * minPtOfAllThreeLeptons: minPtL

 * minPtOfTheHardestLepton: hardPtL

 * etaRangeForAllThreeLeptons: etaL

 */

create view ThreeLeptonCut

AS

select e.*

from Events e

where exists (select i.*

 from isolatedleptons i

 where i.eventid = e.idevent and

 dbo.pt(i.px,i.py)>20.0 and

 e.idevent in(select l.eventid

 from isolatedleptons l

 group by l.eventid

 having count(l.id)=3));

/**/

 19

/**

 * the event which has two opposite charged leptons with invariant

 * mass closed to the Z mass should be cutted away.

 * Differences between invariant mass of any two opposite charged

 * leptons and m_zMass should be bigger or equal to m_minimumZMassDiff.

 * we should look to pairs electron - positron and muon - antimuon.

 */

create view oppositeLeptons

AS

select distinct l1.px as l1px, l1.py as l1py,

 l1.pz as l1pz, l1.ee as l1ee,

 l2.px as l2px, l2.py as l2py,

 l2.pz as l2pz, l2.ee as l2ee,

 l1.eventid

from Leptons as l1, Leptons as l2

where l1.kf = -l2.kf and l1.eventid = l2.eventid;

/*

 * m_zMass: zMass

 * m_minimumZMassDiff: minZMass

 */

create view EvInvMass

As

select j.eventid

from oppositeleptons j

where dbo.invmass(j.l1Ee + j.l2Ee,j.l1px + j.l2px,

 j.l1py + j.l2py,j.l1pz + j.l2pz,

 91.1882)<10;

create view zVetoCut

AS

select *

from Events

where idevent not in (select eventid from evInvMass);

/************ HadronicTopCut **/

/**

 * Events must have at least three jets with pt > 20 GeV and eta within 4.5.

 * Three of them most likely to form the three-jet system and to come

 * from the top quark, which means that invariant mass of the three-jet

 * system is close to 174.3 within 35. Two jets from the three-jet system

 * most likely to come from the W boson, which means that invariant mass

 * of the two jets is close to 80.419 within 15. The third jet from the

 * three-jet system has to be tagged as a b-jet.

 */

/*

 * TTreeCut::SelectOkJets, m_okJets

 * Selects jets (with AtlfastB to) which are ok

 * m_etaRangeForJets: etaJ

 * m_minPtForJets: minPtJ

 20

 */

create view okJets

AS

select *

from Jets as j1

where (select count(j2.id)

 from Jets as j2

where abs(dbo.eta(j2.px,j2.py,j2.px)) < 4.5

 and dbo.pt(j2.px,j2.py) > 20.0

 and j1.eventid=j2.eventid

)>= 3

and abs(dbo.eta(j1.px,j1.py,j1.px))<4.5

and dbo.pt(j1.px,j1.py) > 20.0;

/*

 * TTreeCut::SeperateBJets, m_okBJets

 * Select b jets from jets (with AtlfastB to) of event

 * function getPdg is Kfjetb from TTreeClass here

 * m_theIntegerForBTaggedJet: forBJet

 */

create view bjets

as

select j.*

from okjets as j

where j.kf = 5

/*

 * TTreeCut::SeperateBJets, m_okWJets

 * Select wJets from jets (with AtlfastB to) of event.

 * They are ok and not bJets.

 */

create view wjets

AS

select j.*

from okjets as j

where j.kf != 5

/*

 * TTreeCut::Select2WCombinations, m_okWComb

 * select 2W combinations

 * returns vectors of two wJets which satisfy invariant mass condition

 * m_wMass: wMass

 * m_allowedWMassDiff: allowedWMass

 */

create view wPairs

as

select j1.eventid as jid, j1.idap as j1idap, j1.id as j1id,

 j1.Ee as j1Ee, j1.Px as j1Px, j1.Py as j1Py,

 j1.pz as j1pz, j2.idap as j2idap, j2.id as j2id,

 j2.Ee as j2Ee, j2.Px as j2Px, j2.Py as j2Py,

 21

 j2.pz as j2pz

from wJets as j1, wJets as j2

where dbo.invmass(j1.Ee + j2.Ee, j1.px + j2.px,

 j1.py + j2.py, j1.pz + j2.pz,

 80.419)<15.0

 and j1.eventid = j2.eventid

 and j1.id > j2.id;

/*

 * TTreeCut::SelectTopCombination, m_okTopComb

 * m_topMass: tMass

 * m_allowedTopMassDiff: allowedTMass

 */

create view topComb

As

select j.*, b.*

from wPairs as j, bJets as b

where dbo.invmass(j.j1Ee + j.j2Ee + b.Ee,

 j.j1px + j.j2px + b.px,

 j.j1py + j.j2py + b.py,

 j.j1pz + j.j2pz + b.pz,174.3)<35.0

 and j.jid=b.eventid;

/**

 * Hardronic Top Cut 2 (see management file)

 *** OBS!do not forget that it should be at least 3 ok jets

 */

create view TopCut

AS

select distinct e.*

from topComb t, Events e

where e.idevent=t.eventid;

/**/

/* Jet Veto Cut 2

 * leftJets jetbs should have Pt not bigger then maxAllowedPtForOtherJets

 * see Hadronic Top Cut 2

 * m_maxAllowedPtForOtherJets: ptOJets

 */

/*

 * TTreeCut::SelectTopCombination, m_theTopComb

 * min of m_okTopComb

 */

create view mTopComb

As

select j.*

from topComb as j

where (abs(sqrt(abs((j.j1Ee+j.j2Ee + j.Ee)*(j.j1Ee+j.j2Ee +j.Ee) -

 ((j.j1px +j.j2px + j.px)*(j.j1px +j.j2px + j.px) +

 (j.j1py +j.j2py + j.py)*(j.j1py +j.j2py + j.py) +

 22

 (j.j1pz +j.j2pz + j.pz)*(j.j1pz +j.j2pz + j.pz))))

 - 174.3))

 =

 (select min(abs(sqrt(abs((t.j1Ee+t.j2Ee +

 t.Ee)*(t.j1Ee+t.j2Ee +t.Ee) -

 ((t.j1px +t.j2px + t.px)*(t.j1px +t.j2px + t.px) +

 (t.j1py +t.j2py + t.py)*(t.j1py +t.j2py + t.py) +

 (t.j1pz +t.j2pz + t.pz)*(t.j1pz +t.j2pz + t.pz))))

 - 174.3))

 from topComb as t

 where t.eventid=j.eventid)

/*

 * TTreeCut::SelectTopCombination, m_theLeftOverJets

 * select m_okJets which are not contained in m_theTopComb

 */

create view leftjets

As

select distinct o.*

from okJets as o

where not exists (select o.idap

 from mtopcomb as j

 where j.idap=o.idap or

 j.j1idap=o.idap or

 j.j2idap=o.idap);

create view JetVetoCut

AS

select distinct e.*

from Events e

where not exists(select *

 from leftjets j

 where e.idevent=j.eventid and

 dbo.pt(j.px,j.py)>70);

/*

 * Other cuts

 * 1. All isolated leptons should has Pt not bigger then maxPtAll

 * 2. Isolated lepton which has smallest Pt should have Pt not bigger

 * then maxPtSoft

 * m_isolatedLeptons: isolatedLeptons(event,parameters)->leptons

 * m_maxPtForAllThreeIsolatedLeptons: maxPtAll

 * m_maxPtForTheSoftestIsolatedLepton: maxPtSoft

 */

create view LeptonCuts

AS

select q.*

from Events q

where (not exists(select j.eventid

 from isolatedLeptons as j

 where dbo.pt(j.px,j.py)>150.0 and

 23

 q.idevent=j.eventid

)

 and

 exists (select i.eventid

 from isolatedLeptons as i

 where dbo.pt(i.px,i.py)<=40 and

 q.idevent=i.eventid)

);

/**/

* Other cuts, continue*

 * 1. Missing traverse energy (mod(PtMiss)) should be not smaller

 * then minTransEe

 * 2. Effective mass should be not bigger then maxEfMass

 * m_minMissingTransverseEnergy: minTransEe

 * m_maxAllowedEffectiveMass: maxEfMass

 * ptMiss={PxMiss,PyMiss}

 * pt31=sum(Px(isolated lepton),Py(isolated lepton))

 */

create view MissEeCuts

as

select distinct e.*

from Events e

where exists (

select l.eventid

from isolatedLeptons l

 where e.idevent=l.eventid

group by l.eventid

 having

dbo.module(e.PxMiss,e.PyMiss)>=40 AND

dbo.effectiveMass(e.PxMiss,e.PyMiss,sum(l.px),sum(l.py)) <= 150.0);

/***/

/**

 * All cuts together!

 */

create view allcuts

AS

select th.idevent, th.filenames, th.id

from ThreeLeptonCut th, zVetoCut z, TopCut tp,

 JetVetoCut j, LeptonCuts l, MissEeCuts m

where th.idevent=z.idevent and

 z.idevent=tp.idevent and

 tp.idevent=j.idevent and

 j.idevent=l.idevent and

 l.idevent=m.idevent;

create view optallcuts

AS

select th.idevent,th.filenames,th.id

 24

from ThreeLeptonCut th,LeptonCuts l,MissEeCuts m,

 zVetoCut z, TopCut tp,JetVetoCut j

where th.idevent=l.idevent and

 l.idevent=m.idevent and

 m.idevent=z.idevent and

 z.idevent=tp.idevent and

 tp.idevent=j.idevent;

create view expcuts

AS

select tp.idevent,tp.filenames,tp.id

from TopCut tp, JetVetoCut j, MissEeCuts m,

 zVetoCut z, ThreeLeptonCut th,LeptonCuts l

where tp.idevent=j.idevent and

 j.idevent=m.idevent and

 m.idevent=z.idevent and

 z.idevent=th.idevent and

 th.idevent=l.idevent;

3.1.2.2 Functions

With this implementation, a more natural way is used to write the queries, which

at the same time, is easier to manipulate, and also permits directly managing the

data needed; but, on the other hand, the query optimizer treats functions as black

boxes, which reduce efficiency of the query optimization.

The following is the code implemented to define the functions:

/**/

/**

 * Event should have exactly three isolated leptons with pt above

 * minPtOfAllThreeLeptons (7 GeV), one of them should have pt above

 * minPtOfTheHardestLepton (20 GeV), at the same time all of them

 * should have eta within etaRangeForAllThreeLeptons (2.4).

 */

/*

 * TTreeCut::ThreeLeptonCut, m_isolatedLeptons, allLeptonsWithinEtaRange

 * m_minPtOfAllThreeLeptons: minPtL

 * m_etaRangeForAllThreeLeptons: etaL

 */

create function isolatedLeptons

 (@idevent INT)

Returns TABLE

AS

Return select l.*

 from Lepton as l

 25

 where @idevent = l.eventid

 and dbo.pt(l.px,l.py) > 7.0

 and abs(dbo.eta(l.px,l.py,l.pz))<2.4;

/**

 * minPtOfAllThreeLeptons: minPtL

 * minPtOfTheHardestLepton: hardPtL

 * etaRangeForAllThreeLeptons: etaL

 */

create function ThreeLeptonCut

 (@idevent INT)

Returns bit

AS

BEGIN

if(exists (select a.*

 from isolatedleptons(@idevent) as a

 where dbo.pt(a.px,a.py)>20.0)

 and ((select count(i.id)

 from isolatedleptons(@idevent) as i)=3)

)

return 1

return 0

END

/**

 * the event which has two opposite charged leptons with invariant

 * mass closed to the Z mass should be cutted away.

 * Differences between invariant mass of any two opposite charged

 * leptons and m_zMass should be bigger or equal to m_minimumZMassDiff.

 * we should look to pairs electron - positron and muon - antimuon.

 */

create function oppositeLeptons

 (@idevent INT)

Returns TABLE

AS

Return select l1.px as l1px, l1.py as l1py,

 l1.pz as l1pz, l1.ee as l1ee,

 l2.px as l2px, l2.py as l2py,

 l2.pz as l2pz, l2.ee as l2ee, l1.eventid

 from Leptons as l1, Leptons as l2

 where l1.kf = -l2.kf

 and l1.eventid = @idevent

 and l1.eventid=l2.eventid;

/*

 * m_zMass: zMass

 * m_minimumZMassDiff: minZMass

 */

create function zVetoCut

 26

 (@idevent INT)

Returns bit

As

Begin

if (not exists(

 select *

 from oppositeleptons(@idevent) j

 where dbo.invmass(j.l1Ee + j.l2Ee,j.l1px + j.l2px,

 j.l1py + j.l2py,j.l1pz + j.l2pz,

 91.1882)<10))

return 1

return 0
END

/**/

/************ HadronicTopCut **/

/**

 * Events must have at least three jets with pt > 20 GeV and eta within 4.5.

 * Three of them most likely to form the three-jet system and to come

 * from the top quark, which means that invariant mass of the three-jet

 * system is close to 174.3 within 35. Two jets from the three-jet system

 * most likely to come from the W boson, which means that invariant mass

 * of the two jets is close to 80.419 within 15. The third jet from the

 * three-jet system has to be tagged as a b-jet.

 */

/*

 * TTreeCut::SelectOkJets, m_okJets

 * Selects jets (with AtlfastB to) which are ok

 * m_etaRangeForJets: etaJ

 * m_minPtForJets: minPtJ

 */

create function okJets

(@idevent INT)

Returns Table

AS RETURN(

select *

from Jets

where (select count(id)

 from Jets

 where eventid = @idevent

 and abs(dbo.eta(px,py,pz)) < 4.5

 and dbo.pt(px,py) > 20.0) >= 3

and eventid = @idevent

and abs(dbo.eta(px,py,pz))<4.5

and dbo.pt(px,py) > 20.0)

/*

 * TTreeCut::SeperateBJets, m_okBJets

 * Select b jets from jets (with AtlfastB to) of event

 * function getPdg is Kfjetb from TTreeClass here

 27

 * m_theIntegerForBTaggedJet: forBJet

 */

create function bjets

(@idevent INT)

Returns Table

as

return select j.*

 from okjets(@idevent) as j

 where j.kf = 5

 and j.eventid = @idevent

/*

 * TTreeCut::SeperateBJets, m_okWJets

 * Select wJets from jets (with AtlfastB to) of event.

 * They are ok and not bJets.

 */

create function wjets

(@idevent INT)

Returns Table

as

return select j.*

 from okjets(@idevent) as j

 where j.kf != 5

 and j.eventid = @idevent

/*

 * TTreeCut::Select2WCombinations, m_okWComb

 * select 2W combinations

 * returns vectors of two wJets which satisfy invariant mass condition

 * m_wMass: wMass

 * m_allowedWMassDiff: allowedWMass

 */

create function wPairs

(@idevent INT)

Returns Table

as

Return

Select j1.eventid as jid, j1.idap as j1idap, j1.id as j1id,

 j1.Ee as j1Ee, j1.Px as j1Px, j1.Py as j1Py,

 j1.pz as j1pz, j2.idap as j2idap, j2.id as j2id,

 j2.Ee as j2Ee, j2.Px as j2Px, j2.Py as j2Py,

 j2.pz as j2pz

from wJets(@idevent) as j1, wJets(@idevent) as j2

where dbo.invmass(j1.Ee + j2.Ee, j1.px + j2.px,

 j1.py + j2.py, j1.pz + j2.pz,

 80.419)<15.0

 and j1.id > j2.id;

/*

 * TTreeCut::SelectTopCombination, m_okTopComb

 * m_topMass: tMass

 28

 * m_allowedTopMassDiff: allowedTMass

 */

create function topComb

 (@idevent INT)

returns table

As

Return

select j.*, b.*

from wPairs(@idevent) as j, bJets(@idevent) as b

where dbo.invmass(j.j1Ee + j.j2Ee + b.Ee,

 j.j1px + j.j2px + b.px,

 j.j1py + j.j2py + b.py,

 j.j1pz + j.j2pz + b.pz,174.3)<35.0

/**

 * Hardronic Top Cut 2 (see management file)

 *** OBS!do not forget that it should be at least 3 ok jets

 */

create function TopCut

 (@idevent INT)

Returns bit

AS

BEGIN

if(exists(select *

 from topComb(@idevent))

return 1

return 0

END

/**/

/* Jet Veto Cut 2

 * leftJets jetbs should have Pt not bigger then maxAllowedPtForOtherJets

 * see Hadronic Top Cut 2

 * m_maxAllowedPtForOtherJets: ptOJets

 */

/*

 * TTreeCut::SelectTopCombination, m_theTopComb

 * min of m_okTopComb

 */

create function mTopComb

 (@idevent INT)

returns table

As

Return select j.*

 from topComb(@idevent) as j

 where (abs(sqrt(abs((j.j1Ee+j.j2Ee + j.Ee)*(j.j1Ee+j.j2Ee +j.Ee) -

 ((j.j1px +j.j2px + j.px)*(j.j1px +j.j2px + j.px) +

 (j.j1py +j.j2py + j.py)*(j.j1py +j.j2py + j.py) +

 (j.j1pz +j.j2pz + j.pz)*(j.j1pz +j.j2pz + j.pz))))

 - 174.3))

 29

 =

 (select min(abs(sqrt(abs((t.j1Ee+t.j2Ee +

 t.Ee)*(t.j1Ee+t.j2Ee +t.Ee) -

 ((t.j1px +t.j2px + t.px)*(t.j1px +t.j2px + t.px) +

 (t.j1py +t.j2py + t.py)*(t.j1py +t.j2py + t.py) +

 (t.j1pz +t.j2pz + t.pz)*(t.j1pz +t.j2pz + t.pz))))

 - 174.3))

 from topComb(@idevent) as t)

/*

 * TTreeCut::SelectTopCombination, m_theLeftOverJets

 * select m_okJets which are not contained in m_theTopComb

 */

create function leftjets

 (@idevent INT)

returns table

As

return

select distinct o.*

from okJets(@idevent) as o

where not exists (select o.idap

 from mtopcomb(@idevent) as j

 where j.idap=o.idap

 or j.j1idap=o.idap

 or j.j2idap=o.idap);

create function JetVetoCut

 (@idevent INT)

Returns bit

AS

BEGIN

if(not exists(select *

 from leftjets(@idevent) j

 where dbo.pt(j.px,j.py)>70))

return 1

return 0

END

/**/

/*

 * Other cuts

 * 1. All isolated leptons should has Pt not bigger then maxPtAll

 * 2. Isolated lepton which has smallest Pt should have Pt not bigger

 * then maxPtSoft

 * m_isolatedLeptons: isolatedLeptons(event,parameters)->leptons

 * m_maxPtForAllThreeIsolatedLeptons: maxPtAll

 * m_maxPtForTheSoftestIsolatedLepton: maxPtSoft

 */

create function LeptonCuts

 (@idevent INT)

Returns bit

 30

AS

BEGIN

if(not exists(select j.*

 from isolatedLeptons(@idevent) as j

 where dbo.pt(j.px,j.py)>150.0)

 and exists (select *

 from isolatedLeptons(@idevent) as i

 where dbo.pt(i.px,i.py)<=40))

return 1

return 0

END

/*

 * Other cuts, continue*

 * 1. Missing traverse energy (mod(PtMiss)) should be not smaller

 * than minTransEe

 * 2. Effective mass should be not bigger then maxEfMass

 * m_minMissingTransverseEnergy: minTransEe

 * m_maxAllowedEffectiveMass: maxEfMass

 * ptMiss={PxMiss,PyMiss}

 * pt31=sum(Px(isolated lepton),Py(isolated lepton))

 */

create function MissEeCuts

 (@idevent real,@pxm real,@pym real)

Returns bit

AS

BEGIN

if exists (select l.eventid

 from isolatedLeptons(@idevent) l

 group by l.eventid

 having dbo.module(@PxM,@PyM)>=40

 and dbo.effectiveMass(@PxM,@pyM,sum(l.px), sum(l.py))<=

150.0

)

return 1

return 0

END

/***/

/**

 * All cuts together!

 */

create view allcuts

AS

select ev.*

from Events ev

where dbo.ThreeLeptonCut(ev.idevent)=1

 and dbo.zVetoCut(ev.idevent)=1

 and dbo.TopCut(ev.idevent)=1 and dbo.JetVetoCut(ev.idevent) = 1

 and dbo.LeptonCuts(ev.idevent)=1

 31

 and dbo.MissEeCuts(ev.idevent,ev.pxmiss,ev.pymiss)=1;

create view optallcuts

AS

select ev.*

from Events ev

where dbo.ThreeLeptonCut(ev.idevent)=1

 and dbo.LeptonCuts(ev.idevent)=1

 and dbo.MissEeCuts(ev.idevent,ev.pxmiss,ev.pymiss)=1

 and dbo.zVetoCut(ev.idevent)=1

 and dbo.TopCut(ev.idevent)=1 and dbo.JetVetoCut(ev.idevent) = 1;

create view expcuts

AS

select ev.*

from Events ev

where dbo.TopCut(ev.idevent)=1

 and dbo.JetVetoCut(ev.idevent) = 1

 and dbo.MissEeCuts(ev.idevent,ev.pxmiss,ev.pymiss)=1

 and dbo.zVetoCut(ev.idevent)=1

 and dbo.ThreeLeptonCut(ev.idevent)=1

 and dbo.LeptonCuts(ev.idevent)=1;

3.2 Scalar Functions for Numerical Formulas

Additionally, some scalar functions were defined to calculate numerical results

from formulas that are needed for the cuts in both implementations. These

functions are called from the cuts with the parameters needed for the formulas

and return a numerical scalar result that will be needed in the cut from they was

called.

The functions and the code used to define them are the following:

/* Pt */

create function pt

 (@px real, @py real)

Returns Real

AS

BEGIN

Return (select sqrt(@px*@px + @py*@py))

END

/* ETA */

create function ETA

 (@px real,@py real, @pz real)

 32

Returns Real

AS

BEGIN

Return (select 0.5*log(((sqrt(@px*@px + @py*@py + @pz*@pz)) + @pz) /

 ((sqrt(@px*@px + @py*@py + @pz*@pz)) - @pz)))

END

/* phi */

create function phi

 (@fx Real, @fy real)

returns Real

As

begin

return atn2(-@fx,-@fy) + pi();

END

/*phi_mpi_pi*/

create function phi_mpi_pi

 (@x real)

returns real

AS

begin

return @x + ceiling((-1.0/2.0)-@x/(2.0*pi()))*2*pi()
END

/*effectiveMass*/

create function effectiveMass

(@xMiss Real,@yMiss Real, @x31 Real,@y31 Real)

returns Real

AS

begin

return sqrt(abs(2.0*((@xMiss*@x31)+(@yMiss*@y31))*

 (1-cos(dbo.phi_mpi_pi(dbo.phi(@x31,@y31)-

dbo.phi(@xMiss,@yMiss))))))

END

/*Mod Of Vector*/

create function module

 (@v1 Real,@v2 Real)

returns real

As

begin

return sqrt(@v1*@v1+@v2*@v2)

END

create function invmass

 (@ee real, @px real, @py real, @pz real, @r real)

returns real

AS

 33

begin

return abs(sqrt(abs((@ee)*(@ee) - ((@px)*(@px) +

 (@py)*(@py) + (@pz)*(@pz)))) - @r)
END

4. Performance Evaluation

The three schema dimensions with the two implementation dimensions were

combined, in other to get six different scenarios and take the one that is best for

the task that we want to solve. These six experimental scenarios are:

1- RepeatID functions.

2- RepeatID views.

3- DuplicateData functions.

4- DuplicateData views.

5- BigTable functions.

6- BigTable views.

4.1 Setup Process

All three schemas were configured with using MSSQL2005 with some SQL-2003

features. Then, HEP data were uploaded to them.

First a sample of 101 events was loaded in order to test S3RDB for every

schema. Once knowing that S3RDB worked correctly with the small sample, the

rest of the data was loaded to the application. All data had a total of 25000

events.

4.2 Import data times:

Here are the different executions times to import data to the application, then

they are showed. Due to the differences of the constructions of the data base

schemas made for S3RDB application, the import data times were also

 34

compared. Events, jets, muons and electrons are imported by different queries;

they were called FillEvent, FillJetb, FillMuon and FillElectron respectively.

FillEvent is the same for the three schemas, but FillJetb, FillMuon and

FillElectron have differences in the code in order to fix the data correctly.

For every scenario the data is loaded separately. In order to compare how long it

takes for data to be loaded in every case.

FillEvent: Query used to import all events and their attributes.

For every escenario the same FillEvent query is implemented, so mostly the

differences between loading times in the different schemas will be due to how

data is stored in the physical database schema.

/*Query to import events to sql server
***/

Insert into Events (PxMiss,PYMiss,filenames,Id)
Values(?,?,?,?);

The following table presents loading times in seconds to import events with

FillEvent to the different scenarios:

Data
Representation

Number of
events Implementation

Load Time
(sec)

RepeatID 101 Functions 1.112

RepeatID 101 Views 0.421

DuplicateData 101 Functions 0.36

DuplicateData 101 Views 0.34

BigTable 101 Functions 0.32

BigTable 101 Views 0.37

RepeatID 25000 Functions 107.014

RepeatID 25000 Views 97.08

DuplicateData 25000 Functions 130.327

DuplicateData 25000 Views 88.787

BigTable 25000 Functions 112.852

BigTable 25000 Views 196.622
Table 1. Import times to import events to SQL Server

 35

With small quantities of data (101 events), there are no large differences

between DuplicateData and BigTable, but RepeatID is quite slower for views and

three times slower for functions.

For large quantities of data (25000 events) there are some significant differences

between the implementations, but BigTable views takes nearly double the time.

FillJetb: Query to import jetb and their attributes.

Code for FillJetb is different depending on into which schema the data will be

loaded. On RepeatID, all jetbs data need to be loaded once in Particles table,

and then the ids are repeated for the jetaux table. For DuplicateData all jetb data

needs to be loaded twice, once for Particles table and once for Jets table. For

BigTable data is loaded just once in the Particles table, but adding the value 1 in

the attribute type to indicate that a particle is a jetb.

/*Query to import jetbs to sql server RepeatID
***/

declare @q as int;

set @q = (select max(idevent) from Events where id =
?);

Insert into Particles(id,eventid,px,py,pz,kf,ee)
Values(?,@q,?,?,?,?,?);

Insert into jetaux(id)
Values (SCOPE_IDENTITY());

/*Query to import jetbs to sql server DuplicateData
***/

declare @q as int;
set @q = (select max(idevent) from Events where id =
?);

Insert into Particles(id,eventid,px,py,pz,kf,ee)
Values(?,@q,?,?,?,?,?);

Insert into Jets(idap,id,eventid,px,py,pz,kf,ee)
Values (SCOPE_IDENTITY(),?,@q,?,?,?,?,?);

 36

/*Query to import jetbs to sql server BigTable
***/
declare @q as int;

set @q = (select max(idevent) from Events where id =
?);

Insert into Particles(id,eventid,px,py,pz,kf,ee,typ)
Values(?,@q,?,?,?,?,?,1);

The following table presents loading times in seconds to import jetbs with FillJetb

to the different schemas:

Data
Representation

Number of
events Implementation

Load Time
(sec)

RepeatID 101 Functions 5.758

RepeatID 101 Views 4.957

DuplicateData 101 Functions 4.816

DuplicateData 101 Views 4.687

BigTable 101 Functions 3.375

BigTable 101 Views 3.545

RepeatID 25000 Functions 1495.33

RepeatID 25000 Views 1108.67

DuplicateData 25000 Functions 4288.82

DuplicateData 25000 Views 6684.37

BigTable 25000 Functions 4647.12

BigTable 25000 Views 4614.12

Table 2. Times to import jetbs to SQL Server

Loading times for small data quantities (101 events) have no big differences, but

for BigTable the loading is a little bit faster than for DuplicateData. Furthermore,

RepeatID is a little bit slower than DuplicateData.

For larger amounts of data (25000 events) DuplicateData and BigTable are three

times slower than RepeatID, but for DuplicateData the difference is more

significant (six times slower); however,, results need probably to be revised.

FillJetb is the function that takes more time to execute because jetB’s are the

more predominant particles in the data given.

FillMuon is a query to import all muons and their attributes.

 37

Code for FillMuon is different depending on into which schema the data will be

uploaded. On RepeatID, all muons data needs to be loaded once in the Particles

table, and then the ids repeated once for Leptons table and once for Muons

table. For DuplicateData all muons data needs to be loaded three times, once for

Particles table, once for Leptons table, and once for Muons table. And for

BigTable data is loaded just once in the Particles table adding the value 2 in the

attribute type to indicate that particle is a muon.

/*Query to import muons to sql server RepeatID
***/
declare @q as int;

set @q = (select max(idevent) from Events where id = ?);

Insert into Particles (id,eventid,px,py,pz,kf,ee)
Values(?,@q,?,?,?,?,?);

Declare @ID as int; Set @ID=SCOPE_IDENTITY();

Insert into leptonaux(id)
VALUES (@ID);

Insert into muonaux(id)
VALUES (@ID);

/*Query to import muons to sql server DuplicateData
***/

declare @q as int;

set @q = (select max(idevent) from Events where id = ?);

Insert into Particles (id,eventid,px,py,pz,kf,ee)
VALUES(?,@q,?,?,?,?,?);

Declare @ID as int; Set @ID=SCOPE_IDENTITY();

Insert into Leptons(idap,id,eventid,px,py,pz,kf,ee)
VALUES (@ID,?,@q,?,?,?,?,?);

Insert into Muons(idap,id,eventid,px,py,pz,kf,ee)
VALUES (@ID,?,@q,?,?,?,?,?);

/*Query to import muons to sql server BigTable
***/
declare @q as int;

 38

set @q = (select max(idevent) from Events where id = ?);

Insert into Particles(id,eventid,px,py,pz,kf,ee,typ)
Values(?,@q,?,?,?,?,?,2);

The following table presents loading times in seconds to import muons with

FillMuon to the different schemas:

Data
Representation Number of events Implementation

Load Time
(sec)

RepeatID 101 Functions 0.251

RepeatID 101 Views 0.36

DuplicateData 101 Functions 0.351

DuplicateData 101 Views 0.27

BigTable 101 Functions 0.151

BigTable 101 Views 0.16

RepeatID 25000 Functions 42.241

RepeatID 25000 Views 39.326

DuplicateData 25000 Functions 129.246

DuplicateData 25000 Views 202.842

BigTable 25000 Functions 139.491

BigTable 25000 Views 123.017
Table 3. Times to import muons to SQL Server

In the case of small quantities of data (101 events) differences are not really

significant, but BigTable is a little bit faster than the other two schemas.

For big quantities of data (25000 events) RepeatID shows the fastest times.

DuplicateData shows incongruent results between views and functions, because

they should be similar in time, since both of them use exactly the same function

to load the muon’s data to them.

FillElectron: Query used to import all electrons and their attributes.

Code for FillElectron is different depending on into which schema the data will be

uploaded. For RepeatID all electrons data needs to be loaded once in the

Particles table, and then the ids repeated once for Leptons table and once for

Electrons table. For DuplicateData all electrons data needs to be loaded three

times, once for Particles table, once for Leptons table, and once for Electrons

 39

table. For BigTable data is loaded just once in the Particles table but adding the

value 3 in the attribute type to indicate that particle is an electron.

/*Query to import electrons to sql server DuplicateData
***/
declare @q as int;

set @q = (select max(idevent) from Events where id =
?);

Insert into Particles (id,eventid,px,py,pz,kf,ee)
Values (?,@q,?,?,?,?,?);

Declare @ID as int; Set @ID=SCOPE_IDENTITY();

Insert into Leptons(idap,id,eventid,px,py,pz,kf,ee)
Values (@ID,?,@q,?,?,?,?,?);

Insert into Electrons(idap,id,eventid,px,py,pz,kf,ee)
Values (@ID,?,@q,?,?,?,?,?);

/* Query to import electrons to sql server RepeatID
***/
declare @q as int;

set @q = (select max(idevent) from Events where id =
?);

Insert into Particles (id,eventid,px,py,pz,kf,ee)
VALUES(?,@q,?,?,?,?,?);

Declare @ID as int; Set @ID=SCOPE_IDENTITY();

Insert into leptonaux(id)
VALUES (@ID);

Insert into electronaux(id)
VALUES (@ID);

/* Query to import electrons to sql server BigTable
***/
declare @q as int;

set @q = (select max(idevent) from Events where id =
?);

Insert into Particles(id,eventid,px,py,pz,kf,ee,typ)
Values(?,@q,?,?,?,?,?,3);

 40

The following table presents loading times in seconds to import electrons with

FillElectron to the different schemas:

Data
Representation

Number of
events Implementation

Load Time
(sec)

RepeatID 101 Functions 0.28

RepeatID 101 Views 0.3

DuplicateData 101 Functions 0.32

DuplicateData 101 Views 0.311

BigTable 101 Functions 0.17

BigTable 102 Views 0.16

RepeatID 25000 Functions 69.556

RepeatID 25000 Views 63.219

DuplicateData 25000 Functions 165.779

DuplicateData 25000 Views 163.795

BigTable 25000 Functions 214.118

BigTable 25000 Views 125.811
Table 4. Times to import electrons to SQL Server

For small quantities of data (101 events), differences are not really significant,

but BigTable is a little bit faster than the other two schemas.

For big quantities of data (25000 events) RepeatID shows the fastest times.

BigTable shows incongruent results between views and functions, because they

should be similar in time, since both of them use exactly the same function to

load the electron’s data to them.

Total time: This is the sum of the times that every schema took to be imported.

Data
Representation

Data
Quantity Implementation

Load Time
(sec)

RepeatID 101 Functions 7.401

RepeatID 101 Views 6.038

DuplicateData 101 Functions 5.847

DuplicateData 101 Views 5.608

BigTable 101 Functions 4.016

BigTable 101 Views 4.235

RepeatID 25000 Functions 1,654.141

RepeatID 25000 Views 1,308.295

DuplicateData 25000 Functions 4,714.172

DuplicateData 25000 Views 7,139.794

BigTable 25000 Functions 5,113.581

BigTable 25000 Views 5,059.570
Table 5. Times to import all data to SQL Server

 41

For small data quantities (101 events), BigTable shows faster times than the

other two scenarios, then DuplicateData goes in the second place, and the worst

times are showed by RepeatID.

For large quantities of data (25000 events), best times are showed by RepeatID,

followed by DuplicateData (except for DuplicateData views), and finally BigTable

times are a little more than 3.5 times slower than RepeatID times.

As we said before, results need to be revised, but at least these ones can give an

idea of how loading data times behave for every escenario.

4.3 Execution times

Here, the execution time for every cut in every scenario is presented in order to

perform comparisons and conclude which scenario is the best choice to use.

Because of the bad time results of the RepeatID scheme, this one had not been

tested completely, and more focus was given to the DuplicateData and BigTable

results.

ThreeLeptonCut:

This a condition that is fulfilled by events that have exactly three isolated leptons

with transverse momentum (the momentum that is transverse to the beamline of

a particle detector, it is also called pt) above 7 gigaelectronvolt (GeV), one of

them have pt above 20 GeV and at the same time all of them have eta range

within 2.4 GeV. This cut search in all lepton data and returns the events that fulfill

the condition described above.

The following table and graphics shows the times that the cut need, depending

on the schema used, the number of events evaluated and query applied.

 42

Data Results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 6 4.035 365.190 0.582 0.226 1.045 4.511

1000 17 40.200 871.984 1.947 2.330 5.369 8.078

5000 31 189.655 1446.760 8.636 5.858 48.954 10.291

10000 87 1064.516 2072.010 48.471 9.719 274.774 12.320

15000 153 2808.120 2761.279 127.863 13.929 724.834 16.654

20000 330 8075.641 3224.798 216.301 18.563 2084.491 18.626

25000 475 14530.035 3750.505 389.178 23.696 3750.505 20.456
Table 6 ThreeLeptonCut execution time results table

0

2000

4000

6000

8000

10000

12000

14000

16000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s

repeatid f.

repeatid v.

duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 2: ThreeLeptonCut execution time results graphic

Here we can observe that DuplicateData views and BigTable views have the best

performance times, also having a linear growth when more data is evaluated. In

general the times for schemas with functions are slow and scale badly. Both

evaluations with RepeatID schemas show worst performance than the rest.

zVetoCut:

This is a condition that is fulfilled by events that have two opposite charged

leptons with invariant mass closed to the Z mass should be cut away. Differences

between invariant mass of any two opposite charged leptons and Z mass should

 43

be bigger or equal to minimum Z mass allowed. We should look to electron -

positron and muon - antimuon pairs. This cut searches in all lepton data and

returns the events that fulfill the condition described above.

The following table and graphics shows the times that the cut need, depending

on the schema used, the number of events evaluated, and query applied.

Data Results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 94 5.359 7.366 0.227 0.015 0.997 0.08

1000 931 31.010 1.681 0.075 54.515 0.32

5000 4653 774.908 17.007 0.368 1362.287 0.625

10000 9307 3099.966 68.034 0.914 5449.733 1.305

15000 13961 6975.174 153.082 1.856 12262.339 3.979

20000 19060 12696.972 278.657 4.079 22321.245 5.172

25000 23825 19839.018 435.402 6.354 34876.946 5.451
Table 7 zVetoCut execution time results table

0

5000

10000

15000

20000

25000

30000

35000

40000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s

repeatid f.

duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 3: zVetoCut execution time results graphic

BigTable views, and DuplicateData views shows better scalability. DuplicateData

functions curve is not as inneficient as the two order functions evaluation, but is

still slower in comparison with views evaluations.

 44

TopCut:

HadronicTopCut is fulfilled when an event has at least three jets with pt greater

than 20 GeV and eta range within 4.5. Three of them most likely to form the

three-jet system and to come from the top quark, which means that invariant

mass of the triplet of jets is close to 174.3 within 35. Two jets from the triplet

system most likely to come from the W boson, which means that invariant mass

of the two jets is close to 80.419 within 15. The third jet from the triplet system

has to be tagged as a b-jet. This cut search in all jets data and returns the events

that fulfill the condition described above.

The following table and graphics show the times that the cut need, depending on

the schema used, the number of events evaluated and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 60 10.067 4,701.578 11.154 4.875 7.926 6.548

1000 594 160.116 93.570 60.980 42.935

5000 2907 1471.026 527.462 116.546 204.168

10000 5594 5661.451 1260.144 294.352 340.074

15000 8891 13497.309 3004.274 597.288 755.560

20000 11424 23123.496 5146.902 1,112.527 1,056.475

25000 14280 36,130.463 8,042.034 1,420.292 1,303.052
Table 8 TopCut execution time results table

 45

0

5000

10000

15000

20000

25000

30000

35000

40000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s repeatid f.

duplicatedate f.

duplicatedata v.

bigtable v.

Figure 4: TopCut execution time results graphic

RepeatID views and BigTable functions were not tested due to their slow

performance; RepeatID functions scale badly, DuplicateData functions times are

not as inefficient as RepeatID functions, but DuplicateData views and BigTable

views times have the best scale in comparison with the rest. Times are slower in

comparison with the previews queries due the complexity of the query.

JetVetoCut:

This cut is a variation of HardtronicTopCut. This one takes events with jets that

belong to the three jet system described in the HardtronicTopCut and those jets

should have pt not bigger then maximum pt allowed for the rest of the jets. This

cut search in all jets data and returns the events that fulfill the condition

described above.

The following table and graphics shows the times that the cut need, depending

on the schema used, the number of events evaluated and query applied.

 46

Data results RepeatID f RepeatID v DuplicateData f DuplicateData v BigTable f BigTable v

101 15 34.847 7,330.310 20.868 10.289 31.289 10.762

1000 107 207.231 161.510 128.710 134.627

5000 504 4880.578 1441.333 409.718 428.553

10000 1098 21265.376 6280.095 645.457 656.399

15000 1514 43983.305 12989.159 1,921.642 953.312

20000 2132 82582.479 24388.275 2,398.913 1,339.509

25000 2637 127,679.408 37,706.310 2,997.617 2,141.638

Table 9 JetVetoCut execution time results table

0

20000

40000

60000

80000

100000

120000

140000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s repeatid f

duplicatedate f

Duplicatedata v

bigtable v

Figure 5: JetVetoCut execution time results graphic

Same behavior than previous cuts was observed, but this cut is even slower than

the previous ones. JetVetoCut are the most complex queries of all six created.

leptonCut:

This cut takes events that have not isolated leptons with pt bigger than 150 GeV

and at the same time have at least one isolated lepton with pt smaller than 40

Gev. This cut searches in all lepton data and returns the events that fulfill the

condition described above.

 47

The following table and graphics shows the times that the cut need, depending

on the schema used, the number of events evaluated and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 14 1.569 60.643 0.239 0.401 1.126 0.428

1000 95 14.595 3.432 1.443 9.959 1.244

5000 474 103.963 17.252 2.225 64.741 2.400

10000 937 411.028 28.672 3.096 255.961 3.961

15000 1559 1025.817 71.557 5.917 638.810 6.625

20000 2894 2538.989 177.110 9.856 1581.112 9.001

25000 5121 5,616.000 391.751 15.181 4,053.600 14.043
Table 10 leptonCut execution time results table

0

1000

2000

3000

4000

5000

6000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s

repeatid f.

duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 6: leptonCut execution time results graphic

DuplicateData views and BigTable views show the best scalability compared to

the other scenarios.

MissEeCuts:

This cut is fulfilled by events that have missing transverse energy (mod(PtMiss))

not smaller than minimum missing transverse energy allowed (40 GeV) and its

effective mass should be not bigger then maximum missing transverse energy

 48

allowed (150 GeV). This cut search in all lepton data and returns the events that

fulfill the condition described above.

The following table and graphics shows the times that the cut need, depending

on the schema used, the number of events evaluated, and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 28 0.384 54.126 0.406 0.117 0.529 0.153

1000 548 23.260 3.543 2.483 7.437 3.0961

5000 2738 581.074 13.578 5.745 185.789 5.917

10000 5877 2494.501 58.287 9.59 797.576 9.855

15000 8212 5228.393 122.168 16.809 1671.694 15.096

20000 10956 9300.581 217.320 23.392 2973.710 21.986

25000 13693 14,530.035 339.513 34.087 3497.268 30.301
Table 11 MissEeCut execution time results table

0

2000

4000

6000

8000

10000

12000

14000

16000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s

repeatid f.

duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 7: MissEeCut execution time results graphic

DuplicateData views and BigTable views have a good scaled showing the fastest

times.

 49

allCuts:

AllCuts looks all events that fulfill all six cuts conditions, in the following order

ThreeLeptonCut, zVetoCut, topCut, JetVetoCut, leptonCuts and MissEeCuts.

This query searches in all events data and returns the ones that complies all cuts

developed.

The following table and graphics show the times that the cut needs, depending

on the schema used, the number of events evaluated and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 1 3.810 14,476.119 0.711 12.868 1.283 16.233

1000 1 22.129 163.036 158.684 133.648

5000 1 103.454 462.923 914.186 484.079

10000 1 211.207 804.524 1,843.749 788.846

15000 2 315.144 2,343.539 2,765.623 2,071.179

20000 2 432.185 3,516.787 3,687.498 2,422.274

25000 2 13746.48 529.971 5,031.388 4,645.743 3,262.833
Table 10 : allCuts execution time results table

0

1000

2000

3000

4000

5000

6000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 8: allCuts execution time results graphic

 50

Contrary to the single cuts operations, allCuts shows faster times with functions

with small quantities of data. DuplicateData functions shows the better scalability

curve grown, compare with the scenarios tested.

optAllCuts:

This query also looks for events that fulfill all six cuts, but in a different order, that

order is threeLeptonCut, leptonCuts, missEECuts, zVetoCut, topCut, and

JetVetoCut. optAllCuts searches in all events data and returns the ones that

complies all cuts developed.

The following table and graphics shows the times that the cuts need, depending

on the schema used, the number of events evaluated and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 1 3.711 11776.884 0.757 12,388 1.372 19.195

1000 1 26.339 160.77 174.243 158.051

5000 1 112.647 463.118 871.213 572.468

10000 1 220.833 794.209 1743.312 932.883

15000 2 336.031 2224.775 2613.626 2449.36

20000 2 448.041 3516.075 3646.964 2864.563

25000 2 13244.559 554.899 4942.812 4939.201 3743.025
Table 11 optAllCuts execution time results graphic

0

1000

2000

3000

4000

5000

6000

12

Data Number

S
e
c
o
n
d
s duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

Figure 9: optAllCuts execution time results graphic

 51

Here the performance is similar to allCuts, but times in the majority of the tests

are all little bit faster. This shows that one can gain some better performance by

optimizing the query formulation of this cut. DuplicateData with functions shows

the fastest times and the best scalability.

expCuts:

This query is the last of all cuts order tested, which is topCut, JetVetoCut,

MissEeCuts, zVetoCut, threeLeptonCut, leptonCuts.

The following table and graphics show the times that the cuts need, depending

on the schema used, the number of events evaluated and query applied.

Data results RepeatID f. RepeatID v. DuplicateData f. DuplicateData v. BigTable f. BigTable v.

101 1 38.191 13361.258 37.725 16,461 32.33 22.609

1000 1 1036.634 209.021 4321.882 190.423

5000 1 5335.985 601.453 22919.467 689.721

10000 1 10743.489 1031.441 45399.48 1123.955

15000 2 16148.99 2876.332 67605.705 2950.796

20000 2 21558.485 4566.332 89701.414 3450.767

25000 2 136303.679 26067.975 6403.329 116,355.670 4499.191
Table 12 expCuts execution time results table

0

20000

40000

60000

80000

100000

120000

140000

101 1000 5000 10000 15000 20000 25000

Data Number

S
e
c
o
n
d
s duplicatedate f.

duplicatedata v.

bigtable f.

bigtable v.

 52

Figure 10: expCuts execution time results graphic

Times for expCuts are slower than the other two allCuts queries, but with this one

times for views are considerable faster than times with functions, but comparing

with times with the other two queries, they still seems slower.

4.4 Discussion

The curves of the single cuts with functions scale badly. In all single cuts,

DuplicateData views and BigTable views shows the best scale curves and the

fastest times. A possible explanation is that functions are treated as black boxes

by the optimizer, while views are expanded with the rest of a query and query

optimizer is able to do a better work. On the other hand, Higgs Boson queries

(allcuts, optallcuts, expcuts) do not behave in the same way; best option with a

large distance seems to be DuplicateData with functions as we can observe in

the time tables and graphics in the performance evaluation. A possible

explanation of why functions have faster times than views in these cases could

be because functions, in the moment that they were implemented, were easier to

parameterize and obtain the values or the specific tuples that were needed in the

moment of the execution directly, making the queries simpler and efficient [9].

Times for Higgs Boson queries with views are close to the total times that every

single cut takes; for example, the sum of the times of all single cuts with 25000

events and BigTable schema with views is 3514.941 seconds and the time of

execution for the queries allCuts, optAllCuts and expCuts are 3262.833,

3743.025, and 4499.191 seconds respectively. With 25000 events and

DuplicateData schema, the total times of all single cuts is 4,497.227, and the

times the same multiple cuts queries are 5,031.388, 4942.812, and 6403.329

seconds respectively. In general, with times with expcuts the times are

considerable slower.

 53

5. Summary and Future Work

After check implementation times, it can be concluded that for single cuts with

small quantities of data it is faster to work with all attributes replicated in all

subclases, and implementing the queries using views; for single cuts with large

quantities of data it is better to use a single big table schema and implementing

views as queries.

For Higgs Boson queries, replication of data schema with functions

implementación is definitely the best option. All these statements can be justified

by comparing the measured times on performance evaluation. Quicker times and

good scalability being the most favored condition looked for, considering that the

main objective of this research is to work with large quantities of data that are

generated by HEP events, and to reduce processing time.

Due to limitations in time allowed for performing this work, evaluation, in spite of

we could find concrete conclusions, it could not be done as detailed and reliable

as we wanted. It would be interesting to take some more time for this, in order to

confirm the results founded or to rectify wrong conclusions.

It is still possible to improve the performance in SQL-2003 with the use of more

indexes. It will be interesting to apply indexes in the schemas for faster

performance, in particular for a big table with views for single cuts, and data

replicate with functions for Higgs Boson.

 54

References

[1] Ruslan Fomkin and Tore Risch. “Cost-based Optimization of Complex

Scientific Queries”. Department of Information Technology, Uppsala University.

Available at http://user.it.uu.se/~ruslan/FomkinSSDBM07.pdf

[2] Fundamentals of Database Systems, 5th Edition, Elmastri and Navathe,

Pearson, ISBN 0-321-41506-X, 2007

[3] Database models.

http://www.unixspace.com/context/databases.html

[4] Relational Database. Wikipedia

http://en.wikipedia.org/wiki/Relational_database

[5] Index (database) Wikipedia.

http://en.wikipedia.org/wiki/Index_%28database%29

[6] User-defined_function. Wikipedia. http://en.wikipedia.org/wiki/ User-

defined_function

[7] Higgs Boson. Wikipedia. http://en.wikipedia.org/wiki/Higgs_boson

[8] Views In SQL Server. http://www.sql-server-

performance.com/articles/dev/views_in_sql_server_p1.aspx

[9]¨Choice between store procedures, store functions, views, triggers, inlineSql.

http://www.paragoncorporation.com/ArticleDetail.aspx?ArticleID=28

