
ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2010

Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 755

Querying Data Providing

MANIVASAKAN SABESAN

ISSN 1651-6214
ISBN 978-91-554-7852-0
urn:nbn:se:uu:diva-128928

Web Services

Dissertation presented at Uppsala University to be publicly examined in Room 1211, Building
1, Polacksbacken, Lägerhyddsvägen 2, Uppsala, Friday, October 8, 2010 at 13:15 for the
degree of Doctor of Philosophy. The examination will be conducted in English.

Abstract
Sabesan, M. 2010. Querying Data Providing Web Services. Acta Universitatis Upsaliensis.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and
Technology 755. 37 pp. Uppsala. ISBN 978-91-554-7852-0.

Web services are often used for search computing where data is retrieved from servers providing
information of different kinds. Such data providing web services return a set of objects for a
given set of parameters without any side effects. There is need to enable general and scalable
search capabilities of data from data providing web services, which is the topic of this Thesis.

The Web Service MEDiator (WSMED) system automatically provides relational views of
any data providing web service operations by reading the WSDL documents describing them.
These views can be queried with SQL. Without any knowledge of the costs of executing specific
web service operations the WSMED query processor automatically and adaptively finds an
optimized parallel execution plan calling queried data providing web services.

For scalable execution of queries to data providing web services, an algebra operator PAP
adaptively parallelizes calls in execution plans to web service operations until no significant
performance improvement is measured, based on monitoring the flow from web service
operations without any cost knowledge or extensive memory usage.

To comply with the Everything as a Service (XaaS) paradigm WSMED itself is implemented
as a web service that provides web service operations to query and combine data from data
providing web services. A web based demonstration of the WSMED web service provides
general SQL queries to any data providing web service operations from a browser.

WSMED assumes that all queried data sources are available as web services. To make any
data providing system into a data providing web service WSMED includes a subsystem, the
web service generator, which generates and deploys the web service operations to access a data
source. The WSMED web service itself is generated by the web service generator.

Keywords: views of web service operations, web service queries, adaptive parallelization,
query optimization

Manivasakan Sabesan, Department of Information Technology, Computing Science, Box 337,
Uppsala University, SE-75105 Uppsala, Sweden

© Manivasakan Sabesan 2010

ISSN 1651-6214
ISBN 978-91-554-7852-0
urn:nbn:se:uu:diva-128928 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-128928)

 To my parents

List of Papers

This Thesis is based on the following papers, which are referred to in the
text by their Roman numerals.

I Manivasakan Sabesan, and Tore Risch, Web Service

Mediation Through Multi-level Views, International
Workshop on Web Information Systems Modeling (WISM
2007), In Proc. Workshops and Doctoral Consortium, tapir
academic press , pp 755-766, 2007.

II Manivasakan Sabesan, and Tore Risch , Adaptive

Parallelization of Queries over Dependent Web Service Calls,
1st IEEE Workshop on Information & Software as
Services(WISS 2009), In Proc. 25th International Conference
on Data Engineering (ICDE2009),IEEE Computer Society, pp
1725-1732, 2009.

III Manivasakan Sabesan, and Tore Risch, Adaptive

Parallelization of Queries to Data Providing Web Service
Operations, submitted for conference publication, 2010.

IV Manivasakan Sabesan, Tore Risch, and Feng Luan,

Automated Web Service Query Service, accepted for
publication in International Journal of Web and Grid Services
(IJWGS), Inderscience, Volume 6, Number 4, 2010.

Reprints of papers I, II, and IV were made with permission from the
respective publishers.

Other Related Publications

V Manivasakan Sabesan, Tore Risch, and Gihan

Wikramanayake, Querying Mediated Web Services , In Proc.
8th International Information Technology Conference (IITC
2006), Infotel Lanka Society Ltd, pp 39-44, 2006.

VI Manivasakan Sabesan, Querying Mediated Web Services,

Thesis for the degree of Licentiate of Philosophy in Computer
Science with specialization in Database Technology,
Department of Information Technology, Uppsala University,
2007.

VII Manivasakan Sabesan, and Tore Risch, Web Service Query

Service, In Proc. 11th International Conference on
Information Integration and Web-based Applications &
Services (iiWAS2009), ACM and Austrian Computer Society,
pp 692-697, 2009.

VIII Manivasakan Sabesan, and Tore Risch, Adaptive

Parallelization of Queries Calling Dependent Data Providing
Web Services, In Divyakant Agrawal, K. Selcuk Candan and
Wen-Syan Li (Editors): New Frontiers in Information and
Software as Service, Lecture Notes in Business Information
Processing (LNBIP) series, Springer-Verlag, 2010.

Contents

1. Introduction...9

2. Background...13
2.1. Database Management Systems ..13
2.2 Mediators..16
2.3 Web Services..18
2.4 Active Mediators Object System (Amos II).......................................22

3. Summary of the Papers ...25
3.1 Paper I ..25
3.2 Paper II ...25
3.3 Paper III..26
3.4 Paper IV ...26
3.5 Paper V...27
3.6 Licentiate Thesis (Paper VI) ..27
3.7 Paper VII ..27
3.8 Book Chapter (Paper VIII)...27

4. Conclusions and Future Work ..28

5. Summary in Swedish ..30

6. Acknowledgements...34

Bibliography ...35

Abbreviations

AMOS Active Mediators Object System
CDM Common Data Model
DBMS Data Base Management System
FTP File Transfer Protocol
HTTP Hypertext Transport Protocol
PAP Parameterized Adaptive Parallelization
RDBMS Relational Database Management System
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UDDI Universal Description Discovery and Integration
URL Uniform Resource Locator
WQL WSMED Query Language
WSDL Web Services Description Language
WSMED Web Service MEDiator
XaaS Everything as a Service
XML eXtensible Mark up Language

 9

1. Introduction

The growth of the Internet and the emergence of XML for data interchange
in a loosely coupled way have increased the importance of web services [7]
incorporating standards such as SOAP [18], WSDL [9], and XML Schema
 [42]. Web services support an application infrastructure by defining a set of
operations that can be invoked over the communication network. Web
service operations are self contained using meta-data to describe data types
of their arguments and results, i.e. their signatures, using the Web Service
Description Language, WSDL. Thus web services provide a general
infrastructure for remote calls to predefined operations.

Web services are often used for retrieving data from servers providing
information of different kinds. A data providing web service operation
returns collections of objects for a given set of arguments without any side
effects. This is known as a form of search computing [8]. However, data
providing web service operations don’t provide general query language or
view capabilities to search and join data from one or several data providing
web services, which is the topic of this Thesis.

As an example, consider a query to find information about places in some
of the US states along with their zip codes and weather forecasts. Four
different data providing web service operations can be used for answering
this query. First the GetAllStates operation from the web service GeoPlaces
 [10] is called to retrieve the desired states. The GetInfoByState operation by
USZip [36] returns the zip codes for a given US State. The GetPlacesInside
operation by Zipcodes [11] retrieves the places located within a given zip
code area. The GetCityForecastByZip operation by CYDNE [12] returns
weather forecast information for a given zip code.

A mediator [39] is a system that allows data from different data sources to
be combined and queried. In our setting a mediator enables queries joining
data from different data providing web service operations.

In this work it is investigated how to build a general system for scalable
querying of data providing web service operations. The development of a
web service based mediator prototype called WSMED (Web Service
MEDiator) is expected to provide insights into a number of research
questions:
1. To what extent can web service standards, such as WSDL and SOAP, be

utilized by a mediator to query data providing web service operations
efficiently and scalable?

 10

2. How can views of data providing web service operations for a high level
query language such as SQL be automatically generated based on
WSDL descriptions?

3. How can query optimization and rewrite techniques be used to provide
efficient and scalable search from different data providing web services?

4. How can the query optimizer speed up general queries calling web
service operations without knowing their costs?

5. How can data sources that are not accessible via web services be simply
transformed into data providing web service operations, making them
queryable by a web service mediator?

6. How can the Everything as a Service (XaaS) paradigm [33] be used for
querying data providing web services? That is, can a web service
mediator be provided as a web service and be used in a browser without
any additional software installations and hardware setups?

To answer the research questions we have developed and evaluated the
WSMED prototype, which enables high level and scalable queries over any
data providing web services.

WSMED can access dynamically any web service operation by retrieving
its WSDL document. WSMED contains a generic web service database for
representing descriptions of any WSDL document. This database is used to
dynamically construct the web service operation calls required to process a
query. This provides the answer to research question one.

A web service operation is presented by WSMED as an SQL view. SQL
queries can be expressed in terms of these views. For a given web service
WSMED automatically generates such views for all its web service
operations based on its WSDL definition. The views are generated using the
internal WSMED query language (WQL), which has support for the web
service data types. The automatic generation of SQL views provides the
answer to research question two.

Web service operations are usually parameterized where input parameters
have to be bound before they are called. Two web service operation calls in
a query are dependent if one of them requires as input an output from the
other one, otherwise they are independent. In the above example, the web
service operations GetPlacesInside and GetCityForecastByZip are dependent
on GetInfoByState but independent of each other. A challenge here is to
develop methods to optimize queries containing both dependent and
independent web service calls. In general such optimization depends on
some unknown web service properties. Those properties are not explicitly
available and depend on the network and runtime environments when and
where the queries are executed. In such scenarios it is very difficult to base
execution strategies on a static cost model, as is done in relational databases.

To improve the response time without a cost model, WSMED uses an
approach to automatically parallelize the web service calls at run time while

 11

keeping the dependencies among them. For each web service operation call
in a query the WSMED query optimizer generates a parameterized sub-plan,
called a plan function, which encapsulates the web service operation call and
makes data transformations such as nesting, flattening, filtering, data
conversions, and calls to other plan functions. WSMED will decompose the
query plan to guarantee that dependent web service operations are called
with proper parameter bindings.

The query performance is often improved by setting up several
parameterized web service calls in parallel rather than to call the operations
in sequence for different parameters. In WSMED multi-level parallel
execution plans are automatically generated as process trees where different
plan functions are called in parallel in different processes, called query
processes. For adaptive parallelization of queries with web service operation
calls, the algebra operator PAP (Parameterized Adaptive Parallelization) is
implemented. PAP dynamically modifies a parallel plan by local monitoring
of plan function calls without any cost knowledge.

The adaptive parallelization of queries calling data providing web service
operations provides the answer research questions three and four.

WSMED assumes that queried data sources are available as web services.
To implement a new data providing web service for a data source requires
development of software to access the data source from web service
operations, defining a WSDL document to describe the interface, and
deploying the interface code. To simplify the implementation of data
providing web services WSMED includes a subsystem, the web service
generator, which generates and deploys the web service operations to access
a data source. The programmer first defines data source interface functions
to access the data source as queries by developing a wrapper in the
extensible wrapper/mediator system Amos II [32]. Once the interface
functions are defined the WSMED web service generator automatically
generates the corresponding web service operations and dynamically deploys
them without restarting the web server. The signature of each so generated
web service operation is defined in an automatically generated WSDL
document based on the signatures of the interface functions. The WSDL
document completely describes the web service interfaces of the deployed
operations. Each operation calls the interface function and sends back the
result as a collection. Interface functions have been defined for many
different kinds of data sources [1], e.g. relational DBMSs, semantic web
data, topic maps, and CAD servers.

Automatic generation and deployment of web services for wrapped data
providing systems provides an answer to research question five.

WSMED itself is available as a general web service to process queries
over other web services, known as the WSMED web service. It provides web
service operations to handle user sessions, import WSDL documents for web
services to query, user authentications for accessed web service operations,

 12

inspecting the schema for the generated SQL views, and executing queries
over the views. The WSMED web service is generated by the web service
generator. The automatically generated WSDL document wsmed.wsdl [41]
describes the interface of the WSMED web service operations. The
functionality of WSMED is demonstrated through a publicly accessible web
based demonstration [40]. A JavaScript program enables the user to query
any data providing web service by calling the WSMED web service
operations directly from a browser without downloading any software. This
shows that the WSMED web service adheres to the XaaS paradigm and
provides an answer to research question six.

The reminder of this Thesis is organized in the following way: Section
two introduces the technical background on which the research work is
based. Section three explains how the papers I-VIII contribute to answering
the research questions. Finally, Section four concludes and indicates future
directions.

 13

2. Background

This chapter presents the technical background of the major enabling
technologies for mediating and querying web services. It briefly covers
database management systems and the core technologies involved with web
services.

2.1. Database Management Systems
A software system that allows creating and manipulating huge amounts of
data in a structured way is known as a Database Management System
(DBMS) [14]. A database is defined as the group of data managed by a
DBMS. A DBMS facilitates the following:
• It allows the users to create a database and specify its structures as a

database schema through a Data Definition Language (DDL).
• It permits the users to insert, delete, update and query data from a data

base through a Data Manipulation Language (DML).
• It provides a security system to support multilevel authentication

control.
• It preserves the consistency of data through an integrity system.
• It provides transaction and recovery control to restore the database to a

previous consistent state after hardware and software failures.

To describe the data requirements of an organization in a readily
understandable way by the users, a higher-level description language for
schemas is required: that is known as the data model for the DBMS. DBMSs
use different kind of data models. The most common data model is the
relational data model where data is represented as tables. Central in the
relational data model is the provision of a high level query language for
efficient database search using declarative queries. The most common
relational query language is the Structured Query Language (SQL) [14].
SQL is used in this Thesis work for querying data providing web services
rather than data stored in tables.

A relational view is virtual relation (i.e. table) defined through a query
expression. A view is not physically stored in the database but can be
queried as other relations. It is sometimes possible to modify views by an
insertion, deletion, or update, so called updatable views. In this Thesis

 14

relational views are defined that search data from data providing web service
operations.

The Entity-Relationship (ER) model is a graphical data model for abstract
representation of database schemas. During the database design process, the
database schema is represented in the ER model and then converted to the
data model of the DBMS, e.g. the relational model.

In a functional data model [34] data is represented using typed functions
rather than tables. This Thesis work uses the functional DBMS Amos II [32]
to internally represent web service meta-data and views over web service
operations.

Query processing

Figure 1 Query processor

Query processing (Figure 1) is the process of efficiently executing
declarative queries over large databases. It transforms a declarative query
into an execution plan, which is a program that specifies in details how the
data is retrieved. The query processor is the group of components of a
DBMS responsible for query processing. It has the following components:
• The parser ensures that the query syntax follows the grammar of the

query language. It transforms the query into an internal intermediate
form, usually a logical calculus expression.

Execution plan

Intermediate form of query

Parser

Query Optimizer

Executor

Query in a high-level language

Result of the query

 15

• The query optimizer translates the parsed query into an execution plan,
which is a program to retrieve data. The query execution plan is a
program with DBMS-specific evaluation primitives such as scan
operators, selection operators, various index scan operators, several join
algorithms, sort operators, and a duplicate elimination operator. A query
typically has many feasible execution plans, and choosing an efficient
plan is named query optimization, which is performed by the query
optimizer. The traditional query optimization is based on cost-based
optimization [17]. It considers all likely execution plans and estimates
the cost of each of the plans based on the number of disk blocks read,
central processing unit (CPU) usage, and communication cost. Meta-
data provides cost metrics. Based on this the cheapest execution plan is
chosen. Typically heuristics are applied to transform the execution plan
to reduce the optimization cost.

• The executor interprets the execution plan to produce the query result.

In this Thesis work query optimization techniques are developed for
generating efficient execution plans that contain calls to web service
operations.

Adaptive Query Processing
The traditional cost-based optimization strategies often expose limitations
and have bad performance when the execution costs cannot be estimated
precisely enough. In particular, it is not always possible to get the precise
statistics about derived data collections. Furthermore, the statistics are
sometimes unreliable due to dynamically changing data at runtime and work
load characteristics. Therefore, adaptive query processing (AQP) techniques
 [13] have been developed for query optimization while the query is
executing. AQP utilizes runtime feedback and modifies the query execution
plan on the fly. To increase the opportunities of adaptation, special dynamic
execution plan operators are introduced, such as Symmetric Hash Join [29]
and Eddies [3].

In this Thesis work techniques are introduced for run time adaptive
parallelization of execution plans that call expensive functions such as web
service operation.

Distributed and Parallel databases
In distributed databases [30], data management is distributed over many
processing nodes that are interconnected via a network. The data distribution
is not visible to the end user. The database administrator provides data
distribution hints to the distributed DBMS. Distributed DBMSs effectively
manage distributed databases by query optimization and reliable data

 16

management. Distributed query optimization is the process of generating an
efficient execution plan for the processing of a query to a distributed
database system. In this Thesis queries over distributed data providing web
service operations are optimized.

Parallel DBMSs [30] is a kind of a distributed database system that runs
on a cluster of processing nodes to achieve better performance through
parallel execution of operators. In contrast to distributed database
managements systems, data distribution is not visible to the database
administrator in parallel DBMSs. Cost-based approaches, such as two-phase
query optimization [19], is used in parallel database management systems to
speed up queries. This Thesis work adaptively parallelizes queries calling
distributed web service operations without any cost model.

2.2 Mediators
Mediators [39] are software modules used to query heterogeneous data
sources. A mediator represents a virtual view or composition of views that
integrate data from different data sources. Mediators don’t store any data
themselves and this contrasts mediation from the data warehouse [16]
approach where all data is uploaded from data sources to a database. Instead,
as shown in Figure 2, mediators make use of interfaces called wrappers to
retrieve data dynamically from the data sources.

Views play a prominent role in mediation. Since the diverse sources
represent the same information differently from the mediator schema, a
mediator must include view definitions describing how to map the source
schema into the mediator's schema. Further, the views must be able to join
and convert conflicting and overlapping data from different data sources.
The views are defined by means of a common data model (CDM).

The system interpreting the mediator modules is known as the mediator
engine. The mediator engine interprets queries expressed in terms of the
CDM. Performance and scalability over the amounts of data retrieved are
important design aspects of mediator engines.

A wrapper is a software module that facilitates query processing and
translation of data from a particular external data source. When a query is
given to the mediator engine, it constructs the appropriate sub queries to
send to the wrappers. A wrapper accepts queries from the mediator engine
and translates them so they can be answered by the underlying data source.
Then it returns back the result to the mediator engine. The mediator engine
collects data from several wrapped data sources and post-processes them
before sending back the result of the query to the user.

 17

Figure 2 Mediation architecture

There are several systems such as Garlic [35], Information manifold [23],
and TSIMMIS [15] using mediators for data integration from heterogeneous
data sources.

This Thesis work extends the Amos II mediator engine [32] to process
data from wrapped web service operations.

Capability based optimization in mediators
Wrapped data sources often limit certain attributes as inputs and produce
values of other attributes as outputs, but have no general query capabilities.
We say that such sources have limited capabilities. For example, web
service operations can be seen as data sources with limited capabilities.

Capability-based query optimization [25] [43] is tailored to generate
feasible plans accessing data sources with limited capabilities. Cost
measures can be used to choose among the feasible plans. Source
capabilities are represented and examined during the query optimization
mainly in two ways:
• Rule-based checking: This approach is implemented in mediator systems

such as Garlic [35], Information Manifold [23], and TSIMMIS [24] to
match the source capabilities. Source capabilities are represented as
capability records [23] or by some special description language such as
Relational Query Description Language (RQDL) [37]. Complex rules
are applied to find the suitable sources. During the query optimization
phase rewrite rules are applied for efficient query execution.

• Binding patterns: Source capabilities are represented by a set of
adornments known as binding patterns [16]. Matching sources are
selected by analyzing the binding patterns. For example, the web query
optimization system [44] and Amos II [32] utilize binding patterns to
represent source capabilities. Adornments are attached with each

Mediator result

Wrapper1 Wrapper2

Source1 Source2

query

sub query 2 sub query 1

 18

attribute of a data source. It is represented by an alphabet with specific
meaning:

I f (free) - the value of the attribute need not to be specified
II b(bound) - the value of the attribute must be specified
III c[L] (choice from a list L) - the value of the attribute must be

specified from the values in the list L.
IV o[L] (optional, from the list L) - the value of the attribute is

optional, and if a value is specified it could be chosen from
the list L.

f, b, and c[L] are the common adornments used to address the capabilities of
sources that can be accessible via web services. o[L] is common when
accessing web forms.

This Thesis work use binding patterns for defining capability limited view
over web service operations.

Estimating cost metrics in the mediation environment is often difficult as
the data sources are independent from the mediator. For example, with data
accessible via web services the data retrieval time can vary due to congestion
on the communication network or that the server providing service is highly
loaded by several requests for data. Long-term observation or continuous
monitoring of services [20] and adaptive query processing strategies can
alleviate this. This Thesis work uses adaptive parallelization to dynamically
optimize queries calling web service without using cost metrics of web
service operations.

2.3 Web Services
Web services provide a message exchanging framework for applications by
defining a set of operations that can be invoked over the communication
network. Each web service operation defines a specific action performed.
Web services incorporate standards such as SOAP [18], WSDL [9], XML
Schema [42], HTTP [21] and UDDI [6]. A web service is described using
the WSDL language. A WSDL description uses XML-Schema to describe
data types of the arguments and results of operations. WSDL descriptions
are published in a UDDI directory, which is a central place that holds set of
web service descriptions. Any one can find required web service
descriptions by querying the UDDI directory. A SOAP message is used to
invoke a web service operation call by packing all the necessary details in a
standard format. HTTP may be used to transfer the SOAP message to invoke
a web service and return the result back.

The layered web service architecture is illustrated in Figure 3. The
discovery layer acts as a centralized repository of web services. By querying
this repository one can find a required web service based on their

 19

descriptions. The open standard technologies UDDI and WS-Inspection [5]
is used at this layer for how to publish, categorize, and search for services
based.

Figure 3 Web service architecture

The descriptions layer deals with how to represent service behavior,
capabilities, and requirements in machine readable form. WSDL is used to
define the functional capabilities of a service in terms of operations, service
interfaces, and message types. Also it supplements deployment information
such as network addresses, transport protocols, and encoding formats of the
message transmission.

The communications layer carries the data over the network for the
application. Data is converted into an internal format by the message
packaging layer. SOAP provides a standard way for such message
packaging. Then the packed message will be transported by the
communications layer using internet technologies including HTTP, SMTP
 [26] and FTP [28].

The service quality layer addresses protocols that ensure the quality of the
service such as security, reliable messaging, transactions, management etc.
The WS-policy framework [4] declares the service quality requirements and
their capabilities to enable service quality policies of web services to be
attached to the different parts of a WSDL definition. Security policies for
authentication, data integrity, and data confidentiality are standardized by
OASIS as WS-Security policy [22]. The web service management task force
 [38] is tailoring the standards for web service management that involves
with monitoring, controlling, and reporting of service qualities and usage.

Other service layers represent the protocols used for various purposes
such as composing services to create new applications. For example,
BPEL4WS [2] provides a workflow oriented composition model well suited
for business applications.

Discovery

Descriptions

Message packaging

Communications

Service quality
Other Services

 20

Figure 4 Service-oriented architecture

Figure 4 illustrates the interrelationship of SOAP, WSDL and UDDI in a
service oriented environment. The service provider is responsible for
generating and deploying a service. It publishes a service description using
WSDL in a service registry, UDDI. The UDDI advertises the service and
allows a service requestor to send queries to the registry to find a service
either by name, category, identifier, or a supported specification. Once the
service is found, the service requestor receives the information about the
location of its WSDL document. Then the service requestor creates a SOAP
message in accordance with service descriptions of the WSDL document and
sends it over the network to the service provider to use the service. The bind
operation embodies the relationship between the service requestor and the
service provider.

Web Services Description Language
The functional description of a web service is defined by the XML based
Web Services Description Language (WSDL). A WSDL document
describes:
1. What a service does: The operations provided by the service and the data

needed to invoke them.
2. How a service is accessed: Details of the data formats and protocols

necessary to access the service’s operations.
3. Where a service is located: Details of the protocol-specific network

address, such as a URL.

A WSDL document defines services as set of network endpoints, called
ports. In WSDL, the abstract definition of endpoints and messages is
separated from their concrete network deployment or data format bindings.
This allows the reuse of abstract definitions. Messages define abstract

Bind

Publish Find

Service
Registry

Service
Requestor

Service
Provider

 21

descriptions of the data being exchanged. Port types are abstract collections
of operations. An operation defines the description of an action supported by
the service. A protocol such as SOAP, HTTP, and data type specifications
for a particular port type represent a binding for a web service operation. A
port is defined by associating a network address with a binding.
XMLSchema is used to describe message formats. WSDL allows user
defined type definitions known as extensibility elements.

Figure 5 Document structure of WSDL

Figure 5 illustrates a simple WSDL document structure. Each service has
several ports to define where it is located. In turn each port is attached to one
or more bindings that describe how a web service is accessed. Each binding
is attached to a portType having a set of operations to answer what a service
is does. Request and response messages are associated with each operation
to indicate the input and output of an operation.

In this Thesis work web service operations’ meta-data are imported from
the WSDL documents that describe the operations. Those meta-data are used
to automatically define SQL views over web service operations.

SOAP
SOAP is an XML based lightweight, platform independent protocol for
information exchange in a distributed environment. SOAP is used not only
with HTTP but also used in combination with other protocols such as SMTP
and TCP [27]. The simplicity and extensibility are the major design goals of
SOAP.

<service>

 <port>

 <port>

 <port>

<portType>

 <operation>

 <operation>

 <operation>

<binding>

[SOAP]

<message>

[Request]

<types>

[data]

<message>

[Response]

<binding>

 […..]

Supported
Protocol(s)

Service(s)

 22

Figure 6 SOAP Message

A SOAP message (Figure 6) is made up of three elements:
1. The SOAP Envelope is a top element that encapsulates the other two

elements representing the message.
2. The optional SOAP header provides a generic mechanism for adding

additional features to the message such as routing and delivery setting,
authentication assertions, and transaction contexts.

3. The SOAP body contains the actual message to be delivered and
processed.

In addition to the above components a fault block could appear with in the
body whenever there is an error to be reported to the sender of the SOAP
message. The SOAP block denotes a single computational unit of data by the
processor of a message.

In this Thesis work the query processor constructs SOAP calls to web
service operations using the imported WSDL meta-data.

2.4 Active Mediators Object System (Amos II)
Our prototype system WSMED is based on the existing mediator engine
Amos II [32]. Amos II has a functional data model as CDM. The functional
query language, AmosQL, is the primary query language. Wrappers can be

Header

SOAP block

SOAP block

Body

SOAP block

SOAP block

Envelope

 23

defined to make heterogeneous data sources queryable. A wrapper performs
 [31] the following:
• Schema importation translates a sources’ schema into a form compatible

with the CDM of Amos II.
• Query translation converts AmosQL queries into API calls or query

expressions executable by a source.
• Statistics computation estimates costs and selectivities for the calls to

retrieve data from sources.
• Proxy OID generation constructs proxy object identifiers to describe the

data from sources.

The basic concepts of the Amos II data model are objects, types, and
functions. It is used as the CDM for the mediation and it is an extension of
the Daplex [32] [34] functional data model.

Objects model all the entities in the database. Amos II has system objects
and user-defined objects. Objects are represented in two ways, as literal or
surrogates. Surrogates represent the real world entities such as vehicles,
persons, etc; and have associated OIDs. They can be explicitly created and
deleted by the users. The OIDs are maintained by the system. Literal objects
are self-described system-maintained objects and do not have any explicit
OIDs. For example numbers and strings. There are also collections of other
objects: bags, vectors, and records. A bag represents unordered sets with
duplicates while vectors denote the order-preserved collections. Vectors are
accessed by the notation v[i] where v is a variable holding a vector, and i is
the index of an element in a vector. Records are useful to manage data
retrieved through web services as they often handle nested structures.
Records access uses the notation s[k], where s is a variable holding a record,
and k is the name of an attribute in a record. Thus records are indexed by
arbitrary keys while vectors are indexed by numbers only. Literals are
automatically deleted by a garbage collector when they are no longer
referenced.

Types: Objects are classified into types and each object is an instance of
one or more types. The extent of a type represents the set of all instances of
the type. Types are ordered into a multiple inheritances type hierarchy. A
type is defined and stored in the internal database of the system with system
function create type. For example:

create type Vehicle;

create type Truck under Vehicle;

Functions represent properties of objects, computations over objects,
relationships between objects, and are used as primitives in queries and
views. A function contains two parts: a signature and an implementation.
The signature defines the types and names of the arguments and the result of

 24

a function. For example, the signature modeling the attribute color of the
type Vehicle would have the signature:

colour(Vehicle) → Charstring
The implementation defines the mapping of a function to compute results

for given arguments. Further, Amos II can inversely compute arguments
values of a function if the expected result value is known. The inverse usage
of functions is crucial to specify general queries with function calls over the
database. For example:

select vehichlenumber (v)
from Vehicle v
where colour (v) =’blue’;

Functions can be classified according to their implementations as:
• Stored functions are used to represent the properties of objects stored in

an Amos II database, similar to tables in a relational database.
• Derived functions are defined as queries in terms of other Amos II

functions. They are side-effect free and they are precompiled and
optimized as soon as they are defined. The queries are expressed in
AmosQL, using has an SQL-like select statement for defining derived
functions. Derived functions correspond to views in relational databases.

• Foreign functions enable low-level interfaces for wrapping external
systems. For example, in this Thesis a general mechanism to call any
web service operation is implemented as a foreign function named cwo.

• Multi-directional functions enable to associate several implementations
of inverses for a given function. This defines functional views having
different implementations depending on the actual binding pattern of its
parameters. For example, a view over web services may be implemented
using several web service operations as in Paper I where different
operations are called depending on what parameters are known.

 25

3. Summary of the Papers

This section summarizes how Paper I - VIII contribute to answering the
research questions proposed. Paper I - IV are the main contributions.

3.1 Paper I
Paper I presents the overall architecture of WSMED and the general
capabilities of WSMED for querying data accessible via web service
operations. After the system has imported meta-data by reading WSDL
documents for the operations to query, the user can manually define views
that extract data from the results of web service operations calls. The views
can be queried using SQL. In Paper I the views are manually specified as a
set of declarative queries that access web service operations differently
depending on what view attributes are known in a query. To enable semantic
optimization of queries over the views based on automatic query
transformations the user can specify key attributes of a view as a semantic
enrichment. We evaluated the effectiveness of such enrichments over multi-
level views of publicly available web service operations and showed that the
key constraint enrichment substantially improves query performance. Paper I
answers research question one and partially answers research questions two,
three, and four. However, the optimization is based on semantic
enrichments that have to be manually defined by the view definer.

3.2 Paper II
Paper II describes and evaluates strategies for adaptive parallelization of web
service calls based on automatically generated SQL views of web service
operations. Each generated view encapsulates a data providing web service
operation for given parameters and emits the result as a flattened stream of
tuples. SQL queries can be made over these views with the restriction that
the input attributes must be known in the query. When joining such views it
is often the case that in the execution plan the output of one web service call
is the input for another, etc. The challenge addressed in Paper II is to
develop methods to speed up such dependent calls by parallelization. Since
web service calls incur high-latency and message set-up costs, a naïve

 26

approach making the calls sequentially is time consuming and parallel
invocations of the web service calls should improve the speed. Our approach
automatically parallelizes the web service calls by starting separate query
processes, each managing a plan function for different parameter values. For
a given query, the query processes are automatically arranged in a multi-
level process tree where plan functions are called in parallel. The parallel
plan is defined in terms of an algebra operator, First Finished Apply in
Parallel (FF_APPLYP), to ship in parallel to other query processes the same
plan function for different parameters. By using FF_APPLYP we first
investigated ways to set up different process trees manually. We concluded
from our experiments that the best performing query execution plan is an
almost balanced bushy tree. To automatically achieve the optimal process
tree we modified FF_APPLYP to an operator Adaptive First Finished Apply
in Parallel (AFF_APPLYP) that adapts the process tree locally in each
query process until optimized performance is achieved. AFF_APPLYP starts
with a binary process tree. During execution each query process in the tree
makes local decisions to expand or shrink its process sub-tree by comparing
the average time to process each incoming tuple. The query execution time
obtained with AFF_APPLYP is shown to be close to the best time achieved
by manually built query process trees. Paper II answered research questions
one and two and partially answered research questions three and four.

3.3 Paper III
In general queries calling data providing web service operations may have
both dependent and independent calls. Paper III generalizes the adaptive
strategy presented in Paper II to handle both independent and dependent web
service operation calls. The adaptive operator PAP speeds up queries with
independent web service operation calls by calling in parallel the plan
functions encapsulating each independent call. Dependent web service calls
are handled by adaptive parallelization of sequences of PAP calls. This is
shown to substantially improve the query performance without any cost
knowledge or extensive memory usage compared to other strategies. Paper
III answers the research questions one, two, three, and four by providing a
generalized approach to query both dependent and independent data
providing web service operations. The performance of PAP is evaluated
using publicly available web services.

3.4 Paper IV
Paper IV describes the overall functionality of the WSMED system. This
includes the WSMED query processor, the WSMED web service to query

 27

any data providing web service operations, the web based demonstration of
WSMED, and the web service generator.

The generation and deployment of web services for data providing
systems answers research question five.

The web based demonstration of WSMED allows making SQL queries
combining data from any data providing web services. This answers research
question six.

3.5 Paper V

Paper V provides some preliminary work for Paper I. The WSMED
architecture and a proposed method to manually define SQL views over web
service operations are outlined.

3.6 Licentiate Thesis (Paper VI)
The Licentiate Thesis outlines some of the research questions, presents the
technical background on which the research work is based, and proposes the
WSMED architecture. Paper I and V are based on the Licentiate Thesis.

3.7 Paper VII
Paper VII describes the web based demonstration of WSMED that directly
invokes WSMED web service operations from a web browser. This work is
included and elaborated in Paper IV.

3.8 Book Chapter (Paper VIII)
The book chapter in Paper VIII is based on Paper I and II. It summarizes the
WSMED architecture and the adaptive query processing strategies used.

 28

4. Conclusions and Future Work

WSMED provides general database query capabilities over any data
providing web service operations given their WSDL meta-data descriptions.
For each data providing web service operation in a given WSDL document,
WSMED automatically generates relational views by reading web service
operations’ WSDL descriptions. Such automatically generated relational
views can be queried with SQL.

Without any cost knowledge the WSMED query processor automatically
and adaptively finds an optimized parallel execution plan calling the queried
data providing web service operations. The algebra operator PAP locally
adapts the parallel plan until no significant performance improvement is
measured, based on monitoring the flow from data providing web service
operations. The operator handles queries where data providing web service
operations are called both dependently and independently. A strategy using
PAP is developed, which substantially improves the query performance
without any cost knowledge or extensive memory usage compared to other
strategies.

WSMED assumes that all queried data sources are available as web
service operations. To make any data providing system into a web service
WSMED includes a subsystem, the web service generator, which generates
and deploys the web service operations to access a data source.

To comply with the XaaS paradigm WSMED itself is implemented as a
web service that provides SQL query functionality to query and join any data
providing web service operations. The WSMED web service is also
generated by the web service generator. To enable search of any data
providing web services from a browser without any need for installing
software, the web based demonstration is written as a JavaScript program
that directly calls the WSMED web service. In summary the contributions of
the Thesis are:
1. The WSMED system architecture provides general SQL query

capabilities over any data providing web services based on their WSDL
documents.

2. To enable SQL queries to data providing web services, SQL views are
automatically generated for any data providing web service operations
by reading their WSDL documents.

3. To automatically parallelize queries to data providing web service, an
algorithm is implemented to transform a non parallel plan into a parallel

 29

plan by introducing the adaptive operator PAP that encapsulates plan
functions calling data providing web service operations.

4. To automatically and adaptively optimize a parallel plan, the operator
PAP adapts an initial parallel query process tree by locally monitoring
result flows from each child query process until satisfactory performance
is obtained. The adaptive query parallelization does not need any static
cost model.

5. To generate data providing web service interfaces to any data providing
system a web service generator automatically generates web service
operations for wrapped data sources defined as interface functions. The
generated web service operations are dynamically deployed without
restarting a web server.

6. To comply with the XaaS paradigm, the WSMED web service is
provided to query any data providing web services. It can be used
directly from a browser without any software installations. The WSMED
web service operations are generated by the web service generator.

All performance measurements were made with publicly available web
service operations. A possible future work is to develop a benchmark to
simulate the parallel web service calls for controlled experiments.

WSMED presently handle relational views that calls data providing web
services operations without any side effects. Updatable relational views over
web services is a subject for future work.

 30

5. Summary in Swedish

Sökning bland datagenererande web services
Den kraftigt ökande tillgången till internetbaserade informationssystem har
skapat ett behov att utveckla web services [7], dvs. system och standarder för
att utbyta information mellan internetbaserade program. Medan s.k.
webbtjänster gör det möjligt att utbyta information mellan människor och
webbaserade program i vanliga webbläsare, tillhandahåller web services en
infrastruktur för informationsutbyte mellan olika webbaserade program. För
web services har man utvecklat ett antal standarder som SOAP [18], WSDL
 [9] och XML Schema [42]. Web services tillhandahåller verktyg för
programutvecklare att definiera operationer (eng. operations) som är
programmeringsgränssnitt för att anropa andra program via Internet. Dessa
web service-operationer (WSO) är självbeskrivande i den meningen att
information om hur de anropas och hur data som skall överföras skall se ut
(s.k. meta-data) beskrivs för varje WSO m.h.a ett speciellt språk som heter
Web Service Description Language, WSDL. WSDL-beskrivningarna läggs
upp på Internet som maskinläsbara dokument. Genom att läsa WSDL-
dokumentet för en web service har ett program all information som behövs
för att kunna anropa de WSOer som beskrivs i dokumentet.

Web services används ofta för att hämta data från servrar som
tillhandahåller information av olika slag. En datagenerande WSO returnerar
datamängder för givna sökparametrar utan att ha sidoeffekter som ändrar
data på servern. Sådana tjänster är en form av sökbearbetning (search
computing) [8]. Andra typer av web services utför någon åtgärd, t.ex. gör en
banktransaktion eller startar en maskin.

Ämnet för denna avhandling är att undersöka hur frågespråk kan göra det
möjligt att effektivt söka bland olika datagenererande WSOer. Ett frågespråk
är ett kraftfullt högnivåspråk för att söka bland data. T.ex. är frågespråket
SQL standardspråk för sökning i konventionella databaser. I avhandlingen
används SQL för att söka bland data från olika datagenererande WSOer i
stället för från en konventionell databas. För att utföra motsvarande
sökningar utan frågespråk programmerat i ett konventionellt
programmeringsspråk måste man för varje fråga utveckla ett specialiserat
program som implementerar en detaljerad strategi för hur sökningen bland
datagenererande WSOer skall gå till.

 31

Som ett exempel, antag att vi vill ställa en fråga som returnerar
information om namngivna platser i några av USAs delstater, t.ex. deras
postnummer och väderprognoser. Fyra olika datagenererande WSOer kan
användas för att besvara frågan. Först kan operationen GetAllStates från web
servicen GeoPlaces [10] anropas för att finna allmän information om
delstater i USA. Sedan kan operationen GetInfoByState från web servicen
USZip [36] anropas för att finna alla postnummer i en given delstat.
Operationen GetPlacesInside från Zipcodes [11] returnerar alla platser inom
ett postnummerområde. Slutligen kan operationen GetCityForecastByZip
från CYDNE [12] anropas för att få väderprognosen för ett givet
postnummer.

Ytterligare teknik som används i avhandlingsarbetet är mediatortekniken
 [39]. En mediator är ett system för att utföra frågor som kombinerar data
från många olika datakällor. I detta arbete avses med en mediator ett system
som gör det möjligt att m.h.a. ett frågespråk specificera frågor som
kombinerar data från olika datagenererande WSOer.

I avhandlingen undersöks hur man kan bygga ett generellt system för
skalbara frågor över datagenererande WSOer. Ansatsen är att utveckla ett
prototypsystem med benämningen WSMED (Web Service MEDiator) för att
ge svar på ett antal forskningshypoteser:

1. I vilken utsträckning kan standarder för web services som WSDL
och SOAP utnyttjas av en web service mediator för att effektivt
och skalbart utföra frågor till datagenererande WSOer?

2. Hur kan man, baserat på WSDL-beskrivningar automatiskt generera
vyer över datagenererande WSOer för ett högnivåfrågespråk som
SQL?

3. Hur kan optimerings- och transformationstekniker för databasfrågor
användas för att tillhandahålla effektiv och skalbar sökning bland
data från olika datagenererande WSOer?

4. Hur kan en frågeoptimerare snabba upp sökning från
datagenererande WSOer utan att innehålla kunskap om hur
kostsamma operationerna är?

5. Hur kan datakällor som inte är tillgängliga som web services på ett
enkelt sätt transformeras till datagenererande WSOer för att göra
det möjligt att ställa frågor till dem från en web service mediator?

6. Hur kan paradigmen ”allt som en service” (XaaS) [33] tillämpas för
att ställa frågor mot datagenererande WSOer? Det vill säga, kan
en web service mediator implementeras i form av en web service
som anropas från en godtycklig webbläsare utan att kräva att
användaren först installerar speciell programvara i sin dator?

För att besvara ovanstående forskningsfrågor har WSMED-prototypen
utvecklats och utvärderats och har nu förmågan att skalbart utföra frågor
över datagenererande WSOer.

 32

WSMED kan dynamiskt anropa en godtycklig WSO genom att läsa dess
WSDL-dokument. WSDL-dokumenten lagras i WSMED i en generell web
service databas som kan representera beskrivningar av godtyckliga WSDL-
dokument. Databasen används för att dynamiskt konstruera anrop till de
WSOer som behövs för att utföra en fråga. Detta ger svar på forskningsfråga
ett.

En WSO presenteras av WSMED som en tabell (vy) i SQL. SQL frågor
kan ställas över dessa vyer. För en given web service genererar WSMED
automatiskt SQL vyer för alla dess WSOer genom att läsa WSDL
dokumentet. SQL vyn för en WSO definieras i termer av ett internt
frågespråk som heter WQL (WSMED Query Language) och kan hantera de
datatyper som behövs för att anropa WSOer. Den automatiska genereringen
av SQL-vyer besvarar forskningsfråga två.

WSOer är normalt parametriserade i den meningen att de kräver att in-
parametrar har kända värden för att de skall kunna anropas. Två WSO-anrop
i en fråga är beroende om det ena kräver in-parametrar som produceras i
resultatet av ett annat WSO-anrop, i annat fall är de oberoende. I exemplet
ovan är GetPlacesInside and GetCityForecastByZip WSO-anrop som beror
på GetInfoByState men som är oberoende av varandra. En utmaning är här
att utveckla metoder att automatiskt optimera frågor som innehåller både
beroende och oberoende WSO-anrop. Generellt är sådan optimering
beroende av olika egenskaper hos WSO-anropen. Dessa egenskaper är i
allmänhet inte tillgängliga och beror på olika nätverks- och datoregenskaper
när och var frågorna körs. I sådana fall är det mycket svårt att basera
optimeringen på en statisk kostnadsmodell av de olika ingående kostnaderna,
vilket är den teknik för frågeoptimering som tillämpas i traditionella
databaser.

För att optimera frågorna utan en kostnadsmodell av underliggande
WSOer använder WSMED en ansats där WSO-anropen dynamiskt
parallelliseras vid frågetillfället med hänsyn tagen till beroenden mellan
olika WSO-anrop i en fråga. Ofta förbättras prestanda dramatiskt genom att
systemet ser till att WSOer anropas parallellt i stället för att anropa dem efter
varandra. WSMED genererar automatiskt parallella sökprogram,
exekveringsplaner, som anropas i ett träd av kommunicerande processer, ett
processträd, där olika exekveringsplaner anropas parallellt. Under körning
optimeras och ändras processträdet dynamiskt genom att systemet mäter
tiden att utföra delplaner utan kännedom om kostnaden att anropa
underliggande WSOer. I avhandlingen visas att denna dynamiska
frågeoptimering ger stora prestandaförbättringar och detta resultat besvarar
forskningsfrågorna tre och fyra.

WSMED antar att de datakällor som anropas är definierade som WSOer.
Att skapa en ny datagenerarande web service för en datakälla kräver normalt
en del programmeringsarbete, t.ex. för att implementera WSOer, definiera
WSDL-dokument och att driftsätta web servicen på nätet. För att på ett

 33

enkelt sätt göra ett dataproducerande system tillgängligt som
datagenererande WSOer innehåller WSMED en web service-generator som
skapar och driftsätter WSOer. Programmeraren måste först definiera ett
gränssnitt mot datakällan i mediatorsystemet Amos II [32]. Därefter generar
systemet automatiskt motsvarande WSOer och gör dem omedelbart
tillgängliga på nätet. Samtidigt genererar system ett WSDL-dokument som
beskriver genererade WSOer. Denna automatiska generering och
driftsättning av WSOer ger ett svar på forskningsfråga fem.

WSMED-systemet självt är tillgängligt som en web service som kan
utföra frågor till andra datagenererande web services. Denna WSMED web
service innehåller WSOer för att sätta upp sessioner, importera WSDL-
dokument för de web services som man vill söka i, inspektera de SQL-vyer
som generats, ställa frågor mot SQL-vyerna och autentisera användaren.
WSMED web servicen har genererats automatiskt m.h.a. web service-
generatorn. WSMEDs funktionalitet demonstreras genom ett webbaserat
användargränssnitt som är tillgängligt från en godtycklig webbläsare. Ingen
programvara behöver då installeras eftersom gränssnittet är implementerat
som ett JavaScript-program som exekveras i webbläsaren och direkt anropar
WSMED web servicen. Detta visar att WSMED uppfyller XaaS paradigmen
vilket besvarar forskningsfråga sex.

 34

6. Acknowledgements

First and foremost I would like to thank my supervisor Professor Tore Risch
for supervising me. I’m deeply appreciating his willingness to assist me in
writing papers and Thesis by providing valuable suggestions and fruitful
comments. I am very grateful to him to sharing his precious knowledge with
me and being always ready to discuss the new directions and the research
problems. My second supervisor Professor G.N.Wikramanayake is
supporting me by his constructive advices and guidance and I appreciate his
assistance. Dr.S.Mahesan and Dr.S.Kanaganathan are my first Computer
Science teachers and emboldened me as a research student in Computer
Science. I would like to thank them for their rewarding guidance and
assistance.

I also wish to thank all Sri Lankan Sida split PhD program management
committee members and Sida coordinator for Uppsala University for their
great support all the time.

I offer my sincere gratitude to the administrative authorities of
Department of Computer Science and Faculty of Science, University of
Jaffna for their enormous support.

I am in debt to all present and past UDBL group members for helping and
sharing with me difficulties and happiness. I am also like to thank all my
fellow Sri Lankans for their friendship and support.

Ulrika Andersson and all the others at the Department of Information
Technology, Uppsala University who have helped me immensely need
mentioning.

I’m grateful to my wife, Sutha and my daughters Sruthy and Sharana for
their generous support and patience.

I have great pleasure to dedicate this Thesis to my parents, Manivasakan
and Saroginidevi, who have always encouraged and supported me to study.

This work was supported by the Swedish International Development and

Cooperation (Sida), and the Swedish Foundation for Strategic Research
under contract RIT08-0041.

 35

Bibliography

[1] AmosII wrappers, http://user.it.uu.se/~udbl/amos/wrappers.html
[2] T.Andrews et al., Business Process Execution Language for Web Services,

Version 1.1,
 http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-

bpel.pdf, 2003
[3] R.Avnur and J.M.Hellerstein, Eddies: Continuously Adaptive Query

Processing, Proc. 2000 ACM SIGMOD International Conference on
Management of Data, pp 261-272, 2000

[4] S.Bajaj et al., Web Services Policy Framework (WSPolicy),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-
policy-2006-03-01.pdf, 2006

[5] K.Ballinger, P.Brittenham, A.Malhotra, W.A. Nagy, and S.Pharies, Web
Services Inspection Language (WS-Inspection),
ftp://www6.software.ibm.com/software/developer/library/ws-wsilspec.pdf, 2001

[6] T.Bellwood et al, UDDI Version 3.0.2, UDDI Spec Technical Committee Draft,
http://uddi.org/pubs/uddi_v3.htm#_Toc85907967, 2004

[7] D.Booth, H.Haas, F.McCabe, E.Newcomer, M.Champion, C.Ferris, and
D.Orchard, Web Services Architecture,W3C Working Group Note,
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ , 2004

[8] S.Ceri, Search Computing. Proc. International Conference on Data
Engineering, IEEE Computer Society, pp. 1- 3, 2009

[9] E.Christensen, F.Curbera, G.Meredith, and S. Weerawarana, Web services
description language (WSDL) 1.1., W3C Recommendation,
http://www.w3.org/TR/wsdl, 2001

[10] codeBump, GeoPlaces web service
 http://codebump.com/services /PlaceLookup.asmx
[11] codeBump, Zipcodes web service
 http://codebump.com/services /ZipCodeLookup.asmx
[12] CYDNE, http://ws.cdyne.com/WeatherWS/Weather.asmx?WSDL
[13] A.Deshpande, Z.G:Ives and V.Raman, Adaptive Query Processing,

Foundations and Trends in Databases, 2007
[14] R.Elamasri, and S.M.Navathe, Fundamentals of Database Systems, 4th Edition,

ISBN 0-321-20448-4, Pearson Education, pp 855-856, 2004
[15] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D.

Ullman, V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation:
Data Models and Languages, Journal of Intelligent Information Systems, 8(2),
pp 117-132, 1997

[16] H.Garcia-Molina, J.D Ullman, and J.Widom, Database Systems: The Complete
Book, ISBN 0-13-098043-9, Prentice Hall, pp 1047-1069, 2002

[17] G.Graefe, Query evaluation techniques for large databases, ACM Computing
Surveys (CSUR), 25(2), pp 73-169, 1993

 36

[18] M.Gudgin, M.Hadley, N.Mendelsohn, J.Moreau, and H.Frystyk Nielsen, SOAP
Version 1.2 Part 1: Messaging Framework,W3C Recommendation,
http://www.w3.org/TR/soap12-part1/ ,2003

[19] W. Hasan, Optimization of SQL queries for Parallel Machines, Springer-
Verlag,1997

[20] Z.He, B.S.Lee, and R.Snapp, Self-Tuning Cost Modeling of User-Defined
Functions in an Object-Relational DBMS, ACM Transactions on Database
Systems, 30(3), pp 812-853, 2005

[21] Hypertext Transfer Protocol, W3C Architecture domain,
http://www.w3.org/Protocols/

[22] K.Lawrence, C.Kaler, A.Nadalin, M.Gudgin, A.Barbir, and H.Granqvist, WS-
SecurityPolicy v1.0, OASIS Working Draft, http://www.oasis-open.org/
committees/download.php/15979/oasis-wssx-ws-securitypolicy-1.0.pdf, 2005

[23] A.Y.Levy et al., Querying Heterogeneous Information Sources Using Source
Descriptions, Proc. of 22nd Very Large Data Bases Conference(VLDB 96), pp
251-262 , 1996

[24] C.Li et al., Capability Based Mediation in TSIMMIS, Proc. 1998 ACM
SIGMOD International Conference on Management of Data, 1998, pp 564-566

[25] Y.Papakonstantinou, A.Gupta, and L.Haas, Capabilities-base query rewriting in
mediator systems, Proc. Conference on Parallel and Distributed Information
Systems, pp 170-183, 1996

[26] J.Postel, SIMPLE MAIL TRANSFER PROTOCOL, RFC 821,
http://www.ietf.org/rfc/rfc0821.txt, 1982

[27] J.Postel, Transmission Control Protocol, http://www.ietf.org/rfc/rfc793.txt, 1981
[28] J. Postel, and J. Reynolds, FILE TRANSFER PROTOCOL (FTP),

http://tools.ietf.org/html/rfc959, 1985
[29] L.Raschid and S.Y.W.Su, A Parallel Processing Strategy for Evaluating

Recursive Queries, Proc. 12th Very Large Data Bases Conference(VLDB ‘86),
pp 412-419, 1986

[30] T.Risch, Distributed Architecture, in L.Liu and M.Tamer Özsu (eds.):
Encyclopedia of Database Systems, 2(1), Springer, pp 875-879, 2009

[31] T.Risch and V.Josifovski, Distributed Data Integration by Object-Oriented
Mediator Servers, Concurrency and Computation: Practice and Experience J.,
13(11), John Wiley & Sons, pp 933-953, 2001

[32] T.Risch, V.Josifovski, and T.Katchaounov, Functional Data Integration in a
Distributed Mediator System, in P.Gray, L.Kerschberg, P.King, and
A.Poulovassilis (eds.): Functional Approach to Data Management - Modeling,
Analyzing and Integrating Heterogeneous Data, Springer, pp 211-238, 2003

[33] S.Robison, The Next Wave: Everything as a Service,
 http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html
[34] D. Shipman, The Functional Data Model and the Data Language DAPLEX,

ACM Transactions on Database Systems, 6(1), pp 140-173, 1981
[35] M. Tork-Roth, and P. Schwarz, Don’t Scrap It, Wrap It! A Wrapper

Architecture for Legacy Data Sources, Proc. 23rd Very Large Data Bases
Conference(VLDB 1997), pp 266-275, 1997

[36] USZip, http://www.webservicex.net/uszip.asmx
[37] V.Vassalos, and Y.Papakonstantinou, Describing and Using Query Capabilities

of Heterogeneous Sources, Proc. 23rd Very Large Data Bases
Conference(VLDB 97), pp 256-265, 1997

[38] Web Services Management Work by the Web Services Architecture Working
Group, http://www.w3.org/2002/ws/arch/4/management/

 37

[39] G. Wiederhold, Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3), pp 38-49, 1992

[40] WSMED Demo, http://udbl2.it.uu.se/WSMED/wsmed.html
[41] WSMED WSDL, http://udbl2.it.uu.se/WSMED/wsmed.wsdl
[42] XML Schema, http://www.w3.org/standards/xml/schema
[43] R.Yerneni, C.Li, H.Garcia-Molina, and J.D:Ullman, Computing capabilities of

mediators, Proc. 1999 ACM SIGMOD International Conference on
Management of Data, pp 443-454, 1999

[44] V.Zadorozhny, L.Raschid, M.E.Vidal, T.Urban, and L.Bright, Efficient
Evaluation of Queries in a Mediator for WebSources, Proc. 2002 ACM
SIGMOD International Conference on Management of Data, pp 85-96, 2002

Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 755

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-128928

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2010

Paper I ____

© Tapir Academic Press 2007. Reprinted, with permission, from
[19th International Conference on Advanced Information Systems
Engineering, Proceedings of the Workshops and Doctoral Consortium,
Web Service Mediation Through Multi-level Views, Manivasakan
Sabesan and Tore Risch].

The paper is reformatted for typographic consistency.

 41

Web Service Mediation Through Multi-level Views

Manivasakan Sabesan and Tore Risch

Department of Information Technology, Uppsala University, Sweden
{msabesan, Tore.Risch}@it.uu.se

Abstract. The web Service MEDiator system (WSMED)
provides general query capabilities over data accessible through
web services by reading WSDL meta-data descriptions. Based
on imported meta-data, the user can define views that extract
data from the results of calls to web service operations. The
views can be queried using SQL. The views are specified in
terms of declarative queries that access different web service
operations in different ways depending on what view attributes
are known in a query. To enable efficient query execution over
the views by automatic query transformations the user can
provide semantic enrichments of the meta-data with key
constraints. We evaluated the effectiveness of our approach
over multi-level views of existing web services and show that
the key constraint enrichments substantially improve query
performance.

Keywords: web service views, query optimization, semantic
enrichment

1. Introduction
Web services [4] provide an infrastructure for web applications by defining
sets of operations that can be invoked over the web. Web service operations
are described by meta-data descriptions of operation signatures, using the
Web Services Description Language (WSDL) [5]. An important class of
operations is to access data through web services, e.g. Google’s web page
search service [12] and the United States Department of Agriculture
nutrition database of foods [27]. However, web services don’t support
general query or view capabilities; they define only operation signatures.

We have developed a system, WSMED – Web Service MEDiator, to
facilitate efficient queries over web services. The view definitions called
WSMED views are defined in terms of imported WSDL descriptions of web
service operations. Furthermore, multi-level WSMED views can be defined
in terms of other WSMED views. Web services return nested XML
structures (i.e. records and collections), which have to be flattened into

 42

relational views before they can be queried with SQL. The knowledge how
to extract and flatten relevant data from a web service call is defined by the
user as queries called capability definitions using and object-oriented query
language, WSMED query language (WQL), which has support for web
service data types.

An important semantic enrichment is to allow for the user to associate
with a given WSMED view different capability definitions depending on
what view attributes are known in a query, the binding pattern of the
capability definition. The WSMED query optimizer automatically selects the
optimal capability definition for a given query by analyzing its used binding
patterns. These view definitions enrich the basic web service operations to
support SQL data access queries.

A WSDL operation signature description does not provide any
information about which parts of the signature is a key to the data accessed
through the operation. As we show, this information is critical for efficient
query execution of multi-level WSMED views. Therefore, we allow the user
to declare to the system all (compound) keys of a given WSMED view,
called key constraints.

This paper is organized as follows: Section two describes the architecture
of WSMED. Section three gives examples of WSMED view definitions
using an existing web service and explains the capability definitions. Section
four analyzes the performance of a sample query to verify the effectiveness
of query transformations based on the semantic enrichments compared to
conventional relational algebra transformations. Section five describes the
strategies of the query processor. Section six discusses related work. Finally
section seven summarizes the results and indicates future work.

2. The WSMED System

Figure 1a, illustrates WSMED’s system components. Imported WSDL meta-
data is stored in the web service meta-database using a generic web service
schema that can represent any WSDL definition. The WSDL Importer
populates the web service meta-database, given the URL of a WSDL
document. It reads the WSDL document using the WSDL parser toolkits
WSDL4J [24] and Castor [23]. The retrieved WSDL document is parsed and
automatically converted into the format used by the web service meta-
database. In addition to the general web service meta-database, WSMED
also keeps additional user-provided WSMED enrichments in its local store.

The query processor exploits the web service descriptions and WSMED
enrichments to process queries. The query processor calls the web service
manager which invokes web service calls using Simple Object Access
Protocol (SOAP) [13] through the toolkit SAAJ [19] to retrieve the result for
the user query.

 43

Figure 1b illustrates architectural details of the query processor. The
calculus generator produces from an SQL query an internal calculus
expression in a Datalog dialect [18]. This expression is passed to the query
rewriter for further processing to produce an equivalent but simpler and
more efficient calculus expression.

The query rewriter calls the view processor to translate SQL query
fragments over the WSMED view into relevant capability definitions that
call web service operations. An important task for the query rewriter is to
identify overlaps between different sub-queries and views calling the same
web service operation. This requires knowledge about the key constraints.
We will show that such rewrites significantly improve the performance of
queries to multi-level views of web services.

The rewritten query is finally translated into an algebra expression by a cost-
based optimizer that uses a generic web service cost model as default. The
algebra has operators to invoke web services and to apply external functions
implemented in WSDL (e.g. for extraction of data from web service results).
The algebra expression is finally interpreted by the execution engine. It uses
the web service meta-database to generate a SOAP message when a web
service operation is called.

WSDL
Importer

Web Service
Manager

SQL query

WSDL
document

Query
Processor

WSMED
enrichments

Web service
 schema

Web service
meta-database

Results

Web
service

query
rewriter

cost-based
optimizer

execution
engine

calculus
generator

view processor

Figure 1b: Query Processor Figure 1a: WSMED components

 44

3. WSMED Views

To illustrate and evaluate our approach we use a publicly available web
service to access and search the National Nutrient Database for US
Department of Agriculture [28]. The database contains information about the
nutrient content of over 6000 food items. It contains five different
operations: SearchFoodByDescriptions, CalculateNutrientValues,
GetAllFoodGroupCodes, GetWeightMethods and GetRemainingHits. We
illustrate WSMED by the operation SeachFoodByDescriptions to search
foods given a FoodKeywords or a FoodGroupCode. The operation returns
NDBNumber, LongDescription, and FoodGroupCode as the results. The
WSMED view named food in Table 1 allows SQL queries over this web
service operation.

Table 1. WSMED view food
ndb keyword descr gpcode
19080 Sweet Candies 1900
……… ……… …………… ……….

For example, the following SQL query to the view food retrieves the
description of foods that have food group code equal to 1900 and keyword
‘Sweet’:

select descr
from food
where gpcode=’1900’ and keyword =’Sweet’;

The view food is defined as follows:

create SQLview food (Charstring ndb,
 Charstring keyword,Charstring descr, Charstring gpcode)
as multidirectional
 (“ffff” select ndb, “”,descr, gpcode
 where foodDescr(“”,“”)= <ndb,descr,gpcode>)
 (“fffb” select ndb, “”,descr
 where foodDescr(“”,gpcode)= <ndb,descr,gpcode>)
 (“fbff” select ndb,descr,gpcode
 where foodDescr(keyword, “”)= <ndb,descr,gpcode>)
 (“fbfb” select ndb, descr
 where foodDescr(keyword,gpcode)
 = <ndb,descr,gpcode>)

Figure 2: WSMED view definition

A given WSMED view can access many different web service operations in
different ways. When the user defines a WSMED view he can specify the
view by several different declarative queries, called capability definitions,
using an object oriented query language called WQL having special web
service oriented data types. Each capability definition implements a different
way of retrieving data through web service operations using WQL. Different
capability definitions can be defined based on what view attributes are
known or unknown in a query, called the capability binding patterns. The

 45

query optimizer automatically chooses the most promising capability
definitions for a given query to a WSMED view. Each capability definition
provides a different way of using the web service operations to retrieve food
items. The capability binding patterns of the view food are:
1. ffff- all the attributes of the view are free in the query. That is, the query

does not specify any attribute selection value. In this case the capability
definition specifies that all food items should be returned.

2. fffb- a value is specified only for fourth attribute gpcode. This means that
the capability definition returns all food items for a given food group
code.

3. fbff- a value is specified in the query only for the second attribute
keyword, i.e. all food items associated with the given keyword are
retrieved.

4. fbfb- both the values keyword and gpcode are specified in the query,
finding the relevant food items.

In our example query the binding pattern is fbfb. The capability definitions
are defined as declarative WQL queries that all call a function foodDescr in
different ways. The function foodDescr is defined as a WQL query that
wraps the web service operation SearchFoodByDescription given two
parameters foodkeywords and foodgroupcode. It selects relevant pieces of a
call to the operation SearchFoodByDescription to extract the data from the
data structure returned by the operation.

To simplify sub-queries and provide heuristics for estimating selectivities,
it is important for the system to know what attributes in the view are
(compound) keys. Therefore, the user can specify key constraints for a given
view and set of attributes by a system function declare_key, e.g.:
 declare_key(“food”, {”ndb”});

Key constraints are not part of WSDL and require knowledge about the
semantics of the web service. In our example web service the attribute ndb is
the key. The attributes are specified as a set of attribute names for a given
view (e.g. {“ndb”}). Several keys can be specified by several calls to
declare_key.

The query optimizer may also need to estimate the cost to invoke a
capability and the estimated size of its result, i.e. its fanout. Costs and
fanouts can be specified explicitly by the user if such information is
available. However, normally explicit cost information is not available and
the cost is then estimated by a default cost model that uses available
semantic information such as signatures, keys, and binding patterns to
roughly estimate costs and fanouts. Key constraints will be shown to be the
most important semantic enrichment in our example, and additional costing
information is not needed.

 46

3.1 Capability definition function

The function foodDescr, used in the capability definitions in Figure 2, has
the following definition:

1.create function foodDescr (Charstring fkw,
2. Charstring fgc)
3. ->Bag of <Charstring ndb,Charstring descr,
4. Charstring gpcode>
5. as select re[“NDBNumber”],re[“LongDescription”],
6. re[“FoodGroupCode”]
7. from Record out, Record re
8. where out =
9. cwo(“http://ws.strikeiron.com/USDAData?WSDL”,
10. “USDAData”,
11. “SearchFoodByDescription”,
12. {fkw, fgc})
13. and re in out[“SearchFoodByDescriptionResult”];

Given a food keyword, fkw, and a group code, fgc, the function foodDescr
returns a bag of result rows extracted from the result of calling the web
service operation named SearchFoodByDescription. Any web service
operation can be called by the built-in generic function cwo (line 9). Its
arguments are the URI of WSDL document that describes the service (line
9), the name of the service (line 10), an operation name (line 11), and the
input argument list for the operation (line 12). The result from cwo is bound
to the query variable out (line 8). It holds the output from the web service
operation temporarily stored in WSMED’s local database. The system
automatically converts the input and output messages from the operation into
records and sequences where records are used to represent complex XML
elements [7] and sequences represent ordered elements. In our example, the
argument list holds the parameters Food-Keywords and FoodGroupCode
(line 12). The result out is a record structure from which only the attribute
SearchFoodByDescriptionResult is extracted (line 13). Extractions are
specified using the notation s[k], where s is a variable holding a record, and
k is the name of an attribute.

The function foodDescr selects relevant parts of the result from the call to
the operation. In our example, the relevant attributes are NDBNumber,
LongDescription, and FoodGroupCode, which are all attributes of a record
stored in the attribute SearchFoodByDescriptionResult of the result record.
Our example web service operation SearchFoodByDescription returns
descriptions of all available food items when both attributes foodkeywords
and foodgroupcode are empty strings. On the other hand, if foodkeywords is
empty but foodgroupcode is known, the web service operation will return all
food with that group code. Similarly, if foodgroupcode is empty but
foodkeywords is known, the web service operation will return all food with
that keyword. If both foodkeywords and foodgroupcode are non-empty, the
operation will return descriptions of all food items of the group code with
matching keywords. This knowledge about the semantic of the web service

 47

operation SearchFoodByDescription is used to define the capability
definition function in Figure 2.

4. Impact of key constraints

To illustrate the impact of key constraints we define two views in terms of
the WSMED view food. The view foodclasses is used to classify food items
while fooddescriptions describes each food item:

create view foodclasses(ndb, keyword, gpcode)
as select ndb,keyword,gpcode from food;

create view fooddescriptions(ndb, descr)
as select ndb, descr from food;

This scenario is natural for our example web service that treats foodclasses
different from fooddescriptions. The following SQL query accesses these
views.

select fd.descr
from foodclasses fc, fooddescriptions fd
where fc.ndb=fd.ndb and fc.gpcode=’1900’;

First the example query is translated by the calculus generator (Figure 1b)
into a Datalog expression:

Query(l) :- foodclasses(ndb,keyword,gpcode) AND
fooddescriptions (ndb,descr) AND descr=l AND gpcode=’1900’

The definitions of the views foodclasses and fooddescriptions are defined
in Datalog as1:

foodclasses(ndb, keyword, gpcode) :- food(ndb, keyword, *,
gpcode).

fooddescriptions(ndb,descry) :- food(ndb, *, descr, *).

Given these view definitions the Datalog expression is transformed by the
view processor (Figure 1b) into:

Query(l) :- food(ndb,*,*,’1900’) AND food(ndb,*,l,*).

Here the predicate food represents our WSMED view. At this point the
added semantics that ndb is the key of the view play its vital part. Two
predicates p(k,a) and p(k,b) are equal if k is a key and it is then inferred that
the other attributes are also equal, i.e. b=a [9]. If a key constraint that ndb is
the key is specified, this is used by a query rewriter to combine the two calls
to food:

Query(l) :- food(*,*,l,’1900’).

Without knowing that ndb is the key the transformation would not apply and
the system would have to join the two references to the view food in the

1 ‘*’ means don’t care.

 48

expanded query. The simplification is very important to attain a scalable
query execution performance as shown in Section 5.

The next step is to select the best capability definition for the query. The
heuristics is that if more than one capability definition is applicable, the
system chooses the one with the most variables bound. Since l is the query
output and gpcode is given, the binding patterns ffff and fffb both apply, and
the system chooses fffb because it is considered cheaper. The call to food
then becomes:

Query(l) :- l=foodDescr(“”,”1900”).

Similar to relational database optimizers, given the definition of
foodDescr, a cost based optimizer generates the algebra expression in Figure
3a, which is interpreted by the execution engine. The apply operator (γ) calls
a function producing one or several result tuples for a given input tuple and
bound arguments [14]. By contrast, Figure 3b shows an execution plan for
the non-transformed expression where the system does not know that ndb is
key. It is using a nested loop join (NLJ) to join the capability definitions. An
alternative possible better plan based on hash join (HJ) that materializes the
inner web service call is shown in Section 5. In case no costing data is
available about the capability definitions (which is the case here), the system
uses built in heuristics, i.e. a default cost model. In our case the cost based
optimizer produces the plan in Figure 3a, which is optimal for our query.

5. Query Performance
To determine the impact of semantic enrichments on query processing
strategies, we have experimented with four different kinds of query
execution strategies. They are:
1. The naïve implementation does not use any semantic enrichment at all

and no binding pattern heuristics. That is, no key is specified for the food
view definition and no default cost model was used. This makes the
capability definition be regarded as a black box called iteratively in a
nested loop join since the system does not know that foodDescr returns a
large result set when both arguments are empty. The execution plan in
Figure 3b shows the naïve plan.

2. With the default cost model the system assumes that the view food is
substantially more expensive to use when attribute gpcode is not known
than when it is known, i.e. it is cheaper to execute a capability definition

Figure 3b: Naïve execution

<ndb, descr, gpcode> <ndb, descr, gpcode>
NLJ

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

γ foodDescr(“”,””) γ foodDescr(“”,gpcode)

<gpcode>

<ndb, descr, gpcode>

Figure 3a: Full semantic enrichment

 49

where more variables are bound. Still there is no key specified. Figure
5b illustrates the plan using nested loop join.

3. Figure 5a shows the execution plan with the default cost model and a
hash join strategy where the results from web service operation calls are
materialized by using hash join to avoid unnecessary web service calls.
This can be done only when the smaller join operand can be materialized
in main memory.

4. With full semantic enrichment the key of the view is specified. Figure
3a, shows the execution plan. It is clearly optimal.

As shown in Figure 4a, the naïve strategy was the slowest one, somewhat
faster than using the default cost model with nested loop join. The default
cost model with a hash join strategy scaled significantly better, but requires
enough main memory to hold the inner call to foodDescr. Figure 4b
compares the default cost model with hash join with the performance of full
semantic enrichments. The hash join strategy was around five times slower.
This clearly shows that semantic enrichment is critical for high performing
queries over multi-level views of web services.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 100 200 300 400 500 600 700 800 900

Num be r of Food Ite m s

R
es

po
ns

e
T

im
e(

se
c)

full semantic enrichment hashjoin strategy

default cost model naïve implementation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 100 200 300 400 500 600 700 800 900

Nu m be r of Food Ite m s

R
es

p
on

se
 T

im
e(

se
c)

 hash join s trategy

full semantic enrichment

Figure 4a: Performance comparison of four
query execution strategies

Figure 4b: Performance
comparison of hash join and full
semantic enrichment execution
strategies

The diagrams are based on the experimental results in Table 2 and the
experiment was made by using the real values to actually retrieve the results
through web service operations. VG, NF, S1, S2, S3, and S4 denote the

 50

value used for parameter gpcode, the number of food items (actual fanout),
and the execution time in seconds for the four different strategies.

With the naive strategy the system does not use any binding pattern
heuristics and will call foodDescr with empty strings (γfoodDescr(“”,””)) which
produces a large costly result containing all food items in the outer loop.
This is clearly very slow.

Table 2. Experimental results
VG NF S1 S2 S3 S4

0900 303 1985.14 1512.74 5.77 1.22

0600 390 3177.28 1848.28 5.55 1.33

1400 219 1831.05 1041.74 5.50 1.08

1100 779 4891.13 3785.30 6.22 1.69

2000 157 1655.48 777.31 5.41 0.94

0800 359 3114.28 1723.28 5.59 1.35

0400 201 1914.23 955.38 6.38 1.08

1800 517 3524.34 2452.22 5.93 1.33

2200 132 1741.51 645.03 5.62 0.93

With the default cost model strategy the system assumes that queries over
the view food produce larger results when the attribute gpcode is unknown
than when it is known. Based on this the call to foodDescr with a known
gpcode value is placed in the outer loop of a nested loop join. This clearly is
a better strategy than the naïve implementation.

Finally by utilizing key constraints in the WSMED view definition the
system will know that the two applications of foodDescr can be
combined into one call. With this full enrichment strategy only one
web service operation call is required for execution of the query and
no hash join is needed. We notice that this is the fastest and most
scalable plan and that it needs no costing knowledge.

NLJHJ
<ndb, descr, gpcode>

γ foodDescr(“”,””)

<ndb, descr, gpcode>

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

<gpcode>

γ foodDescr(“”,gpcode) γ foodDescr(“”,””)

<ndb, descr, gpcode>

Figure 5a: Execution plan of hash join
strategy

Figure 5b: Execution plan with default
cost model

<ndb, descr, gpcode>

<ndb, descr, gpcode>

 51

6. Related Work

Preliminary results for our method of querying mediated web services were
reported in [20].

SOAP [12] and WSDL [5] provide standardized basic interoperation
protocols for web services but no query or view capabilities. The SQL 2003
standard [8] [26] has facilitates to combine SQL with XML Query language
(XQuery) [3] to access both ordinary SQL-data and XML documents stored
in a relational database. By contrast, we optimize SQL queries to views over
data returned by invoking web services and we use semantic query
transformations to improve the performance.

The formal basis for using views to query heterogeneous data sources is
reviewed in [10] [15] [25]. As some other information integration approaches,
e.g. [11] [29], we also use binding patterns as one of our semantic
enrichments to access data sources with limited query capabilities. We
define semantically enriched declarative views extracting data from the
results of each web service operations in terms of an object-oriented query
language. In [1] an approach is described for optimizing web service
compositions by procedurally traversing ActiveXML documents to select
embedded web service calls, without providing view capabilities.

WSMS [22] also provide queries to mediated web services. However,
they concentrate on optimizing pipelined execution of web service queries
while we utilize semantic enrichments for efficient query processing over
multi-level views of web services. XLive [6] is a mediator for integrating
heterogeneous sources including web service sources with specific wrappers
based on XML standards. In contrast we deploy a generic wrapper that can
call any web service.

In particular, unlike the other works, we show that key constraints
significantly improve performance of queries to multi-level views of web
services with different capabilities.

7. Conclusions and future work

We devised a general approach to query data accessible through web
services by defining relational views of data extracted from the result SOAP
messages returned by web service operations. Multi-level relational views of
web service operations can be defined. The system allows SQL queries over
these WSMED views. The view extractions are defined in terms of an object
oriented query language. The query performance is heavily influenced by
knowledge about the semantics of the specific web service operations
invoked and all such information is not provided by standard web service
descriptions. Therefore the user can complement a WSMED view with
semantic enrichments for better query performance. Our experiments

 52

showed that binding patterns combined with key constraints are essential for
scalable performance when other views are defined in terms of WSMED
views.

Strategies for parallel pipelined execution strategies of web service
operation calls as in WSMS [22] should be investigated. The pruning of
superfluous web service operation calls is crucial for performance. The
adaptive approaches in [2] [17] should be investigated where useless results
are dynamically pruned in the early stage of query execution. Currently the
semantic enrichments are added manually. Future work could investigate
when it is possible to automate this and how to efficiently verify that
enrichment is valid. For example, determination of key constraints is
currently added manually, and this could be automated by querying the
source. Another issue is how to minimize the required semantic enrichments
by self tuning cost modeling techniques [16] based on monitoring the
behavior of web service calls.

The semantic web is an emerging prominent approach for the future data
representations where WSDL working groups are proposing standards to
incorporate semantic web representations [21]. It should be investigated how
mediate of web services based on such semantic web representations.

Acknowledgements

This work is supported by Sida.

References

[1] S. Abiteboul et al., Lazy query evaluation for active XML, Proc. of the 2004 ACM
SIGMOD Intl. Conf. on Managementof Data, 227–238, 2004.

[2] R. Avnur, and J. M. Hellerstein, Eddies: Continuously adaptive query processing, Proc.
SIGMOD conference, 2000.

[3] S.Boag, D.Chamberlin, M.F. Fernández, D.Florescu, J.Robie, and J.Siméon, XQuery
1.0: An XML Query LanguageW3C Candidate Recommendation, published online at
http://www.w3.org/TR/xquery/, 2006

[4] D.Booth, H.Haas, F.McCabe, E.Newcomer, M.Champion, C.Ferris, and D.Orchard,
Web Services Architecture,W3C Working Group Note, published online at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ , 2004

[5] E.Christensen, F.Curbera, G.Meredith, and S. Weerawarana, Web services description
language (WSDL) 1.1., W3C, http://www.w3.org/TR/wsdl, 2001.

[6] T.Dang Ngoc, C.Jamard, and N.Travers , XLive : An XML Light Integration Virtual
Engine, Proc. of BDA, 2005

[7] D.C. Fallside, and P.Walmsley, XML Schema Part 0: Primer Second EditionW3C
Recommendation, published online at http://www.w3.org/TR /xmlschema-0/, 2004

[8] A.Eisenberg, and J.Melton, SQL/XML is Making Good Progress, ACM SIGMOD
Record, 31(2), June 2002

 53

[9] G. Fahl, and T. Risch, Query Processing over Object Views of Relational Data, The
VLDB Journal , 6(4), 261-281, 1997.

[10] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D.
Ullman, V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation: Data
Models and Languages, In Journal of Intelligent Information Systems, 8(2): 117-132,
1997

[11] H.Garcia-Molina, J.D Ullman, and J.Widom, Database Systems: The Complete Book,
ISBN 0-13-098043-9, Prentice Hall, 1047-1069, 2002.

[12] Google SOAP Search API (Beta), published online at http://code.google.com/apis
/soapsearch/

[13] M.Gudgin, M.Hadley, N.Mendelsohn, J.Moreau, and H.Frystyk Nielsen, SOAP
Version 1.2 Part 1: Messaging Framework,W3C Recommendation, published online at
http://www.w3.org/TR/soap12-part1/ ,2003

[14] L.M.Haas, D. Kossmann, E. Wimmers, and J .Yang, Optimizing queries across diverse
data sources, Proc. Very Large Database Conference(23rd VLDB), 1997

[15] A.L.Halevy, Answering queries using views: A survey, VLDB Journal, 4(10), 270-294,
2001.

[16] Z.He, B.S.Lee, and R.Snapp, Self-Tuning Cost Modeling of User-Defined Functions in
an Object-Relational DBMS, ACM Transactions on Database Systems, 30(3), 812-853,
2005.

[17] Z.G.Ives, A.Y.Halvey, and D.S.Weld, Adapting to Source Properties in Processing
Data Integration Queries, Proc. SIGMOD conference, 2004

[18] W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO Queries using
Typed Datalog with Foreign Predicates, Proc. IEEE Transactions on Knowledge and
Data Engineering, 4(6), pp. 517-528, 1992

[19] SAAJ Project, published online at https://saaj.dev.java.net/
[20] M.Sabesan, T.Risch, and G.Wikramanayake, Querying Mediated Web Services, Proc.

8th International Information Technology Conference (IITC 2006), 2006
[21] Semantic Web Activity, W3C Technology and Society domain, published online at

http://www.w3.org/2001/sw/
[22] U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query Optimization over Web

Services, Proc Very Large Database Conference(VLDB 2006), 2006
[23] The Castor Project, published online at http://www.castor.org/index.html
[24] The Web Services Description Language for Java Tool kit(WSDL4J), published online

http://sourceforge.net/projects/wsdl4j
[25] J.D.Ullman, Information Integration Using Logical Views, Proc. 6th International

Conference on Database Theory (ICDT ’97), 19-40, 1997.
[26] XML-Related specifications (SQL/XML), published online at

http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf, 2005
[27] Web Service USDAData, published online http://ws.strikeiron.com/USDAData?

DOC&page=proxy
[28] WSDL document for USDAData web service, published online

http://ws.strikeiron.com/ USDAData?WSDL
[29] V.Zadorozhny, L.Raschid, M.E.Vidal, T.Urban, and L.Bright, Efficient Evaluation of

Queries in a Mediator for WebSources, Proc. of the 2002 ACM SIGMOD international
conference on Management of data, 85-96, 2002.

Paper II ____

© 2009 IEEE. Reprinted, with permission, from
[2009 IEEE International Conference on Data Engineering, Adaptive
Parallelization of Queries over Dependent Web Service Calls,
Manivasakan Sabesan and Tore Risch].

The paper is reformatted for typographic consistency.

 57

Adaptive Parallelization of Queries
over Dependent Web Service Calls

Manivasakan Sabesan and Tore Risch

 Department of Information Technology, Uppsala University
Sweden

msabesan@it.uu.se

Tore.Risch@it.uu.se

Abstract— We have developed a system to process database queries over composed
data providing web services. The queries are transformed into execution plans
containing an operator that invokes any web service for given arguments. A
common pattern in these query execution plans is that the output of one web service
call is the input for another, etc. The challenge addressed in this paper is to develop
methods to speed up such dependent calls in queries by parallelization. Since web
service calls incur high-latency and message set-up costs, a naïve approach making
the calls sequentially is time consuming and parallel invocations of the web service
calls should improve the speed. Our approach automatically parallelizes the web
service calls by starting separate query processes, each managing a parameterized
sub-query, a plan function, for different parameter tuples. For a given query, the
query processes are automatically arranged in a multi-level process tree where plan
functions are called in parallel. The parallel plan is defined in terms of an algebra
operator, FF_APPLYP, to ship in parallel to other query processes the same plan
function for different parameters. By using FF_APPLYP we first investigated ways
to set up different process trees manually. We concluded from our experiments that
the best performing query execution plan is an almost balanced bushy tree. To
automatically achieve the optimal process tree we modified FF_APPLYP to an
operator AFF_APPLYP that adapts a parallel plan locally in each query process until
an optimized performance is achieved. AFF_APPLYP starts with a binary process
tree. During execution each query process in the tree makes local decisions to
expand or shrink its process sub-tree by comparing the average time to process each
incoming tuple. The query execution time obtained with AFF_APPLYP is shown to
be close to the best time achieved by manually built query process trees.

I. INTRODUCTION
There is a common need to search information supplied by data providing
web services that return a set of objects for a given set of parameters without
any side effects. For example, consider a query to find USAF Academy’s Zip
code and the State where it is located. The three different data providing web
service calls in this query are GetAllStates [3] to retrieve all the states,
GetInfoByState [19] to get all the Zip codes within a given state, and
GetPlacesInside [4] to provide all the places having a given Zip code. A
naïve implementation of the example query makes 5000 calls sequentially
and takes nearly 2400 seconds to execute. The reason is that each web
service call incurs high latency and message set-up costs.

 58

Queries calling data providing web services often have a similar pattern
where the output (e.g. state) of one web service call is the input for another
web service call (e.g. GetInfoByState), i.e. the second call is dependent on
the first one, etc. A challenge here is to develop methods to speed up queries
requiring such dependent web service calls.

In our approach a web service call is considered as an expensive function
call where the result is a collection. It is likely that making parallel
invocations of such calls will speed up the performance of queries with
several dependent web service calls. To improve the response time, we
present an approach to parallelize the web service calls while keeping the
dependencies among them. With the approach separate query processes are
started in parallel, each calling a parameterized sub query, called a plan
function, for a stream of parameter tuples. Each plan function encapsulates a
web service call.

The approach is implemented in the Web Service MEDiator (WSMED)
system [15] that extends a main memory functional DBMS [14] with
primitives to call web services. WSMED enables general query capabilities
over data accessible through any data providing web service by reading the
WSDL meta-data description. Queries are expressed in SQL. To enable
simple queries to complex collections returned by web services, WSMED
automatically generates flattened views of the result collections as tables.

For a given query the WSMED optimizer first produces a non-parallel
plan where web service operations are called as functions. The query
processor then automatically reformulates the non-parallel plan into a
parallel one where web service operations are called in parallel while
keeping the required dependency among the calls. The algebra operator,
FF_APPLYP (First Finished Apply in Parallel), ships a plan function in
parallel to other query processes and then calls the shipped plan function in
parallel for a stream of parameter tuples.

Multi-level execution plans are generated with several layers of
parallelism in different query processes. This forms the process tree for the
query. Each child query process delivers back the result data from the
shipped plan function to its parent process asynchronously. The number of
children processes below a parent query process is called its fanout. During
execution a coordinator query process first initiates the communication with
its child query processes and then ships in parallel to the children their plan
functions. Then a stream of different parameter tuples for the plan functions
is shipped in parallel to the children. At any point in time every process in
the tree executes one plan function for a specific parameter tuple. The results
from the children are delivered to the parent in parallel as streams.

The performance is often improved by setting up several web service
calls to the same operation in parallel rather than to call the operation in
sequence for different parameters. Normally there is an optimal number of
parallel calls for a given web service operation. It is therefore important to

 59

figure out an optimized process tree for an execution plan by automatically
arranging the available query processes for best performance. We first
evaluated FF_APPLYP for different process trees by setting different
fanouts manually. We tested flat and bushy process trees over existing real
web services. Based on the experiments we concluded that a process tree
rather close to a balanced tree performed best.

The exact properties of the composed web service operations and the
computing environments involved in the calls are usually unknown.
Therefore an optimal process tree is very difficult to produce using
traditional query optimization assuming a cost-model describing these
properties. WSMED therefore adaptively achieves an optimized process tree
by run-time monitoring of the plan function calls. For the adaptation we
modified FF_APPLYP to an operator AFF_APPLYP that dynamically
modifies a parallel plan locally and greedily in each query process. We
compared the operator AFF_APPLYP to the process tree with best effort
manual process arrangement.

In summary the contributions of our work are:
• We define an algebra operator FF_APPLYP to distribute a plan function

among child query processes for parallel calls with different parameter
tuples.

• An algorithm is implemented to transform a central plan into a parallel
plan by introducing FF_APPLYP operators calling plan functions
encapsulating each web service call.

• Experiments with using FF_APPLYP showed that the best execution
time for queries with dependent joins is achieved with a bushy tree
rather close to a balanced one.

• To automatically optimize the parallel plan, we developed another
algebra operator AFF_APPLYP that locally adjusts an initial balanced
binary process tree adaptively until best performance is obtained.

The rest of this paper is organized as follows. In Section 2, we provide a
motivating scenario used in experiments in terms of existing web services.
Query process arrangements using FF_APPLYP are presented in Section 3.
The query processing details are explained in Section 4. Experimental results
and the AFF_APPLYP operator are presented in Section 5. Related work is
analyzed in Section 6, and Section 7 summarizes and indicates future
directions.

II. MOTIVATING SCENARIO
The class of queries we consider here is dependent-join [7] queries, which in
their simplest form can be expressed as:

)z,g(y)y,f(x +−∧+−
The predicate f binds y for some input value x and passes each y to the

predicate g that returns the bindings of z as result. Thus, g depends on the

 60

output of f. The predicates f and g represent calls to parameterized sub
queries, which in our case are execution plans encapsulating data providing
web service operations. Inputs parameters are annotated with ‘-‘ and outputs
with ‘+’.

We made experiments with two different queries calling different web
service operations provided by different publicly available service providers.

A. Query1

In the first test case we used the SQL Query1 in Fig . 1 that finds
information about places located within 15 km from each city whose name
starts with ’Atlanta‘ in all US states. In the query we utilize the web service
operations GetAllStates [3], GetPlacesWithin [3], and GetPlaceList [17] . For
a given web service WSMED automatically generates operation wrapper
functions (OWFs) based on the WSDL definitions of the web service
operations. Each OWFs encapsulates a data providing web service operation
for given parameters and emits the result as a flattened stream of tuples.
Each OWF defines an SQL view of a web service operation. SQL queries
can be made over these views with the restriction that the input values of the
OWFs must be known in the query. In Fig. 1 the three OWFs GetAllStates,
GetPlacesWithin, and GetPlaceList define views encapsulating web service
operations with the same names. The query returns a stream of 360 result
tuples. A naïve central sequential execution plan invokes more than 300 web
service calls.

Select gl.placename,gl.state
From GetAllStates gs, GetPlacesWithin gp,

GetPlaceList gl
Where gs.State=gp.state and gp.distance=15.0

and gp.placeTypeToFind='City' and
gp.place='Atlanta' and
gl.placeName=gp.ToPlace+' ,'+gp.ToState
and gl.MaxItems=100 and
gl.imagePresence='true'

Fig . 1Query 1 defined in SQL

The OWF GetAllStates presents information of US states as a set of tuples
<name, type, state, latDegrees, lonDegrees, latRadians, lonRadians>.
However, we are only interested in the values of the attribute State. The
OWF GetPlacesWithin returns a set of tuples <ToCity, ToState,
GeoPlaceDistance_Distance> for given place (‘Atlanta’), state (gs.State),
distance (15.0), and kind of place type to find (’City’). The OWF
GetPlaceList retrieves a set of places <placename, state, country, placeLon,
placeLat, availableThemeMask, placeTypeId, population> given a
specification of a place (concatenate ToCity+’,’+ToState), the maximum
number result tuples (100), and a flag indicating whether places having an
associated map are returned.

 61

Fig . 2 shows the automatically generated OWF GetAllStates, which
flattens the result from the web service operation named GetAllStates. An
OWF is generated based on the WSDL definition of a web service operation.
Any web service operation can be invoked by the built-in function cwo (line
14). Its parameters are the URI of the WSDL document that describes the
service, the name of the service, the operation name, and the input parameter
list for the operation. The web service operation GetAllStates has no input
parameters ({}).

1. create function GetAllStates()-> Bag of
 <Charstring name, Charstring type,
 Charstring state, Real latDegrees,
 Real lonDegrees, Real latRadians,
 Real lonRadians> as

2. select GeoPlaceDetails['Name'],

3. GeoPlaceDetails['Type'],

4. GeoPlaceDetails['State'],

5. GeoPlaceDetails['LatDegrees'],

6. GeoPlaceDetails['LonDegrees'],

7. GeoPlaceDetails['LatRadians'],

8. GeoPlaceDetails['LonRadians']

9. from Sequence out,

10. Record GetAllStatesResult ,

11. Record GetAllStatesResult1,

12. Sequence GetAllStateResult2,

13. Record GeoPlaceDetails

14. where out=cwo('http://codebump.com/servi
ces/PlaceLookup.wsdl’,
'GeoPlaces', 'GetAllStates',
{})and

15. GetAllStatesResult1 in out and

16. GetAllStatesResult2 =
GetAllStatesResult1
['GetAllStatesResult']and

17. GetAllStateResult in
GetAllStatesResult2 and

18. GeoPlaceDetails=GetAllStatesResult
['GeoPlaceDetails'];

Fig . 2 Automatically generated OWF GetAllStates

The result from cwo is bound to the query variable out (line 14). It holds an
object representing the output from the web service operation temporarily
materialized in WSMED’s local store. The OWF converts the output XML
structure from the web service operation call into records and sequences.
The result out is here a sequence from which elements are extracted (line 15)

 62

into the GetAllStatesResult1 record structure using the in operator. The
records have only one attribute named GetAllStatesResult whose values are
assigned to another sequence structure GetAllStatesResult2 (line 16). An
attribute a of a record r is accessed using the notation r[a]. Each element
record from the sequence GetAllStatesResult2 is bound to the variable
GetAllStateResult (line 17). The values of the attribute GeoPlaceDetails are
assigned to the GeoPlaceDetails record with attributes Name, Type, State,
LatDegrees, LonDegrees, LatRadians, and LonRadians (line 18). The OWFs
GetPlacesWithin and GetPlaceList are automatically generated analogously.

B. Query2

The second case, Query2 in Fig . 3, finds the zip code and state of the place
‘USAF Academy’. A naïve sequential plan invokes more than 5000 web
service calls. Here also three different dependent web services are involved.
GetAllStates is the same as in Query1. GetInfoByState is provided by the
USZip [19] web service to retrieve all zip codes for a given state as a single
comma separated string (gi.GetInfoByStateResult). getzipcode is an helping
function defined in WSMED that extracts the set of zip codes (gc.zipcode)
given a string of zip codes (gc.zipstr). The OWF GetPlacesInside is
supported by the Zipcodes [4] web service provider and returns for a given
zip code a set of tuples <ToPlace, ToState, Distance> where ToPlace is a
place located within the zip code area, ToState is the state of the place, and
Distance is the distance from the place to the origin of the given zip code
area.

select gp.ToState, gp.zip
From GetAllStates gs, GetInfoByState gi,

getzipcode gc, GetPlacesInside gp
Where gs.State=gi.USState and

gi.GetInfoByStateResult=gc.zipstr and
gc.zipcode=gp.zip and
gp.ToPlace='USAFAcademy'

Fig . 3 Query2 defined in SQL

III. WSMED PROCESS ARRANGEMENT
The web service metadata in a WSDL document is first imported and stored
in the WSMED local database [15]. A query is processed by a coordinator
process q0. Fig . 4 gives an example of a process tree generated by the
WSMED query optimizer. Every query process on each level can be
connected with a number of child processes and all the processes on the
same level execute the same plan function but with different parameters.

In Fig . 4, q1 is connected with q3, q4, and q5. The plan function in the
coordinator q0 encapsulates the OWF GetAllStates, while the plan functions
of the processes in level one encapsulate the OWF GetPlacesWithin for
different states. On level two the plan function calls the OWF GetPlaceList
for different place specifications.

 63

Fig . 4 Process tree

The coordinator q0 first generates a central plan containing calls to the
OWFs. It then automatically reformulates the central plan to incorporate
parallel web service calls by inserting algebra operators FF_APPLYP in the
execution plan whenever an OWF is encountered. For each OWF a plan
function is generated that encapsulates a fragment of the central execution
plan embodying the OWF call. When the algebra operator FF_APPLYP is
executed in process q0, it first ships in parallel to its children in level one
(q1,q2) the same plan function definition that encapsulates GetPlacesWithin.
Then it ships in parallel different parameter tuples to the shipped plan
function installed in the children processes ready for execution.
Analogously, the FF_APPLYP operators executing in the level one
processes send another plan function definition to the level two processes
(q3,q4,q5,q6,q7,q8). Each query process initially receives its own plan
function definition once before execution. When the level two processes
receive data from the wrapped web service operation GetPlaceList, the
results will be returned asynchronously as streams to the processes in level
one, and finally the results are streamed to the coordinator process.

A. FF_APPLYP

The operator FF_APPLYP enables parallel invocation of a plan function for
different parameter tuples delivered as an input stream to FF_APPLYP.
FF_APPLYP has the signature:

FF_APPLYP(Function pf, Integer fo, Stream pstream) → Stream result

It ships in parallel to fo number of child query processes the definition of
the same plan function pf. Then it ships one by one parameter tuples from
pstream to each of the children. The result stream from a call to pf for a
given parameter tuple is sent back to FF_APPLYP asynchronously as a
stream of tuples, result.

In our first experiments the fanout fo is set manually for each level. This
allows us to analyze different process trees. In Fig . 4 the fanout on level one
is fo1=2 and on level two fo2=3. The coordinator q0 at level zero first
initializes the two child processes q1 and q2. Then q0 ships the plan function

q- query processes

Level 2

q0

q1

q3 q4

q2
GetPlacesWithin

GetAllStates

GetPlaceList

q5 q8q7q6

Coordinator

Level 1

Query1

 64

encapsulating the web service operation GetPlacesWithin to the children (q1,
q2). When all plan functions are shipped it starts picking parameter tuples
one by one from pstream, to send down to the plan function started in the
children. In q0 the stream pstream is a stream of state names produced as the
result of the plan function that encapsulates the web service operation
GetAllStates. When the first round of parameter tuples are shipped to all
children, FF_APPLYP will broadcast that it is ready to receive results.
Whenever a result tuple is received from some child it is directly emitted as
a result of FF_APPLYP. When a child completed the processing of a plan
function for a given parameter tuple it sends an end-of-call message to
FF_APPLYP. When the parent receives an end-of-call message from a child
it will ship the next pending parameter tuple from pstream to the idle child
process. When there are no pending parameter tuples in pstream and no
pending results from the child processes, FF_APPLYP is finished.

IV. QUERY PARALLELIZATION IN WSMED
Fig . 5 illustrates the query processor in WSMED [15]. The calculus
generator produces from a given user query defined in SQL an internal
calculus expression in a Datalog [13] dialect. The symbol ’_’ represents an
anonymous result variable.

Query1 is transformed into the following calculus expression:
Query1(pl,st) :-

 GetAllStates() AND

 GetPlacesWithin(‘Atlanta’,_,
 15.0,’City’)

AND

 GetPlaceList(_, 100,’true’)

With naïve query optimization the calculus expression is translated by the
central plan creator into the algebra expression in Fig . 6. The central plan
creator uses a simple heuristic web service cost model based on the
signatures of web service operations assuming that web service operations
are expensive. The algebra expressions contains calls to the apply operator γ [6],
which applies a plan function for a given parameter tuple. The naïve central
query execution plan with γ can be directly interpreted but with very bad
performance since many web service operations are applied in sequence.

The plan first executes the OWF GetAllStates returning a stream of tuples
<st1>. Each of these tuples are fed to the next OWF GetPlacesWithin called
by the apply operator with the given argument tuple (‘Atlanta’, st1, 15.0,
‘City’) returning a stream of tuples <city, st2>. The built in function concat
is then applied on each argument tuple (city,’,’,st2) producing a stream of
strings str. Finally the OWF GetPlaceList is applied on each argument tuple
(str,100,’true’) returning a stream of tuples <pl,st>.

 65

Fig . 5 Query Processor

Fig . 6 Central query plan - Query1

The parallelizer in Fig . 5 takes as input a central plan (e.g. the one in Fig .
6) and identifies there the parallelizable OWFs. Since the parallelization is
based on parameter streams, OWFs not having input parameters are not
considered. For example, the plan in Fig . 6 can be parallelized for the
OWFs GetPlacesWithin and GetPlaceList, but not for GetAllStates. The
parallelizer splits the plan into one section for each parallelizable OWF
starting from the bottom. The first section, flattening the result from the call
to the web service operation GetAllStates, is executed in the coordinator.
The next section contains the calls to GetPlacesWithin and concat. The final
section contains only the call to GetPlaceList.

γGetPlacesWithin(‘Atlanta’, st1, 15.0, ‘City’)

<pl, st>

γGetPlaceList (str, 100, ‘true’)

γGetAllStates()

<st1 >

<city , st2 >

γconcat(city,’, ‘, st2)

<str >

parallel
query plan

User query

Calculus Generator

Central plan creator

Plan rewriter

Parallelizer Plan function
generator

 66

Fig . 7 Plan function PF1 wrapping GetPlacesWithin

For each parallelizable section the plan function generator creates a plan
function that encapsulates a parallelizable call to an OWF. For example, the
plan function PF1 in Fig . 7 encapsulates the OWF GetPlacesWithin. It has
the signature PF1(Charstring st1) → Stream of Charstring str. Analogously
PF2 in Fig . 8 flattens the web service operation GetPlaceList to return a
stream of tuples <pl, st> and has the signature PF2(Charstring str) →
Stream of <Charstring pl, Charstring st>.

Fig . 8 Plan function PF2 wrapping GetPlaceList

Finally, the plan rewriter transforms the central query by inserting the
algebra operator FF_APPLYP for each generated plan function. Fig . 9
shows the final parallelized execution plan with two calls to FF_APPLYP
(FF_γ).

Fig . 9 Parallel execution plan-Query1

Analogously Query2 is initially compiled into the central plan in Fig . 10.
The central plan first executes the OWF GetAllStates to return a stream of

γGetPlaceList(str,100,’true’)

<pl, st>

<city, state2>

γGetPlacesWithin(Atlanta’, st1, 15.0, ‘City’)

γconcat(city,’, ‘, state2)

<str >

<str>

<st1>

FF_γ (PF2, 3,str)

<pl, st>

γGetAllStates()

FF_ γ (PF1, 2, st1)

 67

tuples <st1>. These outputs are fed to the next OWF GetInfoByState
returning a stream of single comma separated strings zstr. For each zstr the γ
operator applies the user defined helping function getzipcode to produce a
stream of extracted zip codes zc. Then the OWF GetPlacesInside is applied
for each zc returning a stream of tuples <st, pl, zc>. Finally the equal
function is applied to check if pl is equal to ‘USAF Academy’ and returns
stream of valid tuples <st ,zc>.

Fig . 10 Central query plan- Query2

The parallelizer splits the first parallelizable section (call to OWF
GetAllStates) to execute in the coordinator. The next parallelizable section
contains the calls to GetInfoByState and getzipcode. The final section
contains only the call to GetPlacesInside and equal. Then the plan function
generator creates plan functions to encapsulate the parallelizable OWFs. The
plan function PF3 in Fig . 11 encapsulates GetInfoByState. It has the
signature:

PF3(Charstring st1) → Stream of Charstring zc.

Fig . 11 Plan function PF3 wrapping GetInfoByState

<zstr>

γ GetInfoByState(st1)

γ getzipcode(zstr)

<zc >

γ GetInfoByState(st1)

< st, zc >

γ GetPlacesInside(zc)

γGetAllStates()

<st1 >

γ getzipcode(zstr)

<zc >

<zstr >

γ equal(’USAF Academy’,pl)

<st, pl , zc >

 68

PF4 in Fig . 12 wraps the OWF GetPlacesInside and returns <st,zc>. It has
the signature:

PF4(Charstring zc) → <Charstring st, Charstring zc>.

Fig . 12 Plan function PF4 wrapping GetPlacesInside

Finally, the plan rewriter transforms the central query by inserting FF_γ for
each generated plan function as illustrated in Fig . 13.

Fig . 13 Parallel execution plan-Query2

V. EXPERIMENTS
We compared the query execution times for Query1 using the central
execution plan in Fig . 6 with the parallel plan in Fig . 9 (for Query2 we
compare the plans in Fig . 10and Fig . 13). To analyze different process
trees, we set manually a fanout vector with fanouts for the different process
tree levels to evaluate the query execution times. The tests were run on a
computer with a 3 GHz single processor Intel Pentium 4 with 2.5GB RAM.
We evaluated the following process trees:
• Flat tree (Fig . 14): The fanout vector has fo2=0 ({fo1,0}) in which case

both OWFs are combined into the same plan function executed at the
same level.

• Unbalanced tree (Fig . 15): Fanout vector {fo1,fo2}, fo1≠fo2
• Balanced tree: the fanouts are equal, i.e. fo1 = fo2

<zc>

FF_ γ (PF3, 2, st1)

<st1>

FF_γ (PF4, 3, zc)

<st, zc>

γGetAllStates()

γGetPlacesInside(zc)

<st, zc>

γ equal(’USAF Academy’,pl)

<st, pl , zc >

 69

Fig . 14 Flat tree Fig . 15 Unbalanced tree

The total number of query processes N needed to execute the parallel queries
is N= fo1 + fo1 * fo2.

In general, there should be an optimum shape of the process tree based on
properties of the web service calls, which are not known. The experiments
investigate the optimum tree topology for up to 60 query processes.

Fig . 16 illustrates the execution times in seconds for Query1 by varying
the values of fo1 and fo2. It shows the lowest execution time region is
achieved within the range 50 - 60 sec. The fastest execution time 56.4 sec for
fanout vector {5,4} outperformed with speedup 4.3 the central plan (244.8
sec). Fig . 17 shows that the best execution time for Query2 is achieved
within the range of 1200-1400 sec. The best execution time 1243.89 sec for
fanout vector {4,3} outperformed with speed up of nearly 2 the central plan
(2412.95 sec).

We notice from the experiments that the best execution time for both
queries is achieved close to, but not exactly for, balanced trees, (Query1:
fo1=5, fo2=4 , Query2: fo1=4, fo2=3).

A. Adaptive apply, AFF_APPLYP

To automatically achieve an optimized process tree, we developed another
algebra operator AFF_APPLYP (Adaptive First Finished Apply in Parallel)
to replace FF_APPLYP, but requires no explicit fanout argument.

fo1=2

fo2=4

fo1=5

 70

1 4 5 6 10 15 20 25 30 40
0

3

5

11

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

Execution
time(sec)

fo1

fo2

Query1

50-60 60-70 70-80 80-90 90-100 100-110 110-120 120-130

130-140 140-150 150-160 160-170 170-180 180-190 190-200 200-210

210-220 220-230 230-240 240-250

Fig . 16 Execution time for Query1

1 2 4 6 20 30 40
0

2

3

4

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

Execution
time(sec)

f01

fo2

Query2

2400-2600

2200-2400

2000-2200

1800-2000

1600-1800

1400-1600

1200-1400

Fig . 17 Execution time for Query2

Based on the observation that the best parallelization is close to a balanced
tree, AFF_APPLYP adapts the process plan at run time starting with a binary
tree. Each node locally monitors the execution times of its children to
dynamically modify its subtrees AFF_APPLYP does the following:
1. AFF_APPLYP initially forms a binary process tree (Fig . 18) by always

setting fanout to 2, the init stage.
2. A monitoring cycle for a non-leaf query process is defined as when it has

received the same number of end-of-call messages as its number of

 71

children. After the first monitoring cycle AFF_APPLYP adds p new
child processes. Adding new processes is called an add stage. In Fig .
19, p=1 and therefore query process q0 adds one new process q7 at level
1, while q1 and q2 add q10 and q11 at level 2, respectively.

3. When an added node has several levels of children the init stages of the
children’s AFF_APPLYs will produce balanced binary sub–trees. That
is, q7 adds q8 and q9.

4. AFF_APPLYP records per monitoring cycle i the average time ti to
produce an incoming tuple from the children. If ti decreases more than a
threshold (set to 25%) the add stage is rerun. If ti increases we either stop
or run a drop stage that drops one child and its children. In Fig . 20, q2
adds q12, while q0 drops q7, and q7 drops q8 and q9.

We experimented with different values of p and different change thresholds,
with and without the drop stage. The results for 25% change are shown in
Fig . 21. The fanout values are exact for FF_APPLYP while fo1 and fo2 for
AFF_APPLYP are average fanouts. The measurements include the
adaptation times.

Fig . 18 Binary process tree

Fig . 19Adding processes

q0

q1

q3 q4

q2

q5

Coordinator

Level 1

q7

q9q8

q10

Level 2

q6

q11

q0

q1

q3 q4

q2

q6q5

Coordinator

Level 1

Level 2

q- query processes

 72

Fig . 20 Adding and removing processes

Query1

0.00

10.00

20.00
30.00

40.00

50.00

60.00
70.00

80.00

90.00

Process selection

Ex
ec

ut
io

n
tim

e(
se

c)

Best FF_APPLYP fo1=5 fo2=4 p=1, no drop stage, fo1=3 fo2=3

p=1, drop stage, fo1=2 fo2=3 p=2, no drop stage, fo1=4 fo2=5

p=2, drop stage, fo1=3 fo2=3 p=3, no drop stage, fo1=5 fo2=3.4

p=3, drop stage, fo1=4 fo2=3.25 p=4, no drop stage, fo1=6 fo2=8.7

p=4, drop stage, fo1=5 fo2=4.2 p=5, no drop stage, fo1=7 fo2=7.5

p=4, drop stage, fo1=6 fo2=7.8

Query2

0

500

1000

1500

Process selection

Ex
ec

ut
io

n
tim

e
(s

ec
)

Best FF_APPLYP fo1=4 fo2=3

p=1, no drop stage, fo1=3 fo2=2.25

p=1, drop stage, fo1=3 fo2=2.25

p=2, no drop stage, fo1=4 fo2=2.5

p=2, drop stage, fo1=4 fo2=2.25

Fig . 21Execution time with AFF_APPLYP

q0

q1

q3 q4

q2

q5

Coordinator

Level 1

q10

Level 2

q6 q11

q12

 73

We notice that for Query1 the execution time with p=4 and no drop stage
comes close to the execution time of the best manually specified process
tree, while for Query2 the execution with p=2 and no drop stage is the
closest one.

We concluded in both cases that execution time with p=2 and no drop
stage is close to the execution time of the best manually specified process
tree (Query1 80%, Query2 96 %) and further dropping processes make
insignificant changes in the execution time.

VI. RELATED WORK
BPEL [2] proposes workflow primitives to manually invoke parallel web
service calls. It requires a lot of effort on the part of the programmer to
manually identify sections of the code to run in parallel, and to specify
dependencies among the calls. In contrast, WSMED automatically compiles
a given query over composed data providing web services by generating an
adaptive, parallel, and optimized workflow.

In [1] an approach is described for optimizing web service compositions
by procedurally traversing ActiveXML documents to select embedded web
service calls. It demonstrates the gain obtained by maximizing parallelism
achieved by invoking calls to independent web services in a query.
Conversely, WSMED adaptively parallelizes dependent web service calls.

WSQ/DSQ [9] handles high-latency calls to web search engines by
launching asynchronous materialized dependent joins later joined in the
execution plan using a special operator. In contrast, WSMED produces non-
blocking multi-level parallel plans based on streams of parameter tuples
passed to parallel sub plans without any materialization.

WSMS [16] proposed an approach for pipelined parallelism among
dependent web services to minimize the query execution time. By contrast,
we parallelize by partitioning parameter tuple streams. Furthermore, WSMS
didn’t propose any adaptive parallelization, lacked support for code
shipping, and couldn’t make parallel calls to the same web service. In
contrast we propose a strategy to adaptively produce a parallelized plan
where AFF_APPLYP invokes parameterized plans calling web services in
parallel.

Like two-phase parallel query optimization [11] WSMED also generates
a parallelized query execution plan from an initial central query plan.
However, WSMED adaptively parallelizes dependent joins by generating
plan functions that are called in parallel using the adaptive operator
AFF_APPLYP, while [11] focused on static inter-operator parallelism in
distributed databases based on a static cost model.

The plan function and parameter tuple shipping phase of FF_APPLYP is
similar to the map phase of MAPREDUCE [5]. However, MAPREDUCE is
more of a programming model than a query operator and is not dynamically
rearranging query execution plans as AFF_APPLYP.

 74

In [10] run time adaptation of buffer sizes in web service calls is
investigated, not dealing with adaptive parallelism on web service calls at
the client side.

The formal basis for using views to query heterogeneous data sources is
reviewed in [8] [18]. Chocolate [12] extends the federated database
capabilities of DB2/UDB by automatically creating views of web services
from WSDL descriptions, similar to the OWF generation in WSMED.
However, Chocolate does not deal with adaptive parallelization of the web
service calls in a query as WSMED.

VII. CONCLUSIONS AND FUTURE WORK
We presented an approach to automatically parallelize queries with
dependent web service calls. The algebra operator FF_APPLYP was first
defined in order to parallelize calls to parameterized sub plans partitioned for
different parameter tuples. We did experiments by manually arranging
different process trees with different fanouts. From the experiments we
concluded that the optimum process fanout is close to, but not exactly, a
balanced tree. To adaptively find the best process tree we devised an algebra
operator AFF_APPLYP that starts with a balanced binary process tree and
then each non-leaf process locally adapts the process sub-trees by adding
and removing children until an optimum is reached, based on monitoring the
flow of result tuples from the children. The adaptive method obtained
performance close to the best manually specified process tree.

Our algebra operators FF_APPLYP and AFF_APPLYP can handle
parallel query plans for a query with any number of dependent joins. We
would like to generalize the strategy for queries mixing both dependent and
independent web service calls, as well bushy trees. Further we need to
investigate different process arrangement strategies with the algebra
operators.

ACKNOWLEDGMENTS
This work is supported by Sida and the Swedish Foundation for Strategic

Research under contract RIT08-0041.

REFERENCES
[1] S. Abiteboul et al., Lazy query evaluation for active XML, Proc. of the 2004

ACM SIGMOD, 227–238, 2004.
[2] T. Andrews et al., Business Process Execution Language for Web Services

version 1.1., http://ifr.sap.com/bpel4ws/, 2003
[3] codeBump, GeoPlaces web service, http://codebump. com /services

/PlaceLookup.asmx
[4] codeBump, Zipcodes web service, http://codebump.com/services

/ZipCodeLookup.asmx
[5] J.Dean, and S.Ghemawat, MAPREDUCE: Simplified Data Processing on Large

Clusters, Communications of the ACM, 51(1), 107-113, 2008

 75

[6] G. Fahl, and T. Risch, Query Processing over Object Views of Relational Data,
The VLDB Journal , 6(4), 261-281, 1997

[7] D.Florescu, A.Levy, I.Manolescu and D.Suciu, Query Optimization in the
Presence of Limited Access Patterns, Proc. of ACM SIGMOD ’99, 311-322,
1999

[8] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D.
Ullman, V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation:
Data Models and Languages, Journal of Intelligent Information Systems, 8(2):
117-132, 1997

[9] R.Goldman, and J.Widom, WSQ/DSQ: a practical approach for combined
querying of databases and the Web, Proc. of 2000 ACM SIGMOD Intl. Conf. on
Management of Data, 285-296, 2000.

[10] A. Gounaris, et al., Robust runtime optimization of data transfer in queries over
Web Services, Proc. of ICDE 2008, 2008

[11] W.Hasan, D.Florescu, and P.Valduriez, Open Issues in Parallel Query
Optimization, SIGMOD Record, 25(3), 1996

[12] V.Josifovski, S.Massmann, and F.Naumann, Super-Fast XML Wrapper
Generation in DB2: A Demonstration, Proc. International Conference of Data
Engineering, (ICDE’03), 756-758, 2003

[13] W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO Queries
using Typed Datalog with Foreign Predicates, Proc. IEEE Trans. on Knowledge
and Data Engineering, 4(6), 517-528, 1992

[14] T.Risch, V.Josifovski, and T.Katchaounov, Functional Data Integration in a
Distributed Mediator System, Functional Approach to Data Management -
Modeling, Analyzing and Integrating Heterogeneous Data, Springer, 211-238,
2003

[15] M.Sabesan and T.Risch, Web Service Mediation Through Multi-level Views,
Proc. International Workshop on Web Information Systems Modeling (WISM
2007), 755-766, 2007

[16] U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query Optimization over
Web Services, Proc. Very Large Database Conference (VLDB 2006), 2006

[17] TerraServer, TerraService, http://terraservice.net/webservices.aspx
[18] J.D.Ullman, Information Integration Using Logical Views, Proc. 6th

International Conference on Database Theory (ICDT ’97), 19-40, 1997
[19] USZip, http://www.webservicex.net/uszip.asmx

 Paper III ____

 79

Adaptive Parallelization of Queries to Data Providing
Web Service Operations

Manivasakan Sabesan and Tore Risch

Department of Information Technology, Uppsala University, Sweden

{msabesan,Tore.Risch }@it.uu.se

Abstract. A data providing web service operation returns a
collection of objects for given parameters without any side
effects. The Web Service MEDiator (WSMED) system
automatically provides relational views of any data providing
web service operations by reading their WSDL documents.
These views can be queried with SQL. In an execution plan a
call to a data providing web service operation may be
dependent of the results from other web service operation calls.
In other cases different web service calls are independent of
each other and can be called in any order. In WSMED the
adaptive operator PAP speeds up queries with both dependent
and independent web service operation calls. It adaptively
parallelizes calls to web service operations until no significant
performance improvement is measured. The performance of
PAP is evaluated using publicly available web services. The
operator is shown to substantially improve the query
performance without any cost knowledge or extensive memory
usage compared to other strategies.

Keywords: Web service composition, Adaptive parallelization,
Query optimization.

1 Introduction

Data providing web service operations are web service operations where
data collections are retrieved from servers without side effects. The Web
Service MEDiator (WSMED) system enables general query capabilities over
any data providing web service operations without any further programming.
WSMED automatically provides relational views of the operations by
reading the WSDL documents. These views can be queried and joined with
SQL. A web service operation is considered as a high latency function call
where the result is a nested data collection. For a given SQL query, WSMED
first generates an initial execution plan calling web service operations. At
run time the initial execution plan is adaptively parallelized.

 80

As an example, consider a query to find all the information of the places
in some of the US states along with their zip codes and weather forecasts.
Four different data providing web service operations can be used for
answering this query. First the GetAllStates operation from the web service
GeoPlaces [3] is called to retrieve the states. The GetInfoByState operation
by USZip [13] returns the zip codes for a given US State. The
GetPlacesInside operation by Zipcodes [4] retrieves the places located
within a given zipcode. Finally, the GetCityForecastByZip operation by
CYDNE [5] returns weather forecast information for a given zip code.

Two operation calls are dependent if one of them requires as input an
output from the other one, otherwise they are independent. In the above
example, the web service operations GetPlacesInside and
GetCityForecastByZip are dependent on GetInfoByState but independent of
each other. A challenge here is to develop methods to speed up queries
requiring both dependent and independent web service calls. In general such
speed-ups are based on some unknown web service properties. Those
properties are not explicitly available and depend on the network and
runtime environments when and where the queries are executed. In such
scenarios it is very difficult to base execution strategies on a static cost
model, as is done in relational databases.

To improve the response time without a cost model, WSMED uses an
approach to automatically parallelize the web service calls at run time while
keeping the dependencies among them. For each web service operation call
the optimizer generates a plan function which encapsulates the web service
operation call and makes data transformations such as nesting, flattening,
filtering, data conversions, and calls to other plan functions.

Web service operations are usually parameterized where input parameters
have to be bound to call them. WSMED will decompose the query plan to
guarantee this. The performance is often improved by setting up several
parameterized web service calls in parallel rather than to call the operation in
sequence for different parameters. In WSMED such multi-level execution
plans are automatically generated as several layers of parallelism where each
parameterized plan function is executed in different query processes. This
forms a process tree for the query.

In the initial execution plan the dependencies between dependent and
independent plan functions calls are resolved so that collections of
independent calls are grouped together.

For adaptive parallelization of queries with web service operation calls,
the algebra operator, PAP (Parameterized Adaptive Parallelization) is
implemented. It takes as arguments a set of independent plan functions along
with a stream of parameter values to be processed by the plan functions. For
each received parameter tuple it starts one process per plan function call.
Different plan functions will select different elements from the input tuple.
The results from the query processes are collected asynchronously and

 81

delivered as a stream. The result tuples from PAP are formed by combining
result tuples from each child. When a child process has delivered all result
tuples in a call it is terminated and another child plan function call is started
asynchronously.

A set of independent plan function calls is processed by a single call to
PAP. By contrast, dependent plan function calls are processed as sequences
of parallelized PAP calls.

For the adaptation PAP dynamically modifies the parallel plan by
monitoring the performance of each plan function call. Based on the
monitoring new children are started until no significant performance
improvement is measured. Sequences of PAP calls will start sequences of
process sub-trees which are locally adapted as well.

The PAP operator provides process tree adaptation without any central
control or cost model. At any point in time every process in the tree executes
one plan function for a specific parameter tuple.

In summary the contributions of our work are:
1. For a given SQL query, the system automatically generates a parallel

execution plan calling PAP that adaptively parallelizes both dependent
and independent web service operation calls.

2. PAP is shown to substantially improve the query performance without
any cost knowledge or extensive memory usage compared to other
strategies.

In Section 2, we provide a motivating scenario used in experiments in terms
of real web services. Section 3 shows how the query plans are generated. In
Section 4 adaptive parallelization using PAP and experimental results are
presented. Related work is analyzed in Section 5, and finally Section 6
summarizes and indicates future directions.

2 Motivating Scenario

We consider the class of queries with both dependent and independent joins,
which in their simplest form can be expressed as:
)}z,g(y)y,f(x)v,e(u | z{v, +−∧+−∧+−

Input parameters are annotated with ‘-‘ and outputs with ‘+’. Given the
input values u and x the query returns the tuple <v,z> where the predicate e
binds v for the given u. The predicate f binds y for the given x and passes
each y to the predicate g that returns z. Thus, predicate g depends on the
output of f but e and f are independent. The predicates e, f, and g represent
calls to plan functions encapsulating data providing web service operations.
We made experiments with two different queries calling different web

 82

service operations provided by the previously mentioned publicly available
service providers.

2.1 Query1

The example SQL Query1 in Fig. 1 has the above form. It finds all
information about places in some of the US states, along with their zip codes
and weather forecasts. The result set size is scaled by varying the number of
selected states.

select gp.TOPLACE,gp.TOSTATE,gz.ZIPCODE,gc.DATE,gc.DESCRIPTION
from GetAllStates gs, GetPlacesInside gp, GetInfoByState gi,
 GetCityForeCastByZip gc, getzipcode gz
where gs.State<'MD' and gi.USState=gs.State and
 gi.GetInfoByStateResult=gz.zipstr and
 gz.zipcode=gp.zip and gc.zip=gz.zipcode

Fig. 1. SQL Query1

For a given web service WSMED automatically generates Operation
Wrapper Functions (OWF) [11] that represent SQL views of the web service
operations based on the WSDL definitions. To provide relational views of
web service operations returning complex objects, the OWFs flatten the
result from the web service call. Analogously, web service operation
arguments are constructed as a nested structure before an operation is called.
For Query1, the views GetAllStates, GetInfoByState, GetPlacesInside, and
GetCityForeCastByZip are defined as OWFs that encapsulate four different
web service operations from four different service providers. The OWF
GetAllStates presents information of US states as a set of tuples <state>.
The OWF GetInfoByState retrieves all zip codes for a given state as a single
comma separated string (gi.GetInfoByStateResult). getzipcode is a helping
function defined in WSMED that extracts the set of zip codes (gz.zipcode)
given a string of zip codes (gz.zipstr). The OWF GetPlacesInside returns for
a given zip code a set of tuples <ToPlace, ToState, Distance> where
ToPlace is a place located within the zip code area, ToState is the state of the
place, and Distance is the distance from the place to the origin of the zip
code area. The OWF GetCityForeCastByZip reports the weather forecast as
a set of tuples <Date, Description> for a given zip code where Date is date
of the forecast, and Description is the short description of the forecast. In the
above query the OWF GetInfoByState depends on OWF GetAllStates. The
OWFs GetPlacesInside, and GetCityForeCastByZip depend on the OWF
GetInfoByState, while the OWFs GetPlacesInside, and
GetCityForeCastByZip are independent on each other.

 83

2.2 Query2

The SQL Query2 in Fig. 2 has one more dependent OWF GetPlaceDetails
than Query1. It finds all information about places in some of the US states,
along with their zip codes, weather forecasts, and geographical positions.
The result set size is scaled by varying the number of selected states and
filtering city names.

select gd.Name,gd.LatDegrees,gd.LonDegrees,
 gz.ZIPCODE,gc.DATE,gc.DESCRIPTION
from GetAllStates gs, GetPlacesInside gp, GetInfoByState gi,
 GetCityForeCastByZip gc, getzipcode gz, GetPlaceDetails gd
where gs.State<'MD' and gi.USState=gs.State and
 gi.GetInfoByStateResult=gz.zipstr and
 gz.zipcode=gp.zip and gc.zip=gz.zipcode and
 gd.Place like '[A-Z]*' and gd.Place=gp.TOPLACE and
 gd.State=gp.TOSTATE

Fig. 2. SQL Query2

For Query2, the views GetAllStates, GetInfoByState, GetPlacesInside, and
GetCityForeCastByZip are the same as for Query1. The additional OWF
GetPlaceDetails returns for a given city and state a set of tuples
<Name,LatDegrees, LonDegrees> where Name is a place located within the
city, and LatDegrees and LonDegrees represents latitude and longitude of
the place in degrees, respectively. The OWF GetPlaceDetails depends on
OWF GetPlacesInside. Query2 filters the city name Place (gd.Place like '[A-
Z]*') since the web service operation GetPlaceDetails [3] doesn’t support
such filters.

3 Query Plans

The WSMED query processor first generates a central plan containing calls
to the web service operations. It is a left-deep tree of executable predicates
enumerated from 0 and up. The central plan contains calls to the apply
operator γ, which applies a plan function for a given parameter tuple. The
non parallel query execution plan with γ can be directly interpreted but with
very bad performance, since the web service operations are applied in
sequence.

In Fig. 3 the central Plan1 for Query1 first calls the plan function that
encapsulates the web service operation GetAllStates returning a stream of
tuples <state>, which is then selected by inequality (pos=1). Each of these
tuples is fed to the next plan function encapsulating web service operation
GetInfoByState parameterized by state returning a stream of comma
separated strings zipstr. For each zipstr the γ operator applies the user
defined helping function getzipcode to produce a stream of extracted zip

 84

codes zipcode. Then the plan function encapsulating web service operation
GetPlacesInside is applied on each argument tuple <zipcode> to produce a
stream of tuples <toplace, tostate, zipcode>. Finally the plan function for
GetCityForeCastByZip is applied on each argument tuple <toplace, tostate,
zipcode> returning as the query result a stream of tuples <toplace, tostate,
zipcode, date, description>.

Fig. 3 Central Plan1 Fig. 4 Plan functions

For each web service operation call a plan function is generated that
encapsulates a fragment of the non-parallel execution plan embodying the
web service operation call. Each fragment is defined as a set of predicates
from one web service operation call up to just before the next web service
operation call in Plan1. The WSMED query processor then automatically
reformulates Plan1 to incorporate parallel web service calls by inserting
PAP in the execution plan for each plan function call.

Fig. 4 shows the query plans of three different parallelizable fragment
plan functions PF1, PF2 and PF3 generated by the WSMED query
processor for Query1. PF1 calls the web service operation GetInfoByState,
and the foreign function getzipcode. PF2 calls web service operation
GetPlacesInside while PF3 calls the web service operation
GetCityForeCastByZip.

In the parallel plan Fig. 5 the PAP operator applies in parallel one plan
function at the time. It is suboptimal since it assumes that all the web service
operation calls are considered as dependent on each other and the PAP
operators are therefore called in sequence. The PAP operator adaptively
parallelizes the calls to the plan functions PF1, PF2 and PF3 so that they
will be executed as a parallel pipeline. A better plan will be shown later.

<toplace1, tostate1, zipcode1>

γ GetCityForeCastByZip(zipcode1)

<toplace, tostate, zipcode, date, description>

PF3

γ GetInfoByState(state)

γ getzipcode(zipstr)
<zipcode2 >

<state>

<zipstr>

PF1

<toplace1,tostate1,zipcode1>

γGetPlacesInside(zipcode2)

<zipcode2>
PF2 γ getzipcode(zipstr)

γ GetInfoByState(state)

<toplace, tostate, zipcode, date, description>

γGetAllStates()

<zipcode >

pos=0

pos=1

pos=4

σstate<’MD’
<state>

pos=2
<zipstr>

pos=3

<state>

γ GetPlacesInside(zipcode)

<toplace, tostate , zipcode>

pos=5 γ GetCityForeCastByZip(zipcode)

 85

Fig. 5 Dependent adaptive parallel plan Fig. 6 Adaptive dependent parallel

process tree

Fig. 7 Independent plan functions Fig. 8 Dependent and independent

adaptive parallel execution plan

Once the parallel plan is started PAP will automatically start new parallel
processes to dynamically form a process tree. Fig. 6 shows a process tree for
the dependent parallel plan of Query1 in Fig. 5. Every query process on each
level is connected with several child processes. All processes on the same
level execute the same set of plan functions for that level, but with different
parameter tuples. On each level always one plan function is applied.

In Fig. 6, the coordinator q0 is connected with q1 and q2. The execution
plan in q0 calls the non-parameterized web service operation GetAllStates,
while PF1 executing in level one calls the web service operation
GetInfoByState for different states. On level two PF2 calls the web service
operation GetPlacesInside for different zipcodes. Finally on level three PF3
calls the web service operation GetCityForecastByZip for different zipcodes.

In this plan the web service operations GetPlacesInside and
GetCityForecastByZip are regarded as dependent on each other. This makes
the web service operation GetCityForecastByZip be called several times for
the same zipcode. Since web service calls have high latency, these redundant

γGetAllStates()

<zipcode 1>

<state>

<toplace, tostate, zipcode, date,
description>

σ state<’MD’

<state>

PAP({PF1}, state)

PAP({PF4, PF5}, zipcode1)

<date, description>

PF5<zipcode1>

γGetCityForeCastByZip(zipcode1)

<toplace,tostate,zipcode>

PF4

γGetPlacesInside(zipcode1)

<zipcode1>

Level 3

Level 2

q1

q3 q4

q2

PF1

PF2

q6 q5

Coordinator

Query
GetAllStates

q13 q14 q12q11q10q9q8q7

PF3

q0Result

q- query process

Level 1

γGetAllStates()

<zipcode 2>

<state >

PAP({PF3},toplace1,tostate1,zipcode1)

<toplace1, tostate1, zipcode1>

<toplace, tostate, zipcode, date, description>

σ state<’MD’
<state >

PAP ({PF2}, zipcode2)

PAP ({PF1}, state)

 86

calls cause delays. Next it will be shown how such redundant calls are
removed when the web service operations are independent.

Fig. 9 Adaptive parallel process tree
– dependent and independent

Fig. 10 Plan functions-Query2

Fig. 11 Central Plan2a Fig. 12 Central Plan2b

Fig. 7 shows modified query fragments using the independent plan functions
PF4 and PF5, which both depend on the parallelized PF1. For a given
zipcode PF4 calls GetPlacesInside and PF5 calls GetCityForeCastByZip.
The modified adaptive parallel plan in Fig. 8 uses the PAP operator to
parallelize the calls to the independent plan functions PF4 and PF5. Fig. 9
shows the parallel process tree. In contrast to the process tree in Fig. 6, the
web service operations GetPlacesInside and GetCityForecastByZip are
called parallel at level two.

For the initial central plan the query processor uses a simple heuristic web
service cost model based on the signatures of web service operations
assuming that web service operations are expensive. One such possible

γ like(‘A-Z*’, toplace)

<toplace, tostate, zipcode, date, description>

<toplace, tostate , zipcode, date, description>

γ GetPlaceDetails(toplace, tostate)

γ getzipcode(zipstr)

γ GetInfoByState(state)

γGetAllStates()

<zipcode>
γ GetCityForeCastByZip(zipcode)

pos=0

pos=1

pos=4

pos=5

σstate<’MD’
<state>

pos=2
<zipstr>

pos=3

<state>

γ GetPlacesInside(zipcode)

<name,londegrees,latdegrees,zipcode,date
,description>

<zipcode, date, description>

pos=6

pos=7

<toplace, tostate, zipcode, date, description>

γ like(‘A-Z*’, toplace)

γ GetPlaceDetails(toplace, tostate)

γ getzipcode(zipstr)

γ GetInfoByState(state)

γGetAllStates()

<zipcode >

γ GetCityForeCastByZip(zipcode)

pos=0

pos=1

pos=4

pos=5

σstate<’MD’
<state>

pos=2
<zipstr>

pos=3

<state>

γ GetPlacesInside(zipcode)
<toplace, tostate , zipcode>

<toplace, tostate, zipcode, date, description>

<name, londegrees, latdegrees,zipcode,date, description>

pos=6

pos=7

<name, latdegrees, londegrees>

PF7< toplace, tostate >

γGetPlaceDetails(toplace,tostate)

γGetPlacesInside(zipcode1)

<toplace, tostate>

γ like(‘A-Z*’, toplace)
<toplace,tostate>

PF6
<zipcode1>

Level 2

q0

q3 q4

q2 PF1

PF4

q6q5

Coordinator

Level 1

Query

GetAllStates

PF5

Result

q1

 87

central execution plan for Query2 is illustrated by Plan2a in Fig. 11.
However, since the web service operations GetPlacesInside and
GetCityForeCastByZip are independent, they can be called in any order. Fig.
12 shows the alternative execution Plan2b where, in contrast to Plan2a the
calls to the web service operations GetCityForeCastByZip and
GetPlacesInside have been swapped. Fig. 10 shows the two fragment plan
functions PF6 and PF7 used in both plans. PF6 calls the web service
operation GetPlacesInside, and a filtering function like while PF7 calls the
web service operation GetPlaceDetails. Fig. 13 and Fig. 14 illustrate the two
parallel plans.

Fig. 13 Parallel Plan2a Fig. 14 Parallel Plan2b

4 Adaptive Parallelization

First the details of PAP are discussed. Then experiments with different
dependent and independent strategies of using PAP are analyzed. The full
pseudo code of PAP is shown in [10].

4.1 PAP Operator
The PAP operator calls one or several plan functions in parallel. It has the
signature:

PAP(Vector of Function vpf, Stream pstream ,
 Vector argorder, Vector resorder)→ Stream res

The arguments of the plan functions fi in vpf to execute are provided
through the input stream pstream. For each input tuple in pstream PAP starts
processes executing all fi in parallel in a round robin fashion. Each input
tuple p in pstream provides arguments for all fi. However, different fi use
different parameter values in p. The parameter argorder specifies for each fi
how to form the arguments of fi from p. It is a vector of vector of argument

<toplace,tostate>

γGetAllStates()

<zipcode >

<state>

<name, latdegrees, londegrees>

σ state<’MD’
<state>

PAP({PF1}, state)

PAP({PF6, PF5}, zipcode)

PAP({PF7}, toplace, tostate)

<name,latdegrees,londegrees,zipcode,date,description>

<toplace,tostate, zipcode1>

γGetAllStates()

<zipcode1>

<state>
σ state<’MD’

<state>

PAP({PF1}, state)

PAP({PF6}, zipcode1)

PAP({PF5,PF7},toplace,tostate,zipcode1)

 88

positions {{aij,…}…}, that specifies per fi the parameter positions {aij,…} to
pick from p. For example, in Fig. 8 the uppermost call to PAP has argorder
= {{1},{1}} because both PF4 and PF5 take as argument the first element of
the input tuple <zipcode1>.

Each result tuple r emitted from PAP consists of values rk. The PAP
parameter resorder specifies how to compute rk from results of fi. It is a
vector of pairs {{pkm,ckm}…}, that specifies per element position k in r i) the
position pkm of the function fm in vpf that computed rk, and ii) which element
ckm in the result from fm to select as rk. In Fig. 8 resorder =
{{1,1},{1,2},{1,3},{2,1},{2,2}} specifying the result tuple <toplace, tostate,
zipcode, date, description>.

A child result tuple is delivered back to the parent asynchronously as soon
as its plan function fi has produced a new value. PAP stores each received
child result in an input buffer per child. When PAP has received at least one
result ruple from every fi for a given input tuple p the system will emit one
or several result tuples based on the resorder and cartesian product of the
result tuples received from each fi. Once a child has no more result tuples to
emit it terminates. When the parent receives a termination message from a
child, it starts another child process for the plan function in vpf to be called
next picking its parameter tuple from the current input tuple. When there are
no pending parameter tuples in pstream and no still running children, PAP is
finished.

In a process tree, the fanout is defined as the number of children
processes below a parent query process. A process tree for the execution
plan in Fig. 8 is shown in Fig. 9, where every node has fanout two. First the
coordinator q0 has started two children q1 and q2, each executing the same
plan function PF1. In the next call to PAP the plan functions PF4 and PF5
are independent. Therefore a call to PAP is executed in each of q1 and q2
with different plan functions PF4 and PF5, respectively. PAP in q1 has
created a binary sub-tree with children q3 and q4, while q2 has the children
q5 and q6. The query processes q3 and q5 are started with PF4 while q4 and
q6 are started with PF5.

Once started PAP dynamically modifies the process tree at run time. The
query process locally monitors the execution times of its children to locally
add new children to improve performance until no more performance
improvement is expected. PAP does the following:
1. It initially forms a process tree by having fanout set to the length of vpf.

The fanout is minimally two to ensure parallelism when length of vpf is
one, as in q0. This is called the init stage.

2. A monitoring cycle for a non-leaf query process is defined as when PAP
has received end-of-call messages from all its children and the total
number of received result tuples is at least one. After the first monitoring
cycle PAP adds p new child processes, initially p=2. This is called the

 89

add stage. In Fig. 15, the query process q0 has added two new processes
q7 and q10 at level 1 compared to Fig. 9.

3. When an added node has several levels of children the init stages of the
children’s PAPs are rerun. That is, q7 adds q8 and q9 while q10 adds
q11 and q12.

4. PAP records per monitoring cycle i the average computation time ti to
produce an incoming tuple from the children. This time is dominated by
the latency of the encapsulated web service operations.

a. If ti decreases more than a threshold (set to 20%) the add stage is
rerun.

b. If ti increases no more children are added.

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

No. of zipcodes

Ex
ec

ut
io

n
tim

e
(s

ec
)

D DF CD CDF I IF

Fig. 15 Add stage Fig. 16 Experiments with adaptive
strategies

4.2 Experiments
Experiments were run under Windows XP on an HP Compaq 530 with a 3
GHz single processor Intel Pentium 4 and 2.5GB RAM. We compared the
query execution times for Query1 using six different strategies:
1. Dependent (D): Strategy D is a naïve dependent strategy as in Fig. 5.

This corresponds to the adaptive parallelization in [11]. All the web
service operations in the query are considered as dependent calls, even
the independent ones. A new sub-tree is always started with fanout two,
which is increased by two by the adaptation.

2. Dependent with varying initial fanout (DF): Strategy DF measures the
impact of varying initial fanout for a dependent strategy. This is as
strategy D, but new sub-trees are started with the same fanout as the
current adapted fanout of its siblings. The fanout of the first child of a
level is two.

3. Cached dependent (CD): Strategy CD measures impact of caching
results from the web service operations for a dependent strategy. It

Level 1

Level 2

q0

q1

q3 q4

q2

q5

Coordinator

q7

q9q8q6

q10

q12q11

 90

modifies strategy D by caching results of operation calls. For example,
in Fig. 5 the result of calling the operation GetCityForecastByZip for a
given zip code is cached in a main memory table. Whenever the
operation GetCityForecastByZip is required to be called in the query, the
cache table is checked to avoid redundant calls.

4. CD with DF (CDF): The impact of caching combined with varying
initial fanout is investigated for a dependent strategy.

5. Independent (I): Strategy I measures naïve independent calls for the
execution plan in Fig. 8. A new sub-tree is always started with fanout
equal to the number of plan functions in vpf of the PAP call. The fanout
is two if vpf has length one.

6. Independent with varying initial fanout (IF): This is as strategy I, but
new sub-trees are started with the same fanout as the current adapted
fanout of its siblings.

The experiments were made by scaling Query1 by selecting an increasing
number of states. This produces an increasing number of zipcodes and
increases the cardinality of the result.

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

No. of zipcodes

Ex
ec

ut
io

n
tim

e
di

ffe
re

nc
e

(s
ec

)

DF-IF DF-CDF CDF-IF

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0 5000 10000 15000 20000 25000 30000

No. of result tuples

Ex
ec

ut
io

n
tim

e(
se

c)

IF NAI

Fig. 17 Relative scalability Fig. 18 Impact of adaptation

Fig. 16 shows that strategy D is slowest, and DF is somewhat faster. CD is
even faster, showing that caching is favorable since web service calls incur
high latency. CDF is even better as it combines caching and adaptive initial
fanout. However, even the naïve PAP strategy I is faster than all variants of
the dependent strategies. Strategy IF is best. Caching does not pay off for
independent strategies, since no redundant calls are made; therefore the
combination of caching with IF was not measured.

Fig. 17 shows the relative scalability comparing independent and
dependent strategies and caching. DF-IF plots the performance difference
between DF and IF. It shows that the independent strategy IF scales better.
Analogously, DF-CDF shows for dependent strategies that caching
improves scalability. CDF-IF shows that the best independent strategy IF

 91

scales somewhat better that the best dependent strategy CDF. However,
unlike CDF, IF requires no extensive memory for caching.

To investigate the impact of adaptation we devised another strategy Non
Adaptive Independent(NAI). It is similar to I, but fanout is fixed to two in all
levels of the process tree. Fig. 18 shows that IF outperformed NAI.

0.00

50.00

100.00

150.00

200.00

250.00

10
0_

v=
0

10
0_

v=
1

10
0_

v=
2

10
0_

v=
3

50
0_

v=
0

50
0_

v=
1

50
0_

v=
2

50
0_

v=
3

10
00

_v
=0

10
00

_v
=1

10
00

_v
=2

10
00

_v
=3

No. of zipcodes w ith differenet values of v

Ex
ec

ut
io
n
tim

e
(s
ec

)

Fig. 19 Execution time with further increased fanouts

When the average computation time ti is less than a specified threshold (set
to 20%) PAP increases its number of children cf with a constant increment i.
For the above experiments i=2 which was measured optimal for adaptive
dependent calls [11].

To investigate the impact of increasing i gradually we made experiments
by increasing i as: i = i + v (v=0,1,2…)

The value of v is incremented until no significant performance
improvements are measured. Fig. 19 shows that incrementing with v does
not make any significant performance improvement for PAP.

0

100

200

300

400

500

600

0 2000 4000 6000 8000 10000 12000

No of result tuples

Ex
ec

ut
io

n
tim

e
(s

ec
)

Plan2b Plab2a

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-3000 2000 7000 12000

No. of result tuples

N
o.

 o
f W

eb
 s

er
vi

ce
 c

al
ls

Plan2b Plan2a
Fig. 20 Impact of central plan
execution order

Fig. 21 Number of web service calls-
Pla2a Vs Plan2b

To investigate the performance of PAP for different central plans,
experiments were made for Query2 scaled by selecting an increasing number
of states and places. Fig. 20 shows that Plan2b (Fig. 13) outperforms parallel

 92

Plan2a (Fig. 14). The reason is that PF5 and PF6 are independent, which is
reflected in parallel Plan2b but not in parallel Plan2a. This causes parallel
Plan2a to make redundant web service calls to PF5 for each place returned
by PF6.

The central optimizer will not know that Plan2b is better when
parallelized. Therefore WSMED reorders the central preliminary plan by co-
locating the predicates that directly depend on each. Fig. 21 compares the
number of web service calls made by the two different parallel plans.

5. Related Work

PAP generalized AFF_APPLYP [11] by parallelizing both dependent and
independent web service operation calls, while AFF_APPLY produced and
parallelized pipelined plan of dependent calls.

WSQ/DSQ [7] handles high-latency calls to web search engines by
launching asynchronous materialized sub-queries later joined in the
execution plan using a special operator without any adaptation. In contrast,
WSMED adaptively produces multi-level parallel plans based on streams of
parameter tuples passed to parallel sub-plans.

WSMS [12] proposed a cost-based approach for pipelined parallelism
among web service operation calls to minimize the query execution time. By
contrast, we parallelize adaptively calls to web service operations without
any cost model. Furthermore, PAP adaptively parallelizes the same web
service operation by starting several query processes.

In [8] run time adaptation of buffer sizes in web service calls is
investigated, not dealing with adaptive parallelism on web service calls at
the client side.

In [1] an approach is described for optimizing web service compositions
by traversing ActiveXML documents to select relevant embedded web
service calls. It identifies only the independent sub-queries having web
service operations and calls them in parallel. The parallelization required a
static cost model. By contrast, PAP adaptively parallelizes plan functions
with both dependent and independent web service calls without any cost
model.

Eddies [2] dynamically reorder query processing operators by an n-ary
tuple router interposed between n data sources and a set of query processing
operators. Rather than routing, PAP adaptively parallelizes calls to
parameterized operators (plan functions) for different parameter values. The
purpose of eddies is to avoid dependencies between operators, while the
purpose of PAP is to speed up calls to individual plan functions. PAP
complements eddies.

 93

Like two-phase query optimization in distributed databases [9] WSMED
also parallelizes a query execution plan based on an initial central query
plan. However, the strategy in [9] is based on a static cost model for
distributed databases, while WSMED adaptively parallelizes dependent
joins. Furthermore, WSMED reorders the preliminary plan for better parallel
performance by co-locating adjacent dependent plan function calls.

Starting query processes with plan functions and the parameter tuple
shipping phase of PAP has some similarity with the map phase of
MAPREDUCE [6]. However, MAPREDUCE is not dynamically adapting
query execution plans as PAP and is not streamed.

6. Conclusion

WSMED provides general relational query capabilities over any data
providing web service operations given their WSDL meta-data descriptions.
Queries are expressed in SQL over automatically generated relational views
over the data providing web service operations.

Without any cost knowledge the WSMED query processor automatically
and adaptively finds an optimized parallel execution plan calling the queried
data providing web services. The algebra operator PAP locally adapts the
parallel plan by adding children, until no significant performance
improvement is measured, based on monitoring the flow between query
processes. The operator handles queries where data providing web service
operations are called both dependently and independently. PAP substantially
improves the query performance without any cost knowledge or extensive
memory usage compared to other strategies. The measurements are all made
with publicly available web service operations.

To lower the number of web service operation calls WSMED includes a
strategy to co-locate adjacent dependent plan functions.

The WSMED approach relies on calling side effect free data providing
web service operations. The widely available WSDL language does not
provide meta-data describing side effects in web service operations. When
such a standard is available WSMED can utilize it to guarantee query
correctness.

WSMED is accessible through a URL [14] from anywhere without
installing any software.
Acknowledgments This work is supported by the Swedish Foundation for
Strategic Research under contract RIT08-0041 and Sida.

 94

References

1. S.Abiteboul, et al., Lazy query evaluation for active XML, In: International
Conference on Management of Data, pp 227- -238, ACM Press, New York(2004)

2. Avnur, R., Hellerstein, J.M.:Eddies: Continuously adaptive query processing, In
Proceedings of International Conference on Management of Data , pp 261- -272,
ACM Press, New York, (2000)

3. codeBump, GeoPlaces web service,
http://codebump.com/services /PlaceLookup.asmx

4. codeBump, Zipcodes web service,
http://codebump.com/services/ZipCodeLookup.asmx

5. CYDNE, http://ws.cdyne.com/WeatherWS/Weather.asmx?WSDL
6. Dean, J., and Ghemawat, S. 2008.MAPREDUCE: Simplified Data Processing on

Large Clusters, Communications of the ACM, pp 107- -113, ACM Press, New
York, (2008)

7. Goldman, R. and Widom, J.:WSQ/DSQ: a practical approach for combined
querying of databases and the Web. In: International Conference on Management of
Data , pp 285- - 296,ACM Press, New York, (2000)

8. Gounaris, A., Yfoulis, C., Sakellariou, R., and Dikaiakos, M.D.:Robust Runtime
Optimization of Data Transfer in Queries Over Web Services. In: International
Conference on Data Engineering, pp 596- -605, IEEE, (2008)

9. Hasan, W. :Optimization of SQL queries for Parallel Machines, Springer-Verlag.(
1997)

10. PAP Operator, http://user.it.uu.se/~msabesan/PAP/PAP.pdf

11. Sabesan, M. and Risch, T.:Adaptive Parallelization of Queries over Dependent Web
Service Calls. In Proceedings of First IEEE Workshop on Information & Software
as Services., pp 1725- -1732, IEEE computer society (2009)

12. Srivastava, U., Widom, J., Munagala, K., and Motwani, R.: Query Optimization
over Web Services. In: Proceedings of Very Large Database Conference, VLDB
Endowment, pp 355- -366, (2006)

13. USZip, http://www.webservicex.net/uszip.asmx
14. WSMED Demo, http://udbl2.it.uu.se/WSMED/wsmed.html

Paper IV ____
© 2010 Inderscience. Reprinted, with permission, from [International
Journal of Web and Grid Services (IJWGS), Automated Web Service
Query Service, Manivasakan Sabesan, Tore Risch and Feng Luan].

The paper is reformatted for typographic consistency.

 97

Automated Web Service Query Service
Manivasakan Sabesan1 , Tore Risch1, and Feng Luan2

1Uppsala Database Laboratory

Department of Information Technology
Uppsala University
Uppsala, Sweden

2Database Systems

Department of Computer and Information Science,
Norwegian University of Science and Technology,

Trondheim, Norway
1{Manivasakan.Sabesan, Tore.Risch}@it.uu.se, 2luan@idi.ntnu.no

Abstract. A data providing web service returns a collection of objects for
given parameters without any side effects. The Web Service MEDiator
(WSMED) system automatically provides relational views of data providing
web service operations by reading their WSDL documents. These views can
be queried with SQL. A common pattern in queries over data providing web
services is that the output of one web service call is the input for another. A
challenge addressed by WSMED is to speed up such queries by
parallelization. To automatically achieve the optimal parallel plan WSMED
adapts an initial parallel plan locally in each node until optimized
performance is achieved. To make any data providing system into a data
providing web service WSMED includes a web service generator that
automatically deploys the web service operations required to access a data
source. Given that interface functions are implemented the web service
generator automatically deploys corresponding web service operations and
generates the WSDL document. The web service generator is used also for
defining the web service interface to WSMED itself. The WSMED web
service operations provide SQL query functionality to query and join any
data providing web services. Search of any data providing web service from
a browser can be done by a JavaScript program that directly calls the
WSMED web service without any need for installing software.

1 Introduction
Web services are often used for search computing (Ceri, 2009) where data is
retrieved from servers providing information of different kinds. Such data
providing web services return collections of objects for a given set of
parameters without any side effects. A System, Web Service MEDiator
(WSMED), is built that provides a web service to query any data providing
web service operations without any further programming. The search is
completely specified by SQL queries that retrieved data from the data
providing web services. WSMED adheres to the Everything as a Service
(XaaS) paradigm 11 by providing a general web service to process queries
over other web services, known as the WSMED web service.

 98

WSMED can import any WSDL file and automatically generate relational
views for the web service operations defined in the WSDL file. These views
can be queried and joined with SQL. For a given SQL query, WSMED
dynamically composes the web services, optimizes the web service calls, and
adaptively parallelizes the execution plan.

As an example, consider a query to find information about places located
within 15 km from each city whose name starts with ’Atlanta‘ in all US
states. Three different data providing web services can be used for answering
this query, using the operations GetAllStates 6 to retrieve all the states,
GetPlacesWithin 6 to get all the places located within a given distance, and
GetPlaceList 10 to provide all the places whose names start with ’Atlanta’ for
a given state.

WSMED assumes that all queried data sources are available as web
services. The conventional way to define a new data providing web service
for a data source which is not a web service is manual development of
software to access the data source, defining a WSDL document to describe
the interface, and deploying the interface code.

To facilitate the provision of a data providing system as a web service,
WSMED includes a subsystem, the web service generator, which
automatically generates the web service operations to access a data source.
The programmer first defines data source interface functions to access the
data source as queries using the extensible wrapper/mediator system Amos II
(Risch et al., 2003). Once the interface functions are defined, the WSMED
web service generator automatically generates the corresponding web
service operations and dynamically deploys them without restarting the web
server. The signature of each so generated web service operation is defined
in an automatically generated WSDL document based on the signatures of
the interface functions. The WSDL document completely describes the web
service interfaces of the deployed operations. Each operation calls the
interface function and sends back the result as a collection. Interface
functions have been defined for many different kinds of data sources 3, e.g.
relational DBMSs, semantic web data, topic maps, and CAD servers.

Even the WSMED web service itself is generated by the web service
generator. An automatically generated WSDL document 14 describes the
interface of the WSMED web service operations.

Queries calling web services often have a similar pattern where the output
of one web service call (e.g. GetAllStates) is the input for another one (e.g.
GetPlacesWithin), i.e. the second call is dependent on the first one, etc. A
challenge here is to develop methods to speed up queries requiring such
dependent data providing web service calls. In general such speed-ups are
based on some unknown web service properties. Those properties are not
explicitly available and depend on the network and runtime environments
when and where the queries are executed. It is very difficult to base

 99

execution strategies on a static cost model in such scenarios, as is done in
relational databases.

In our approach a web service call is considered as an expensive function
call where the result is a data collection. To improve the response time,
WSMED uses an approach to parallelize the web service calls while keeping
the dependencies among them. With the approach separate query processes
are started automatically in parallel, each calling a parameterized sub query
plan, called a plan function, for given parameters. Each plan function
encapsulates one web service call and makes data transformations such as
flattening nested results, filtering, and data conversions.

To provide a view query-able with SQL, the nested result collections are
flattened. Conversely arguments of operation are nested. A common
constraint is that input parameters have to be bound in operations and
WSMED will decompose the query plan so guarantee this.

The performance is often improved by setting up several web service calls
to the same operation in parallel rather than to call the operations in
sequence for different parameters. The algebra operator, AFF_APPLYP
(Adaptive First Finished Apply in Parallel), takes a stream of parameter
values and, for each received parameter tuple in the stream, ships a plan
function in parallel to other query processes and then asynchronously
receives the results from the shipped plans in parallel.

Multi-level execution plans are automatically generated with several
layers of parallelism in different query processes. This forms a process tree
for the query. During execution AFF_APPLYP first initiates the
communication with its child query processes and then ships the plan
function to the children. Then the AFF_APPLYP operator starts shipping in
parallel to the children the argument tuples from the parameter stream. At
any point in time every process in the tree executes one plan function for a
specific parameter. The results from the children are delivered to the parent
in parallel as streams.

WSMED adaptively achieves an optimized process tree by local run-time
monitoring of each plan function call. For the adaptation AFF_APPLYP
dynamically modifies a parallel plan locally and greedily in each query
process.

The functionality of WSMED is demonstrated through a publicly
accessible web interface 13. It enables the user to query any data providing
web service. SQL views of the queried web services are automatically
generated, given its WSDL URL. General SQL queries over the views can
be specified. The schema of the generated views can be inspected. The
demonstration is fully implemented as a JavaScript program calling the
WSMED web service using SOAP, without any need to download or install
any software.

In summary the contributions of our work are:

 100

1. The WSMED system provides general SQL query capabilities over any
data providing web services based on their WSDL meta-data
descriptions.

2. For a given SQL query, the system automatically and adaptively
generates and optimizes a parallel execution plan calling the web
services.

3. A web service generator automatically generates web service interfaces
for data sources once they have been defined as interface functions.

4. The generated web service operations are dynamically deployed without
restarting web server.

Section 2 describes the WSMED on-line demo. Section 3 overviews the
WSMED system architecture. The WSMED service generator is described in
Section 4. In Section 5 we show how WSMED processes in parallel SQL
queries and adaptively parallelize their execution automatically. Related
work is discussed in section 6. Finally Section 7 concludes our approach.
2 The WSMED demo

Figure. 1 User registration

The WSMED on-line demonstration illustrates the functionality of the
WSMED web service. It demonstrates all web service operations provided
by WSMED through a user interface that can be run in any web browser
without software installation. The web page is written as an application
program in JavaScript that directly calls the WSMED web service. The
communication between the JavaScript program and the WSMED web
service operations uses the SOAP protocol.

A user first starts a WSMED session (Figure. 1) by registering her name,
for example Mary, and then clicks on the ‘Register’ button. A WSMED
session is closed with the ‘Exit’ button (Figure. 2).

 101

Before querying a web service she has to import its metadata by entering
its WSDL URL, e.g. http://terraservice.net/TerraService2.asmx?WSDL in a
text box with label ‘Enter New WSDLURL’ (Figure. 2). Alternatively a
predefined set of WSDL URLs for common services is provided by the pull-
down menu labelled ‘Available WSDL URL’s. The WSDL file is selected by
pressing the ‘ImportWSDL’ button.

Figure. 2 Enter WSDL URL

After meta-data of a WSDL URL is imported the system automatically
generates SQL views of all web service operation specified by the WSDL
file.

Figure. 3 Get generated SQL Views

Figure. 3 shows the imported SQL views of the web service TerraService.
The names of the views are based on the names of imported web service
operations. They are displayed in the format: ‘View: Authentication |

 102

Service’. View is the name of a view. Authentication indicates whether
authentication is required when querying the web service operation defining
the view. It may be one of the strings required, none, or builtin. Service is
the name of the web service that supports the operation over which the view
is defined. The currently imported SQL views can be selected in a pull-down
menu labeled ‘Available Views’. For example, the user can inspect the
details of the generated view named GetPlaceList by selecting the view in
the pull-down menu (Figure. 4) and clicking ‘View Info’.

Figure. 4 View information

As illustrated in Figure. 4 this will display the view name, its authentication
status, the web service hosting the operation encapsulated by the view, the
data types of its attributes, and what attribute values are required to be
known in order for the view to be queried. That information is important for
the user to express a correct SQL query. To inspect the authentication status
of an available view, the user selects it from the pull-down menu and then
presses the ‘Authentication’ button. A new authentication value (for example

 103

345DERT56TY) can be entered in the text box labeled ‘Enter New
Authentication Value’ and stored by pressing the ‘Enter’ button as shown in
Figure. 5.

Figure. 5 New authentication value

As shown in Figure. 6 in the text box labeled ‘Enter SQL Query’ an SQL
query can be expressed in terms of the available views and executed by
clicking the ‘Execute’ button. Figure. 6 shows the result of an SQL query:
select gl.City ,gl.Lon
from GetPlaceList gl
where gl.placeName='Atlanta' and gl.MaxItems=100 and
 gl.imagePresence= 'true'

Figure. 6 Execute SQL Query

 104

3 The WSMED system
Figure. 7 illustrates the WSMED architecture. It contains four subsystems:
the WSMED query processor, the WSMED coordinator, the WSMED web
server, and the web service generator. The WSMED query processor
provides general SQL query capabilities to any data providing web service.
It accepts SQL queries using its web service interface managed by the
WSMED web server. The WSMED web server extends the lightweight
standalone server Quick Server 9, to send and receive SOAP messages using
the HTTP protocol. The WSMED coordinator manages user sessions starting
a separate WSMED query processor for each user. The query processor is
terminated when the user ends the session.

The purpose of the web service generator is to generate web service
operations for a data source which is not implemented as a web service. First
a programmer implements interface functions to access the data source.
Then the web service generator automatically deploys the web service
operations to call the interface functions. The basic functionality of WSMED
itself is implemented as interface functions. Therefore all web functionality
provided by WSMED is automatically deployed as web service operations
using the web service generator. The automatically generated document
wsmed.wsdl describes these operations.

Figure. 7 WSMED architecture Figure. 8 Service oriented
architecture of WSMED

Figure. 8 illustrates the web service operations of the WSMED web service.
The top box illustrates the supported web services operations
IMPORTWSDL, QUERY, etc. They are all implemented as interface
functions and automatically deployed by the web service generator. The
following WSMED web service operations are defined:
• The INIT operation registers a WSMED user session.
• For a given a URL the IMPORTWSDL operation imports WSDL meta-

data information and automatically creates an SQL view Viewi for each
operation OPj provided by a web service WSk described by an imported
WSDL document WSDLk.

 WSMED

WS1
 OP1WSDL1

OPp

WSn

View1 Viewm

QUERY IMPORTWSDL

WSMED Web Service Interface

 OP1 WSDLn

OPq

SOAP calls Import metadata

WS1

WS2

WSn

WSMED query
processor

WSMED
coordinator

WSMED

wsmed.wsdl

WSMED
web server

Call
Generate

Read

Web service
generator

Client

 105

• The AUTHENTICATION operation provides authentication information
for web service operations that so require.

• The VIEWINFO operation provides information about the SQL view
over a given web service operation. For example, it lists view attributes
that must always be specified in the queries.

• The system accepts SQL queries to the generated views by the QUERY
operation. The results from the operation is automatically flattened,
optimized, and post processed by WSMED in order to deliver a proper
SQL result as a collection of tuples.

• Finally, the operation EXIT_S terminates a user session.

4 Automated web service generation
In Figure. 9 the WSMED web service generator dynamically deploys web
service operations for data. The web service generator calls a data source
encapsulator to obtain the signatures of the interface functions to be
provided as web service operations. Based on these signatures it deploys the
web service operations for the functions. It also generates a WSDL document
describing the deployed web service operations. The WSDL document can
be read by WSMED for querying the encapsulated data source. In Figure. 9
a relational database is encapsulated.

Figure. 9 Automated web service generation

The interface functions are defined as parameterized queries to the
mediator/wrapper system Amos II(Risch et al., 2003) Different kinds of data
sources can be made queryable by Amos II by implementing wrappers that
interface the Amos II kernel with the systems providing the data in a source.
For example, wrappers have been built to query relational databases (Fahl et
al., 1997), semantic web data (Petrini et al., 2007), topic maps (Stefanova et
al., 2008), or CAD systems (Koparanova et al., 2002).

In addition, Amos II provides a built-in database that can be populated
with source data as an alternative to defining the interfaces function by

Client
application

Data source encapsulator

WSMED

WS1
WS2

WSn

Web service
generator

WSDL
document

Web service
operations for
 wrapped
data sources

Read

AmosII

RDBMS

Interface
functions

Call Generate

 106

wrapping an external data source system. For example, Figure. 10 illustrates
how a text file 15 is represented in Amos II as a stored function (table)
getzipc. The database is populated by reading the text file.

To deploy interface functions as web service operations by the web
service generator the system function deploy_wsdl is called. It takes as
arguments the names of the interface functions, the name of the deployed
web service, and the name of the WSDL file describing the web service
operations. In the example, the deploy_wsdl call creates a WSDL document
zip.wsdl to describe the exported interface function getzipc.

Figure. 10 Deploying a data source

create function getzipc(Charstring state)→Charstring zipcode
 as stored;
deploy_wsdl({'getzipc'},’zipcode’,'zip.wsdl');

WSMED itself is also regarded as an encapsulated data source, which is
automatically deployed by the web service generator. The web service
interface to WSMED is defined using interface functions. For example
Figure. 11 shows the signature of the interface function implementing
WSMED’s web service operation QUERY. The interface function query is
defined in terms of many other functions and external programs to process
an SQL query sqlq by a user identified by the parameter userid.

Figure. 11 Signature of interface function query

query (Integer userid, Charstring sqlq)-> Bag of Charstring

4.1 The Web service generator
The web service generator in Figure. 12 consists of four sub modules, the
AmosII mediator/wrapper system, the function analyzer, the WSDL creator,
and the WSDL exporter.

The function analyzer is called by deploy_wsdl and receives a set of
exported functions. It then queries the meta-data of Amos II for the signature
of each function to export and generates a data structure, exported
signatures, that describes them. An exported signature consists of the names
and types of a function’s arguments and results. They are passed to the
WSDL generator. The WSMED web server does not need to restart when
exporting and publishing new functions as web service operations since it
dynamically looks up the signatures of interface functions at run time when
web service operation calls are received.

The signature of an interface function is automatically translated into a
corresponding message structure in WSDL. To produce the WSDL
document, the WSDL generator dynamically builds an internal export
description as a DOM data structure in main memory using the WSDL4J 12
Java toolkit. The rules for transforming signatures to WSDL operation

 107

descriptions will be discussed in Section 4.2. The WSDL exporter then
transforms the DOM representation of the export description into a WSDL
document that describes the exported function interfaces as web service
operations.

Figure. 12 The web service generator Figure. 13 The structure of the
input element

4.2 Publishing a web service operation
Figure. 14 shows the WSDL document representing the interface function
query (Figure. 11) as a web service operation named QUERY. In general, the
web service operation is defined in the portType WSDL element. The
operation contains an input element and an output element. The input
element has an XML attribute message named, e.g. QUERYRequest0.
Figure. 13 illustrates how the message name is constructed. It is a
concatenation of the name of the web service operation and a mode string
(‘Request’ or ‘Response’) indicating whether it is an input or and output
message. The index number is appended to translate overloaded interface
functions into uniquely named messages.

A request message has the same number of part elements as the number
of arguments in the interface function. Our example interface function query
has two arguments named userid and sqlq with types int and string
respectively.

A response messages always has one part named results representing the
result of an interface function. In the example query the result is a set (bag)
of strings, which is represented in WSDL as a sequence of type string. The
type of results is a concatenation of the web service operation name (here
QUERY) and an index to handle overloaded interface functions.

Figure. 14 WSDL for interface function query

<wsdl:definitions ...>
 <wsdl:types>
 <xsd:schema>
 <xsd:complexType name=”QUERY0”>
 <xsd:sequence>
 <xsd:element name=”R1” type="xsd:string">
 </xsd:element>
 </xsd:sequence>

QUERY Request 0

Function
name

Mode
string

Index
Generate

Internal
export
descriptions

Exported
functions

AmosII
Function
analyser

Exported signatures

WSDL
document

Web service generator

WSDL
exporter

WSDL
generator

Call

WSMED web
server

 108

 </xsd:complexType>
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name="QUERYResponse0">
 <wsdl:part name="results" type="tns:QUERY0" />
 </wsdl:message>

 <wsdl:message name="QUERYRequest0">
 <wsdl:part name="USERID" type="xsd:int" />
 <wsdl:part name="SQLQ" type="xsd:string" />
 </wsdl:message>

 <wsdl:portType name="WSMEDPortType">
 <wsdl:operation name="QUERY"
 parameterOrder="USERID SQLQ">
 <wsdl:input name="QUERYRequest0"

message="tns:QUERYRequest0"/>
 <wsdl:output name="QUERYResponse0"

message="tns:QUERYResponse0" />
 </wsdl:operation>
 </wsdl:portType>

<wsdl:binding name="WSMEDSoapBinding"
 type="tns:WSMEDPortType">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="QUERY">
 <wsdlsoap:operation soapAction="" />
 <wsdl:input name="QUERYRequest0">
 <wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:WSAmos" />
 </wsdl:input>
 <wsdl:output name="QUERYResponse0">
 <wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:WSMED" />
 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

<wsdl:service name="WSMEDservice">
 <wsdl:port name="WSMEDPort"
 binding="tns:WSMEDSoapBinding">
 <wsdlsoap:address location=
"http://130.238.11.96:8082/wsmed/service/WSMEDServlet" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

 109

4.3 The WSMED web server
The WSMED web server is a server that uses the HTTP protocol to
communicate SOAP messages. The WSMED web server immediately
services the interface functions as web service operations once they are
exported, without need for restarting the WSMED web server or deploying
any additional server site code.

Figure. 15 illustrates the WSMED web server. It consists of a
communication server, an XML parser and writer, a DOM decoder, and an
encoder. The communication server first receives a remote call from the
client application. The remote call is a RPC SOAP call via the HTTP
protocol. The communication server extracts the message content and passes
it to the XML parser. The XML parser uses the input SOAP envelope to
generate a DOM data structure.

The DOM decoder converts the DOM data representation of a SOAP
message into a call to an interface function. The XSD data types of a
receiving message are converted from DOM to the format required by
interface functions. Then the DOM decoder calls Amos II to execute the
interface function. After receiving the results from the function, the DOM
encoder uses the signature of the function and data type mappings between
XML and Java to build a result DOM structure. The XML writer passes the
result DOM structure to the communication server as a SOAP response
message and the communication server sends back the SOAP message to the
client application over the HTTP protocol. A modified JSoapServer 7 is used
as the communication server. JSoapServer is a lightweight standalone SOAP
web server using the QuickServer library for building web services.

Figure. 15 WSMED web server

5 The WSMED query processor
To improve the query performance the WSMED query processor
automatically produces a parallel multi-level execution plan with several
layers of parallelism and forms a process tree to execute the parallel plan.
Each node in the process tree executes some of the web service calls. The

Database function
call

SOAP

XML writer

DOM decoder

AmosII

SOAP Request
Envelope

SOAP Response
Envelope

DOM
DOM encoder

Result

Client Application

Communication server

WSMED web
server

XML parser

 110

query parallelization is performed in two phases as illustrated in Figure. 17.
In phase1 a central query execution plan is created from the given SQL
query, and in phase 2 the central plan is automatically transformed into a
parallel query plan by the parallel plan creator. In this section we will
explain how the parallelization is done, illustrated with an example SQL
query to be presented next.

5.1 Example SQL query
The example Query in Figure. 16 finds information about places located
within 15 km from each city whose name starts with ’Atlanta‘ in all US
states. In the query we utilize the web service operations GetAllStates,
GetPlacesWithin, and GetPlaceList. For a given web service WSMED
automatically generates Operation Wrapper Functions (OWF) (Sabesan et
al., 2009) that represent SQL views of the web service operations based on
the WSDL definitions. In Figure. 16 the three generated OWFs GetAllStates,
GetPlacesWithin, and GetPlaceList are defined to encapsulate web service
operations with the same names. The query returns a stream of 360 result
tuples and invokes more than 300 web service calls.
Figure. 16 Example Query

select gl.place,gl.state

From GetAllStates gs, GetPlacesWithin gp, GetPlaceList gl

where gs.State=gp.state and gp.distance=15.0 and
gp.placeTypeToFind='City' and
gp.place='Atlanta'
and gl.placeName=gp.ToPlace+' ,'+gp.ToState and
gl.MaxItems=100 and gl.imagePresence='true'

The OWF GetAllStates presents information of US states as a set of tuples
<Name, Type, State, LatDegrees, LonDegrees, LatRadians, LonRadians>.
However, we are only interested in the values of the attribute State. The
OWF GetPlacesWithin returns a set of tuples <ToCity, ToState,
GeoPlaceDistance_Distance> for given place (‘Atlanta’), state (gs.State),
distance (15.0), and kind of place type to find (’City’). The OWF
GetPlaceList retrieves a set of places <placename, state, country, placeLon,
placeLat, availableThemeMask, placeTypeId, population>, given a
specification of a place (concatenation of ToCity+’,’+ToState), the
maximum number result tuples (100), and a flag indicating whether places
having an associated map are returned.

 111

5.2 Parallelizing web service operation calls
Figure. 17 illustrates the query processor in WSMED. It parallelizes the
queries in two phases. In Phase1 a non parallel plan is created from the
given SQL query. The parallel plan is produced in Phase2 based on the non
parallel plan. The calculus generator produces from the SQL query an
internal calculus expression in a Datalog dialect (Litwin et al., 1992). For
example, Query is transformed into the following calculus expression:
Query1(place,state) ← GetAllStates(_,_,st1,_,_,_,_) AND
 GetPlacesWithin("Atlanta",st1,15.0,"City",tp,ts,_) AND
 GetPlaceList(pn,100, "true", place, state,_,_,_,_,_,_) AND
 Concat(tp," ,",ts,pn)

The symbol ’_’ represents an anonymous result variable. With non-
parallel query optimization the calculus expression is translated by the non-
parallel query optimizer into the algebra expression in Figure. 18. This is the
central plan for the example query. It is a left-deep tree of executable
predicates enumerated from 0 and up. The algebra expression contains calls
to the apply operator γ, which applies a plan function for a given parameter
tuple. The central query execution plan with γ can be directly interpreted but
with bad performance, since the web service operations are applied in
sequence. For the initial central plan the non-parallel plan optimizer uses a
simple heuristic web service cost model based on the signatures of web
service operations assuming that web service operations are expensive.

The plan first calls the operation GetAllStates returning a stream of tuples
<st1>. Each of these tuples are fed to the next operation GetPlacesWithin
called by the apply operator with the given argument tuple (‘Atlanta’, st1,
15.0, ‘City’) returning a stream of tuples <tp, ts>. The built in function
Concat is then applied on each argument tuple (tp,’,’,ts) producing a stream
of strings pn. Finally the operation GetPlaceList is applied on each argument
tuple (pn,100,’true’) returning a stream of tuples <place, state>.

The parallel plan creator calls the parallelize algorithm in Figure. 20 to
automatically transform the central plan NP into a parallel one. For example,
it translates the central plan in Figure. 18 to the parallel one in Figure. 19.

The parallelization produces parallel web service calls by inserting an
algebra operator AFF_APPLYP in the execution plan whenever a call to a
web service operation is encountered. The AFF_APPLYP operator calls a
plan function in parallel and adaptively modifies the process tree to improve
performance. For each web service operation call a plan function is
generated by the parallel plan creator to encapsulate a fragment of the non
parallel query plan embodying the web service operation call. Section 5.3
explains the functionality of AFF_APPLYP in detail.

 112

Figure. 17 WSMED query processor

The parallel plan preserves the dependent execution order of the
encapsulated web service calls. First pos is identified as the split point where
the first parallelizable web service operation call is found (line 2). The
AFF_APPLYP operator requires as input a stream of parameters. Therefore
the identified operation call must have at least one input parameter. In the
example in Figure. 18 the first split point is identified as the predicate
applying the web service operation GetPlacesWithin where pos=1. If there is
no split point the central plan is not parallelized.

Figure. 18 Central query plan Figure. 19 Parallel query plan

Figure. 20 Parallelize algorithm

parallelize(NP) → P
input: NP –central query plan

 output: P– parallel query plan
1. len ← number of predicates in NP
2. pos ← Find the first position of a web service call in NP with number of inputs

> 0
3. if pos exists then
 3.1 subplan1 ← create a sub plan with all the predicates between the positions

0 and (pos-1) in NP.
 3.2 temp-subplan ← create another sub plan with all the predicates between

positions pos and len in the NP.

<pn>

<st1>

AFF_APPLYP (PF2, pn)

<place, state>

γGetAllStates()

AFF_APPLYP (PF1,st1)

<pn >

<st1 >

γGetPlacesWithin(‘Atlanta’, st1,15.0,‘City’)

<place, state>

γGetPlaceList (pn, 100, ‘true’)

γGetAllStates()

<tp,ts>
γConcat(tp,’, ‘, ts)

PF2

pos=0

pos=1

pos=3

pos=2 PF1

Central plan

Phase1

Parallel query plan

User query Calculus generatorNon parallel query

Parallel plan creator

Phase2

 113

 3.3. subplan2 ← parallelize(temp-subplan)
 3.4. P←rewrite-plan(subplan1, subplan2)
4. Else
 4.1 P←NP
5. return P

Then a plan function subplan1 is created (line 3.1) with the predicates
between the positions 0 and (pos-1). Another plan function temp-subplan
(line 3.2) is created with the rest of the predicates (the predicates between
the positions pos and len) of NP. The example subplan1 calls the web
service operation GetAllStates. The temp-subplan contains the remaining
calls to GetPlacesWithin , concat, and GetPlaceList.

To find the second parallelizable web service operation call, parallelize is
recursively called with temp-subplan (line 3.3) as argument. The rewrite-
plan (line 3.4) procedure modifies subplan1 so that the result from the
recursive call, subplan2 is called in parallel for each result from subplan1.
This is done by inserting an AFF_APPLYP operator to encapsulate
subplan2.

In the example, a second recursive call of parallelize creates
subplan1=PF1 and subplan2=PF2. The final parallel plan P (Figure. 19)
contains the AFF_APPLYP operators to adaptively parallelize the calls to
PF1 and PF2.

5.3 Adaptive Apply in Parallel - AFF_APPLYP
The algebra operator AFF_APPLYP (Adaptive First Finished Apply in
Parallel) (Sabesan et al., 2009) has the signature:

AFF_APPLYP (Function pf, Stream pstream) → Stream result
The pseudo code for AFF_APPLYP is listed in Figure. 21.
Figure. 21 AFF_APPLYP algorithm

AFF_APPLYP(fn, pstream) → result
input: fn : plan function pstream : a stream of parameter values for fn

output: result : Stream of result tuples from children

 fanout ← 2

number of query processes added after each monitoring cycle: p ← 1

number of query processes: nq ← 0

number of tuples: tc ← 0

number of end-of-call messages: ack ← 0

time required to retrieve a tuple (time per tuple): tupt ← 0

opt: flag indicates whether adaptive expansion of fanout is started (opt=true)
or stopped (opt=false): opt←false

 114

stopping threshold, change in tupt per cycle: threshold_value← 0.25

execution time to process fn in children processes per cycle: exet ← 0

while (pstream is not empty)

Initialize a query process to execute the plan function fn with arguments
taken from pstream

nq ← nq+1

while (nq = fanout)

res ← retrieve the result tuple from a child process

if (res is a valid result)

 tc ← tc+1

 emit res as the result of AFF_APPLYP

10 else if (res is end-of-call message)

11 nq ← nq -1

12 ack ← ack+1

13 exet ← exet + execution time of the child process to execute fn

14 if (ack =fanout) and (tc >0)

15 pre_tupt←tupt

16 tupt ← (exet / tc)

17 if (pre_tupt >0)

18 relative_error← ((pre_tupt–tupt)/(pre_tupt))

19 end if

20 if (((threshold_value < relative_error) and (not opt)) or
(pre_tupt = 0))

21 fanout ← fanout + p

22 else if (threshold_value >= relative_error)

23 opt ← true

24 end if

25 end if

26 end if

27 if (ack =fanout)

28 ack ← 0; exet ← 0; tc ← 0;

29 end if

30 end if

 115

31 end if

32 end while

33 end while

34 while (nq > 0) /* some child process left to be finished * /

35 res ← retrieve the result tuple from a child process

36 if (res is a valid result)

37 emit res as the result of AFF_APPLYP

38 else if (res is end-of-call message)

39 nq ← nq -1

40 end if

41 end if

42 end while

The algebra operator AFF_APPLYP first starts fanout (initially 2, line 1)
children processes (threads) with plan function pf. Then it starts picking
parameter tuples (line 3) one by one from pstream, to send down to the
children. When the all children have received one round of parameter tuples
(line 5), AFF_APPLYP is ready to receive results. The result stream result
from the children is delivered back to the parent asynchronously as soon as a
child process has produced a new value. When a result tuple is received from
some child it is directly emitted as a result of AFF_APPLYP (line 9). Once a
child completed the processing of a plan function for a given parameter tuple
in pstream it terminates. When the parent receives a termination message
(line 10) from a child, it will start another new child process with the same
plan function pf and passes the next pending parameter tuple (line 3) from
pstream to the new child. When there are no pending parameter tuples in
pstream (line 2) and no pending children (line 34), AFF_APPLYP is
finished. The same procedure is repeated recursively in all child processes
for each call to AFF_APPLYP.

The parallel execution plan is generated by the WSMED query processor
(coordinator q0, Figure. 22). It first generates a central plan (e.g. Figure. 18)
containing calls to the web service operations. The parallelize algorithm is
then called by the coordinator to produce a parallel query plan (e.g. Figure.
19) from the non-parallel one. Once the parallel plan is started the calls to
AFF_APPLYP will automatically start new parallel processes to form a
process tree (e.g. in Figure. 22). A query process can have an arbitrary
number (fanout) of child processes. All the children on the same level
execute the same plan function but with different parameters.

 116

Figure. 22 gives an example of a process tree generated by the WSMED
query processor for the example query in Figure. 16. The parallel plan for
the example query contains two calls to AFF_APPLYP. First the coordinator
q0 calls AFF_APPLYP that generates a binary tree with two nodes q1 and
q2. A call to AFF_APPLP is executed in each of q1 and q2. Thus
AFF_APPLYP in q1 creates a binary sub tree with children q3 and q4 while
q2 creates the children q5 and q6.

The plan function in the coordinator q0 encapsulates the web service
operation call GetAllStates, while the plan function PF1 of the processes in
level one (q1 and q2) encapsulates the web service operation call
GetPlacesWithin for different states. On level two (q3, q4, q5, q6) the plan
function PF2 calls the web service operation call GetPlaceList for different
place specifications.

Process q0 starts the children q1 and q2 with the plan function PF1.
Analogously, each AFF_APPLYP executing in level one processes starts the
children q3, q4, q5, and q6 with plan function PF2. The query processes in
level two delivers a stream of tuples containing placename and state to the
plan functions on level one that executes the web service operation
GetPlacesWithin for each received tuple. The AFF_APPLYP operator in
level one finally delivers the result stream to the coordinator process q0.

Figure. 22 Parallel process
tree

Figure. 23 Add stage Figure. 24 Add and
drop stage

Once started, AFF_APPLYP dynamically modifies the initially binary
process tree at run time. The query process locally monitors the execution
times of its children to locally add or delete children to improve performance
until no more performance improvement is expected. Consider the binary
process tree in Figure. 22.

AFF_APPLYP does the following:
1. It initially forms a binary process tree by initially having fanout = 2.

This is called the init stage.
2. A monitoring cycle for a non-leaf query process is defined as when

AFF_APPLYP has received end-of-call messages from all its children
and the total number of received result tuples is at least 1 (line 14) .
After the first monitoring cycle (line 20 when pre_tupt=0)

q0

q1

q3 q4

q2

q6q5 q10 q11

q0

q1

q3 q4

q2

q6q5 q10

q7

q8 q9

q- query process

Level 2

q0

q1

q3 q4

GetPlacesWithin

GetPlaceList
q6q5

Level 1

Result
GetAllStates

QueryCoordinator

q2

 117

AFF_APPLYP adds (line 21) p new child processes. Adding new
processes is called an add stage. In Figure. 23, p=1 and therefore query
process q0 adds one new process q7 at level 1, while q1 and q2 add q10
and q11 at level 2, respectively.

3. When an added node has several levels of children the init stages of the
children’s AFF_APPLYs will produce binary sub–trees. That is, q7 adds
q8 and q9.

4. AFF_APPLYP records per monitoring cycle i the average time ti (line
16) to produce an incoming tuple from the children.

a. If ti decreases (line 20) more than a threshold (set to 25%) the add
stage is rerun.

b. If ti increases (line 22) no more children are added. This is
indicated as opt=true (line 23). As an option a drop stage is run
that drops one child and its children (the drop stage is not shown
in the algorithm).

In Figure. 24, q2 adds q11, while q0 drops q7, and q7 drops q8 and q9.

5.4 Experimental results
For our example query, we experimented with different values of p (number
of query processes added after each monitoring cycle) and different change
thresholds, with and without the dropping query processes when an optimum
point is reached. The average fanouts of the process trees are measured. The
results for 25% change thresholds are shown in Figure. 25. We concluded
that execution (59.07 sec) time AFF_APPLYP performed best (4 times
faster) when comparing with the sequence web service invocation (244.394
sec). Further the execution time with p=4 and no drop stage performed best
and execution time with p=2 and no drop stage also showed closer
performance (88%) with the best execution time. Dropping processes make
insignificant changes in the execution time.

In general the execution time of a web service operation is not known in
prior. AFF_APPLYP is therefore a better approach to reach optimal
execution time than having a traditional static cost model.

 118

Figure. 25 Comparisons of naïve and adaptive approaches

0

50

100

150

200

250

300

Process Selection

E
xe

cu
tio

n
T

im
e

(S
ec

)..
...

...
...

...
...

Non-parallel plan p=1, no drop stage, fo1=3 fo2=3
p=1, drop stage, fo1=2 fo2=3 p=2, no drop stage, fo1=4 fo2=5
p=2, drop stage, fo1=3 fo2=3 p=3, no drop stage, fo1=5 fo2=3.4
p=3, drop stage, fo1=4 fo2=3.25 p=4, no drop stage, fo1=6 fo2=8.7
p=4, drop stage, fo1=5 fo2=4.2 p=5, no drop stage, fo1=7 fo2=7.5
p=5, drop stage, fo1=6 fo2=7.8

6. Related work
WSQ/DSQ (Goldman et al., 2000) handles high-latency calls to web search
engines by launching asynchronous materialized dependent joins later joined
in the execution plan using a special operator. In contrast, WSMED
produces non-blocking multi-level parallel plans based on streams of
parameter tuples passed to parallel sub plans without any materialization.

WSMS (Srivastava et al., 2006) proposed an approach for pipelined
parallelism among dependent web services to minimize the query execution
time. By contrast, we parallelize by partitioning parameter tuple streams.
Furthermore, WSMS didn’t propose any adaptive parallelization, lacked
support for code shipping, and couldn’t make parallel calls to the same web
service. In contrast we propose a strategy to adaptively produce a

 119

parallelized plan where AFF_APPLYP invokes parameterized plans calling
web services in parallel.

The plan function and parameter tuple shipping phase of AFF_APPLYP is
similar to the map phase of MAPREDUCE (Dean et al., 2008). However,
MAPREDUCE is not dynamically adapting query execution plans as
AFF_APPLYP and is not streamed.

In (Gounaris et al., 2008) run time adaptation of buffer sizes in web
service calls is investigated, not dealing with adaptive parallelism on web
service calls at the client side.

A reference model for dynamic web service composition is described in
the D-WSCS system (Eid et al., 2008). The monitoring module of D-WSCS
is responsible for monitoring and showing the status of the composed
services at runtime. When a composite service fails, D-WSCS is looping
back to call the same service or find an alternative service. Similarly
WSMED dynamically composes web service operations to answer an SQL
query and call the operation again if it fails. Unlike D-WSCS, WSMED is
handling adaptive parallelization of web service calls.

Parallel execution scheduling strategies that require static costs are
discussed in Taniar et al. (1999), Taniar et al.(2003) and Taniar et al.(2008).
In contrast WSMED is using adaptive parallelization that is independent of
static costs of web service calls.

The formal basis for using views to query heterogeneous data sources is
reviewed in (Ullman, 1997). Chocolate (Josifovski et al., 2003) extends the
federated database capabilities of DB2/UDB by automatically creating views
of web services from WSDL descriptions, similar to the OWF generation in
WSMED. However, unlike WSMED, Chocolate does not deal with adaptive
parallelization of the web service calls.

Query as a Web Service 8 allows users to create queries and publish them
as web services similar to the WSMED web service generator. However,
WSMED is more general by providing SQL query service to any data
providing web services based on reading the web services’ WSDL
documents.

Apache Axis 4 supports JAVA2WSDL APIs to create WSDL documents for
Java methods. Apache Axis can be plugged into web servers such as
Tomcat 5 to access Java methods as web service operations. In contrast to
WSMED’s web service generator, Tomcat needs to be restarted and the
servlet code recompiled every time a new web service operation is deployed.
The WSMED web service generator automatically generates an interface
function as a web service operation with a simple command.

Similar to WSMED’s web service generator, Oracle (Das et al., 2009)
supports access to databases as web services. Java proxy classes that
correspond to database operations are first generated. The wrappers are
compiled and deployed in an Oracle application server. In contrast to Oracle,
WSMED’s web service generator doesn’t need any proxy classes and

 120

dynamically deploys new web service operations based on interface function
signature.

The Amazon Relational Database Service 1 web service provides
relational databases in the cloud using the Amazon SimpleDB 2 that provides
a subset of SQL. The WSMED web service generator can deploy web
service operations for any RDBMS or other wrapped data sources.

7. Conclusion
WSMED provides a general relational query service over data providing
web services given their WSDL meta-data descriptions. Queries are
expressed in SQL to dynamically join data providing web services. WSMED
is accessible through a URL (WSMED Demo) from anywhere without
installing any software.

The WSMED query processor automatically and adaptively finds an
optimized parallel execution plan calling the queries data providing web
services. The algebra operator AFF_APPLYP locally adapts the parallel plan
by adding and removing children until an optimum is reached, based on
monitoring the flow between query processes. It is shown to improve query
performance substantially compared with a central plan.

AFF_APPLYP can handle parallel query plans for a query with any
number of dependent joins. We plan to generalize the strategy for queries
mixing both dependent and independent web service calls. Further we need
to investigate different process arrangement strategies with the algebra
operator AFF_APPLYP.

The WSMED service generator provides web service operations for data
sources once they have been wrapped as interface functions. The web
service generator automatically generates the WSDL document to describe
the interface functions. The generated web service operation is dynamically
deployed without restarting the web server and without writing any server
side code.

Acknowledgments This work is supported by the Swedish Foundation for
Strategic Research under contract RIT08-0041 and Sida.

References
Ceri, S. (2009) ´Search Computing’, Proceedings of the International Conference on

Data Engineering, pp. 1-3.
Das, T., Maring, S., Sapir, R., and Wiesenberg, M. (2009) ‘Oracle Database Web

Services’,
http://download.oracle.com/docs/cd/B28359_01/java.111/b31225.pdf.

Dean, J. and Ghemawat, S. (2008) ‘MAPREDUCE: Simplified Data Processing on
Large Clusters’, Communications of the ACM, Vol. 51, No. 1, pp 107-113.

Eid, M., Alamri, A. and El Saddik, A. (2008) ‘A reference model for dynamic web
service composition systems’, Int. J. Web and Grid Services, Vol. 4, No. 2,
pp.149---168.

 121

Fahl, G. and Risch, T. (1997) ‘Query Processing over Object Views of Relational
Data’, VLDB Journal , Vol. 6, No. 4 , pp 261-281.

Goldman, R. and Widom, J. (2000) ‘WSQ/DSQ: a practical approach for combined
querying of databases and the Web’, Proceedings of the International
Conference on Management of Data , pp. 285-296.

Gounaris, A., Yfoulis, C., Sakellario R.and Dikaiakos, M.D(2008) ‘Robust Runtime
Optimization of Data Transfer in Queries Over Web Services’. Proceedings of
the International Conference on Data Engineering, pp. 596-605.

Josifovski, V., Massmann, S. and Naumann, F. (2003) ‘Super-Fast XML Wrapper
Generation in DB2: A Demonstration’, Proceedings of the International
Conference of Data Engineering (ICDE 2003), pp. 756 -758.

Koparanova, M. and Risch, T. (2002) ‘Completing CAD Data Queries for
Visualization’, Proceedings of the International Database Engineering and
Applications Symposium (IDEAS 2002), pp 130 – 139.

Litwin, W. and Risch,T. (1992) ‘Main Memory Oriented Optimization of OO
Queries using Typed Datalog with Foreign Predicates’, IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 6, pp. 517-528.

Petrini, J. and Risch, T. (2007) ‘SWARD: Semantic Web Abridged Relational
Databases’, Proceedings of the 6th International Workshop on Web Semantics,
pp 455-459.

Risch, T., Josifovski, V. and Katchaounov, T. (2003) ‘Functional Data Integration in
a Distributed Mediator System’, Functional Approach to Data Management -
Modeling, Analyzing and Integrating Heterogeneous Data, pp. 211-238.

Sabesan, M. and Risch, T. (2009) ‘Adaptive Parallelization of Queries over
Dependent Web Service Calls’. Proceedings of the International Conference
on Data Engineering (ICDE2009), pp.1725-1732.

Stefanova, S. and Risch, T. (2008) ‘Viewing and Querying Topic Maps in terms of
RDF’, Proceedings of the SEMMA2008: First International Workshop on
Semantic Metadata Management and Applications.

Srivastava, U., Widom, J., Munagala, K. and Motwani, R. (2006) ‘Query
Optimization over Web Services’, Proceedings of the Very Large Database
Conference, pp. 355- 366.

Taniar, D. and Leung, C.H.C. (1999) ‘Query execution scheduling in parallel object-
oriented databases’, Information & Software Technology, Vol. 41, No. 3, pp
163-178

Taniar, D. and Leung, C.H.C. (2003) ‘The impact of load balancing to object-
oriented query execution scheduling in parallel machine environment’,
Information Sciences, pp. 33-71.

Taniar, D., Leung, C.H.C. and Wenny Rahayu, J., Goel, S. (2008)
‘HighPerformance Parallel Database Processing and Grid Databases’ John
Wiley& Sons.

Ullman, J.D. (1997) ‘Information Integration Using Logical Views’. Proceedings of
the: International Conference on Database Theory, pp. 19- 40.

Notes
1. Amazon Relational Database Service, http://aws.amazon.com/rds/.
2. Amazon SimpleDB, http://aws.amazon.com/simpledb/.
3. AmosII wrappers, http://user.it.uu.se/~udbl/amos/wrappers.html.
4. Apache Axis, http://ws.apache.org/axis/.
5. Apache Tomcat, http://tomcat.apache.org/.

 122

6. GeoPlaces, http://codebump.com /services /PlaceLookup.asmx.
7. JSoapServer, http://jsoapserver.sourceforge.net/.
8. Query as a Web Service,

http://help.sap.com/businessobject/product_guides/boexir31/en/xi3-
1_query_as_a_web_service_en.pdf.

9. QuickServer, http://www.quickserver.org/.
10. TerraService, http://msrmaps.com/TerraService2.asmx.
11. The Next Wave: Everything as a Service,

 http://www.hp.com/hpinfo/execteam/articles/robison/08eaas.html.
12. WSDL4J, http://sourceforge.net/projects/wsdl4j/.
13. WSMED Demo, http://udbl2.it.uu.se/WSMED/wsmed.html.
14. WSMED WSDL, http://udbl2.it.uu.se/WSMED/wsmed.wsdl.
15. ZCTAs (ZIP Code Tabulation Areas),

http://www.census.gov/tiger/tms/gazetteer/zcta5.txt.

