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Abstract

Frequent Route Based Continuous Moving Object
Location and Density Prediction on Road Networks

Manohar Kaul

Emerging trends in urban mobility have accelerated 
the need for effective traffic management and 
prediction systems. Simultaneously, the widespread 
adoption of GPS-enabled mobile devices has 
opened radical new possibilities for such systems. 
Motivated by this development, this thesis proposes 
an end-to-end streaming approach for traffic 
management that encompasses a novel prediction 
model. The stream processing is achieved by a 
sliding window model.

In particular, the approach performs online 1) 
management of the current evolving trajectories, 2) 
incremental mining of closed frequent routes and 3) 
prediction of near-future locations of the moving 
objects based on the current object trajectories and 
historical frequent routes. The approach proposes 
storage of closed frequent routes and all possible 
turns a moving object can make at a junction, in a 
FP-tree like structure. This structure is created on-
the-fly from the buffered contents of each 
constituent window of the trajectories stream and 
then used to determine probabilistic future 
locations of each moving object. It additionaly 
calculates the densities of moving objects and 
parked objects for the entire road network.
The prototype implements the approach as 
extensions to SCSQ - a data stream management 
system (DSMS) developed at UDBL. SCSQ is an 
extension of Amos II which is an extensible, main-
memory OO DBMS. The solution utilizes SCSQ’s 
stream manipulation and windowing capabilities 
coupled with Amos II’s functionality to efficiently 
store, index and query frequent routes for 
prediction.

The approach is empirically evaluated on a large 
real-world data set of moving object trajectories, 
originating from a fleet of taxis, showing that 
detailed closed frequent routes can be efficiently 
discovered and used for prediction.
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1
I N T R O D U C T I O N

motivation: The rapid growth of demand for transportation, and high
levels of car dependancy caused by the urban sprawl, have exceeded the slow
increments in transportation infrastructure supply in many areas. This causes
severe traffic congestion, with well-known negative effects such as increased
fuel consumption, pollution, and carbon dioxide emissions; time and associated
cost lost by motorists sitting in traffic jams; wear-and-tear on vehicles and
infrastructure resulting from stop-and-go traffic; and, last but not the least, the
inflicted stress and fatigue on motorists causing unnecessary accidents.

In dense urban areas, adding capacity through construction of new facilities is
difficult due to lack of space and prohibitive costs. A more viable approach to
cope with the congestion problem is to monitor traffic congestion, understand the
causes of its formation and development, and use the aforementioned knowledge
in traffic management systems and transportation planning to mitigate traffic
congestion.

Early systems for traffic prediction and management have primarily used punc-
tuated speed and flow measurements from fixed location sensors in conjunction
with traffic models to tackle the prediction and management tasks. More re-
cently, the wide-spread adoption of GPS-based on-board navigation systems
and location-aware mobile devices have enabled radically new possibilities.
This thesis aims to contribute to GPS-based traffic prediction and management
systems.

In such systems, in order to improve the accuracy, it is common to use the
trajectories of the moving objects [9],[1],[2] as follows. It is assumed that vehicles
periodically submit their location to a central server. In turn the server extracts
traffic/mobility patterns from the submitted locations. The extracted patterns,
together with the current locations of the vehicles, are both used in short- and
long-term traffic prediction, management and planning tasks. Additionally, the
current and near-future traffic conditions are sent in real-time to the vehicles
likely to be affected. It is a central requirement of such systems that the data
collection, data analysis, and subsequent notifications are processed with online,
near-realtime timeliness.

The detection of future movement patterns can furthermore be used to optimize
the design of location based services (LBS). The services offered to a moving user
could not only be dependent on the actual position, but also on the estimated
future location of the moving object.
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Examples of typical queries a traffic logistics operator might pose can be as
follows:

1. Given the current state of a vehicle’s evolving trajectory and its historical
trajectories, provide predicted future locations of this vehicle at exactly five

minutes in the future and perform such a query every ten minutes.

2. What will the top five most dense road segments be at exactly ten minutes
from now?

3. How many vehicles will still be in motion at five minutes from now?

4. How many vehicles will end their trips at five minutes from now?

Motivated by these needs, it becomes evident that the answer lies in a prediction
model that can be formulated as a continuous query (CQ) as the knowledge of
future locations changes with time and has to be constantly monitored.

Regular queries are run in an ad-hoc fashion where the user submits a query and
gets back results on termination of the query’s execution, wheras continuous
queries (CQ) are started once, and they keep executing the query at set time
intervals to return results. CQs are terminated when a stop condition is satisfied
or when the user explicitly terminates them.

challenges : GPS devices and/or roadside sensors provide (timestamp,location)

samples at discrete time intervals in a streaming fashion. These locations are
then aligned on the road network by a map-matching algorithm to produce
moving object trajectories. Traditional methods assume that either entire trajec-
tories are availabe in a static Moving Objects Databases (MOD) or trajectories are
evolving and the MOD is constantly being updated to reflect the latest state of
the trajectories. In either case, there is a need to store every trajectory on disk in
order to predict near future positions. Assuming that the rate at which these
location updates arrive to the central server is increased drastically, due to more
vehicles on the road or finer sampling intervals, storing and querying the MOD
will result in degraded performance quality. Possessing the ability to compress
the historical trajectories and attempting to maintain a near constant query time
with high speed location update streams poses a new challenge.

Efficient execution of CQ in a streaming environment adds new challenges.
Techniques developed for traditional databases cannot be applied directly or
adapted easily for streamining data. Streaming data is highly dynamic in nature
with its characteristics constantly changing over time.

Prediction also presents a set of key challenges. In realistic traffic scenarios one
cannot make assumptions about the motion of objects; such as objects always
following the shortest path/route between two points [21] or possessing prior
knowledge of an object’s final destination [20].

In an attempt to refine the problem by relaxing some crucial assumptions,
interesting challenges present themselves. For example, on approaching an
intersection, how can a vehicle’s future location be determined at exactly n

time units from now? At every junction, can we assume that a vehicle is equally

likely to follow the connected on-going road segments? Does the knowledge
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of a vehicle’s past movement patterns manifest itself as higher accuracy in
prediction of future locations? The aforementioned questions form the base of
the hypothesis of this thesis.

proposed solution and contributions : In this thesis, the trajectories
considered are incrementally evolving and are submitted continously to a central
server as parts of the trajectory become available. The following tasks are
performed on the server:

1. Evolving trajectories of moving objects are recieved in a streaming fashion.
In real-world situations, there is an inherent uncertainity in the location
of a moving object between trajectory samples. An advantageous side-
effect of streaming, is that reducing the sampling interval of GPS reads
can reduce the location uncertainity [46] introduced between consecutive
samples while the streaming solution can still scale well.

2. The incoming stream is split into two streams, say S1 and S2, where S1 is
used for mining frequent routes and S2 is used for prediction CQs.

a) The frequent routes are incrementally mined in streaming fashion
from S1, using a Data Stream Management System (DSMS) and contigu-
ous historical patterns. This avoids storage of excessive amounts of
mined routes and serves as a mechanism to capture the history of
object trajectories in a compact format. These patterns are annotated
with the average traversal times of vehicles over each road segment,
thus we are equipped with temporal information intrinsically.

b) Predictive CQs are now carried out on "new" incoming partial tra-
jectories in S2, in conjunction with the results obtained from mining
stream S1. These CQs make use of a novel movement prediction
model.

In summary the main contributions of this thesis are:

1. Proposition of a novel prediction model to answer future CQs and provide
a way to make more informed predictions based on historical closed
movement patterns collected.

2. Formulation of new CQs that capture probabilistic future locations of
moving objects, objects that will stop/park and compute the network
density [21] i.e. the total number of vehicles on a unit length road segment
at a given time instant in the future.

3. Accurate distribution of location probabilities based on historical knowl-
edge captured in closed patterns.

4. The evaluation of the performance and accuracy of the approach is em-
pirically evaluated on a large real-world data set of moving objects to
demonstrate the efficiency in discovering detailed closed frequent routes
with potentially high predictive utility in an incremental fashion.
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The rest of the thesis is structured as follows. Chapter 2 describes related work.
Chapter 3 gives an overview of the technologies used. Chapter 4 provides
formal definitions of the problem statement and other concepts used. Chapter 5
briefly describes the closed mining procedure. Chapter 6 shows the components
involved in the system’s architecture and how they interact with one another.
Chapter 7 explains the crux of this thesis which is the prediction model and
its underlying algorithms. Chapter 8 provides insight into the data flow of the
system and illustrates with code snippets how information is streamed from one
component to another. Chapter 9 outlines the experiments that were carried out
followed by Chapter 10 which presents the conclusion and future work.
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2
R E L AT E D W O R K

Predictive Query Processing has lately been the focus of many research groups. The
broader taxonomy of current research in location prediction models, as shown
in Figure 2.1 is classified at the highest level as Free terrain models where land
surfaces are modelled as 2-D euclidean space, on which the object’s movements
are unrestricted and road network based models where the motion of objects is
restricted by the road network’s topology. Free terrain models can further be
classified into linear models [17], [35], [34], [23], [16] and non-linear models (E.g.
polynomial movement models, recursive motion function (RMF)) [39], [3]. Road
network based models can be classified as ones that form predictions based on
short movement history while ones that base predictions on larger collections of
past movement patterns.






 






Figure 2.1: Taxonomy of Location prediction models

In a linear prediction model, given an object’s initial position p0 and velocity
v0 at time t0, the future position at time tf is given by the formula : p(tf) =
p0 + vo.(δt) where δt = tf − t0

Linear models fail to capture turns in trajectories. Non-linear motion functions
provide higher prediction accuracies as they capture object trajectories by ap-
plying more advanced mathematical equations. The Recursive Motion Function

(RMF) [39] provides the most accurate prediction among the linear and non-
linear models. The RMF uses a very short history of movement patterns and
can capture smooth motions but falls short when vehicles take sudden turns at
junctions or take u-turns. RMF can also exhibit drastically incorrect results with
small increments of the future time parameter in the predictive query.

Brilingaitė [6] suggests recording and storing past historical routes of objects
to perform time and location queries against this information to predict a
future location. The solution appears not to scale well as the trajectory database
expands over time.

Kim et al. [20] assume that final destinations of all vehicles are known apriori.
This thesis strays away from such pre-conditions.

Jeung et al. [18] and Pinelli et al. [27] employ a clustering algorithm to group and
cluster trajectories in a MOD and form regions. A region’s density is calculated by
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the number of distinct trajectories that cross the region in question. In addition
they assume that these clusters are non-overlapping. These approaches provide
predictions at a higher granularity level i.e. regions as opposed to this thesis’
approach which tracks vehicles down to the road segment level.

The ability to finally aggregate individual probability distributions of each
moving object warranted investigation into current state of the art literature
regarding nework density predictions of road networks. Kriegel et al. [21]
and Hadjieleftheriou et al. [13] both analyze and predict traffic density in a
network. They employ statistical approaches which are based on short-term
observations of traffic history. The main difference between these ideas is that
the Hadjieleftheriou et al. assumes that the object trajectories are known in
advance while Kriegel et al. doesn’t make such an assumption. The Kriegel et al.
approach assumes that each and every object on the road network acts rationally
by choosing the shortest path to its destination. However, such an approach may
not be completely realistic as sometimes vehicles have to take detours due to
road works and many times drivers choose to drive on paths known to them
with familiar landmarks, which may not necessarily be the shortest possible
path [28].

Another approach by Shekhar et al. [36] derives current traffic data from sensors
placed at certain road segments in the road network. The data from these sensors
are collected in a large data warehouse and used to deduce traffic patterns. It
differs in its aggregation analysis approach as it aggregates traffic at strategically
placed sensors on road segments instead of observing single moving object
trajectories.

Jeung et al. [19] follow an approach closest to this thesis’ approach, where they
propose a network mobility model that consists of (i) turning patterns at road
junctions and (ii) mined travel speed on road segments. They then employ a
maximum likelihood and greedy algorithm to predict the future travel segments
of a moving object/vehicle. The difference being that my thesis uses both histor-
ical closed patterns and turn patterns to form a foundation for the prediction
model.
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3
B A C K G R O U N D T E C H N O L O G I E S

This chapter provides an overview of the technologies used in this thesis. We
address the areas of data stream management systems and their relevance to
the problem tackled in this thesis.

3.1 data stream management system (dsms)

Traditional databases have been used in applications that require persistent data
storage and simple or complex querying. Usually, a database consists of a set of
objects, with data manipulation activities like insertion, updates and deletions,
occurring less frequently than queries. Adhoc queries are issued and the result
reflects the current state of the database object queried, that satisfies the query’s
conditions.

A recent proliferation of data collection devices shapes a new set of challenges
that do not align with the static storage and ad-hoc querying paradigm. Infor-
mation now has to be viewed in the context of a high-speed, high-volume stream

of data values which cannot be stored on disk and has to be queried on-the-fly.
Some known examples of such streaming data include sensor data [5] , internet
traffic [38] [11] and traffic updates.

A data stream is real-time, continuous and infinite sequence of items. The chief
constraints on streaming data are that there is no control over the order in which
items arrive for processing and it is not possible to store an entire stream on
disk. A DSMS is employed to run queries called "Continuous Queries (CQ)" [22]
[8] which run for a given period of time over these data streams and continuously

generates results.

In this thesis, the data stream is generated by GPS enabled moving objects on a
road network. The input stream is a time ordered sequence of (veh, seg_id, δt)
tuples where veh denotes a vehicle identifier, seg_id represents a road segment
and δt is the time it takes veh to traverse road segment seg_id.

A DSMS generates sliding windows over the incoming data stream. The sliding
window provides the user with a snapshot of the stream at any given time
instant. The advantage of this approach is that the data in the current window
reduces to a virtual relation which can then be processed by relational operators.

In general, every window has a start marker S and end marker E. The window

size is defined as the distance between the markers E and S and the window stride

is defined as the movement of both S and E by a fixed amount. Two types of
windows are allowed; When the window is defined in terms of a time interval it
is time-based while count-based windows are defined in terms of number of
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items. So in a time-based context, the markers can be seen as timestamps while
in the count-based model they are to be viewed as item indices.

As the traffic data is generated as a stream of timestamped location updates, the
time-based windowing model was used extensively. CQs were written based on
the output of the time-based windows. Amos II (explained in a later section) ,
a main memory object-oriented DBMS was used to implement the relational
operations on the data in each window.

3.2 amos ii and amosql

AMOS II [31] [33] [32] is a distributed mediator system that allows heterogenous
data sources to be reconciled through a wrapper-mediator approach, where wrap-
pers provide a common model for the different data sources and the mediator
combines these views provided by the wrapper.

In standalong mode, Amos II is an extensible, main memory, OO DBMS that
uses a functional query language called AmosQL to express both object-oriented
and functional queries. Data is stored in the form of objects that model the user-
defined and real-world entities. Furthermore, functions describe the properties
and semantics of objects and the relations between participating objects.

Amos II can be extended by external interfaces [30] to regular languages like
ANSI C, ALisp [29] (a common lisp subset) and Java. Amos provides a callin

interface which allows external programs to use Amos II functionality. Addi-
tionally, it provides a callout interface to call foreign functions implemented in C,
ALisp or Java.

This thesis took advantage of Amos II’s Vector datatype which allowed for very
efficient formation of evolving trip trajectories and compact storage. The mining
algorithm to extract frequent routes and the prediction model to generate
location predictions were both implemented as foreign functions in C. The
DSMS’s sliding window feature provided the inputs to these foreign functions.
The output of these foreign functions was then re-introduced back to Amos II as
objects that could then take advantage of all the querying features provided by
Amos II.

3.3 scsq

SCSQ is a data stream management system built on top of Amos II with added
facilities for querying of large volume, distributed streams through its high-level,
declarative, continuous query language SCSQL and its highly scalable stream
splitting facilities [45] [44] [10]. SCSQL is an extension of AmosQL but extended
with parallel stream query facilities. SCSQ’s stream operators were used in the
thesis to perform the time-based windowing of the incoming streams.
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4
P R E L I M I N A R I E S A N D D E F I N I T I O N S

The following section first defines a formal framework for road network based
continuously evolving trajectories of moving objects. Then, it defines the tasks
of mining closed frequent routes from finite sets and unbounded streams of
such trajectories. Finally, based on the extracted knowledge it defines the tasks
of continuous moving object location- and density prediction on road networks.

4.1 road network based routes of moving objects

Let O = {o1, . . . ,oM} be a set of moving objects. Let the time domain be denoted
by T and be modeled as the totally ordered set of natural numbers N0. Then,
the free terrain movement model describes the continuous movement of a moving
object in the 2D Euclidean space with a Euclidean trajectory:

Definition 1. The Euclidean trajectory of a moving object o ∈ O is a sequence

of timestamped locations troeuc = �l1, . . . , ln�, where li = (xi,yi, ti), x,y ∈ R, and

ti ∈ T.

The movement of vehicles, the object of interest in this paper is by large restricted
to movement on road networks. A typical geographical representation of a road
network [7] [15] models the transportation infrastructure in the 2D space as
follows.

Definition 2. Let B ⊂ R2
be the set of base points. A polyline is a sequence

pl = �b1, . . . ,bk� of base points bi ∈ B. A part of a polyline that connects two

consecutive base points is referred to as a line segment, ls, or segment for short, and

belongs to LS ⊂ B2
. Roads in the network-represented polylines only connect to each

other at connections, C ⊂ B, which are locations where there is an exchange of traffic.

Consequently, a road notwork is defined by the triplet R = (B, LS,C).

Given such a road network representation, an alternative and more realistic
movement model, the road network based movement model describes the continuous
movement of a moving object on the road network with a road network based

trajectory as follows.

Definition 3. The road network based trajectory of a moving object o ∈ O is a

pair tr
o
net

= (ts, snet), where ts denotes the starting time of the trajectory and snet =
�(ls1,∆t1), . . . , (lsm,∆tm)� is a temporally annotated sequence, i.e., a sequence of

pairs of traversed segments lsi ∈ LS and associated traversal times ∆ti, where ∆ti
denotes the time it took o to traverse segment lsi, also denoted as ∆to(lsi).

In the following, the term ‘road network based’ is omitted from the term ‘road
network based trajectory’, and unless explicitly stated otherwise, the term
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‘trajectory’ refers to ‘road network based trajectory’. Similarly, in the following,
the ‘net’ subscript is omitted from the notations tr

o
net

and snet.

Considering the movement of an object o ∈ O, the number of elements in the
sequences of tr

o
euc and tr

o
net

are not equal, i.e., n �= m. In particular, several con-
secutive timestamped locations in tr

o
euc can be associated with a single element

(lsi,∆ti) in the sequence snet, and two consecutive timestamped locations in tr
o
euc

can be associated with several consecutive elements in the sequence snet.

4.2 trip trajectories of moving objects

Most objects do not move continuously, but rather remain stationary for some
time after having reached their respective destinations. These movement pauses
naturally subdivide the trajectory tr

o of an object o ∈ O into a sequence of
trip trajectories �tro[1], . . . , tr

o[r]�. The end of a trip trajectory of an object can
either be explicitly signaled by the object, or can be automatically inferred by
spatio-temporal analysis of the trajectory. A trip trajectory tr

o[i] of o is modeled
in the same way as an object trajectory. In subsequent usage the term ‘trip’ is
omitted from the term ‘trip trajectory’ when the distinction can be inferred from
the context.

For privacy reasons and from an application perspective it is reasonable to as-
sume that the location of a moving object is not always sampled. Consequently,
the sequence of trip trajectories of a moving object does not form a spatially con-
tiguous trajectory. This is illustrated by the trajectory and trip trajectories of an
object that moves on a street grid, shown in Figure 4.1. In Figure 4.1, a connection
in the street grid is referenced by the concatenation of its x and y coordinates,
and a directed segment is referenced by a concatenation of the references of the
starting and the ending base points of the directed segment. For example, the con-
nection labeled as A is referenced by 02 and the directed segment from connec-
tion A to connection B is referenced as 0212. Figure 4.1 shows 3 trip trajectories,
tr
o[1], tr

o[2], and tr
o[3] (path along solid black arrows) of an object o’s trajectory

(path along both solid black and dashed gray arrows) starting at connections
02, 90, and 63, at times ts1 = 0, ts2 = 50, and ts3 = 90, respectively. The first trip
trajectory tr

o[1] starts at connection 02 (A) at time 0, ends at connection 62 (C) at
time 13, and, given that the numbers above the segments denote traversal times,
is represented by the pair (0, �(0212, 2), (1211, 1), (1121, 1), (2131, 1), (3132, 2),
(3242, 2), (4252, 2), (5262, 2)�). During the period between time 13 and time 50,
the object has moved from connection 62 to 90. The trajectory for this movement
is indicated by the path along the dashed gray arrows in the figure, but for the
previously mentioned reasons it is excluded from the object’s sequence of trip
trajectories. The description of the remaining parts of the object’s trajectory is
self explanatory.
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Figure 4.1: Trip trajectories of a trajectory.

4.3 continuously evolving trajectories

In an online setting, as an object o ∈ O moves, its trip trajectory tr
o[r] is evolving,

i.e., it is continuously extended at the end of the sequence by appending the
segment that o has most recently traversed. A single extension of tr

o[r] is
referred to as a trajectory piece and the i-th trajectory piece is denoted by tp

o

i
[r]. A

trajectory piece tp
o

i
[r] of o is modeled in the same way as an object trajectory. As

a trajectory piece tp
o

i
[r] = (tsi, (lsi,∆ti)) can only be formed when the object o

has completly traversed the segment lsi, the trajectory piece tp
o

i
[r] is implicitely

associated with an arrival time t_arr = tsi +∆ti. A sequence of trajectory pieces
�tpo

i
[r], . . . tp

o

k
[r]� of a trip trajectory tr

o[r] of object o for trip r forms a contiguous

trip sub-trajectory of object o for trip r if ∀k such that i � k < j, tsk +∆tk = tsk+1.

4.4 frequent route mining

Sequential pattern mining, first defined in [4], is a well-researched topic [37]
[25] [26]. A simplified version of the sequential pattern mining task is defined
as follows. Given a set of element sequences S = {s1, . . . , sn}, the basic task
requires counting the number of sequences si = �e1, . . . em� ∈ S that contain, or
support, a given sequential pattern p = �e �

1
, . . . , e �

l
�. si supports p iff there exist

an index sequence 1 � i1 < . . . < il � m such that e �
j
= eij ∀j where 1 � j � l.

Consequently, the simpified sequential pattern mining task is defined as finding
all sequential patterns that are supported by at least min_sup sequences.

Given the previous definitions the frequent route mining task can be formulated
similar to that of the simplified sequential pattern mining task as follows. Given
a set of objects O = {o1, . . . ,oM}, a set of their trip trajectories TR = {tr1, . . . , trT }

in which tri represents a particular trip trajectory tr
oj [r] of object oj ∈ O for trip

r, the basic task requires counting the number of trip trajectories tri = (tsi, si) ∈
TR (where si = �(ls1,∆t1), . . . , (lsm,∆tm)�) that contain, or support a route (a
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temporally annotated sequence) r = �(ls �1,∆t �
1
), . . . , (ls �l,∆t �l)�). tri supports r, or

r is a sub-sequence of si, equivalently denoted as r � tr
o

i
and r � si, respectively,

iff there exist an index sequence 1 � i1 < . . . < il � m such that ls
�
j = lsij

∀j where 1 � j � l. The temporal annotation of the route, i.e., the traversal
time of a given segment of the route is defined to be (and is calculated as)
a sequence aggregate of the traversal times of the corresponding segment of
the trajectories that support the route. For example, when the aggregate is the
arithmetic average1, for a route r = �(ls �1,∆t �

1
), . . . , (ls �l,∆t �l)�), the traversal time

of segment ls
�
j ∈ LS for 1 � j � l is:

∆t �j =

�
{∆t(·)(ls �j) : r � tri, tri ∈ TR}

|{tri : r � tri, tri ∈ TR}|
.

Effectively, the traversal times of segments in trajectories are not considered in
determining the support of a route, but are instead calculated as an aggregate of
the support set. Consequently, the frequent route mining task is defined as finding
all routes that are supported by at least min_sup trajectories.

As a frequent route r with n segments has 2n − 2 frequent proper non-empty

sub-routes (most of which have the same support as r and are hence largely
redundant), the task is further refined to mining only closed frequent routes. A
route rc is a closed frequent route iff sup(rc) � min_sup and there exists no frequent
extended route re such that rc is a proper subsequence of re, i.e., rc ≺ re, and
the support of rc is equal to the support of re, i.e., sup(rc) = sup(re).

Finally, a frequent route does not encode the absolute traversal period-, but rather
only encodes the aggregated traversal duration of every one of its constituent
segments. Consequently, a frequent route in which segments are not spatially
connected, i.e., have a ‘gap’, can only ambiguously describe the movement of
its supporting objects. More concretely, such a frequent route does not contain
any spatial or temporal information about the object’s movements between
the end of the segment before the gap and the beginning of the segment after
the gap. Such frequent routes with gaps have limited use for moving object
location- and density prediction. Hence, the task is further refined to mining
only contiguous frequent routes. A route r is a contiguous frequent route iff r is
contiguously supported by at least min_sup trajectories. A trajectory tri = (tsi, si) ∈
TR contiguously supports r, or r is a contiguous sub-sequence of si, equivalently
denoted as r �c tr

o

i
and r �c si, respectively, iff there exist an index sequence

1 � i1 < . . . < il � m such that ij+1 − ij = 1 ∀j where 1 � j < l and ls
�
j = lsij ∀j

where 1 � j � l.

Given the continuously evolving nature of trip trajectories, trip trajectories of
objects o ∈ O are not observed as a finite set of trip trajectories TR, but rather as
a continuous Stream of timestamped trip Trajectory Pieces of objects, denoted as STP.
Formally, an STP is an unbounded ordered sequence �e1, e2, . . .� of elements
where every element is a three-tuple ei = (oi, tp

i
, t_arri) in which tp

i
represents

a particular trajectory piece of object oi (for some trip) with arrival time t_arri

1 Other potentially meaningful sequence aggregate alternatives include the last function and the
family of (temporally) decaying average functions. In the current proposal the simple arithmetic
average is used.
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and t_arri � t_arri−1 for i > 1. Mining frequent routes from an STP is facilitated
by adopting a commonly used temporal sliding window processing model for
streams as follows. Given a stream of trajectory pieces STP of objects O, temporal
sliding window parameters window size twsize ∈ N and stride twstride ∈ N, and
support threshold min_sup, the online closed contiguous frequent route mining task
is defined as finding for each twstride-slide of the temporal window (identified by
the time interval (tc − twsize, tc]) at current time instance tc ∈ (a× twstride + twsize)
where a ∈ N+ all closed contiguous frequent routes in the contiguous trip
sub-trajectories of objects that are formed by the trajectory pieces of objects
which have an arrival time that falls within the time interval (tc − twsize, tc]. For
the remainder of the thesis, unless the emphasis is needed, the terms ‘closed
contiguous frequent route’ and ‘pattern’ are used synonymously.

4.5 moving object location and density prediction

The motivation of mining frequent routes is to utilize a relevant subset of the
extracted historical patterns in the fundamental task of predicting the near-
future location of an object on the road network given its recent trip trajectory.
The task is formally defined ad follows.

Definition 4. Moving Object Location Prediction: Given a road network R =
(B, LS,C), a set of closed contiguous frequent routes FR(min_sup), and the contiguous

trip sub-trajectory �tpo
i
[r], . . . tp

o

k
[r]� of object o for its current trip r up to the current

time tc, for all segments lsi ∈ LS calculate the probability that o will be located on the

segment lsi at the prediction time tp � tc, denoted as Pr(lsoi |tp).

Subsequently the derived task of predicting the density of objects on the road
network in the near-future is formulated as follows.

Definition 5. Road Network Density Prediction: Given a road network R =
(B, LS,C), a set of closed contiguous frequent routes FR(min_sup), and the contiguous

trip sub-trajectories of a set of object O up to the current time tc, for all segments

lsi ∈ LS calculate the expected number of objects that will be located on the segment lsi

at the prediction time tp � tc, denoted and calculated as E (lsi|tp) =
�

o∈O
Pr(lsoi |tp).

Adopting the previously introduced temporal sliding window processing model
for streams the online versions of the afore defined tasks can be formulated as
follows.

Definition 6. Online Moving Object Location Prediction: Given a road network

R = (B, LS,C), a stream of trajectory pieces STP of objects O, an object o ∈ O,

temporal sliding window parameters window size twsize ∈ N and stride twstride ∈ N,

temporal mining window parameters mining window lag tm
wlag

∈ N and mining
window size tm

wsize
∈ N, and prediction time tp, at every current time instance

tc ∈ (a× twstride + tm
wlag

+ tm
wsize

) where a ∈ N, based on the set of closed contiguous

frequent routes FR(min_sup) for period (tc − tm
wsize

− tm
wlag

, tc − tm
wlag

] and the most

current contiguous trip sub-trajectory of o for period (tc − twsize, tc], for all segments

lsi ∈ LS calculate Pr(lsoi |tp).
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Definition 7. Online Road Network Density Prediction: Given a road network

R = (B, LS,C), a stream of trajectory pieces STP of objects O, temporal sliding window

parameters window size twsize ∈ N and stride twstride ∈ N, temporal mining window

parameters mining window lag tm
wlag

∈ N and size tm
wsize

∈ N, and prediction time tp,

at every current time instance tc ∈ (a× twstride + tm
wlag

+ tm
wsize

) where a ∈ N, based

on the set of closed contiguous frequent routes FR(min_sup) for period (tc − tm
wsize

−
tm

wlag
, tc − tm

wlag
] and the most current contiguous trip sub-trajectories of objects o ∈ O

for period (tc − twsize, tc], for all segments lsi ∈ LS calculate E (lsi|tp).
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5
C L O S E D F R E Q U E N T R O U T E M I N I N G I M P L E M E N TAT I O N

5.1 design background

The prototype implementation of the proposed online frequent route mining
system consist of two main parts: a trip management module and a frequent
closed route mining module. The former serves the purpose to maintain and
filter the current trip set so that only the intersections of the available trips with
the next mining window are passed to the mining module, which then performs
the actual frequent closed route detection.

In the current prototype the trip management module is implemented as a
simple list of “active” trips (active in the sense that they are relevant for the next
mining run, because they have a non-empty intersection with the next mining
window) together with an array-based access structure for incomplete trips, so
that incoming partial trips can be chained to their already known prefix. The
array structure is simply indexed by the vehicle/moving object identifier, since
there can be at most one incomplete trip per vehicle/moving object.

The mining module works, like many frequent item set and frequent sequence
miners do, by growing patterns in a depth-first fashion. That is, the search
commences, on the top level, with single segment patterns, which are then
recursively extended by appending one segment in each recursion step. As the
data structure we use a simple flat array representation of the trips, into which
we keep references to the current ends of the pattern occurrences in order to be
able to quickly find and group possible pattern extensions. These extensions are
collected with a technique called occurrence deliver in [40] [41] :the suffixes of the
trips after the end of each pattern occurrence are traversed and the occurring
segments are collected. In this way it is possible to efficiently form lists of the
ends of the occurrences of all pattern extensions, which are then processed
recursively.

5.2 closedness checks in trajectories

The most demanding part of the mining module is the check whether a given
frequent pattern is closed. In principle, there are two strategies how one may
carry out this check. The first, which is popular in frequent item set mining, uses
a repository of already found (closed) frequent patterns and checks whether
there exists a superpattern in the repository that has the same support. If this
is the case, the pattern is not closed (and neither are any of the superpatterns
that would be explored in descendant nodes in the search tree). After having
been used in CLOSET [24] and CHARM [43], a particularly efficient variant
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of this approach was developed in [12], where an improved FP-growth [14]
implementation was enhanced by FP-tree structured conditional repositories.
The alternative to a repository is a direct check of possible superpatterns and
their support by generating and testing all possible extensions of a given pattern.
This approach has successfully been used for frequent item set mining, for
instance, in LCM [40] [41].

According to the results reported in [42], the repository approach has certain
disadvantages for frequent sequence mining. The main reason seems to be that,
in contrast to frequent item set mining, the order of the items matters, due to
which the pattern space cannot be structured quite as nicely. In particular, it
cannot be ensured that for any pattern its superpatterns occur only as search
tree descendants or in search tree branches that are traversed before the branch
of the pattern itself. This makes it necessary to search the repository not only
for super-, but also for subpatterns and to replace such subpatterns if they have
the same support as the current pattern. As a consequence, the direct check of
pattern extensions is the preferred strategy, which is therefore used in [42] and
which we also adopted.

Extensions of the current pattern that are formed by appending segments are
easily handled: these are considered in the recursive processing and thus it
suffices to return from the recursion the highest support of such an extension in
order to check for a closed pattern. The problem resides with extensions that are
formed by prepending segments before or (worse) inserting segments between
the items of the pattern under consideration. In order to test efficiently whether
any of these extensions has the same support, we exploit (as a simplification
over the more general BIDE algorithm [42]), that in our data a segment cannot
occur more than once in each trip. As a consequence, any pattern can occur at
most once in each trip, which makes it possible to use a single static flat array
structure to represent all occurrences of a pattern under consideration.

Note that this representation of the occurrences of a pattern can easily be
extended to yield the occurrences of extended patterns by drawing on the
extension lists that were collected by the occurrence deliver technique (see
above). Hence it is not necessary to find the occurrence of a pattern from scratch
if this pattern is to be checked. The actual check is then carried out as follows:
with the pattern occurrences we know where each segment of the pattern
occurs in the trips. We traverse the possible insertion points (before the first and
between any pair of pattern segments) and for each of them we successively
intersect the sets of intermediate segments in the actual trips. As soon as the
intersection gets empty, we know that there does not exist an extension segment
for the current insertion point that can yield the same support, because there
is no intermediate segment that exists in all pattern occurrences. If, however,
there exists an insertion point where the intersection of the sets of intermediate
segments is not empty after all pattern occurrences have been processed, we
know that there exists a superpattern with the same support: we can insert any
of the segments in the intersection.

Note that the check of the insertion points is carried out before appending
segments, so that no patterns that are non-closed due to inserting or prepending
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segments are ever extended. If a pattern passes the check and the recursion
which appended segments returns with a maximum extension support less than
the support of the current pattern, we know that the pattern is closed and hence
it is reported (provided it is frequent). Otherwise the pattern is ignored.

In addition to the condition that a pattern must be closed and frequent to
be reported, our prototype implementation allows to constrain the size of the
patterns by specifying a minimum and a maximum number of segments.
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6
S Y S T E M A R C H I T E C T U R E

This chapter outlines the overall client-server architecture. The components and
events that take place are outlined in the Figure 6.1 below along with detailed
descriptions of each action.
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Figure 6.1: System Architecture.

6.1 map matching

The map matching algorithm aligns the incoming GPS coordinates to the closest
road segment on the road network. This algorithm has to cater for noise removal
because GPS coordinates are measured within certain tolerance limits and
hence may or may not correctly align with the geometry of the road network’s
segments. On completion of the alignment phase, the map matching algorithm
collates the GPS coordinates to form road segments and outputs a stream of
tuples. Further details of the map matching algorithm’s functionality are out of
scope of this thesis.
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6.2 tuples stream in scsq

The client outputs a stream of tuples of the form <t_sub, veh, seg_id, delta_t>
where

• t_sub = the submission timestamp,

• veh = an identifier for the vehicle by the application,

• seg_id = an identifier for the road segment assigned by the client and
maps to a known road segment on the road network and

• delta_t = the time taken by veh to traverse seg_id

These incoming tuples are converted to a Stream Object in SCSQ, which allows it
to then be easily manipulated for querying. SCSQ is responsible for performing
a split operation to split the stream into two duplicate streams for feeding into
the mining process and prediction process respectively.

6.3 mining stream in scsq

After a stream split operation in SCSQ, a stream is registered to the closed
sequence mining algorithm. As an illustration in Figure 6.1, the mining window
has a size of 3 time units and the sliding window has a stride of 1 time unit. The
mining stream continues to run in synchronization with the prediction stream.
The frequent routes from the mining stream are continuously written to the
Knowledge Store, from which the prediction stream extracts the frequent routes
for prediction.

The outputs are stored as follows:

• t_start = the window’s start timestamp

• t_end = the window’s end timestamp

• Temporally Annotated Sequence (TAS):

– pv = closed pattern vector

– tv = corresponding traversal time vector

• supp = support of the closed pattern

Note: The t_start and t_end are indexed with B+-tree indexes for faster retrieval.

The closed sequences that are continously mined are stored in an Amos II stored
function. This produces a very compact footprint of the trajectories that are seen.

6.4 prediction stream in scsq

After the stream split in SCSQ, a stream is registered to the prediction algorithm
which performs future location predictions on the actual evolving trajectories
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in the stream. In Figure 6.1, the current trajectory window has a size of 2 time
units and the sliding window has a stride of 1 time unit.

Note The window size for mining has to be larger than the current trajectory
window size; this is done in order for the prediction CQs to be able to extract
longer patterns that potentially match the future segments of the evolving
trajectory.

6.5 continuous query (cq) in sccsq

Several CQs can be run in order to extract future traffic predictions such as
future moving vehicle locations, future parked vehicle locations, future network
density. For example, a CQ that computes the future location of a moving object
gets input from

1. the current trajectory stream and computes the latest trip of the vehicle
marked as 6a in Figure 6.1

2. the appropriate historical closed pattern from the knowledge base. The
closed pattern must correspond to a time window which overlaps with the
current trajectory window’s t_start and t_start + ftime where ftime is
the future time interval in seconds. Marked as 6b in Figure 6.1

3. the prediction model is applied to the results from 6a and 6b to to arrive
at the final results. Note that the Knowledge Store is a stored function in
Amos II that enables ease of querying and retrieval of patterns. Marked as
6c in Figure 6.1

CQs piggyback on SCSQ’s ability to generate a stream of tuples which form the
basis for CQs. The CQ continues to run in SCSQ as long as there is a current
trajectory stream and outputs results. These results are then summarized and
sent back to the client routing unit as traffic prediction updates, which the client’s
routing unit can interpret as a signal to recalculate and reroute to a more optimal
path to the destination.

Chapter 8 highlights the SCSQ code that was written in order to achieve the
aforementioned functionality.
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7
P R E D I C T I O N M O D E L

The main underlying philosophy of studying frequent routes is that trajectories
traced by moving objects on a road network are constrained by the topology
of the road network and are not completely random events. In fact there is
a noticable semblance of order in traffic behaviour mixed with unexpected
anomalies like traffic jams. Its the knowledge of past ordered events in the form
of frequent routes that forms the tenet of our proposed prediction model whose
aim is to predict future locations of moving objects.

To get an intuitive understanding of the prediction task, consider Figure 7.1. It
comprises of road segments labelled "a" to "l" and a moving object shown as a
white rectangle. Let "tc" denote the current point in time at which a prediction
query is issued, the moving object is located at the end of segment "b" at time
"tc" and has traversed the path "a → b" to get here. The dotted circle can be
calculated to be the maximum upper bound of where the moving object can
be at a future point in time "tc + δt" by taking into account the moving object’s
current location, maximum object movement speed and the maximum speed
limits of the road segments. Hence, in the example at time "tc + δt" the moving
object can be on road segments - c, d, h, i or k (assuming no u-turns). It is the
task of the prediction model to assign probabilities to the event of this moving
object to be located on any of the aforementioned road segments.




 








 


Figure 7.1: An example of path prediction of moving object

Due to the complex nature of the prediction model, the model is described
with a running example of a sample road network and some sample trajectories
traced over this sample road network. Then, a detailed look is taken at the
algorithms employed in the prediction model referring to the same running
example.
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7.1 running example

For purposes of formalization, the sample road network (Figure 7.2 ) is defined
over a regular grid on a x-y coordinate system. To describe the motion of a
moving object over a road segment in a particular direction; the coordinates of
the origin (ox,oy) are concatenated with the destination coordinates (dx,dy) as
"ox+oy+dx+dy". For example, the horizontal segment in the lower left corner
of the grid is defined as: 1222. The special edge of −1 denotes the virtual edge
that is used to signal the end of a trajectory. Figure 7.2 shows the topology of the
grid network. The regular grid is an assumption without the loss of generality.

Figure 7.2: Sample trajectory on road network

7.2 example trajectories and frequent routes

Highlighted in Figure 7.2 is a single trajectory "1222 2223 2333 3334 3444 −1"
of a vehicle on the example road network.

To further expand the example, listed below are some more sample trajectories
that are used as a running example to illustrate the base trajectories from which
frequent routes are then extracted. Typically the numbers surrounded by brack-
ets denote the support for a pattern, but in this example it is used to denote
the number of vechicles that have traced that particular trajectory. For exam-
ple, (20) indicates that our example trajectory was followed by 20 moving objects.

T1 1222 2223 2333 3334 -1 (20)
T2 1222 2223 2333 3334 -1 (5)
T3 1222 2223 2333 3334 3435 -1 (5)
T4 2122 2223 2333 3334 3435 -1 (15)
T5 1424 2423 2333 3332 3242 -1 (10)
T6 2524 2423 2333 3334 -1 (5)
T7 2524 2423 2333 3332 3231 -1 (20)
T8 3334 3444 -1 (10)

Listing 7.1: Sample trajectories on road network
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Given the formal definition of the road topology and the moving object trajecto-
ries, frequent routes have to be determined. In order to extract the frequent routes
from the given trajectories a mining algorithm as described in Chapter 5 is exe-
cuted. The mining program is executed with a minimum support threshold of
say 10%. The output is the union of the set of all frequent routes that are present in

more than 10% of the total number of trajectories and the set of all segment pairs with

an absolute minimum support of 1. The support threshold is a variable program
argument and is a way of controlling the amount of information that needs to
be stored about historical trajectories. If the support threshold is set too high
then numerous routes can be termed infrequent and hence not reported.Shown
below in Listing 7.2, are some sample frequent routes with their corresponding
supports in brackets on the right.

P1 {2524,2423,2333,3334} (5)
P2 {2524,2423,2333,3332,3231} (20)
P3 ...
P4 ...

Listing 7.2: Sample frequent routes

The frequent routes can be thought of as a compressed database of historical

trajectories against which the users pose a future location query for a current
trajectory. When querying for a current trajectory’s future location, the first
thing that has to happen is that the current trajectory needs to be matched with a
frequent route existing in the compressed database. When such a match is found,
then a probabilistic future location of the moving object can be calculated. But
there can be instances where there is no matching route found in the database
because the mining algorithm’s support threshold was set too high and that
route was suppressed.

To fill this void and to have the ability to make predictions at all times, all the
possible turns a vehicle can make from a given road segment have to be captured
and hence we also extract all segment pairs in the mining step.

7.3 closed frequent pattern tree creation

The mined frequent routes are stored in a prefix tree similar to a FP-tree by Han
et al. [14]. It consists of a prefix tree τc and a header table Hc (which acts as an
index into the prefix tree). Patterns are read in one at a time and inserted into a
prefix tree to enable quick retrieval of frequent routes/patterns. Pinelli et al. [27]
follow a similar approach where they identify frequent regions called T-patterns

using a clustering algorithm to group together moving object trajectories using
a notion of trajectory similarity which is distance-based. These T-patterns are
then inserted into a Prediction Tree quite similar to the tree used here with the
difference being that it is not a prefix tree and it doesn’t include a header table
that acts as an index to speed up pattern searches in the prediction tree.

Before discussing the algorithm to generate the tree, it is important to note the
structure of the prefix tree τc’s nodes and the nodes in the header table Hc.
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(b) Structure of header table value node

Figure 7.3: Structure of nodes

Figure 7.3a shows the structure of a node in τc. It consists of the item 1 and
its support. In addition, each τc node contains a pointer 2 to the next node in
τc with exactly the same item. This is done in order to build a linked list of all
the nodes in τc that contain the same item. Hence, we construct a linked list
for each unique item (also listed in the header table Hc acting as an index) in
the tree τc. The second pointer in the τc node is used as an auxillary pointer to
reduce the search space when we calculate conditional probabilities later down
the track.

Figure 7.3b shows the structure of a node in Hc. It consists of an item, its
overall support and the average time it takes to traverse the item/road segment.
Additionally it contants two auxillary pointers pointing to the head and tail node
of the linked list respectively.

Algorithm genTree shows the pseudo-code of the pattern tree generation
algorithm.

Algorithm genTree: genTree( P, S )
Input : Set of closed pattern vectors P, Set of corresponding supports S

Output : Complete closed pattern prefix tree τc
1 begin

2 k ← 0

3 Initialize tree τc and header table Hc.
4 for pattern cp ∈ P do

5 rootptr ← τc.root
6 for item i ∈ cp do

7 for node n ∈ rootptr.children() do

8 if n.item = i then

9 τc ← Update node support as max(n.supp,S[k])

10 else τc ← Add new node with (n.item,n.supp)

11 rootptr ← n

12 val ← lookup( Hc, item ) /* hash lookup */
13 val.supp ← max(val.supp,n.supp) /* update hash */

14 k ← k+ 1

15 return τc

1 Note the use of the term "item" to denote "road segment" in this context
2 The tree ADT provides additional pointers such as a pointer to the first child, a pointer to the

parent node and sibling node pointers.
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The algorithm takes as input a set of closed patterns (as shown in Listing 7.2)
and a corresponding set of supports for each pattern in the set of closed patterns.
We will utilize the example patterns from Listing 7.2 to better understand the
effects of this algorithm. In Lines 4-6, we iterate through the set of closed pattern
vectors P and for each pattern cp, we iterate through each item i that constitutes
this vector. Prior to inserting this i into the tree we must check if there already
exists a child node under the rootptr that already contains i. In Lines 8-9, if the
item already exists then the node n of the tree is updated with the maximum of
its current support value and the support of the incoming item. In Line 10, if
the item does not exist, then a new node is allocated and inserted into the tree,
as a child of the rootptr, with the values of the incoming item id and support.
The rootptr is moved down one level to match the position of the next item to
be evaluated in the closed pattern vector cp.

Lines 12-13, update the header table by first looking up the item in the header
table and then updating its support by the maximum of its current support
value and the newly updated/inserted node’s support in tree τc. Not outlined
in the algorithm is the fact that corresponding to each item in the header table
is also a linked list of nodes of the tree where the same item exists, which must
be built while inserting items in the tree τc and header Hc. Having exhausted
all the items in all the closed patterns in the set P, we finally end up with a
completed prefix tree τc which is then returned.

Figure 7.4 below demonstrates the stepwise insertion of patterns "P1" and
"P2" from Listing 7.2 into the prefix tree τc using the algorithm desribed in
Algorithm genTree.

(a) Step 1 : τc after insertion of pattern P1 (b) Step 2 : τc after insertion of pattern P2

Figure 7.4: Stepwise insertion of patterns as branches of tree τc

In step 1 (Figure 7.4a), after insertion of the first pattern we end up with a prefix
tree τc with a single branch, where each node is being shown in the format
"item:support". In our example, we have all items with a support of 5 in τc
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Figure 7.5: Complete prefix tree

and the same items filled in the header table on the left. After step 2 (Figure
7.4b), we notice that the first few items in the pattern we wish to insert i.e.
{2524, 2423, 2333, 3332, 3231}, into the tree coincide with the items in τc’s nodes.
The effect of inserting these items into τc is that the support in each of the
coincident tree nodes gets updated to max(20,5) which is 20. The same effect is
replicated in the header table.

Figure 7.5 shows the completed prefix tree τc after inserting all example patterns
from Listing 7.2.

7.4 core prediction algorithm

This section explains the location prediction algorithm using the running ex-
ample from Sections 7.1 and 7.2 in this chapter. To define some terms, qv

represents a query vector which is a collection of road segments or items that a
vehicle has traversed for example {2333,3334}. We define the anchor anc to be the
last element in qv which is 3334 in our example. The anchor always represents
the most recent segment traversed by the moving object.

A major assumption of our prediction model is that the anchor must be present
in the compressed database of closed patterns in order to make any prediction.

The prediction algorithm uses a local key-value store (lh) and a global key-value
store (gh) to keep track of the conditional location probabilities it calculates. In
Algorithm predict, which is recursive in nature, the local key-value store keeps
track of all immediate road segments that are connected to the anchor, while
the global key-value store holds the final road segments along with the future
probability mass of the object. gh and lh both have the item as the key and the
probability prob as the value.

Algorithm predict takes as input the the query vector qv, the time increment rt

and the probability mass pm.

The initial call to the prediction algorithm in our example is as follows:
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predict( {2333,3334}, 2.0, 1.0 )

which implies that a moving object has traced a path consisting of segments
2333 and 3334. At current time tc, it is located at the end of the anchor segment
3334 and we wish to predict all possible road segments it could be located on at
time tc + 2.0 time units. We start with an initial probability mass pm of 1.0 and
attempt distributing it across possible road segments.

Algorithm predict: predict( qv, rt, pm )
Input : Query Vector qv, Remaining time rt and probability mass pm

Output : gh with probabilistic future locations
1 begin

2 anc ← last(qv)
3 lh ← initialize local hash table
4 rpm ← 0

5 if rt <= 0 then

6 gh ← update using lh

7 return gh

8 MB ← getMaxCostBranches(qv)
9 (rpm, lh) ←getPatternProbs(lh, τc,qv,MB,pm )

10 if rpm > 0 then

11 (rpm, lh) ← compute turn probabilities (like getPatternProbs)
12 if rpm > 0 then

13 x ← assign rpm to (−1 ∗ anc)
14 lh ← insert x

15 for (key, val) ∈ lh do

16 tseg ← get average traversal time of segment key
17 predict( qv+ key, rt− tseg, val.prob)

18 return gh

In Algorithm predict, Lines 2-4 initialize the anchor anc and the local key-value
store lh. Lines 5-7 form the base case for the recursive algorithm. When the
remaining time reaches or exceeds the time horizon (tc + 2.0 in our example),
gh is updated from the values in lh and gh is returned to the user.

27





        

       

   

   

  



























Figure 7.6: Complete prefix tree with highlighted anchor and other overlapping seg-
ments. For qv = {2333,3334}, there is a total overlap in the highlighted
branches except the last highlighted branch which has only the anc = 3334.

Line 8 computes all the branches in τc which have a maximum cost. The cost
calculation and determination of the set of branches that share the maximum
cost is assigned to Algorithm getMaxCostBranches.

Algorithm getMaxCostBranches: getMaxCostBranches( qv )
Input : Query Vector qv
Output : MB : set of branches that share the maximum cost

1 begin

2 anc ← last(qv)
3 qlen ← length(qv)
4 A ← Set of all nodes in tree τc that contain item anc.
5 for node n ∈ A do

6 st ← n.parent
7 A: for item i ∈ (qv− anc) do

8 for x=st to τc.root do

9 if i = x.item then

10 bv ← set ith bit
11 st ← x

12 goto label A
13 else st ← n.parent ; /* reset to anchor’s parent */

14 cv ← compute according to cost model CM
15 branch_cost ← bv.cv
16 MB ← compute set of maximum cost branches

17 return MB

Focussing on Algorithm getMaxCostBranches, Line 5 finds all the branches of
τc that contain the anchor item anc using the pointer links from the header table.
Figure 7.6 shows all the occurences of the anchor node in bold outlines. Lines 7,
loops through each item in the query vector qv, except the anc. In our running
example, qv is 2333, 3334 where anc is 3334. So we loop only through one item
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= 2333 in line 7. Lines 8-13, search for this item in the branch starting from the
parent node of the anchor (done to exclude anchor).

If the item is found, the ith bit is set to 1 in a bit vector which corresponds
to the position of the item in qv. This indicates that the item was found in the
branch. When the item is found, the starting point is moved up, so the search
space is shrunk for the search of the next item in qv in the branch. The search in
the branch is stopped and the search for the next item in qv is resumed.

in our example. We form a bit vector (bv) which indicates whether an element in
qv - anc was found in the branch containing anc, with a 1, and 0 otherwise. Thus
in our example, every branch has a bit vector of 1, except for the last branch
which has anc 3334 but no 2333, hence its bit vector computes to 0.

In Line 14, we compute a cost vector cv based on two simple cost models3 as
shown below.

• Option 1: Assign increasing weights to segments that are closer to anchor. The
underlying idea being that knowledge of segments closer to the anchor
might contribute more to the prediction than the ones further away.

• Option 2: Assign decreasing weights to segments that are closer to anchor. This
is done to support the assumption that a moving object’s source or origin
might be more meaningful for a prediction. For example, a prediction
query is executed when a vehicle is on a highway. Given the added knowl-
edge that this vehicle’s origin was a student accomodation, the probability
of this vehicle taking the next exit to a university "X" is significantly
increased.

To formulate a cost vector cv for qv - anc of "l" elements where "p" indicates the
position of each element , we generate cv where each element is 2p. For example,
if qv was {a,b, c,d} where "d" was the anchor, then this would imply qv - anc

would be {a,b, c} and l = 3. Then according to Option 2, cv would be calculated
as {22, 21, 20}.

In Line 15, we finally calculate the cost as a scalar product of cv and bv. The
branches that share the maximum cost are chosen and form the elements in MB

and is returned.

Focussing our attention back to the main Algorithm predict. In general the next
few lines, after computing the set of maximum cost branches, deal with the task
of computing the probabilities. In order to compute conditional probabilities,
rules have to be grown in the form head -> tail, where in our case the head

is the query vector qv and the tail is the resultant road segment where the
moving object can be located in the future. We start by generating the rules
and distributing the probability mass amongst the child nodes that are found
below anc i.e. 3334. If some probability mass remains, then this indicates that
the patterns did not cover all possible turns from the given segment (vertex)
and hence we distribute the remaining probability mass amongst the rest of
the possible turns (which will be explained in detail later on). If we are still left

3 The cost models described are simplistic and further work needs to be done on arriving at more
effective cost models to improve prediction accuracy
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with probability mass that we couldn’t distribute then its assumed that a vehicle
has stopped its trajectory and hence this remaining probability is assigned to
"−1 ∗ anc" indicating that the car is parked at the anchor road segment.

Line 9, calls Algorithm getPatternProbs to calculate the probabilities from the
child nodes under the anc.

Algorithm getPatternProbs: getPatternProbs( lh, τc,qv,Bmcost,pm )
Input : Local hash table lh, Tree τc, Query Vector qv, Set of maximum cost

branches MB and probability mass pm

Output : (rpm, lh) = Remaining probability mass and local hash table
1 begin

2 rpm ← 0

3 headSupport ← compute support for qv
4 totProb ← 0

5 for pointer ptr ∈ MB do

6 for children c ∈ ptr do

7 if lookup( lh, c) not found then

8 hnode ← new node
9 hnode.prob ← pm ∗ (supp(qv+ c)/headSupport)

10 lh ← insert hnode
11 totProb ← totProb+ hnode.prob

12 rpm ← pm− totProb

13 return (rpm, lh)

Focussing on Algorithm getPatternProbs, Lines 5-6 loop through each child
node under the anc of each max cost branch that we calculated earlier on. Lines
7-11, ensure that we don’t re-calculate the supports and probabilities for child
nodes that we have already computed the conditional probabilities for.

Following our running example, keeping in mind the calculation for conditional
probabilities, and referring to Table A.1 for total supports of each segment,
Table 7.1 shows the probabilities and the remaining probability mass that are
calculated for each unique child node below anc i.e. 3435 in the running example.

Table 7.1: Probabilities calculated from patterns

Rule Calculation Probability Left Probability Mass

{2333, 3334} -> 3435 1.0 * (20/50) 0.4 0.6

These results are returned in the local key-value store lh and the remaining prob-
ability mass is also reduced to 0.6. This concludes the discussion of Algorithm
getPatternProbs and we return to continue discussing the rest of the lines in
Algorithm predict.

Lines 11-14 of Algorithm predict, distribute the remaining probability mass
amongst the turns and parked vehicles. To compute the turn probabilities, we
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follow exactly the same procedure as outlined in Algorithm getPatternProbs,
which computes probabilities from pattern extensions with the only difference
being that we search for the anchor (Ex: 3334) in the immediate child nodes of the
root node. If found, we iterate through the children and check them against lh

and only pick the items that do not exist in lh. Items that exist in lh have already
been covered by the patterns, and hence there is no need to assign a probability
mass to the same segments from the turns. This can be thought of as a fallback
mechanism which caters for the connecting road segments that might have been
omitted due to the choice of a higher threshold support during mining.

In our example, we are left with a probability mass of 0.6. We find that the last
branch which highlights our anchor 3334 in Figure 7.6 is an immediate child
of the root node. It has child nodes 3435 and 3444. We have already assigned a
probability mass to item 3435, hence we skip it. Table 7.2 shows the calculations
for turn probabilities.

Table 7.2: Probabilities calculated from turn patterns

Rule Calculation Probability Left Probability Mass

{2333, 3334} -> 3444 0.6 * (10/50) 0.12 0.48

The remaining probability mass is assigned to −1 ∗ anc, because we assume
that if a moving object cannot be found in the patterns or turns (at levels 1 and
2 under root node), then it must have concluded its trip and is parked at the
anchor segment. Hence in our case,

{2333, 3334} -> −3334 : Probability = 0.48

At end of Line 14, lh now contains the values as shown in Table 7.3.

Table 7.3: Probabilities for single recursion level

Key: Item Value: Probability

3435 0.40
3444 0.12
-3334 0.48

Lines 15-17 of Algorithm predict, iterate through the values in lh and make
a recursive call to predict. The newly calculated probability is passed as the
remaining probability mass to distribute, the query vector qv is extended with the
key (which is the new road segment) of lh and the remaining time is reduced
by the key’s global traversal time (from Table A.1). Note that the recursion
continues to extend the query vector and reduces the time remaining and
remaining probability mass to distribute and when the base condition is met i.e.
time horizon tc + δt is reached or exceeded, we exit with the final probabilities
in the global hash table.
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8
C O N T I N O U S Q U E R I E S I N S C S Q

This chapter highlights the internals of the continous queries with code snippets
and sample runs from SCSQ. Figure 8.1, shows the high level data flow diagram

that is implemented in SCSQ. The file with incoming location updates is read in
for the mining stream and also for the prediction stream. The mining stream reads
in the data with larger window sizes than the prediction stream. This is done in
order to have longer patterns that will enable prediction for current trajectories
that have shorter window spans. The functions and outputs will be discussed in
more detail in the sections that follow. At a high level, all intermediate functions
are implemented to read in a stream and produce their output as a stream for
the next function down the line.

Mining Stream

Prediction Stream

FILE

st_read_trajectory_M

st_read_trajectory_A

EMIT

pattern_base

get_predictions

st_clomine

 :s_traj

st_load_patterns

 :s_mined

stored in

st_flatten_readtraj

 :s_actual

st_tracker

 :s_flattraj

 :s_latesttraj

get_moving_density get_parking_density

Figure 8.1: Functional Data Flow Diagram
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8.1 reading as stream

st_read_trajectory() function takes an fname filename which has the tuples
coming in from the client, window related parameters for the stream - namely
the window size and the stride along with two more optional boolean parameters
which control the suppression of nil windows. The code snippet below displays
the signature of this function. The output of this function is a Stream of Vector,
which we store in the temporary variable :s_traj to pass on to other functions.

1 create function st_read_trajectory( Charstring fname,
2 Real sz,
3 Real stride,
4 Integer a,
5 Integer b )
6 -> Stream of Vector stv
7 as streamof(twinagg(streamof(readfile(fname)), sz, stride, a,b));

Listing 8.1: Reading in tuples as a stream in SCSQ

Sample usage is shown below. We assign the stream to :s_traj and extract its
contents. The output is a vector of vectors, where the first component is a vector
of tstart and tend window boundary timestamps and the second component is
a vector of vectors where each vector holds the tsub (submission timestamp),
Vehicle ID, Road Segment ID and δt.

[myscsq] 1> set :s_traj = st_read_trajectory( ’ . ./ . ./ data/test_data . txt ’,
3600.0,3600.0,0,0);

[myscsq] 1> in(:s_traj);

{{|2011-01-01/01:00:00|,|2011-01-01/02:00:00|},
{
{|2011-01-01/01:00:00|,10,763,0.3},
{|2011-01-01/01:08:23|,60,-1,1.1}

}
}

Listing 8.2: Sample usage of st_read_trajectory in SCSQ

8.2 closed sequence mining of stream

st_clomine() function takes a Stream of vectors as its first argument (for ex-
ample, :s_traj). The second argument is the minimum threshold support
percentage that is needed for the mining algorithm ranging from 0.0 to 100.0.
The third and last argument is the minimum length of output patterns that
should be outputted. The closed sequence mining algorithm is developed as a
foreign function interface to SCSQ written in C.
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1 create function st_clomine( Stream of Vector str,
2 Real minsupp,
3 Integer minlen )
4 -> Stream of Vector stv
5 as streamof(
6 select vector(w,sts,ets,s,pv,tv)
7 from Integer w, Timeval sts, Timeval ets, Integer s,
8 Vector of Integer pv, Vector of Real tv
9 where (w,sts,ets,s,pv,tv) = clomine(str,minsupp,minlen));

Listing 8.3: Closed sequence mining of stream

When extracted from the stream output, the tuples are of the following format in
order of column number; Window ID, tstart, tend, Support of the closed pattern,
Closed pattern vector pv , and the traversal time vector tv corresponding to pv
as shown in Listing 8.4.

[myscsq] 1> set :s_mined = st_clomine( :s_traj, 30.0, 1);
[myscsq] 1> in(:s_mined);

(0,|2011-01-01/01:00:00|,|2011-01-01/02:00:00|,3,{10085},{200.0})
(0,|2011-01-01/01:00:00|,|2011-01-01/02:00:00|,5,{10084},{100.1})
(0,|2011-01-01/01:00:00|,|2011-01-01/02:00:00|,4,{10083},{1.1})

Listing 8.4: Sample usage of st_clomine in SCSQ

8.3 storing closed patterns

pattern_base() is the definition of a stored function in Amos II. It is composed
of a function that takes as arguments the boundary timestamps of the window
i.e. tstart and tend. It returns the closed mining results as tuples of <pv, tv,
support>.

st_load_patterns() is the function that takes as an argument the stream that is
output from st_clomine. In our example, :s_mined is the stream used as input.

1 create function pattern_base( Timeval sts,
2 Timeval ets )
3 -> <Vector of Integer pv, Vector of Real tv, Integer s>
4 as stored;
5
6 create function st_load_patterns( Stream of Vector stv )
7 -> Boolean
8 as add pattern_base( sts, ets ) = (pv,roundto(tv,2),s)
9 from Integer w,Timeval sts, Timeval ets, Integer s,

10 Vector of Integer pv, Vector of Real tv
11 where {w,sts,ets,s,pv,tv} in (stv);

Listing 8.5: Storing closed patterns
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The sample usage illustrates an example of load_patterns() and then being
able to view the output using the function view_pat_summary() which is defined
as a utility function and defined in the appendix.

/* To load closed patterns */
[myscsq] 1> st_load_patterns(:s_mined);

/* To view a summary of stored patterns */
[myscsq] 1> view_pat_summary();

({|2011-01-01/01:00:00|,|2011-01-01/01:02:00|},1323)
({|2011-01-01/01:00:05|,|2011-01-01/01:02:05|},1401)
({|2011-01-01/01:00:10|,|2011-01-01/01:02:10|},1420)
({|2011-01-01/01:00:15|,|2011-01-01/01:02:15|},1469)

Listing 8.6: Sample usage of st_load_patterns in SCSQ

8.4 extract the vehicle’s latest trip

st_tracker() implements flattening the vector output from st_read_trajectory()
and grouping it by vehicle ID. It takes as an argument :s_actuals in our exam-
ple which is a new stream generated using st_read_trajectory() but only this
time notice that the window size argument is much smaller than the window
size we used for the mining stream. This is done in order so that the mining
window contains longer patterns than the actual trip in the prediction stream’s
window and hence can cater for the additional future time δt.

The use of "vectorof" in line 12, converts these collated road segments into a
vector which represents all the segments that the vehicle traversed within the
time window. In line 4, the use of latest_traj() ensures that only the latest
trip is returned. This is done because within a given time window a vehicle can
start and stop multiple times and we are only interested in making a prediction
for the trip that is still ongoing.

1 create function st_tracker( Stream of Vector stv )
2 -> Stream of Vector
3 as streamof(
4 select vector(t1, t2, v, latest_traj(rev_vec(svec)))
5 from Timeval t1, Timeval t2, Integer v, Vector of Integer svec
6 where {{t1,t2,v}, svec} in
7 (sort(groupby((
8 select {t1,t2,v}, s
9 from Timeval t1, Timeval t2,

10 Integer v, Integer s
11 where {t1,t2,v,s} in (stv)),
12 # ’ vectorof ’))));

Listing 8.7: Extraction of vehicle trips

In the usage below it becomes apparent how the vehicle trajectories are collated
as a vector (shown in last column).
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/* Read in actual trajectory */
[myscsq] 1> set :s_actuals = st_read_trajectory( ’ . ./ . ./ data/test_data . txt ’,

20.0, 5.0,0,0);

/* Flatten the stream of vector of vectors */
[myscsq] 1> set :s_flattraj = st_flatten_readtraj(:s_actuals);

/* Find the latest moving trip of each vehicle */
[myscsq] 1> set :s_latesttraj = st_tracker(:s_flattraj);

/* Extract */
[myscsq] 1> in( :s_latesttraj );

(|2011-01-01/01:00:00|,|2011-01-01/01:06:00|,10,{13413,348})
(|2011-01-01/01:00:00|,|2011-01-01/01:06:00|,20,{805,10084,349})
(|2011-01-01/01:00:00|,|2011-01-01/01:06:00|,30,{11653,12101,983})

Listing 8.8: Sample usage of st_tracker in SCSQ

8.5 find the mining window for trajectory

get_mining_window_sql() expects a stream of the latest trips of every vehicle
(e.g. :s_latesttraj). and an additional argument which is the future time
duration in seconds for which we would like a prediction (e.g. 5 minutes). The
function goes through each vehicle’s trips, and for each of these vehicles it
attempts to find the mining window that corresponds to the boundary window
of the vehicle’s latest trip. Note that while finding this mining window the utility
function find_the_mwindow() must check for timestamp overlaps between the
mining results stored in pattern_base() and the bounding window of the
vehicle’s latest trip plus the future time argument. This is done in order to be
able to capture patterns that extend into the future. These patterns will form the
foundation for the prediction algorithm.

1 create function get_mining_window_sql( Stream of Vector stv,
2 Real ftime)
3 -> <Vector of Timeval st, Vector of Timeval en, Vector>
4 as select st, en, {veh,qv}
5 from Timeval at1,
6 Timeval at2,Integer veh,Vector of Integer qv
7 where {at1,at2,veh,qv} in (stv)
8 and (st,en) = find_the_mwindow( at1, at2, ftime );

Listing 8.9: Finding mining window

The output is a bag of vector of vectors where the first component vector is the
start and end timestamps of the trip trajectory, the second component vector the
start and end timestamps of the chosen mining window, followed finally by a
vector of the Vehicle ID and latest trip/trajectory that the vehicle has traced so
far.
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[myscsq] 1> get_mining_window_sql(:s_latesttraj, 10.0);

(
{|2011-01-01/01:00:00|,|2011-01-01/01:00:20|},
{|2011-01-01/01:00:00|,|2011-01-01/01:02:00|},
{10030,{1177}}
)

Listing 8.10: Sample usage of get_mining_window_sql in SCSQ

8.6 predict

get_predictions() expects a stream like :s_latesttraj . In addition, it takes
the future time for prediction as an argument. For each vehicle in the time
windows, the foreign function "predict_flocn", which is an external C function,
is called to apply the prediction model. The prediction model is described in
more detail in Chapter 7.

1 create function get_predictions( Stream of Vector stv,
2 Real ftime )
3 -> <Timeval at1, Timeval at2, Integer veh,
4 Vector of Integer qv, Integer seg, Real prob>
5 as select at1, at2, veh, qv, seg,prob
6 from Timeval mt1, Timeval mt2
7 where ({at1,at2}, {mt1,mt2}, {veh,qv})
8 = get_mining_window_sql( stv, ftime)
9 and (seg,prob)

10 = predict_flocn({pattern_base(mt1,mt2)},qv,veh,ftime)
11 and mt1 != "NIL"
12 and mt2 != "NIL";

Listing 8.11: Prediction

The output of this function is a probability of where a vehicle at time tc, can
be at a future point in time for example tc + 5 minutes . In the example the
output shows the trajectory window’s timestamps, the vehicle ID, the current
trip that was used to query the stored knowledge base to predict, the resultant
road segment where the vehicle can be and lastly the probability that the vehicle
will be at the road segment. So in our example, we see that vehicle ID 10039

traversed on road segment 10173 and exactly after 5.0 minutes it can be on
road segment 10112 with a 70% probability and road segment 179 with a 30%
probability. Note that the probabilities for each vehicle must add up to 1.0.

[myscsq] 1> get_predictions(:s_latesttraj, 300.0);

(|2011-01-01/01:00:00|,|2011-01-01/01:00:20|,10039,{10173},10112,0.7)
(|2011-01-01/01:00:00|,|2011-01-01/01:00:20|,10039,{10173},179,0.3)

Listing 8.12: Sample usage of get_predictions in SCSQ
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8.7 predict moving object density

get_moving_density() expects the same arguments as get_prediction(). This
function computes the total number of moving vehicles by summing up the
probability masses of moving vehicles on each road segment.

1 create function get_moving_density( Stream of Vector stv,
2 Real ftime )
3 -> <Vector, Real>
4 as (groupby(
5 (select {at1, at2, seg}, prob
6 from Timeval at1, Timeval at2,
7 Integer seg, Real prob,
8 Integer v, Vector of Integer vec
9 where (at1,at2,v,vec,seg,prob)

10 = get_predictions_proc(stv,ftime)
11 and seg > 0
12 ), # ’sum’));

Listing 8.13: Prediction of future moving object density on road network

The output displays that at tc + 5.0 minutes there will be 4 objects moving on
road segment 11869 and 15.5 objects moving on road segment 10606.

Note that positive road segments output from the prediction model indicate
moving objects while negative segments indicate that the objects have stopped
moving and are parked.

[myscsq] 1> get_moving_density( :s_latesttraj, 300.0);

({|1970-01-01/01:00:30|,|1970-01-01/01:00:50|,11869},4.0)
({|1970-01-01/01:00:50|,|1970-01-01/01:01:10|,10606},15.5)

Listing 8.14: Sample usage of get_moving_density in SCSQ

8.8 predict parked object density

get_parking_density() expects the same arguments as get_predictions().
This function computes the total number of stopped/parked vehicles by sum-
ming up the probability masses of stopped vehicles on each road segment.

1 create function get_parking_density( Stream of Vector stv,
2 Real ftime )
3 -> <Vector, Real>
4 as (groupby(
5 (select {at1, at2, seg}, prob
6 from Timeval at1, Timeval at2,
7 Integer seg, Real prob,
8 Integer v, Vector of Integer vec
9 where (at1,at2,v,vec,seg,prob)

10 = get_predictions_proc(stv,ftime)
11 and seg < 0
12 ), # ’sum’));

Listing 8.15: Prediction of future parked object density on road network
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The output displays that at time tc + 5.0 minutes, there will be approximately
76 objects parked on road segment 100 and 14 objects parked on road segment
1001. Valuable information to car parks in the vicinity to perform more optimal
capacity planning.

[myscsq] 1> get_parking_density( :s_latesttraj, 300.0);

({|1970-01-01/01:02:05|,|1970-01-01/01:02:25|,-100},76.32)
({|1970-01-01/01:00:40|,|1970-01-01/01:01:00|,-1001},14.28)

Listing 8.16: Sample usage of get_parking_density in SCSQ
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9
E X P E R I M E N T S

The following sections describe the set of experiments performed and the results
obtained. The actual experiments were conducted on a laptop with Windows 7.0
and an Intel Core 2 Duo 2.2 GHz processor, 2MB L2 Cache and 4GB memory.

Section 9.1 describes the rea-world data set. Sections 9.2, 9.3 and 9.4, evaluate
different aspects of the proposed frequent route mining method, and Section
9.5 evaluates the accuracy of the proposed frequent route based location and
network density prediction methods.

9.1 real-word data set

The data used to evaluate the proposed method includes the GPS readings of
1, 500 taxis and 400 trucks traveling on the streets of Stockholm during the course
of a full day. Each taxi produces a reading once every 60 seconds approximately.
This reading includes only taxi identification and location information. Taxis
produce readings less frequently when they are not carrying any passengers.
Trucks use more recent and more accurate GPS devices that produce readings
once every 30 seconds and include identification, location, speed and heading
information. This knowledge about the sampling frequencies has been used
to identify approximately 17, 000 trips. Road network based trajectories have
been constructed by using a modified road network representation that had
approximately 6, 000 directional segments with average segment length of 55
meters.

As the server-side of the architecture assumes a stream of continuously evolving
network trajectories of moving objects as input, and as the focus of the current
thesis is the development of the server side components of the architecture, the
following paragraph briefly highlights the features of- and the techniques used
in the pre-processing of the trajectories at the client-side as follows.

The location measurements obtained from GPS can often be noisy and innacurate.
The process of converting a sampled trajectory in euclidean space to a road
network based trajectory involves two processes. First, through a process called
map matching the noisy GPS signals are aligned to the nearest locations on the
road network. This is done in an online fashion which takes as inputs the object’s
recent movement history and the road network’s geometry. Second, in our case
of a road network based movement model, an interpolation is performed between
two map matched locations where the shortest possible path on the road network
between the two points is assumed. Finally, a stream of timestamped temporally
annotated road segments is outputted for the server-side to process, where the
times denote the traversal time of each road segment.
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9.2 stream processing analysis

The performance of closed frequent sequence route mining is compared with
variations in regards to mining frequency and time window sizes while keeping
some of the parameters constant in adherance to the constraints levied by the
data set.
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Figure 9.1: Mining analysis.

The first group comprises the graphs in figures 9.1a and 9.1b to measure pattern
counts and execution time in seconds respectively. Minimum support is fixed at
2% and the sliding window parameter twstride is fixed at 600 seconds (10 mins)
in the graph to represent a fine-grained mining interval.

Both graphs show an increase in the number of closed frequent route sequences as
their sliding window sizes twsize are gradually increased. The peaks in the graph
coincide with the peak hour traffic and suggest that maximum traffic occurs at
about 0200 to 0400 hrs and at 1900 hrs (after converting elapsed time in seconds
to clock times). The execution times are continuously measured to study the
feasibility of the incremental mining approach given that the runtime of the
mining per interval has an upper bound which is twstride (the size of a single
sliding window).

Note that the initial mining starts after we have one complete sliding window,
and hence as we increase twsize in our plots the starting points of the plots are
right-shifted accordingly.

9.3 scalability analysis

The following set of experiments were conducted with the aim of measuring the
scalability of the mining solution.
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Figure 9.2: Scalability analysis.

Increasingly large volumes of simultaneously moving object trajectories were
simulated by fixing the sliding window parameter twsize to a 24hr period for the
sample data and increasing the window stride twstride in significantly large steps
to accomodate for a large number of input trajectories and hence simulating
traffic inputs from a large number of simultaneously moving objects in the road
network.

As suggested by the results in figures 9.2a and 9.2b The execution time for nearly
17K input trajectories mined at a minimum support of 0.1% was approximately
40 seconds with approximately 25K closed frequent patterns mined. The results
pointed in the direction of a very robust and highly scalable solution for mining
long patterns.

9.4 qualitative pattern analysis

The following set of experiments were conducted on the pattern outputs gen-
erated in a one-day long sliding window in order to assess the quality of the
patterns. Figure 9.3a displays the maximum and average closed frequent pattern
lengths derived when the minimum support percentage is varied from 0.1%
to 1.0% in increments of 0.1 followed by increments of 1.0 upto 6% which is
the cut-off minimum support percentage after which no patterns appear in
the dataset. The longest/maximum pattern of length 76 is detected for the lowest
support of 0.1% with an average length of 20.

Figure 9.3b displays statistics at the segment level. After pattern generation, a
post-processing analysis step generated statistics per segment such as the count
of closed frequent patterns which included a particular segment and the sum
total of the supports of the patterns in which the segment was discovered. An
important point to note is that the segments are sorted in decreasing order
of count / support-sum magnitude and each segment gets assigned a rank.
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Figure 9.3: Qualitative pattern analysis.

The results displayed on a logarithmic y-axis clearly indicate the interesting
segments which are frequently traversed at the start of the graph on the extreme
left.

Knowledge of such segments aids spatial visualization of frequently traversed
sections of the road network. A spatial trend analysis on the road networks
can reveal valuable information, for instance patterns with very high support
represent traffic on a busy highway and might deduce some trivial knowledge
such as a vehicle travelling on a freeway is likely to remain on it for a while, on
the other hand patterns leading “in or out of” these high support routes could
convey more meaningful information such as the trend of vehicle routing when
moving towards or away from the central parts of a city or the variations that
could be introduced on such a trend with the introduction of a new spatial object
like a new casino on the boundary of the city center or even a temporal event
such as a launch of a new product in a shop or a rather unfortunate freeway
accident. Although there are many such examples and studies, spatio-temporal
data mining is in it’s infancy stages and more methods and applications of
spatial classification and trend analysis, especially those associated with time,
must be further explored.

9.5 prediction accuracy analysis

The following set of experiments were conducted in order to measure the
prediction accuracy approach of this thesis. The experiments could be broadly
classified as experiments that measured the average prediction accuracy of
all moving objects as shown in 9.4 vs. experiments that measured the sum of
squared error (SSE) of the road network density as shown in 9.5. We study the
effects on prediction accuracy (or SSE in case of network density experiments)
by gradually incrementing either the future point in time for location prediction
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i.e. "tc+ δt" while keeping the minimum support threshold min_sup fixed and
vice versa.

Furthermore, where applicable, the experiments compare the prediction accuracy
gained from mined patterns (inclusive of all possible turns at junctions) vs.
prediction accuracy that is achieved by using just the single turn statistics at
junctions. Prediction accuracy is further subdivided into two kinds of accuracy
calculations - namely 0/1 discrete accuracy where the road segment with the
highest location probability of the moving object at time tc+ δt is compared
against the actual road segment where the object is located at time tc+ δt and only
when the road segment IDs match then we assign a 1, else we assign 0 to
accuracy. The continuous accuracy approach compares the actual road segment

location at time tc+ δt to the predicted road segments and when a matching
road segment is found then the probability percentage on that road segment is
added and hence contributes to the accuracy measurement. For example, if the
actual location was at segment id 1000, and the prediction had assigned 30%
probability to segment 1000 and 70% to segment 2000, then the 0/1 discrete
accuracy approach considers this as a zero contribution to accuracy while the
continuous accuracy approach considers this a 0.3 contribution to accuracy.

Focussing on Figure 9.4a, the continuous accuracy approach attributes a higher
prediction accuracy than the 0/1 discrete approach. Since min_sup is fixed at
1% we mine longer patterns which culminate in better prediction accuracy over
an approach that utilizes only turn statistics.This is indicated by the widening
gaps between the two approaches especially at values of δt between 7 and 10

minutes. In one minute in the future, the continuous prediction accuracy reaches
a maximum of 71% accuracy.
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Figure 9.4: Prediction accuracy analysis for individual moving objects averaged over
stream windows.

In Figure 9.4b, δt is kept fixed at 1 minute and min_sup is varied from 1% to
7%. This range is chosen because exceeding the min_sup of 7% gives no patterns
and hence prediction accuracy falls back on purely turn statistics and the plot
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produces a flat line for min_sup = 7% and higher which is uninteresting. We
notice that the prediction accuracy drops by approximately 5% for both discrete
and continuous accuracy calculation methods.

In Figure 9.5a, the average number of moving objects per window of the stream
is approximately 270. The SSE measurement between actual and predicted
density of moving objects on the entire road network highlights the fact that our
prediction accuracy is dropping, which results in an increase in the SSE value
from 3.2 to 4.1 with incremental changes in min_sup. This plot is an aggregation

of errors noticed in 9.4a.

In Figure 9.5b, we notice that as the time horizon "tc+ δt" is gradually incre-
mented, the gap between the SSE of mined patterns vs. pure turn statistics
widens, indicating that the network density calculation which uses long patterns
actually outperforms the approach which relies on short term turn statistics
only.
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10
C O N C L U S I O N S A N D F U T U R E W O R K

Motivated by the accelerating need for effective traffic prediction and manage-
ment systems and the new possibilities for such systems allowed by GPS-enabled
mobile devices, this thesis presented a novel approach to using moving object
trajectories for traffic prediction/management. The approach was based on real-
istic real-world application requirements, and performed online management of
current trajectories of moving objects in road networks.

The trajectories considered were incrementally evolving, i.e., current, on-going
trajectories were incrementally delivered in near-real-time to the central server.
The approach performed on-line, incremental mining of closed frequent routes
of the moving objects. The closed frequent routes were later used for the pre-
diction of the near-future-locations of the moving objects, based on the current
object trajectories and historical frequent routes. The thesis proposed a number
of concrete methods and data structures for managing and mining closed fre-
quent routes from incrementally evolving trajectories of moving objects in road
networks. The approach was empirically evaluated on a large real-world data
set of moving object trajectories, originating from a fleet of taxis.

In future work, several areas are very interesting.

First, more effective and complex cost models have to be devised which for ex-
ample take into account the discriminative frequent routes to weight the individual
trajectory’s road segments prior to prediction. Second, many more interesting
CQs can be formulated to answer questions like "Given a road segment x, which

vehicles will arrive here in exactly 10 minutes from now?" (useful to alert drivers of a
situation at the road segment) or "What patterns in the traffic lead to congestion?".

Third, more work can be done on visualization of the road networks to monitor
the most frequent routes, also called "hot routes" and viewing the actual and
predicted traffic movements in real-time. Finally, the developed methods should
be deployed and tested in a large-scale real-world scenario to assess the possible
gains with respect to traffic management.
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a.1 table of road segment’s global average traversal time and
support

Table A.1: Singleton road segments with corresponding global traversal time and sup-
port

Segment/Item Traversal Time Support

1222 1.00 30
3444 2.00 20
3435 3.00 20
3332 4.00 30
3242 5.00 10
3231 6.00 20
3334 7.00 50
2524 8.00 25
2423 9.00 35
2333 10.00 80
2223 11.00 45
2122 12.00 15
1424 13.00 10

48



B I B L I O G R A P H Y

[1] Ieee icdm contest: Tomtom traffic prediction, 2010. URL http://www.
hitachi-automative.co.jp/en/products/cis/03.html.

[2] Hitachi automative systems. traffic information service/solution, 2010. URL
http://tunedit.org/challenge/IEEE-ICDM-2010.

[3] C.C. Aggarwal and D. Agrawal. On nearest neighbour indexing of nonlinear
trajectories. PODS, pages 252–259, 2003.

[4] R. Agrawal and R. Srikant. Mining sequential patterns. Proc. of ICDE, pages
3–14, 1995.

[5] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor database systems.
Mobile Data Management, pages 3–14, 2001.
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colophon

The topic for this thesis culminated from earlier discussions between Asst.
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