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information of different kinds. Such data providing web services return a set of objects for a
given set of parameters without any side effects. There is need to enable general and scalable
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any data providing web service operations by reading the WSDL documents describing them.
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optimized parallel execution plan calling queried data providing web services.

For scalable execution of queries to data providing web services, an algebra operator PAP
adaptively parallelizes calls in execution plans to web service operations until no significant
performance improvement is measured, based on monitoring the flow from web service
operations without any cost knowledge or extensive memory usage.

To comply with the Everything as a Service (XaaS) paradigm WSMED itself is implemented
as a web service that provides web service operations to query and combine data from data
providing web services. A web based demonstration of the WSMED web service provides
general SQL queries to any data providing web service operations from a browser.

WSMED assumes that all queried data sources are available as web services. To make any
data providing system into a data providing web service WSMED includes a subsystem, the
web service generator, which generates and deploys the web service operations to access a data
source. The WSMED web service itself is generated by the web service generator.
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1. Introduction 

The growth of the Internet and the emergence of XML for data interchange 
in a loosely coupled way have increased the importance of web services  [7] 
incorporating standards such as SOAP  [18], WSDL  [9], and XML Schema 
 [42]. Web services support an application infrastructure by defining a set of 
operations that can be invoked over the communication network. Web 
service operations are self contained using meta-data to describe data types 
of their arguments and results, i.e. their signatures, using the Web Service 
Description Language, WSDL. Thus web services provide a general 
infrastructure for remote calls to predefined operations.  

Web services are often used for retrieving data from servers providing 
information of different kinds. A data providing web service operation 
returns collections of objects for a given set of arguments without any side 
effects. This is known as a form of search computing  [8]. However, data 
providing web service operations don’t provide general query language or 
view capabilities to search and join data from one or several data providing 
web services, which is the topic of this Thesis.  

As an example, consider a query to find information about places in some 
of the US states along with their zip codes and weather forecasts. Four 
different data providing web service operations can be used for answering 
this query. First the GetAllStates operation from the web service GeoPlaces 
 [10] is called to retrieve the desired states. The GetInfoByState operation by 
USZip  [36] returns the zip codes for a given US State. The GetPlacesInside 
operation by Zipcodes  [11] retrieves the places located within a given zip 
code area. The GetCityForecastByZip operation by CYDNE  [12] returns 
weather forecast information for a given zip code. 

A mediator  [39] is a system that allows data from different data sources to 
be combined and queried. In our setting a mediator enables queries joining 
data from different data providing web service operations.  

In this work it is investigated how to build a general system for scalable 
querying of data providing web service operations. The development of a 
web service based mediator prototype called WSMED (Web Service 
MEDiator) is expected to provide insights into a number of research 
questions: 
1. To what extent can web service standards, such as WSDL and SOAP, be 

utilized by a mediator to query data providing web service operations 
efficiently and scalable?  
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2. How can views of data providing web service operations for a high level 
query language such as SQL be automatically generated based on 
WSDL descriptions?  

3. How can query optimization and rewrite techniques be used to provide 
efficient and scalable search from different data providing web services? 

4. How can the query optimizer speed up general queries calling web 
service operations without knowing their costs? 

5. How can data sources that are not accessible via web services be simply 
transformed into data providing web service operations, making them 
queryable by a web service mediator? 

6. How can the Everything as a Service (XaaS) paradigm  [33] be used for 
querying data providing web services? That is, can a web service 
mediator be provided as a web service and be used in a browser without 
any additional software installations and hardware setups? 

To answer the research questions we have developed and evaluated the 
WSMED prototype, which enables high level and scalable queries over any 
data providing web services.  

WSMED can access dynamically any web service operation by retrieving 
its WSDL document. WSMED contains a generic web service database for 
representing descriptions of any WSDL document. This database is used to 
dynamically construct the web service operation calls required to process a 
query. This provides the answer to research question one. 

A web service operation is presented by WSMED as an SQL view. SQL 
queries can be expressed in terms of these views. For a given web service 
WSMED automatically generates such views for all its web service 
operations based on its WSDL definition. The views are generated using the 
internal WSMED query language (WQL), which has support for the web 
service data types. The automatic generation of SQL views provides the 
answer to research question two. 

Web service operations are usually parameterized where input parameters 
have to be bound before they are called. Two web service operation calls in 
a query are dependent if one of them requires as input an output from the 
other one, otherwise they are independent. In the above example, the web 
service operations GetPlacesInside and GetCityForecastByZip are dependent 
on GetInfoByState but independent of each other. A challenge here is to 
develop methods to optimize queries containing both dependent and 
independent web service calls. In general such optimization depends on 
some unknown web service properties. Those properties are not explicitly 
available and depend on the network and runtime environments when and 
where the queries are executed. In such scenarios it is very difficult to base 
execution strategies on a static cost model, as is done in relational databases.  

To improve the response time without a cost model, WSMED uses an 
approach to automatically parallelize the web service calls at run time while 
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keeping the dependencies among them. For each web service operation call 
in a query the WSMED query optimizer generates a parameterized sub-plan, 
called a plan function, which encapsulates the web service operation call and 
makes data transformations such as nesting, flattening, filtering, data 
conversions, and calls to other plan functions. WSMED will decompose the 
query plan to guarantee that dependent web service operations are called 
with proper parameter bindings. 

The query performance is often improved by setting up several 
parameterized web service calls in parallel rather than to call the operations 
in sequence for different parameters. In WSMED multi-level parallel 
execution plans are automatically generated as process trees where different 
plan functions are called in parallel in different processes, called query 
processes. For adaptive parallelization of queries with web service operation 
calls, the algebra operator PAP (Parameterized Adaptive Parallelization) is 
implemented. PAP dynamically modifies a parallel plan by local monitoring 
of plan function calls without any cost knowledge. 

The adaptive parallelization of queries calling data providing web service 
operations provides the answer research questions three and four. 

WSMED assumes that queried data sources are available as web services. 
To implement a new data providing web service for a data source requires 
development of software to access the data source from web service 
operations, defining a WSDL document to describe the interface, and 
deploying the interface code. To simplify the implementation of data 
providing web services WSMED includes a subsystem, the web service 
generator, which generates and deploys the web service operations to access 
a data source. The programmer first defines data source interface functions 
to access the data source as queries by developing a wrapper in the 
extensible wrapper/mediator system Amos II  [32]. Once the interface 
functions are defined the WSMED web service generator automatically 
generates the corresponding web service operations and dynamically deploys 
them without restarting the web server. The signature of each so generated 
web service operation is defined in an automatically generated WSDL 
document based on the signatures of the interface functions. The WSDL 
document completely describes the web service interfaces of the deployed 
operations. Each operation calls the interface function and sends back the 
result as a collection. Interface functions have been defined for many 
different kinds of data sources  [1], e.g. relational DBMSs, semantic web 
data, topic maps, and CAD servers. 

Automatic generation and deployment of web services for wrapped data 
providing systems provides an answer to research question five.  

WSMED itself is available as a general web service to process queries 
over other web services, known as the WSMED web service. It provides web 
service operations to handle user sessions, import WSDL documents for web 
services to query, user authentications for accessed web service operations, 
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inspecting the schema for the generated SQL views, and executing queries 
over the views. The WSMED web service is generated by the web service 
generator. The automatically generated WSDL document wsmed.wsdl  [41] 
describes the interface of the WSMED web service operations. The 
functionality of WSMED is demonstrated through a publicly accessible web 
based demonstration  [40]. A JavaScript program enables the user to query 
any data providing web service by calling the WSMED web service 
operations directly from a browser without downloading any software. This 
shows that the WSMED web service adheres to the XaaS paradigm and 
provides an answer to research question six.  

The reminder of this Thesis is organized in the following way: Section 
two introduces the technical background on which the research work is 
based. Section three explains how the papers I-VIII contribute to answering 
the research questions. Finally, Section four concludes and indicates future 
directions. 
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2. Background 

This chapter presents the technical background of the major enabling 
technologies for mediating and querying web services. It briefly covers 
database management systems and the core technologies involved with web 
services. 

2.1. Database Management Systems 
A software system that allows creating and manipulating huge amounts of 
data in a structured way is known as a Database Management System 
(DBMS)  [14]. A database is defined as the group of data managed by a 
DBMS. A DBMS facilitates the following: 
• It allows the users to create a database and specify its structures as a 

database schema through a Data Definition Language (DDL). 
• It permits the users to insert, delete, update and query data from a data 

base through a Data Manipulation Language (DML). 
• It provides a security system to support multilevel authentication 

control.  
• It preserves the consistency of data through an integrity system. 
• It provides transaction and recovery control to restore the database to a 

previous consistent state after hardware and software failures. 

To describe the data requirements of an organization in a readily 
understandable way by the users, a higher-level description language for 
schemas is required: that is known as the data model for the DBMS. DBMSs 
use different kind of data models. The most common data model is the 
relational data model where data is represented as tables. Central in the 
relational data model is the provision of a high level query language for 
efficient database search using declarative queries. The most common 
relational query language is the Structured Query Language (SQL)  [14]. 
SQL is used in this Thesis work for querying data providing web services 
rather than data stored in tables.  

A relational view is virtual relation (i.e. table) defined through a query 
expression.  A view is not physically stored in the database but can be 
queried as other relations. It is sometimes possible to modify views by an 
insertion, deletion, or update, so called updatable views. In this Thesis 
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relational views are defined that search data from data providing web service 
operations. 

The Entity-Relationship (ER) model is a graphical data model for abstract 
representation of database schemas. During the database design process, the 
database schema is represented in the ER model and then converted to the 
data model of the DBMS, e.g. the relational model. 

In a functional data model  [34] data is represented using typed functions 
rather than tables. This Thesis work uses the functional DBMS Amos II  [32] 
to internally represent web service meta-data and views over web service 
operations. 

Query processing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure   1 Query processor 

Query processing (Figure   1) is the process of efficiently executing 
declarative queries over large databases. It transforms a declarative query 
into an execution plan, which is a program that specifies in details how the 
data is retrieved. The query processor is the group of components of a 
DBMS responsible for query processing. It has the following components: 
• The parser ensures that the query syntax follows the grammar of the 

query language. It transforms the query into an internal intermediate 
form, usually a logical calculus expression.  
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• The query optimizer translates the parsed query into an execution plan, 
which is a program to retrieve data. The query execution plan is a 
program with DBMS-specific evaluation primitives such as scan 
operators, selection operators, various index scan operators, several join 
algorithms, sort operators, and a duplicate elimination operator. A query 
typically has many feasible execution plans, and choosing an efficient 
plan is named query optimization, which is performed by the query 
optimizer. The traditional query optimization is based on cost-based 
optimization  [17]. It considers all likely execution plans and estimates 
the cost of each of the plans based on the number of disk blocks read, 
central processing unit (CPU) usage, and communication cost. Meta-
data provides cost metrics. Based on this the cheapest execution plan is 
chosen. Typically heuristics are applied to transform the execution plan 
to reduce the optimization cost.  

• The executor interprets the execution plan to produce the query result. 

In this Thesis work query optimization techniques are developed for 
generating efficient execution plans that contain calls to web service 
operations.  

Adaptive Query Processing 
The traditional cost-based optimization strategies often expose limitations 
and have bad performance when the execution costs cannot be estimated 
precisely enough. In particular, it is not always possible to get the precise 
statistics about derived data collections. Furthermore, the statistics are 
sometimes unreliable due to dynamically changing data at runtime and work 
load characteristics. Therefore, adaptive query processing (AQP) techniques 
 [13] have been developed for query optimization while the query is 
executing. AQP utilizes runtime feedback and modifies the query execution 
plan on the fly. To increase the opportunities of adaptation, special dynamic 
execution plan operators are introduced, such as Symmetric Hash Join  [29] 
and Eddies  [3]. 

In this Thesis work techniques are introduced for run time adaptive 
parallelization of execution plans that call expensive functions such as web 
service operation. 

Distributed and Parallel databases 
In distributed databases  [30], data management is distributed over many 
processing nodes that are interconnected via a network. The data distribution 
is not visible to the end user. The database administrator provides data 
distribution hints to the distributed DBMS. Distributed DBMSs effectively 
manage distributed databases by query optimization and reliable data 
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management. Distributed query optimization is the process of generating an 
efficient execution plan for the processing of a query to a distributed 
database system. In this Thesis queries over distributed data providing web 
service operations are optimized. 

Parallel DBMSs  [30] is a kind of a distributed database system that runs 
on a cluster of processing nodes to achieve better performance through 
parallel execution of operators. In contrast to distributed database 
managements systems, data distribution is not visible to the database 
administrator in parallel DBMSs. Cost-based approaches, such as two-phase 
query optimization  [19], is used in parallel database management systems to 
speed up queries. This Thesis work adaptively parallelizes queries calling 
distributed web service operations without any cost model.  

2.2 Mediators 
Mediators  [39] are software modules used to query heterogeneous data 
sources. A mediator represents a virtual view or composition of views that 
integrate data from different data sources. Mediators don’t store any data 
themselves and this contrasts mediation from the data warehouse  [16] 
approach where all data is uploaded from data sources to a database. Instead, 
as shown in Figure   2, mediators make use of interfaces called wrappers to 
retrieve data dynamically from the data sources.  

Views play a prominent role in mediation. Since the diverse sources 
represent the same information differently from the mediator schema, a 
mediator must include view definitions describing how to map the source 
schema into the mediator's schema. Further, the views must be able to join 
and convert conflicting and overlapping data from different data sources. 
The views are defined by means of a common data model (CDM). 

The system interpreting the mediator modules is known as the mediator 
engine. The mediator engine interprets queries expressed in terms of the 
CDM. Performance and scalability over the amounts of data retrieved are 
important design aspects of mediator engines.  

A wrapper is a software module that facilitates query processing and 
translation of data from a particular external data source. When a query is 
given to the mediator engine, it constructs the appropriate sub queries to 
send to the wrappers. A wrapper accepts queries from the mediator engine 
and translates them so they can be answered by the underlying data source. 
Then it returns back the result to the mediator engine. The mediator engine 
collects data from several wrapped data sources and post-processes them 
before sending back the result of the query to the user.  
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Figure   2 Mediation architecture 

There are several systems such as Garlic  [35], Information manifold  [23], 
and TSIMMIS  [15] using mediators for data integration from heterogeneous 
data sources. 

This Thesis work extends the Amos II mediator engine  [32] to process 
data from wrapped web service operations. 

Capability based optimization in mediators 
Wrapped data sources often limit certain attributes as inputs and produce 
values of other attributes as outputs, but have no general query capabilities. 
We say that such sources have limited capabilities. For example, web 
service operations can be seen as data sources with limited capabilities.  

Capability-based query optimization  [25]  [43] is tailored to generate 
feasible plans accessing data sources with limited capabilities. Cost 
measures can be used to choose among the feasible plans. Source 
capabilities are represented and examined during the query optimization 
mainly in two ways: 
• Rule-based checking: This approach is implemented in mediator systems 

such as Garlic  [35], Information Manifold  [23], and TSIMMIS  [24] to 
match the source capabilities. Source capabilities are represented as 
capability records  [23] or by some special description language such as 
Relational Query Description Language (RQDL)  [37]. Complex rules 
are applied to find the suitable sources. During the query optimization 
phase rewrite rules are applied for efficient query execution. 

• Binding patterns: Source capabilities are represented by a set of 
adornments  known as binding patterns  [16]. Matching sources are 
selected by analyzing the binding patterns. For example, the web query 
optimization system  [44] and Amos II  [32] utilize binding patterns to 
represent source capabilities. Adornments are attached with each 
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attribute of a data source. It is represented by an alphabet with specific 
meaning: 

I f (free) - the value of the attribute need not to be specified 
II b(bound) - the value of the attribute must be specified 
III c[L] (choice from a list L) - the value of the attribute must be 

specified from the values in the list L. 
IV o[L] (optional, from the list L) - the value of the attribute is 

optional, and if a value is specified it could be chosen from 
the list L. 

f, b, and c[L] are the common adornments used to address the capabilities of 
sources that can be accessible via web services. o[L] is common when 
accessing web forms. 

This Thesis work use binding patterns for defining capability limited view 
over web service operations. 

Estimating cost metrics in the mediation environment is often difficult as 
the data sources are independent from the mediator. For example, with data 
accessible via web services the data retrieval time can vary due to congestion 
on the communication network or that the server providing service is highly 
loaded by several requests for data. Long-term observation or continuous 
monitoring of services  [20] and adaptive query processing strategies can 
alleviate this. This Thesis work uses adaptive parallelization to dynamically 
optimize queries calling web service without using cost metrics of web 
service operations. 

2.3 Web Services 
Web services provide a message exchanging framework for applications by 
defining a set of operations that can be invoked over the communication 
network. Each web service operation defines a specific action performed. 
Web services incorporate standards such as SOAP  [18], WSDL  [9], XML 
Schema  [42], HTTP  [21] and UDDI  [6]. A web service is described using 
the WSDL language. A WSDL description uses XML-Schema to describe 
data types of the arguments and results of operations. WSDL descriptions 
are published in a UDDI directory, which is a central place that holds set of 
web service descriptions. Any one can find required web service 
descriptions by querying the UDDI directory. A SOAP message is used to 
invoke a web service operation call by packing all the necessary details in a 
standard format. HTTP may be used to transfer the SOAP message to invoke 
a web service and return the result back. 

The layered web service architecture is illustrated in Figure   3. The 
discovery layer acts as a centralized repository of web services. By querying 
this repository one can find a required web service based on their 
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descriptions. The open standard technologies UDDI and WS-Inspection  [5] 
is used at this layer for how to publish, categorize, and search for services 
based.  

 

 

 

 

 

 

 

Figure   3 Web service architecture 

The descriptions layer deals with how to represent service behavior, 
capabilities, and requirements in machine readable form. WSDL is used to 
define the functional capabilities of a service in terms of operations, service 
interfaces, and message types. Also it supplements deployment information 
such as network addresses, transport protocols, and encoding formats of the 
message transmission. 

The communications layer carries the data over the network for the 
application. Data is converted into an internal format by the message 
packaging layer. SOAP provides a standard way for such message 
packaging. Then the packed message will be transported by the 
communications layer using internet technologies including HTTP, SMTP 
 [26] and FTP  [28].  

The service quality layer addresses protocols that ensure the quality of the 
service such as security, reliable messaging, transactions, management etc. 
The WS-policy framework  [4] declares the service quality requirements and 
their capabilities to enable service quality policies of web services to be 
attached to the different parts of a WSDL definition. Security policies for 
authentication, data integrity, and data confidentiality are standardized by 
OASIS as WS-Security policy  [22]. The web service management task force 
 [38] is tailoring the standards for web service management that involves 
with monitoring, controlling, and reporting of service qualities and usage. 

Other service layers represent the protocols used for various purposes 
such as composing services to create new applications. For example, 
BPEL4WS  [2] provides a workflow oriented composition model well suited 
for business applications. 
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Figure   4 Service-oriented architecture 

Figure   4 illustrates the interrelationship of SOAP, WSDL and UDDI in a 
service oriented environment. The service provider is responsible for 
generating and deploying a service. It publishes a service description using 
WSDL in a service registry, UDDI.  The UDDI advertises the service and 
allows a service requestor to send queries to the registry to find a service 
either by name, category, identifier, or a supported specification. Once the 
service is found, the service requestor receives the information about the 
location of its WSDL document. Then the service requestor creates a SOAP 
message in accordance with service descriptions of the WSDL document and 
sends it over the network to the service provider to use the service. The bind 
operation embodies the relationship between the service requestor and the 
service provider.  

Web Services Description Language  
The functional description of a web service is defined by the XML based 
Web Services Description Language (WSDL). A WSDL document 
describes: 
1. What a service does: The operations provided by the service and the data 

needed to invoke them. 
2. How a service is accessed: Details of the data formats and protocols 

necessary to access the service’s operations. 
3. Where a service is located: Details of the protocol-specific network 

address, such as a URL. 

A WSDL document defines services as set of network endpoints, called 
ports. In WSDL, the abstract definition of endpoints and messages is 
separated from their concrete network deployment or data format bindings. 
This allows the reuse of abstract definitions. Messages define abstract 
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descriptions of the data being exchanged. Port types are abstract collections 
of operations. An operation defines the description of an action supported by 
the service. A protocol such as SOAP, HTTP, and data type specifications 
for a particular port type represent a binding for a web service operation. A 
port is defined by associating a network address with a binding. 
XMLSchema is used to describe message formats. WSDL allows user 
defined type definitions known as extensibility elements.  

 
 
 
 
 
 
 
 
 
 

 

Figure   5 Document structure of WSDL 

Figure   5 illustrates a simple WSDL document structure. Each service has 
several ports to define where it is located. In turn each port is attached to one 
or more bindings that describe how a web service is accessed. Each binding 
is attached to a portType having a set of operations to answer what a service 
is does. Request and response messages are associated with each operation 
to indicate the input and output of an operation.  

In this Thesis work web service operations’ meta-data are imported from 
the WSDL documents that describe the operations. Those meta-data are used 
to automatically define SQL views over web service operations.  

SOAP 
SOAP is an XML based lightweight, platform independent protocol for 
information exchange in a distributed environment. SOAP is used not only 
with HTTP but also used in combination with other protocols such as SMTP 
and TCP  [27]. The simplicity and extensibility are the major design goals of 
SOAP. 
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Figure   6 SOAP Message 

A SOAP message (Figure   6) is made up of three elements: 
1.  The SOAP Envelope is a top element that encapsulates the other two 

elements representing the message. 
2.  The optional SOAP header provides a generic mechanism for adding 

additional features to the message such as routing and delivery setting, 
authentication assertions, and transaction contexts. 

3.  The SOAP body contains the actual message to be delivered and 
processed.  

In addition to the above components a fault block could appear with in the 
body whenever there is an error to be reported to the sender of the SOAP 
message. The SOAP block denotes a single computational unit of data by the 
processor of a message. 

In this Thesis work the query processor constructs SOAP calls to web 
service operations using the imported WSDL meta-data.  

2.4 Active Mediators Object System (Amos II) 
Our prototype system WSMED is based on the existing mediator engine 
Amos II  [32]. Amos II has a functional data model as CDM. The functional 
query language, AmosQL, is the primary query language. Wrappers can be 
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defined to make heterogeneous data sources queryable. A wrapper performs 
 [31] the following: 
• Schema importation translates a sources’ schema into a form compatible 

with the CDM of Amos II. 
• Query translation converts AmosQL queries into API calls or query 

expressions executable by a source. 
• Statistics computation estimates costs and selectivities for the calls to 

retrieve data from sources. 
• Proxy OID generation constructs proxy object identifiers to describe the 

data from sources. 

The basic concepts of the Amos II data model are objects, types, and 
functions. It is used as the CDM for the mediation and it is an extension of 
the Daplex  [32]  [34] functional data model. 

Objects model all the entities in the database. Amos II has system objects 
and user-defined objects. Objects are represented in two ways, as literal or 
surrogates. Surrogates represent the real world entities such as vehicles, 
persons, etc; and have associated OIDs. They can be explicitly created and 
deleted by the users. The OIDs are maintained by the system. Literal objects 
are self-described system-maintained objects and do not have any explicit 
OIDs. For example numbers and strings. There are also collections of other 
objects: bags, vectors, and records. A bag represents unordered sets with 
duplicates while vectors denote the order-preserved collections. Vectors are 
accessed by the notation v[i] where v is a variable holding a vector, and i is 
the index of an element in a vector. Records are useful to manage data 
retrieved through web services as they often handle nested structures. 
Records access uses the notation s[k], where s is a variable holding a record, 
and k is the name of an attribute in a record. Thus records are indexed by 
arbitrary keys while vectors are indexed by numbers only. Literals are 
automatically deleted by a garbage collector when they are no longer 
referenced. 

Types: Objects are classified into types and each object is an instance of 
one or more types. The extent of a type represents the set of all instances of 
the type. Types are ordered into a multiple inheritances type hierarchy. A 
type is defined and stored in the internal database of the system with system 
function create type. For example: 

create type Vehicle; 

create type Truck under Vehicle; 

Functions represent properties of objects, computations over objects, 
relationships between objects, and are used as primitives in queries and 
views. A function contains two parts: a signature and an implementation. 
The signature defines the types and names of the arguments and the result of 
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a function. For example, the signature modeling the attribute color of the 
type Vehicle would have the signature: 

colour(Vehicle) → Charstring 
The implementation defines the mapping of a function to compute results 

for given arguments. Further, Amos II can inversely compute arguments 
values of a function if the expected result value is known. The inverse usage 
of functions is crucial to specify general queries with function calls over the 
database. For example: 

select vehichlenumber (v)  
from   Vehicle v  
where  colour (v) =’blue’; 

Functions can be classified according to their implementations as:  
• Stored functions are used to represent the properties of objects stored in 

an Amos II database, similar to tables in a relational database. 
• Derived functions are defined as queries in terms of other Amos II 

functions. They are side-effect free and they are precompiled and 
optimized as soon as they are defined. The queries are expressed in 
AmosQL, using has an SQL-like select statement for defining derived 
functions. Derived functions correspond to views in relational databases. 

• Foreign functions enable low-level interfaces for wrapping external 
systems. For example, in this Thesis a general mechanism to call any 
web service operation is implemented as a foreign function named cwo. 

• Multi-directional functions enable to associate several implementations 
of inverses for a given function. This defines functional views having 
different implementations depending on the actual binding pattern of its 
parameters. For example, a view over web services may be implemented 
using several web service operations as in Paper I where different 
operations are called depending on what parameters are known.  
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3. Summary of the Papers 

This section summarizes how Paper I - VIII contribute to answering the 
research questions proposed. Paper I - IV are the main contributions. 

3.1 Paper I 
Paper I presents the overall architecture of WSMED and the general 
capabilities of WSMED for querying data accessible via web service 
operations. After the system has imported meta-data by reading WSDL 
documents for the operations to query, the user can manually define views 
that extract data from the results of web service operations calls. The views 
can be queried using SQL. In Paper I the views are manually specified as a 
set of declarative queries that access web service operations differently 
depending on what view attributes are known in a query. To enable semantic 
optimization of queries over the views based on automatic query 
transformations the user can specify key attributes of a view as a semantic 
enrichment. We evaluated the effectiveness of such enrichments over multi-
level views of publicly available web service operations and showed that the 
key constraint enrichment substantially improves query performance. Paper I 
answers research question one and partially answers research questions two, 
three, and four. However, the optimization is based on semantic 
enrichments that have to be manually defined by the view definer.  

3.2 Paper II 
Paper II describes and evaluates strategies for adaptive parallelization of web 
service calls based on automatically generated SQL views of web service 
operations. Each generated view encapsulates a data providing web service 
operation for given parameters and emits the result as a flattened stream of 
tuples. SQL queries can be made over these views with the restriction that 
the input attributes must be known in the query. When joining such views it 
is often the case that in the execution plan the output of one web service call 
is the input for another, etc. The challenge addressed in Paper II is to 
develop methods to speed up such dependent calls by parallelization. Since 
web service calls incur high-latency and message set-up costs, a naïve 
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approach making the calls sequentially is time consuming and parallel 
invocations of the web service calls should improve the speed. Our approach 
automatically parallelizes the web service calls by starting separate query 
processes, each managing a plan function for different parameter values. For 
a given query, the query processes are automatically arranged in a multi-
level process tree where plan functions are called in parallel. The parallel 
plan is defined in terms of an algebra operator, First Finished Apply in 
Parallel (FF_APPLYP), to ship in parallel to other query processes the same 
plan function for different parameters. By using FF_APPLYP we first 
investigated ways to set up different process trees manually. We concluded 
from our experiments that the best performing query execution plan is an 
almost balanced bushy tree. To automatically achieve the optimal process 
tree we modified FF_APPLYP to an operator Adaptive First Finished Apply 
in Parallel (AFF_APPLYP) that adapts the process tree locally in each 
query process until optimized performance is achieved. AFF_APPLYP starts 
with a binary process tree. During execution each query process in the tree 
makes local decisions to expand or shrink its process sub-tree by comparing 
the average time to process each incoming tuple. The query execution time 
obtained with AFF_APPLYP is shown to be close to the best time achieved 
by manually built query process trees. Paper II answered research questions 
one and two and partially answered research questions three and four.  

3.3 Paper III 
In general queries calling data providing web service operations may have 
both dependent and independent calls. Paper III generalizes the adaptive 
strategy presented in Paper II to handle both independent and dependent web 
service operation calls. The adaptive operator PAP speeds up queries with 
independent web service operation calls by calling in parallel the plan 
functions encapsulating each independent call. Dependent web service calls 
are handled by adaptive parallelization of sequences of PAP calls. This is 
shown to substantially improve the query performance without any cost 
knowledge or extensive memory usage compared to other strategies. Paper 
III answers the research questions one, two, three, and four by providing a 
generalized approach to query both dependent and independent data 
providing web service operations. The performance of PAP is evaluated 
using publicly available web services. 

3.4 Paper IV 
Paper IV describes the overall functionality of the WSMED system. This 
includes the WSMED query processor, the WSMED web service to query 
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any data providing web service operations, the web based demonstration of 
WSMED, and the web service generator.   

The generation and deployment of web services for data providing 
systems answers research question five. 

The web based demonstration of WSMED allows making SQL queries 
combining data from any data providing web services. This answers research 
question six.  

3.5 Paper V 

Paper V provides some preliminary work for Paper I. The WSMED 
architecture and a proposed method to manually define SQL views over web 
service operations are outlined.  

3.6 Licentiate Thesis (Paper VI) 
The Licentiate Thesis outlines some of the research questions, presents the 
technical background on which the research work is based, and proposes the 
WSMED architecture.  Paper I and V are based on the Licentiate Thesis. 

3.7 Paper VII 
Paper VII describes the web based demonstration of WSMED that directly 
invokes WSMED web service operations from a web browser. This work is 
included and elaborated in Paper IV. 

3.8 Book Chapter (Paper VIII) 
The book chapter in Paper VIII is based on Paper I and II. It summarizes the 
WSMED architecture and the adaptive query processing strategies used.   
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4. Conclusions and Future Work 

WSMED provides general database query capabilities over any data 
providing web service operations given their WSDL meta-data descriptions. 
For each data providing web service operation in a given WSDL document, 
WSMED automatically generates relational views by reading web service 
operations’ WSDL descriptions. Such automatically generated relational 
views can be queried with SQL.  

Without any cost knowledge the WSMED query processor automatically 
and adaptively finds an optimized parallel execution plan calling the queried 
data providing web service operations. The algebra operator PAP locally 
adapts the parallel plan until no significant performance improvement is 
measured, based on monitoring the flow from data providing web service 
operations. The operator handles queries where data providing web service 
operations are called both dependently and independently. A strategy using 
PAP is developed, which substantially improves the query performance 
without any cost knowledge or extensive memory usage compared to other 
strategies.  

WSMED assumes that all queried data sources are available as web 
service operations. To make any data providing system into a web service 
WSMED includes a subsystem, the web service generator, which generates 
and deploys the web service operations to access a data source.  

To comply with the XaaS paradigm WSMED itself is implemented as a 
web service that provides SQL query functionality to query and join any data 
providing web service operations. The WSMED web service is also 
generated by the web service generator. To enable search of any data 
providing web services from a browser without any need for installing 
software, the web based demonstration is written as a JavaScript program 
that directly calls the WSMED web service. In summary the contributions of 
the Thesis are: 
1. The WSMED system architecture provides general SQL query 

capabilities over any data providing web services based on their WSDL 
documents. 

2. To enable SQL queries to data providing web services, SQL views are 
automatically generated for any data providing web service operations 
by reading their WSDL documents.  

3. To automatically parallelize queries to data providing web service, an 
algorithm is implemented to transform a non parallel plan into a parallel 



 29 

plan by introducing the adaptive operator PAP that encapsulates plan 
functions calling data providing web service operations.  

4. To automatically and adaptively optimize a parallel plan, the operator 
PAP adapts an initial parallel query process tree by locally monitoring 
result flows from each child query process until satisfactory performance 
is obtained. The adaptive query parallelization does not need any static 
cost model. 

5. To generate data providing web service interfaces to any data providing 
system a web service generator automatically generates web service 
operations for wrapped data sources defined as interface functions. The 
generated web service operations are dynamically deployed without 
restarting a web server. 

6. To comply with the XaaS paradigm, the WSMED web service is 
provided to query any data providing web services. It can be used 
directly from a browser without any software installations. The WSMED 
web service operations are generated by the web service generator. 

All performance measurements were made with publicly available web 
service operations. A possible future work is to develop a benchmark to 
simulate the parallel web service calls for controlled experiments.  

WSMED presently handle relational views that calls data providing web 
services operations without any side effects. Updatable relational views over 
web services is a subject for future work. 
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5. Summary in Swedish 

Sökning bland datagenererande web services 
Den kraftigt ökande tillgången till internetbaserade informationssystem har 
skapat ett behov att utveckla web services  [7], dvs. system och standarder för 
att utbyta information mellan internetbaserade program. Medan s.k. 
webbtjänster gör det möjligt att utbyta information mellan människor och 
webbaserade program i vanliga webbläsare, tillhandahåller web services en 
infrastruktur för informationsutbyte mellan olika webbaserade program.  För 
web services har man utvecklat ett antal standarder som SOAP [18], WSDL 
 [9] och XML Schema  [42]. Web services tillhandahåller verktyg för 
programutvecklare att definiera operationer (eng. operations) som är 
programmeringsgränssnitt för att anropa andra program via Internet. Dessa 
web service-operationer (WSO) är självbeskrivande i den meningen att 
information om hur de anropas och hur data som skall överföras skall se ut 
(s.k. meta-data) beskrivs för varje WSO m.h.a ett speciellt språk som heter 
Web Service Description Language, WSDL.  WSDL-beskrivningarna läggs 
upp på Internet som maskinläsbara dokument. Genom att läsa WSDL-
dokumentet för en web service har ett program all information som behövs 
för att kunna anropa de WSOer som beskrivs i dokumentet.  

Web services används ofta för att hämta data från servrar som 
tillhandahåller information av olika slag. En datagenerande WSO returnerar 
datamängder för givna sökparametrar utan att ha sidoeffekter som ändrar 
data på servern. Sådana tjänster är en form av sökbearbetning (search 
computing)  [8]. Andra typer av web services utför någon åtgärd, t.ex. gör en 
banktransaktion eller startar en maskin.  

Ämnet för denna avhandling är att undersöka hur frågespråk kan göra det 
möjligt att effektivt söka bland olika datagenererande WSOer. Ett frågespråk 
är ett kraftfullt högnivåspråk för att söka bland data. T.ex. är frågespråket 
SQL standardspråk för sökning i konventionella databaser. I avhandlingen 
används SQL för att söka bland data från olika datagenererande WSOer i 
stället för från en konventionell databas. För att utföra motsvarande 
sökningar utan frågespråk programmerat i ett konventionellt 
programmeringsspråk måste man för varje fråga utveckla ett specialiserat 
program som implementerar en detaljerad strategi för hur sökningen bland 
datagenererande WSOer skall gå till. 
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Som ett exempel, antag att vi vill ställa en fråga som returnerar 
information om namngivna platser i några av USAs delstater, t.ex. deras 
postnummer och väderprognoser. Fyra olika datagenererande WSOer kan 
användas för att besvara frågan. Först kan operationen GetAllStates från web 
servicen GeoPlaces  [10] anropas för att finna allmän information om 
delstater i USA. Sedan kan operationen GetInfoByState från web servicen 
USZip  [36] anropas för att finna alla postnummer i en given delstat. 
Operationen GetPlacesInside från Zipcodes  [11] returnerar alla platser inom 
ett postnummerområde. Slutligen kan operationen GetCityForecastByZip 
från CYDNE  [12] anropas för att få väderprognosen för ett givet 
postnummer. 

Ytterligare teknik som används i avhandlingsarbetet är mediatortekniken 
 [39]. En mediator är ett system för att utföra frågor som kombinerar data 
från många olika datakällor. I detta arbete avses med en mediator ett system 
som gör det möjligt att m.h.a. ett frågespråk specificera frågor som 
kombinerar data från olika datagenererande WSOer.  

I avhandlingen undersöks hur man kan bygga ett generellt system för 
skalbara frågor över datagenererande WSOer. Ansatsen är att utveckla ett 
prototypsystem med benämningen WSMED (Web Service MEDiator) för att 
ge svar på ett antal forskningshypoteser: 

1. I vilken utsträckning kan standarder för web services som WSDL 
och SOAP utnyttjas av en web service mediator för att effektivt 
och skalbart utföra frågor till datagenererande WSOer? 

2. Hur kan man, baserat på WSDL-beskrivningar automatiskt generera 
vyer över datagenererande WSOer för ett högnivåfrågespråk som 
SQL? 

3. Hur kan optimerings- och transformationstekniker för databasfrågor 
användas för att tillhandahålla effektiv och skalbar sökning bland 
data från olika datagenererande WSOer?  

4. Hur kan en frågeoptimerare snabba upp sökning från 
datagenererande WSOer utan att innehålla kunskap om hur 
kostsamma operationerna är? 

5. Hur kan datakällor som inte är tillgängliga som web services på ett 
enkelt sätt transformeras till datagenererande WSOer för att göra 
det möjligt att ställa frågor till dem från en web service mediator? 

6. Hur kan paradigmen ”allt som en service” (XaaS)  [33] tillämpas för 
att ställa frågor mot datagenererande WSOer? Det vill säga, kan 
en web service mediator implementeras i form av en web service 
som anropas från en godtycklig webbläsare utan att kräva att 
användaren först installerar speciell programvara i sin dator? 

För att besvara ovanstående forskningsfrågor har WSMED-prototypen 
utvecklats och utvärderats och har nu förmågan att skalbart utföra frågor 
över datagenererande WSOer.  
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WSMED kan dynamiskt anropa en godtycklig WSO genom att läsa dess 
WSDL-dokument. WSDL-dokumenten lagras i WSMED i en generell web 
service databas som kan representera beskrivningar av godtyckliga WSDL-
dokument. Databasen används för att dynamiskt konstruera anrop till de 
WSOer som behövs för att utföra en fråga.  Detta ger svar på forskningsfråga 
ett. 

En WSO presenteras av WSMED som en tabell (vy) i SQL. SQL frågor 
kan ställas över dessa vyer. För en given web service genererar WSMED 
automatiskt SQL vyer för alla dess WSOer genom att läsa WSDL 
dokumentet. SQL vyn för en WSO definieras i termer av ett internt 
frågespråk som heter WQL (WSMED Query Language) och kan hantera de 
datatyper som behövs för att anropa WSOer. Den automatiska genereringen 
av SQL-vyer besvarar forskningsfråga två. 

WSOer är normalt parametriserade i den meningen att de kräver att in-
parametrar har kända värden för att de skall kunna anropas. Två WSO-anrop 
i en fråga är beroende om det ena kräver in-parametrar som produceras i 
resultatet av ett annat WSO-anrop, i annat fall är de oberoende. I exemplet 
ovan är GetPlacesInside and GetCityForecastByZip WSO-anrop som beror 
på GetInfoByState men som är oberoende av varandra. En utmaning är här 
att utveckla metoder att automatiskt optimera frågor som innehåller både 
beroende och oberoende WSO-anrop. Generellt är sådan optimering 
beroende av olika egenskaper hos WSO-anropen. Dessa egenskaper är i 
allmänhet inte tillgängliga och beror på olika nätverks- och datoregenskaper 
när och var frågorna körs. I sådana fall är det mycket svårt att basera 
optimeringen på en statisk kostnadsmodell av de olika ingående kostnaderna, 
vilket är den teknik för frågeoptimering som tillämpas i traditionella 
databaser. 

För att optimera frågorna utan en kostnadsmodell av underliggande 
WSOer använder WSMED en ansats där WSO-anropen dynamiskt 
parallelliseras vid frågetillfället med hänsyn tagen till beroenden mellan 
olika WSO-anrop i en fråga. Ofta förbättras prestanda dramatiskt genom att 
systemet ser till att WSOer anropas parallellt i stället för att anropa dem efter 
varandra. WSMED genererar automatiskt parallella sökprogram, 
exekveringsplaner, som anropas i ett träd av kommunicerande processer, ett 
processträd, där olika exekveringsplaner anropas parallellt. Under körning 
optimeras och ändras processträdet dynamiskt genom att systemet mäter 
tiden att utföra delplaner utan kännedom om kostnaden att anropa 
underliggande WSOer. I avhandlingen visas att denna dynamiska 
frågeoptimering ger stora prestandaförbättringar och detta resultat besvarar 
forskningsfrågorna tre och fyra. 

WSMED antar att de datakällor som anropas är definierade som WSOer. 
Att skapa en ny datagenerarande web service för en datakälla kräver normalt 
en del programmeringsarbete, t.ex. för att implementera WSOer, definiera 
WSDL-dokument och att driftsätta web servicen på nätet. För att på ett 
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enkelt sätt göra ett dataproducerande system tillgängligt som 
datagenererande WSOer innehåller WSMED en web service-generator som 
skapar och driftsätter WSOer. Programmeraren måste först definiera ett 
gränssnitt mot datakällan i mediatorsystemet Amos II  [32]. Därefter generar 
systemet automatiskt motsvarande WSOer och gör dem omedelbart 
tillgängliga på nätet. Samtidigt genererar system ett WSDL-dokument som 
beskriver genererade WSOer. Denna automatiska generering och 
driftsättning av WSOer ger ett svar på forskningsfråga fem. 

WSMED-systemet självt är tillgängligt som en web service som kan 
utföra frågor till andra datagenererande web services. Denna WSMED web 
service innehåller WSOer för att sätta upp sessioner, importera WSDL-
dokument för de web services som man vill söka i, inspektera de SQL-vyer 
som generats, ställa frågor mot SQL-vyerna och autentisera användaren.  
WSMED web servicen har genererats automatiskt m.h.a. web service-
generatorn. WSMEDs funktionalitet demonstreras genom ett webbaserat 
användargränssnitt som är tillgängligt från en godtycklig webbläsare. Ingen 
programvara behöver då installeras eftersom gränssnittet är implementerat 
som ett JavaScript-program som exekveras i webbläsaren och direkt anropar 
WSMED web servicen. Detta visar att WSMED uppfyller XaaS paradigmen 
vilket besvarar forskningsfråga sex. 
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Abstract. The web Service MEDiator system (WSMED) 
provides general query capabilities over data accessible through 
web services by reading WSDL meta-data descriptions. Based 
on imported meta-data, the user can define views that extract 
data from the results of calls to web service operations. The 
views can be queried using SQL. The views are specified in 
terms of declarative queries that access different web service 
operations in different ways depending on what view attributes 
are known in a query. To enable efficient query execution over 
the views by automatic query transformations the user can 
provide semantic enrichments of the meta-data with key 
constraints. We evaluated the effectiveness of our approach 
over multi-level views of existing web services and show that 
the key constraint enrichments substantially improve query 
performance.  

Keywords: web service views, query optimization, semantic 
enrichment 

1. Introduction 
Web services  [4] provide an infrastructure for web applications by defining 
sets of operations that can be invoked over the web. Web service operations 
are described by meta-data descriptions of operation signatures, using the 
Web Services Description Language (WSDL)  [5]. An important class of 
operations is to access data through web services, e.g. Google’s web page 
search service  [12] and the United States Department of Agriculture 
nutrition database of foods  [27]. However, web services don’t support 
general query or view capabilities; they define only operation signatures.  

We have developed a system, WSMED – Web Service MEDiator, to 
facilitate efficient queries over web services. The view definitions called 
WSMED views are defined in terms of imported WSDL descriptions of web 
service operations. Furthermore, multi-level WSMED views can be defined 
in terms of other WSMED views. Web services return nested XML 
structures (i.e. records and collections), which have to be flattened into 
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relational views before they can be queried with SQL. The knowledge how 
to extract and flatten relevant data from a web service call is defined by the 
user as queries called capability definitions using and object-oriented query 
language, WSMED query language (WQL), which has support for web 
service data types.  

An important semantic enrichment is to allow for the user to associate 
with a given WSMED view different capability definitions depending on 
what view attributes are known in a query, the binding pattern of the 
capability definition. The WSMED query optimizer automatically selects the 
optimal capability definition for a given query by analyzing its used binding 
patterns. These view definitions enrich the basic web service operations to 
support SQL data access queries. 

A WSDL operation signature description does not provide any 
information about which parts of the signature is a key to the data accessed 
through the operation. As we show, this information is critical for efficient 
query execution of multi-level WSMED views. Therefore, we allow the user 
to declare to the system all (compound) keys of a given WSMED view, 
called key constraints.   

This paper is organized as follows: Section two describes the architecture 
of WSMED. Section three gives examples of WSMED view definitions 
using an existing web service and explains the capability definitions. Section 
four analyzes the performance of a sample query to verify the effectiveness 
of query transformations based on the semantic enrichments compared to 
conventional relational algebra transformations. Section five describes the 
strategies of the query processor. Section six discusses related work. Finally 
section seven summarizes the results and indicates future work.  

2. The WSMED System 

Figure 1a, illustrates WSMED’s system components. Imported WSDL meta-
data is stored in the web service meta-database using a generic web service 
schema that can represent any WSDL definition. The WSDL Importer 
populates the web service meta-database, given the URL of a WSDL 
document. It reads the WSDL document using the WSDL parser toolkits 
WSDL4J  [24] and Castor  [23]. The retrieved WSDL document is parsed and 
automatically converted into the format used by the web service meta-
database. In addition to the general web service meta-database, WSMED 
also keeps additional user-provided WSMED enrichments in its local store. 

The query processor exploits the web service descriptions and WSMED 
enrichments to process queries. The query processor calls the web service 
manager which invokes web service calls using Simple Object Access 
Protocol (SOAP)  [13] through the toolkit SAAJ  [19] to retrieve the result for 
the user query. 
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Figure 1b illustrates architectural details of the query processor. The 
calculus generator produces from an SQL query an internal calculus 
expression in a Datalog dialect  [18]. This expression is passed to the query 
rewriter for further processing to produce an equivalent but simpler and 
more efficient calculus expression. 

The query rewriter calls the view processor to translate SQL query 
fragments over the WSMED view into relevant capability definitions that 
call web service operations. An important task for the query rewriter is to 
identify overlaps between different sub-queries and views calling the same 
web service operation. This requires knowledge about the key constraints. 
We will show that such rewrites significantly improve the performance of 
queries to multi-level views of web services. 

 

The rewritten query is finally translated into an algebra expression by a cost-
based optimizer that uses a generic web service cost model as default. The 
algebra has operators to invoke web services and to apply external functions 
implemented in WSDL (e.g. for extraction of data from web service results). 
The algebra expression is finally interpreted by the execution engine. It uses 
the web service meta-database to generate a SOAP message when a web 
service operation is called. 

WSDL 
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Web Service 
Manager 

SQL query 

WSDL 
document 

Query 
Processor 

WSMED  
enrichments

Web service 
 schema 

Web service 
meta-database

Results 

Web 
service 
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Figure 1b: Query Processor  Figure 1a: WSMED components 
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3. WSMED Views 

To illustrate and evaluate our approach we use a publicly available web 
service to access and search the National Nutrient Database for US 
Department of Agriculture  [28]. The database contains information about the 
nutrient content of over 6000 food items. It contains five different 
operations: SearchFoodByDescriptions, CalculateNutrientValues, 
GetAllFoodGroupCodes, GetWeightMethods and GetRemainingHits. We 
illustrate WSMED by the operation SeachFoodByDescriptions to search 
foods given a FoodKeywords or a FoodGroupCode. The operation returns 
NDBNumber, LongDescription, and FoodGroupCode as the results. The 
WSMED view named food in Table  1 allows SQL queries over this web 
service operation. 

Table  1. WSMED view food 
ndb keyword descr gpcode 
19080 Sweet Candies  1900 
……… ……… …………… ………. 

For example, the following SQL query to the view food retrieves the 
description of foods that have food group code equal to 1900 and keyword 
‘Sweet’: 

select descr 
from   food 
where  gpcode=’1900’ and keyword =’Sweet’; 

The view food is defined as follows:  

create SQLview food (Charstring ndb, 
   Charstring keyword,Charstring descr, Charstring gpcode) 
as multidirectional  
  (“ffff” select ndb, “”,descr, gpcode 
          where foodDescr(“”,“”)= <ndb,descr,gpcode>) 
  (“fffb” select ndb, “”,descr 
          where foodDescr(“”,gpcode)= <ndb,descr,gpcode>) 
  (“fbff” select ndb,descr,gpcode  
          where foodDescr(keyword, “”)= <ndb,descr,gpcode>) 
  (“fbfb” select ndb, descr  
 where foodDescr(keyword,gpcode)           
                = <ndb,descr,gpcode>) 

Figure 2: WSMED view definition 

A given WSMED view can access many different web service operations in 
different ways. When the user defines a WSMED view he can specify the 
view by several different declarative queries, called capability definitions, 
using an object oriented query language called WQL having special web 
service oriented data types. Each capability definition implements a different 
way of retrieving data through web service operations using WQL. Different 
capability definitions can be defined based on what view attributes are 
known or unknown in a query, called the capability binding patterns. The 
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query optimizer automatically chooses the most promising capability 
definitions for a given query to a WSMED view. Each capability definition 
provides a different way of using the web service operations to retrieve food 
items. The capability binding patterns of the view food are: 
1. ffff- all the attributes of the view are free in the query. That is, the query 

does not specify any attribute selection value. In this case the capability 
definition specifies that all food items should be returned. 

2. fffb- a value is specified only for fourth attribute gpcode. This means that 
the capability definition returns all food items for a given food group 
code. 

3. fbff- a value is specified in the query only for the  second attribute 
keyword, i.e. all food items associated with the given keyword are 
retrieved. 

4. fbfb- both the values keyword and gpcode are specified in the query, 
finding the relevant food items. 

In our example query the binding pattern is fbfb. The capability definitions 
are defined as declarative WQL queries that all call a function foodDescr in 
different ways. The function foodDescr is defined as a WQL query that 
wraps the web service operation SearchFoodByDescription given two 
parameters foodkeywords and foodgroupcode. It selects relevant pieces of a 
call to the operation SearchFoodByDescription to extract the data from the 
data structure returned by the operation. 

To simplify sub-queries and provide heuristics for estimating selectivities, 
it is important for the system to know what attributes in the view are 
(compound) keys. Therefore, the user can specify key constraints for a given 
view and set of attributes by a system function declare_key, e.g.: 
  declare_key(“food”, {”ndb”}); 

Key constraints are not part of WSDL and require knowledge about the 
semantics of the web service. In our example web service the attribute ndb is 
the key. The attributes are specified as a set of attribute names for a given 
view (e.g. {“ndb”}). Several keys can be specified by several calls to 
declare_key.   

The query optimizer may also need to estimate the cost to invoke a 
capability and the estimated size of its result, i.e. its fanout. Costs and 
fanouts can be specified explicitly by the user if such information is 
available. However, normally explicit cost information is not available and 
the cost is then estimated by a default cost model that uses available 
semantic information such as signatures, keys, and binding patterns to 
roughly estimate costs and fanouts. Key constraints will be shown to be the 
most important semantic enrichment in our example, and additional costing 
information is not needed. 
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3.1 Capability definition function 

The function foodDescr, used in the capability definitions in Figure 2, has 
the following definition:  

1.create function foodDescr (Charstring fkw,                  
2.                           Charstring fgc)  
3.          ->Bag of <Charstring ndb,Charstring descr, 
4.                    Charstring gpcode> 
5. as select re[“NDBNumber”],re[“LongDescription”], 
6.           re[“FoodGroupCode”] 
7.    from  Record out, Record re 
8.    where out = 
9.      cwo(“http://ws.strikeiron.com/USDAData?WSDL”, 
10.   “USDAData”, 
11.   “SearchFoodByDescription”, 
12.   {fkw, fgc}) 
13.    and re in out[“SearchFoodByDescriptionResult”]; 

Given a food keyword, fkw, and a group code, fgc, the function foodDescr 
returns a bag of result rows extracted from the result of calling the web 
service operation named SearchFoodByDescription. Any web service 
operation can be called by the built-in generic function cwo (line 9). Its 
arguments are the URI of WSDL document that describes the service (line 
9), the name of the service (line 10), an operation name (line 11), and the 
input argument list for the operation (line 12). The result from cwo is bound 
to the query variable out (line 8). It holds the output from the web service 
operation temporarily stored in WSMED’s local database. The system 
automatically converts the input and output messages from the operation into 
records and sequences where records are used to represent complex XML 
elements  [7] and sequences represent ordered elements. In our example, the 
argument list holds the parameters Food-Keywords and FoodGroupCode 
(line 12). The result out is a record structure from which only the attribute 
SearchFoodByDescriptionResult is extracted (line 13). Extractions are 
specified using the notation s[k], where s is a variable holding a record, and 
k is the name of an attribute.  

The function foodDescr selects relevant parts of the result from the call to 
the operation. In our example, the relevant attributes are NDBNumber, 
LongDescription, and FoodGroupCode, which are all attributes of a record 
stored in the attribute SearchFoodByDescriptionResult of the result record. 
Our example web service operation SearchFoodByDescription returns 
descriptions of all available food items when both attributes foodkeywords 
and foodgroupcode are empty strings. On the other hand, if foodkeywords is 
empty but foodgroupcode is known, the web service operation will return all 
food with that group code. Similarly, if foodgroupcode is empty but 
foodkeywords is known, the web service operation will return all food with 
that keyword. If both foodkeywords and foodgroupcode are non-empty, the 
operation will return descriptions of all food items of the group code with 
matching keywords. This knowledge about the semantic of the web service 
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operation SearchFoodByDescription is used to define the capability 
definition function in Figure 2. 

4. Impact of key constraints 

To illustrate the impact of key constraints we define two views in terms of 
the WSMED view food. The view foodclasses is used to classify food items 
while fooddescriptions describes each food item: 

create view foodclasses(ndb, keyword, gpcode)  
as select ndb,keyword,gpcode from food; 

create view fooddescriptions(ndb, descr)  
as select ndb, descr from food; 

This scenario is natural for our example web service that treats foodclasses 
different from fooddescriptions. The following SQL query accesses these 
views.  

select fd.descr 
from   foodclasses fc, fooddescriptions fd 
where  fc.ndb=fd.ndb and fc.gpcode=’1900’; 

First the example query is translated by the calculus generator (Figure 1b) 
into a Datalog expression: 

Query(l) :- foodclasses(ndb,keyword,gpcode) AND  
fooddescriptions (ndb,descr) AND descr=l AND gpcode=’1900’ 

The definitions of the views foodclasses and fooddescriptions are defined 
in Datalog as1: 

foodclasses(ndb, keyword, gpcode) :- food(ndb, keyword, *, 
gpcode). 

fooddescriptions(ndb,descry) :- food(ndb, *, descr, *). 

Given these view definitions the Datalog expression is transformed by the 
view processor (Figure 1b) into: 

Query(l) :- food(ndb,*,*,’1900’) AND food(ndb,*,l,*). 

Here the predicate food represents our WSMED view.  At this point the 
added semantics that ndb is the key of the view play its vital part. Two 
predicates p(k,a) and p(k,b) are equal if k is a key and it is then inferred that 
the other attributes are also equal, i.e. b=a  [9]. If a key constraint that ndb is 
the key is specified, this is used by a query rewriter to combine the two calls 
to food:  

Query(l) :- food(*,*,l,’1900’). 

Without knowing that ndb is the key the transformation would not apply and 
the system would have to join the two references to the view food in the 

                                                 
1  ‘*’ means don’t care. 



 48 

expanded query. The simplification is very important to attain a scalable 
query execution performance as shown in Section 5.  

The next step is to select the best capability definition for the query. The 
heuristics is that if more than one capability definition is applicable, the 
system chooses the one with the most variables bound. Since l is the query 
output and gpcode is given, the binding patterns ffff and fffb both apply, and 
the system chooses fffb because it is considered cheaper. The call to food 
then becomes: 

Query(l) :- l=foodDescr(“”,”1900”). 

Similar to relational database optimizers, given the definition of 
foodDescr, a cost based optimizer generates the algebra expression in Figure 
3a, which is interpreted by the execution engine. The apply operator (γ) calls 
a function producing one or several result tuples for a given input tuple and 
bound arguments  [14]. By contrast, Figure 3b shows an execution plan for 
the non-transformed expression where the system does not know that ndb is 
key. It is using a nested loop join (NLJ) to join the capability definitions. An 
alternative possible better plan based on hash join (HJ) that materializes the 
inner web service call is shown in Section 5. In case no costing data is 
available about the capability definitions (which is the case here), the system 
uses built in heuristics, i.e. a default cost model.  In our case the cost based 
optimizer produces the plan in Figure 3a, which is optimal for our query.  

5. Query Performance 
To determine the impact of semantic enrichments on query processing 
strategies, we have experimented with four different kinds of query 
execution strategies. They are: 
1. The naïve implementation does not use any semantic enrichment at all 

and no binding pattern heuristics. That is, no key is specified for the food 
view definition and no default cost model was used. This makes the 
capability definition be regarded as a black box called iteratively in a 
nested loop join since the system does not know that foodDescr returns a 
large result set when both arguments are empty. The execution plan in 
Figure 3b shows the naïve plan. 

2. With the default cost model the system assumes that the view food is 
substantially more expensive to use when attribute gpcode is not known 
than when it is known, i.e. it is cheaper to execute a capability definition 

Figure 3b: Naïve execution 

<ndb, descr, gpcode> <ndb, descr, gpcode> 
NLJ

<gpcode> 

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode> 

γ foodDescr(“”,””) γ foodDescr(“”,gpcode) 

<gpcode> 

<ndb, descr, gpcode>

Figure 3a: Full semantic enrichment
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where more variables are bound. Still there is no key specified. Figure 
5b illustrates the plan using nested loop join. 

3. Figure 5a shows the execution plan with the default cost model and a 
hash join strategy where the results from web service operation calls are 
materialized by using hash join to avoid unnecessary web service calls. 
This can be done only when the smaller join operand can be materialized 
in main memory.  

4. With full semantic enrichment the key of the view is specified. Figure 
3a, shows the execution plan. It is clearly optimal.  

As shown in Figure 4a, the naïve strategy was the slowest one, somewhat 
faster than using the default cost model with nested loop join. The default 
cost model with a hash join strategy scaled significantly better, but requires 
enough main memory to hold the inner call to foodDescr. Figure 4b 
compares the default cost model with hash join with the performance of full 
semantic enrichments. The hash join strategy was around five times slower.  
This clearly shows that semantic enrichment is critical for high performing 
queries over multi-level views of web services.  
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Figure 4a: Performance comparison of four 
query execution strategies 

Figure 4b: Performance 
comparison of hash join and full 
semantic enrichment execution 
strategies 

The diagrams are based on the experimental results in Table  2 and the 
experiment was made by using the real values to actually retrieve the results 
through web service operations. VG, NF, S1, S2, S3, and S4 denote the 
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value used for parameter gpcode, the number of food items (actual fanout), 
and the execution time in seconds for the four different strategies. 

With the naive strategy the system does not use any binding pattern 
heuristics and will call foodDescr with empty strings (γfoodDescr(“”,””)) which 
produces a large costly result containing all food items in the outer loop. 
This is clearly very slow. 

Table  2. Experimental results 
VG NF S1 S2 S3 S4 

0900 303 1985.14 1512.74 5.77 1.22 

0600 390 3177.28 1848.28 5.55 1.33 

1400 219 1831.05 1041.74 5.50 1.08 

1100 779 4891.13 3785.30 6.22 1.69 

2000 157 1655.48 777.31 5.41 0.94 

0800 359 3114.28 1723.28 5.59 1.35 

0400 201 1914.23 955.38 6.38 1.08 

1800 517 3524.34 2452.22 5.93 1.33 

2200 132 1741.51 645.03 5.62 0.93 

With the default cost model strategy the system assumes that queries over 
the view food produce larger results when the attribute gpcode is unknown 
than when it is known. Based on this the call to foodDescr with a known 
gpcode value is placed in the outer loop of a nested loop join. This clearly is 
a better strategy than the naïve implementation.  

Finally by utilizing key constraints in the WSMED view definition the 
system will know that the two applications of foodDescr can be 
combined into one call. With this full enrichment strategy only one 
web service operation call is required for execution of the query and 
no hash join is needed. We notice that this is the fastest and most 
scalable plan and that it needs no costing knowledge. 

NLJHJ
<ndb, descr, gpcode> 

γ foodDescr(“”,””) 

<ndb, descr, gpcode> 

<gpcode> 

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

<gpcode>

γ foodDescr(“”,gpcode) γ foodDescr(“”,””) 

<ndb, descr, gpcode> 

Figure 5a: Execution plan of hash join 
strategy 

Figure 5b: Execution plan with default 
cost model 
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6. Related Work 

Preliminary results for our method of querying mediated web services were 
reported in  [20]. 

SOAP  [12] and WSDL  [5] provide standardized basic interoperation 
protocols for web services but no query or view capabilities. The SQL 2003 
standard  [8] [26] has facilitates to combine SQL with XML Query language 
(XQuery)  [3] to access both ordinary SQL-data and XML documents stored 
in a relational database. By contrast, we optimize SQL queries to views over 
data returned by invoking web services and we use semantic query 
transformations to improve the performance. 

The formal basis for using views to query heterogeneous data sources is 
reviewed in  [10] [15] [25]. As some other information integration approaches, 
e.g.  [11] [29], we also use binding patterns as one of our semantic 
enrichments to access data sources with limited query capabilities. We 
define semantically enriched declarative views extracting data from the 
results of each web service operations in terms of an object-oriented query 
language. In  [1] an approach is described for optimizing web service 
compositions by procedurally traversing ActiveXML documents to select 
embedded web service calls, without providing view capabilities.  

WSMS  [22] also provide queries to mediated web services. However, 
they concentrate on optimizing pipelined execution of web service queries 
while we utilize semantic enrichments for efficient query processing over 
multi-level views of web services. XLive  [6] is a mediator for integrating 
heterogeneous sources including web service sources with specific wrappers 
based on XML standards. In contrast we deploy a generic wrapper that can 
call any web service.  

In particular, unlike the other works, we show that key constraints 
significantly improve performance of queries to multi-level views of web 
services with different capabilities.  

7. Conclusions and future work 

We devised a general approach to query data accessible through web 
services by defining relational views of data extracted from the result SOAP 
messages returned by web service operations. Multi-level relational views of 
web service operations can be defined. The system allows SQL queries over 
these WSMED views. The view extractions are defined in terms of an object 
oriented query language. The query performance is heavily influenced by 
knowledge about the semantics of the specific web service operations 
invoked and all such information is not provided by standard web service 
descriptions. Therefore the user can complement a WSMED view with 
semantic enrichments for better query performance. Our experiments 
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showed that binding patterns combined with key constraints are essential for 
scalable performance when other views are defined in terms of WSMED 
views.  

Strategies for parallel pipelined execution strategies of web service 
operation calls as in WSMS  [22] should be investigated. The pruning of 
superfluous web service operation calls is crucial for performance. The 
adaptive approaches in  [2] [17] should be investigated where useless results 
are dynamically pruned in the early stage of query execution. Currently the 
semantic enrichments are added manually. Future work could investigate 
when it is possible to automate this and how to efficiently verify that 
enrichment is valid. For example, determination of key constraints is 
currently added manually, and this could be automated by querying the 
source. Another issue is how to minimize the required semantic enrichments 
by self tuning cost modeling techniques  [16] based on monitoring the 
behavior of web service calls.  

The semantic web is an emerging prominent approach for the future data 
representations where WSDL working groups are proposing standards to 
incorporate semantic web representations  [21]. It should be investigated how 
mediate of web services based on such semantic web representations. 
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Abstract— We have developed a system to process database queries over composed 
data providing web services. The queries are transformed into execution plans 
containing an operator that invokes any web service for given arguments. A 
common pattern in these query execution plans is that the output of one web service 
call is the input for another, etc. The challenge addressed in this paper is to develop 
methods to speed up such dependent calls in queries by parallelization. Since web 
service calls incur high-latency and message set-up costs, a naïve approach making 
the calls sequentially is time consuming and parallel invocations of the web service 
calls should improve the speed. Our approach automatically parallelizes the web 
service calls by starting separate query processes, each managing a parameterized 
sub-query, a plan function, for different parameter tuples. For a given query, the 
query processes are automatically arranged in a multi-level process tree where plan 
functions are called in parallel. The parallel plan is defined in terms of an algebra 
operator, FF_APPLYP, to ship in parallel to other query processes the same plan 
function for different parameters. By using FF_APPLYP we first investigated ways 
to set up different process trees manually. We concluded from our experiments that 
the best performing query execution plan is an almost balanced bushy tree. To 
automatically achieve the optimal process tree we modified FF_APPLYP to an 
operator AFF_APPLYP that adapts a parallel plan locally in each query process until 
an optimized performance is achieved. AFF_APPLYP starts with a binary process 
tree. During execution each query process in the tree makes local decisions to 
expand or shrink its process sub-tree by comparing the average time to process each 
incoming tuple. The query execution time obtained with AFF_APPLYP is shown to 
be close to the best time achieved by manually built query process trees.  

I. INTRODUCTION 
There is a common need to search information supplied by data providing 
web services that return a set of objects for a given set of parameters without 
any side effects. For example, consider a query to find USAF Academy’s Zip 
code and the State where it is located. The three different data providing web 
service calls in this query are GetAllStates  [3] to retrieve all the states, 
GetInfoByState  [19] to get all the Zip codes within a given state, and 
GetPlacesInside  [4] to provide all the places having a given Zip code. A 
naïve implementation of the example query makes 5000 calls sequentially 
and takes nearly 2400 seconds to execute. The reason is that each web 
service call incurs high latency and message set-up costs.  
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Queries calling data providing web services often have a similar pattern 
where the output (e.g. state) of one web service call is the input for another 
web service call (e.g. GetInfoByState), i.e. the second call is dependent on 
the first one, etc. A challenge here is to develop methods to speed up queries 
requiring such dependent web service calls. 

In our approach a web service call is considered as an expensive function 
call where the result is a collection. It is likely that making parallel 
invocations of such calls will speed up the performance of queries with 
several dependent web service calls. To improve the response time, we 
present an approach to parallelize the web service calls while keeping the 
dependencies among them. With the approach separate query processes are 
started in parallel, each calling a parameterized sub query, called a plan 
function, for a stream of parameter tuples. Each plan function encapsulates a 
web service call. 

The approach is implemented in the Web Service MEDiator (WSMED) 
system  [15] that extends a main memory functional DBMS [14] with 
primitives to call web services. WSMED enables general query capabilities 
over data accessible through any data providing web service by reading the 
WSDL meta-data description. Queries are expressed in SQL. To enable 
simple queries to complex collections returned by web services, WSMED 
automatically generates flattened views of the result collections as tables.  

For a given query the WSMED optimizer first produces a non-parallel 
plan where web service operations are called as functions. The query 
processor then automatically reformulates the non-parallel plan into a 
parallel one where web service operations are called in parallel while 
keeping the required dependency among the calls. The algebra operator, 
FF_APPLYP (First Finished Apply in Parallel), ships a plan function in 
parallel to other query processes and then calls the shipped plan function in 
parallel for a stream of parameter tuples. 

Multi-level execution plans are generated with several layers of 
parallelism in different query processes. This forms the process tree for the 
query. Each child query process delivers back the result data from the 
shipped plan function to its parent process asynchronously. The number of 
children processes below a parent query process is called its fanout. During 
execution a coordinator query process first initiates the communication with 
its child query processes and then ships in parallel to the children their plan 
functions. Then a stream of different parameter tuples for the plan functions 
is shipped in parallel to the children. At any point in time every process in 
the tree executes one plan function for a specific parameter tuple. The results 
from the children are delivered to the parent in parallel as streams. 

The performance is often improved by setting up several web service 
calls to the same operation in parallel rather than to call the operation in 
sequence for different parameters. Normally there is an optimal number of 
parallel calls for a given web service operation.  It is therefore important to 
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figure out an optimized process tree for an execution plan by automatically 
arranging the available query processes for best performance. We first 
evaluated FF_APPLYP for different process trees by setting different 
fanouts manually. We tested flat and bushy process trees over existing real 
web services. Based on the experiments we concluded that a process tree 
rather close to a balanced tree performed best.  

The exact properties of the composed web service operations and the 
computing environments involved in the calls are usually unknown. 
Therefore an optimal process tree is very difficult to produce using 
traditional query optimization assuming a cost-model describing these 
properties. WSMED therefore adaptively achieves an optimized process tree 
by run-time monitoring of the plan function calls. For the adaptation we 
modified FF_APPLYP to an operator AFF_APPLYP that dynamically 
modifies a parallel plan locally and greedily in each query process.  We 
compared the operator AFF_APPLYP to the process tree with best effort 
manual process arrangement. 

In summary the contributions of our work are: 
• We define an algebra operator FF_APPLYP to distribute a plan function 

among child query processes for parallel calls with different parameter 
tuples.  

• An algorithm is implemented to transform a central plan into a parallel 
plan by introducing FF_APPLYP operators calling plan functions 
encapsulating each web service call. 

• Experiments with using FF_APPLYP showed that the best execution 
time for queries with dependent joins is achieved with a bushy tree 
rather close to a balanced one.   

• To automatically optimize the parallel plan, we developed another 
algebra operator AFF_APPLYP that locally adjusts an initial balanced 
binary process tree adaptively until best performance is obtained. 

The rest of this paper is organized as follows. In Section 2, we provide a 
motivating scenario used in experiments in terms of existing web services. 
Query process arrangements using FF_APPLYP are presented in Section 3. 
The query processing details are explained in Section 4. Experimental results 
and the AFF_APPLYP operator are presented in Section 5. Related work is 
analyzed in Section 6, and Section 7 summarizes and indicates future 
directions. 

II. MOTIVATING SCENARIO 
The class of queries we consider here is dependent-join  [7] queries, which in 
their simplest form can be expressed as: 

)z,g(y)y,f(x +−∧+−  
The predicate f  binds y for some input value x and passes each y to the 

predicate g that returns the bindings of z as result. Thus, g depends on the 
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output of f. The predicates f and g represent calls to parameterized sub 
queries, which in our case are execution plans encapsulating data providing 
web service operations. Inputs parameters are annotated with ‘-‘ and outputs 
with ‘+’.  

We made experiments with two different queries calling different web 
service operations provided by different publicly available service providers.  

A. Query1 

In the first test case we used the SQL Query1 in Fig . 1 that finds 
information about places located within 15 km from each city whose name 
starts with ’Atlanta‘ in all US states. In the query we utilize the web service 
operations GetAllStates [3], GetPlacesWithin [3], and GetPlaceList  [17] . For 
a given web service WSMED automatically generates   operation wrapper 
functions (OWFs) based on the WSDL definitions of the web service 
operations. Each OWFs encapsulates a data providing web service operation 
for given parameters and emits the result as a flattened stream of tuples. 
Each OWF defines an SQL view of a web service operation. SQL queries 
can be made over these views with the restriction that the input values of the 
OWFs must be known in the query. In Fig. 1 the three OWFs GetAllStates, 
GetPlacesWithin, and GetPlaceList define views encapsulating web service 
operations with the same names. The query returns a stream of 360 result 
tuples. A naïve central sequential execution plan invokes more than 300 web 
service calls.  

Select gl.placename,gl.state 
From GetAllStates gs, GetPlacesWithin gp, 

GetPlaceList gl 
Where gs.State=gp.state and gp.distance=15.0 

and gp.placeTypeToFind='City' and 
gp.place='Atlanta' and 
gl.placeName=gp.ToPlace+' ,'+gp.ToState 
and gl.MaxItems=100 and 
gl.imagePresence='true' 
 

Fig . 1Query 1 defined in SQL 

The OWF GetAllStates presents information of US states as a set of tuples 
<name, type, state, latDegrees, lonDegrees, latRadians, lonRadians>. 
However, we are only interested in the values of the attribute State. The 
OWF GetPlacesWithin returns a set of tuples <ToCity, ToState, 
GeoPlaceDistance_Distance> for given place  (‘Atlanta’), state (gs.State), 
distance (15.0), and kind of place type to find (’City’). The OWF 
GetPlaceList retrieves a set of places <placename, state, country, placeLon,  
placeLat, availableThemeMask, placeTypeId, population> given a 
specification of a place (concatenate ToCity+’,’+ToState), the maximum 
number result tuples (100), and a flag indicating whether places having an 
associated map are returned.  
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Fig . 2  shows the automatically generated OWF GetAllStates, which 
flattens the result from the web service operation named GetAllStates. An 
OWF is generated based on the WSDL definition of a web service operation. 
Any web service operation can be invoked by the built-in function cwo (line 
14). Its parameters are the URI of the WSDL document that describes the 
service, the name of the service, the operation name, and the input parameter 
list for the operation. The web service operation GetAllStates has no input 
parameters ({}). 

1. create function GetAllStates()-> Bag of 
       <Charstring name, Charstring type, 
        Charstring state, Real latDegrees, 
        Real lonDegrees, Real latRadians, 
        Real lonRadians> as 

2. select GeoPlaceDetails['Name'], 

3.  GeoPlaceDetails['Type'], 

4.  GeoPlaceDetails['State'], 

5.  GeoPlaceDetails['LatDegrees'], 

6.  GeoPlaceDetails['LonDegrees'], 

7.  GeoPlaceDetails['LatRadians'], 

8.  GeoPlaceDetails['LonRadians'] 

9. from Sequence out, 

10.  Record GetAllStatesResult , 

11.  Record GetAllStatesResult1, 

12.  Sequence GetAllStateResult2, 

13.  Record GeoPlaceDetails 

14. where out=cwo('http://codebump.com/servi
ces/PlaceLookup.wsdl’, 
'GeoPlaces', 'GetAllStates', 
{})and 

15.  GetAllStatesResult1 in out and 

16.  GetAllStatesResult2 = 
GetAllStatesResult1 
['GetAllStatesResult']and 

17.  GetAllStateResult in 
GetAllStatesResult2 and 

18.  GeoPlaceDetails=GetAllStatesResult
['GeoPlaceDetails']; 

Fig . 2 Automatically generated OWF GetAllStates 

The result from cwo is bound to the query variable out (line 14). It holds an 
object representing the output from the web service operation temporarily 
materialized in WSMED’s local store. The OWF converts the output XML 
structure from the web service operation call into records and sequences. 
The result out is here a sequence from which elements are extracted (line 15) 
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into the GetAllStatesResult1 record structure using the in operator. The 
records have only one attribute named GetAllStatesResult whose values are 
assigned to another sequence structure GetAllStatesResult2 (line 16). An 
attribute a of a record r is accessed using the notation r[a]. Each element 
record from the sequence GetAllStatesResult2 is bound to the variable 
GetAllStateResult (line 17). The values of the attribute GeoPlaceDetails are 
assigned to the GeoPlaceDetails record with attributes Name, Type, State, 
LatDegrees, LonDegrees, LatRadians, and LonRadians (line 18). The OWFs 
GetPlacesWithin and GetPlaceList are automatically generated analogously. 

B. Query2 

The second case, Query2 in Fig . 3, finds the zip code and state of the place 
‘USAF Academy’. A naïve sequential plan invokes more than 5000 web 
service calls. Here also three different dependent web services are involved. 
GetAllStates is the same as in Query1. GetInfoByState is provided by the 
USZip  [19] web service to retrieve all zip codes for a given state as a single 
comma separated string (gi.GetInfoByStateResult). getzipcode is an helping 
function defined in WSMED that extracts the set of zip codes (gc.zipcode) 
given a string of zip codes (gc.zipstr). The OWF GetPlacesInside is 
supported by the Zipcodes  [4] web service provider and returns for a given 
zip code a set of tuples <ToPlace, ToState, Distance> where ToPlace is a 
place located within the zip code area, ToState is the state of the place, and 
Distance is the distance from the place to the origin of the given zip code 
area. 

select gp.ToState, gp.zip 
From GetAllStates gs, GetInfoByState gi, 

getzipcode gc, GetPlacesInside gp 
Where gs.State=gi.USState and 

gi.GetInfoByStateResult=gc.zipstr and 
gc.zipcode=gp.zip and 
gp.ToPlace='USAFAcademy' 

Fig . 3 Query2 defined in SQL 

III. WSMED PROCESS ARRANGEMENT 
The web service metadata in a WSDL document is first imported and stored 
in the WSMED local database  [15]. A query is processed by a coordinator 
process q0.  Fig . 4 gives an example of a process tree generated by the 
WSMED query optimizer. Every query process on each level can be 
connected with a number of child processes and all the processes on the 
same level execute the same plan function but with different parameters.  

In Fig . 4, q1 is connected with q3, q4, and q5. The plan function in the 
coordinator q0 encapsulates the OWF GetAllStates, while the plan functions 
of the processes in level one encapsulate the OWF GetPlacesWithin for 
different states. On level two the plan function calls the OWF GetPlaceList 
for different place specifications.  
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Fig . 4 Process tree 

The coordinator q0 first generates a central plan containing calls to the 
OWFs. It then automatically reformulates the central plan to incorporate 
parallel web service calls by inserting algebra operators FF_APPLYP in the 
execution plan whenever an OWF is encountered. For each OWF a plan 
function is generated that encapsulates a fragment of the central execution 
plan embodying the OWF call.  When the algebra operator FF_APPLYP is 
executed in process q0, it first ships in parallel to its children in level one 
(q1,q2) the same plan function definition that encapsulates GetPlacesWithin. 
Then it ships in parallel different parameter tuples to the shipped plan 
function installed in the children processes ready for execution. 
Analogously, the FF_APPLYP operators executing in the level one 
processes send another plan function definition to the level two processes 
(q3,q4,q5,q6,q7,q8). Each query process initially receives its own plan 
function definition once before execution. When the level two processes 
receive data from the wrapped web service operation GetPlaceList, the 
results will be returned asynchronously as streams to the processes in level 
one, and finally the results are streamed to the coordinator process. 

A. FF_APPLYP 

The operator FF_APPLYP enables parallel invocation of a plan function for 
different parameter tuples delivered as an input stream to FF_APPLYP. 
FF_APPLYP has the signature: 

FF_APPLYP(Function pf, Integer fo, Stream pstream) → Stream result 

It ships in parallel to fo number of child query processes the definition of 
the same plan function pf. Then it ships one by one parameter tuples from 
pstream to each of the children. The result stream from a call to pf for a 
given parameter tuple is sent back to FF_APPLYP asynchronously as a 
stream of tuples, result.  

In our first experiments the fanout fo is set manually for each level. This 
allows us to analyze different process trees. In Fig . 4 the fanout on level one 
is fo1=2 and on level two fo2=3. The coordinator q0 at level zero first 
initializes the two child processes q1 and q2. Then q0 ships the plan function 

q- query processes

Level 2 

q0 

q1 

q3 q4

q2 
GetPlacesWithin 

GetAllStates 

GetPlaceList 

q5 q8q7q6

Coordinator 

Level 1 

Query1 
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encapsulating the web service operation GetPlacesWithin to the children (q1, 
q2). When all plan functions are shipped it starts picking parameter tuples 
one by one from pstream, to send down to the plan function started in the 
children. In q0 the stream pstream is a stream of state names produced as the 
result of the plan function that encapsulates the web service operation 
GetAllStates. When the first round of parameter tuples are shipped to all 
children, FF_APPLYP will broadcast that it is ready to receive results. 
Whenever a result tuple is received from some child it is directly emitted as 
a result of FF_APPLYP. When a child completed the processing of a plan 
function for a given parameter tuple it sends an end-of-call message to 
FF_APPLYP. When the parent receives an end-of-call message from a child 
it will ship the next pending parameter tuple from pstream to the idle child 
process. When there are no pending parameter tuples in pstream and no 
pending results from the child processes, FF_APPLYP is finished. 

IV. QUERY PARALLELIZATION IN WSMED 
Fig . 5 illustrates the query processor in WSMED  [15]. The calculus 
generator produces from a given user query defined in SQL an internal 
calculus expression in a Datalog  [13] dialect. The symbol ’_’ represents an 
anonymous result variable. 

Query1 is transformed into the following calculus expression: 
Query1(pl,st) :- 

       GetAllStates() AND 

       GetPlacesWithin(‘Atlanta’,_,
                       15.0,’City’) 

 
AND 

       GetPlaceList(_, 100,’true’)  

With naïve query optimization the calculus expression is translated by the 
central plan creator into the algebra expression in Fig . 6. The central plan 
creator uses a simple heuristic web service cost model based on the 
signatures of web service operations assuming that web service operations 
are expensive. The algebra expressions contains calls to the apply operator γ [6], 
which applies a plan function for a given parameter tuple. The naïve central 
query execution plan with γ can be directly interpreted but with very bad 
performance since many web service operations are applied in sequence. 

The plan first executes the OWF GetAllStates returning a stream of tuples 
<st1>. Each of these tuples are fed to the next OWF GetPlacesWithin called 
by the apply operator with the given argument tuple (‘Atlanta’, st1, 15.0, 
‘City’) returning a stream of tuples <city, st2>. The built in function concat 
is then applied on each argument tuple (city,’,’,st2) producing a stream of 
strings str. Finally the OWF GetPlaceList is applied on each argument tuple 
(str,100,’true’) returning a stream of tuples <pl,st>. 
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Fig . 5 Query Processor 

 

 
Fig . 6 Central query plan - Query1 

The parallelizer in Fig . 5 takes as input a central plan (e.g. the one in Fig . 
6) and identifies there the parallelizable OWFs. Since the parallelization is 
based on parameter streams, OWFs not having input parameters are not 
considered. For example, the plan in Fig . 6 can be parallelized for the 
OWFs GetPlacesWithin and GetPlaceList, but not for GetAllStates. The 
parallelizer splits the plan into one section for each parallelizable OWF 
starting from the bottom. The first section, flattening the result from the call 
to the web service operation GetAllStates, is executed in the coordinator. 
The next section contains the calls to GetPlacesWithin and concat. The final 
section contains only the call to GetPlaceList.  

γGetPlacesWithin(‘Atlanta’, st1, 15.0, ‘City’)

<pl, st> 

γGetPlaceList (str, 100, ‘true’)

γGetAllStates()

<st1 >

<city , st2 > 

γconcat(city,’, ‘, st2)

<str > 

parallel 
query plan 

User query 

Calculus Generator

Central plan creator

Plan rewriter

Parallelizer Plan function 
generator 
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Fig . 7 Plan function PF1 wrapping GetPlacesWithin 

For each parallelizable section the plan function generator creates a plan 
function that encapsulates a parallelizable call to an OWF. For example, the 
plan function PF1 in Fig . 7  encapsulates the OWF GetPlacesWithin. It has 
the signature PF1(Charstring st1) → Stream of Charstring str. Analogously 
PF2 in Fig . 8 flattens the web service operation GetPlaceList to return a 
stream of tuples <pl, st> and has the signature PF2(Charstring str) → 
Stream of <Charstring pl, Charstring st>. 

Fig . 8 Plan function PF2 wrapping GetPlaceList 

Finally, the plan rewriter transforms the central query by inserting the 
algebra operator FF_APPLYP for each generated plan function. Fig . 9 
shows the final parallelized execution plan with two calls to FF_APPLYP 
(FF_γ). 

 
Fig . 9 Parallel execution plan-Query1 

Analogously Query2 is initially compiled into the central plan in Fig . 10. 
The central plan first executes the OWF GetAllStates to return a stream of 

γGetPlaceList(str,100,’true’) 

<pl, st>

<city, state2> 

γGetPlacesWithin(Atlanta’, st1, 15.0, ‘City’) 

γconcat(city,’, ‘, state2)

<str > 

<str> 

<st1> 

FF_γ (PF2, 3,str) 

<pl, st> 

γGetAllStates()

FF_ γ (PF1, 2, st1) 
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tuples <st1>. These outputs are fed to the next OWF GetInfoByState 
returning a stream of single comma separated strings zstr. For each zstr the γ 
operator applies the user defined helping function getzipcode to produce a 
stream of extracted zip codes zc. Then the OWF GetPlacesInside is applied 
for each zc returning a stream of tuples <st, pl, zc>. Finally the equal 
function is applied to check if pl is equal to ‘USAF Academy’ and returns 
stream of valid tuples <st  ,zc>.  

Fig . 10 Central query plan- Query2 

The parallelizer splits the first parallelizable section (call to OWF 
GetAllStates) to execute in the coordinator. The next parallelizable section 
contains the calls to GetInfoByState and getzipcode. The final section 
contains only the call to GetPlacesInside and equal. Then the plan function 
generator creates plan functions to encapsulate the parallelizable OWFs. The 
plan function PF3 in Fig . 11 encapsulates GetInfoByState. It has the 
signature: 

PF3(Charstring st1) → Stream of Charstring zc.  

 
Fig . 11 Plan function PF3 wrapping GetInfoByState 

<zstr> 

γ GetInfoByState(st1) 

γ getzipcode(zstr)

<zc > 

γ GetInfoByState(st1)

< st, zc >

γ GetPlacesInside(zc)

γGetAllStates()

<st1 >

γ getzipcode(zstr)

<zc >

<zstr >

γ equal(’USAF Academy’,pl)

<st, pl , zc > 
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PF4 in Fig . 12 wraps the OWF GetPlacesInside and returns <st,zc>. It has 
the signature: 

PF4(Charstring zc) → <Charstring st, Charstring zc>.  

 
Fig . 12 Plan function PF4 wrapping GetPlacesInside 

Finally, the plan rewriter transforms the central query by inserting FF_γ for 
each generated plan function as illustrated in Fig . 13.  

 
Fig . 13 Parallel execution plan-Query2 

V. EXPERIMENTS 
We compared the query execution times for Query1 using the central 
execution plan in Fig . 6 with the parallel plan in Fig . 9 (for Query2 we 
compare the plans in Fig . 10and Fig . 13). To analyze different process 
trees, we set manually a fanout vector with fanouts for the different process 
tree levels to evaluate the query execution times. The tests were run on a 
computer with a 3 GHz single processor Intel Pentium 4 with 2.5GB RAM. 
We evaluated the following process trees: 
• Flat tree (Fig . 14): The fanout vector has fo2=0 ({fo1,0}) in which case 

both OWFs are combined into the same plan function executed at the 
same level.  

• Unbalanced tree (Fig . 15):  Fanout vector {fo1,fo2}, fo1≠fo2  
• Balanced tree: the fanouts are equal, i.e. fo1 = fo2  

<zc> 

FF_ γ (PF3, 2, st1)

<st1> 

FF_γ (PF4, 3, zc)

<st, zc>

γGetAllStates()

γGetPlacesInside(zc) 

<st, zc> 

γ equal(’USAF Academy’,pl)

<st, pl , zc > 
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Fig . 14 Flat tree Fig . 15 Unbalanced tree 

The total number of query processes N needed to execute the parallel queries 
is N= fo1 + fo1 * fo2.  

In general, there should be an optimum shape of the process tree based on 
properties of the web service calls, which are not known. The experiments 
investigate the optimum tree topology for up to 60 query processes. 

Fig . 16 illustrates the execution times in seconds for Query1 by varying 
the values of fo1 and fo2. It shows the lowest execution time region is 
achieved within the range 50 - 60 sec. The fastest execution time 56.4 sec for 
fanout vector {5,4} outperformed with speedup 4.3 the central plan (244.8 
sec).  Fig . 17 shows that the best execution time for Query2 is achieved 
within the range of 1200-1400 sec. The best execution time 1243.89 sec for 
fanout vector {4,3} outperformed with speed up of nearly 2 the central plan 
(2412.95 sec). 

We notice from the experiments that the best execution time for both 
queries is achieved close to, but not exactly for, balanced trees, (Query1: 
fo1=5, fo2=4 , Query2: fo1=4, fo2=3). 

A. Adaptive apply, AFF_APPLYP 

To automatically achieve an optimized process tree, we developed another 
algebra operator AFF_APPLYP (Adaptive First Finished Apply in Parallel) 
to replace FF_APPLYP, but requires no explicit fanout argument. 

 
 
 
 

fo1=2

fo2=4 

fo1=5
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Fig . 17 Execution time for Query2 

Based on the observation that the best parallelization is close to a balanced 
tree, AFF_APPLYP adapts the process plan at run time starting with a binary 
tree. Each node locally monitors the execution times of its children to 
dynamically modify its subtrees AFF_APPLYP does the following: 
1. AFF_APPLYP initially forms a binary process tree (Fig . 18) by always 

setting fanout to 2, the init stage. 
2. A monitoring cycle for a non-leaf query process is defined as when it has 

received the same number of end-of-call messages as its number of 
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children. After the first monitoring cycle AFF_APPLYP adds p new 
child processes. Adding new processes is called an add stage. In Fig . 
19, p=1 and therefore query process q0 adds one new process q7 at level 
1, while q1 and q2 add q10 and q11 at level 2, respectively. 

3. When an added node has several levels of children the init stages of the 
children’s AFF_APPLYs will produce balanced binary sub–trees. That 
is, q7 adds q8 and q9.  

4. AFF_APPLYP records per monitoring cycle i the average time ti to 
produce an incoming tuple from the children. If ti decreases more than a 
threshold (set to 25%) the add stage is rerun. If ti increases we either stop 
or run a drop stage that drops one child and its children. In Fig . 20, q2 
adds q12, while q0 drops q7, and q7 drops q8 and q9. 

We experimented with different values of p and different change thresholds, 
with and without the drop stage. The results for 25% change are shown in 
Fig . 21. The fanout values are exact for FF_APPLYP while fo1 and fo2 for 
AFF_APPLYP are average fanouts. The measurements include the 
adaptation times. 

 
Fig . 18 Binary process tree 

 

Fig . 19Adding processes 

 

q0 

q1 

q3 q4

q2 

q5

Coordinator 

Level 1 

q7 

q9q8

q10

Level 2 

q6 

q11

q0 

q1 

q3 q4

q2 

q6q5

Coordinator 

Level 1 

Level 2 

q- query processes



 72 

Fig . 20 Adding and removing  processes 
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We notice that for Query1 the execution time with p=4 and no drop stage 
comes close to the execution time of the best manually specified process 
tree, while for Query2 the execution with p=2 and no drop stage is the 
closest one. 

We concluded in both cases that execution time with p=2 and no drop 
stage is close to the execution time of the best manually specified process 
tree (Query1 80%, Query2 96 %) and further dropping processes make 
insignificant changes in the execution time. 

VI. RELATED WORK 
BPEL  [2] proposes workflow primitives to manually invoke parallel web 
service calls. It requires a lot of effort on the part of the programmer to 
manually identify sections of the code to run in parallel, and to specify 
dependencies among the calls. In contrast, WSMED automatically compiles 
a given query over composed data providing web services by generating an 
adaptive, parallel, and optimized workflow. 

In  [1] an approach is described for optimizing web service compositions 
by procedurally traversing ActiveXML documents to select embedded web 
service calls. It demonstrates the gain obtained by maximizing parallelism 
achieved by invoking calls to independent web services in a query. 
Conversely, WSMED adaptively parallelizes dependent web service calls. 

WSQ/DSQ  [9] handles high-latency calls to web search engines by 
launching asynchronous materialized dependent joins later joined in the 
execution plan using a special operator. In contrast, WSMED produces non-
blocking multi-level parallel plans based on streams of parameter tuples 
passed to parallel sub plans without any materialization.  

WSMS  [16] proposed an approach for pipelined parallelism among 
dependent web services to minimize the query execution time. By contrast, 
we parallelize by partitioning parameter tuple streams. Furthermore, WSMS 
didn’t propose any adaptive parallelization, lacked support for code 
shipping, and couldn’t make parallel calls to the same web service. In 
contrast we propose a strategy to adaptively produce a parallelized plan 
where AFF_APPLYP invokes parameterized plans calling web services in 
parallel.  

Like two-phase parallel query optimization  [11] WSMED also generates 
a parallelized query execution plan from an initial central query plan. 
However, WSMED adaptively parallelizes dependent joins by generating 
plan functions that are called in parallel using the adaptive operator 
AFF_APPLYP, while  [11] focused on static inter-operator parallelism in 
distributed databases based on a static cost model. 

The plan function and parameter tuple shipping phase of FF_APPLYP is 
similar to the map phase of MAPREDUCE [5]. However, MAPREDUCE is 
more of a programming model than a query operator and is not dynamically 
rearranging query execution plans as AFF_APPLYP.  
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In  [10] run time adaptation of buffer sizes in web service calls is 
investigated, not dealing with adaptive parallelism on web service calls at 
the client side. 

The formal basis for using views to query heterogeneous data sources is 
reviewed in  [8]  [18]. Chocolate  [12] extends the federated database 
capabilities of DB2/UDB by automatically creating views of web services 
from WSDL descriptions, similar to the OWF generation in WSMED. 
However, Chocolate does not deal with adaptive parallelization of the web 
service calls in a query as WSMED. 

VII. CONCLUSIONS AND FUTURE WORK 
We presented an approach to automatically parallelize queries with 
dependent web service calls. The algebra operator FF_APPLYP was first 
defined in order to parallelize calls to parameterized sub plans partitioned for 
different parameter tuples. We did experiments by manually arranging 
different process trees with different fanouts. From the experiments we 
concluded that the optimum process fanout is close to, but not exactly, a 
balanced tree. To adaptively find the best process tree we devised an algebra 
operator AFF_APPLYP that starts with a balanced binary process tree and 
then each non-leaf process locally adapts the process sub-trees by adding 
and removing children until an optimum is reached, based on monitoring the 
flow of result tuples from the children. The adaptive method obtained 
performance close to the best manually specified process tree. 

Our algebra operators FF_APPLYP and AFF_APPLYP can handle 
parallel query plans for a query with any number of dependent joins. We 
would like to generalize the strategy for queries mixing both dependent and 
independent web service calls, as well bushy trees. Further we need to 
investigate different process arrangement strategies with the algebra 
operators. 
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Abstract. A data providing web service operation returns a 
collection of objects for given parameters without any side 
effects. The Web Service MEDiator (WSMED) system 
automatically provides relational views of any data providing 
web service operations by reading their WSDL documents. 
These views can be queried with SQL. In an execution plan a 
call to a data providing web service operation may be 
dependent of the results from other web service operation calls. 
In other cases different web service calls are independent of 
each other and can be called in any order. In WSMED the 
adaptive operator PAP speeds up queries with both dependent 
and independent web service operation calls. It adaptively 
parallelizes calls to web service operations until no significant 
performance improvement is measured. The performance of 
PAP is evaluated using publicly available web services. The 
operator is shown to substantially improve the query 
performance without any cost knowledge or extensive memory 
usage compared to other strategies.   

Keywords: Web service composition, Adaptive parallelization, 
Query optimization. 

1 Introduction 

Data providing web service operations are web service operations where 
data collections are retrieved from servers without side effects. The Web 
Service MEDiator (WSMED) system enables general query capabilities over 
any data providing web service operations without any further programming. 
WSMED automatically provides relational views of the operations by 
reading the WSDL documents. These views can be queried and joined with 
SQL. A web service operation is considered as a high latency function call 
where the result is a nested data collection. For a given SQL query, WSMED 
first generates an initial execution plan calling web service operations. At 
run time the initial execution plan is adaptively parallelized.  
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As an example, consider a query to find all the information of the places 
in some of the US states along with their zip codes and weather forecasts. 
Four different data providing web service operations can be used for 
answering this query. First the GetAllStates operation from the web service 
GeoPlaces [ 3] is called to retrieve the states. The GetInfoByState operation 
by USZip [ 13] returns the zip codes for a given US State. The 
GetPlacesInside operation by Zipcodes [ 4] retrieves the places located 
within a given zipcode. Finally, the GetCityForecastByZip operation by 
CYDNE [ 5] returns weather forecast information for a given zip code. 

Two operation calls are dependent if one of them requires as input an 
output from the other one, otherwise they are independent. In the above 
example, the web service operations GetPlacesInside and 
GetCityForecastByZip are dependent on GetInfoByState but independent of 
each other. A challenge here is to develop methods to speed up queries 
requiring both dependent and independent web service calls. In general such 
speed-ups are based on some unknown web service properties. Those 
properties are not explicitly available and depend on the network and 
runtime environments when and where the queries are executed. In such 
scenarios it is very difficult to base execution strategies on a static cost 
model, as is done in relational databases.  

To improve the response time without a cost model, WSMED uses an 
approach to automatically parallelize the web service calls at run time while 
keeping the dependencies among them.  For each web service operation call 
the optimizer generates a plan function which encapsulates the web service 
operation call and makes data transformations such as nesting, flattening, 
filtering, data conversions, and calls to other plan functions. 

Web service operations are usually parameterized where input parameters 
have to be bound to call them. WSMED will decompose the query plan to 
guarantee this. The performance is often improved by setting up several 
parameterized web service calls in parallel rather than to call the operation in 
sequence for different parameters. In WSMED such multi-level execution 
plans are automatically generated as several layers of parallelism where each 
parameterized plan function is executed in different query processes. This 
forms a process tree for the query.  

In the initial execution plan the dependencies between dependent and 
independent plan functions calls are resolved so that collections of 
independent calls are grouped together. 

For adaptive parallelization of queries with web service operation calls, 
the algebra operator, PAP (Parameterized Adaptive Parallelization) is 
implemented. It takes as arguments a set of independent plan functions along 
with a stream of parameter values to be processed by the plan functions. For 
each received parameter tuple it starts one process per plan function call. 
Different plan functions will select different elements from the input tuple. 
The results from the query processes are collected asynchronously and 
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delivered as a stream. The result tuples from PAP are formed by combining 
result tuples from each child. When a child process has delivered all result 
tuples in a call it is terminated and another child plan function call is started 
asynchronously. 

A set of independent plan function calls is processed by a single call to 
PAP. By contrast, dependent plan function calls are processed as sequences 
of parallelized PAP calls. 

For the adaptation PAP dynamically modifies the parallel plan by 
monitoring the performance of each plan function call. Based on the 
monitoring new children are started until no significant performance 
improvement is measured. Sequences of PAP calls will start sequences of 
process sub-trees which are locally adapted as well.  

The PAP operator provides process tree adaptation without any central 
control or cost model. At any point in time every process in the tree executes 
one plan function for a specific parameter tuple. 

In summary the contributions of our work are: 
1. For a given SQL query, the system automatically generates a parallel 

execution plan calling PAP that adaptively parallelizes both dependent 
and independent web service operation calls. 

2. PAP is shown to substantially improve the query performance without 
any cost knowledge or extensive memory usage compared to other 
strategies. 

In Section 2, we provide a motivating scenario used in experiments in terms 
of real web services. Section 3 shows how the query plans are generated. In 
Section 4 adaptive parallelization using PAP and experimental results are 
presented. Related work is analyzed in Section 5, and finally Section 6 
summarizes and indicates future directions. 

2 Motivating Scenario 

We consider the class of queries with both dependent and independent joins, 
which in their simplest form can be expressed as: 
 )}z,g(y)y,f(x)v,e(u | z{v, +−∧+−∧+−  

Input parameters are annotated with ‘-‘ and outputs with ‘+’. Given the 
input values u and x the query returns the tuple <v,z> where the predicate e 
binds v for the given u. The predicate f  binds y for the given x and passes 
each y to the predicate g that returns z. Thus, predicate g depends on the 
output of f but e and f are independent. The predicates e, f, and g represent 
calls to plan functions encapsulating data providing web service operations. 
We made experiments with two different queries calling different web 
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service operations provided by the previously mentioned publicly available 
service providers. 

2.1 Query1 

The example SQL Query1 in Fig. 1 has the above form. It finds all 
information about places in some of the US states, along with their zip codes 
and weather forecasts. The result set size is scaled by varying the number of 
selected states. 

select gp.TOPLACE,gp.TOSTATE,gz.ZIPCODE,gc.DATE,gc.DESCRIPTION 
from   GetAllStates gs, GetPlacesInside gp, GetInfoByState gi, 
       GetCityForeCastByZip gc, getzipcode gz 
where gs.State<'MD' and gi.USState=gs.State and 
      gi.GetInfoByStateResult=gz.zipstr and 
      gz.zipcode=gp.zip and gc.zip=gz.zipcode 

Fig. 1. SQL Query1 

For a given web service WSMED automatically generates Operation 
Wrapper Functions (OWF) [ 11] that represent SQL views of the web service 
operations based on the WSDL definitions. To provide relational views of 
web service operations returning complex objects, the OWFs flatten the 
result from the web service call. Analogously, web service operation 
arguments are constructed as a nested structure before an operation is called. 
For Query1, the views GetAllStates, GetInfoByState, GetPlacesInside, and 
GetCityForeCastByZip are defined as OWFs that encapsulate four different 
web service operations from four different service providers. The OWF 
GetAllStates presents information of US states as a set of tuples <state>. 
The OWF GetInfoByState retrieves all zip codes for a given state as a single 
comma separated string (gi.GetInfoByStateResult). getzipcode is a helping 
function defined in WSMED that extracts the set of zip codes (gz.zipcode) 
given a string of zip codes (gz.zipstr). The OWF GetPlacesInside returns for 
a given zip code a set of tuples <ToPlace, ToState, Distance> where 
ToPlace is a place located within the zip code area, ToState is the state of the 
place, and Distance is the distance from the place to the origin of the zip 
code area. The OWF GetCityForeCastByZip reports the weather forecast as 
a set of tuples <Date, Description> for a given zip code where Date is date 
of the forecast, and Description is the short description of the forecast. In the 
above query the OWF GetInfoByState depends on OWF GetAllStates. The 
OWFs GetPlacesInside, and GetCityForeCastByZip depend on the OWF 
GetInfoByState, while the OWFs GetPlacesInside, and 
GetCityForeCastByZip are independent on each other. 
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2.2 Query2 

The SQL Query2 in Fig. 2 has one more dependent OWF GetPlaceDetails 
than Query1. It finds all information about places in some of the US states, 
along with their zip codes, weather forecasts, and geographical positions. 
The result set size is scaled by varying the number of selected states and 
filtering city names. 

select gd.Name,gd.LatDegrees,gd.LonDegrees, 
       gz.ZIPCODE,gc.DATE,gc.DESCRIPTION 
from   GetAllStates gs, GetPlacesInside gp, GetInfoByState gi, 
    GetCityForeCastByZip gc, getzipcode gz, GetPlaceDetails gd 
where gs.State<'MD' and gi.USState=gs.State and 
      gi.GetInfoByStateResult=gz.zipstr and 
      gz.zipcode=gp.zip and gc.zip=gz.zipcode and 
      gd.Place like '[A-Z]*' and gd.Place=gp.TOPLACE and 
      gd.State=gp.TOSTATE 

Fig. 2. SQL Query2 

For Query2, the views GetAllStates, GetInfoByState, GetPlacesInside, and 
GetCityForeCastByZip are the same as for Query1. The additional OWF 
GetPlaceDetails returns for a given city and state a set of tuples 
<Name,LatDegrees, LonDegrees> where Name is a place located within the 
city, and LatDegrees and LonDegrees represents latitude and longitude of 
the place in degrees, respectively. The OWF GetPlaceDetails depends on 
OWF GetPlacesInside. Query2 filters the city name Place (gd.Place like '[A-
Z]*') since the web service operation GetPlaceDetails [ 3] doesn’t support 
such filters. 

3 Query Plans 

The WSMED query processor first generates a central plan containing calls 
to the web service operations. It is a left-deep tree of executable predicates 
enumerated from 0 and up. The central plan contains calls to the apply 
operator γ, which applies a plan function for a given parameter tuple. The 
non parallel query execution plan with γ can be directly interpreted but with 
very bad performance, since the web service operations are applied in 
sequence. 

In Fig. 3  the central Plan1 for Query1 first calls the plan function that 
encapsulates the web service operation GetAllStates returning a stream of 
tuples <state>, which is then selected by inequality (pos=1). Each of these 
tuples is fed to the next plan function encapsulating web service operation 
GetInfoByState parameterized by state returning a stream of comma 
separated strings zipstr. For each zipstr the γ operator applies the user 
defined helping function getzipcode to produce a stream of extracted zip 
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codes zipcode. Then the plan function encapsulating web service operation 
GetPlacesInside is applied on each argument tuple <zipcode> to produce a 
stream of tuples <toplace, tostate, zipcode>. Finally the plan function for 
GetCityForeCastByZip is applied on each argument tuple <toplace, tostate, 
zipcode> returning as the query result a stream of tuples <toplace, tostate, 
zipcode, date, description>.  

 

Fig. 3 Central Plan1 Fig. 4 Plan functions 

For each web service operation call a plan function is generated that 
encapsulates a fragment of the non-parallel execution plan embodying the 
web service operation call. Each fragment is defined as a set of predicates 
from one web service operation call up to just before the next web service 
operation call in Plan1. The WSMED query processor then automatically 
reformulates Plan1 to incorporate parallel web service calls by inserting 
PAP in the execution plan for each plan function call.  

Fig. 4 shows the query plans of three different parallelizable fragment 
plan functions PF1, PF2 and PF3 generated by the WSMED query 
processor for Query1. PF1 calls the web service operation GetInfoByState, 
and the foreign function getzipcode. PF2 calls web service operation 
GetPlacesInside while PF3 calls the web service operation 
GetCityForeCastByZip. 

In the parallel plan Fig. 5 the PAP operator applies in parallel one plan 
function at the time. It is suboptimal since it assumes that all the web service 
operation calls are considered as dependent on each other and the PAP 
operators are therefore called in sequence. The PAP operator adaptively 
parallelizes the calls to the plan functions PF1, PF2 and PF3 so that they 
will be executed as a parallel pipeline. A better plan will be shown later. 
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Fig. 5 Dependent adaptive parallel plan Fig. 6 Adaptive dependent parallel 

process tree 

 
 

  
Fig. 7 Independent plan functions Fig. 8 Dependent and independent 

adaptive parallel execution plan 

Once the parallel plan is started PAP will automatically start new parallel 
processes to dynamically form a process tree. Fig. 6 shows a process tree for 
the dependent parallel plan of Query1 in Fig. 5. Every query process on each 
level is connected with several child processes. All processes on the same 
level execute the same set of plan functions for that level, but with different 
parameter tuples. On each level always one plan function is applied. 

In Fig. 6, the coordinator q0 is connected with q1 and q2. The execution 
plan in q0 calls the non-parameterized web service operation GetAllStates, 
while PF1 executing in level one calls the web service operation 
GetInfoByState for different states. On level two PF2 calls the web service 
operation GetPlacesInside for different zipcodes. Finally on level three PF3 
calls the web service operation GetCityForecastByZip for different zipcodes.  

In this plan the web service operations GetPlacesInside and 
GetCityForecastByZip are regarded as dependent on each other. This makes 
the web service operation GetCityForecastByZip be called several times for 
the same zipcode. Since web service calls have high latency, these redundant 
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calls cause delays. Next it will be shown how such redundant calls are 
removed when the web service operations are independent.  

 

 

 
Fig. 9 Adaptive parallel process tree 
– dependent and independent 

Fig. 10 Plan functions-Query2 

 

 
Fig. 11 Central Plan2a Fig. 12 Central Plan2b 

Fig. 7 shows modified query fragments using the independent plan functions 
PF4 and PF5, which both depend on the parallelized PF1. For a given 
zipcode PF4 calls GetPlacesInside and PF5 calls GetCityForeCastByZip. 
The modified adaptive parallel plan in Fig. 8 uses the PAP operator to 
parallelize the calls to the independent plan functions PF4 and PF5. Fig. 9 
shows the parallel process tree. In contrast to the process tree in Fig. 6, the 
web service operations GetPlacesInside and GetCityForecastByZip are 
called parallel at level two. 

For the initial central plan the query processor uses a simple heuristic web 
service cost model based on the signatures of web service operations 
assuming that web service operations are expensive. One such possible 
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central execution plan for Query2 is illustrated by Plan2a in Fig. 11. 
However, since the web service operations GetPlacesInside and 
GetCityForeCastByZip are independent, they can be called in any order. Fig. 
12 shows the alternative execution Plan2b where, in contrast to Plan2a the 
calls to the web service operations GetCityForeCastByZip and 
GetPlacesInside have been swapped. Fig. 10 shows the two fragment plan 
functions PF6 and PF7 used in both plans. PF6 calls the web service 
operation GetPlacesInside, and a filtering function like while PF7 calls the 
web service operation GetPlaceDetails. Fig. 13 and Fig. 14 illustrate the two 
parallel plans. 

 
Fig. 13 Parallel Plan2a Fig. 14 Parallel Plan2b 

4 Adaptive Parallelization 

First the details of PAP are discussed. Then experiments with different 
dependent and independent strategies of using PAP are analyzed. The full 
pseudo code of PAP is shown in [ 10]. 

4.1 PAP Operator 
The PAP operator calls one or several plan functions in parallel. It has the 
signature: 

PAP(Vector of Function vpf, Stream pstream , 
    Vector argorder, Vector resorder)→ Stream res 

The arguments of the plan functions fi in vpf to execute are provided 
through the input stream pstream. For each input tuple in pstream PAP starts 
processes executing all fi in parallel in a round robin fashion. Each input 
tuple p in pstream provides arguments for all fi. However, different fi use 
different parameter values in p. The parameter argorder specifies for each fi 
how to form the arguments of fi from p. It is a vector of vector of argument 
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positions {{aij,…}…}, that specifies per fi the parameter positions {aij,…} to 
pick from p. For example, in Fig. 8 the uppermost call to PAP has argorder 
= {{1},{1}} because both PF4 and PF5 take as argument the first element of 
the input tuple <zipcode1>. 

Each result tuple r emitted from PAP consists of values rk. The PAP 
parameter resorder specifies how to compute rk from results of fi. It is a 
vector of pairs {{pkm,ckm}…}, that specifies per element position k in r i) the 
position pkm of the function fm in vpf that computed rk, and ii) which element 
ckm in the result from fm to select as rk. In Fig. 8 resorder = 
{{1,1},{1,2},{1,3},{2,1},{2,2}} specifying the result tuple <toplace, tostate, 
zipcode, date, description>. 

A child result tuple is delivered back to the parent asynchronously as soon 
as its plan function fi has produced a new value. PAP stores each received 
child result in an input buffer per child. When PAP has received at least one 
result ruple from every fi for a given input tuple p the system will emit one 
or several result tuples based on the resorder and cartesian product of the 
result tuples received from each fi. Once a child has no more result tuples to 
emit it terminates. When the parent receives a termination message from a 
child, it starts another child process for the plan function in vpf to be called 
next picking its parameter tuple from the current input tuple. When there are 
no pending parameter tuples in pstream and no still running children, PAP is 
finished.  

In a process tree, the fanout is defined as the number of children 
processes below a parent query process. A process tree for the execution 
plan in Fig. 8 is shown in Fig. 9, where every node has fanout two. First the 
coordinator q0 has started two children q1 and q2, each executing the same 
plan function PF1. In the next call to PAP the plan functions PF4 and PF5 
are independent. Therefore a call to PAP is executed in each of q1 and q2 
with different plan functions PF4 and PF5, respectively. PAP in q1 has 
created a binary sub-tree with children q3 and q4, while q2 has the children 
q5 and q6. The query processes q3 and q5 are started with PF4 while q4 and 
q6 are started with PF5. 

Once started PAP dynamically modifies the process tree at run time. The 
query process locally monitors the execution times of its children to locally 
add new children to improve performance until no more performance 
improvement is expected. PAP does the following: 
1. It initially forms a process tree by having fanout set to the length of vpf. 

The fanout is minimally two to ensure parallelism when length of vpf is 
one, as in q0. This is called the init stage. 

2. A monitoring cycle for a non-leaf query process is defined as when PAP 
has received end-of-call messages from all its children and the total 
number of received result tuples is at least one. After the first monitoring 
cycle PAP adds p new child processes, initially p=2. This is called the 
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add stage. In Fig. 15, the query process q0 has added two new processes 
q7 and q10 at level 1 compared to Fig. 9. 

3. When an added node has several levels of children the init stages of the 
children’s PAPs are rerun. That is, q7 adds q8 and q9 while q10 adds 
q11 and q12. 

4. PAP records per monitoring cycle i the average computation time ti to 
produce an incoming tuple from the children. This time is dominated by 
the latency of the encapsulated web service operations. 

a. If ti decreases more than a threshold (set to 20%) the add stage is 
rerun.  

b. If ti increases no more children are added.  
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strategies 

4.2 Experiments 
Experiments were run under Windows XP on an HP Compaq 530 with a 3 
GHz single processor Intel Pentium 4 and 2.5GB RAM. We compared the 
query execution times for Query1 using six different strategies: 
1. Dependent (D): Strategy D is a naïve dependent strategy as in Fig. 5. 

This corresponds to the adaptive parallelization in [ 11]. All the web 
service operations in the query are considered as dependent calls, even 
the independent ones. A new sub-tree is always started with fanout two, 
which is increased by two by the adaptation. 

2. Dependent with varying initial fanout (DF): Strategy DF measures the 
impact of varying initial fanout for a dependent strategy. This is as 
strategy D, but new sub-trees are started with the same fanout as the 
current adapted fanout of its siblings. The fanout of the first child of a 
level is two. 

3. Cached dependent (CD): Strategy CD measures impact of caching 
results from the web service operations for a dependent strategy. It 
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modifies strategy D by caching results of operation calls. For example, 
in Fig. 5 the result of calling the operation GetCityForecastByZip for a 
given zip code is cached in a main memory table. Whenever the 
operation GetCityForecastByZip is required to be called in the query, the 
cache table is checked to avoid redundant calls. 

4. CD with DF (CDF): The impact of caching combined with varying 
initial fanout is investigated for a dependent strategy. 

5. Independent (I): Strategy I measures naïve independent calls for the 
execution plan in Fig. 8. A new sub-tree is always started with fanout 
equal to the number of plan functions in vpf of the PAP call. The fanout 
is two if vpf has length one. 

6. Independent with varying initial fanout (IF): This is as strategy I, but 
new sub-trees are started with the same fanout as the current adapted 
fanout of its siblings.  

The experiments were made by scaling Query1 by selecting an increasing 
number of states. This produces an increasing number of zipcodes and 
increases the cardinality of the result. 
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Fig. 16 shows that strategy D is slowest, and DF is somewhat faster. CD is 
even faster, showing that caching is favorable since web service calls incur 
high latency. CDF is even better as it combines caching and adaptive initial 
fanout. However, even the naïve PAP strategy I is faster than all variants of 
the dependent strategies. Strategy IF is best. Caching does not pay off for 
independent strategies, since no redundant calls are made; therefore the 
combination of caching with IF was not measured.  

Fig. 17 shows the relative scalability comparing independent and 
dependent strategies and caching. DF-IF plots the performance difference 
between DF and IF. It shows that the independent strategy IF scales better. 
Analogously, DF-CDF shows for dependent strategies that caching 
improves scalability. CDF-IF shows that the best independent strategy IF 
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scales somewhat better that the best dependent strategy CDF. However, 
unlike CDF, IF requires no extensive memory for caching. 

To investigate the impact of adaptation we devised another strategy Non 
Adaptive Independent(NAI). It is similar to I, but fanout is fixed to two in all 
levels of the process tree. Fig. 18 shows that IF outperformed NAI. 
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Fig. 19 Execution time with further increased fanouts 

When the average computation time ti is less than a specified threshold (set 
to 20%) PAP increases its number of children cf with a constant increment i. 
For the above experiments i=2 which was measured optimal for adaptive 
dependent calls [ 11]. 

To investigate the impact of increasing i gradually we made experiments 
by increasing i as: i =  i + v     (v=0,1,2…) 

The value of v is incremented until no significant performance 
improvements are measured.  Fig. 19 shows that incrementing with v does 
not make any significant performance improvement for PAP. 
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Fig. 21 Number of web service calls-
Pla2a Vs Plan2b 

To investigate the performance of PAP for different central plans, 
experiments were made for Query2 scaled by selecting an increasing number 
of states and places. Fig. 20 shows that Plan2b (Fig. 13) outperforms parallel 



 92 

Plan2a (Fig. 14).  The reason is that PF5 and PF6 are independent, which is 
reflected in parallel Plan2b but not in parallel Plan2a. This causes parallel 
Plan2a to make redundant web service calls to PF5 for each place returned 
by PF6.  

The central optimizer will not know that Plan2b is better when 
parallelized. Therefore WSMED reorders the central preliminary plan by co-
locating the predicates that directly depend on each. Fig. 21 compares the 
number of web service calls made by the two different parallel plans. 

5. Related Work 

PAP generalized AFF_APPLYP [ 11] by parallelizing both dependent and 
independent web service operation calls, while AFF_APPLY produced and 
parallelized pipelined plan of dependent calls. 

WSQ/DSQ [ 7] handles high-latency calls to web search engines by 
launching asynchronous materialized sub-queries later joined in the 
execution plan using a special operator without any adaptation. In contrast, 
WSMED adaptively produces multi-level parallel plans based on streams of 
parameter tuples passed to parallel sub-plans. 

WSMS [ 12] proposed a cost-based approach for pipelined parallelism 
among web service operation calls to minimize the query execution time. By 
contrast, we parallelize adaptively calls to web service operations without 
any cost model. Furthermore, PAP adaptively parallelizes the same web 
service operation by starting several query processes.  

In [ 8] run time adaptation of buffer sizes in web service calls is 
investigated, not dealing with adaptive parallelism on web service calls at 
the client side. 

In [ 1] an approach is described for optimizing web service compositions 
by traversing ActiveXML documents to select relevant embedded web 
service calls. It identifies only the independent sub-queries having web 
service operations and calls them in parallel. The parallelization required a 
static cost model. By contrast, PAP adaptively parallelizes plan functions 
with both dependent and independent web service calls without any cost 
model. 

Eddies [ 2] dynamically reorder query processing operators by an n-ary 
tuple router interposed between n data sources and a set of query processing 
operators. Rather than routing, PAP adaptively parallelizes calls to 
parameterized operators (plan functions) for different parameter values. The 
purpose of eddies is to avoid dependencies between operators, while the 
purpose of PAP is to speed up calls to individual plan functions. PAP 
complements eddies. 
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Like two-phase query optimization in distributed databases [ 9] WSMED 
also parallelizes a query execution plan based on an initial central query 
plan. However, the strategy in [ 9] is based on a static cost model for 
distributed databases, while WSMED adaptively parallelizes dependent 
joins. Furthermore, WSMED reorders the preliminary plan for better parallel 
performance by co-locating adjacent dependent plan function calls.  

Starting query processes with plan functions and the parameter tuple 
shipping phase of PAP has some similarity with the map phase of 
MAPREDUCE [ 6]. However, MAPREDUCE is not dynamically adapting 
query execution plans as PAP and is not streamed. 

6. Conclusion 

WSMED provides general relational query capabilities over any data 
providing web service operations given their WSDL meta-data descriptions. 
Queries are expressed in SQL over automatically generated relational views 
over the data providing web service operations.  

Without any cost knowledge the WSMED query processor automatically 
and adaptively finds an optimized parallel execution plan calling the queried 
data providing web services. The algebra operator PAP locally adapts the 
parallel plan by adding children, until no significant performance 
improvement is measured, based on monitoring the flow between query 
processes. The operator handles queries where data providing web service 
operations are called both dependently and independently. PAP substantially 
improves the query performance without any cost knowledge or extensive 
memory usage compared to other strategies. The measurements are all made 
with publicly available web service operations.  

To lower the number of web service operation calls WSMED includes a 
strategy to co-locate adjacent dependent plan functions. 

The WSMED approach relies on calling side effect free data providing 
web service operations. The widely available WSDL language does not 
provide meta-data describing side effects in web service operations. When 
such a standard is available WSMED can utilize it to guarantee query 
correctness. 

WSMED is accessible through a URL [ 14] from anywhere without 
installing any software. 
Acknowledgments This work is supported by the Swedish Foundation for 
Strategic Research under contract RIT08-0041 and Sida. 
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Abstract. A data providing web service returns a collection of objects for 
given parameters without any side effects. The Web Service MEDiator 
(WSMED) system automatically provides relational views of data providing 
web service operations by reading their WSDL documents.  These views can 
be queried with SQL. A common pattern in queries over data providing web 
services is that the output of one web service call is the input for another. A 
challenge addressed by WSMED is to speed up such queries by 
parallelization. To automatically achieve the optimal parallel plan WSMED 
adapts an initial parallel plan locally in each node until optimized 
performance is achieved. To make any data providing system into a data 
providing web service WSMED includes a web service generator that 
automatically deploys the web service operations required to access a data 
source. Given that interface functions are implemented the web service 
generator automatically deploys corresponding web service operations and 
generates the WSDL document. The web service generator is used also for 
defining the web service interface to WSMED itself. The WSMED web 
service operations provide SQL query functionality to query and join any 
data providing web services. Search of any data providing web service from 
a browser can be done by a JavaScript program that directly calls the 
WSMED web service without any need for installing software. 
 
1 Introduction 
Web services are often used for search computing (Ceri, 2009) where data is 
retrieved from servers providing information of different kinds. Such data 
providing web services return collections of objects for a given set of 
parameters without any side effects. A System, Web Service MEDiator 
(WSMED), is built that provides a web service to query any data providing 
web service operations without any further programming.  The search is 
completely specified by SQL queries that retrieved data from the data 
providing web services. WSMED adheres to the Everything as a Service 
(XaaS) paradigm 11 by providing a general web service to process queries 
over other web services, known as the WSMED web service. 
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WSMED can import any WSDL file and automatically generate relational 
views for the web service operations defined in the WSDL file. These views 
can be queried and joined with SQL. For a given SQL query, WSMED 
dynamically composes the web services, optimizes the web service calls, and 
adaptively parallelizes the execution plan.  

As an example, consider a query to find information about places located 
within 15 km from each city whose name starts with ’Atlanta‘ in all US 
states. Three different data providing web services can be used for answering 
this query, using the operations GetAllStates 6 to retrieve all the states, 
GetPlacesWithin 6  to get all the places located  within a given distance, and 
GetPlaceList 10 to provide all the places whose names start with ’Atlanta’ for 
a given state. 

WSMED assumes that all queried data sources are available as web 
services. The conventional way to define a new data providing web service 
for a data source which is not a web service is manual development of 
software to access the data source, defining a WSDL document to describe 
the interface, and deploying the interface code.  

To facilitate the provision of a data providing system as a web service, 
WSMED includes a subsystem, the web service generator, which 
automatically generates the web service operations to access a data source. 
The programmer first defines data source interface functions to access the 
data source as queries using the extensible wrapper/mediator system Amos II 
(Risch et al., 2003). Once the interface functions are defined, the WSMED 
web service generator automatically generates the corresponding web 
service operations and dynamically deploys them without restarting the web 
server. The signature of each so generated web service operation is defined 
in an automatically generated WSDL document based on the signatures of 
the interface functions. The WSDL document completely describes the web 
service interfaces of the deployed operations. Each operation calls the 
interface function and sends back the result as a collection. Interface 
functions have been defined for many different kinds of data sources 3, e.g. 
relational DBMSs, semantic web data, topic maps, and CAD servers. 

Even the WSMED web service itself is generated by the web service 
generator. An automatically generated WSDL document 14 describes the 
interface of the WSMED web service operations. 

Queries calling web services often have a similar pattern where the output 
of one web service call (e.g. GetAllStates) is the input for another one (e.g. 
GetPlacesWithin), i.e. the second call is dependent on the first one, etc. A 
challenge here is to develop methods to speed up queries requiring such 
dependent data providing web service calls. In general such speed-ups are 
based on some unknown web service properties. Those properties are not 
explicitly available and depend on the network and runtime environments 
when and where the queries are executed. It is very difficult to base 
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execution strategies on a static cost model in such scenarios, as is done in 
relational databases.  

In our approach a web service call is considered as an expensive function 
call where the result is a data collection. To improve the response time, 
WSMED uses an approach to parallelize the web service calls while keeping 
the dependencies among them. With the approach separate query processes 
are started automatically in parallel, each calling a parameterized sub query 
plan, called a plan function, for given parameters. Each plan function 
encapsulates one web service call and makes data transformations such as 
flattening nested results, filtering, and data conversions. 

To provide a view query-able with SQL, the nested result collections are 
flattened. Conversely arguments of operation are nested. A common 
constraint is that input parameters have to be bound in operations and 
WSMED will decompose the query plan so guarantee this.  

The performance is often improved by setting up several web service calls 
to the same operation in parallel rather than to call the operations in 
sequence for different parameters. The algebra operator, AFF_APPLYP 
(Adaptive First Finished Apply in Parallel), takes a stream of parameter 
values and, for each received parameter tuple in the stream, ships a plan 
function in parallel to other query processes and then asynchronously 
receives the results from the shipped plans in parallel. 

Multi-level execution plans are automatically generated with several 
layers of parallelism in different query processes. This forms a process tree 
for the query. During execution AFF_APPLYP first initiates the 
communication with its child query processes and then ships the plan 
function to the children. Then the AFF_APPLYP operator starts shipping in 
parallel to the children the argument tuples from the parameter stream. At 
any point in time every process in the tree executes one plan function for a 
specific parameter. The results from the children are delivered to the parent 
in parallel as streams. 

WSMED adaptively achieves an optimized process tree by local run-time 
monitoring of each plan function call. For the adaptation AFF_APPLYP 
dynamically modifies a parallel plan locally and greedily in each query 
process.  

The functionality of WSMED is demonstrated through a publicly 
accessible web interface 13. It enables the user to query any data providing 
web service. SQL views of the queried web services are automatically 
generated, given its WSDL URL. General SQL queries over the views can 
be specified. The schema of the generated views can be inspected. The 
demonstration is fully implemented as a JavaScript program calling the 
WSMED web service using SOAP, without any need to download or install 
any software.  

In summary the contributions of our work are: 
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1. The WSMED system provides general SQL query capabilities over any 
data providing web services based on their WSDL meta-data 
descriptions. 

2. For a given SQL query, the system automatically and adaptively 
generates and optimizes a parallel execution plan calling the web 
services. 

3. A web service generator automatically generates web service interfaces 
for data sources once they have been defined as interface functions.  

4. The generated web service operations are dynamically deployed without 
restarting web server. 

Section 2 describes the WSMED on-line demo. Section 3 overviews the 
WSMED system architecture. The WSMED service generator is described in 
Section 4. In Section 5 we show how WSMED processes in parallel SQL 
queries and adaptively parallelize their execution automatically. Related 
work is discussed in section 6. Finally Section 7 concludes our approach. 
2 The WSMED demo 
 

Figure. 1 User registration 

 

The WSMED on-line demonstration illustrates the functionality of the 
WSMED web service. It demonstrates all web service operations provided 
by WSMED through a user interface that can be run in any web browser 
without software installation. The web page is written as an application 
program in JavaScript that directly calls the WSMED web service. The 
communication between the JavaScript program and the WSMED web 
service operations uses the SOAP protocol. 

A user first starts a WSMED session (Figure. 1) by registering her name, 
for example Mary, and then clicks on the ‘Register’ button. A WSMED 
session is closed with the ‘Exit’ button (Figure. 2). 
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Before querying a web service she has to import its metadata by entering 
its WSDL URL, e.g. http://terraservice.net/TerraService2.asmx?WSDL in a 
text box with label ‘Enter New WSDLURL’ (Figure. 2). Alternatively a 
predefined set of WSDL URLs for common services is provided by the pull-
down menu labelled ‘Available WSDL URL’s. The WSDL file is selected by 
pressing the ‘ImportWSDL’ button. 

Figure. 2 Enter WSDL URL 

 

 

After meta-data of a WSDL URL is imported the system automatically 
generates SQL views of all web service operation specified by the WSDL 
file. 

Figure. 3 Get generated SQL Views 

  

Figure. 3 shows the imported SQL views of the web service TerraService. 
The names of the views are based on the names of imported web service 
operations. They are displayed in the format: ‘View: Authentication | 



 102 

Service’. View is the name of a view. Authentication indicates whether 
authentication is required when querying the web service operation defining 
the view. It may be one of the strings required, none, or builtin. Service is 
the name of the web service that supports the operation over which the view 
is defined. The currently imported SQL views can be selected in a pull-down 
menu labeled ‘Available Views’. For example, the user can inspect the 
details of the generated view named GetPlaceList by selecting the view in 
the pull-down menu (Figure. 4) and clicking ‘View Info’. 

Figure. 4 View information 

 

As illustrated in Figure. 4 this will display the view name, its authentication 
status, the web service hosting the operation encapsulated by the view, the 
data types of its attributes, and what attribute values are required to be 
known in order for the view to be queried. That information is important for 
the user to express a correct SQL query. To inspect the authentication status 
of an available view, the user selects it from the pull-down menu and then 
presses the ‘Authentication’ button. A new authentication value (for example 
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345DERT56TY) can be entered in the text box labeled ‘Enter New 
Authentication Value’ and stored by pressing the ‘Enter’ button as shown in 
Figure. 5. 

Figure. 5 New authentication value 

 

As shown in Figure. 6 in the text box labeled ‘Enter SQL Query’ an SQL 
query can be expressed in terms of the available views and executed by 
clicking the ‘Execute’ button. Figure. 6 shows the result of an SQL query: 
select gl.City ,gl.Lon  
from   GetPlaceList gl  
where  gl.placeName='Atlanta' and gl.MaxItems=100 and 
       gl.imagePresence= 'true' 

Figure. 6 Execute SQL Query 
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3 The WSMED system 
Figure. 7 illustrates the WSMED architecture. It contains four subsystems: 
the WSMED query processor, the WSMED coordinator, the WSMED web 
server, and the web service generator. The WSMED query processor 
provides general SQL query capabilities to any data providing web service. 
It accepts SQL queries using its web service interface managed by the 
WSMED web server. The WSMED web server extends the lightweight 
standalone server Quick Server 9, to send and receive SOAP messages using 
the HTTP protocol. The WSMED coordinator manages user sessions starting 
a separate WSMED query processor for each user. The query processor is 
terminated when the user ends the session.  

The purpose of the web service generator is to generate web service 
operations for a data source which is not implemented as a web service. First 
a programmer implements interface functions to access the data source. 
Then the web service generator automatically deploys the web service 
operations to call the interface functions. The basic functionality of WSMED 
itself is implemented as interface functions. Therefore all web functionality 
provided by WSMED is automatically deployed as web service operations 
using the web service generator. The automatically generated document 
wsmed.wsdl describes these operations.  

Figure. 7 WSMED architecture Figure. 8 Service oriented 
architecture of  WSMED 

 

Figure. 8 illustrates the web service operations of the WSMED web service. 
The top box illustrates the supported web services operations 
IMPORTWSDL, QUERY, etc. They are all implemented as interface 
functions and automatically deployed by the web service generator. The 
following WSMED web service operations are defined: 
• The INIT operation registers a WSMED user session.  
• For a given a URL the IMPORTWSDL operation imports WSDL meta-

data information and automatically creates an SQL view Viewi for each 
operation OPj provided by a web service WSk described by an imported 
WSDL document WSDLk.  
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• The AUTHENTICATION operation provides authentication information 
for web service operations that so require.  

• The VIEWINFO operation provides information about the SQL view 
over a given web service operation. For example, it lists view attributes 
that must always be specified in the queries.  

• The system accepts SQL queries to the generated views by the QUERY 
operation. The results from the operation is automatically flattened, 
optimized, and post processed by WSMED in order to deliver a proper 
SQL result as a collection of tuples.  

• Finally, the operation EXIT_S terminates a user session. 
 
4 Automated web service generation 
In Figure. 9 the WSMED web service generator dynamically deploys web 
service operations for data.  The web service generator calls a data source 
encapsulator to obtain the signatures of the interface functions to be 
provided as web service operations. Based on these signatures it deploys the 
web service operations for the functions. It also generates a WSDL document 
describing the deployed web service operations.  The WSDL document can 
be read by WSMED for querying the encapsulated data source. In Figure. 9 
a relational database is encapsulated.  

Figure. 9 Automated web service generation 

 

The interface functions are defined as parameterized queries to the 
mediator/wrapper system Amos II(Risch et al., 2003) Different kinds of data 
sources can be made queryable by Amos II by implementing wrappers that 
interface the Amos II kernel with the systems providing the data in a source. 
For example, wrappers have been built to query relational databases (Fahl et 
al., 1997), semantic web data (Petrini et al., 2007), topic maps (Stefanova et 
al., 2008), or CAD systems (Koparanova et al., 2002). 

In addition, Amos II provides a built-in database that can be populated 
with source data as an alternative to defining the interfaces function by 
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wrapping an external data source system. For example, Figure. 10 illustrates 
how a text file 15 is represented in Amos II as a stored function (table) 
getzipc.  The database is populated by reading the text file.  

To deploy interface functions as web service operations by the web 
service generator the system function deploy_wsdl is called. It takes as 
arguments the names of the interface functions, the name of the deployed 
web service, and the name of the WSDL file describing the web service 
operations. In the example, the deploy_wsdl call creates a WSDL document 
zip.wsdl to describe the exported interface function getzipc. 

Figure. 10 Deploying a data source 

create function getzipc(Charstring state)→Charstring zipcode 
 as stored; 
deploy_wsdl({'getzipc'},’zipcode’,'zip.wsdl'); 

WSMED itself is also regarded as an encapsulated data source, which is 
automatically deployed by the web service generator. The web service 
interface to WSMED is defined using interface functions. For example 
Figure. 11 shows the signature of the interface function implementing 
WSMED’s web service operation QUERY. The interface function query is 
defined in terms of many other functions and external programs to process 
an SQL query sqlq by a user identified by the parameter userid.  

Figure. 11 Signature of interface function query 

query (Integer userid, Charstring sqlq)-> Bag of Charstring  

 
4.1 The Web service generator 
The web service generator in Figure. 12 consists of four sub modules, the 
AmosII mediator/wrapper system, the function analyzer, the WSDL creator, 
and the WSDL exporter.  

The function analyzer is called by deploy_wsdl and receives a set of 
exported functions. It then queries the meta-data of Amos II for the signature 
of each function to export and generates a data structure, exported 
signatures, that describes them. An exported signature consists of the names 
and types of a function’s arguments and results. They are passed to the 
WSDL generator. The WSMED web server does not need to restart when 
exporting and publishing new functions as web service operations since it 
dynamically looks up the signatures of interface functions at run time when 
web service operation calls are received. 

The signature of an interface function is automatically translated into a 
corresponding message structure in WSDL. To produce the WSDL 
document, the WSDL generator dynamically builds an internal export 
description as a DOM data structure in main memory using the WSDL4J 12 
Java toolkit. The rules for transforming signatures to WSDL operation 
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descriptions will be discussed in Section 4.2. The WSDL exporter then 
transforms the DOM representation of the export description into a WSDL 
document that describes the exported function interfaces as web service 
operations. 

Figure. 12 The web service generator Figure. 13 The structure of the 
input element 

 

 
4.2 Publishing a web service operation 
Figure. 14 shows the WSDL document representing the interface function 
query (Figure. 11) as a web service operation named QUERY. In general, the 
web service operation is defined in the portType WSDL element. The 
operation contains an input element and an output element. The input 
element has an XML attribute message named, e.g. QUERYRequest0. 
Figure. 13 illustrates how the message name is constructed. It is a 
concatenation of the name of the web service operation and a mode string 
(‘Request’ or ‘Response’) indicating whether it is an input or and output 
message. The index number is appended to translate overloaded interface 
functions into uniquely named messages.  

A request message has the same number of part elements as the number 
of arguments in the interface function. Our example interface function query 
has two arguments named userid and sqlq with types int and string 
respectively. 

A response messages always has one part named results representing the 
result of an interface function. In the example query the result is a set (bag) 
of strings, which is represented in WSDL as a sequence of type string. The 
type of results is a concatenation of the web service operation name (here 
QUERY) and an index to handle overloaded interface functions.  

Figure. 14 WSDL for interface function query 

<wsdl:definitions ...> 
 <wsdl:types> 
 <xsd:schema> 
     <xsd:complexType name=”QUERY0”> 
 <xsd:sequence> 
 <xsd:element  name=”R1” type="xsd:string">  
 </xsd:element> 
      </xsd:sequence> 
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 </xsd:complexType> 
 </xsd:schema> 
 </wsdl:types> 
 
 <wsdl:message name="QUERYResponse0"> 
 <wsdl:part name="results" type="tns:QUERY0" />  
 </wsdl:message> 
 
 <wsdl:message name="QUERYRequest0"> 
  <wsdl:part name="USERID" type="xsd:int" />  
   <wsdl:part name="SQLQ" type="xsd:string" />  
  </wsdl:message> 
 
 <wsdl:portType name="WSMEDPortType"> 
 <wsdl:operation name="QUERY" 
                  parameterOrder="USERID SQLQ"> 
 <wsdl:input name="QUERYRequest0" 

message="tns:QUERYRequest0"/>  
 <wsdl:output name="QUERYResponse0" 

message="tns:QUERYResponse0" />  
 </wsdl:operation> 
 </wsdl:portType> 
 
<wsdl:binding name="WSMEDSoapBinding"  
       type="tns:WSMEDPortType"> 
  <wsdlsoap:binding style="rpc"  
   transport="http://schemas.xmlsoap.org/soap/http" /> 
 <wsdl:operation name="QUERY"> 
  <wsdlsoap:operation soapAction="" />  
   <wsdl:input name="QUERYRequest0"> 
    <wsdlsoap:body use="encoded" 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 
     namespace="urn:WSAmos" />  
   </wsdl:input> 
   <wsdl:output name="QUERYResponse0"> 
     <wsdlsoap:body use="encoded" 
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
    namespace="urn:WSMED" />  
   </wsdl:output> 
  </wsdl:operation> 
</wsdl:binding> 
 
<wsdl:service name="WSMEDservice"> 
  <wsdl:port name="WSMEDPort" 
          binding="tns:WSMEDSoapBinding"> 
     <wsdlsoap:address location= 
"http://130.238.11.96:8082/wsmed/service/WSMEDServlet" />  
  </wsdl:port> 
 </wsdl:service> 
</wsdl:definitions> 
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4.3 The WSMED web server 
The WSMED web server is a server that uses the HTTP protocol to 
communicate SOAP messages. The WSMED web server immediately 
services the interface functions as web service operations once they are 
exported, without need for restarting the WSMED web server or deploying 
any additional server site code. 

Figure. 15 illustrates the WSMED web server. It consists of a 
communication server, an XML parser and writer, a DOM decoder, and an 
encoder. The communication server first receives a remote call from the 
client application. The remote call is a RPC SOAP call via the HTTP 
protocol. The communication server extracts the message content and passes 
it to the XML parser. The XML parser uses the input SOAP envelope to 
generate a DOM data structure.  

The DOM decoder converts the DOM data representation of a SOAP 
message into a call to an interface function. The XSD data types of a 
receiving message are converted from DOM to the format required by 
interface functions.  Then the DOM decoder calls Amos II to execute the 
interface function. After receiving the results from the function, the DOM 
encoder uses the signature of the function and data type mappings between 
XML and Java to build a result DOM structure. The XML writer passes the 
result DOM structure to the communication server as a SOAP response 
message and the communication server sends back the SOAP message to the 
client application over the HTTP protocol. A modified JSoapServer 7 is used 
as the communication server. JSoapServer is a lightweight standalone SOAP 
web server using the QuickServer library for building web services.  

Figure. 15 WSMED web server 

 
5 The WSMED query processor 
To improve the query performance the WSMED query processor 
automatically produces a parallel multi-level execution plan with several 
layers of parallelism and forms a process tree to execute the parallel plan. 
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query parallelization is performed in two phases as illustrated in Figure. 17. 
In phase1 a central query execution plan is created from the given SQL 
query, and in phase 2 the central plan is automatically transformed into a 
parallel query plan by the parallel plan creator. In this section we will 
explain how the parallelization is done, illustrated with an example SQL 
query to be presented next. 
 
5.1 Example SQL query 
The example Query in Figure. 16 finds information about places located 
within 15 km from each city whose name starts with ’Atlanta‘ in all US 
states. In the query we utilize the web service operations GetAllStates, 
GetPlacesWithin, and GetPlaceList. For a given web service WSMED 
automatically generates Operation Wrapper Functions (OWF) (Sabesan et 
al., 2009) that represent SQL views of the web service operations based on 
the WSDL definitions. In Figure. 16 the three generated OWFs GetAllStates, 
GetPlacesWithin, and GetPlaceList are defined to encapsulate web service 
operations with the same names. The query returns a stream of 360 result 
tuples and invokes more than 300 web service calls. 
Figure. 16 Example Query 

select gl.place,gl.state 

From GetAllStates gs, GetPlacesWithin gp, GetPlaceList gl 

where gs.State=gp.state and gp.distance=15.0 and 
gp.placeTypeToFind='City' and  
gp.place='Atlanta'  
and gl.placeName=gp.ToPlace+' ,'+gp.ToState and 
gl.MaxItems=100 and gl.imagePresence='true' 

The OWF GetAllStates presents information of US states as a set of tuples 
<Name, Type, State, LatDegrees, LonDegrees, LatRadians, LonRadians>. 
However, we are only interested in the values of the attribute State. The 
OWF GetPlacesWithin returns a set of tuples <ToCity, ToState, 
GeoPlaceDistance_Distance> for given place  (‘Atlanta’), state (gs.State), 
distance (15.0), and kind of place type to find (’City’). The OWF 
GetPlaceList retrieves a set of places <placename, state, country, placeLon,  
placeLat, availableThemeMask, placeTypeId, population>, given a 
specification of a place (concatenation of ToCity+’,’+ToState), the 
maximum number result tuples (100), and a flag indicating whether places 
having an associated map are returned.  
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5.2 Parallelizing web service operation calls 
Figure. 17 illustrates the query processor in WSMED. It parallelizes the 
queries in two phases. In Phase1 a non parallel plan is created from the 
given SQL query. The parallel plan is produced in Phase2 based on the non 
parallel plan. The calculus generator produces from the SQL query an 
internal calculus expression in a Datalog dialect (Litwin et al., 1992). For 
example, Query is transformed into the following calculus expression: 
Query1(place,state) ← GetAllStates(_,_,st1,_,_,_,_) AND 
 GetPlacesWithin("Atlanta",st1,15.0,"City",tp,ts,_) AND 
 GetPlaceList(pn,100, "true", place, state,_,_,_,_,_,_) AND 
 Concat(tp," ,",ts,pn) 

The symbol ’_’ represents an anonymous result variable. With non-
parallel query optimization the calculus expression is translated by the non-
parallel query optimizer into the algebra expression in Figure. 18. This is the 
central plan for the example query. It is a left-deep tree of executable 
predicates enumerated from 0 and up. The algebra expression contains calls 
to the apply operator γ, which applies a plan function for a given parameter 
tuple. The central query execution plan with γ can be directly interpreted but 
with bad performance, since the web service operations are applied in 
sequence. For the initial central plan the non-parallel plan optimizer uses a 
simple heuristic web service cost model based on the signatures of web 
service operations assuming that web service operations are expensive. 

The plan first calls the operation GetAllStates returning a stream of tuples 
<st1>. Each of these tuples are fed to the next operation GetPlacesWithin 
called by the apply operator with the given argument tuple (‘Atlanta’, st1, 
15.0, ‘City’) returning a stream of tuples <tp, ts>. The built in function 
Concat is then applied on each argument tuple (tp,’,’,ts) producing a stream 
of strings pn. Finally the operation GetPlaceList is applied on each argument 
tuple (pn,100,’true’) returning a stream of tuples <place, state>.  

The parallel plan creator calls the parallelize algorithm in Figure. 20 to 
automatically transform the central plan NP into a parallel one. For example, 
it translates the central plan in Figure. 18 to the parallel one in Figure. 19. 

The parallelization produces parallel web service calls by inserting an 
algebra operator AFF_APPLYP in the execution plan whenever a call to a 
web service operation is encountered. The AFF_APPLYP operator calls a 
plan function in parallel and adaptively modifies the process tree to improve 
performance. For each web service operation call a plan function is 
generated by the parallel plan creator to encapsulate a fragment of the non 
parallel query plan embodying the web service operation call. Section 5.3 
explains the functionality of AFF_APPLYP in detail. 
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Figure. 17 WSMED query processor 

 

The parallel plan preserves the dependent execution order of the 
encapsulated web service calls. First pos is identified as the split point where 
the first parallelizable web service operation call is found (line 2). The 
AFF_APPLYP operator requires as input a stream of parameters. Therefore 
the identified operation call must have at least one input parameter. In the 
example in Figure. 18 the first split point is identified as the predicate 
applying the web service operation GetPlacesWithin where pos=1. If there is 
no split point the central plan is not parallelized.  

Figure. 18 Central query plan Figure. 19 Parallel query plan 

  

 
Figure. 20 Parallelize algorithm 
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 3.3.  subplan2 ←  parallelize(temp-subplan) 
 3.4.  P←rewrite-plan(subplan1, subplan2) 
4. Else 
 4.1  P←NP 
5. return P 

Then a plan function subplan1 is created (line 3.1) with the predicates 
between the positions 0 and (pos-1). Another plan function temp-subplan 
(line 3.2) is created with the rest of the predicates (the predicates between 
the positions pos and len) of NP. The example subplan1 calls the web 
service operation GetAllStates. The temp-subplan contains the remaining 
calls to GetPlacesWithin , concat, and GetPlaceList. 

To find the second parallelizable web service operation call, parallelize is 
recursively called with temp-subplan (line 3.3) as argument. The rewrite-
plan (line 3.4) procedure modifies subplan1 so that the result from the 
recursive call, subplan2 is called in parallel for each result from subplan1. 
This is done by inserting an AFF_APPLYP operator to encapsulate 
subplan2.  

In the example, a second recursive call of parallelize creates 
subplan1=PF1 and subplan2=PF2. The final parallel plan P (Figure. 19) 
contains the AFF_APPLYP operators to adaptively parallelize the calls to 
PF1 and PF2. 

 
5.3 Adaptive Apply in Parallel - AFF_APPLYP  
The algebra operator AFF_APPLYP (Adaptive First Finished Apply in 
Parallel) (Sabesan et al., 2009) has the signature: 

AFF_APPLYP (Function pf, Stream pstream) → Stream result 
The pseudo code for AFF_APPLYP is listed in Figure. 21. 
Figure. 21 AFF_APPLYP algorithm 

AFF_APPLYP(fn, pstream) → result 
input:  fn : plan function  pstream : a stream of parameter values for fn   

output: result : Stream of result tuples from children 

 fanout ← 2  

number of query processes added after each monitoring cycle: p ← 1 

number of query processes: nq ← 0 

number of tuples: tc ← 0 

number of end-of-call messages:  ack ← 0 

time required to retrieve a tuple (time per tuple): tupt ← 0 

opt: flag indicates whether adaptive expansion of fanout is started (opt=true) 
or stopped (opt=false): opt←false 
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stopping threshold, change in tupt per cycle: threshold_value← 0.25 

execution time to process fn in children processes per cycle: exet ← 0 

while  (pstream is not empty ) 

Initialize a query process to execute the plan function fn with arguments 
taken from pstream 

nq ← nq+1 

while (nq = fanout) 

res ←  retrieve the result tuple from a child process  

if (res is a valid result) 

 tc ← tc+1 

 emit res as the result of AFF_APPLYP 

10 else if (res is end-of-call message) 

11  nq ← nq -1 

12  ack ← ack+1 

13  exet ← exet + execution time of the child process to execute fn  

14  if (ack =fanout) and (tc >0) 

15  pre_tupt←tupt 

16  tupt ← (exet / tc) 

17  if (pre_tupt >0) 

18  relative_error← ((pre_tupt–tupt)/(pre_tupt)) 

19  end if 

20  if (((threshold_value < relative_error) and (not opt)) or 
(pre_tupt = 0)) 

21  fanout ← fanout + p 

22  else if (threshold_value >= relative_error) 

23   opt ← true 

24  end if 

25  end if 

26  end if 

27  if (ack =fanout)  

28  ack ← 0;  exet ← 0;  tc ← 0;   

29  end if 

30  end if 
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31 end if 

32 end while 

33 end while 

34 while (nq > 0)  /* some child process left to be finished * / 

35   res ←  retrieve the result tuple from a child process 

36   if (res is a valid result) 

37 emit res as the result of AFF_APPLYP 

38  else if (res is end-of-call message) 

39  nq ← nq -1 

40 end if 

41 end if 

42 end while 

The algebra operator AFF_APPLYP first starts fanout (initially 2, line 1) 
children processes (threads) with plan function pf. Then it starts picking 
parameter tuples (line 3) one by one from pstream, to send down to the 
children. When the all children have received one round of parameter tuples 
(line 5), AFF_APPLYP is ready to receive results. The result stream result 
from the children is delivered back to the parent asynchronously as soon as a 
child process has produced a new value. When a result tuple is received from 
some child it is directly emitted as a result of AFF_APPLYP  (line 9). Once a 
child completed the processing of a plan function for a given parameter tuple 
in pstream it terminates. When the parent receives a termination message 
(line 10) from a child, it will start another new child process with the same 
plan function pf and passes the next pending parameter tuple (line 3) from 
pstream to the new child. When there are no pending parameter tuples in 
pstream (line 2) and no pending children (line 34), AFF_APPLYP is 
finished. The same procedure is repeated recursively in all child processes 
for each call to AFF_APPLYP.  

The parallel execution plan is generated by the WSMED query processor 
(coordinator q0, Figure. 22). It first generates a central plan (e.g. Figure. 18) 
containing calls to the web service operations. The parallelize algorithm is 
then called by the coordinator to produce a parallel query plan (e.g. Figure. 
19) from the non-parallel one. Once the parallel plan is started the calls to 
AFF_APPLYP will automatically start new parallel processes to form a 
process tree (e.g. in Figure. 22). A query process can have an arbitrary 
number (fanout) of child processes. All the children on the same level 
execute the same plan function but with different parameters.  
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Figure. 22 gives an example of a process tree generated by the WSMED 
query processor for the example query in Figure. 16. The parallel plan for 
the example query contains two calls to AFF_APPLYP. First the coordinator 
q0 calls AFF_APPLYP that generates a binary tree with two nodes q1 and 
q2. A call to AFF_APPLP is executed in each of q1 and q2. Thus 
AFF_APPLYP in q1 creates a binary sub tree with children q3 and q4 while 
q2 creates the children q5 and q6.  

The plan function in the coordinator q0 encapsulates the web service 
operation call GetAllStates, while the plan function PF1 of the processes in 
level one (q1 and q2) encapsulates the web service operation call 
GetPlacesWithin for different states. On level two (q3, q4, q5, q6) the plan 
function PF2 calls the web service operation call GetPlaceList for different 
place specifications.  

Process q0 starts the children q1 and q2 with the plan function PF1. 
Analogously, each AFF_APPLYP executing in level one processes starts the 
children q3, q4, q5, and q6 with plan function PF2. The query processes in 
level two delivers a stream of tuples containing placename and state to the 
plan functions on level one that executes the web service operation 
GetPlacesWithin for each received tuple. The AFF_APPLYP operator in 
level one finally delivers the result stream to the coordinator process q0. 

Figure. 22 Parallel process 
tree 

Figure. 23 Add stage Figure. 24 Add  and 
drop stage  

 

Once started, AFF_APPLYP dynamically modifies the initially binary 
process tree at run time. The query process locally monitors the execution 
times of its children to locally add or delete children to improve performance 
until no more performance improvement is expected. Consider the binary 
process tree in Figure. 22.  

AFF_APPLYP does the following: 
1. It initially forms a binary process tree by initially having fanout = 2. 

This is called the init stage. 
2. A monitoring cycle for a non-leaf query process is defined as when 

AFF_APPLYP has received end-of-call messages from all its children 
and the total number of received result tuples is at least 1 (line 14) . 
After the first monitoring cycle (line 20 when pre_tupt=0) 
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q0 

q1

q3 q4

q2 

q6q5 q10

q7

q8 q9
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AFF_APPLYP adds (line 21) p new child processes. Adding new 
processes is called an add stage. In Figure. 23, p=1 and therefore query 
process q0 adds one new process q7 at level 1, while q1 and q2 add q10 
and q11 at level 2, respectively. 

3. When an added node has several levels of children the init stages of the 
children’s AFF_APPLYs will produce binary sub–trees. That is, q7 adds 
q8 and q9.  

4. AFF_APPLYP records per monitoring cycle i the average time ti (line 
16) to produce an incoming tuple from the children.  

a. If ti decreases (line 20) more than a threshold (set to 25%) the add 
stage is rerun.  

b. If ti increases (line 22) no more children are added. This is 
indicated as opt=true (line 23). As an option a drop stage is run 
that drops one child and its children (the drop stage is not shown 
in the algorithm). 

In Figure. 24, q2 adds q11, while q0 drops q7, and q7 drops q8 and q9. 
 
5.4 Experimental results 
For our example query, we experimented with different values of p (number 
of query processes added after each monitoring cycle) and different change 
thresholds, with and without the dropping query processes when an optimum 
point is reached. The average fanouts of the process trees are measured. The 
results for 25% change thresholds are shown in Figure. 25. We concluded 
that execution (59.07 sec) time AFF_APPLYP performed best (4 times 
faster) when comparing with the sequence web service invocation (244.394 
sec). Further the execution time with p=4 and no drop stage performed best 
and execution time with p=2 and no drop stage also showed closer 
performance (88%) with the best execution time. Dropping processes make 
insignificant changes in the execution time. 

In general the execution time of a web service operation is not known in 
prior. AFF_APPLYP is therefore a better approach to reach optimal 
execution time than having a traditional static cost model. 
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Figure. 25 Comparisons of naïve and adaptive approaches 
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6. Related work 
WSQ/DSQ (Goldman et al., 2000) handles high-latency calls to web search 
engines by launching asynchronous materialized dependent joins later joined 
in the execution plan using a special operator. In contrast, WSMED 
produces non-blocking multi-level parallel plans based on streams of 
parameter tuples passed to parallel sub plans without any materialization. 

WSMS (Srivastava et al., 2006) proposed an approach for pipelined 
parallelism among dependent web services to minimize the query execution 
time. By contrast, we parallelize by partitioning parameter tuple streams. 
Furthermore, WSMS didn’t propose any adaptive parallelization, lacked 
support for code shipping, and couldn’t make parallel calls to the same web 
service. In contrast we propose a strategy to adaptively produce a 
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parallelized plan where AFF_APPLYP invokes parameterized plans calling 
web services in parallel.  

The plan function and parameter tuple shipping phase of AFF_APPLYP is 
similar to the map phase of MAPREDUCE (Dean et al., 2008). However, 
MAPREDUCE is not dynamically adapting query execution plans as 
AFF_APPLYP and is not streamed. 

In (Gounaris et al., 2008) run time adaptation of buffer sizes in web 
service calls is investigated, not dealing with adaptive parallelism on web 
service calls at the client side. 

A reference model for dynamic web service composition is described in 
the D-WSCS system (Eid et al., 2008). The monitoring module of D-WSCS 
is responsible for monitoring and showing the status of the composed 
services at runtime. When a composite service fails, D-WSCS is looping 
back to call the same service or find an alternative service. Similarly 
WSMED dynamically composes web service operations to answer an SQL 
query and call the operation again if it fails. Unlike D-WSCS, WSMED is 
handling adaptive parallelization of web service calls. 

Parallel execution scheduling strategies that require static costs are 
discussed in Taniar et al. (1999), Taniar et al.(2003) and Taniar et al.(2008). 
In contrast WSMED is using adaptive parallelization that is independent of 
static costs of web service calls.  

The formal basis for using views to query heterogeneous data sources is 
reviewed in (Ullman, 1997). Chocolate (Josifovski et al., 2003) extends the 
federated database capabilities of DB2/UDB by automatically creating views 
of web services from WSDL descriptions, similar to the OWF generation in 
WSMED. However, unlike WSMED, Chocolate does not deal with adaptive 
parallelization of the web service calls. 

Query as a Web Service 8 allows users to create queries and publish them 
as web services similar to the WSMED web service generator. However, 
WSMED is more general by providing SQL query service to any data 
providing web services based on reading the web services’ WSDL 
documents.  

Apache Axis 4 supports JAVA2WSDL APIs to create WSDL documents for 
Java methods. Apache Axis can be plugged into web servers such as 
Tomcat 5 to access Java methods as web service operations. In contrast to 
WSMED’s web service generator, Tomcat needs to be restarted and the 
servlet code recompiled every time a new web service operation is deployed.  
The WSMED web service generator automatically generates an interface 
function as a web service operation with a simple command.  

Similar to WSMED’s web service generator, Oracle (Das et al., 2009) 
supports access to databases as web services. Java proxy classes that 
correspond to database operations are first generated. The wrappers are 
compiled and deployed in an Oracle application server. In contrast to Oracle, 
WSMED’s web service generator doesn’t need any proxy classes and 
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dynamically deploys new web service operations based on interface function 
signature.  

The Amazon Relational Database Service 1 web service provides 
relational databases in the cloud using the Amazon SimpleDB 2  that provides 
a subset of SQL. The WSMED web service generator can deploy web 
service operations for any RDBMS or other wrapped data sources. 
 
7. Conclusion 
WSMED provides a general relational query service over data providing 
web services given their WSDL meta-data descriptions. Queries are 
expressed in SQL to dynamically join data providing web services. WSMED 
is accessible through a URL (WSMED Demo) from anywhere without 
installing any software.  

The WSMED query processor automatically and adaptively finds an 
optimized parallel execution plan calling the queries data providing web 
services. The algebra operator AFF_APPLYP locally adapts the parallel plan 
by adding and removing children until an optimum is reached, based on 
monitoring the flow between query processes. It is shown to improve query 
performance substantially compared with a central plan.  

AFF_APPLYP can handle parallel query plans for a query with any 
number of dependent joins. We plan to generalize the strategy for queries 
mixing both dependent and independent web service calls. Further we need 
to investigate different process arrangement strategies with the algebra 
operator AFF_APPLYP. 

The WSMED service generator provides web service operations for data 
sources once they have been wrapped as interface functions. The web 
service generator automatically generates the WSDL document to describe 
the interface functions. The generated web service operation is dynamically 
deployed without restarting the web server and without writing any server 
side code. 
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1. Amazon Relational Database Service, http://aws.amazon.com/rds/. 
2. Amazon SimpleDB, http://aws.amazon.com/simpledb/. 
3. AmosII wrappers, http://user.it.uu.se/~udbl/amos/wrappers.html. 
4. Apache Axis, http://ws.apache.org/axis/. 
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7. JSoapServer, http://jsoapserver.sourceforge.net/. 
8. Query as a Web Service, 

http://help.sap.com/businessobject/product_guides/boexir31/en/xi3-
1_query_as_a_web_service_en.pdf. 

9. QuickServer, http://www.quickserver.org/. 
10. TerraService, http://msrmaps.com/TerraService2.asmx. 
11. The Next Wave: Everything as a Service, 

 http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html. 
12. WSDL4J, http://sourceforge.net/projects/wsdl4j/. 
13. WSMED Demo, http://udbl2.it.uu.se/WSMED/wsmed.html. 
14. WSMED WSDL, http://udbl2.it.uu.se/WSMED/wsmed.wsdl. 
15. ZCTAs (ZIP Code Tabulation Areas), 

http://www.census.gov/tiger/tms/gazetteer/zcta5.txt. 




