
Master’s thesis

��������	
��

���
���

�
	����
�	������
��������

��
�����
������

LiTH-IDA-Ex-99/50

1999-05-06

Linköping University
Department of Computer and Information Science

��������	
��

���
���

�
	����
�	������
��������

���������	
����

LiTH-IDA-Ex-99/50

1999-05-06

Supervisor: Professor Tore Risch

I

��������

ODBC (���������	�
�������
������) is a standardized application programming inter-
face (���) developed by Microsoft. By using the ODBC interface, applications can ac-
cess a wide variety of data sources using the same source code. Prior to ODBC,
applications written to access data stored in a Database Management System (����)
had to use the proprietary interface specific to that database. If application developers
wanted to provide their users with access to data in more than one data source, they need-
ed to code to the interface of each data source. Naturally, applications written in this
manner are difficult to code, difficult to maintain, and difficult to extend.

The ODBC architecture was designed to permit maximum interoperability. It allows ap-
plication developers to create an application without targeting a specific DBMS. End us-
ers can then use the application with the DBMS that contains their data by adding
modules called database ������
, which are dynamic-link libraries (���
).

Today, ODBC has become the industry standard for interoperability with relational da-
tabases. Database management systems with ODBC-drivers can interoperate with hun-
dreds of different applications.

AMOS II is a light-weight, main-memory, object-relational database kernel, running on
the Windows NT platform. It contains a relationally complete query-language,
AMOSQL.

The purpose of this work is to develop an ODBC-driver for AMOS II.
Since ODBC uses SQL as its query language and AMOS II uses AMOSQL, the driver
must translate SQL queries into the corresponding AMOSQL query. Moreover, since
ODBC was developed with relational database systems in mind, and AMOS II is an ob-
ject-oriented system, some method of mapping between the two systems must be used.

II

III

��	
��	

This report is a part of a master’s thesis in Computer Science. The main part of the work,
however, mainly consists of C-code (about 4500 lines). The work was carried out at ED-
SLAB (Engineering Databases and Systems Laboratory), one of the research laborato-
ries at the Department of Computer and Information Science (IDA) at Linköping
University. The work is a part of the AMOS project, whose purpose is to develop and
demonstrate a mediator architecture for supporting information systems where applica-
tions and users combine and analyse data from many different data sources.

I would especially like to thank my supervisor Professor Tore Risch at EDSLAB for his
invaluable support and almost infinite enthusiasm.
I would also like to thank my family for their support during all my years at the Univer-
sity, Sara for bearing with me during all pointer problems and segmentation faults, and
of course all my friends at Linköping University.

Linköping, April 1999

Marcus Eriksson

IV

V

��
�	
��

�����
�	������� �
1.1 Background 1
1.2 Objective 1
1.3 Limitations 2
1.4 Report overview 2

���������
�����
�����

��
 � !
2.1 Relational databases 3

2.1.1 The SQL Language 4
2.2 Object-oriented databases 7

!�"�
����������� #
3.1 AMOS II 9
3.2 The mediator approach 9
3.3 The AMOSQL language 10

3.3.1 The AMOS data model 11
3.3.2 AMOSQL examples 11

3.4 AMOS II External Interfaces 13
3.4.1 The callout interface 13
3.4.2 The callin interface 13

$������ �%
4.1 Introduction 15

4.1.1 The evolution towards ODBC 15
4.2 What is ODBC? 17

4.2.1 ODBC architecture 17
4.2.2 The Driver Manager 19
4.2.3 Drivers 20
4.2.4 Conformance Levels 22

4.3 Basic flow of an ODBC application 22
4.4 The future of ODBC 23

VI

4.4.1 OLE DB 24

%��
��

�	
��&�� �%
5.1 Possible driver architectures 25
5.2 The chosen architecture 27

'���()
�
�������� �#
6.1 Data model mapping 29

6.1.1 The POET database system 30
6.1.2 Mapping AMOS II databases 32

 6.2 Parsing SQL statements 35
6.3 Using stored procedures 36
6.4 Executing SQL statements 38

6.4.1 Preparing queries for execution 38
6.4.2 Binding parameters 39
6.4.3 Executing prepared statements 40
6.4.4 Direct execution 40
6.4.5 Binding result columns 41
6.4.6 Retrieving results 41

*�+
��)
��� $!
7.1 Getting information on how to implement a driver 43
7.2 Testing the driver 43
7.3 Debugging a DLL 44
7.4 Stack overflow 45

,�-���&���
�	
��

�����	
�����
������ $*

#�����)��������	�����

� �
�� %%
9.1 Discussion 55
9.2 Future work 55

VII

�++�.��/��0�1)
2��(
����������� %*

�++�.��/��0�������&
����
�	
��
�(����� '�

�++�.��/��0����

	�	������	��
)(����������� '*

�++�.��/��0���()
�
��
	���������������� *!

�++�.��/��0��2��()
�	������
� *#

3
�

��
�� ,�

An ODBC-driver for the mediator database AMOS II

1

���
���������

In this chapter the background and objective of the thesis is described, as well as limita-
tions and an overview of the report.

�4������&
���	

In recent years the need to effectively process large amounts of data has become increas-
ingly important. Companies are using databases to store information about for example
warehouses, orders, invoices and much more. Because of this, the need to access this
data using standard tools has become very important. Since there are many different
kinds of databases in use today, a standard method for accessing data was developed by
Microsoft, ���������	�
�������
������ (ODBC). Applications using ODBC as their
data accessing method can read and manipulate databases for which there are ODBC-
drivers.
The purpose of the AMOS project is to develop and demonstrate a mediator architecture
for supporting information systems where applications and users combine and analyse
data from many different data sources. A data source can be a conventional database but
also text files, data exchange files, web pages, programs that collect measurements or
even programs that perform computations and other services.
Previously, the AMOS system lacked a nice interface to the user. The only way of ma-
nipulating the database was to write AMOSQL queries on the command-line. However,
a Java interface has been developed (Goovi). By developing an ODBC-driver for
AMOS, all ODBC applications can access the AMOS database in exactly the same way
as they access other databases, for example Oracle or DB2.

�4����5
����

The main objective of this thesis is to develop an ODBC driver for AMOS. SQL state-
ments has to be parsed into the corresponding AMOSQL queries. Also, mapping be-
tween the relational model of ODBC and the object model of AMOS has to be
developed.

1 Introduction

2

�4!�6����������

The goal of this work is not to produce a full-fledged ODBC-driver. Only a subset of
SQL will be supported (simple SELECT queries). As will be shown later, the possibility
to use AMOSQL and thereby bypassing the parser still allows the user to manipulate da-
ta.

�4$�3
(�
����

��

This report consists of 9 chapters and 5 appendices. The first chapter gives a short back-
ground and a description of the work while chapter 2-4 gives an overview of database
systems in general and a closer look at AMOS and ODBC. Users familiar with database
technology could skip chapter 2 and proceed directly to the chapter on the AMOS system
(chapter 3).
Chapters 5-6 describes the driver design process and the implementation of the driver.
Chapter 7 describes some of the problems encountered during the work and chapter 8
gives a small demonstration of a session using the driver with Microsoft Query, the tool
used by the Microsoft Office applications to access ODBC data sources. The chapter
mainly consists of screen dumps from Microsoft Query during the session. Chapter 9
discusses the result and some possible further improvements to the driver.
The appendices contains more details, such as the source for stored AMOS functions,
grammar description and a description of the example database used in chapter 9.
Some parts of the work are not covered in this report, for example driver installation, set-
up and de-installation. This mostly consists of adding and manipulating keys in the Win-
dows Registry, which is not very interesting to read about.

An ODBC-driver for the mediator database AMOS II

3

���������	�����	�����	���	�

�4��3
)������)�	������
�

A database system is essentially nothing more than a computerized record-keeping sys-
tem. The database itself can be regarded as a kind of electronic filing cabinet; in other
words, it is a repository for a collection of computerized data files. The user of the sys-
tem is given facilities to perform a variety of operations on such files, including the fol-
lowing (among others):

• Adding new, empty files to the database
• Inserting new data into existing files
• Retrieving data from existing files
• Updating data in existing files
• Deleting data from existing files
• Removing existing files from the database

There are two kinds of information in a database, the ���� and a

����. The schema is
metadata describing the semantics of the data in the database. Each DBMS supports a
���������� (the type of data abstraction used to provide a conceptual representation of
data without revealing the details of how the data is stored). The most common data
model is the ���������������������� introduced by Dr. E.F. Codd in 1970.

Let’s begin by defining a ���������������	�
�������������
�
��� as a system in which,
at a minimum:

• The data is perceived by the user as tables (and nothing but tables)
• The operators at the user’s disposal (for data retrieval) are operators that generate

new tables from old, and those operators include at least SELECT, PROJECT and
JOIN

A sample relational database, the departments-and-employees database is shown in the
tables below. As can be seen, the database can be “perceived as tables”.

2 Database systems overview

4

Table 2-1. Department table (DEPT).

Table 2-2. Employee table (EMP).

There are certain rules that the database must obey if it is to conform to the prescriptions
of the relational model. To be specific:

• Each row in the DEPT table must include a unique DEPT# value. Likewise, each row
in the EMP table must include a unique EMP# value.

• Each DEPT# value in table EMP must exist as a DEPT# value in table DEPT (to
reflect the fact that every employee must be assigned to an existing department).

Columns DEPT# in table DEPT and EMP# in table EMP are the �����������
 for their
respective tables. Column DEPT# in table EMP is a ������������referencing the�primary
key of table DEPT.

2.1.1 The SQL Language

One of the most important ways to manipulate data in a relational database is through
the declarative query language��!� (Standard Query Language).
Most current relational products support some dialect of SQL. SQL was originally de-
veloped by IBM Research in the early 1970s, it was first implemented on a large scale

��+"7 �.��� �-�8�"

D1 Marketing 10M

D2 Development 12M

D3 Research 5M

��+7 �.��� ��6�39 ��+"7

E1 Jones 40K D1

E2 Ewing 30K D1

E3 McCoy 45K D2

E4 Chekov 25K D3

An ODBC-driver for the mediator database AMOS II

5

in the IBM relational prototype System R and subsequently reimplemented in numerous
commercial products from both IBM and other vendors. Dialects of SQL has since be-
come an American (ANSI) national standard, an international (ISO) standard, a UNIX
(X/Open) standard, and an IBM standard.

SQL is used to formulate relational operations (i.e., operations that define and manipu-
late data in relational form). Let’s begin with defining the departments-and-employees
database:

CREATE table DEPT(
 DEPT# char(2),
 DNAME char(20),
 BUDGET decimal(7),
 PRIMARY KEY (DEPT#));

CREATE table EMP(
 EMP# char(2),
 ENAME char(20),
 SALARY decimal(5),
 DEPT# char(2),
 PRIMARY KEY (EMP#),
 FOREIGN KEY (DEPT#) REFERENCES DEPT);

Having created the tables, we can start operating on them by means of the SQL data ma-
nipulation operations SELECT, INSERT, UPDATE and DELETE. In particular, we can
perform relational SELECT, PROJECT and JOIN operations on the data, in each case
using the SQL data manipulation statement SELECT. See the examples below.

�2��()
��0���6��"�:3��"3��";

SELECT DEPT#, DNAME, BUDGET
FROM DEPT WHERE BUDGET > 8M;

Table 2-3. Result of example 1.

��+"7 �.��� �-�8�"

D1 Marketing 10M

D2 Development 12M

2 Database systems overview

6

�2��()
��0�+3�<��"

SELECT DEPT#, BUDGET FROM DEPT;

Table 2-4. Result of example 2.

�2��()
�!0�<��.

SELECT DEPT.DEPT#, DNAME, BUDGET, EMP#, ENAME, SALARY
FROM DEPT, EMP
WHERE DEPT.DEPT# = EMP.DEPT#;

Table 2-5. Result of example 3.

Note that the join example above (Example 3) illustrates the point that qualified names
(e.g. DEPT.DEPT#, EMP.EMP#) are sometimes necessary in SQL to “disambiguate”
column references. If unqualified names were used, that is, if the WHERE clause were
of the form “WHERE DEPT# = DEPT#, then the two “DEPT#” references would be am-
biguous (it would not be clear in either case whether the reference stood for
DEPT.DEPT# or EMP.DEPT#).

A query language is not called relationally complete unless it provides at least the three
basic operations selection, projection and join. Selection produces a subset of the rows
of a table, the preceding queries do this by specifying constraints on the tables after the
WHERE keyword. Projection produces a subset of the columns of a table, the preceding
queries do this by specifying attribute names after the SELECT keyword. The join op-

��+"7 �-�8�"

D1 10M

D2 12M

D3 5M

��+"7 �.��� �-�8�" ��+7 �.��� ��6�39

D1 Marketing 10M E1 Jones 40K

D1 Marketing 10M E2 Ewing 30K

D2 Development 12M E3 McCoy 45K

D3 Research 5M E4 Chekov 25K

An ODBC-driver for the mediator database AMOS II

7

eration matches records in two different tables that have equal or related values in the
specified attributes.

�4����5
����
�
��
	�	������
�

Today’s relational products are inadequate in a number of ways, and maybe the relation-
al model is inadequate too. Some of the features that seem to be needed in DBMSs have
existed for many years in object-oriented programming languages. Thus, it is only natu-
ral to investigate the idea of incorporating those features into database systems, and
hence to consider the possibility of object-oriented database systems.
The basic idea of OO database systems is similar to that of OO programming languages:
Users should not have to wrestle with computer-oriented constructs such as bits and
bytes (or even records and fields), but rather should be able to deal with objects and op-
erations on those objects, that more closely resemble their counterparts in the real world.
For example, instead of having to think in terms of a “DEPT tuple” plus a collection of
corresponding “EMP tuples” that include “foreign key values” that “reference” the “pri-
mary key value” in that “DEPT tuple”, the user should be able to think directly of a ��"
��������� �	#�
�� that actually contains a corresponding set of ��������� �	#�
�
. And
instead of having to “INSERT” a “tuple” into the “EMP relation” with an appropriate
“foreign key value” of some “tuple” in the “DEPT relation”, the user should be able to
���� an �������� object directly into the relevant ���������� object. In other words, the
fundamental idea is to
���
���
�)
�
)��������
������.
Naturally, raising the level of abstraction is a desirable goal, and the OO paradigm has
been very successful in meeting that goal in the programming languages arena. There-
fore, it is natural to ask whether the same paradigm can be applied in the database arena
also. The idea of dealing with a database that is made up of ��
��
$�������	#�
�
 (e.g.
objects that “know what it means” to hire an employee or change their manager or cut
their budget), instead of having to understand relations, tuple updates, foreign keys, etc.,
is naturally much more attractive from the user’s point of view.

Object-oriented DBMSs are expected to meet the requirements of new application do-
mains, such as:

• computer-aided design and manufacturing (CAD/CAM)
• computer-integrated manufacturing (CIM)
• computer-aided software engineering (CASE)
• geographic information systems (GIS)
• science and medicine
• document storage and retrieval

All of the above represent areas in which today’s relational products tend to run into
trouble.

2 Database systems overview

8

Thus, the fundamental concept and modelling construct in an OO DBMS is the concept
of �	#�
�. Objects are used to model physical or abstract entities in the domain of interest.
Every object has a ���� (the OO term is
��

). Individual objects are sometimes referred
to as object instances specifically, in order to distinguish them clearly from the corre-
sponding object type or class.

All objects are ��
��
$�����. This means that the representation (i.e. the internal struc-
ture) of a given object is not visible to users of that object, instead users know only that
the object is capable of performing certain functions (methods). For example, the meth-
ods that apply to DEPT objects might be HIRE_EMP, FIRE_EMP, CUT_BUDGET, etc.
The advantage of encapsulation is that it allows the internal representation of objects to
be changed without requiring any of the applications that use those objects to be rewrit-
ten. In other words, encapsulation implies ���������������
�.

Every object has a unique identity called its “object ID” or ���. Primitive objects like
the integer 5 are self-identifying, i.e., they are their own OIDs; other objects have (con-
ceptual) addresses as their OIDs, and these addresses can be used elsewhere in the data-
base as pointers to refer to the objects in question. One implication of this is that objects
does not necessarily have to have any user-defined candidate keys as in a relational sys-
tem.

OO concepts typically involve some generalization mechanism for types, providing ca-
pabilities to structure types into hierarchies.
First, object class Y is said to be a
$	
��

 of object class X, equivalently, object class
X is said to be a
$���
��

 of object class Y, if and only if every object of class Y is
necessarily an object of class X (“Y ��� X”). Objects of class Y then ������� the instance
variables and methods that apply to class X. As a consequence, the user can always use
a Y object wherever a X object is permitted and thereby take advantage of
������$
�"
	�����. The ability to apply different methods with the same name to different classes is
referred to as ����������
�. Some systems also support the notion of �$��������������"
��
�, in which a given class can be a subclass of several classes simultaneously.

An ODBC-driver for the mediator database AMOS II

9

����	������� ��

!4���������

AMOS (Active Mediators Object System) is a research DBMS prototype which con-
forms to systems classified as object-relational DBMSs. AMOS is a main-memory
DBMS and is therefore very fast compared to disk-based DBMSs. AMOS has been de-
veloped built on substantial developments of the WS-Iris main-memory object-oriented
DBMS engine [9]. WS-Iris was developed at Hewlett-Packard Laboratories and is a de-
rivative of Iris [10].
The AMOS architecture uses the mediator approach [11] that introduces an intermediate
level of software between databases and their use in applications. Each AMOS server
has DBMS facilities, such as a local database, a data dictionary, a query language, trans-
action processing and remote access to databases. The query language, AMOSQL, is a
derivative of OSQL [12]. AMOSQL extends OSQL with active rules, a richer type sys-
tem and multidatabase functionality [8]. AMOS II is the latest generation of the AMOS
system, running on the Windows NT platform.

!4��"�
��
	����
��((
����

The mediator approach [11] introduces an intermediate level of software between data-
bases and their use in applications and by users. The purpose of a mediator is to query,
monitor, transform, combine and locate desired information between a set of applica-
tions and data sources. An external data source can be a conventional DBMS, data files
with specific exchange file formats or other mediators (In this case other AMOS II serv-
ers). Image 3-1 shows an example of an AMOS II mediator system in which some ap-
plications access data sources through a mediator system. The mediator presents high-
level abstractions (views) of combinations of these data sources. Notice that the media-
tor can access another AMOS II server as a data source.

Translators implements the mapping between local schemas (in the data sources) and the
corresponding component schemas (in the common data model). Thus, there is one

3 The AMOS DBMS

10

translator for every kind of data source. A query sent to a translator is transformed into
calls to the underlying data source. The results of these calls are then processed to form
an answer to the initial query.

Image 3-1. 3-level multidatabase architecture.

!4!�"�
�����=6�)��&��&

AMOSQL is a functional language with object-oriented extensions. The language is
more than relationally complete. Its basic capabilities include constructs for database
schema definition and evolution, population and updates, and database queries in terms
of the basic data model that includes objects, types and functions. Furthermore, it sup-
ports logical operators, arithmetic operators, active rules, multidatabase queries, disjunc-
tive queries, quantification, nested subqueries, transitive closures and so on. AMOSQL
provides a declarative query language interface to the database. This nature of the lan-
guage requires that optimization of queries is performed before execution can take place.

An ODBC-driver for the mediator database AMOS II

11

3.3.1 The AMOS data model

The data model consists of the basic constructs �	#�
�
, ����
 and $�
����
. There are
two types of objects in AMOS. ���������	#�
�
, such as
����
����
�����, �������, ����,
	������, etc. are self defining. The other type is called a
$���������	#�
�, these objects
have unique object identifiers (���
). Surrogate objects represent physical or abstract
external or internal concepts, e.g. persons, houses, doors or whatever might be in the da-
tabase. System-specific objects such as types and functions are also treated as surrogate
objects.
%���
 are used to structure objects according to their functional characteristics, in other
words, objects can be structured into types. Types are themselves related in a type hier-
archy of subtypes and supertypes. That is, subtypes inherit functions from their super-
types, and they can even have multiple supertypes. In addition, functions can be
overloaded on different subtypes (having different implementation for different types).
&$�
����
 are defined on types, and are used to represent attributes of, relationships
among and operations on objects. Functions can be defined as stored, derived, procedure
or foreign. A stored function has its extension explicitly stored in the database, while a
derived, procedure or foreign function has its extension defined in an AMOSQL query,
an AMOSQL procedure or a function in an external language such as Lisp or C.
Furthermore, functions can be overloaded, i.e. functions defined for different combina-
tions of arguments can have the same name (����������
�). The selection of the correct
function implementation of an overloaded function is made at function invocation based
on the actual argument types.

3.3.2 AMOSQL examples

AMOSQL provides statement constructs for typical database tasks, such as data defini-
tion, population, updates, querying and transaction control. Data schemas can be de-
fined, modified and deleted by using AMOSQL statements. The definition of types,
functions and objects is performed through the create statement. For example, types
may be defined by a create type statements as:

create type named_object;

create function name(named_object) -> charstring as stored;

create type person subtype of named_object;

where two types, named_object and person are defined. A new type becomes an imme-
diate subtype of all supertypes provided in the subtype clause, or if no supertypes are

3 The AMOS DBMS

12

specified, it becomes a subtype of the system type UserTypeObject. In the example
above, since person is a subtype of named_object, it inherits the property function
name (defined on named_object). The same thing can also be accomplished by:

create type named_object properties (name charstring);

create type person subtype of named_object;

A database is populated with objects with a create statement, with or without initial-
izations of functions. For example like this:
First, let’s add a function to the type person:

create function age(person) -> integer as stored;

Then, populate the database with:1

create person(name, age) instances
:p1(‘Sara’, 26),
:p2(‘Marcus’, 27);

Derived functions are defined in a similar way as stored functions. A single AMOSQL
query is in the function body. For example like this:

create function person_older_than(integer a) -> charstring
as select name(p) from person p where age(p) > a;

Let’s add one more function to our example database:

create function friends(person) -> bag of person;

The type bag holds the result of queries as sets of objects with duplicates retained.
In addition to population by object creation and attribute assignment, it is possible to use
the function update statements set, add and remove. Example:

set friends(:p1) = :p2;

Deletion of types, functions and objects can be made through the delete statement as:

1. Variables preceded by a colon, such as :p1, are global variables used by AMOSQL to hold
results temporarily during a session.

An ODBC-driver for the mediator database AMOS II

13

delete :p1;

delete function name;

delete type person;

!4$����������2�

��)����

���
�

There are two ways to interface AMOS II with other programs, either an external pro-
gram calls AMOS II through the
����� interface, or AMOS II calls external functions
through the
����$� interface. Currently there are interfaces between AMOS II and the
languages C and Lisp, while other interfaces are being developed (Java) [2].

3.4.1 The callout interface

In the callout interface, the AMOS II kernel calls external functions written in Java, C or
Lisp. Essentially, foreign AMOSQL functions are implemented by a number of external
functions which can be defined through a special mechanism called �����$���"����
������
 ������� $�
���� interface [2]. Foreign functions in AMOSQL must be side-effect free
since the query optimizer may rearrange their calling sequence.
The callout interface has similarities with �����	����
 or �����
��������
 in Object-Re-
lational databases. The system also allows the callin interface to be used by the callout
interface, which gives great flexibility. Of course, the callout interface always runs in the
same address-space as AMOS II.

3.4.2 The callin interface

In the callin interface a program, written in C, calls AMOS II. This interface is similar
to the call level interfaces for relational database systems, such as Oracle or Sybase.
The two basic alternatives for connecting applications to AMOS II are either through a
����� or a ���
� connection. In the tight connection, or ��	��������������
����
����,
AMOS II is directly linked together with the C-based application. This means that the
application and AMOS II runs in the same address-space and therefore this provides the
fastest connection possible. By using a driver program in C that initializes AMOS II and
catches AMOS II errors, the DBMS can be linked to the application as a C-library. An
obvious disadvantage with this tight connection is that execution errors in the application
may cause AMOS II to crash. Another disadvantage is that only a single application can
be linked to AMOS II, which means that AMOS II becomes a single application system.

3 The AMOS DBMS

14

For the loose connection, or
�����"
������
����
����, the application can work as a cli-
ent to AMOS II. In this case several applications can access the AMOS II server concur-
rently. In this situation, the application and the AMOS II server are executing in different
processes, possibly on different machines. This approach makes the AMOS II server
more resistant to execution errors in the application. If a run-time error occurs, it will not
affect the AMOS II server. The main disadvantage of this approach is the overhead of
inter-process communication. In comparison to the tight connection, the access time can
be several orders of magnitude higher in this loose connection.
For both types of connections there are two possible ways to communicate with AMOS
II from the host language of the application, either through the ��	������'$����interface
or through the �
�"�����interface.

• In the embedded query interface strings containing AMOSQL statements are passed
to AMOS II for evaluation. Primitives for accessing the result of the AMOSQL
statements from C are provided. The embedded query interface is relatively slow
since the AMOSQL statements have to be parsed and compiled before execution.

• In the fast-path interface predefined AMOS II functions are called from the C pro-
gram, without the overhead of parsing and compiling. Therefore, the fast-path inter-
face is significantly faster than the embedded query interface. Of course, this
assumes that the AMOSQL function is already defined in the database. If it is not
predefined, it has to be defined and then called. In that case it is actually slower than
the embedded query interface, since the query has to be parsed, compiled and then
run. However, if the same function will be called again, perhaps with different argu-
ments, the fast-path interface is much faster since the query only has to be parsed and
compiled once.

Thus, the conclusion is:
If the statement should only be executed once and is not already defined in the database,
use the embedded interface. Otherwise, always use the fast-path interface.

An ODBC-driver for the mediator database AMOS II

15

!��� �

This chapter describes the background and architecture of ODBC.

$4�����
�	������

While many standards have been proposed to address the needs of multi-DBMS (Data-
base Management System) access, ODBC has emerged as the de facto standard for the
MS Windows platform and is a component of Microsoft’s Windows Open Services Ar-
chitecture (WOSA). Essentially all modern RDBMSs (Relational Database Manage-
ment System) products support this standard, either as their sole interface to the outside
world or in addition to their own proprietary interface.

4.1.1 The evolution towards ODBC

In the early days of data processing technology, there was no such thing as a database
management system. Each vendor’s system came with a proprietary file access system
that was unique to the machine’s hardware and operating system. The file access systems
were implemented primarily in software. All were record oriented – read and write op-
erations were performed on a single record at a time. Code developed for one environ-
ment could not be migrated to another without major revisions to the source code, the
file access routines, and the operating system interface components of the application.
Therefore applications were developed exclusively for each hardware platform and
seamless portability and interoperability were only a dream.

Into this world of incompatible file systems came the database management system. In
file access systems, each file was treated as a separate, stand-alone entity, with no inher-
ent relationships to any other file. There was no central place where information about
that file was stored. It was up to the programmers to tell the file access system what a
record in each file looked like by providing a record definition section in their programs.

Gradually DBMSs evolved to address both of these two major flaws of file system im-
plementations. System files or tables were maintained by the DBMS that described all

4 ODBC

16

data elements (tables, indexes, columns, etc.) and the relationships among them. This in-
formation about the data is referred to as metadata, and it paved the way for the imple-
mentation of some of the basic data integrity constraints that we take for granted today.
Referential integrity constraints, for example, were not available in early file systems, as
each file was a separate unit unconnected with the outside world. The metadata main-
tained by a DBMS treats many tables as interrelated units, with their relationships iden-
tifiable through primary and foreign key linkages.

Of course, early DBMSs were not relational. They still required programmers to be
skilled in the navigation schemes used by the DBMS engine. It was not sufficient to
specify what information you wished, you also had to specify the access method that the
DBMS should use to retrieve that information. This required highly skilled programmers
for each DBMS interface and end user access to information was impossible without in-
tervention of the programming staff.

The rules of relational theory by Dr. E.F. Codd in the late 1970s laid the groundwork for
the evolution of the relational databases we have today. The mathematical foundation of
relational algebra and calculus provided the framework upon which a structured query
language (SQL) could be developed. SQL could ease the burden of figuring out how to
retrieve the data, freeing programmers to worry only about what information they need-
ed, not how to get it. The programmers were given a single common DBMS interface
when SQL was accepted by all RDBMS vendors.

But compatibility and proprietary interface problems continued to plague the industry,
mostly because of the advent of client/server computing and the necessity to interface
the RDBMS to the application via a proprietary network operating system (e.g. Novell).
In the RDBMS world of the late eighties and early nineties, each application continued
to be developed to perform a specific task and to work with a single database engine.

Additionally, SQL was not complete enough that the RDBMS vendors could use it with-
out their own extensions. In the rush to distinguish its products by the addition of ad-
vanced features, each vendor expanded the basic SQL with its own proprietary
enhancements to support the capabilities offered by its products.

By this time the SQL Call Level Interface (�!�(���) emerged as an attempt to address
the new interface component introduced by the network operating system and to resolve
incompatibilities between the SQL dialects offered by competing vendors. The SQL/
CLI is designed to support database access from shrink-wrapped applications and was
originally created by a subcommittee of the SQL Access Group (��)1). The SAG/CLI2

1. SAG, SQL Access Group. A group of database vendors creating a standard for remote data-
base access.

2. Actually, the new term for the SAG/CLI is X/Open CLI (based on SQL89).

An ODBC-driver for the mediator database AMOS II

17

specification was published as the Microsoft Open Database Connectivity specification
in 1992.

$4��>�����������?

Microsoft developed the ODBC interface as a means of providing applications with a
single application programming interface (API) through which to access data stored in a
wide variety of DBMSs. ODBC is designed to give applications the ability to access dif-
ferent database management systems with the same source code. The data source is not
necessarily a DBMS, an application can even access text-files or Excel documents using
ODBC. Today ODBC is a very widespread API with hundreds of ODBC-enabled appli-
cations.

4.2.1 ODBC architecture

The question then, is how does ODBC standardize database access? There are two ar-
chitectural requirements:

• Applications must be able to access multiple DBMSs using the same source code
without recompiling or relinking.

• Applications must be able to access multiple DBMSs simultaneously.

Then there is one more question, due to marketplace reality:

• Which DBMS features should ODBC expose? Only features that are common to all
DBMSs or any features that is available in any DBMS?

The problem is solved in the following way:

• ������
���������
����������������������� �
�* To solve the problem of how appli-
cations access multiple DBMSs using the same source code, ODBC defines a stand-

ard API. This contains all of the functions in the CLI specifications from X/Open1

and ISO/IEC2 and provides additional functions commonly required by applications.

A different library, or ������, is required for each DBMS that supports ODBC. The

1. The Open Group, a group “committed to lower the barriers of integrating new technology
across the enterprise.” Sponsored by Compaq, Fujitsu, HP, Hitachi, IBM, NCR, Siemens, Sun
and many more.

2. The International Organization for Standardization and the International Electrotechnical
Commission.

4 ODBC

18

driver implements the functions in the ODBC API. To use a different driver, the
application simply loads the new driver and calls functions in it. To access multiple
DBMSs simultaneously, the application loads multiple drivers.

• ������� ���
���
���������!���������*�In addition to a standard API, ODBC
defines a standard SQL grammar. This grammar is based on the X/Open SQL CAE
specification.

Applications can submit statements using ODBC- or DBMS-specific grammar. If a
statement uses ODBC grammar that is different from DBMS-specific grammar, the
driver must convert it before sending it to the data source. However, such conver-
sions are rare since most DBMSs already use standard SQL grammar.

• ������������
����������������������������
��$������$
��

�

�����$�������
����
*�Although the use of drivers solves the problem of accessing multiple
DBMSs simultaneously, the code to do this may be complex. Applications that are
designed to work with all drivers can not be statically linked to any drivers, instead
they must load and unload drivers dynamically at runtime and call functions in them
through a table of function pointers. Naturally, this situation becomes more complex
if the application uses multiple drivers simultaneously. The Driver Manager helps
the application to do all this.

• ������+��
�
���
���� �
�����$�	���� ������ ���$��
�	$�����
�������'$����������
�
���
$����������� �����*�If ODBC exposed only features that are common to all
DBMSs, it would be of little use. After all, the main reason so many different
DBMSs exist today is that they have different features. ODBC only requires that
drivers implement a subset of all those features.

The ODBC API architecture varies according to the operating system. On the Windows
platform, ODBC uses a dynamic-link library (DLL) architecture with loadable database
drivers and a Driver Manager. The Windows implementation of ODBC is quite similar
to the Windows print model, where the application developer writes to a generic printer
interface and a loadable driver maps that logic to hardware-specific commands.

The ODBC architecture has four components (see Image 4-1):

• �(()�������0 Performs processing and calls ODBC functions to submit SQL state-
ments and retrieve results.

• �
��

�����&

0 Loads and unloads drivers on behalf of the application. Processes
ODBC calls or passes them to a driver.

An ODBC-driver for the mediator database AMOS II

19

• �
��

0 Processes ODBC function calls, submits SQL requests to a specific data
source and returns results to the application. If necessary, the driver modifies an
application’s request so that the request conforms to the syntax supported by the
associated DBMS.

• ��������
�
0 Consists of the data the user wants to access and it’s associated
DBMS.

Multiple drivers allow the application to simultaneously access multiple data sources.
The ODBC API is used in two places: between the application and the driver manager
and between the driver manager and the driver.

Image 4-1. Components of the ODBC architecture.

4.2.2 The Driver Manager

The Driver Manager is a library that administers communications between applications
and drivers. On the Windows platform, the Driver Manager is a DLL written by Micro-
soft. The Driver Manager takes care of common problems, such as determining which
driver to load, loading and unloading drivers and calling functions in drivers. The Driver
Manager is either statically linked to the application, or loaded by the application at run-

4 ODBC

20

time. The application calls ODBC functions in the Driver Manager, not the ODBC driv-
er. Therefore, the Driver Manager must implement all ODBC functions. Mostly, this is
done as a simple pass-through call to the function in the correct driver, but the Driver
Manager also implements a few functions, such as functions for getting information
about installed drivers, which ODBC-functions a driver supports, etc. It also performs
some basic error checking and maps deprecated functions to guarantee backward com-
patibility of ODBC 3.0 drivers that are used with ODBC 2.x applications. If the applica-
tion calls an ODBC 2.x function that is not implemented in the ODBC 3.0 driver, the
Driver Manager calls the corresponding ODBC 3.0 function instead. Therefore, it is im-
portant that if the driver uses ODBC 3.0, then the Driver Manager must be of at least
version 3.0. (It is always possible to use older applications and drivers with a newer
Driver Manager.)

4.2.3 Drivers

The driver is a library that implements the functions in the ODBC API. Each driver is
specific to a particular DBMS. The driver exposes the capabilities in the corresponding
DBMS. If, for example, the DBMS does not support outer joins, then neither should the
driver.

Some tasks performed by the driver include:

• Connecting and disconnecting from data sources.

• Checking for function errors not checked by the Driver Manager.

• Initiating transactions.

• Submitting SQL statements to the data source for execution. The driver must of
course modify ODBC SQL to DBMS-specific SQL (In this case AMOSQL).

• Sending and receiving data from the data source, including converting data types.

• Mapping DBMS-specific errors to ODBC errors (ODBC SQLSTATEs).

There are two kinds of drivers, file-based drivers and DBMS-based drivers. File-based
drivers access the database file directly (for example a driver for a simple text-file). In
this case the driver acts as both driver and data source, it processes ODBC calls and SQL
statements. This kind of driver has to implement its own database engine. DBMS-based
drivers, on the other hand, access the physical data through a separate database engine.

An ODBC-driver for the mediator database AMOS II

21

The driver only processes ODBC calls, SQL statements are passed to the database en-
gine for processing, that is, the driver acts as the client in a client/server configuration
where the DBMS acts as the server.

4.2.4 Conformance Levels

Naturally, there is no agreement on what is the proper set of functionality of a DBMS.
Even databases that follow the relational model, uses SQL as its query language and run
on client-server architecture have no consensus on functionality. Different DBMSs nat-
urally have different functionality and users purchase the product partially due to the ex-
tended functionality that the product offers.
To handle different database functionality, ODBC provides a minimum level of func-
tionality that is expected to be supported by all drivers, while still utilizing as many fea-
tures of a DBMS as possible. Application developers have to decide whether to use the
minimum level of functionality or to test for extended functionality.

Many DBMSs have sets of functionality in common, and therefore ODBC defines dif-
ferent conformance levels, both for the API and for SQL statements. Each driver lets the
application determine at runtime what ODBC capabilities and what SQL grammar the
driver and each data source supports.

In ODBC 3.0, drivers are classified based on what features they possess. Three levels are
defined (Core, Level 1 and Level 2), and to meet a particular conformance level a driver
must satisfy all of the requirements of that level. However, conformance levels do not
divide neatly into support for a specific list of ODBC functions. To support a feature, the
driver must support some or all forms of calls to certain ODBC functions, setting certain
attributes and certain descriptor fields. Drivers are free to implement features beyond the
level to which they claim conformance. Applications can discover any such additional
capabilities by calling �=68
�1�������� (to determine which ODBC functions are
available) and �=68
����� (to query various other ODBC capabilities).

$4!��������)� �������������(()�������

This part describes how an ODBC-based application connects to a data source, submits
queries and fetches results.

First of all, the application (or user) selects which data source to connect to. Then the
driver manager loads the correct driver for that data source. The application starts by ask-
ing the driver to allocate memory for an environment (which is driver-specific) and re-
turn a environment handle to the application. This handle is used in subsequent calls to
the driver. Next, a connection to the data source itself has to be established. For this, a

4 ODBC

22

connection handle is needed. When a connection has been established, a statement han-
dle for sending queries and retrieving results is needed. All three types of handles are
driver specific, the application only uses a handle (an address) in subsequent calls to the
data source.

Queries to the data source can be submitted in two different ways, either direct execution
or prepared execution. Direct execution is the simplest option. Just send a query to the
data source for execution, for example a simple select statement. No parameters are al-
lowed, that is, all necessary data has to be sent at once. This type of execution might be
appropriate for simple queries which are expected to be executed only once. Since the
data source has to compile the query before execution, this method is rather slow, at least
if the same query is asked many times. In this case, prepared execution is significantly
faster.

For prepared queries, the query is sent to the data source for preparation (compilation).
The query can be executed at a later time. It is also possible to send parameters to the
data source before execution. An example: The select statement

SELECT age FROM person WHERE name = ?

where ‘?’ is a parameter marker might be sent to the data source. Before execution, the
value of the parameter is sent. After retrieving the result of the query new parameters can
be sent for the next execution of the query. The query never has to be compiled again, at
least not until its associated statement handle has been freed.

Retrieving of results is done in a loop (fetch the next tuple if there is one) and at the same
time type conversion is made if necessary.

When the application wishes to disconnect from the data source all statement handles are
freed (a connection can have many concurrent statements), the driver disconnects from
the data source, and the connection and environment handles are freed. At this point the
application is completely disconnected from the data source.

4�"�
�����

��������

ODBC has been a great success, at least on the Windows platform. There are hundreds
of ODBC-enabled applications, for example: MS Excel, Word, Access, Internet Infor-
mation Server and Filemaker Pro. The future may be a bit more uncertain. It seems as if
Microsoft is phasing out ODBC. Apparently, Microsoft wants us to use OLE DB instead.
The latest version of ODBC (3.5) includes support for OLE DB. ODBC 3.5 adds unicode
support and includes the OLE DB Provider for ODBC Drivers as a part of the Driver

An ODBC-driver for the mediator database AMOS II

23

Manager. This means that all OLE DB applications can use existing and future ODBC
drivers.

4.4.1 OLE DB

Cite from Microsoft’s OLE DB web page,�-��.�����
���
��
� �/
�
�������
���0"�����
����� �
�����������
��

�����������1�����*���.�����
���������
��
� �
��������
��������
	$�����������
$

�

�� ������	��������������������
�������� ����

�

������������
��
����*2
OLE DB is a set of interfaces for data access that provides universal data integration re-
gardless of the data type. The ODBC data access interface will continue to provide a uni-
fied way to access relational data as part of the OLE DB specification. However, in the
future Microsoft expects OLE DB to lead new database products that are assembled
from best-in-class components rather than from the monolithic products available today.
OLE DB is supposed to provide an efficient and flexible database architecture that offers
applications, compilers and other database components efficient access to Microsoft and
third-party data stores.
OLE DB is the fundamental �����������	#�
������� (COM) building block for storing
and retrieving records from databases. It will be used throughout Microsoft’s future line
of applications.
An OLE DB data provider exposes data from an underlying data source. For example,
the OLE DB Provider for ODBC exposes ODBC data sources, and the OLE DB Provider
for Jet exposes Microsoft Jet (the underlying DBMS used by Access). An OLE DB data
consumer is something that consumes the data exposed by a provider.

4 ODBC

24

An ODBC-driver for the mediator database AMOS II

25

"�����	���	��#

The ODBC standard specifies what an ODBC driver should do and what functions it
must export. However, it does not specify ��0 this should be done. Therefore different
driver architectures were proposed and rejected. This chapter shows different possible
architectures of the AMOS II ODBC-driver and finally the chosen architecture.

%4��+�����)
�	
��

��
����
���

�

The driver is a DLL which is being loaded into the client application’s addresspace. It
should export all necessary ODBC functions for the conformance level it claims con-
formance to. The SQL statements being transmitted from the application must be con-
verted to the data source specific query language, in this case AMOSQL.
The usual architecture of a DBMS-based driver is for the driver to be completely stand-
alone from the DBMS (See image 5-1). The driver sends SQL-statements to the DBMS
using the network and receives data in the same way. Usually the application/driver runs
on a different machine than the DBMS, or at least in another process.

Image 5-1. The usual architecture of a DBMS-based ODBC-driver.

This architecture was of course the first considered. Since AMOS II currently lacks an
easy-to-use client-server interface, it would be necessary to implement such an interface.
The AMOS II server would in this case run in nameserver mode and the driver would

 Application

 Driver

 DBMS

5 Driver design

26

connect to the port that server listens to. The driver would send AMOSQL queries to the
AMOS II server and receive data which must be parsed. Thus, a parser must be devel-
oped for converting SQL-statements to AMOSQL-statements and another parser would
translate the data received from the AMOS II server to a form suitable for the driver.

The next architecture considered was a small variation of the first. Suppose that we split
the driver in two. The parsing of SQL to AMOSQL could be done on the server side.
This could be implemented as an external function to AMOS II using the
����$� inter-
face. By using this architecture, AMOS II would suddenly have a SQL interface aswell
as an AMOSQL interface (See image 5-2). The SQL interface could of course be used
by other applications than the driver. The driver would still have to parse the data re-
ceived from AMOS II, unless of course this too would be done on the server side. Still
this would require a lot of work. A variation on the same approach could be to do all the
work on the server side, using the
����$� interface (See image 5-3). In this case the im-
plementation of the ODBC functions in the driver would mostly be pass-through calls to
the server. This could really be viewed as if the driver was completely on the server-side
since all work would be done there. This might seem as a strange approach to the prob-
lem, but in this way the driver would have complete access to AMOS II.

Image 5-2. The AMOS II server could listen for connections on two different ports.

 Application

 driver

 AMOS2
 server

AMOSQL

SQL parser

An ODBC-driver for the mediator database AMOS II

27

Image 5-3. Driver on the server side. The client side driver passes through ODBC calls to the
server.

%4��"�
�����
���
����
���

The last proposal was to use the
����� interface to embed the AMOS II system into the
driver. Since AMOS II would be statically linked to the driver and the application dy-
namically loads the driver, the entire AMOS II system would be embedded into the ap-
plication e.g. Excel! (See image 5-4). Of course, we were really excited about this
possibility. The ODBC connection to AMOS II would be ultra-fast, since the system
would run in the same address space as the application and the fact that AMOS II is a
main memory system. The downside would be the fact that embedded AMOS II is a sin-
gle user system. The application would have it’s own local, private database. As will be
shown, there is a way around this problem (The embedded AMOS II system can connect
to other AMOS II servers, running on other machines.) Another disadvantage is the fact
that the driver would be a lot larger than an ordinary ODBC driver. AMOS II uses about
3 MB of memory, but with a large database it will be a lot more.

 Application
 AMOS2
 server

driver
driver

5 Driver design

28

Image 5-4. AMOS II embedded in the ODBC driver.

 Application

 ODBC driver
 Embedded
 AMOS2

An ODBC-driver for the mediator database AMOS II

29

$���%&	�	
�����

Implementing an ODBC-driver consists mostly of writing C-code, which is not very in-
teresting to read about. Instead, this chapter covers parts of the implementation process
which perhaps differs somewhat from the development of an “ordinary” relational data-
base driver. In our case, the relational model of ODBC has to be converted to the object
model of AMOS. Moreover, the SQL queries from ODBC must be translated into
AMOSQL queries.

'4���������	
)���((��&

At a first glance, AMOS II and ODBC may seem mismatched. The data models appear
to be completely different with a relational model on the ODBC side and an object model
on the AMOS II side. The ODBC driver has to solve this problem. The object model
from the AMOS II database must be mapped into a transient model for ODBC. As an
example, consider that a three dimensional object (like the Earth) can be represented in
two dimensions on paper (a map). In essence, the projection is accomplished by “flatten-
ing” the object model into tables that have relationships through foreign keys.

• ��5
����	
�����

4
The object identifier (OID) of each object becomes the primary key for each object.
This key can be used to build relationships with other tables.

• ���

�����

Since inheritance has no counterpart in the relational world, the AMOS II driver sim-
ply maps derived types into separate tables. For example, a type �������� that is
derived from the type ���
�� is represented as an��������� table containing all data
from the ���
�� part plus all data from the �������� part. Of course, this creates
some redundancy in the mapping since the ���
�� part of the �������� object is also
contained in the ���
�� table.

6 Implementation

30

6.1.1 The POET database system

POET Software is a german software company which developed the POET Object Serv-
er Suite, an object database for Windows NT.
Quote:
“POET Software is the leading provider of high performance, scalable object databases
for Windows NT and Java, providing unique value in embedded applications that require
small footprint and zero management overhead.”

Since there is an ODBC-driver for POET, let’s take a look at POETS’s way of mapping
the object model into a relational model.

First, consider a very simple example where there is only one persistent class defined in
the database. This class has three data members which hold, respectively, the name, age
and weight of a child. Each object in the database corresponds to one child and holds
three basic items of data.

persistent class Child
{
 public:
 char name[30];
 short age;
 float weight;
};

The class Child is mapped as a table CHILD, which has four columns:

Table 6-1. The CHILD table.

The last column corresponds to the object identification in the POET database. Each row
has a unique value for column CHILD_OID, this value serves as the primary key for the
table, which is sometimes required for updating. The value cannot be updated; every
newly added row gets a unique value provided by the POET database, which never re-
peats that from a previously deleted row. A data type is associated with each column.
The ODBC driver must allocate an ODBC data type to every column of every table.

���
 �&

�&�� ���)	@��	

An ODBC-driver for the mediator database AMOS II

31

Table 6-2. Child data types.

The application program must then map each of these SQL data types to a type appro-
priate for its own needs. This trivial example illustrates the basis that every persistent
class is mapped as a basetable, which is then visible through an ODBC application such
as Microsoft Access. Often, however, the one-to-one mapping just described is not ade-
quate, additional tables must be generated. Three commonly used features of the POET
paradigm require a more complex approach:

• a data member is a data aggregate rather than primitive.
• a data member is a set (collection of objects).
• a data member is a reference to another object.

Aggregates are expanded

POET treats the members of an aggregate as though they were members of the object
containing it. As an example consider the class Address defined as an aggregate of street,
city, zip, state:

persistent class Address
{
 public:
 char street[20], city[20], zip[6], state[3];
};

Objects of class Person contains the address as a data member:

persistent class Person
{
 public:
 char name[30];
 Address address;
};

��)��� �����	������(

name SQL_CHAR

age SQL_INTEGER

weight SQL_FLOAT

child_oid SQL_INTEGER

6 Implementation

32

The table PERSON would then be structured as:

Table 6-3. The PERSON table.

If the embedded object contains further embedded objects, these will also be expanded,
using the aggregates membername as above. This way of expanding aggregates may
seem smart for simple examples as the one above. However, consider a slightly more ad-
vanced type:

persistent class Person
{
 public:
 char name[20];
 int age;
 Person friend;
};

In this example the type Person contains a data member (�����) which also is of type
 �����. Since aggregates are expanded, the member ����� would be expanded to
 �����3����, �����3��� and so forth. But this ����� will also be expanded! This way,
the member type ������might be�infinitely expanded (at least until there is a person in
the database without a friend).

6.1.2 Mapping AMOS II databases

For simple types, like the CHILD type above, the AMOS II ODBC-driver performs ex-
actly the same mapping as the POET ODBC-driver.

create type CHILD
 properties (name charstring, age integer, weight real);

���
 �		

��@��

� �		

��@���� �		

��@A�(�		

��@����
 (

���@��	

An ODBC-driver for the mediator database AMOS II

33

The CHILD type is mapped as:

Table 6-4. The CHILD table.

Unlike the POET ODBC-driver, the AMOS II ODBC-driver does not expand aggre-
gates. Instead an aggregate of the kind discussed above becomes a foreign key to another
table (actually the OID in another table).

create type ADDRESS
 properties (street charstring,
 city charstring, zip charstring, state charstring);

create type PERSON
 properties (name charstring, address ADDRESS);

In this case the PERSON table is mapped as:

Table 6-5. The PERSON table.

Types containing sets of elements (bag of) is mapped as two different tables, one con-
taining the object and one containing the OID of the object and a column containing all
values in the bag. See the following example:

create type car_manufacturer
 properties (name charstring, models bag of charstring);

The type car_manufacturer is mapped as two separate tables with OID as primary/for-
eign keys. See table 6-6 and 6-7.

��� ���
 �&

�&��

��� ���
 ���3���@���

6 Implementation

34

Table 6-6 and 6-7. The type car_manufacturer mapped as two separate tables.

Types containing a function returning more than one value would be possible to expand
within the same table as the rest of the type, but since this would violate the relational
model, it will be mapped to a separate table containing the OID of the object and a col-
umn for every result of the function. See the example below where the function ���� re-
turns two values:

create type person
 properties (name charstring);

create function data(person) -> <integer, real>;

Tables 6-8 and 6-9. The type person mapped as two separate tables.

��� ���

��� ��	
)�

��� ���

��� 	���@� 	���@�

An ODBC-driver for the mediator database AMOS II

35

'4��+�
���&��=6�����
�
���

In programs with structured input, such as an ODBC-driver, two tasks that appear over
and over are dividing the input into meaningful units, and then discovering the relation-
ship among the units. For a SQL-statement, the units are variable names, strings, opera-
tors, punctuation, and so forth. This division into units (which are usually called �����
)
is known as ��+�
��������
�
.
As the input is divided into tokens, the relationship among the tokens has to be estab-
lished. This task is known as ���
��� and the list of rules that define the relationships
that the program understands is a �������.

Of course, the SQL statements generated by an ODBC-enabled application has to be
converted into it’s AMOSQL counterpart. For example1 the SQL query (generated by
Microsoft Query):

SELECT TEACHER.NAME, DEPT.NAME
FROM DEPT DEPT, TEACHER TEACHER
WHERE TEACHER.WORKS_AT = DEPT.OID

Must be translated into:

select name(teacher), name(dept)
from dept dept, teacher teacher
where works_at(teacher) = dept;

As can be seen in this case, there is not a very big difference between the SQL- and
AMOSQL-syntax (at least not for SELECT statements).
Some queries may use variables, which are sent at a later time. Naturally, these queries
must also be translated correctly. Example:

SELECT STUDENT.NAME, STUDENT.EMAIL, STUDENT.MAJOR
FROM STUDENT STUDENT
WHERE (STUDENT.MAJOR<>?)

Where ‘?’ is a parameter marker.
Is translated to:

select name(student), email(student), major(student)
from student student where (major(student)!=?1);

In the AMOS II ODBC-driver, parameters are numbered as ?1, ?2, and so on.

1. See appendix E for a definition of the classes used in these examples.

6 Implementation

36

The code for translating SQL queries into AMOSQL queries was generated using the
GNU1 tools &��+ and ��
��. Flex takes a set of descriptions of possible tokens and pro-
duces a C-routine, a ��+�
��������
��, that can identify those tokens. (Flex is the GNU
version of the standard UNIX tool Lex). Bison is a general-purpose parser generator that
converts a grammar description for a ���4 (�ook�head �eft 4ecursive)[7] context free
grammar into a C program to parse that grammar. Bison is upward compatible with 5�

(yet another compiler compiler).

The Flex specification used to generate the lexical analyser and the Bison grammar de-
scription can be found in Appendix A and B, respectively.

Since many ODBC-applications allows the user to write their own SQL-statements, this
opens up a possibility to bypass the translation of SQL to AMOSQL. By prefixing the
statement to be executed with ���
'�,�the translation is skipped. Thus, it is possible to
write your own queries using AMOSQL instead of SQL. This is actually even used in-
ternally in the driver when calling stored functions (see the next chapter).

'4!�-���&����

	�(
��
	�

�

Some ODBC functions are best implemented as stored AMOS procedures2. Functions
specifically suited for this are those for getting metadata such as all available tables
(SQLTables), columns (SQLColumns), data types (SQLGetTypeInfo) and so on. For ex-
ample, see the function for getting information about supported data types (SQLGetTy-
peInfo) below. The stored procedures ����)��%����� ����
� �
%��� and
����)��%����� ����%���
 are called for getting information on a specific data type
and all supported data types respectively. The procedures are actually executed using an-
other ODBC-function, SQLExecDirect. Later, SQLFetch is called to fetch the results of
the executed query.

1. GNU’s Not Unix! See www.gnu.org
2. See appendix C for all stored procedures and stored data for ODBC support.

An ODBC-driver for the mediator database AMOS II

37

EXPORT SQLRETURN SQL_API SQLGetTypeInfo(
 SQLHSTMT StatementHandle,
 SQLSMALLINT Datatype)
{
 STMT* stmt=(STMT*)StatementHandle;
 char errstr[MAX_STRING_LENGTH];

 delete_error_records(&stmt->diagnostics);
 change_header_record(&stmt->diagnostics, 0, "", 0, 0);

 /* This query is a TYPE_INFO query. Needed by SQLFetch. */
 stmt->query_type=TYPE_INFO;

 switch (DataType)
 {
 case SQL_INTEGER:
 case SQL_DOUBLE:
 case SQL_VARCHAR:
 {
 char buffer[50];
 sprintf(buffer,"%sODBCGetTypeInfoSpecificType(%i);",
 AMOSQL_TAG,DataType);
 /* Call stored function */
 return SQLExecDirect(stmt, buffer, strlen(buffer));
 }
 case SQL_ALL_TYPES:
 {
 char buffer[50];
 sprintf(buffer, "%sODBCGetTypeInfoAllTypes();", AMOSQL_TAG);
 /* Call stored function */
 return SQLExecDirect(stmt, buffer, strlen(buffer));
 }
 default:
 {
 char* state="HY004"; /* Invalid SQL data type */
 sprintf(errstr, "%sInvalid SQL data type", DRIVER_ERROR_STR);
 EnterCriticalSection(&stmt->lock);
 post_error_record(&stmt->diagnostics,XOPEN,SQL_NO_COLUMN_NUMBER,
 SERVER_NAME,errstr,0,SQL_NO_ROW_NUMBER,DBMS_NAME,state,XOPEN);
 LeaveCriticalSection(&stmt->lock);
 DEBUG("SQLGetTypeInfo returned SQL_ERROR");
 return SQL_ERROR;
 }
 }
}

A few help functions also had to be implemented, for example one for getting all at-
tributes for a specific type. This translates to all columns of a table in our relational mod-
el. This is one of the two functions actually written in Lisp:

6 Implementation

38

(create-function user_attributes ((type t)) ((function f))
 as (f)
 foreach ((type tp))
 where (and (= tp (allsupertypes t))
 (!= tp (typenamed “object”))
 (= f (attributes tp))))

That is, get all attributes of the type not inherited from the type �	#�
�.

'4$��2
�����&��=6�����
�
���

This chapter describes how the driver implements query execution and retrieving of re-
sults from executed statements.

6.4.1 Preparing queries for execution

Prepared queries are the fastest way to execute the same query many times, maybe with
different variables for every execution. The query is prepared (compiled) in the data
source and executed at a later time. The query remains active until the corresponding
statement environment is freed, or in this case until disconnection from AMOS.

The function for preparing queries, �!��������, takes a statement handle and a state-
ment text as input. The statement text has to be converted to AMOSQL, this is of course
accomplished by a call to the bison-generated parsing procedure. The parser returns the
translated statement and the number of arguments to that statement.

After parsing, a ����
���� function has to be generated. A transient function is an AMOS
function which remains accessible until the database is shut down.
The AMOSQL query preparation (PREPARE-QUERY QUERY ARITY) generates a
transient function. The actual code for generating a function for later use looks like this:
(All called functions are from the AMOS callin interface.)

An ODBC-driver for the mediator database AMOS II

39

a_setf(fun, a_getfunction(env->connection,
 "charstring.integer.prepare_query->function", FALSE));
a_setarity(argl, 2); ��������	
���
�������

���������	
�����
a_setstringelem(argl, 0, Text, FALSE); ����	����	����������	
�����
a_setintelem(argl, 1, num_params, FALSE);
a_callfunction(env->connection, s, fun, argl, TRUE);

������	��

��	����
�	�	�	
�����������
a_getrow(s, row, FALSE);
����	����������
������	�
	�����
�
	
����
��
�
���
a_setf(stmt->fun, a_getelem(row, 0, FALSE));
��������	
���
���������	���	���	����
��
�
����������
����
a_setarity(stmt->argl, num_params);
free_tuple(argl);
free_tuple(row);
free_oid(fun);
free_scan(s);

where the variable $� temporarily stores a reference to the generated function. The func-
tion reference is then stored in the currently active statement’s function variable (
���"
6 $�) for later use. The variable %�+� holds the statement text, for example
���
�
����7�8� �������
�����0��������7�8�6�9:. The variable �$�3�����
 holds the number
of arguments in the statement text.

Some applications (Microsoft Office) seems to be unable to remember what statements
it just prepared, because it calls SQLPrepare before every execution of the same state-
ment. Therefore, the just prepared query (actually the SQL statement text) is cached. Be-
fore parsing the text the current statement text is compared to the cached text. If the texts
match, parsing and query preparation can be avoided.

6.4.2 Binding parameters

Before executing a prepared query argument values, if any, must be supplied. For every
bound column an �����
������������������

������ (APD) and an �����������������"
����������

������ (IPD) is created, if they were not created previously. The descriptors
contain information about the bound columns, such as column number and data type. If
the data types in the IPD and the APD differ (for the same column) that means that the
application wants the driver to convert the supplied parameter value from the type sup-
plied to the type at the data source. All descriptors are stored in a simple linked list in the
current statement environment.

6 Implementation

40

6.4.3 Executing prepared statements

Before executing the prepared statement the parameters (see above) are converted if nec-
essary and then the previously stored function is executed. See the code for ��$	�� type
parameters below:

case SQL_DOUBLE:
{
 double data;
 if(!C_to_SQL(APD_record->type,APD_record->data_ptr,SQL_DOUBLE,
 &data))
 {
 char* state="07006";
 sprintf(errstr,"%sRestricted data type attribute violation",
 DRIVER_ERROR_STR);
 post_error_record(&stmt->diagnostics, XOPEN, SQL_NO_COLUMN_NUMBER,
 SERVER_NAME, errstr, 0, SQL_NO_ROW_NUMBER,
 DBMS_NAME, state, XOPEN);
 goto error;
 }
 a_setdoubleelem(stmt->argl, (current->id)-1, data, FALSE);
 break;
}

As can be seen from the code above, the parameter is converted to the correct data type
(the call to C_to_SQL) and then added to the argument list. The call to the AMOS callin
interface function �3
����$	������ adds the argument value (data) to the argument list
(stmt->argl), where the argument number is given by the expression 7
$�����"6��8": (-1
because AMOS numbers parameters from 0 and ODBC from 1.)

When all parameters has been added to the argument list the function is executed:

a_callfunction(env->connection,stmt->scan,stmt->fun,stmt->argl,TRUE)

After execution, the number of columns in the result is checked and for each column a
new ���������������4�0���

������ (IRD) is created. Just as for APD’s and APD’s, the
IRD contains information about data types and names of the columns in the result set.

6.4.4 Direct execution

For direct execution, the SQL statement is parsed, just as for prepared execution, but
then it is executed directly using this function call:

a_execute(env->connection, stmt->scan, Text, TRUE)

where the variable %�+� contains the AMOSQL statement.

An ODBC-driver for the mediator database AMOS II

41

After execution, the number of columns in the result set is investigated and new IRDs
are created.

a_openscan(env->connection, stmt->secondary_scan, FALSE)
a_getrow(stmt->secondary_scan, stmt->tuple, TRUE)
num_cols=(SQLSMALLINT)a_getarity(stmt->tuple, FALSE);

As can be seen from the code above, a secondary scan is opened only for checking the
number of columns in the result set. The first row in the set is retrieved but not used. Af-
ter getting a row from the result set, the row pointer is advanced one step. Later, when
retrieving data from the result, a new scan is opened, pointing to the first row.

6.4.5 Binding result columns

Before actually retrieving the results of an executed query, the application has to bind all
columns it is interested in getting results from. Not all columns are necessarily bound.
Upon execution, the driver creates IRDs (one IRD for every column in the result) with
column information. For every column the application is interested in, an �����
�����
4�0���

������ (ARD) is created. An ARD contain information on what data type the
application expects the driver to convert the result to and an address to where the driver
should store the converted data. For string types, the size of the allocated space is also
stored in the ARD.

6.4.6 Retrieving results

When retrieving data from the result set, the application calls SQLFetch for every row
to get data from. The driver examines all bound columns (all ARDs) and retrieves data
for those columns, converting the data if necessary.

6 Implementation

42

An ODBC-driver for the mediator database AMOS II

43

'�����&	��

This chapter describes some of the problems encountered during the work.

*4��8
����&�����
������������ ������()
�
�����	
��

The main problem was definitely finding information on how to implement a driver. All
books I could find on the subject mainly described how to develop an ODBC-based ap-
plication. Even Microsoft’s book on the subject, ��
��
� �������;*<�����������=

4� ����
��������>�)$���, had little information on driver responsibilities. My solution
to the problem was to “reverse engineer” the information found in the literature and to
trace ODBC function calls from applications such as Microsoft Query and Access. Some
hints was also found when studying the source code from an existing ODBC driver for
the MySQL DBMS published by T.c.X Datakonsult AB. Unfortunately, their driver was
an ODBC 2.5 driver, while the AMOS driver I was developing was version 3.0.
Because of these rather fundamental problems, the development process took far more
time than expected.

*4��"
����&���
�	
��

During development of the driver, I had to find out a way to test the driver. Since ODBC
applications can only use completely implemented drivers (others will simply be reject-
ed) I had to develop my own ODBC application capable of testing my incomplete driver.
At first I did not compile the driver as a DLL, instead I developed an application calling
my functions directly. Few errors were discovered using this technique since both the
exported ODBC functions and the application were implemented using my own view of
how an ODBC application/driver should work. Other (real) applications might expect
different things from the driver.

Later in the development process, I began testing the driver using Microsoft’s test tool
�����%�
�. This application makes it possible to test individual calls to an unfinished

7 Problems

44

driver. This was an excellent test tool, but there were still problems. As soon as the func-
tion SQLFetch was called, the application crashed. This meant that I could test most of
the features of the driver except the most important one. I spent several weeks searching
for the problem without success.
After implementing a few more ODBC functions it could be used by a real ODBC ap-
plication, Microsoft Query. To my surprise SQLFetch worked without any problems.

*4!��
��&&��&����66

When testing the driver during longer sessions it would sometimes crash, some errors
seemed regular and some not. To find these bugs, a nice tool for debugging the driver
was needed. Unfortunately, he tool used for developing, ���������??��$�����, was un-
able to debug DLLs. The excellent (but somewhat buggy) debugger in ��
��
� ��@�
$��
��$��� on the other hand is very capable of debugging DLLs. Unfortunately the problem
was that nobody could figure out what calling convention1 to use when compiling with
Visual Studio. When compiling with C++ Builder the convention specified in ODBC 3.0
was used (33
��
���). However, this did not work when compiling with Visual Studio.
Perhaps Microsoft changed the meaning of
��
��� when developing Visual Studio?

Description of 33
��
��� according to Microsoft:

Called function pops its own arguments from the stack.
An underscore (_) is prefixed to the name.
The name is followed by the at sign(@) followed by the number of bytes (in decimal) in
the argument list.
Therefore, a function declared as
int foo(int a, double b)

is decorated as follows:

_foo@12

Description of 33
��
��� according to Borland:

Called function pops the stack.
Case is preserved.
Does ��� generate underscores.

1. Calling convention options tell the compiler which calling sequences to generate for function
calls. The different calling conventions differ in the way they handle stack cleanup, order of
parameters, case and prefix of global identifiers.

An ODBC-driver for the mediator database AMOS II

45

Unfortunately, this meant that it was impossible for us to use the debugger in Visual Stu-
dio.

Most of the “regular” bugs have been corrected, but there still are some problems. A rea-
son for these problems might be the multi-threaded properties of the application. The
driver should be fairly thread-safe, but as even the standard C-library may have some
flaws in respect to this, I can’t be really sure.

*4$���������

�)�

On some occasions the application would crash with a stack overflow when executing
queries. The size of the C-stack is fixed and decided by the application, the user has no
way of setting the stack size. Many functions in the AMOS system is recursive (Lisp)
and thus needs a lot of stack space. The problem was fixed by “warming up” (running a
few AMOS functions from the command-line) the database image before use with an
ODBC application.

7 Problems

46

An ODBC-driver for the mediator database AMOS II

47

(�)��
#���	�����	��*����	��
�������

This chapter contains an example when using the driver with an ODBC application, in
this case Microsoft Query.

After connecting to the data source, the application has retrieved all tables and lets the
user choose what tables and columns the query should consist of. (Image 8-1)

Image 8-1. Adding tables and columns to the query.

When the query has been designed it is executed. In this case we wanted all department
names and their locations.

8 Using the driver - a demonstration

48

Image 8-2. The result of the executed query.

Since this query wasn’t very interesting, let’s add the ���
��� and the
$	#�
� table to it:

Image 8-3. Adding more tables to the query.

Then we join the three tables together as can be seen in the image below:

An ODBC-driver for the mediator database AMOS II

49

Image 8-4. Result of the query after joining on department.

Now, assume we do not want the teachers at a specific department. We add a criteria to
the query. This will generate a query with a parameter (����*����).

8 Using the driver - a demonstration

50

Image 8-5. Adding a parameter to the query.

On execution, we have to enter the value of all parameters. In this case we are not inter-
ested in teachers working at MAI.

Image 8-6. Entering the value of the parameter before execution.

The generated SQL statement looks like this:

An ODBC-driver for the mediator database AMOS II

51

Image 8-7. Generated SQL query using an argument. This will be parsed into AMOSQL by
the driver.

And the result is of course the same as before, but without MAI:

Image 8-8. Result of the generated query.

Since we can edit our own queries (for users familiar with SQL), we can write our own
queries using AMOSQL. Just prefix the statement with ���
'�,.

8 Using the driver - a demonstration

52

Image 8-9. Entering an AMOSQL query prefixing with ���
'�,.

As can be seen in the result below, the driver does not use correct column names. For
SQL statements generated the usual way in MS Query, the application does not use the
column names from the driver. Instead it is using the column names from the generated
SQL statement. Naturally, this does not work when the user writes his own AMOSQL
statements. This is one of the things missing in the driver. (See the next chapter on future
work.)

Image 8-10. Result of the executed AMOSQL query.

An ODBC-driver for the mediator database AMOS II

53

To demonstrate that the driver really is very different from ordinary ODBC drivers, we
start a new example using AMOSQL queries. First, start an AMOS server on some ma-
chine:

Image 8-11. Starting an AMOS server using the
������ database.

Now an AMOS server named “foo” is waiting for connections. Now, connect the ODBC
application to this server:

Image 8-12. Connecting the ODBC application to the AMOS server.

The server (foo) has a different database. At the client (the ODBC application), execute
a query on the server:

8 Using the driver - a demonstration

54

Image 8-13. Entering a query to execute on the remote AMOS server.

Note that it is still possible to execute queries on the local database.
This example shows that the ODBC-driver really is a full-fledged AMOS system.

Image 8-14. Result of the remotely executed query.

An ODBC-driver for the mediator database AMOS II

55

+���
�&����
��
��
����	����,

This chapter discusses the result of the work as well as possible improvements that can
be made in the future.

#4������������

As has been shown in this report, the ODBC specification is rather loose and therefore
it is possible to design a driver as different as the AMOS II ODBC-driver. It has also
been shown that the implemented driver is not necessarily crippled by the fact that only
simple
���
� statements are allowed. The possibility to use AMOSQL as query language
and the fact that the driver is in fact a complete AMOS system possibly makes the driver
far more capable than other present drivers. However, updating the database using
ODBC takes a lot of time simply because the entire database image has to be written to
disk when committing. This is one of the disadvantages of main-memory databases, es-
pecially when used within an ODBC-driver. Another disadvantage of the chosen driver
architecture is that it uses a lot of memory, at least compared to other drivers, and that a
driver crash would also crash both the AMOS system and the application.

#4��1���

� �
�

There is a lot of work that has to be done to make the driver a full implementation of the
ODBC specification. The most important ones, as I see it are:

• To make it possible to connect to remote AMOS servers in a simple way and still use
SQL as query language.

• To extend the parser and data model translation to handle more than
���
� state-
ments. Especially updating would be interesting to see, but also creation of new
tables.

• To get rid of all bugs.

9 Conclusion and future work

56

The first one should be rather simple to implement but the second would require a sig-
nificantly more complex parser and a different way of mapping relational tables into ob-
jects. This would be a rather large work, perhaps suitable for a new master’s thesis?

An ODBC-driver for the mediator database AMOS II

57

���-.��/��0�1&	2��%	��
������

This appendix contains the Flex specification used to generate the lexical analyser.

/**
* Lexical analyser for the AMOS2 ODBC parser
* Marcus Eriksson, EDSLAB 1998
* Generate code by running: flex -P_odbc sql_lexer.l
**/
%{
#include “sql_parser.tab.h”
#include “parseutils.h”
#include <string.h>
#include <malloc.h>

#undef _odbcwrap
#undef YY_INPUT
#define YY_INPUT(b, r, ms) (r = my_yyinput(b, ms))

int lineno = 1;
void _odbcerror(char *s);

#define SV save_str(yytext);
#define TOK(name) {SV; return name;}
%}

%s SQL

%%

sql:{BEGIN SQL; start_save();}

/* literal keyword tokens */

<SQL>ANDTOK(AND)
<SQL>MINTOK(AMMSC)
<SQL>MAXTOK(AMMSC)
<SQL>SUMTOK(AMMSC)
<SQL>CHAR(ACTER)?TOK(CHARACTER)
<SQL>DISTINCTTOK(DISTINCT)
<SQL>FROMTOK(FROM)
<SQL>GROUPTOK(GROUP)
<SQL>INT(EGER)? TOK(INTEGER)

APPENDIX A: Flex specification

58

<SQL>NOTTOK(NOT)
<SQL>NULLTOK(NULLX)
<SQL>ORTOK(OR)
<SQL>ORDERTOK(ORDER)
<SQL>SELECTTOK(SELECT)
<SQL>UNIONTOK(UNION)
<SQL>WHERETOK(WHERE)
<SQL>HAVING TOK(HAVING)
<SQL>ALL TOK(ALL)

/* comparison */

<SQL>”=”TOK(EQ)
<SQL>”<>”{return(NEQ);}/* != in AMOS */
<SQL>”<“TOK(LT)
<SQL>”>”TOK(GT)
<SQL>”<=”TOK(LTE)
<SQL>”>=”TOK(GTE)

/* Reference to the “OID-column” */

<SQL>OID{return OID;}

/* Parameter marker */

<SQL>”?”{return PARAM;}

<SQL>[-+*/:();,]TOK(yytext[0])
<SQL>”.”{return yytext[0];}

/* names */

<SQL>[a-zA-Z][A-Za-z0-9_]*{return NAME;}

/* numbers */

<SQL>[0-9]+|
<SQL>[0-9]+”.”[0-9]* |
<SQL>”.”[0-9]*TOK(INTNUM)

<SQL>[0-9]+[eE][+-]?[0-9]+|
<SQL>[0-9]+”.”[0-9]*[eE][+-]?[0-9]+|
<SQL>”.”[0-9]*[eE][+-]?[0-9]+TOK(APPROXNUM)

/* strings */

<SQL>’[^’\n]*’{
 int c = input();
 unput(c);/* just peeking */
 if(c != ‘\”’)
 {
 SV;
 return STRING;
 }

An ODBC-driver for the mediator database AMOS II

59

 else
 yymore();
}

<SQL>’[^’\n]*${_odbcerror(“Unterminated string”);}
/* whitespace */

<SQL>\n{save_str(“ “); lineno++;}

<SQL>[\t\r]+{save_str(“ “);}/* whitespace */

/* anything else */
.{_odbcerror(“syntax error, invalid character”);}

%%

extern char *myinputptr; /* current position in buffer */
extern int mybufsize; /* size of data */

int min(int a, int b)
{
 if (a < b)
 return a;
 else
 return b;
}

int my_yyinput(char *buf, int max_size)
{
 int n = min(max_size, mybufsize);

 if(n > 0)
 {
 memcpy(buf, myinputptr, n);
 myinputptr += n;
 mybufsize -=n;
 }
 else
 *buf=NULL;

 /*fprintf(stderr, “my_yyinput, copied %i characters. buf: %s\n\n”, n, buf);*/
 return n;
}

void _odbcerror(char *s)
{
 extern char *parse_err; /* String containing error message */
 sprintf(parse_err, “%s at %s\n”, s, _odbctext);
}

int _odbcwrap()
{
 return 1;
}

APPENDIX A: Flex specification

60

un_sql()
{
 BEGIN INITIAL;
}

An ODBC-driver for the mediator database AMOS II

61

���-.��/� 0� ���
�#��������	����%���

Bison grammar description used to produce a parsing function

/**
 * Bison parser for the AMOS2 ODBC-driver
 * Parsing SQL statements
 * Marcus Eriksson, EDSLAB 1998
 * Generate code by running: bison -p _odbc sql_parser.y
 **/
%{
 #include “parseutils.h”
 #include <string.h>

 #ifndef TRUE
 #define TRUE 1
 #define FALSE 0
 #endif

 extern char *_odbctext; /* Defined in the lexer */
 extern unsigned num_params; /* Defined by the caller. The number of parameters. */
 char rangevar[256], buf[256], tabvar[256];
 unsigned short from_seen=FALSE, table_seen=FALSE;
 /* Parameters are named ?1, ?2, etc. */

%}

%pure_parser /* Reentrant parser */

%union
{
 char *strval;
}

%token NAME
%token STRING
%token INTNUM APPROXNUM

/* operators */

%left OR
%left AND
%left NOT

APPENDIX B: Bison grammar description

62

/* comparison */
%left EQ
%left NEQ
%left LT
%left GT
%left LTE
%left GTE

%left ‘+’ ‘-’
%left ‘*’ ‘/’
%nonassoc UMINUS

/* literal keyword tokens */

%token AMMSC AS BY LIKE ESCAPE EXISTS IS PARAMETER INDICATOR ALL
%token CHARACTER COMMIT DISTINCT DOUBLE FLOAT FROM GROUP USER HAVING
%token INTEGER NULLX ORDER REAL ROLLBACK SELECT TABLE UNION WHERE
%token OID PARAM

%%

/**/

/* RULES */

sql:select_statement ‘;’{end_sql();}
;

select_statement:SELECT opt_all_distinct selection table_exp
;

opt_all_distinct:/* empty */
/* | ALL (not supported) */
| DISTINCT
;

table_exp:from_clause opt_where_clause opt_group_by_clause opt_having_clause
;

from_clause:FROM table_ref_commalist{from_seen=TRUE;}
;

table_ref_commalist:table_ref
|table_ref_commalist ‘,’ table_ref
;

table_ref:table
|table range_variable
 {sprintf(buf, “%s %s”, tabvar, _odbctext);
 save_str(buf);}
;

range_variable:NAME

An ODBC-driver for the mediator database AMOS II

63

{strcpy(rangevar, _odbctext);
 if(!from_seen)
 {
 /* printf(“%s\n”, _odbctext); */
 }

}
;

opt_where_clause:/* empty */
| WHERE search_condition
;

opt_group_by_clause:/* empty */
| GROUP BY column_ref_commalist {_odbcerror(“GROUP BY not supported”);}
;

column_ref_commalist:column_ref
|column_ref_commalist ‘,’ column_ref
;

opt_having_clause:/* empty */
| HAVING search_condition{_odbcerror(“HAVING not supported”);}
;

selection:scalar_exp_commalist
|‘*’
;

scalar_exp:scalar_exp ‘+’ scalar_exp
| scalar_exp ‘-’ scalar_exp
| scalar_exp ‘*’ scalar_exp
| scalar_exp ‘/’ scalar_exp
| atom
| column_ref
| ‘(‘ scalar_exp ‘)’
| function_ref
| PARAM{sprintf(buf, “?%i”, ++num_params);
 save_str(buf);}
;

scalar_exp_commalist:scalar_exp
|scalar_exp_commalist ‘,’ scalar_exp
;

function_ref:AMMSC ‘(‘ scalar_exp ‘)’
;

atom:literal
;

column_ref:range_variable ‘.’ NAME
 {sprintf(buf, “%s(%s)”, _odbctext, rangevar);
 save_str(buf);

APPENDIX B: Bison grammar description

64

if(!from_seen)
 /* printf(“%s\n”, _odbctext); */
 }

| range_variable ‘.’ OID
{sprintf(buf, “%s”, rangevar);
 save_str(buf);
 if(!from_seen)
 /* printf(“OID\n”); */
}
;

/* search conditions */

search_condition:
search_condition AND search_condition
| search_condition OR search_condition
| NOT search_condition
| ‘(‘ search_condition ‘)’
| predicate
;

predicate:comparison_predicate
| existence_test
;

comparison_predicate:scalar_exp comparison scalar_exp
|scalar_exp comparison subquery
;

existence_test:EXISTS subquery{_odbcerror(“EXISTS not supported”);}
;

subquery:‘(‘ SELECT opt_all_distinct selection table_exp ‘)’
;

literal:STRING
|INTNUM
|APPROXNUM
;

table:NAME
{strcpy(tabvar, _odbctext);
 table_seen=TRUE;
 /* printf(“%s\n”, _odbctext); */
}
;

comparison:EQ
|NEQ{save_str(“!=”);}
|LT
|GT

An ODBC-driver for the mediator database AMOS II

65

|LTE
|GTE
;

APPENDIX B: Bison grammar description

66

An ODBC-driver for the mediator database AMOS II

67

���-.��/��0�����	��������
���	&%�
�
����
�

This generates the stored data and functions used by the driver.

/* Functions and tables stored in the database image. */
/* Used by the ODBC-driver. */

lisp;

;; Has been included in the standard AMOS image.
;; Return all supertypes above tp
;;(foreign-lispfn allsupertypes ((type tp)) ((type))
;; (dolist (x (type-allsupertypes tp))
;; (foreign-result x)))

;; Return all attributes for a type.
;; Don’t return attributes defined in the type object (inherited attributes)
(create-function user_attributes ((type t)) ((function f))
 as (f)
 foreach ((type tp))
 where (and (= tp (allsupertypes t))
 (!= tp (typenamed "object"))
 (= f (attributes tp))))

;; create a new subtree in the type hierarchy.
;;(createtype ’ODBC "(object)")

;; create type to hold data for SQLGetTypeInfo (a subtype of ODBC)
(createtype ’odbc_type_info "(ODBC)")

;; create type to hold information for SQLTables.
(createtype ’odbc_tables_info "(ODBC)")

;; type to hold information for SQLColumns
(createtype ’odbc_column_info "(ODBC)")

;; type to hold information for the oid column in SQLColumns
(createtype ’odbc_oid_column "(ODBC)")

:osql
/***/
create function type_name(odbc_type_info)->charstring as stored;

APPENDIX C: Stored data and help functions

68

create function data_type(odbc_type_info)->integer as stored;
create function column_size(odbc_type_info)->integer as stored;
create function literal_prefix(odbc_type_info)->charstring as stored;
create function literal_suffix(odbc_type_info)->charstring as stored;
create function create_params(odbc_type_info)->charstring as stored;
create function nullable(odbc_type_info)->integer as stored;
create function case_sensitive(odbc_type_info)->integer as stored;
create function searchable(odbc_type_info)->integer as stored;
create function unsigned_attribute(odbc_type_info)->integer as stored;
create function fixed_prec_scale(odbc_type_info)->integer as stored;
create function auto_unique_value(odbc_type_info)->integer as stored;
create function local_type_name(odbc_type_info)->charstring as stored;
create function minimum_scale(odbc_type_info)->integer as stored;
create function maximum_scale(odbc_type_info)->integer as stored;
create function sql_data_type(odbc_type_info)->integer as stored;
create function sql_datetime_sub(odbc_type_info)->integer as stored;
create function num_prec_radix(odbc_type_info)->integer as stored;
create function interval_precision(odbc_type_info)->integer as stored;

/* store info for SQLGetTypeInfo */

create odbc_type_info(type_name,data_type,column_size,literal_prefix,
literal_suffix,create_params,nullable,case_sensitive,searchable,
unsigned_attribute,fixed_prec_scale,auto_unique_value,local_type_name,
minimum_scale,maximum_scale,sql_data_type,sql_datetime_sub,num_prec_radix,
interval_precision) instances

/*
"real",SQL_DOUBLE,15,NULL,NULL,NULL,SQL_NO_NULLS,SQL_FALSE,
SQL_PRED_BASIC,SQL_FALSE,SQL_FALSE,NULL,
"double",NULL,4,SQL_DOUBLE,NULL,NULL,NULL) */

:real ("real",8,15,0,0,0,0,0,2,0,0,0,"real",0,4,8,0,0,0),

/* "integer",SQL_INTEGER,10,NULL,NULL,NULL,SQL_NULLABLE,SQL_FALSE,
SQL_PRED_BASIC,SQL_FALSE,SQL_FALSE,NULL,
"integer",NULL,NULL,SQL_INTEGER,NULL,NULL,NULL */

:int ("integer",4,10,0,0,0,0,0,2,0,0,0,"integer",0,0,4,0,0,0),

:oid ("oidtype",4,10,0,0,0,0,0,2,0,0,0,"oidtype",0,0,4,0,0,0),

/* "charstring",SQL_VARCHAR,255,"’","’","maxlength",SQL_NULLABLE,SQL_FALSE,
SQL_PRED_BASIC,NULL,NULL,NULL,"charstring",NULL,NULL,SQL_VARCHAR,
NULL,NULL,NULL) */

:string ("charstring",12,256,"’","’","maxlength",0,0,2,0,0,0,"charstring",0,0,12,0,0,0),

/* Return OID as an integer */
:userobj ("integer",4,10,0,0,0,0,0,2,0,0,0,"usertypeobject",0,0,4,0,0,0);

/* Functions for accessing TypeInfo */

/* All types */

An ODBC-driver for the mediator database AMOS II

69

create function ODBCGetTypeInfoAllTypes() -> <charstring,integer,integer,charstring,
charstring,charstring,integer,integer,integer,integer,integer,integer,charstring,integer,
integer,integer,integer,integer,integer> as
select type_name(t),data_type(t),column_size(t),literal_prefix(t),literal_suffix(t),
create_params(t),nullable(t),case_sensitive(t),searchable(t),unsigned_attribute(t),
fixed_prec_scale(t),auto_unique_value(t),local_type_name(t),minimum_scale(t),
maximum_scale(t),sql_data_type(t),sql_datetime_sub(t),num_prec_radix(t),
interval_precision(t)
from odbc_type_info t;

/* A specific type */
create function ODBCGetTypeInfoSpecificType(integer typ) -> <charstring,integer,integer,
charstring,charstring,charstring,integer,integer,integer,integer,integer,integer,
charstring,integer,integer,integer,integer,integer,integer> as
select type_name(t),data_type(t),column_size(t),literal_prefix(t),literal_suffix(t),
create_params(t),nullable(t),case_sensitive(t),searchable(t),unsigned_attribute(t),
fixed_prec_scale(t),auto_unique_value(t),local_type_name(t),minimum_scale(t),
maximum_scale(t),sql_data_type(t),sql_datetime_sub(t),num_prec_radix(t),
interval_precision(t)
from odbc_type_info t where data_type(t)=typ;

/**/
create function table_cat(odbc_tables_info)->charstring as stored;
create function table_schem(odbc_tables_info)->charstring as stored;
create function table_type(odbc_tables_info)->charstring as stored;
create function remarks(odbc_tables_info)->charstring as stored;

/* store info for SQLTables */
create odbc_tables_info (table_cat, table_schem, table_type, remarks) instances :odbc_tables
("<none>", "<none>", "TABLE", "AMOS2 TYPE");

/* create a function to call from SQLTables
 Returns the following:
1: TABLE_CAT
2: TABLE_SCHEM
3: TABLE_NAME
4: TABLE_TYPE
5: REMARKS
*/
create function ODBCGetTables() -> <charstring, charstring, charstring, charstring, charstring> as
select table_cat(t), table_schem(t), name(p), table_type(t), remarks(t)
from odbc_tables_info t, type p
where name(typesof(p)) = "usertype";

/* Get info on the table named ’table_name’. */
create function ODBCGetSpecificTable(charstring table_name) ->
<charstring, charstring, charstring, charstring, charstring> as
select table_cat(t), table_schem(t), name(p), table_type(t), remarks(t)
from odbc_tables_info t, type p
where name(typesof(p)) = "usertype" and name(p) = table_name;

/***/

/* Get "column" results */

APPENDIX C: Stored data and help functions

70

create function methods(charstring table) -> function as
select f from function f where f =
user_attributes(typenamed(table));

create function method_results(function f) -> <charstring, type> as
select distinct name(f), t from integer k, type t, integer m where
<k, t, m> = argrestypes(resolvents(f)) and k = 2;

create function map_types(type t) -> integer as
select data_type(x) from odbc_type_info x where
name(allsupertypes(t)) = local_type_name(x);

/* This function returns all columns with their types (SQL-types) for a specific table. */
create function table_methods(charstring table) -> <charstring, integer> as
select nm, map_types(t) from charstring nm, type t where <nm, t> =
method_results(methods(table));

/***/

create function table_cat(odbc_column_info)->charstring as stored;
create function table_schem(odbc_column_info)->charstring as stored;
create function data_type(odbc_column_info)->integer key as stored;
create function type_name(odbc_column_info)->charstring key as stored;
create function column_size(odbc_column_info)->integer as stored;
create function buffer_length(odbc_column_info)->integer as stored;
create function decimal_digits(odbc_column_info)->integer as stored;
create function num_prec_radix(odbc_column_info)->integer as stored;
create function nullable(odbc_column_info)->integer as stored;
create function remarks(odbc_column_info)->charstring as stored;
create function column_def(odbc_column_info)->charstring as stored;
create function sql_data_type(odbc_column_info)->integer as stored;
create function sql_datetime_sub(odbc_column_info)->integer as stored;
create function char_octet_length(odbc_column_info)->integer as stored;
create function is_nullable(odbc_column_info)->charstring as stored;

/* Store info for SQLColumns */
create odbc_column_info(table_cat, table_schem, data_type, type_name, column_size, buffer_length,
decimal_digits, num_prec_radix, nullable, remarks, column_def, sql_data_type,
sql_datetime_sub, char_octet_length, is_nullable) instances

/* integer */
:int_col ("<none>", "<none>", 4, "integer", 10, 4, 0, 10, 0, ’object property function’, ’NULL’, 4, 0, 0,
’NO’),

/* double */
:real_col ("<none>", "<none>", 8, "real", 15, 8, 0, 2, 0, ’object property function’, ’NULL’, 8, 0, 0, ’NO’),

/* charstring */
:char_col ("<none>", "<none>", 12, "charstring", 256, 256, 0, 0, 0, ’object property function’, ’NULL’,
12, 0, 256, ’NO’);

/**/

An ODBC-driver for the mediator database AMOS II

71

/* This function gets all columns of a specific table and returns a set as specified
 in the ODBC standard. */
create function ODBCGetColumns(charstring table) -> <charstring, charstring, charstring, charstring,
integer, charstring, integer, integer, integer, integer, integer, charstring, charstring,
integer, integer, integer, integer, charstring> as
select table_cat(t), table_schem(t), table, nm, data_type(t), type_name(t),
column_size(t), buffer_length(t), decimal_digits(t), num_prec_radix(t), nullable(t),
remarks(t), column_def(t), sql_data_type(t), sql_datetime_sub(t), char_octet_length(t),
2, is_nullable(t)
from odbc_column_info t, charstring nm, integer typ where <nm, typ> = table_methods(table)
and data_type(t) = typ;

/**/

create function table_cat(odbc_oid_column)->charstring as stored;
create function table_schem(odbc_oid_column)->charstring as stored;
create function data_type(odbc_oid_column)->integer as stored;
create function type_name(odbc_oid_column)->charstring as stored;
create function column_size(odbc_oid_column)->integer as stored;
create function buffer_length(odbc_oid_column)->integer as stored;
create function decimal_digits(odbc_oid_column)->integer as stored;
create function num_prec_radix(odbc_oid_column)->integer as stored;
create function nullable(odbc_oid_column)->integer as stored;
create function remarks(odbc_oid_column)->charstring as stored;
create function column_def(odbc_oid_column)->charstring as stored;
create function sql_data_type(odbc_oid_column)->integer as stored;
create function sql_datetime_sub(odbc_oid_column)->integer as stored;
create function char_octet_length(odbc_oid_column)->integer as stored;
create function is_nullable(odbc_oid_column)->charstring as stored;
create function column_name(odbc_oid_column)->charstring as stored;
create function ordinal_position(odbc_oid_column)->integer as stored;

create odbc_oid_column(table_cat, table_schem, column_name, data_type, type_name,
column_size,buffer_length, decimal_digits, num_prec_radix, nullable, remarks, column_def,
sql_data_type, sql_datetime_sub, char_octet_length, ordinal_position, is_nullable)
instances

/* Return OID as an integer */
:oid_col ("<none>", "<none>", "OID", 4, "integer", 10, 4, 0, 10, 0, ’object identifier’, ’NULL’, 4, 0, 0, 2,
’NO’);

/* Get the OID column for a table. This column doesn’t really exist. */
create function ODBCGetOIDColumn(charstring table) -> <charstring, charstring, charstring,
charstring, integer,
charstring, integer, integer, integer, integer, integer, charstring, charstring, integer, integer,
integer, integer, charstring> as
select table_cat(t), table_schem(t), tname, column_name(t), data_type(t), type_name(t), column_size(t),
buffer_length(t), decimal_digits(t), num_prec_radix(t), nullable(t), remarks(t), column_def(t),
sql_data_type(t), sql_datetime_sub(t), char_octet_length(t), ordinal_position(t), is_nullable(t)
from charstring tname, odbc_oid_column t where tname = table;

APPENDIX C: Stored data and help functions

72

An ODBC-driver for the mediator database AMOS II

73

���-.��/��0���%&	�	
�	���� ��
�
����
�

In this appendix all implemented ODBC functions are presented. Some functions are
more interesting than others, those functions are described in more detail.

All functions return a flag indicating if the call was successful or not, and if there are
more information about the outcome of the call. The functions post error records which
the application can examine to figure out what went wrong. A buffer might for example
be to small and the driver might have truncated the data it returned in that buffer.
The functions are ordered by the order they were implemented, functions logically “be-
longing” together in sequence. First functions for allocating handles, freeing handles,
connecting and disconnecting then executing statements, fetching results and so on.

SQLAllocHandle

Allocates memory for an environment, connection or statement and returns a handle to
the allocated memory. How these “objects” are implemented is driver specific.
For example, this is an environment in the AMOS2 ODBC-driver:

/* Environment information */
typedef struct tagENV
{
 CRITICAL_SECTION lock; /* Protection from multiple threads */
 LIST diagnostics; /* Diagnostics records for this environment */
 unsigned num_connections; /* The number of AMOS connections */
 a_connection connection; /* Connection to AMOS */
} ENV;

Since AMOS is completely integrated into the driver in this case, the connection is ac-
tually in the environment instead of in the connection. Also, only one connection to the
data source is allowed. The application can examine driver capabilities to find out if the
driver supports multiple connections or not, but some application doesn’t respect this (all
Microsoft Office applications). This means that the driver has to be able to fool the ap-
plication that multiple connections are possible when in fact they are not.
As can be seen for a statement below, a statement “belongs to” a certain connection. (A
connection can have multiple active statements.)

APPENDIX D: Implemented ODBC functions

74

/* Statement information */
typedef struct tagSTMT
{
 CRITICAL_SECTION lock;
 DBC *dbc; /* �	�	�	
�	������	�����	���
�

����

	��
�
 */
 DESC *ARD, *APD, *IRD, *IPD, *imp_ARD, *imp_APD, *imp_IRD, *imp_IPD;
 LIST diagnostics;
 a_scan scan;
 a_scan secondary_scan;
 a_scan special_scan;
 a_tuple tuple;
 a_tuple argl;
 oidtype fun;
 SQLUINTEGER current_row;
 SQLUINTEGER max_length;
 enum QUERY_TYPE query_type;
 char *last_prepared;
} STMT;

SQLFreeHandle

Free a previously allocated environment, connection or statement.

SQLDriverConnect

Takes a connection handle and a connection string (with user name, password and other
necessary information) and connects to a data source. If necessary, that is, if the connec-
tion string is incomplete, pop up a dialogue box asking for more information.

SQLDisconnect

Takes a connection handle and disconnects from the associated data source.

SQLFreeStmt

Takes a statement handle as parameter and either frees all bound variables or all bound
columns to that statement depending on a second parameter.

SQLSetEnvAttr

The application can set various environment attributes for the driver, but this is not sup-
ported in this case.

SQLSetConnectAttr

An ODBC-driver for the mediator database AMOS II

75

Same as above, but for connection attributes. The only one possible to change is auto-
commit, by turning it on or off.

SQLSetStmtAttr

Same as above but for statement attributes. Some attributes can be set, but they are not
very interesting.

SQLGetEnvAttr

Used for getting environment attributes, for example if strings are null terminated or not.

SQLGetConnectAttr

Used for getting connection attributes, for example if autocommit is on or off.

SQLGetStmtAttr

Used for getting statement attributes.

SQLGetTypeInfo

Used for getting information about supported data types. Calls a stored AMOS function.
(See chapter on stored functions above.) The result is retrieved exactly as if an ordinary
query was sent to the data source, that is, by subsequent calls to SQLFetch.

SQLTables

Get information on all available tables. (See chapter on stored functions above.)

SQLColumns

Get all columns in a specific table. (See chapter on stored functions above.)

SQLGetDescField

Get a certain field from a descriptor record.

SQLGetDescRec

APPENDIX D: Implemented ODBC functions

76

Get a descriptor record.

SQLGetInfo

Get info about driver capabilities, among other things. For example what datatypes a
driver can convert.

SQLGetDiagField

Get a certain field from a diagnostics record. The driver posts diagnostic records after
every application call to a driver function. The diagnostic record contains information
on if the execution was successful or not. For example, the driver might post a message
text for the user to read.

SQLGetDiagRec

Get a certain diagnostics record. The driver might post multiple records, which are num-
bered.

SQLPrepare

Prepare a statement for later execution. The SQL statement is translated to AMOSQL
and then a transient function is created (which is lost when disconnected from AMOS).
Statements already in AMOSQL are not allowed. Use direct execution for this.

SQLExecDirect

Direct execution of a statement. The SQL statement is translated to AMOSQL using the
Bison generated parser. No parameters are allowed for direct execution.

SQLExecute

Execute a previously prepared function.

SQLBindParameter

Bind all parameters for execution, that is, supply values for all parameters. Called prior
to SQLExecute. After execution, new parameters may be bound.

An ODBC-driver for the mediator database AMOS II

77

SQLEndTran

End the current transaction. A flag, SQL_COMMIT or SQL_ROLLBACK is supplied.
When committing, the work is committed and since AMOS is a main-memory database,
the database image is also saved to disk. Therefore this is a very slow way of committing
the work, so make sure autocommit is off, otherwise the database will be saved after eve-
ry executed statement.

SQLCancel

Cancel the current statement. Actually implemented as a call to SQLFreeStmt with the
option SQL_CLOSE (Close cursor associated with statement and discard pending re-
sults).

SQLNumResultCols

The number of columns in the result set of an executed query.

SQLDescribeCol

Description of a column in the result set such as data type and column name.

SQLBindCol

Bind columns in the result set, that is tell the driver what columns in the result set you
are interested in retrieving values from. It is perfectly OK to execute something like
SELECT * FROM <table>
and only bind one of the (possibly) many columns in the result. The driver automatically
converts the result to the correct data type.

SQLFetch

Fetch the results of the previously executed statement into all bound columns.

SQLColAttribute

Get column attributes for a specific column in the result set. Approximately the same
thing as SQLDescribeCol, only a few more options.

APPENDIX D: Implemented ODBC functions

78

An ODBC-driver for the mediator database AMOS II

79

���-.��/�-0�-2��%&	��������	

Database used in the examples:

create type named_object properties (name charstring);
create type person subtype of named_object;
create type dept subtype of named_object properties (location charstring);
create type teacher subtype of person properties (works_at dept, email charstring);
create type student subtype of person properties (major charstring, email charstring);
create type subject subtype of named_object properties (teaching_dept dept);

create dept(name, location) instances
:ida(’IDA’, ’E-house’),
:ifm(’IFM’, ’F-house’),
:mai(’MAI’, ’B-house’);

create teacher(name, works_at, email) instances
:tore(’Tore Risch’, :ida, ’torri@ida.liu.se’),
:peter(’Peter Fritzon’, :ida, ’petfr@ida.liu.se’),
:tommy(’Tommy Olsson’, :ida, ’tao@ida.liu.se’),
:jesper(’Jesper Andersson’, :ida, ’jesan@ida.liu.se’),
:jan(’Jan Lundgren’, :ifm, ’jlu@ifm.liu.se’),
:bengt(’Bengt Josefsson’, :mai, ’bejos@mai.liu.se’);

create student(name, major, email) instances
:macke(’Marcus Eriksson’, ’CS’, ’x98marer@ida.liu.se’),
:peps(’Per Persson’, ’Physics’, ’perpe@ifm.liu.se’),
:johan(’Johan Sandberg’, ’Physics’, ’johsa@ifm.liu.se’),
:sussie(’Susanne Andersson’, ’Mathematics’, ’suand@mai.liu.se’),
:tony(’Tony Bengtsson’, ’Mathematics’, ’tony.bengtsson@positionett.se’),
:sara('Sara Hjärne', 'Physics', 'sarhj302@student.liu.se');

create subject(name, teaching_dept) instances
:cs('CS', :ida),
:ph('Physics', :ifm),
:ma('Mathematics', :mai);

create type pet subtype of named_object;
create function length(pet) -> real;

create pet(name, length) instances :robban('Robin', 34.5), :hubbe('Hubert', 10.8);

APPENDIX E: Example database

80

An ODBC-driver for the mediator database AMOS II

81

3	
	�	
�	�

[1] K North, A����0
��$���"����������������, Wiley 1995

[2] T Risch, ����B�.+������������ �
�
, Dept. of Computer and Information Sci-
ence, Linköping University 1998

[3] ��
��
� �������;*<�����������=
�4� ����
��������>�)$���, Microsoft Press 1997

[4] R Signore, J Creamer, M. O. Stegman, %�����������$����,����������	�
��
��"
��
������������
���	$���������������
, McGraw-Hill 1994

[5] S Flodin, T Risch, M Sköld, M Werner, ����B�C
��/
�)$���, Dept. of Computer
and Information Science, Linköping University 1998

[6] C. J. Date, ���������$
������������	�
��
�
���
, Addison-Wesley 1995

[7] J. R. Levine, T Mason, D Brown, ��+�D���

, O’Reilly 1990

[8] M Sköld, �
�����4$��
�	�
�������	#�
��4����������!$����
, Dept. of Computer
and Information Science, Linköping University 1994

[9] W Litwin, T Risch, ���������������������������1������� ����!$����
�$
����
%�������������0����&������������
���
, IEEE Transactions on Knowledge and
Data Engineering Vol. 4, No. 6, December 1992

[10] D Fishman et al, �������0�� ��������
�����, Object-Oriented Concepts, Data-
bases, and Applications, ACM press, Addison-Wesley 1989

[11] G Wiederhold, ��������
����������
����
�$���� �&$�$����� �����������
���
,
IEEE Computer, March 1992

[12] P Lyngbaek, ��!�,�������$���� ����	#�
������	�
�
, HPL-DTD-91-4,
Hewlett-Packard Company, January 1991

�������������&
Abstract

.���
)�
	
Keywords

3�((�
���(
Report category

Licentiatavhandling

C-uppsats
D-uppsats
Övrig rapport

�(
B�
Language

Svenska/Swedish
Engelska/English

���.

�

�
���
)������

�
����

Title of series, numbering

-36��C
�
)
��
�������

����

"��
)
Title

1C
�����

Author

�����
Date

��3.

Examensarbete
���.

x

LiTH-IDA-Ex-

95
-1

0-
25

/li
sl

i
Id

aM
al

la
r

��	
)���&D������������
Division, department

Department of Computer and
Information Science

Institutionen för datavetenskap

����������	
����
�����

1999-05-06

x

99/50

En ODBC-driver för medlardatabasen AMOS II.
An ODBC-driver for the mediator database AMOS II.

Marcus Eriksson

ODBC (���������	�
�������
������) is a standardized application programming interface de-
veloped by Microsoft. By using the ODBC interface, applications can access a wide variety of
data sources using the same source code. Prior to ODBC, applications written to access data
stored in a Database Management System (����) had to use the proprietary interface specific
to that database. If application developers wanted to provide their users with access to data in
more than one data source, they had to code to the interface of each data source. Naturally, ap-
plications written in this manner are difficult to code, difficult to maintain, and difficult to extend.
The ODBC architecture was designed to permit maximum interoperability. It allows application
developers to create an application without targeting a specific DBMS. End users can then use
the application with the DBMS that contains their data by adding modules called database ����"
��
, which are dynamic-link libraries (���
).
Today, ODBC has become the industry standard for interoperability with relational databases.
Database management systems with ODBC-drivers can interoperate with hundreds of different
applications.

AMOS II is a light-weight, main-memory, object-relational database kernel, running on the Win-
dows NT platform. It contains a relationally complete query-language, AMOSQL. The purpose
of this work is to develop an ODBC-driver for AMOS II.

ODBC, database, AMOS, object-relational

