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ABSTRACT

Modern organizations need tools that support coordinated access to data stored
in distributed, heterogeneous, autonomous data repositories.

Database systems have proven highly successful in managing information.
In the area of information integration multidatabase systems have been pro-
posed as a solution to the integration problem.

A multidatabase system is a system that allows users to access several differ-
ent autonomous information sources. These sources may be of a very varying
nature. They can use different data models or query languages. A multidatabase
system should hide these differences and provide a homogeneous interface to
its users by means of multidatabase views.

Multidatabase views require the query language to be extended with multi-
database queries, i.e. queries spanning multiple information sources allowing
information from the different sources to be combined and automatically proc-
essed by the system.

In this thesis we present the integration problem and study it in an object-
oriented setting. Related work in the area of multidatabase systems and object
views is reviewed. We show how multidatabase queries and object views can
be used to attack the integration problem. An implementation strategy is
described, presenting the main difficulties encountered during our work. A
presentation of a multidatabase system architecture is also given.
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1 Introduction

In this thesis I will discuss some of the problems with information integration
existing in Object—Relational1 multidatabase systems (ORMDBS) and present
solutions to some of these problems. Readers are assumed to be familiar with
theoretical and practical aspects of database management systems.

Modern organizations have strong requirements for tools that support coordi-
nated access to data stored in distributed, heterogeneous, autonomous data
repositories. Several reasons for this are discussed in [Connors and Lyngbaek,
1988]. Organizations evolve over time, they merge and split. This influences
the way that data are managed within the organizations. In fact, the choice of an
information management system depends on the application requirements and
on the available technology. As these evolve over time, an organization ends up
having several, most likely, heterogeneous, information management systems.
For economic or practical reasons it is not possible to migrate information from
old systems to new ones and yet the information in the old systems must be
kept available to new systems. This has become known as the legacy problem
[Brodie and Stonebraker, 1992]. Performance may also dictate information
management policies. To provide adequate performance it may be necessary to
maintain the data in different data repositories with different capabilities, struc-
tures and organizations. Finally, not all sources of data may belong to the same
organization. This is the case, for example, when several contractors work
together on some large governmental project. Therefore, applications needing
data from several information sources have to bridge the gap among the various
systems. There is a need for integration.

Different solutions have been proposed over the years. The general concept of
mediators was first proposed in [Wiederhold, 1992] as a framework for solving
the above problem. A mediator is a middle layer software between an applica-
tion and an information source. Several different types of mediators may exist.
They may, for example, translate information between various formats, locate
information, or perform filtering of information.

Database systems have proven highly successful in managing information. In
the area of information integration multidatabase systems have been proposed
as a solution to the integration problem. A multidatabase system (MDBS) is a
system that allows users to access several different autonomous information
sources, often referred to as external data sources (EDS) or component systems.

1. An object-oriented database system with a relationally complete query language
allowing meta queries over schema information.
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These data sources may be of a highly varying nature. They can use different
data models or query languages if they have one at all.

In figure 1.1 a multidatabase system is shown with three different external data
sources, a file, a relational database system (RDBMS), and an Object-Oriented
database system (OODBMS). Files provide no query language at all, relational
databases typically provide SQL or a similar declarative query language, and
object-oriented databases provide at least navigational access and often also
some query language. A multidatabase system should hide these differences
and provide a homogeneous interface to its user that allows him/her to make
equally powerful queries no matter what EDS the information comes from.

Providing users with multidatabase queries, i.e. allowing users to transfer and
combine information, is not enough. Often users want to organize the informa-

Queries & % * Results

Updates

Integration

T

Q.

Figure 1.1: Multidatabase system.

tion according to their own preferences. Multidatabase views are needed for
this [Krishnamurthy et al., 1991], [Litwin and Abdellatif, 1986], and [Litwin et
al., 1990]. In relational multidatabase systems this mechanism is fairly simple
since we only have to deal with literal data types such as integers or strings.
However, in object-relational multidatabase systems things get more compli-
cated since we have to deal with abstract data types and objects that have an
identity that is unaffected by values of any properties. We need to extend the
view mechanism to handle these difficulties.

The main contributions of this thesis are:

» We provide a presentation of the integration problem.

* We review related work in the area of object views.

It is shown how the combination of multidatabase queries and objects views
can be used to attack the integration problem.

* A presentation of a multidatabase system architecture is given.

* An implementation strategy is described, presenting the main problems with
this approach encountered during our work.

The presentation throughout the thesis is kept informal as it is our intention to



present the intuitions behind information integration and multidatabase query
processing.

1.1 Outline of the thesis

In section 1.2 the system architecture of AMOS, the database system used in
our research, is presented. We then proceed by describing what we mean by
integration and some approaches to realize it in section 1.3.

When integrating information, several different problems have to be addressed;
some of the typical integration problems are presented in section 1.4. In section
1.5 we then present integration problems typical when integrating object-ori-
ented information.

In chapter 2 a review of related work is given in the area of object views and it
is followed in chapter 3 by a presentation of the AMOS data model.

Object views in AMOS are presented in chapter 4 where an example is given
presenting how object views and multidatabase queries can be used for integra-
tion. The implementation of object views in AMOS is then outlined in chapter 5
and problems encountered during our work are described.

Finally, a discussion and outline of future work are presented in chapter 6.

1.2 The AMOS System

AMOS provides us with the two facilities needed to perform a successful inte-
gration, multidatabase queries and object views. Both of them are needed and
we will now provide a brief description of the AMOS architecture and how
multidatabase queries and object views are used in the system.

The AMOS (Active Mediators Object System) architecture uses the mediator
approach that introduces an intermediate level of software between applications
and their information sources. This allows new applications to access old infor-
mation sources while these sources are still accessible from old applications.
Certain information processing can also be performed by the middle layer. We
call the intermediate modules active mediators, since they support active data-
base facilities.

The AMOS architecture is built around a main memory based platform for
intercommunicating information bases. Each AMOS server has full DBMS
facilities, such as a local database, a data dictionary, a query processor, a trans-
action manager, and a communication manager. Central to the AMOS architec-
ture is an object-relational query language, AMOSQL, supporting object-
oriented abstractions and declarative queries. It is extensible to allow for easy
integration with other systems.

If we want to provide access to some external data source we link it with an
AMOS server as shown in figure 1.2. This AMOS is known as a translator (T-
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AMOS) as the AMOSQL query language is extended with functions providing
access to the EDS. These functions will, however, return the information from

Application 1 Application 2 Application 3

E-AMOS E-AMOS E-AMOS
I-AMOS
T-AMOS T-AMOS T-AMOS
External External External
Data Source 1 Data Source 2 Data Source 3

Figure 1.2: AMOS Architecture.

the EDS as literal valued information, i.e. as integers or strings, and usually we
want to convert this information into objects, the prime construct in the AMOS
data model. To do this we use mapped types. Objects as opposed to literals can
have properties associated with them and the value of these properties may vary
over time without affecting the identity of the object.

Mapped types are defined by a query expression that converts literals to objects
and this allows us to provide an object view of information residing in an EDS.

Not only do we want access to EDSs but we want to combine information from
various AMOS servers as well. An AMOS server performing this kind of inte-
gration is called an integrator (I-AMOS). AMOSQL provides multidatabase
queries that allow us to do this. However, issuing a multidatabase query may
render foreign objects as result. Such objects lack local type structure since
they are retrieved from another AMOS server. To solve this problem derived
types are defined by declarative queries and allow us to give objects a type
membership based on the values of some properties.

When combining information from several AMOS servers, information about
the same real-world entity may be present in several of the servers. This leads
to the undesirable situation where this entity is represented by several database
objects. This problem has become known as the object-equivalence problem
[Tresch and Scholl, 1994], [Kent, 1991], and [Eliassen and Karlsen, 1991].
Mapped types help us in this situation as well by providing facilities to produce
new objects representing the equivalent objects. This maintains the relationship
where one real-world entity is represented by one database object.

Applications can also be linked directly with AMOS, a so-called embedded
AMOS (E-AMOS). The application may then store its information in the embed-
ded AMOS using the efficient storage structures provided. Also, the embedded



AMOS provides the application with opportunities to share information with
other AMOS servers.

Our architecture is very flexible since it is symmetrical, i.e. each AMOS server
has some least common functionality compared to other AMOS servers. This
allows any AMOS to access any other AMOS acting as a server. Thus we can
choose whether we want to hide or not the fact that information comes from
various sources. For example, in figure 1.2 Application 2 is not aware of the
fact that information is retrieved from two different external data sources since
these sources have been integrated by the AMOS in the middle. Application 3,
however, performs the integration locally. It accesses both EDS1 and EDS2
through the middle AMOS but it also accesses EDS3 directly. Thus, the local
database administrator can decide whether to hide this fact locally or if it
should be kept explicit that information comes from different sources.

The symmetry of the solution also means that not only applications issue
request and receive answers. It could be the other way around as well. The
applications may be questioned and send answers back.

1.3 Integration

When can information be considered as integrated? To us, information is inte-
grated when it is possible to perform some automatic processing of it. Thus,
displaying information from two different information sources on the same
screen is not information integration if a user has to examine the information
and combine it by hand to obtain the desired result. However, should the sys-
tem allow a procedure to be specified to perform the combination automati-
cally, then we can say that the system integrates the information.

Integration allows the user to specify requests in terms of abstractions that
define complex conceptual structures whose physical representations or imple-
mentations may span multiple, heterogeneous information sources [Heiler and
Siegel, 1991].

Several different kinds of heterogeneity need to be addressed to successfully
integrate different information sources. The sources may be distributed, run-
ning on different hardware using different operating systems. Different kinds of
data models may be used, data model heterogeneity, and even if the data model
does not differ the data manipulation languages may, language heterogeneity.
Even when trying to integrate two information sources employing identical
database management systems, we most likely face problems since the same
entity can be modelled in several different ways. This is called semantic heter-
ogeneity.

These heterogeneities have to be resolved when integrating different EDSs. In
[Sheth and Larson, 1990] a five level schema architecture (figure 1.3) is pre-
sented that addresses these problems.
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External External External
Schema Schema s Schema
Federated Federated
Schema s Schema
Export Export Export
Schema Schema s Schema
Component Component
Schema t Schema
Local Local
Schema t Schema

EDS,

Figure 1.3: Five-level schema architecture of multidatabase systems (from [Sheth
and Larson, 1990]).

At the lowest level we have the external data sources that we want to integrate.
A local schema is defined for each of them. The local schema defines what
information is stored in the EDS and how it is organized. The local schema may
be either explicit or implicit. For example there is no explicit schema defined
for a text file. However, there exists such a schema implicitly as it is possible to
retrieve and interpret information from the file. The local schema is often
expressed in the native data model of the source. For example, if the EDS is a
relational database then the local schema is expressed in the relational data
model.

Component schemas map local schemas into a canonical data model (CDM)
thereby resolving data model heterogeneity and language heterogeneity. The
component schema contains the same information as the local schemas do.
Also, it is possible to perform semantic enrichment in the component schema,
i.e. semantics that is missing in a local schema can be added to its component
schema. The CDM has to be as least as expressive as the most powerful data
model used by the EDSs, otherwise we lose information. Having a powerful
CDM facilitates semantic enrichment, e.g. in the relational model generaliza-
tion/specialization cannot be expressed directly. If the CDM is an object-ori-
ented data model then this can be made explicit.

A query to a component schema is translated into queries to the underlying
local schema. The results of these queries are then processed to form an answer
to the initial query.

For each component schema, one or more export schemas may be defined. An
export schema represents a subset of the component schema. It defines what



part of the component schema is available to a particular group of users.

A federated schema is an integration of multiple export schemas. It makes it
possible to access data from multiple external data sources as if it was stored in
a single database. A query against a federated schema is translated into queries
to the underlying export schemas. The results of these queries are then proc-
essed to form an answer to the initial query. All federated schemas are
expressed in the CDM. Federated schemas resolve semantic heterogeneities
between different export schemas. The process of constructing a federated
schema is known as schema integration [Sheth and Larson, 1990].

For each federated schema, one or more external schemas can be defined. An
external schema represents a subset of a federated schema. It can be trans-
formed in various ways to suit the needs of a particular user group. It may even
be expressed in a data model other than the federated schema, as described in
[Sheth and Larson, 1990].

The purpose of the five-level schema architecture is to hide from users the fact
that they are actually accessing several different EDSs. They should perceive
the system as if it was one centralized database. Consequently the query lan-
guage is the same as in the case of a centralized database management system.

It is not always desirable for various reasons, e.g. performance reasons, to hide
from users the fact that they are working with several disparate EDSs [Wang
and Madnick, 1990] and [Waldo et al., 1994]. Also, creating and maintaining
federated schemas may not be possible if the number of EDSs varies or sche-
mas undergo frequent changes [Litwin and Abdellatif, 1986], [Litwin et al.,
1990], and [Milliner et al., 1995]. Instead of providing an integrated view the
multidatabase system should therefore provide users with a multidatabase lan-
guage powerful enough to allow interdatabase queries to be specified. Users
may then themselves select the sources they are interested in and retrieve and
combine information from those. In the five-level schema architecture this cor-
responds to having no federated schema and no export schema.

In AMOS we opt for the multidatabase language approach but provide con-
structs that allow construction of multidatabase views, allowing transparent
integration of several EDS as in the five-level schema architecture. It should be
noted that we still need a canonical data model since component- and export
schemas have to be defined.

1.3.1 The Canonical Data Model

The choice of canonical data model is important for successful integration. In
[Saltor et al., 1991] the suitability of different data models as CDM is evalu-
ated. It is observed that to capture the semantics already expressed in native
data models of the various EDSs, the CDM must have, depending on the data
model, an expressiveness equal to or greater than any of native models of the
EDSs.
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The following are some desirable features of a good CDM:

* Classification/Instantiation. It should support the notion of a class (or
type) and an instance. The class concept is a key feature in object-oriented
data models. A class is similar to the notion of an abstract data type (ADT).
Functions and procedures that operate on the class are methods of the class.
Methods define the behaviour of objects. All objects are instances of some
class and every object is unique and is usually assigned a unique object iden-
tifier (OID). Thus two objects can exhibit the same behaviour and yet be dif-
ferent objects. The extent of a class is the set of objects which are currently
instances of the specific class.

In this thesis we will use the term #ype in favour of the term class and func-
tion in favour of method.

* Generalization/Specialization. /nheritance should be supported. It must be
possible to organize classes in an inheritance hierarchy of arbitrary depth.
The ordering operator used is usually set inclusion [Cardelli and Wegner,
1985].

Inheritance means that if a type 4 is a subtype of type B and if B has a certain
property, p, then the type 4 also possesses the property p. Properties include
functions and variables associated with a type.

Multiple inheritances and different kinds of specialization are optional, but
recommended.

« Aggregation/Decomposition. Aggregation means that a new type is created
as the Cartesian product of other types. For example the type Addr ess is an
aggregation of the types City, Street, and Zi pCode. Complex objects of
this kind are created by applying the tuple or record constructor to existing
objects. Decomposition means that we must be able to extract the compo-
nents of complex objects of this kind.

There also exists another form of aggregation known as grouping. Grouping
means that a set of objects of some existing type are gathered together. For
example, the dri ves attribute of a person is a set of objects of the type Car.
Complex objects of this kind are created by applying the set or bag construc-
tor to existing objects, i.e. the order amongst the members is not important.

* Operations and integrity constraints. The CDM should allow definition of
new operations and integrity constraints. This allows integration of tradi-
tional and non-traditional data sources, where structural mapping cannot be
used, by extending the functionality of existing methods defined for various
local views [Bertino, 1991].

* View mechanism. A view mechanism is needed and it should be at least as
powerful as a view mechanism using relational algebra.

* Type hierarchy integration operators. A CDM should also support imple-
mentation of type-hierarchy integration operators as described in “Super-
views” on page 17 or it must be possible for the user to achieve the
equivalent results within the CDM. Type-hierarchy integration operators are
needed to integrate schemas with different structures using inheritance and
classification. The operators can then be applied to the schemas to transform
them into some common structure.



e Multiple semantics. In [Sheth and Larson, 1990] the following example is
given to illustrate multiple semantics. Suppose there exist two databases
DBI and DB2 containing information about shoes. Two users userd and
userB wish to integrate these two databases; however, their perception of
colours differs. UserA sees as cream what is cream in DB1 and what is tan in
DB2, whereas userB considers cream what is tan or cream in DB1 and what
is tan or white in DB2.

Multiple semantics means that it must be possible for two users to integrate
the underlying sources in different ways.

Object-oriented data models support most or all of the above characteristics
and are thus suitable as CDMs.

1.4 Schema Discrepancies

Whether integrating EDSs using the same or different data models, we have to
address possible schema discrepancies. Suppose that we have the following two
object-oriented databases (fig. 1.4) that we want to integrate. Both of the data-
bases store information about publications.

In the figure an ellipse represents a type and the name of the type is written in
the ellipse. Functions associated with the type are written next to it. The name
of the function is written in small letters and stands before the colon ()
whereas the range of the function is the type whose name is written after the
colon. The domain of the function is the type it is associated with. Arrows rep-
resent inheritance. Thus, in DB1 an instance of Edi t or or Secretary is an
instance of Per son as well. This means that nane may be applied to editors
and secretaries as well, since they are persons, too.

price: Dol |l ars pri ce: Pounds
I anguage: { Stri ng} Magazi ne) edited_wi th: Editor
ed: Edi t or | anguage: String

nane: String

nanme: Stri ng version: Stri ng

title:String
nane: String

Enpl oyee
Figure 1.4: Two example databases with schema discrepancies.

The two schemas contain various schema discrepancies which we will take a
closer look at now. Before we proceed we want to point out that the classifica-
tion presented here is not the only possible and many other exist. Also, several
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different terms have been used over the years denoting the same concepts. Nor
do we claim that the enumeration is complete, we simply want to present some
typical problems that have to be addressed.

1.4.1 Naming Conflicts

A common type of conflict is the naming conflict where different entities or
properties with different semantic meaning may share a name (homonyms), or
semantically related properties are named differently (synonyms).

In the example above we see a typical example of a homonym. Both databases
contain a type Edi t or but in DB1 it is a person whereas in DB2 it is a program
used for word processing. The example also contains an example of synonyms
as the terms Jour nal and Magazi ne denote the same concept.

1.4.2 Scaling Conflicts

In different databases, different units of measure may be used measuring the
same thing. This has been termed a scaling conflict.

An example of scaling conflict is the price of Jour nal and Magazi ne respec-
tively. The former has Dol | ar as the unit for price whereas Magazi ne uses
Pound as price unit.

Another example could be if prices in one database included VAT whereas the
other database recorded price information without VAT.

1.4.3 Structural Differences

The same concept may be represented in two schemas by different modelling
constructs. In DB2 the title of an Enpl oyee tells us what work the person is
doing, i.e. a secretary would have the string “Secretary” as value of the prop-
erty title. In DB1 the same thing is modelled using types. Secr et ary is a sub-
type of Per son.

From an integration point of view a CDM providing only one modelling con-
struct would leave us with no choice as to how we represent a certain concept.
Thus, we would avoid structural differences. However, it would be highly
impractical since it would force users to model their problem in an unnatural
way. Therefore it is important that the data model supports transformations
between different modelling constructs [Krishnamurthy et al., 1991] and
[Chomicki and Litwin, 1994]. If not, we are not able to resolve structural dif-
ferences in different component schemas.

Structural differences have also been called representation conflicts [Rafii et
al., 1991].
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1.4.4 Constraint conflicts

Two schemas may impose different constraints for some property associated
with a type [Kent, 1988]. For example the key of an entity type may be differ-
ent in each schema. An example of a constraint conflict is shown in figure 1.4
where | anguage of Jour nal is set-valued, i.e. a Jour nal is printed in several
languages whereas a Magazi ne is only available in one language.

Other terms used for constraint conflicts are dependency conflicts [Rafii et al.,
1991].

1.4.5 Key conflicts

A key conflict arises when different keys are assigned to the same conceptual
entity in different schemas. An example would be if we have two databases
DBI1 and DB2 each storing information about persons. In DB1 social security
numbers are used as keys whereas in DB2 names are used. Thus, names are
required to be unique in DB2 but not in DB1. Therefore it is possible to store
information about two persons named Joe in DBI, but this cannot be accom-
plished in DB2.

1.4.6 Value conflicts

Value conflicts arise when the same property for some real world entity is
stored in multiple EDSs and the values of the property differ. It should be noted
that it cannot be the identifying property (key) that differs since we then would
not perceive the different entities as representing the same real world entity.

For example, assume that two relational databases store information about the
annual income of persons. If we have two entries, one in each database, where,
the social security number (the key) is equal but the recorded income differs
then we have a value conflict. Should, however, the social security number dif-
fer, then we would have assumed that the two entries concerned different indi-
viduals.

1.5 Object-Oriented Integration Problems

The schema discrepancies discussed in section 1.4 may arise during integration
of any two schemas irrespective of data model used. To complicate things fur-
ther, when integrating homogeneous object-oriented multidatabase systems, as
AMOS, one usually wants to take advantage of types and classes defined in the
EDSs to be integrated. In this section we describe some problems that have to
be addressed if we intend to integrate such systems.

1.5.1 Behaviour conflicts

This corresponds to integrating two attributes with different domains. Like-
wise, methods that we wish to integrate may behave differently. Thus we need a
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view mechanism that is general enough to resolve this kind of conflict.

1.5.2 Object Equivalence

In [Tresch and Scholl, 1994], [Kent, 1991], and [Eliassen and Karlsen, 1991]
the problem of object equivalence is discussed. When integrating EDSs it may
happen that the same real world entity is semantically replicated, i.e. repre-
sented by multiple objects in different component databases. Due to local
autonomy, OID domains of different EDSs are pairwise disjoint, such that no
two objects from different EDSs can be identical. Object integration requires
mechanisms to integrate objects that represent the same real world entity, such
that the MDBS treat them as a single object in queries.

ssn(03)=123 @

name(O3)="John” 03;=0,10,
salary(O3)=15000
N

ssn(0)=123 2;11; 0, 0, |0 ssn(0,)=123
salary(O4)=15000 Ty name(O,)="John”

y

X

64J0hn’7
$15000
123

Figure 1.5: The object equivalence problem.

OIDs are not adequate to globally identify objects, since they are internal repre-
sentations within each EDS as noted in [Tresch and Scholl, 1994]. Global iden-
tity must be based on characterizing values.

For example, in figure 1.5 two homogeneous object-oriented databases, DB,
and DB, are integrated in a new database DBj. In DB; we store information
about a person’s salary and his social security number. In DB, we store the
name of a person and the social security number. As we can see, John is repre-
sented in both DB; and DB, by objects O; and O, respectively. When we inte-
grate DB and DB, we do not want to have John represented by several objects;
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instead we want a single object (O3) to represent him. The only way we can tell
that O, and O, represent the same object is by the social security number.

1.5.3 Type Integration

Integration requires the ability to combine and compare information from vari-
ous EDSs, as stated earlier. To combine and compare information requires that
the information is of the same type. In an object-oriented multidatabase system
this is a problem since we have to decide on how to merge the different type
hierarchies of the EDSs, i.e. it must be possible to state that literals and other
types are “equal”. There are two different approaches to this problem, the glo-
bal schema approach and the multidatabase language approach.

The Global Schema Approach

In [Tresch and Scholl, 1994] multidatabase systems are classified on five dif-
ferent levels according to the amount of integration they provide using the glo-
bal schema approach.

Level 0 systems provide no integration whatsoever. They only allow transac-
tions spanning multiple EDSs but information from various EDSs may not be
compared. Level 4 systems provide the highest degree of integration and corre-
spond to distributed databases, i.e. they do not differ from centralized databases
in respect to object identity and type hierarchy. There exists a single domain of
OIDs and a single global type hierarchy. Level 1 to level 3 systems provide var-
ious degrees of integration and we will examine them more closely.

* Level 1 integration or schema composition. Names of all schema elements
from EDSs are just imported and made globally available. Type and class
systems of local databases are combined, without establishing connections
between composite systems. As an anchor, basic data types of component
systems are assumed to be identical. This ensures that at least values of ele-
mentary data types can be compared between component systems. Local
object type and class hierarchies of the EDSs are put together by defining a
new global top type and a new global top class.

Schema composition makes it possible to formulate queries that involve
multiple EDSs. For example, it is now possible to compare names of persons
stored in different databases. We are, however, limited to comparisons of lit-
erals.
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Federated Schema

Integration\

Conponent Conponent
Schema Schema
for DBl for DB2

Figure 1.6: Level 1 integration.

* Level 2 integration or virtual integration provides multidatabase views pro-
viding a uniform, virtual interface over multiple databases. Multiple objects
representing the same real world object can also be integrated at level 2, i.e.
the various objects representing the entity are merged and can be treated as
one object. This requires a view mechanism more powerful than the rela-
tional one, as noted in section 1.3.1. In many object-oriented data models,
types and functions are objects as well. This provides a uniform way to pro-
vide integration of objects, types and functions. Any two types can then be
merged in the same way as the literal types were in schema composition inte-
gration.

* Level 3 integration or real integration. While virtual integration provides
us with the ability to merge objects, types and functions, it does not allow
interdatabase functions to be created, i.e. a function with a signature involv-
ing types from more than one EDS. For example we could not create a func-
tion f oo: TypeA- >TypeB since TypeA resides in DB1 and TypeB in DB2.
This is, however, allowed at this third level of integration.

A fundamental property of the global schema approach is that it does not mod-
ify the component schemas of the various EDSs. All access has to be through
the federated schema if we want to have the integrated view. Of course we
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could still access the various EDSs through their component schemas, but then
we lose the integration.

An alternative way, instead of having a federated schema, would be to modify
the component schemas of the various EDSs so that each component schema
would reflect the current integration. However, this affects all component sche-
mas being integrated. The various EDSs are thus made aware of the integration,
i.e. a component schema no longer reflects only the local schema of an EDS but
reflects parts of other EDSs local schemas as well.

One of the problems with the global schema approach is that it will not scale to
the proportions needed in most multidatabase environments [Bright et al.,
1992]. Since one global schema is used, it is not feasible to build a multidata-
base systems having a large number of EDSs. The global schema must inte-
grate all the export schemas of the EDSs and its size might be prohibitive.

Maintenance of the global schema may be a time-consuming task. As the EDSs
are autonomous, they may at any time change their export schemas and this
may require modifications to the global schema. Furthermore, EDSs may join
and leave the multidatabase as they wish. Should the number of participating
EDSs be dynamic as can be expected in certain situations [Litwin et al., 1990],
then it will not be possible to maintain the global schema.

The global schema approach does have some advantages. Since integration is
centralized, the system appears to users as a single integrated database. Thus,
it is obvious where to look for information. The global schema approach also
makes it easier to enforce and maintain integrity constraints on interdatabase
dependencies and relationships. Furthermore, integration efforts are shared
which means that a certain integration only has to be done once and all users
can then benefit from it.

In our approach to integration we want to provide the equivalent of level 3 inte-
gration. Currently level 2 integration is provided but our work should be exten-
sible to provide level 3 integration. However, instead of the global schema
approach we opt for the multidatabase approach described next.

The Multidatabase Language Approach

It has been argued that multidatabase language systems are the only reasonable
solution in a large multidatabase environment where the number of EDSs is
large and/or varies dynamically.

In the multidatabase language approach no federated schema is created and,
thus, the bottleneck of the previous approaches has been eliminated. However,
by eliminating federated schemas we have to extend the query language to sup-
port multidatabase operations since there no longer exists a single integrated
database that users can access.

Each user or EDS should build their own schema incorporating information of
interest. Thus users at one EDS may incorporate schema information from
other EDSs in the system and these EDSs may not be aware that they are used;
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at least it is not reflected in their schemas. This can cause some anomalies as
we shall see.

Conponent Conponent
Schema Schema

Figure 1.7: Instance sharing.

Suppose that two databases are being integrated as depicted in figure 1.7. Both
databases contain information about persons. DB1 contains information about
children (Chi | d) and employees (Enps) in particular. DB2 also contains infor-
mation about employees (Enpl oyee). The designer of DB1 does not wish to
create an extent for Enps himself but would like to use the extent defined for
Enpl oyee in DB2 (O, O, and Og). This can easily be done by defining a derived
type (class) involving a query retrieving the objects of interest from DB2.

Note: the component schema of DB2 contains no information about the extent
of Enpl oyee being used as the extent of Enps. Suppose that we use the meta
data function t ypesof : Obj ect - >Type to retrieve all the types of an object. In
DBL1 the types of O; are Enps, Per sonA, and Obj ect ; in DB2 the types of O; are
Enpl oyee, PersonB, and Obj ect. The same object has different types in dif-
ferent databases. Thus users must be aware that the same meta data function
may return different answers for the same input depending on where it is exe-
cuted.

Trying to define a formal model and to study the various anomalies similar to
the one described above that can occur and how to best resolve them pose inter-
esting questions for research.



17

2 Object Views and Queries
for Integration of
Heterogeneous Data
Sources

Object views have been proposed as solutions to a number of problems such as
authorization [Rabitti et al., 1991], schema evolution [Ra and Rundensteiner,
1995], and integration [Motro, 1987] and [Rundensteiner,1992]. In this chapter
we examine some of the proposals as to how object views can be used for inte-
gration. However, we have limited ourselves to approaches similar to ours.

2.1 Superviews

A formal approach to integration is taken in [Motro, 1987]. A formal frame-
work is defined and ten integration operators are defined. The operators can be
divided into class hierarchy manipulation operators and attribute! manipulation
operators. A good CDM, as noted in section 1.3.1, should support these opera-
tors or should be equally powerful allowing for similar restructuring of types,
classes and functions.

Superviews provide a federated schema over different component schemas.
Users define the federated schema in an interactive process where the integra-
tion operators are applied to the different component schemas. The sequence of
operators applied is recorded and the system uses this information to transform
queries to the federated schema to subqueries to the different component sche-
mas. The answers are then combined to form the final answer to the global
query.

Superviews organize objects in classes. Each class has a fype which is the set of
functions applicable to the instances of the class. Each class has also a key
which is a subset of the type. As in all integration the literals are considered
identical even if they come from different data sources.

1. Attributes in this case are stored or computed values associated with an object, i.e.
attributes or methods in the object-oriented terminology. We will also use the term
function in this section to denote the same concept.
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Class Hierarchy Operators

The meet operator produces a common generalization of two classes. A com-
mon generalization is possible only when the two classes have a common key.
By a common key the authors mean that the number of attributes constituting
the key must be the same for both the classes. Furthermore, the corresponding
attributes must be equally named and share the same domain.

Suppose that we have two types Facul ty and St udent that record information
about faculty members and students, respectively, and that we want to general-
ize these two classes into a third class Per son. The St udent class has an ssn
attribute, a nanme, and a gpa attribute. The Facul ty class also has an ssn
attribute, a r ank, and a nane attribute. We have depicted this in figure 2.12%

s5n nmeet Faculty Ssn
na acul ty e
rank and Student name

ssn i nto Person
name (St udent gpa (Student

gpa
Figure 2.1: Example of the meet operator.

Per son

r ank

Facul ty

The key for each class has been underlined in the figure. As we can see Fac-
ul ty and St udent share the same key, namely ssn’. Apart from ssn they also
share the attribute name. The meet operation raises all common attributes to the
new superclass Per son. Thus ssn and name will be associated with the new
class Per son whereas gpa will still be associated with St udent and r ank will
still be associated with Facul ty. Members of St udent and Facul ty sharing
the same ssn are considered as the same person. Should a person be a member
of both St udent and Facul ty then all common attributes are also required to
have identical values; if not, the attribute is assigned a distinguished value not
consistent. Members of Per son will be the union between St udent and Fac-
ul ty.

While the meet operator constructs superclasses, the j oi n operator constructs
subclasses. Thus, j oin Student and Faculty into Assistant will add
Assi st ant as a subclass to Student and Facul ty. Assi stant will now

ssn L ssn ssn
na Facul t join Faculty 22— (Student nam
ran Y and Student Name ran

gpa
into Assistant

ssn
name (Student

gpa
Figure 2.2: Example of the join operator.

Assi st ant

2. Rounded boxes will be used to depict classes.
3. The domain for the different SSn attributes also has to be the same, e.g. ten-digit inte-
gers.
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inherit from both St udent and Facul ty; the type for Assi st ant will thus be
{ssn, nane, gpa, r ank}, i.e. Assi st ant inherits the union of the attributes of
the superclasses. As in the case of j oi n, the key has to be common and shared
attributes have to have the same value. This avoids the problem associated with
multiple inheritance, namely inheriting equally named functions from several
superclasses with different implementations or values. If we inherit equally
named attributes from the two superclasses we also know that they are bound to
have the same values and therefore it does not matter which one we choose.
Should the value differ for some multiple-inherited attribute, it is assigned the
distinguished value not consistent as in the case of the neet operator.

While nmeet and j oi n add new classes, f ol d removes classes. f ol d allows a
class to absorb a subclass. With f ol d the class St udent may be absorbed by
the more general class Per son. Any attribute associated with St udent will be
carried over to Per son. Since the attributes acquired from the absorbed class

ssn ssn
name fold Student name
gpa
into Person
gpa (Student rank (Faculty rank (Faculty

Figure 2.3: Example of fold operator.

are only meaningful for instances that once belonged to the absorbed class,
other instances that acquired the attribute will have null as value for the
acquired attributes. For example, in figure 2.3 the attribute gpa is acquired by
Per son. Only previous members of St udent have a meaningful value for gpa.
However, all Person members (and Facul ty members) acquire the gpa
attribute and, since they lack a meaningful value for the attribute, the value will
be null.

There may be functions that had the absorbed class as their domain. Since it no
longer exists we have to change the domain of the functions to the absorbing
class instead. For example, if there existed a function f with St udent as the
domain before f ol d, it will have Per son as domain after f ol d.

During integration it will sometimes be necessary to rename a class or an
attribute; this is the task of the r enanme operator. rename S to T assigns the
new name T to class or attribute S.

Two compound operators, combi ne and connect, are also defined. When two
classes have identical types, combi ne merges them into a single class. When
the type of one class S is contained in the type of another class T, i.e. the key of
S is a subset of the key of T, then a meet followed by a f ol d can connect
them into one class.
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Formally:
e combine S and T into U is defined as
meet Sand T into U
fold Sinto U
fold T into U
e connect S to T is defined as
meet Sand T into U
fold T into U
renane Uto T

Attribute Operators

As well as restructuring the class hierarchy, it may be useful to perform opera-
tions on the attributes of a certain class. To do this we use the attribute opera-
tors.

The operator aggr egat e replaces a number of attributes of a given class with a
new attribute. An example illustrates the point. Given a class Person that

aggregate (street,

city,
zi pcode) Ssnh
ssn q nane
name ) address
into Address
city street

zi pcode tel escope Address city @
Gily o (Bddress)

into Person

Figure 2.4: Example of the aggregate and telescope operator.

among other attributes has the attributes street, ci ty, and nane, aggregating
these attributes into a new class Addr ess removes them from Person and
instead associates them with the new class Addr ess. Per son acquires the new
attribute addr ess whose value is a member of Address. Thus, to find out
what city a person lives in, we take the value of addr ess and then retrieve the
value of ci ty from the value of addr ess.

Of course there exists an inverse to the aggr egat e operator, which is called
t el escope. Thus it is possible to reverse the effect of the aggregation per-
formed in figure 2.4. t el escope Address into Person removes the class
Addr ess and substitutes the attribute address for the attributes street,
city, and zi pcode for the Per son class. The author requires Addr ess not to
be used as domain of any attribute not associated with the class it is being tele-
scoped into, i.e. there may not exist another class Conpany that also has an
address.

The final two operators are add and del et e. New attributes are added to a
class by the add operator. This can be very useful as whenever identical struc-
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tures from different databases are combined, loss of information may result.
Consider two library databases both with a class Book = {book-no, title,
aut hor }. If these classes are combined, the information on where each book is
shelved would be lost. Using add, this implied knowledge can be added to each
class as a new attribute |ibrary. add library(l) to Book and add
library(2) to Book would add the attribute to the Book classes. The value
for the | i br ary attribute is also specified in the add statement. The type of the
two classes would now be {book-no, library, title, author}. Inte-
grating them into a single class requires the | i brary attribute to be added to
the key since book- no may only be unique within one library. This is accom-
plished by add library to key of Book.

The del et e operator removes attributes from classes. For example, del et e
name from Person would remove the name attribute from class Per son in
figure 2.4.

Summary

Superviews use a functional model and as a consequence structural difference
cannot occur, thus simplifying the integration task. We have, however, chosen
to present the concepts in terms of an object-oriented model. We also note that
the approach taken by Superviews is not altogether satisfactory in an object-
oriented model where a distinction is made between notions such as classes,
types, functions (methods and attributes), and objects. However, in an object-
oriented model it must be possible to perform restructurings similar to those of
Superviews.

The problems of scaling conflicts, key conflicts, and constraint conflicts are
recognized by the authors but not addressed.

The authors have concentrated primarily on integration and interrogation of
integrated databases and not on updates. A short discussion is given concerning
updates but the authors conclude that more research is needed.

The work is mainly theoretical and the authors make no suggestions on how to
realise their work. One practical detail that has to be solved is how to merge
members from different classes into a single member of a new class.

2.2 MultiView

MultiView [Ra and Rundensteiner, 1995] and [Rundensteiner,1992] is an
implementation of object views on top of the GemStone OODBMS [Kuno and
Rundensteiner, 1993]. It maintains multiple views of a global schema.

This is a problem relevant in multidatabase environments as well, since several
export schemas may have to be defined for a given component schema as
shown in figure 1.3 on page 6, or several external schema may have to be
defined for a given federated schema.
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Anything with distinct existence in objective or conceptual reality is repre-
sented as an object. Each object has associated with it a number of instance
variables which hold the state of the object and methods that represent the
behaviour of the object. A method consists of a signature (method name and
argument and result types) and an implementation, a block of code specifying
the behaviour of the method. Two methods in MultiView are considered equiv-
alent if they share the same block of code.

A type is, as in Superviews, the library of methods and instance variables avail-
able to a given object. In MultiView, a class is composed of both a type and an
extent (the set of all the object instances with that type). Every object posses at
least one type, and is thus an instance of at least one class.

Classes can be categorized in two categories, base classes and virtual classes.
The extent for base classes is explicitly stored whereas the extent for virtual
classes is defined by a query expression.

MultiView organizes both base classes and virtual classes into a single class
hierarchy. A class Cg,;, is a subclass of another class C if C subsumes Cy,, i.e.
all of the methods and attributes contained in the type description of C must be
included in the type of Cj,;. Furthermore, the extent of C,,;, is a strict subset of
the extent of C. Each instance of the subclass is considered to be an instance of
the superclass, too. Thus, in each context where an instance of the superclass is
required, an instance of the subclass is also permitted.

Users have to explicitly declare subclass relationships for base classes whereas
it is automatically derived by MultiView for virtual classes.

Subsumption in MultiView is based on implementation of methods and not sig-
natures, i.e. if two classes C; and C, share some common property then they
must ultimately have inherited it from the same superclass. If instead signatures
were used, we would have to compute whether or not two different implemen-
tations model the same behaviour, which is clearly not computable.

The single class hierarchy in which both base classes and virtual classes are
organized is called the global schema. This schema can become quite unwieldy
as new classes are defined. Typically, users are interested in different subsets of
the global schema. Such subsets can be defined and are called view schemas. A
view schema is not affected by changes made to other view schemas and as the
global schema evolves, the system will maintain a correct mapping between the
different view schemas and the global schema.

The query language used when defining virtual types is based on an object-pre-
serving algebra, i.e. queries do not generate new objects. The algebra is set-
oriented and has six operators.

* Select. The select operator defined by (sel ect <cl ass> where <predi -
cat e>) returns a subset of the input set of objects, <cl ass>, namely those
satisfying the predicate expression. The type of the resulting set is
unchanged, i.e. it is equal to the type of <cl ass>. As the extent of the vir-
tual class is a subset of the extent of <cl ass>, the virtual class will become
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a subclass of <cl ass>.

Hide. The hide operator defined by (hi de <properties> from <cl ass>)
removes properties listed in <pr operti es> form the set of objects <cl ass>
while preserving all other properties defined for the type of <cl ass>. The
type of the output set is a supertype of the input type, as fewer functions are
defined on the output. All objects of the input set are also members of the
output set. This means that the virtual class will become a superclass of
<cl ass>.

Refine. The refine operator defined by (refine <property-defs> for
<cl ass>) returns a set with the same objects as the input, but with a new
type, a subtype of the input type, as all the old properties plus the new one
are defined for it. It is required that each property in <property-defs>
must be different from all existing properties of the <cl ass>. Since the type
of the virtual class is a subtype of the type of <cl ass> and the extents are
equal for the two classes, the virtual class will become a subclass of
<cl ass>.

Union. The union operator defined by (uni on <cl ass1> and <cl ass2>)
returns the union of the extent for the two classes. The criterion for duplicate
removal is object identity. No restrictions are needed on the operand types
since ultimately everything is an object. The resulting type, however,
depends on the input types. For union it is the lowest common supertype of
the input types. Since the type of the virtual class is a supertype of the types
for both <cl ass1> and <cl ass2> and the extent of the virtual class is a
superset of the extents for <cl ass1> and <cl ass2>, the virtual class will
become a superclass of <cl ass1> and <cl ass2>.

Intersection. The intersection operator defined by (i ntersection
<cl ass1l> and <cl ass2>) returns the intersection of the extents for the
two classes. The resulting type of the virtual class will be the greatest com-
mon subtype of <cl ass1> and <cl ass2>. The virtual class will become a
subclass of both <cl ass1> and <cl ass2> as the extent of the virtual class
is a subset of the extents for <cl assl>and <cl ass2>.

Difference. The difference operator defined by (di ff <classl> and
<cl ass2>) returns the set difference between the extent of <cl ass1> and
<cl ass2>. The resulting type of the virtual type will be the same as the type
of <cl ass1> but the extent will be a subset. Thus, the virtual class will
become a subclass of <cl ass1>.
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Let us look at an example. In figure 2.5 a global schema is depicted. It con-

Per son

— - o~ —_—
\_Adult ) \TeenageG rl)
class Adult = class TeenageGrl =
sel ect (p:Person) where sel ect (p:Person) where
p. age>21; p. age<21l and p.age>=13 and

p. sex=f enal e;
Figure 2.5: Global schema.

tains one base class, Per son, and two virtual classes, Adult and Teenage-
G rl. Now suppose a user defines two virtual classes M nor and TeenageBoy
as

class Mnor = select (p:Person) where p.age<21;
cl ass TeenageBoy = select (m M nor)
where m age>=13 and m sex=nal e;

Example 1: Creating two virtual classes.

MultiView will then modify the global schema and insert the two virtual classes
at their proper places in the class hierarchy as shown in figure 2.6. The global

View Schema 2 View Schema 1

o~ N

\ \ TeenageBoy )

- — —

Jeenageairl)

Figure 2.6: Updated global schema.

schema contains all the classes. However, users can select interesting classes
for view schemas. A user only specifies what classes are of interest. MultiView
then organizes the classes in a view schema. For example, for view schema 1
the classes Person, M nor and TeenageG rl have been selected. View

4. Rounded boxes with dashed borders depict virtual classes.
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schema 1 will contain only these classes and they will be organized as in the
global schema. However, class M nor has been excluded from view schema 2.
MultiView will then make TeenageBoy and TeenageG r| direct subclasses of
Per son.

Since classes are shared between different schemas, updates of the extent of
one class in one schema will be noticed in other schemas using this class. This
allows applications to cooperate and the schema can evolve by means of views
without interfering with this cooperation.

2.3 COOL*

In [Tresch and Scholl, 1994] the functional object database language COOL
[Laasch and Scholl, 1993] using the object-oriented data model COCOON
[Scholl et al., 1992], is extended with multidatabase facilities and renamed
COOL*.

The COOL* language aloows users to choose what level of integration to use,
up to level 3 integration, See “The Global Schema Approach” on page 13.

In the COCOON model information is modelled using objects, functions, types
and classes. Objects are instances of abstract object types (AOTs). Data are dis-
tinguished from objects and are instances of concrete data types.

Functions model the AOT-specific operators. They are abstractions of side-
effect free retrieval functions, called properties, and update methods® with
side-effects. Properties can be either stored or computed. The computed proper-
ties can be subdivided into derived and foreign properties where derived prop-
erties are defined by a COOL* expression and foreign properties are defined in
some general-purpose programming language.

Types are separated into concrete data types and abstract object types. Concrete
data types are either primitive (e.g. integer, real, string) or constructed (e.g.
tuple, set, function). Abstract object types describe the common interface of all
instances of that type, the set of applicable functions. Types are organized in a
type hierarchy according to the same principles as in MultiView.

Classes are typed containers for objects and they are organized in a class hier-
archy. Again, the same rules apply to classes as in MultiView. Derived classes
can be defined and are called views. An object-preserving algebra with the
same operators as in MultiView is used when defining derived classes. The
same rules also apply as to what type a derived class gets and where it should
be placed in the class hierarchy.

Let us now see how integration is performed in COOL*.

Level I integration or schema composition is achieved by combining the
schema of the different EDSs. Type and class systems of the EDSs are com-

5. Collectively called functions.
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bined, without establishing connections between composite systems. As an
anchor, concrete data types of EDSs are assumed to be identical. This ensures
that at least values of elementary data types can be compared. Local object and
type hierarchies of the EDSs are put together by defining a new global top type
and a new global top class. COOL* has a type lattice; therefore, a new bottom
type is also created that is made a common subtype of all local bottom types.

In [Tresch and Scholl, 1994] the following example is given. In a university
environment information about students is stored in database StudDB and infor-
mation about what books a student has borrowed is recorded in a library data-
base, LibDB.

The following COOL* statement composes the three schemas into a new global
schema UnivDB.

defi ne dat abase Uni vDB
i mport LibDB, StudDB
end

Example 2: Composing two schemas.

Queries can now be formulated that involve multiple EDSs. For example, since
composition made basic data types and name spaces globally available, we can
now compare the names of customers (from LibDB) with names of students
(from StudDB).

sel ect [ O#sel ect [ nane(c)=name(s)] (s: Students)] (c: Cust oners)
Example 3: Comparing name of students with name of customers.

The syntax for the select statement in COOL* is sel ect [ bool - expr] (set -
expr) where bool - expr is a boolean expression returning true or false and
set - expr is a COOL* expression returning a set.

The above query retrieves all those students who are also known as customers.
It would be convinient if we instead could have expressed it as

sel ect [ cOSt udent s] (c: Cust orer s)
Example 4: Selecting all students who are also customers.

Unfortunately, since objects of class St udent s are of type Student and the type
of ¢ is Customer and the two types are not yet related, the selection predicate
would be rejected by the type checker. We first need to relate objects of the two
classes to each other which requires level 2 integration.

Level 2 integration or virtual integration allows us to specify that certain

objects are the same. This is accomplished by the use of same-functions. A

same-function is partial, injective, single-valued function with the signature:
same; ;:object;->object;

where i and j denotes databases. Global identity =g of objects is then defined
as
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ol :g| 02
(O : objectj(ol) Jobject;(02) O ol = 02)
O
(Osane; j:object;->object;: object;(ol) U objectj(02) O
02 =; samg; j(ol))

Two objects are the same if they stem from the same EDS or if they have been
defined to be the same using same-functions.

If we wish to answer the query in example 4 on page 26 we have to say that stu-
dents and customers are the same. We extend the type of the St udent class
with a same-function.

define view Students as
ext end®[ sameg; yqpg, Libos : =
pi ck’(sel ect [nanme(c)=name(s)]
(c: Custoners))]
(s:Students)

Example 5: Integrating objects of class St udent s @st udDB® with objects
of class Cust oner s@.i bDB.

Customers and students with the same name will now be regarded as the same
object. The type checker will now not reject the expression in example 4 on
page 26.

Since functions are also objects they can be merged in the same way.

define view Functions@studDB as
ext end[ saneSt udDB, Li bDB: =
pi ck(sel ect[f nameg(f) ="NAME" and fnane(g)="NAME"]
(9: Functi ons@.i bDB)) ]
(f: Functi ons@st udDB)

Example 6: Unifying function name @t udDB and function name@.i bDB.

Level 3 integration or real integration allows us to create functions whose
domain and range are types from different databases. For example, we could
define a function f avourit e_book as

define function
favourite book: Student@tudDB® -> book@.i bDB

Example 7: Defining an inter-database function.

In level 2 integration we were not allowed to defined stored inter-database
functions, though derived inter-database functions were allowed. Function

6. Corresponds to r ef i ne in MultiView.

7. The pi ck operator does a set collapse, returning the objects from a singleton set.

8. @is used as qualifier specifying which database the information is to be retrieved
from.

9. f nane returns the name of a function.

10. This is a type, not a class.
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sameg; ,qpg, Li bog Was an example of a derived inter-database function; it com-
pares objects from two different databases.

Stored same-functions can also be useful. In [Tresch and Scholl, 1994] the
authors discuss what should be done if a user tries to add a type to an object. In
COOL* there is generic update operation gai n[ #] (o) that adds type ¢ to object
o. If both ¢ and o stem from the same database, then gai n works as in a central-
ized database. However, should ¢ and o come from different databases, the
semantics becomes unclear. One realization of this gai n operation would be to
create a same-object o’ of o in the database where type ¢ is defined and a local
gai n operation is performed, making o’ an instance of z. This realization maps
the multi-database gai n operation to a sequence of operation, that can be exe-
cuted within one single EDS. Since an object o’ of DB; is assigned to be the
same object as o of DB,, stored same-functions are needed.

2.4 Pegasus

Pegasus [Ahmed et al., 1991a], [Ahmed et al., 1991b], [Ahmed et al., 1993],
and [Rafii et al., 1991] is a prototype of an object-oriented multidatabase sys-
tem developed at Hewlett-Packard. Pegasus is like AMOS based on the Iris
data model [Fishman et al., 1989] and [Lyngbacek et al., 1991] and the HOSQL
language is an extension of OSQL used in Iris. It has been extended to address
integration at schema and data levels, and to deal with multidatabase opera-
tions.

The main difference between Pegasus and AMOS is that Pegasus is a “central-
ized” multidatabase system. A single Pegasus system integrates a number of
EDSs. In AMOS we need not have a single AMOS server that integrates all the
EDSs rather we can have a number of AMOS servers that integrate different
EDSs and where the different AMOS servers interact with each other.

The Pegasus system manages databases. Two different kinds of databases are
distinguished, native databases and imported databases. Native databases are
created and managed by the Pegasus system. Information stored in native data-
bases resides in the Pegasus system. Imported databases represent some exter-
nal data source, such as a file system or a database managed by some other
system.

Import

Creating an imported database involves, among other things, making the
schema of the external data source available as a Pegasus schema. Pegasus pro-
vides two data definition facilities to do this: imported producer types and
imported functions.

An imported producer type defines the existence of its instances according to a
rule based on some identifying literal-valued property for each entity in an
external data source. There will be one instance of the producer type for each



29

unique occurrence of the identifying property in the external data source. OIDs
are fabricated for instances of produce types and OIDs generated for instances
of two producer types will be distinct even if the same value for their identify-
ing property occurs for both types.

create inported producer type Student

i mported from Rel ati onal System

dat asour ce SDB

rel ation Students

produci ng by (Studl D)

functions (studentid Integer as identifier;
ssnum I nteger as map to SSNo);

Figure 2.7: Example of imported producer type.

In figure 2.7 an example of an imported producer type is given. We are con-
structing a Pegasus schema for a relational database called SDB containing
information about students. In SDB there exists a relation St udent s that we
wish to represent as a type St udent in Pegasus. The primary key for St u-
dent s is St udl D and thus we use it as the identifying property.

In the process of defining the St udent type we also define two functions. The
function st udenti d is called an identifier function. It takes as argument the
OID of a student and returns the integer value of his studentid. This value is a
member of the producer set. The other function ssnumis an imported function.

Imported functions are mapped to properties or relationships in external data
sources. For example ssnumtakes a student as argument and returns his social
security number found in the SSNo column of the St udent s relation in the SDB
database.

Integration

As discussed in chapter 1 it is not enough to import external data sources; they
need to be integrated as well. Pegasus addresses this issue as well by distin-
guishing between underlying objects and unifying objects.

Underlying objects result from the import process and faithfully reflect the
external data sources, including any discrepancies. Unifying objects present an
integrated view for the end user.

Suppose that we are integrating different databases containing student informa-
tion. A given student may be represented in more than one of these databases.
For each database we would create a distinct student type in Pegasus and the
student would then be represented by several distinct objects of different stu-
dent types in Pegasus. We would then define a unifying type where all these dif-
ferent objects were represented by the same image object.
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create uni fying producer type Student
over underlying types EStudent, WS5tudent
functions (ssnumlInteger as identifier);

Figure 2.8: Example of a unifying type.

The form in figure 2.8 creates St udent as a unifying type as well as a producer
type, and designates existing types ESt udent and WSt udent as underlying
types. The producer expression is implicitly defined by the system as:

produci ng by HOSQL(
sel ect ssnum(x) for each EStudent x
uni on
sel ect ssnum(x) for each Wstudent Xx);

Students occurring in both ESt udent and WSt udent will thus be represented
by a single image object in St udent since the producing expression is a union
over ssnum If ESt udent and WSt udent had been disjoint, then we would not
have had to specify Student as a producer type since no unifying objects
would need to be created. Instead it would have sufficed to define St udent as
a unifying type only and not as a producer type also.

Every type has exactly one unifying type, usually the type itself. Every instance
object has at most one unifying object (or image), usually the object itself,
given by the system function i mage. The i mage function is used to transform
an object of an underlying type to the unifying object. By allowing the adminis-
trator of the Pegasus system to define suitable i mage functions, desired map-
pings can be obtained.

In figure 2.8 we integrated existing information but sometimes it is the other
way around. We already have a type that we want to unify with new imported
types. Suppose that a Student type already exists and is populated in the
Pegasus system. We then want to integrate it with the two imported types
ESt udent and WSt udent .

add underlying types EStudent, W5tudent
under Student
(ESt udent . I mage(x) as stored)
(Wst udent . | mage(x) as HOSQL(
select s for each Student s);

Figure 2.9: Integration of an already existing type.

Figure 2.9 illustrates how this is done. WSt udent . | mage is defined as

create function image(Wstudent y)->Student z as
HOSQL sel ect z where ssnun(z)=ssnum(y);

For ESt udent i mage is defined as a stored function, i.e. the image of an x in
ESt udent may be undefined (nul|) until a corresponding instance of St u-
dent is assigned. The image of an instance of W6t udent is that instance of
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St udent having the same social security number. There might be none. Thus,
we note that image mappings might be algorithmically or manually maintained.

Pegasus also addresses the problem of naming conflicts (section 1.4.1) by pro-
viding a construct that allows a user to rename a function. To make integration
easier Pegasus provides unifying inheritance.

Unifying inheritance means that the unifying type inherits all the functions
defined for the underlying types thus enabling the user to apply functions given
the same names as the original ones to unified objects. However, overload
ambiguity arises when a unified function resolves to more than one underlying
function, i.e. two or more of the underlying types have equally named func-
tions. This situation is resolved by an ambiguity reconciler defined by the user.

In [Ahmed et al., 1991b] and [Rafii et al., 1991] it is noted that it is also possi-
ble to specify equivalence classes of objects similar to COOL* (section 2.3).
This obliterates the need to create producer types if we already have objects of
different classes that we want to integrate. It would then suffice to given an
expression defining the equivalence between the different objects representing
the same real world entity. However, in later papers [Ahmed et al., 1993] this
possibility is no longer mentioned; instead integration is achieved as described
in this section.

The need for higher order views is recognized in [Ahmed et al., 1991b] and
suggestions similar to those described in section 2.5 are made. This enables
Pegasus to handle structural differences, section 1.4.3.

Key conflicts, section 1.4.5, as we understand it, are handled by providing a
suitable pr oduci ng by expression when specifying the producer type.

Behaviour conflicts, section 1.5.1, are handled by defining suitable functions
resolving the conflicts.

It has not been possible to verify to what extent the various features described
have been implemented in Pegasus. The different concepts have been presented
in various ways in different papers. However, we do know that an implementa-
tion exists and that it is probably one of the more advanced multidatabase pro-
totypes in existence.

2.5 Parameteriezed Views

In [Chomicki and Litwin, 1994] the problem of structural differences is
addressed, see “Structural Differences” on page 10. They discuss extensions of
the object-oriented database language, OSQL, needed to resolve these differ-
ences as they are inevitable in a multidatabase environment.

In the paper, the authors distinguish between four different modelling con-
structs, literals, object, types, and functions defined in the same way as in sec-
tion 3.1. Literals are self-identifying objects such as integers and strings.

Since information may be modelled in different databases using any of these
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four constructs, users must be able to map between them. Thus, 16 different
mappings are described.

The concept of derived types is defined similarly to derived classes in Multi-
View and COOL*. However, this concept is then generalized into type schemas.
A type schema defines a family of derived types.

For example, if we have a database containing information about employees
and their titles then the following type schema would define as many derived
types as there are titles.

create type EnmpPos[String s] as
sel ect e for each Enpl oyee e
where title(e)=s;

Example 8: Defining a type schema EnpPos.

Assuming that two employees existed with title “ Secretary” and “Boss”
respectively, two derived types named EnpPos|[“Secretary”] and Enp-
Pos[ “Boss”] would be created. Type schemas themselves are not types, they
only create types called instance types.

Type schemas provides great flexibility as users do not have to define a new
derived type whenever a new title is added. The system will automatically cre-
ate a new type.

The correspondence to producer types in Pegasus (section 2.4) and mapped
types (section 4.3) in AMOS are called object schemas.

To complete the framework the authors define functions schemas. Function
schemas will map values, objects, types, and functions into new functions.

Assume the existence of a function St ock: Date x String->Price that
records the closing price for companies each day. We can then create a function
schema defining functions returning the closing price for each company given a
date.

create function closing price[String c](Date d)->Price as
select p for each Price p
wher e stock(d, c)=p;

Example 9: Defining function schema closing_price.

As in the case of type schema function schemas are not functions but they
define functions called instance functions.

Function schemas and type schemas enable us to ask higher order queries such
as

sel ect nm
for each String nm Function closing_price[nn], Date d
wher e closing_price[nni(d)>$200;

Example 10: Retrieving the name of all companies whose stocks have ever
closed above $200.
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Function schemas and type schemas causes some problems. For example, it is
possible to define an infinite number of types.

create type Younger Than[Integer k] as
sel ect e for each Enpl oyee e
wher e age(e) <k;

Example 11: A type schema with an infinite number of instance types.

This and a number of other problems described in [Chomicki and Litwin, 1994]
make it impossible to maintain an explicit type hierarchy and thus partially
obstructs inheritance.

2.6 Concluding Remarks

We have given a brief review of related work in the area of integration using
object views. We first looked at Superviews. Superviews provide ten operators
for information restructuring. Five operators for restructuring the class hierar-
chy and five operators working on attributes. Using these operators users can
merge classes, create new superclasses, and create new subclasses of existing
classes. Also, it is possible to create new attributes of existing classes and hide
already existing attributes.

Next we examined MultiView an object view management system built on top
of GemStone. It allows users to change view schemas defined over a global
schema without affecting other view schemas. The system will maintain the
correct mappings as changes are made.

In MultiView we can do more than we could in Superviews. Superviews did not
let us create virtual classes where the class contained only a subset of some
other class, as in example 1 on page 24. However, compared to Superviews we
have to perform more operations. For example, if we want to merge two classes
into one, we can do it by defining a common superclass. We then have to create
a new view schema excluding the two classes that we merged, while including
the common superclass. In Superviews a special operator was available for
doing this.

COOL* can be seen as an extension of MultiView for a multi-database environ-
ment. The same operators are defined in COOL* for defining virtual classes as
in MultiView. However, in COOL* the problem of object-equivalence is
addressed. This problem has to be solved in an object-oriented multidatabase
system. In COOL* it is possible to define same-functions stating when two
objects are to be treated as the same object.

Superviews and Multiview concentrate on reorganizing classes of existing
objects while Pegasus also lets users define classes that generate new objects,
so-called producer types. This allows users to create object views of non-
object-oriented data. The same could be accomplished in COOL* by means of
stored same-functions and an operation for creating objects. However, in [Tre-
sch and Scholl, 1994] this is not discussed.
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Finally we reviewed a proposal for parameteriezed views. In a multidatabase
environment it is crucial that we can map between the different constructs used
in the canonical data model, or we will not be able to resolve all structural dif-
ferences that can occur. Parameteriezed views let us do this. However, they
cause some problems as it is possible to define an infinite number of types and
functions.

The ideal object view management system in a multidatabase environment
would combine the view mechanism of MultiView with same-functions from
COOL*. Finally we would add parameteriezed views.
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3 AMOS Data Model

In this chapter we will present the data model of AMOS and AMOSQL [Flodin
et al., 1996], the query and data manipulation language of AMOS. The data
model of AMOS is strongly influenced by the functional data model OODA-
PLEX [Dayal, 1989] and by the Iris data model [Fishman et al., 1989] and
[Lyngbaek et al., 1991]. We also present a multidatabase extension of
AMOSQL.

3.1 Types, Functions and Objects
The AMOS data model has four basic modelling constructs; objects, types,

functions and rules. The relationship between objects, types and functions can
be seen in figure 3.1.

Figure 3.1: Functions, types and objects.

Objects are used to model entities in the domain of interest. Types are used to
classify objects and act as containers for their instances. All objects are
instances of some type. Functions are constrained to accept only objects that
are instances of the declared argument type of any subtype thereof. They are
used to model properties of objects and relationships between objects. Finally,
rules are used to define constraints.

3.1.1 Types

Types can be divided into literal types and surrogate types based on their
extent. The extent of a literal type is fixed (often innumerable), and instances
of literal types are self-identifying, i.e. no object identifiers are needed to dis-
tinguish between instances of a literal type. However, notice that literals are
objects as well. Examples of literal types are integers, reals, and strings.
Instances of surrogate types are created by the system or by users and they are
uniquely identified by an immutable system generated object identifier (OID).



36 AMOS Data Model

In multi-database AMOS surrogate types can be further divided into three cate-
gories; stored, derived and mapped types. Stored types have an extent explicitly
stored in the database whereas the extents of derived and mapped types are
expressed by declarative queries. In this section we will only look at stored
types. Derived and mapped types are multi-database extensions of AMOS that
will be presented in section 4.2, and section 4.3, respectively.

Types are organized in a type hierarchy as shown in figure 3.2. The most gen-
eral type is Obj ect ; all other types are subtypes of Obj ect . User-defined types
are subtypes of a special type called User TypeCObj ect .

All objects representing types are instances of type Type. User-defined types
are also instances of the type Usert ype.

ser Type-
Obj ect

User - defi ned types

Figure 3.2: Part of the AMOS type hierarchy.

Organizing types in a hierarchy lets us define the notion of comparable and
incomparable types. Comparable types are related via a sub-/supertypes rela-
tionship whereas incomparable types are not. For example, in figure 3.2 types
Number and Real are comparable whereas Nunber and Bool ean are not.

AMOS supports inclusion polymorphism [Cardelli and Wegner, 1985], i.c.
types are ordered in the hierarchy using set inclusion. This means that an object
o instance of a type 7 is also an instance of any supertype, f,,, of 7. Conse-
quently, all functions defined for ¢, are also applicable to instances of 7. We
could also say that 7 inherits all functions defined for 7,,. The following state-
ment expresses this and we require that it always holds!:

extent(t)Uextent(ty,,) O applicablefns(ty,,)Dapplicablefns(1)
Let us look at an example to clarify this. In figure 3.3 the type hierarchy is

1. extent(t) denotes the extent of type t and applicablefns(t) denotes the set of functions
that are applicable to objects of type t.
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shown for a database recording information about people and their employ-
ment. Next to the types, functions for each type are shown. For type Per son
two functions, name and age, are defined. However, nanme and age are applica-
ble to any instances of Enpl oyee, Secr et ary and Boss as well, as they are
persons, too.

The notion of being able to use an object, o, of type ¢ in any context specifying
that an object of type 7, should be used has been termed substitutability

[Shaw and Zdonik, 1989].
User TypeObj ect

owns: {| Vehicle|}

nane: String
age: | nt eger

sal ary: | nt eger

t speed: I nt eger sal ary: | nt eger
bonus: I nt eger

Figure 3.3: Example type hierarchy.

We also note that AMOS supports multiple inheritance, i.e. a type ¢ can have
several immediate supertypes.

3.1.2 Functions

There exist three different kinds of functions in AMOS; stored, derived and for-
eign functions. As with types, functions have an extent, which is the relation-
ship between arguments and results of a function. For stored functions, the
extent is stored directly in the database. A derived function uses the AMOSQL
query language to calculate the extent, whereas foreign functions are imple-
mented in a general programming language, such as C or Lisp.

Each function has a name and a signature. The name need not be unique but the
signature has to be. For example, the function sal ary, defined for type
Enpl oyee, has the signature sal ary: Enpl oyee- >I nt eger 2. As can be seen
in figure 3.3 the function name is not unique as there exists another sal ary
function for type Boss.

AMOS allows functions to be overloaded. Overloading means that there exist

2. Employee.salary->Integer is the equivalent of salary:Employee->Integer. The first
notation is used in the current AMOS implementation. We will use the two notations
interchangeably.
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several implementations for a given function name. Inheritance combined with
overloading allows us to override inherited functions. Consider again the sal -
ary function defined for Enpl oyee. The signature of the salary function appli-
cable to secretaries is sal ary: Enpl oyee- >I nt eger. However, for type Boss
another sal ary function is defined that overrides the inherited salary function.
This new function has the signature sal ary: Boss- >I nt eger.

When an overloaded function name is used, the right function is chosen by the
system by looking at the types of its arguments and results. This is called func-
tion name resolution and the chosen function is called the resolvent. It should
be noted that functions can be overloaded on all argument and result types.
Thus, the coexistence of two functions with the following signatures is
allowed: exchange_rate: Dol | ar->Franc and exchange_rate: Dol | ar -
>Mar k.

Multiple inheritance combined with overloading causes some problems. If a
type inherits two or more functions with the same name but different signa-
tures, then we do not know which resolvent is the correct one given just the
function name. Users then have to explicitly state which resolvent to use by
giving the signature of the resolvent, i.e. explicit disambiguation [Ameli and
Dujardin, 1995].

Inheritance combined with function overriding necessitates the use of late
binding. As stated above, the extent of a type ¢ also contains all instances of
any subtype ¢,,;, of £. Thus querying the objects of the Enpl oyee type in figure
3.3, means querying all instances of the Secr et ary type and the Boss type as
well. Suppose that we want to know the name of each employee. Since there
exists only one definition of the function name the right resolvent can be cho-
sen before execution. This a priori selection is possible since the definition is
applicable to all objects that are instances of the types being queried. This is
called early binding or compile-time type resolution.

If, on the other hand, there exists more than one definition of a particular func-
tion for the queried types, the definition to be used is dependent on the type of
the object that the function is applied to. Thus, the function definition cannot
be selected until the time of application. This is called /ate binding or run-time
type resolution. An excellent treatment of late binding in AMOS can be found
in [Flodin, 1996].

For example, if we had asked for the salary of all employees, the sal ary func-
tion would be late bound since we would have to know the type of the object
before knowing whether to apply sal ary: Enpl oyee- >l nt eger or sal -
ary: Boss->I nteger.

Functions can be single-valued or multi-valued. A single-valued function can
only take on a single result whereas a multi-valued function may return many.
All functions in figure 3.3 but owns are single-valued. We use the {| ¢ |} nota-
tion to denote multi-sets. The ¢ denotes the element type of the collection.
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3.1.3 Procedures

AMOS also allows users to create procedures. The procedural language con-
sists of the data manipulation language, the query language, and control flow
constructs. The control flow constructs are a block construct, which allows
sequencing of AMOSQL statements, and an if-statement. This guarantees that
the ordering of the statements will not be changed by the optimizer in AMOS.
There also exists a result-statement which allows us to specify a value to be
returned by a procedure. The return statement, in contrast to return statements
in most programming languages, returns a value but does not return from the
procedure. By specifying several return statements in a procedure it can return
several values. Conceptually we return from a procedure when we reach the
end of it.

3.2 The Data Manipulation Language

In this section we will present the data manipulation language (DML) of
AMOS. We will show how we define the example database whose type hierar-
chy is depicted in figure 3.3 on page 37. In section 3.3 we will then illustrate
AMOSQL, the query language of AMOS, using the database defined in this
section.

Let us first look at how to create stored types. Suppose that we start by defining
the Enpl oyee and Secr et ary type. For each employee we should record the
salary and for secretaries we should record the typing speed too. This is accom-
plished by the statements below?.

create type Enployee properties (salary Integer);
create type Secretary subtype of Enployee
properties (tspeed |Integer);

Example 12: Creating two types.

We now have created two types with associated properties. A property is sim-
ply a function that takes as argument an object of the type being created and
returns an object of the result type specified. So in the case of the Enpl oyee
type the function sal ary: Enpl oyee- >l nt eger was created. Thus, it is possi-
ble to add properties to types after the creation of the type by using the creat e
functi on statement described below. This is needed since using the pr oper -
ti es construct only allows us to specify stored properties (functions). If we
need a derived property (function) then we have to specify it afterwards. This is
the case for the sal ary function for type Boss as we will see.

Note that sal ary will be inherited by Secretary as Secretary is a subtype
of Enpl oyee.

As well as supporting specialization, as we saw above, the cr eat e t ype state-
ment supports generalization. We want the more general type Per son as super-

3. The typing speed is recorded by t speed.
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type of Enpl oyee. This is accomplished by;

create type Person supertype of Enployee
properties (name String, age |nteger);

Example 13: Creating a more general type.

If no subtypes or supertypes are specified for the new type when it is created,
AMOS will also create the new type as a subtype of User TypeQObj ect . If,
when adding a new supertype to existing types as in the case of Per son, no
supertypes are specified for the new type, then AMOS will insert the new type
as a subtype of the most specific common supertypes of the specified subtypes.
An example is shown in figure 3.4.

IIEPIED (a3 Ced
— > D

Figure 3.4: Effectofcreate type F supertype of D, E;

Should the user desire another placement of the new type, (s)he has to specify
this explicitly using the full syntax of the create type statement shown
below.

create type <type nane>
[ subtype of <subtype list> ]
[ supertype of <supertype list>]
[ properties <property list>]
( initializor <initializor decl.> )"
( constructor <constructor decl.> )*;

Example 14: cr eat e t ype statement syntax.

Apart form defining the type, the create type statement also creates two
functions, a type extent function and a type predicate function. The type extent
function is a function with no arguments that returns the extent of the type as in
DAPLEX [Shipman, 1981]. The type predicate function is a function of one
argument that returns t r ue if the argument is an instance of the type, otherwise
it fails. Thus, for type Person above the type extent function has the signature
person: - >Per son and the type predicate function has the signature per -
sonp: Obj ect - >Bool ean.

Let us now create the remaining types to complete the schema of our example
database.

create type Boss subtype of Enployee;

4. * means zero or more occurrences.
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create type Vehicle properties (nodel String);
Example 15: Creating the last two types.

When we created type Boss we did not specify any properties. Thus, we have to
add them afterwards using the create functi on statement. The salary for a
boss is the salary that (s)he has as an employee plus a bonus. Thus, sal -
ary: Boss->I nt eger is a derived function. Let us first create the stored func-
tion bonus.

create function bonus(Boss)->Integer as stored;
Example 16: Creating a stored function.

The as stored key words specify that the extent of the function will be
explicitly stored in the database. Derived functions are created in the same
manner.

create function salary(Boss b)->Integer as
sel ect Enpl oyee. sal ary- >l nt eger (b) +bonus(b);

Example 17: Creating a derived function.

As pointed out in section 3.1.2 the extent of a derived function is not explicitly
stored in the database but computed by the query expression. Note that we
specify that the function sal ary: Enpl oyee- >l nt eger should be used in the
definition of sal ary: Boss- >I nt eger. If we had not done this, but instead
written just sal ary(b) +bonus(b), then AMOS would have assumed that
sal ary(b) should be resolved to sal ary: Boss- >l nt eger because b is
declared to be of type Boss. We would then have defined a recursive function
that unfortunately would not terminate. AMOS does allow recursive functions
but it is the responsibility of the user to guarantee termination of such func-
tions.

Having created the schema of the database, we can now populate it. To create
instances of a type we use the create i nstances statement.

create Person(nane, age) instances
(*Joe’, 67), :george(‘George’, 55);

Example 18: Creating instances.

The objects created will be instances of the specified type (and all its super-
types). In example 18 two instances of type Per son are created. Immediately
after the type name a property list can be specified. This gives us the opportu-
nity to provide initial values for the specified properties. We should also note
the use of an interface variable, : geor ge, in the example. It will be assigned to
the object representing George and gives us a handle that we can use in queries
or when performing other operations.

For example, suppose that we want to promote George to boss. We can accom-
plish this with the add t ype statement:
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add type Boss(Enm oyee. sal ary->Integer, bonus) to
: geor ge( 25000, 15000);

Example 19: Adding a type to an instance.

We next use an interface variable to specify which object we wish to add the
type to. As in the case of the creat e instances statement we can specify a
property list and initial values for the properties. Again we have to specify
which salary resolvent function to use or AMOS would try to set the value of
the derived function sal ary: Boss- >I nt eger °.

Having made George a boss, all the functions applicable to instances of type
Boss are now applicable to George.

We also have the ability to remove a type from an object. This is done with the
renmove type statement. Suppose that we have created a boss : j ohn as:

create Boss(nanme, age, Enployee.sal ary->lnteger, bonus)
i nstances :john(‘John’, 33, 17000, 10000);

Example 20: Creating a boss.

We now want to demote John to just an employee. We then write;
remove type Boss from :john;
Example 21: Removing a type from an object.

Having removed type Boss from : j ohn, bonus is no longer applicable to the
object nor is sal ary: Boss- >I nt eger. However, all functions associated with
type Enpl oyee are still applicable.

When adding a type ¢ to an object o using the add t ype statement, o is made
an instance of ¢ and all supertypes of #. When removing a type ¢ from an object
o using the r enove type statement, o loses type ¢ and all subtypes of ¢.

Let us now define a secretary:

create Secretary(name, age, tpseed) instances
calice(*Alice, 26, 150);

Example 22: Creating an employee.

When we created Alice in example 22 we forgot to set her salary. We can do
this afterwards by using the set statement. The set statement updates the
value of a function. If we want to give Alice a salary of 13000 we write;

set salary(:alice)=13000;
Example 23: Setting the salary.

All examples of functions so far have been single-valued. However, AMOS
allows multi-valued functions as well. We have yet to create the owns function
for type Per son. This is an example of a multi-valued function.

5. AMOS allow updates of some derived functions. However AMOS would not be able
to infer the correct update action in this case.
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create function owns(Person)->bag of Vehicle as stored;
Example 24: Creating a stored multi-valued function.

The key words bag of means that given an argument the result may be non-
unique. If the bag of is omitted then AMOS requires that each argument corre-
sponds to at most one result®.

Let us now create some vehicles for people to own.

create Vehicle(nodel) instances :rolls(‘Rolls Royce'),
tbma(* BMWV), :saab(' SAAB'), :volvo('VOLVO);

Example 25: Creating vehicles.

Setting the value of a multi-valued function is somewhat different. If we just
want a person to own one vehicle we use set as usual;

set owns(:alice)=:saab;
set owns(:john)=:vol vo;
Example 26: Assign a single result to a multi-valued function.
However, if we wish to add more results then we have to use the add statement.

The first result of the function is assigned with set whereas the rest of the
results are assigned with add.

set owns(:george)=:rolls;
add owns(: george)=: bnw;
add owngs(: geor ge) =: saab;

Example 27: Assigning multiple results to a multi-valued function.

If we wish to remove the result from single valued and multi-valued functions
we use the r enpve statement.
remove owns(:george) =: saab;

Example 28: Removing a result from a stored function.

3.2.1 Constructors and Initializors

When adding new instances to a type one might want certain actions per-
formed, e.g. some properties should be given default values. Constructors and
initializors allow us to specify what actions to perform.

Constructors and initializors prove useful in combination with mapped and
derived types as they make it possible to create instances of these kind of types,
See “Creating Instances” on page 66. Constructors and initializors also facili-
tate adding new foreign data structures as types in AMOS.

Constructors are called by the create instances statement and they are
responsible for creating a new object and making the object an instance of the

6. Functions are partial since no result is returned unless the function has been given a
value for the specified argument.
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specified type. Constructors are implemented using the procedural part of
AMOSQL.

Initializors are called by the add type statement and they are responsible for
making the specified object become an instance of the specified type. Adding a
new type to an object is very similar to creating a new instance of the type
using the cr eat e i nst ances statement. The only difference is that the object
already exists when we use add t ype whereas it has to be created when cr e-
ate instances is invoked. Most likely we want similar actions performed in
both cases.

Constructors are a well-known construct in object-oriented languages such as
C++ [Strostrup, 1991]. The database community has begun to realize their
importance and in the ongoing standardisation work on SQL3, abstract data
types with constructors are proposed. However, initializors have not been pro-
posed as far as we know, most likely because most object-oriented languages
used lack the add t ype statement.

Whenever a type is defined AMOS provides a default constructor for the type,
and a default initializor. Let us return to type Enpl oyee defined in example 12
on page 39. That declaration is equivalent to the following one;

create type Enployee properties (salary Integer)
initializor (Object o) as

begin
nmake_i nst ance(" Enpl oyee", 0);
end
constructor () as
begin

decl are Object o;
set o=create_object();
add type Enmpl oyee to o;
result o;

end;

Example 29: Type declaration with explicit default constructor and initiali-
zor definition.

The default constructor takes no argument and creates an object of the specified
type. It does so by calling the cr eat e_obj ect : - >Obj ect function which cre-
ates a new object. However, the new object needs to acquire type Enpl oyee as
well. This is accomplished by using the add t ype statement. The add type
statement will invoke the default initializor for type Enpl oyee, and the default
initializor will add type Enpl oyee to the object. The default initializor receives
the objects through its only parameter, o, and makes o an instance of Enpl oyee
by calling make_i nstance that actually adds the object to the extent of
Enpl oyee. However, make_i nst ance first calls all default initializors of
supertypes of Enpl oyee beginning with the initializor of the most general
supertype and ending with the least general one.
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Note that the initializor does not return the object. It merely performs side
effects. The constructor must, however, return the object since the object is cre-
ated by it. For every stored type a default constructor and a default initializor of
this kind are provided by the system.

If users need to declare new initializors or redefine initializors for existing
types, then this is accomplished through the create initiali zor statement.

create initializor Enployee ((bject o) as
begin
make_i nst ance(" Enpl oyee", 0);
set sal ary(0)=13000;
end;

Example 30: Redefining the default initializor for type Enpl oyee.

For example, the new default initializor for type Enpl oyee above would auto-
matically set sal ary for any new instance of Enpl oyee to 13000. Since ini-
tializors perform side effects, such as setting the value of certain properties, it
is important that the initializor for a type ¢ is invoked on an object o only if o is
not an instance of ¢ already. If we were to invoke the initializor anyway, we
might overwrite the value of some property.

A create constructor statement also exists with similar syntax.

Note that property values specified in the create instances statement and
add type statement as in example 18 on page 41 and example 19 override any
default values assigned by constructors and initializors.

Observe that we redefined the default initializor in example 30 and not the
default constructor. Had we redefined the constructor to set sal ary then only
employees created by the create instances statement would have had a
default salary assigned. By redefining the default initializor both employees
created using the create instances statement and employees created
through the add t ype statement get a default salary.

Constructors and initializors can be parameterized and any number of construc-
tors and initializors can be specified for a type. Each constructor and initializor
for a type has a unique signature, i.e. specifying a constructor with identical
signature as an already existing constructor means that the old constructor will
be replaced by the new one, likewise for initializors.

Constructors and initializors can be overloaded. Suppose that we have defined
the types in figure 3.5. Furthermore suppose that type Chil d is defined as

shown in example 31.
Coni1d>  Gimnad

Figure 3.5: Example type hierarchy.
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create type Child properties (behaviour String,
parent bag of Person,
age | nteger)
initializor (Qbject o, Person pl, Person p2) as
begin
make_i nstance("Child", 0);
set behavi our (0) =" Good";
set parent(0)=bag(pl, p2);
end
initializor (Object o, Gimnal cl1, Crimnal c2) as
begin
make_i nstance("Child", 0);
set behaviour(o)="Bratty";
set parent(0)=bag(cl,c2);
end
constructor (Person pl, Person p2) as
begin
decl are Object o;
set o=create_object();
add type Child to o[pl, p2];
result o;
end;

Example 31: Definition of type Chi | d.

It is a well-known fact that children that have criminal parents are brats.
Another well-known fact is that if at least one parent is not criminal then the
child will be well-behaved. Suppose that we have four different persons : e,
:cl,:c2,and : c3. Person : e is an instance of Enpl oyee whereas : c1 to : c3
are criminals. We now create two children, : chil d1 and : chi | d2 (example
32). The creat e instances statement will invoke the non-default construc-
tor of Chi | d since arguments are supplied. Arguments to the constructor are
supplied within square brackets’. The constructor creates an object and then
makes it an instance of Chi | d, as indicated by the add type statement. The
add type statement will invoke a non-default initializor as arguments are sup-
plied within square brackets®.

create Child(age) instances
cchildl[:e,:c1](7),
:child2[:c2,:¢3](9);

Example 32: Invoking non-default constructors

When invoking a non-default initializor AMOS looks at the types of the argu-
ments supplied to perform initializor resolution”. When creating : chil di,

7. If no arguments are specified using the square-bracket notation, then the default con-
structor is invoked.

8. If no arguments are specified using the square-bracket notation, then the default ini-
tializor is invoked.

9. Constructor and initializor resolution is performed in the same manner as function
resolution.
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initializor(Object, Person, Person) will be invoked since : e is not a
criminal but both :e and :cl are persons. For :child2 initiali-
zor (Obj ect, Crimnal, Crim nal) will be invoked since both : c2 and : c3
are criminals. After the completion of the statement in example 32 : chil dl
will be aged 7, will be well-behaved and have one employee and one criminal
as parents whereas : chi | d2 will be aged 9, behave brattily and have two crim-
inal parents.

Note that cr eat e_obj ect and make_i nst ance exist primarily to allow defi-
nition of constructors and initializors. They are not supposed to be called by the
user directly. If a user wants to create new instances of a type or add a type to
an already existing object, then (s)he should use the create instances, and
add type statements, respectively.

3.3 AMOS Query Language

The query language is syntactically similar to SQL but has a different seman-
tics. Functions can be called directly without being embedded in a select state-
ment. This is called navigational access and is one of the two different ways in
which object-oriented databases can be accessed.

For example if we want to retrieve the salary of John we simply write;

amos 1>10 sal ary(:john);
17000

Nested function calls have DAPLEX semantics, i.e. when a function is called
with a bag as argument, the function is applied to all the members of the bag
(one at a time). The result of the function call is the union!! of all the results of
applying the function to the different bag members. Consider the following
example;

nodel (owns(: george));
Example 33: Example of nested function calls.
The result of applying owns to : geor ge is a bag of two tuples:
{|<:rolls> <:bme|}

When nodel is called with this bag as argument, it is first applied to : rol | s
which gives the bag {| <"Rol I s Royce">|} as result and then to : bmw which
gives the bag {| <"BMW >| } as result. The final result of the nested function
call therefore is:

{|] <"Rolls Royce">, <"BMW>|}
which in turn will be printed by AMOS as
"Rol | s Royce"

10. This is the prompt of the AMOS system.
11. Bag union, i.e. duplicates of the same element are preserved.
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" BMN

Aggregation operators have a different semantics. When called, an aggregation
operator is applied once on all the members of the bag, not once for each mem-
ber. Examples of aggregation operators are sum mex, m n, and uni que. sum
max and m n have their usual meaning. uni que removes duplicates from a bag,
i.e. it turns a bag into a set.

A function is given this kind of semantics if the type if its argument is declared
as ‘bag of ...’. For example:

create function sunm(bag of Integer)->Integer as ...

For more general queries we have to use the sel ect statement with the follow-
ing syntax:
sel ect <result>

for each <type declaration for |ocal variables>
where <condition>

The sel ect statement provides declarative access, which is the second way to
access object-oriented databases. Using declarative access a user specifies what
information should be retrieved, not sow it should be done.

The semantics of sel ect is, for each possible binding of variables declared in
the f or each clause, to evaluate the <condi ti on>. If <condi ti on> evalu-
ates to true, then issue <r esul t >. Types with infinite extent are allowed in f or
each clauses.

<condi ti on> is an expression built from function calls and the logical con-
nectives and and or. Infix operators such as +, =, and < are ordinary functions
that the parser will translate to prefix form, e.g. 4+5 will become pl us(4, 5) .

Suppose that we want to retrieve the name of all persons who earn 17000. The
following query would appear thus:

sel ect nane(p) for each Person p where sal ary(p)=17000;
Example 34: Declarative access.

This query would return "John". Observe that sal ary has to be bound late
since we have two possible resolvents to choose from. The example also illus-
trates that functions can be used in the backward direction. When we earlier
retrieved John’s salary, we used the sal ary function in the forward direction.
Now we have specified the result of the sal ary function and we want to know
what arguments produce this result.

Negation in AMOSQL is handled through the aggregation operator not any.
not any succeeds if it is given the empty bag as argument. For example, sup-
pose that we want to retrieve all persons who do not own a vehicle. In
AMOSQL we express it as:

select p for each Person p where notany(owns(p));

Example 35: Query containing negation.
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This query would return : j oe given our example database.

3.3.1 Multidatabase Extensions

AMOSQL also contains extensions allowing users to access information resid-
ing in other database than the local one. All function calls and type identifiers
can be postfixed by @and an AMOSQL expression evaluating to an instance of
type Dat asour ce (fig. 3.6).

Dat asour ce

Nameserver

Figure 3.6: Data source subtype hierarchy.

Typing in OIDs for various data sources is not something that users are likely to
do. They prefer some simpler method to denote a certain data source. Again
interface variables come in handy. When a user finds a data source (s)he wants
to use frequently, the object representing the data source is simply stored in an
interface variable.

Suppose that we want to know all types defined in the AMOS denoted by
:EnpDB. We would then submit the following query;

select tp for each Type@ EnpDB'?;
Example 36: A remote query.
The result returned would be all types defined at :EnmpDB.

It is now possible to combine information from different sources, i.e. perform
multidatabase joins. For example, if we have recorded study information about
students in a database :St udDB and information about employees in :EnpDB, we
can now retrieve the major for each student who is also an employee by submit-
ting the following query13;

12. @this syntax is currently not implemented.
13. Function ssn is the social security number for a person.
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sel ect nane(e) @ EnpDB, nmj or(s) @ St ud
for each Enpl oyee@ EnpDB e, Student @ St udDB s
where ssn(e) @ EnpDB=ssn(s) @ St udDB;

Example 37: Multidatabase query.

Having to type the database-identifying expression all the time could be tire-
some; therefore the sel ect statement is augmented to allow a default database
to be specified. If no database is explicitly denoted then the default database
will be used. So, the above query could be restated as shown below.

sel ect @ EnpDB nane(e), mgj or(s) @ St ud
for each Enpl oyee e, Student@ StudDB s
where ssn(e)=ssn(s) @ St udDB;

Example 38: Equivalent multidatabase query.

Observe that we have used the ssn to decide whether two objects are equal or
not, i.e. we are using value-based identity (cf. “Object Equivalence” on

page 12).

3.4 Rules

Rules are used to define constraints in AMOS [Skold, 1994]. They can also be
used by applications to monitor specific events in the database. A rule has a
condition part and an action part. The condition part of the rule is a Boolean
expression. If some event in the database changes the value of the condition to
true, then the rule is marked as triggered. If something happens later in the
transaction which causes the condition to become false again, the rule is no
longer triggered. This ensures that we only react to logical events.

In the check phase (usually done before committing the transaction), The
actions are executed for each triggered rule.

Let us look at an example;

create function previous_sal ary( Enpl oyee) - >I nt eger
as stored;
create function set_sal ary(Enpl oyee e, Integer i)->Bool ean
as begin
set previous_salary(e) = salary(e);
set salary(e)=i;
end;

Example 39: Procedures for updating the salary.
Then we define procedures for what to do when a salary is decreased.

create function conpensat e( Enpl oyee e)->Bool ean'4

as set salary(e)=previous_salary(e);

Example 40: Employees’ salaries cannot be decreased.

14. Boolean is used as result type for functions not returning any results, i.e. procedures.
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create function conpensat e(Boss)->Bool ean;
Example 41: Dummy procedure, managers are not compensated.
Finally we define the rule to detect decreasing salaries for all employees.

create rul e no_decrease() as
when for each enpl oyee e
wher e sal ary(e)<previ ous_sal ary(e)
do conpensate(e);

Example 42: Rule to monitor salary decreases.

Since Boss is a subtype of Employee, the rule is overloaded for managers
(because the functions salary and compensate are overloaded).

The following example would lower the salary for George but not for John.

set _sal ary(: george, 15000);
set _sal ary(:john, 15000);
conmit; Commit a transaction. John's salary will be reset.

Example 43: Trying to lower salaries.

After the execution of the above statements George’s salary has been reduced
from 40000 to 30000 whereas John still has a salary of 17000.
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3.5 AMOS Data Model as CDM

If we compare the AMOS data model with the requirements listed in “The
Canonical Data Model” on page 7, we see that it is well suited as a CDM.

* Classification/Instantiation. Objects are classified by types. Objects have a
unique object identity and are instances of one or more types.

* Generalization/Specialization. Types are organized as subtypes/supertypes
and subtypes inherit all functions defined for the supertypes. Multiple inher-
itance and even different kinds of specialization are supported through
derived types.

* Aggregation/Decomposition. Aggregation is supported through the use of
types and functions. For example, the aggregation address described in sec-
tion 1.3.1 under aggregation, is created by defining a new type Addr ess,
and the functions ci ty: Address->City, street: Address->Street, and
zi pcode: Addr ess- >Zi pCode.

* Operations and integrity constraints. AMOS supports the definition of
new operations as we can define new derived functions. We can also custom-
ize functions through overloading and overriding. When importing data from
an EDS, foreign functions are used which allow for arbitrary customization.
The rule mechanism allows us to define constraints.

* View mechanism. AMOS supports a view mechanism, through derived
functions, mapped and derived types, stronger than the view mechanism
available in relational algebra.

* Integration operators. Integration operators are not fully supported yet.
This thesis is a step towards completely supporting them but the complete
realization will be future work.

* Multiple semantics. Through the view mechanism AMOS supports multiple
semantics. Each user can customize, by using views, how (s)he prefers to
view information.
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4 Object Views in AMOS

In this chapter we will introduce the kinds of object views that exist in AMOS
and in section 4.3 we will use object views to perform integration.

Object views are somewhat more complicated than relational views. In rela-
tional database systems, a view is traditionally defined to be a named, persist-
ent query, i.e. a virtual relation. Relational conceptual schemata are concerned
with tables as distinct units (in that tables are independent and related only by
means of foreign keys); hence it is trivial to incorporate a virtual table into the
schema in a relational system by simply adding it to the set of already existing
tables. To some extent we have a similar situation in object-oriented systems.
Derived functions, as presented in section 3.2, are examples of object views. To
incorporate them into the schema is straightforward; simply add the derived
function to the set of known functions. We can then treat it like any other func-
tion except for updates.

Updates of views are a well-known problem referred to as the view update
problem. Assume that we have defined a type Boss with properties sal ary and
bonus. We then define a derived function annual _i ncone as;

create function annual _i ncome(Boss b)->Integer as
sel ect 12*(sal ary(b) +bonus(b));

Suppose that we want to set the annual income of a certain boss to 200 000 by
submitting the following statement;

set annual _i ncome(: boss)=200000;

How should we perform this update? Should sal ary be affected or bonus?
Perhaps both sal ary and bonus should be changed. There is no way a DBMS
can deduce the correct action to take in this case. The typical solution is that
the user has to define the update procedure for derived functions.

However, derived functions are not the only kind of possible object view; vir-
tual types are another example. Virtual types have no extent explicitly stored in
the database. Their extent is defined in terms of stored types and other virtual
types. Unlike stored types virtual types let us organize local and non-local
information according to our own preferences. If we use information stored in
some non-local database then we cannot usually modify the schema of that
database, i.e. we have to accept the way information is organized. However,
locally we may reorganize the information. This is where virtual types can help
us.

As in the case of derived functions we wish to treat virtual types no differently
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from stored types. We would like virtual types to be part of the type hierarchy
and we want to be able to define functions ranging over them. We also want to
be able to create instances of virtual types which means that we have to address
the view update problem. Constructors and initializors (section 3.2.1) let us do
this.

Virtual types can be divided into two categories, those that create new objects
and those that do not. We need both types to be able to perform a successful
integration. Virtual types that only are concerned with existing objects are
called derived types, whereas virtual types generating new objects are called
mapped types. Mapped types are used when we have to integrate non-local
information. Derived types allow us to organize the integrated information
according to our preferences.

We next discuss the semantics and problems related to derived and mapped
types. The implementation issues concerning derived and mapped types are
presented in chapter 5.

4.1 An Integration Example

We introduce an example that we will use in this chapter to clarify the use of
virtual types.

Let us return to our person database in figure 3.3 on page 37. We remodel it
slightly so we can show how virtual types can help us. The example may seem
contrived but it has to be small for reasons of clarity. However, the techniques
described in this chapter are equally applicable to real-world problems.

DB1 DB2
title:String

. ; ssn: | nt eger
age: | nt eger

m sc: | nt eger
ssn: | nt eger 9

Figure 4.1: Modified person database schema.

We add a new property ssn (social security number) that allows us to identify
persons uniquely. Furthermore, information is stored in two separate databases,
DB1 and DB2.

In DB1 we store the name and age of a person. We also store the title which
tells us what work a person does. Only persons employed have a title. In DB2
we store the salary for employees. Property mi sc records the typing speed for
secretaries and the bonus for bosses. Note that we do not know how to interpret
the information in mi sc without accessing the value of titl e in DBl for an
employee. If titl e in DB1 says " Secretary" then we know that mi sc con-
tains the typing speed. Furthermore, only in the case where mi sc has no value
can we tell the salary of an employee. Should nmi sc contain a value, then we
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must know if the employee is a boss or not before we can calculate the salary,
since the salary for a boss is the sum of sal ary and mi sc. It is evident that we
need to integrate DB1 and DB2.

o D? ssn title name age
o101 123 "Boss" " Geor ge” 55
oe1 O 234 "Secretary” "Alice" 26
oe1Cs 345 "Engi neer" "John" 33
oe1Os 456 NULL "Joe" 67

Table 4.1: Extent of properties for Per son@ DBL1.

a. Object identifier for object representing a person.

In Table 4.1 and Table 4.2 the extents of the different properties defined for
Person in DB1 and DB2 are shown.

a D ssn sal ary m sc
pB201 123 25000 15000
o2& 234 13000 150

o203 345 17000 NULL

Table 4.2: Extent of properties for Per son@ DB2.

We need to define one more database that we will use in this section. The data-
base is maintained by a company, Mobile Inc., producing vehicles and contains
information about boats and cars. For both boats and cars we will record the
weight and the model.

DB3

wei ght : | nt eger wei ght : | nt eger
nodel : String nmodel : String
Figure 4.2: Mobile Inc. database schema.

Next we will see how derived types can be used to restructure information in
DB3. In section 4.3 we will show how mapped and derived types can be used to
integrate these three databases.
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4.2 Derived Types

Derived types are useful when doing integration since they allow us to reorgan-
ize information according to our own preferences; in particular they can be
used to address structural differences, See “Structural Differences” on page 10.
In section 4.3 we will see an example of this.

A derived type is a type whose extent is defined in terms of stored types and
other virtual types. Derived types are created by the create derived type
statement.

create derived type <type nane>
[ subtype of <type list>]
[ supertype of <type list> ]
[ properties <property list>]
( initializor <function definition> )*?!
( constructor <function definition> )*
as <type expression>;

<type expression>::=
<sinple type expression> |
<type expression> and <type expression> |
<type expression> or <type expression> |
‘(' <type expression> ‘)’

<sinple type expression>;:=
‘[’ <type nane> [ <vari abl e>
[ [ <for each clause> ]
<where clause>] 1] ']’

Example 44: Syntax of the creat e derived type statement.

The extent of a derived type will be exactly those elements selected by the
<type expression>.

Suppose that we would like to record the allowance for all persons older than
65 years. Let us call such persons seniors. We could then create a subtype of
Per son named Seni or and give it a property al | owance. However, an ordi-
nary stored type would not suffice. People age, i.e. at some point in time they
grow old enough to become seniors. If Seni or is a stored type, then we would
have to go through all persons every now and then and add type Seni or to per-
sons old enough. A better solution can be achieved if type Seni or somehow
picked out the persons of interest. This is exactly what a derived type does. Let
us therefore define Seni or as:

create derived type Senior
properties (allowance Integer) as
[ Person p where age(p)>65];

Example 45: Example of a derived specialization type.

1. Zero or more occurrences.
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If we now asked for the name of all seniors, AMOS would respond with “ Joe”
since he is the only one whose age is greater than 65. However, should we
change the age of another person to something greater than 65 and ask the same
question again, we would get one more name in the result.

While Seni or is a derived type, we can still define properties as we would do
if it was a stored type. Views that allow definition of new attributes or methods
have been named capacity augmenting views [Ra and Rundensteiner, 1995].
Capacity augmenting views are required when trying to integrate several infor-
mation sources or we would lose information as shown in “Attribute Operators”
on page 20.

Types denoted by <t ype name> in <si npl e type expressi on> (example
44) will be called defining types since they are used to define a derived type. In
the case of Seni or, Per son is the defining type.

4.2.1 Specialization, Intersection, and Union Types

A problem with derived types is where to place them in the type hierarchy. As
we want derived types to resemble stored types as far as possible, we also want
them to be incorporated in the type hierarchy. However, we have to take the
type membership of instances of a derived type into consideration when insert-
ing the derived type in the hierarchy. Three base cases can be identified: spe-
cialization types, intersection types, and union types.

» The first case involves derived specialization types. A derived type is a spe-
cialization type if the <t ype expressi on> select objects of one type only.
An example is our type Seni or. All instances of Seni or are persons with an
age greater than 65, i.e. we have formulated a restriction for instances of
type Per son for participation in Seni or. Since all seniors also are persons,
any function applicable to persons is also applicable to seniors. Let Fp be the
set of functions applicable to Per son objects, applicablefns(Per son), and
Fg the set of functions that are applicable to Seni or objects, applicable-
fns(Seni or ), we then have:

extent(Senior) U extent(Person) DFP UFyg

From this we can deduce that the proper placement of Seni or would be as
subtype of Per son. This is also what our intuition tells us. In figure 4.3 we
see the resulting type hierarchyz.

nane: String
@ age: | nt eger

—_

¢ senior > allowance: | nteger
~ - -~

Figure 4.3: Type hierarchy with derived specialization type.
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Now suppose that a user specifies type O dSeni or as in example 46. Intui-
tively O dSeni or should be a subtype of Seni or since Seni or subsumes
O dSeni or. Currently the user has to specify this explicitly or O dSeni or
will become a sibling of Seni or. However, the problem of subsumption
deserves to be studied closer as it not only allows us to perform a more accu-
rate placement of types in the hierarchy, but it can also improve the optimi-
zation of queries. In the general case the subsumption problem is
undecidable but many cases can be handled.

create derived type O dSenior as
[ Person p where age(p)>90];

Example 46: Derived specialization type subsumed by Seni or.

* The second case involves intersection types. An intersection type is a
derived type where the type expression defining the type select objects of
multiple incomparable types. Intuitively, all instances of an intersection type
are required to be members of the intersection between the type extents of a
number of incomparable types.

Let us return to our example. Suppose that some creative engineer working
for Mobile Inc. has created an amphibian. As no type existed for amphibians,
he solved the problem using the following statements.

create Car(wei ght,nodel) instances :froggy(7,’ Froggy');
add type Boat (wei ght,nodel) to :froggy(7,’ Froggy');

Example 47: Creating an amphibian.
When the manager discovered this, he realized that it would be very nice to

be able to reason about amphibians so he defined type Amphibian as in fig-
ure 4.4.

0 create derived type Anphibian as
oa [Boat] and [Car];

‘Arphi bi an®

Figure 4.4: Example of an intersection type.

All instances of Anphi bi an in figure 4.4, are required to be both of type
Boat and of type Car, which Froggy is indeed. Also, Boat and Car are
incomparable since they are not related to each other via a sub/supertype
relationship.

Anphi bi an was made a subtype of Car and Boat ; we shall now justify this.
Assume that objects selected by <t ype expressi on>, for an intersection

2. We use dashed ellipses to denote virtual types.
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type ¢;,;, are required to be of type ¢; to ¢,,. Furthermore let F; to F,, be the set
of functions applicable to instance of ¢; to ¢, respectively, and F,,, the set of
functions applicable to instances of ¢;,,, then the following holds;
extent(t;)N...Nextent(t,)=extent(t;,,) U
Ot(extent(t;,,)Uextent(r) O t0{t,,...,t,}) O
OAGOF iy OfO(F 1t F)

Following the same chain of reasoning as in the case of derived specializa-
tion types, we see that the intersection type ¢;,, should be a subtype of types
t] to tl‘l'

Since Anphi bi an is a subtype of Boat and Car, it inherits the properties
defined. Thus, it is possible to use the functions model and age on an
instance of Anphi bi an. However, since we inherit model and age from both
Boat and Car we have to state which resolvent to use or AMOS will com-
plain, i.e. we have to say Car . nodel - >St ri ng or Boat . wei ght

- >l nt eger.

It is also allowed to create intersection types where restrictions have been
applied to the defining types. HeavyAnphi bi an in figure 4.5 is an example
of this. Only boats and cars that weigh more than 10 tons are considered, i.e.
some boats and cars may have been excluded, whereas in the case of

Amphi bi an the whole extents of Boat and Car were considered. This is a
combination of specialization types and an intersection type. AMOS handles
the situation by creating two specialization types and then creating an inter-
section type of these two specialization types. The resulting type hierarchy is
depicted in figure 4.5.

Coan >

 SpecTpl > ‘Anphibi an® “_SpecTp2 >

fH\e/avyAerhi bi\a/n\
create derived type HeavyAnmphi bi an as

[ Boat b where wei ght(b)>10] and
[Car ¢ where weight(c)>10];

Figure 4.5: Intersection type of implicit specialization types.

Assuming that type Anphi bi an has been defined as in figure 4.4, Heavy Am
phi bi an could be defined in two different ways; either as in figure 4.5 or as
in example 48. If we choose the definition in example 48, then Heavy Am
phi bi an would simply have become a specialization type of Anphi bi an
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and the two system-generated specialization types SpecTpl and SpecTp2
would not have been created.

create derived type HeavyAnphi bian as
[ Amphi bi an a wher e Car.wei ght->I nteger(a)>10];

Example 48: Alternative definition of HeavyAnphi bi an.

Observations

We note that derived specialization types could be viewed as a special case
of intersection types. As the schema evolves when users create or delete
types, specialization types may gain new supertypes and become intersection
types. Likewise intersection types may lose supertypes and become speciali-
zation types.

The observant reader may have asked what the difference is between defin-
ing Anphi bi an as in figure 4.4 and as in example 49.

create type Anphibian subtype of Boat, Car;
Example 49: Normal Amphibian subtype.

To answer this question let us go back to example 47 on page 58. If we
define Amphibian as in example 49, Froggy would not become an amphibian
unless we explicitly added type Anphi bi an. But using the definition in fig-
ure 4.4 Froggy automatically becomes an amphibian.

* The third case involves union types. Intuitively an instance of a union type is
required to be an instance of at least one of several incomparable types.
At Mobile Inc. the manager soon realised that a pri ce property was needed
for both boats and cars. However, instead of defining the property for both
Boat and Car, he decided to create a new type Vehi cl e as a supertype of
Boat and Car.

¢ Vehicle D create derived type Vehicle
T o< properties (price Integer)

as [Boat] or [Car];
-

Figure 4.6: Example of a union type.

Let ¢; to ¢, be incomparable types. F'; to F, are the set of functions applica-
ble to instances of ¢; to ¢, respectively. Then, for the union type ¢;; and the
set of functions, Fy;, applicable to instances of ¢, the following must hold;

extent(t;)0...Oextent(t,)=extent(ty) U
Ot(extent(t)Uextent(ty) Ot0{t,,...,t,}) O
OAF GO OfO(F s Fd)

Since extent(t)) is a superset of extent(t;) for any i, ¢;; should become super-
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type of ¢; to ¢,. We also note that since ¢, is the supertype, any property
defined for it will be inherited by ¢; to £,.

In figure 4.6 all instances of Vehi cl e are either a car or a boat, or both car
and boat.

Having defined type Vehi cl e as in figure 4.6 we can ask for the price of a
certain vehicle. However, it would be convenient if we could also ask what
model or weight a vehicle has. For example, suppose that the user submits
the following query;

sel ect weight(v) for each Vehicle v;

Example 50: Retrieving the weight of all vehicles.

In this case AMOS would issue an error since property wei ght is not
defined for type Vehi cl e. However, there exists a solution to our problem
by defining the following properties.

create function wei ght (Vehicle)->Integer;
create function nodel (Vehicle)->String;

Example 51: Creating dummy properties for a union type.

These properties are defined just to allow us to utilize late binding. We will
never store any information in Vehi cl e. wei ght - >I nt eger or Vehi -

cl e. nodel - >Stri ng. They are just needed to avoid getting an error in
example 50. Since each vehicle is also a boat or a car, wei ght will be late
bound in the example and the appropriate function will be invoked.

As in the case of intersection types we may create union types where restric-
tions have been applied to the defining types. An example of this is shown in
figure 4.7. The extent of HeavyVehi cl e is a subset of the union of the
¢ Vehicle >
~ —

fH\e/avyVeh a/e\

i
 SpecTpl > ¢ SpecTp2 >
create derived type HeavyVehicle as

[ Boat b where weight(b)>10] or
[Car ¢ where weight(c)>10];

Figure 4.7: Union type of implicit specialization types.

extents for Boat and Car. Thus HeavyVehi cl e cannot be a supertype of
Boat and Car, rather it should become a subtype of Vehi cl e, the union type
of Boat and Car. AMOS creates two system generated, implicitly defined,
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specialization types of Boat and Car and makes HeavyVehi cl e their union
type.

Observations

The observant reader wondering about the differences between Anphi bi an
as defined in figure 4.4 and example 49 may also ask if there is a difference
between defining Vehi cl e as in figure 4.6 and as in example 52.

create type Vehicle supertype of Boat, Car;

Example 52: Ordinary Vehicle supertype.

The answer is yes. All boats and cars automatically become instances of
Vehi cl e no matter what definition is chosen due to the semantics of the
create instances statement. However, when Vehi cl e is defined as in
example 52 there may exist vehicles that are neither boat nor car. With the
definition in figure 4.6 all vehicles have to be either boat or car.

AMOSQL does not restrict users to the three base cases described, when defin-
ing derived types. Arbitrarily complex derived types can be defined by combin-
ing types using and and or in <type expression> AMOS will then
construct implicitly defined types as needed.

4.3 Mapped Types

Mapped types, in contrast to derived types, create new so-called mapped
objects. There exist two primary uses for mapped types. The first is to create
objects when we map external data sources into the AMOS data model. A thor-
ough discussion of using mapped types to provide object views of relational
data is given in [Fahl, 1994]. The second use is to solve the problem of object
equivalence; see "Object Equivalence" on page 12.

Let us now see how we can use mapped and derived types to perform integra-
tion of the three databases presented in section 4.1. We want to combine infor-
mation from the three databases in a way that the resulting schema of our
integrated database is similar to the schema in figure 3.3 on page 37.

We begin by integrating databases DB1 and DB2, creating a single Per son type
where the information present in the two databases is combined. This requires
us to address the object equivalence problem, section 1.5.2, since the same
physical person may be represented in both DB1 and DB2.

create mapped type Person converter p2dblp, p2db2p as
sel ect pl,p2 for each Person@dbl pl, Person@ db2 p2
where ssn@ dbl(pl)*=ssn@ db2(p2) 3;

Example 53: Creating a mapped Per son type.

3. *= denotes left outer join.
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The extent of Per son will contain one mapped object for each unique result
tuple produced by the sel ect statement. We call these tuples keys. Elements of
a key are called defining objects.

The type Per son will contain one mapped object for each instance of Per -
son@ dbl. To relate instances of Person@ dbl with instances of Per -
son@ db2 we use social security number (ssn) as the identifying property.
Note that we have to use left outer join since there exist persons in DB1 not rep-
resented in DB2. If we used an ordinary join, the extent of Per son would only
have three objects instead of four.

In Table 4.1 the relationship between mapped objects, keys and defining
objects is shown.

O D for
mapped key p2db1p( mo) p2db2p( m)
obj ect mo
O <pe101: pB2O2> pe101 pe201
G, <pe1%2: pB2O2> pB1G2 pB2C2
G; <pe103, pB2O3> pB1O3 pB2O3
0, <pp10s, NULL> 08103 NULL

Table 4.1: Relationship between mapped objects, keys and defining objects.

In example 53 we specified two converters. We have to specify as many con-
verters as the width of the result tuples of the select statement defining a
mapped type. For example, John is represented by pg;O; in DB1 and pg,O; in
DB2. In the integrated database he is represented by O;. The two converters
allow us to map back and forth between instances of a mapped type and the
defining objects. So, p2db1p( O3) returns pg;Oz. Converters can also be used in
the backward direction, e.g. p2db1p( x) =pg1 O would bind x to O,.

The full syntax of the cr eat e mapped type statement is;

create mapped type <type nanme>
[ subtype of <type list>]
[ properties <property list> ]
( initializor <function definition> )*
( constructor <constructor decl.> )*
converter <fnnanme |list>
as <sel ect statenent>;

Example 54: Syntax of the cr eat e mapped type statement.
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We now define the properties for type Per son.

create function nane(Person p)->String as
sel ect nane@ dbl(p2dblp(p));

create function age(Persons p)->Integer as
sel ect age@ dbl(p2dblp(p));

create function title(Person p)->String as
select title@dbl(p2dbl(p));

Example 55: Per son properties stored in DB1.

In example 55 we see how converters are used. For example, name for Per son
is stored in database DBl and can be accessed by name@ dbl. However,
name@ db1 expects to get OIDs originating from DB1 and not OIDs from the
integrated database. Thus, we need to convert the mapped object into the corre-
sponding defining object so we can call nane@ db1.

In the example above we defined property title. We can now use this prop-
erty to define the type hierarchy of figure 3.3 on page 37, using derived types.

create derived type Enpl oyee as

[Person p where sone(title(p))];
create derived type Secretary as

[ Enpl oyee e where title(e)="Secretary"];
create derived type Boss as

[ Enpl oyee e where title(e)="Boss"];

Example 56: Completing the type hierarchy.
User TypeObj ect

owns: {| Vehicl e| }

name: String
age: | nt eger

— — sal ary: | nt eger

_Enpl oyee > y g
s A ~

~ ~N
\Secretary \ _Boss _

t speed: | nt eger sal ary: | nt eger
bonus: I nt eger

Figure 4.8: Type hierarchy of virtual types.

We have defined three derived types Enpl oyee, Secretary and Boss. Employ-
ees are all persons that have a title. John, Alice and George are all employees
whereas Joe is not. Secretaries are all employees with title secretary and bosses
are those employees that have boss as title.

The type hierarchy as it looks after having defined the above types is depicted
in figure 4.8% Let us now define the remaining properties.
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All employees should have a salary. The salary is stored in DB2; we thus define
sal ary as

create function sal ary(Enpl oyee e)->Integer as
sel ect sal ary@ db2(p2db2p(e));

Example 57: Defining sal ary for type Per son.

For secretaries we want to know the typing speed. This information was stored
in the misc property in DB2. We define t speed as

create function tspeed(Secretary s)->lnteger as
sel ect m sc@db2(p2dbd2p(s));

Example 58: Defining t speed for secretaries.
For type Boss we then define the bonus and salary properties as

create function bonus(Boss b)->Integer as
sel ect m sc@db2(p2db2p(b));

create function sal ary(Boss b)->Integer as
sel ect Enpl oyee. sal ary- >l nt eger (b) +bonus(b);

Example 59: Creating bonus and sal ary for type Boss.

We have performed semantic enrichment of the information in DB1 and DB2.
Two different Person types have been integrated into one. We have introduced
inheritance in the integrated schema. In the schema of DB1 and DB2 no inherit-
ance was present. The property m sc in DB2 was used for different purposes
depending on the value of the property titl e in DB1. We have now made the
interpretation of mi sc explicit through the definition of properties t speed and
bonus.

To conclude we define type Vehi cl e and related properties.

defi ne mapped type Vehicle converter v2db3v
as select v for each Vehicle@db3;

create function nane(Vehicle v)->String
as sel ect nane@ db3(v2db3v(v));

create function weight(Vehicle v)->Integer
as sel ect Vehicle@db3(v2db3v(v));

create function owns(Person)->bag of Vehicle;

Example 60: Creating mapped type Vehi cl e and associated properties.

We have described how mapped types can help us integrate AMOSs. However,
the very same technique is, of course, applicable if we want to integrate some
other data source such as a relational database [Fahl, 1994], a file, or perhaps a
WWW-client.

It should also be noted that the use of mapped types when integrating AMOSs
is only required while full level 3 support is lacking, See “The Global Schema
Approach” on page 13. Once we support full level 3 integration, mapped types
are only needed when accessing information in non-AMOS systems or when we

4. Shaded ovals denote mapped types.
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need to address the object equivalence problem.

4.4 Creating Instances

Our effort to make derived types behave as stored types includes being able to
create instances of derived types, i.e. invoke the create instances state-
ment for a derived type.

Since the extent of a derived type is defined in terms of other type extents, try-
ing to create an instance of a derived type involves creating instances of the
defining types.

Let us return to the Seni or type defined in example 45 on page 56. A senior is
a person whose age is greater than 65. An instance of Seni or is created by the
statement in example 61.

create Senior(age) instances :s(67);
Example 61: Creating a senior.

Since Seni or is a derived type, it has no materialized extent®. What really hap-
pened when we created the senior above was that a person was created and that
the age of that person was set to 67. The newly created person then became an
instance of Seni or.

create constructor Senior() as
begin
decl are Object o;
set o=create_object();
add type Person to o;
result o;
end;

Example 62: Default constructor for Seni or .

If we had given the new person an age of 55 instead, the person would not have
qualified as a senior and should thus not have been created. To accomplish this
we revise the semantics of the cr eat e i nst ances statement slightly.

When the creat e i nst ances statement is invoked it:

* invokes the appropriate constructor

* assigns values to specified properties

* checks to see if the new object qualifies as an instance of the derived type by
calling the type predicate function; see section 5.1.2

« if the object did not qualify, reset the state of the database to the state it had
before we invoked the create instances statement.

5. As a consequence of this, make instance may not be called with the name of a derived
type.
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The default constructor in example 62 forces us to specify the age whenever we
want to create a senior. If we find this cumbersome, then the default constructor
could be redefined to give the person created a default age of 66.

AMOS provides default constructors for all derived types. Default constructors
for intersection types are defined similarly to default constructors for speciali-
zation types, i.e. an object is created and it will become an instance of each of
the defining types. In example 63 the default constructor provided by AMOS
for type Anphi bi an is shown.

create constructor Anmphibian() as
begi n
decl are Object o;
o=creat e_object();
add type Boat to o;
add type Car to o;
result o;
end;

Example 63: Default constructor for Anphi bi an.

The behaviour of default constructors provided by AMOS for union types, is to
signal an error. This is because the system cannot know what subtype a new
instance should belong to. For example if we try to create an instance of Vehi -
cl e, should the instance be a boat or a car. The user has to specify this by sup-
plying a new default constructor.

create constructor Vehicle () as
begi n
print(“Unspecified default constructor for
uni on type Vehicle”);
abort();
end;

Example 64: System-generated default constructor for union type Vehi -
cle.

Typically mapped types are used to integrate external data sources. The default
constructors generated for mapped types signal an error since AMOS cannot
know how to create instances in the external data sources. If users supply a
default constructor, then it will be possible to create instances of a mapped
type, too.

4.5 Concluding Remarks

In this section we have seen how objects views can be used to perform integra-
tion. Two different kinds of objects views were introduced, derived types and
mapped types.

Derived types allowed us to define type membership in terms of property val-
ues. This is useful to solve the problem of structural differences as described in
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section 1.4.3. An example of this was shown in section 4.3.

Mapped types allowed us to construct objects for foreign data allowing us to
treat external information in an object-oriented manner. Mapped types were
also used to solve the object equivalence problem described in section 1.5.2.
An example of this was shown in section 4.3.

In section 4.4 we saw how constructors and initializors allow us to create
instances of derived and mapped types.

Let us compare our approach with the ones described in chapter 2. Compared to
MultiView we can offer the same functionality with the exception of the view
mechanism. Specialization types in AMOS correspond to the sel ect operator
of MultiView and COOL*. The uni on and i nt ersecti on operators corre-
spond to our intersection and union types. The difference operator has to be
expressed using negation combined with an intersection or union type.

We may define new properties for a type as r ef i ne does in MultiView. How-
ever, we do not get a new type. If we want to achieve the same semantics, we
could do it by defining a specialization type without any condition, for which
we define the new property.

Hi de, can be simulated by defining a supertype, defining the properties that we
want to keep, for the supertype. However, there is not much point doing this as
AMOS currently does not provide a view mechanism similar to view schemas
in MultiView. This is one of the weaknesses of AMOS and future work should
include some authorization mechanism combined with the possibility of defin-
ing view schemas as in MultiView.

In addition to derived types we provide mapped types. This enables us to create
object views of non object-oriented information. It also provides us with the
ability to merge objects as shown in example 53 on page 62. Thus, we can pro-
vide at least level 2 integration (section 1.5.3). COOL* provides level 3 inte-
gration. We feel that this will be possible in AMOS, with a fair amount of work.
The main reason for not providing it now is that it requires the query compiler
to be rewritten.

Pegasus provides both derived types, the ability to define object views of non-
object-oriented information by means of producer types, and merge objects
using unifying types. In our approach we use the same mechanism, mapped
types, to provide the functionality of both producer and unifying types. We
believe that it is easier for users not having to learn many different concepts,
but be able to use the same concept for several things.
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5 Implementation

In this section we provide a brief description of how mapped and derived types
are implemented in AMOS. We also describe some of the problems encoun-
tered during our work. We conclude with a discussion comparing the behaviour
of our implementation with the systems described in chapter 2.

5.1 Derived Type Implementation

If we want to implement derived types as described in section 4.2, there are two
main approaches that can be chosen. The materialized approach and the deriva-
tion approach. We just outline the materialized approach as we have not imple-
mented it yet. The derived approach will be discussed more thoroughly and we
will also describe the problematic issues involved.

5.1.1 The Materialized Approach

The materialized approach means that we materialize the extent of derived
types and that we keep the extent updated as the state of the database changes.

Suppose that we define a derived type Seni or as:

create derived type Senior
[ Person p where age(p)>65];

Example 65: Example of a derived specialization type.

We would then perform an initial materialization by selecting all persons older
than 65 and add type Seni or to them.

for each Person p where age(p)>65
add type Senior to p;

Example 66: Adding type senior to persons older than 65.

Having done this we now need to maintain the extent of Seni or, i.e. whenever
an instance of Per son changes the value of the age property, we have to check
whether that instance should become a member of Seni or or, if the instance
already is a senior, if it should lose the Seni or type and just become an ordi-
nary person. This can be accomplished by specifying the following two rules.

create rul e newSenior() as
when for each Person p
wher e age(p)>65
do add type Senior to p;



70 Implementation

create rul e renoveSenior() as
when for each Person p
wher e age(p) <=65
do renove type Senior from p;

Example 67: Rules maintaining the extent of Seni or.

The newSeni or rule makes sure that any person older than 65 becomes a sen-
ior, whereas the r enoveSeni or rule removes from the extent of Seni or any
person whose age is reduced to 65 or less.

Using this approach requires some changes to the rule machinery of AMOS.
Today rules are checked at commit time or when the system function check()
is explicitly called. We would have to make sure that rules associated with
derived types would be checked whenever an event occurred since a user
expects a person to become a senior as soon as the value of the age property
gets a value greater than 65. This immediate checking of rules would make the
system slow if we had a high update ratio compared to the number of accesses.
However, if we had very few updates, this approach would be preferable since
we never need to calculate what types an object is an instance of, extents of
derived types would always be materialized. When we use the derivation
approach below, we must calculate the extent of a derived type whenever it is
needed.

5.1.2 The Derivation Approach

The derivation approach means that we never materialize the extent of a
derived type. Instead we derive it when it is needed. This is where type extent
functions and type predicate functions come in.

Whenever a type is created, a type extent and a type predicate function are also
created. The type extent function returns the extent of the type and the type
predicate function returns true if an object is an instance of the specific type.

For stored types these functions are trivial. If we assume the existence of a
stored type Car then the type extent function for Car will be defined as in the
example below.

create function car()->Car as
select o for each Car o;

Example 68: Type extent function for the stored type Car.
The type predicate function is equally simple.

create function carp(Object 0)->Bool ean as
sel ect true for each Car c where c=o0;

Example 69: Type predicate function for the stored type Car.

Let us now look at how type extent functions for derived types are constructed.
The syntax for the create derived type statement was shown in example
44 on page 56. The type extent function and the type predicate function are
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constructed from the <t ype expressi on>.

When we define a derived type we write:
create derived type <typenane> as <type expression>
Example 70: Template for defining a derived type.

A set of simple transformation rules can be specified that construct the type
extent and the type predicate function from this expression. Let us begin with
the type extent function.

Let us define a function DEF (Derived type Extent Function) that, given a type
expression and two names, will construct the AMOSQL statement creating the
type extent function for a derived type. Given the statement in example 70, we
call DEF as DEF[[ <type expression>] <typename> <typename>.

DEF[[ [ TPNM ] FNM TNM =
create function FNM)->TNM as
sel ect o for each TPNM o;

DEF[[ [ TPNM VAR] 1] FNM TNM =
create function FNM)->TNM as
sel ect VAR for each TPNM VAR,

DEF[[ [ TPNM VAR where COND] ]| FNM TNM =
create function FNM)->TNM as
sel ect VAR for each TPNM VAR wher e COND;

DEF[[ [ TPNM VAR for each FE-PAIRS where COND] ]] FNM TNM =
create function FNM)->TNM as
sel ect VAR for each TPNM VAR, FE- PAI RS where COND;

Example 71: Definition of DEF.

Given the definition of the derived type RPV (Ri chPer sonsVehi cl es) in
example 72, DEF will construct the type extent function as shown in example
73.

create derived type RPV as
[Vehicle v for each Person p
where owns(p)=v and
sal ary(p) >25000] ;

Example 72: A specialization type.

create function rpv()->RPV! as
select v for each Vehicle v, Person p
wher e owns(p)=v and sal ary(p)>25000;

Example 73: Type extent function for derived type RPV.

We should note that the type extent function performs a type cast on objects.
The objects selected by the function above are of type Vehi cl e but the return

1. The upper and lower case letters are just for notational convenience and of no seman-
tic importance.
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type of the function is of type RPV, i.e. whatever is returned by this function is
an RPV.

Not only is a type extent function constructed but also a type predicate func-
tion. Thus, we define a function DPF (Derived type Predicate Function) that
given a type expression and a name will construct the AMOSQL statement cre-
ating the derived type predicate function.

DPF[[ [ TPNM ]l FNM =
create function FNM:)Z(Ooj ect o0)->Bool ean as
sel ect o=v for each TPNM v;

DPF[[ [ TPNM VAR] ]l FNM =
create function FNMp(Obj ect 0)->Bool ean as
sel ect 0=VAR for each TPNM VAR,

DPF[[ [ TPNM VAR where COND] ]| FNM =
create function FNMp(Obj ect 0)->Bool ean as
sel ect 0=VAR for each TPNM VAR where COND;

DPF[[ [ TPNM VAR for each FE-PAIRS where COND] ]| FNM =
create function FNMp(Obj ect 0)->Bool ean as
sel ect 0=VAR for each TPNM VAR, FE-PAI RS where COND;

Example 74: Definition of DPF.
The type predicate function for RPV as constructed by DPF will be;

create function rpvp(Object 0)->Bool ean as
sel ect o=v for each Vehicle v, Person p
where owns(p)=v and sal ary(p)>25000;

Example 75: Type predicate function for derived type RPV.

The two functions DEF and DPF are not complete yet. We must also define how
to handle intersection types and union types. Let us first look at the case for
intersection types.

DEF[[ [ TPEXP; and TPEXP,] ] FNM; TNM =
LET FNM, = generate-name()?
FNM; = gener at e- nanme()
I'N
DEF[[ [ TPEXP;] 1l FNM, Obj ect
DEF[[ [ TPEXP,] 1l FNM; Obj ect
create function FNM()->TNM as
select o for each Object o where
NAME,( ) =0 and
NAME;( ) =0;

DPF[[ [ TPEXP; and TPEXP,] ]| FNM, =

2. FNMp means that the value of variable FNMshould be concatenated with a ‘p’. Thus if
the value of FNMis rpv then the result is rpvp.

3. Yes, we are cheating here. gener at e- nanme has an internal state and generates a
new unique name each time it is called. Also, the LET construct is not part of
AMOSQL.
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gener at e- nane()
gener at e- nane()

LET  FNM
FNV,
I'N

DPF[[ [ TPEXP;] Tl FNM,
DPF[[ [ TPEXP,] 1 FNM;
create function FNMp(CObject o)->Bool ean as

sel ect o where
FNM,p(0) and
FNMgp( 0) ;

Example 76: DEF and DPF for intersection types.

If we return to our Anphi bi an example in figure 4.4 on page 58 we would cre-
ate the type as:

create derived type Anphibian as
[Boat] and [Car];

Example 77: Creating an intersection type.

This would result in a call to DEF as DEF[[ [ Boat] and [Car] ] Anphi bi an
Anphi bi an. Three AMOSQL functions will be produced by this call.

create function anonl()->0bject as
sel ect o for each Boat o;
create function anon2()->0bject as
select o for each Car o;
create function anphibian()->Anphi bi an as
select o for each Object o where
anonl() =0 and
anon2() =o;

Example 78: Type extent function for intersection type Amphibian.
The type predicate function will be constructed similarly.

The case for union types is more interesting. We extend DEF and DPF as fol-
lows.

DEF[[ [ TPEXP; or TPEXP,] ]| FNM; TNM =
LET FNM, = generate-nane()
FNM; = gener at e- name()
I'N
DEF[[ [ TPEXP;] | FNM, Obj ect
DEF[[ [ TPEXP,] Il FNM; Obj ect
create function FNM()->TNM as
sel ect uni que(select o for each Object o where
NAME,( ) =0 or
NAME;( ) =0) ;
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DPF[[ [ TPEXP; and TPEXP,] ] FNM, =
LET FNM, = generate- nanme()
FNM; = gener at e- name()
I N
DPF[[ [ TPEXP;] T FNM,
DPF[[ [ TPEXP,] Tl FNM,
create function FNMp(Object o)->Bool ean as
sel ect sonme(select o where

FNM,p(0) or
FNMsp(0)) ;

Example 79: DEF and DPF for union types.

Note the use of uni que in the type extent function and the use of sonme in the
type predicate function. Since an object can only be a member of a type extent
once, we have to make sure that an object is not returned twice by the extent
function of a union type. This would be the case if some amphibian existed and
we created a derived union type Vehi cl e as in figure 4.6 on page 60. Since an
amphibian is both a boat and a car, it would be returned twice if we did not use
uni que.

The use of sone in the type predicate function is a speed optimization. AMOS
uses pipelined query execution, i.e. no intermediate results are produced. The
semantics of sonme is such that as soon as the subquestion succeeds, we are
done. Suppose that we wanted to know whether an object o was an instance of a
union type t;; and that the type predicate function for ¢;; did not contain sone.
We would first see if FNM,p(o) returned true; if it did, the type predicate func-
tion would return frue as a result and would then retrieve the value of
FNM;3p(o) although it is not needed. Using some avoids calling FNM,p,
thereby saving some time.

We have now shown the principle for how type extent functions and type pred-
icate functions are constructed. Of course the definitions of the type extent
function and the type predicate function have to be altered as the type hierarchy
evolves and types gain and lose sub- and supertypes. However, we can still use
the DEF and DPF functions for this purpose; we only give them as arguments the
new defining type expression instead.

5.2 Mapped Type Implementation

Let us now turn our attention to mapped types. When creating a mapped type, a
type extent function and a type predicate function are generated as usual. How-
ever, two more functions are generated, a key generating function (key function
for short) and an oidtranslate function. These two functions are responsible for
materializing the extent of a mapped type. The extent, however, is not material-
ized all at once but bitwise as it is needed [Fahl, 1994]. Instances of a mapped
type are called mapped objects.

When we create a mapped type we write;
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create mapped type MIPNM converter CNM;, ..., CNM, as
select Vi, ..., V, for each TPNM, Vq, ..., TPNM, V,
wher e COND;

Example 80: Template for defining a mapped type.

where MTPNM is the name of the mapped type we wish to create, CNM; is a
name of a converter, V; a variable name, TPNM; a type name, and COND the
condition that selects the tuples we want to generate mapped objects for.

First of all the key function is generated. It returns all the tuples that we wish to
create mapped objects for, i.e. the keys, See “Mapped Types” on page 62.

create function MIPNM key()-><TPNM;, ..., TPNM,> as
select V4, ..., V, for each TPNM; V4, ..., TPNW, V,
wher e COND;

Example 81: Template for defining the key function.

Let us look at an example4. Assume that we have two types defined APer son
and BPer son both with the property ssn (social security number) defined. We
now want to create a mapped type Person with one mapped object for each
person that is represented as an instance of both APer son and BPer son. We
would then define the mapped type Per son as:

create mapped type Person converter p2ap, p2bp as
sel ect pl,p2 for each APerson pl, BPerson p2
wher e ssn(pl)=ssn(p2);

Example 82: A mapped type definition.
The key function for type Per son would then become:

create function person_key()-><APerson, BPerson> as
sel ect pl,p2 for each APerson pl, BPerson p2
wher e ssn(pl)=ssn(p2);

Example 83: The key function for mapped type Person.

The function per son_key will return a tuple where the two elements will be
instances of APer son and BPer son respectively, that have the same ssn, i.e. it
is the same person. We now need to create a mapped object for each tuple gen-
erated by per son_key. However, we must be able to map from the new objects
back to instances of APer son and BPer son respectively, by means of the con-
verters. This means that we have to store the relationship between mapped
objects and defining objects. To do this an oi dmapt abl e is created as:

create function oi dmaptabl e( MTPNM - ><TPNM,, ..., TPNM,>
as stored;

Example 84: Template for defining the oi dmapt abl e.

4. The example from chapter 4.3, slightly modified for readability.
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Thus, the oi dmapt abl e for type Per son is defined as:

create function oi dmapt abl e( Per son) - ><APer son, BPer son>
as stored;

Example 85: oi dmapt abl e for type Per son.

Having defined the key function and the oi dmapt abl e we can now turn our
attention to the function that performs the actual translation between keys and
mapped object. This function is named oi dt ransl at e. The template for it
appears thus:

create function oidtranslate(TPNM, Vq, ..., TPNM, V,)->MIPNM
as begin
decl are Object o;
select v into o for each MIPNM v
wher e oi dmapt abl e(v)=<Vq, ..., V>
if some((select 0)) then
/* Mapped object exists, return it */
result o
el se
/* Have not seen this key before, new object */
begin
decl are MIPNM v;
set o=create_object();
make_i nstace(‘ MTPNM , o) ;
set v=o;
set oidmaptable(v)=<Vy, ..., V>
result v
end
end;

Example 86: Template for the oi dt r ansl at e function.

The oi dt ransl at e function first tries to look up an already existing mapped
object in the oi dmaptabl e given a key. If such an object exists, i.e.
sonme((sel ect 0)) is true, the object is returned. If no object exists, we have
to create one. We do this using the creat e_obj ect and make_i nst ance
functions described in section 3.2.1. We then update the oi dmapt abl e with the
new object and the key it corresponds to. Finally, we return the object.

For our example the oi dt r ansl| at e function is as follows:

create function oidtransl ate(APerson pl, BPerson p2)->Person
as begin
decl are Object o;
select v into o for each Person v
wher e oi dmapt abl e(v) =<p1, p2>;
if some((select 0)) then
result o
el se
begin
decl are Person v;
set o=create_object();
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nmake_i nstance(‘ Person’, 0);
set v=o0;
set oi dmapt abl e(v) =<pl, p2>;
result v;
end
end

Example 87: The oi dt r ansl at e function for mapped type Per son.

The reader may wonder about the set v=o statement in the el se-clause. Since
o is declared to be of type Obj ect AMOS would not be able to resolve at com-
pile-time the function oi dmapt abl e. The signature of the oi dmapt abl e func-
tion that we want to use is oi dnpat abl e: MTPNM >TPNM,. .... TPNV,. By
declaring v to be of type MTPNM AMOS is able to resolve the oi dmapt abl e
function using the type of v and V; to V,, respectively.

We are now ready to define the type extent function and the type predicate
function.

create function MIPNM)->MIPNM as

select oidtranslate(Vy, ..., V)
for each TPNM, Vi, ..., TPNM, V, where
MPTPN_key()=<Vq, ..., V>

Example 88: Type extent function template for mapped types.

create function MIPNMp(Obj ect 0)->Bool ean as

select true for each MIPNM v, TPNM; Vi, ..., TPNM, V,
where o=v and oi dmaptable(V,, ..., V,) and
MIPNM key() =<V, ..., V>

Example 89: Type predicate function template for mapped types.

For the mapped type Person the type extent and type predicate functions
appear thus:

create function person()->Person as
sel ect oidtranslate(pl, p2) for each APerson pl, BPerson p2
wher e person_key()=<pl, p2>;
create function personp()->Bool ean as
sel ect true for each Person v, APerson pl, BPerson p2
where o=v and oi dmapt abl e(v) =<p1l, p2> and
per son_key() =<pl, p2>;

Example 90: Type extent function and type predicate function for mapped
type Per son.

Finally we look at the converters. The purpose of a converter is to map back
and forth between a mapped object and a defining object.

create function CNM (MIPNM v)->TPNM as
select V; for each TPNM, V¢, ..., TPNM, V,
wher e oi dmapt abl e(v)=<Vq, ..., V4>

Example 91: Template for converter definition.
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For our example two converters will be defined.

create function p2ap(Person v)->APerson as
sel ect pl for each APerson pl, BPerson p2
wher e oi dmapt abl e(v) =<p1, p2>;

create function p2bp(Person v)->BPerson as
sel ect p2 for each APerson pl, BPerson p2
wher e oi dmapt abl e(v) =<p1l, p2>;

Example 92: Converters for mapped type Per son.

Given a Per son object p2ap will return the corresponding APer son object and
p2bp will return the BPer son object. The converters can also be used in the
backward direction, returning a Per son object if it has been created.

In [Fahl, 1994] a good description of mapped type for providing object-views
of relational data can be found. Reasons for having the oi dt r ansl at e and the
key function as separate functions are given and interesting optimizations are
described. It should be noted that the oi dt r ansl at e function need not use an
oidmaptable but could be computed. However, the function must be invertible
since we want to map both between the OID of mapped objects and the ele-
ments of the key.

5.3 Late Binding and Derived Types

Late binding combined with derived types can be very useful. However, if
allowed some problems are encountered that have to be solved. We will first
show how late binding and derived types when combined allow for easy
schema evolution. Next we will examine query processing in AMOS in order to
understand the problems that we have to address.

5.3.1 Derived Types and Late Binding

Late binding can be very useful combined with derived types. It allows for very
easy schema evolution in certain cases. Let us return to our HeavyVehi cl e
example. Assume that we have the situation depicted in figure 5.1. HeavyVe-

¢ Vehicle > weight

i o T e
Figure 5.1: Example type hierarchy.

hi cl e can then be defined in two different ways either as in example 93 or as
in example 94.
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create derived type HeavyVehicle as
[ Boat b where wei ght(b)>10] or
[Car ¢ where weight(c)>10];

Example 93: Possible definition of derived type HeavyVehi cl e.

create derived type HeavyVehicle as
[ Vehicl e v where wei ght(v)>10];

Example 94: Alternative definition of derived type HeavyVehi cl e.

If HeavyVehi cl e is defined as in example 93 then the extent will always be
defined in terms of the extents of Boat and Car respectively. However, if
HeavyVehi cl e is defined as in example 94 then the extent of HeavyVehi cl e
will be defined in terms of subtypes of Vehi cl e that has the property wei ght
defined®.

For example if we define a new type Bi ke, with the property wei ght , as a sub-
type of Pl ane, then planes weighing more than 10 tons will be included in the
extent of HeavyVehicle. Note, no modification of HeavyVehicle was
needed in order to incorporate Pl ane as well. If we had defined HeavyVehi -
cl e according to example 93, then we would have needed to redefine it if we
wanted to incorporate Pl ane.

The ability to choose whether to define a union type as in example 93 or as in
example 94 provides the user with greater flexibility in the modelling process.
He can decide whether a certain union type should only consider some types or
whether it should evolve as new subtypes are added.

Another example where late binding is necessary is depicted in figure 5.2. Here

sal ary: | nt eger

— [Enpl oyee e where

fﬁchEnp/\ sal ary(e)>25000]

bonus: I nt eger
sal ary = Enpl oyee. sal ary + bonus

Figure 5.2: Late binding combined with specialization type.

we have defined a specialization type Ri chEnp, that is all employees that earn
more than 25000. Ordinary employees just have a monthly salary but the salary
for bosses is the monthly salary plus a bonus. When selecting which employees
should be members of the Ri chEnp extent, we have to choose different sal ary
functions depending on whether the employee is just an employee or if (s)he is
a boss.

It should be evident by now that late binding combined with derived types is a
useful feature. However, it also causes some problems which we will review in

5. With proper result type.
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the next section.

5.3.2 Problems with Derived Types and Late Binding

As we have seen, late binding can be very useful combined with derived types,
however, it also causes some problems if we are not careful.

Let us again examine the Heavy Anphi bi an example. In figure 5.3 on page 80,
the extents of the different types are shown. There exist two instances of type
Boat, O; and O,. O; also happens to be a member of the extent for types Car,
Anphi bi an and HeavyAnphi bi an.

create derived type HeavyAnphi bi an as
[Boat b where weight(b)>10] and
[Car ¢ where weight(c)>10];

Figure 5.3: Late binding problem.

Suppose that a user submits the following query.
sel ect weight(b) for each Boat b;
Example 95: Retrieving the weight for boats.

Function wei ght has to be late bound in this case. For O; wei ght : Boat - >
I nt eger should be chosen, whereas wei ght : HeavyAnphi bi an- >I nt eger
should be chosen for O,.

In example 96 the same query is shown after it has been type checked and opti-
mized by AMOS.

sel ect _gl where
typesof (b) ®=#Boat ’ and
dtr ([ HeavyAnphi bi an. wei ght - >l nt eger,
Boat . wei ght - >l nteger], b)=_g1;

Example 96: The type checked and optimized query.

The function call wei ght (b) has been replaced by a system-generated variable
_01 and the f or each-clause has been replaced by a call to function t ypesof .
The t ypesof (b) =#Boat call will bind variable b to objects of type Boat .

6. Here t ypesof is executed in the backward direction.
7. #Boat denotes the OID for type Boat .
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Since wei ght was late bound, AMOS has inserted a call to function dtr
(Dynamic Type Resolver) [Flodin, 1996]. The dtr function will at run-time
choose the correct resolvent to apply depending on the type of the object that
variable b is bound to. The chosen resolvent will then be applied to b and _g1
will be bound to the result of the application.

For function dt r to know what resolvent to choose, it first tests whether the
object bound to b is of type HeavyAnphi bi an. It does so by executing the type
predicate function. However, executing the type predicate function involves an
identical call to dtr since wei ght in [ Boat b where wei ght (b)>10] would
be late bound. This would cause a loop.

A possible solution to the problem would be to not allow late binding in the
type expressions defining derived types. However, this would render the exam-
ples in section 5.3.1 void. The approach taken here is to disregard properties
having the derived type as argument type when compiling the type expression
defining the derived type.

Having solved one problem that caused a loop, we address the next problem
that can cause loops. In figure 5.4 a type hierarchy is shown for a database stor-

¢ inc:|nteger

create derived type HighlyPaid as

e T obal o N
Hi ghl ypild/ [Emp e where inc(e)>10000];

v

c R p—;;ed_OfT ~ Create derived type RippedOf as

[Enmp e where inc(e)>15000];
inc = Enp.inc-1000;

Figure 5.4: Example hierarchy with derived types.

ing information about employees (type Enp) and their income (property i nc).
We have defined two derived types, Hi ghl yPai d and Ri ppedOf f. Hi gh-
| yPai d is all those employees who have an income greater than 10000.
Ri ppedOf f is all Hi ghl yPai d whose income is greater than 15000. For
Ri ppedOf f we redefine the i nc property to be derived. The i nc: Ri ppedOf f -
>| nt eger deducts a special tax from the income reducing it by 1000.

create Enmp(inc) instances :el1(12000), :e2(15500);
Example 97: Creating two employees.

The decision we made above, to disregard properties having the derived type as
argument when compiling the type expression defining the derived type, seems
sensible when we look at the type expression defining type Ri ppedCf f. The
function inc that should be used is clearly inc:Enp->Integer and
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i nc: Ri ppedOf f - >l nt eger should not be considered.

Assume that a user wishes to check whether a certain employee is highly paid
or not. This could be accomplished by calling the type predicate function for
Hi ghl yPai d as:

hi ghl ypai dp(: e2);
Example 98: Checking whether : e2 is highly paid or not.

Let us look at what happens when this function is called. The compiled func-
tion hi ghl ypai dp looks like

hi ghl ypai dp(o) =
sel ect true where
t ypesof (o) =#Enp and
dtr ([ R ppedOf.inc.->Integer,
Enp.inc->Integer], 0)= _g7 and
_g7 > 10000;

Example 99: Compiled code for function hi ghl ypai dp.

When this function is called we first check to see if the object is of type Enp by
calling the t ypesof function. Since :e2 is of type Emp we proceed by calling
dtr. Function dt r now has to choose the right resolvent of i nc. This is accom-
plished by invoking the type predicate function for the argument types for each
of the possible resolvents in order from left to right. As soon as a type predicate
function return true, we choose the corresponding resolvent. In our case we
would first issue the call ri ppedof fp(: e2).
ri ppedoffp(o)=
sel ect true where

t ypesof (o) =#H ghl yPai d and

Enp. i nc->I nteger (0)=_g10 and

_glo > 15000;

Example 100: Compiled code for function ri ppedof f p.

The first thing that happens when we enter ri ppedof f p is that we check that
the argument o is of type Hi ghl yPai d by calling function t ypesof. When
t ypesof has to determine if an object is of a specific type, i.e. we know both
the argument and the result of t ypesof, and the type is derived or mapped.
Then t ypesof will apply the type predicate function of the type to the object,
i.e. we will make the call hi ghl ypai dp(: e2). If the result of the application
is true, then t ypesof succeeds; otherwise it fails.

As we enter hi ghl ypai dp once more we will check typesof (: e2) =#Enp
which is true. We then execute the dt r resulting in yet another call to ri pped-
of p with the argument : e2. By now we are looping and could go on forever if
we do not take stepsg. Observe that if we could only get an answer, either true
or false from ri ppedof p, the loop would be broken and we would be able to

8. The top loop call hi ghl ypai dp(: e2) does not count when we are looking for
loops. Thus, we do not loop until we enter r i ppedof p the second time.
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proceed. AMOS acknowledges that it is looping in this situation and assumes
that : e2 is of type Ri ppedOf f returning true as the answer to the second invo-
cation ri ppedof f p(: e2).

If we look at the stack after this assumption has been made we have the follow-
ing invocations:

hi ghl ypai dp(: e2) The top-level call
ri ppedoffp(:e2) Call made by dtr
hi ghl ypai dp(:e2) Call nmade by typesof in rippedoffp

Example 101: Call stack just after we have assumed ri ppedof f p(: e2) is
true.

Since AMOS assumed that : e2 was of type Ri ppedOf f, dt r chooses to apply
Ri ppedOf f. i nc->I nteger to: e2 binding _g7 to 14500°. The value of _g7
is greater than 10000 which means that true will be returned from hi gh-
| ypai dp.

typesof (: e2) =#Hi ghl yPai d in ri ppedof f p succeeds and Enp. i nc- >

I nt eger is applied to : e2 binding _g10 to 15500 which is greater than 15000.
Thus ri ppedof f p succeeds and the dtr call in the top level call of hi gh-
| ypai dp can apply Ri ppedOf f. i nc->I nteger to: e2, binding _g7 to 14500
which is greater than 10000. As a result the top-level call of hi ghl ypai dp
returns true, the answer expected.

Let us take a brief look at the case where we check if : el is an Hi ghl yPai d
instance.

hi ghl ypai dp(: el);
Example 102: Check whether : el is highly paid.

Everything will be the same as for hi ghl ypai d(: e2) to the point where we
make the assumption that : el is of type Ri ppedOf f. The dtr call in the sec-
ond invocation of hi ghl ypai dp will then invoke Ri ppedOf f . i nc->I nt eger
with : el as argument. _g7 will be bound to 11000, which is greater than
10000. The second invocation of hi ghl ypai dp will return true. Thus, t ype-
sof (: el) =#Hi ghl yPai d in ri ppedof f p will succeed and Enp. i nc- >l nt e-
ger (: el) will bind _g10 to 12000. However, 12000 is not greater than 15000
and ri ppedof f p will fail. The dt r call in the top level invocation of hi gh-
| ypai dp will then apply Enp. i nc- >I nt eger (the correct resolvent) to : e1!0,
binding _g7 to 12000 which is greater than 10000. Thus, the top level invoca-
tion of hi ghl ypai dp will return true, which is correct.

As we have seen, the problem is that there may exist a mutually recursive
dependency between type predicates, causing a loop. When AMOS has com-
piled a type predicate it may look something like the template in example 103
on page 84. First comes a number of expressions expr, to expr that may

9. 14500 = 15500 - 1000
10. After having executed enpp(: €1) which succeeds.
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involve the argument o. Should any of these expressions fail, then we never
reach the typesof or dtr function call which might cause a loop and the
t ypepr edp function simply fails. However, if expr 1 to expr do not fail, we
have to execute the typesof or dtr call before we can execute expr, to
expr . If expr ,to expr , all succeed for a given argument o, we know that o is
a member of the derived type. Likewise if some expression of expr ,to expr
fails, we can say for certain that the argument o is not an instance of the derived
type.

Since it is the second recursive invocation of t ypepr edp we assume returns
true, it does not matter if we are wrong, since we will fail on some of the
expression expr ,to expr , in the first invocation and thus t ypepr edp will fail
as it should.
typepredp(o) =
sel ect true where

expr

expr

typesof or dtr call causing | oop

expr

expr
Example 103: Template for compiled type predicates.
For this reasoning to be valid users must not specify tautologies when defining
derived types. In figure 5.5 an example of this is shown. Type A has two proper-

fna: I nteger
fnb = 2*fna

s B — - Create derived type B as
; — [A ao where odd(fnb(ao))];
C_

. — create derived type C as
“_ > [B bo where 1=1];

fnb = A fnb->Integer(co)+1;
Figure 5.5: Example of a harmful tautology.

ties fna and f nb. f nb is specified in terms of f na in such a way that it is
always guaranteed to be even. Then we create the derived type B as being all
instances of A for which f nb is odd. The extent of B should be empty since f nb
is never odd. Next we define derived type C as being all instances of B for
which 1=1 . Property f nb is also overridden and C. f nb- >I nt eger is guaran-
teed to always be odd. When C.fnb->Integer is defined, the fnb in
odd(fnb(ao)) becomes late bound causing a mutual recursive dependency
between the type predicate bp and cp. Now suppose that we have created an
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instance of type A as
create A(fna) instances :a(l);
Example 104: Creating an instance of type A.

If we now asked if : a was an instance of type B, the answer would be true
which is counter-intuitive. The reason is that the call bp(: a) would result in
cp being invoked recursively twice with the argument : a. On the second invo-
cation AMOS would assume that cp(: a) should return true, hoping that if the
assumption was wrong, it would be discovered later by the rest of the condition
in the wher e-clause defining derived type C. However, this condition says 1=1
which is always true. Thus, no assumption made can ever fail and we can prove
anything.

To conclude, derived types combined with late binding are very useful as we
saw in section 5.3.1. However, we must be careful about how we define our
derived types or we may end up with paradoxes. A more careful study should
be conducted and a formal framework defined allowing us to define what defi-
nitions of derived types can be considered safe.

5.4 Multidatabase Queries

In this section we briefly describe how multidatabase queries are treated in
AMOS.

Let us return to our integration example in section 4.3. Suppose that a user
wants to retrieve the name and the salary for all bosses.

sel ect nane(b), salary(b) for each Boss b;
Example 105: Retrieving the name and salary for all bosses.

When a query or a function definition is submitted to AMOS it is first flattened.
Flattening means that nested function calls are removed by introducing new
variables and derived functions are substituted for their definitions. The query
in example 105 after flattening is seen in example 106.

sel ect nm sal
for each Boss B, String nm Integer sal, Integer il,
I nteger i2, Person@dbl dblo, Person@db2 db2o

wher e p2dblpl(b)=dblo and

nane@ db1(dblo) =nm and

p2db2(b) 1?=db20 and

sal ary@ db2(db20) =i 1 and

m sc@ db2(db20) =i 2 and

plus(il,i?2)=sal;

Example 106: Query after flattening.

11. Left for readability; is replaced by its definition in reality.
12. Left for readability; is replaced by its definition in reality.
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We see how the name and salary functions have been replaced by their defini-
tions and how these definitions have been flattened. Next AMOS type checks
the query and if no type errors are found, the query is optimized for best possi-
ble performance. The optimizer will rearrange the expressions in the wher e-
clause to minimize the response time.

Communication can add significantly to the cost of executing a query and
therefore it has to be carefully optimized. One way to reduce communication is
to build chunks of expressions. A chunk is a number of expressions that can be
executed together by a data source.

Since AMOS transforms queries into disjunctive normal form before optimiza-
tion, a chunk in AMOS is a number of conjuncts. Therefore, for each data
source defined, we record whether it supports conjunction or not. If a data
source supports conjunction we may group expressions together and thereby
reduce communication. Whether it is beneficial or not to build a chunk has to
be determined by the query optimizer based on the expected cost of the execu-
tion plan. Due to the large search space a randomized search method [Niés,
1993] or a heuristic search method [Litwin and Risch, 1992] have to be used.

Communication can also be reduced further if universal functions are sup-
ported. A universal function is a function that has the same functionality at dif-
ferent data sources. For example, the function pl us performing addition has
the same functionality in all AMOSs and even in relational databases. Another
example would be comparison operators. For each data source we record what
universal functions it supports. This enables the optimizer to move execution of
universal functions to data sources that support them if it improves the execu-
tion plan.

Suppose that our query, after optimization, appears thus:

sel ect nm sal
for each Boss B, String nm Integer sal, Integer il,
Integer i2, Person@dbl pl, Person@db2 p2
wher e oi dmapt abl e3(b) =<p1, p2> and
name@ db1(pl) =nm and
salary@ db2(p2)=i 1 and
m sc@ db2(p2) =i 2 and
plus@db2(i 1,i2)=sal;
Example 107: Query after optimization.
We see how some expressions have been rearranged and also how the optimizer
has chosen to invoke the function pl us@ db2 instead of pl us. This reduces
the communication since addition now is performed at DB2 and only the result

has to be sent back. If we had executed pl us, we would have to send back both
the operands to pl us.

The optimized query is fed to the plan transformer that replaces chunks with

13. The expanded form of the two converter function calls in example 106.
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function calls and ships chunks to appropriate data sources. In our example the
last three expressions in the where-clause should all be executed at DB2 and
DB2 supports conjunction. Thus, the last three expressions constitute a chunk.

After plan transformation our query becomes

sel ect nm sal
for each Boss B, String nm Integer sal, Integer il,
I nteger i2, Person@dbl dblo, Person@db2 db2o
wher e p2dblp(b)=dblo and
p2db2( b) =db20 and
nane@ db1(dblo) =nm and
db2_chunk(db2o0) =sal ;

Example 108: Query after plan transformation.
At DB2 a function corresponding to the chunk has been created.

create function db2_chunk(Person p)->lnteger as
sel ect sal for each Integer sal, Integer i1, Integer i2
where salary(p)=il and
m sc(p)=i2 and
plus(il,i?2)=sal;

Example 109: Function created at DB2.

Functions corresponding to chunks in a query plan are called chunk functions.
A chunk function is optimized and compiled when it is created. In an AMOS a
cache of chunk functions exists. If the same or a different query needs the same
chunk function and it has not been replaced in the cache, it is just invoked with-
out the overhead of optimization and compilation.
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5.5 Concluding Remarks

In this chapter we have described how virtual types are implemented in AMOS.
For derived types we described two implementation approaches, the material-
ized approach in section 5.1.1, and the derivation approach in section 5.1.2.

In AMOS the derivation approach is used and in section 5.1.2 we described
how the type extent function and the type predicate function are constructed for
derived types. A similar description for derived types was given in section 5.2.

In section 5.3.1 we looked at late binding combined with derived types and
showed how this can be helpful. However, late binding combined with derived
types causes some problems. A description of these problems was given in sec-
tion 5.3.2.

The approach taken by COOL* and MultiView, described in chapter 2, to avoid
the problems described in section 5.3.2 is to disallow overriding of functions. A
function cannot be declared on a class if it already exists. Suppose that we want
to redefine a function f for a class C. We must then first side the function which
means that the class, C’, resulting from the hide operation will have a type that
is a supertype of the type of C. When we define the new function /" on C’, we
get a new class C’” whose type will be a subtype of the type of C’. Thus, C and
C’’ will become siblings in the class hierarchy and will not be comparable.

We feel that this approach is too restrictive and that we should try instead to
determine whether the definition of a derived type is safe or not. If it is unsafe,
then the system should issue an error message.
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6 Summary and future work

In this last section of the thesis, a summary of the main contributions of this
work and directions for future work are presented.

6.1 Summary

In this thesis we have discussed the problem of information integration in a
multidatabase environment. Two different integration strategies were dis-
cussed, the global schema approach and the multidatabase language approach.
The various advantages and restrictions of the two approaches were presented.
In AMOS we opted for the multidatabase language approach and we discussed
how to achieve information integration in an object-oriented multidatabase
environment using multidatabase queries and object views.

Two important problems that have to be addressed when performing object-ori-
ented information integration are resolving structural differences and the
objects equivalence problem.

Since object-oriented data models are semantically rich, the same concept may
be represented by different modelling constructs in different data sources. For
example, what is a type in one data source might be modelled as a value of an
attribute in another data source. To be able to perform a successful integration
we must be able to map between different modelling constructs. In chapter 2 we
reviewed proposals of how to achieve this using virtual or derived classes. A
virtual class is a class whose extent is defined by a declarative query expres-
sion. In AMOS we have adopted this concept and we call it derived types. We
described the semantics of derived types in chapter 4, and in chapter 5 we out-
lined the implementation.

Two key features in object-oriented data models are inheritance and function
overriding. These features allow users to model a problem in a natural way.
Function overriding requires functions to be late bound when the correct resol-
vent cannot be determined at compile-time. The resolution of late bound func-
tions has to be performed at runtime based on the type of the actual argument
supplied to the function. The systems described in chapter 2 providing virtual
classes, disallowed, by the definition of their data models, the use of late bound
functions in expressions defining virtual classes. In section 5.3.1 we gave some
examples of the usefulness of derived types combined with derived types.
Thus, in AMOS we decided to allow late binding in expressions defining
derived types. However, this causes some problems. These problems were iden-
tified and described in section 5.3.2.
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We also addressed the problem of object equivalence. Unifying types and same-
functions was introduced by Pegasus and COOL* described in chapter 2 to
address this problem. In AMOS we use mapped type. Same-functions define
equivalence classes and avoid producing new objects when objects are merged.
In Pegasus and AMOS a new type is created whose instances are new objects,
each representing a number of merged objects. However, the mechanism of
AMOS is more general than the one used in Pegasus. Mapped types cannot only
be used for merging objects; we also use them to create object-oriented views
of non object-oriented information, i.e. we can use mapped types for integrat-
ing EDS as well. In Pegasus the concept of producer types was used to accom-
plish this.

As well as discussing various integration strategies and object views we pre-
sented the architecture of our prototype platform AMOS. Also, we gave a short
description of how multidatabase queries could be compiled and executed in
AMOS.

6.2 Future Work

There are many issues remaining, both practical and theoretical, that need to be
addressed to provide a complete framework for integration.

6.2.1 Multidatabase Queries

The query compiler of AMOS should be rewritten to support the syntax of
multidatabase queries as presented in section 3.3.1. The syntax supported today
is much more cumbersome, forcing users to specify complete query expressions
to be remotely evaluated.

The optimizer of AMOS also needs to be rewritten to build chunks, support
universal functions, and estimate the cost of communication. Today functions
are built for the complete query expression that should be remotely evaluated.
These functions are treated as black boxes and the optimizer currently has no
opportunity to optimize them.

6.2.2 Initializors and constructors

Since a user has to specify explicitly, in constructors and initializors, what type
new objects should become instances of, inconsistencies may arise if the wrong
type is specified. A foolproof method of declaring initializors and constructors
should be provided.

Also, the current implementation of constructors and initializors has not been
tuned for performance. Hand-coded examples have shown that rewriting the
compiler for intializors and constructors can result in significant efficiency
gains when creating new objects.
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6.2.3 Formalization

A formal model of the data manipulation language and the query language of
AMOS should be defined. This is necessary if we want to be able to determine
whether a definition of a derived type is safe or not, i.e. if we will encounter the
problems described in section 5.3.2.

A formal model would also allow us to study the problem of subsumption fur-
ther. Being able to decide whether one expression subsumes another allows us
perform better placement of derived types in the type hierarchy. Also, we
would be able to improve query optimization. Today, queries may contain sev-
eral statements that subsume each other, e.g. a variables value should be greater
than 15 and also greater than 20. Clearly, if the value is greater than 20 it is also
greater than 15. Thus, we would be able to remove a number of expressions
from queries, resulting in better response time. In multidatabase queries we
could expect even greater savings, as removal of expressions from a query may
result in less communication, which reduces response time significantly.

6.2.4 Extended view mechanism

The view mechanism of AMOS should be extended to allow definition of view
schemas as in MultiView. This would allow us to hide information. Today the
whole schema is visible at all times. The view mechanism could also be used
for authorization purposes if user entities were introduced.

The view mechanism should also be extended with support for parameteriezed
views, as described in section 2.5, to allow us to resolve all structural differ-
ences in a declarative manner. The current implementation should be relatively
easy to extend since functions are used to implement type extent functions and
type predicate functions. We would have to introduce three new types, Type-
Schema, Functi onSchema, and Obj ect Schema whose instances would be
schemas declared by the user.

Since derived functions are used to implement object views, the schema param-
eters would simply become extra arguments to the functions. However, compi-
lation and optimizations of queries using parameteriezed views is a challenge.

6.2.5 Level 3 integration support

The query compiler should also be modified to support full level 3 integration,
i.e. it should be possible to create stored functions whose argument and result
types may stem from different databases.

One difficulty with full level 3 integration is that it creates inter-database
dependencies. These decrease the autonomy of the AMOS servers. Objects
referred by other AMOS servers cannot be deleted. This means that a server
containing much used information may run out of memory since the informa-
tion it contains are referred by many other servers. In the KIWIS system [Ahl-
sén, 1995] the concept of contract is introduced. When information is exported
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by some server to a client, the server and the client agree on a contract specify-
ing the duration of the information exportation. When the contract expires, the
server is free to do as it pleases with the exported information. Contracts
appear to be a good solution to the problem.

6.2.6 Tools for integration

As we have seen, we can integrate information using virtual types. However,
currently users have to do quite a bit of “programming”. A higher level abstrac-
tion should be provided that allow users to specify what information to inte-
grate instead of how this information should be integrated, i.e. a declarative
integration specification is required. An example of such a mechanism is the
proposal for automatic importation of relational schemas in Pegasus [Albert et
al., 1993].
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