Uppsala Master’s Theses in
Computing Science 243
Examensarbete DV3
2003-07-07

ISSN 1100-1836

Wrapping External Data by Query

Transformations
Martin Hansson

Information Technology
Computing Science Department
Uppsala University
Box 337
S-751 05 Uppsala
Sweden

Abstract

Amos 11 is an object-oriented database mediator system with its own

query language, AmosQL. Amos 11 permits the definition of mediator
databases, which are object-oriented virtual databases (views) of com-
bined data from Amos 11 local database or other Amos 11 mediators. It
is possible to define foreign functions in AmosQL, which can be imple-
mented in a general-purpose programming language such as C, Java, or

Lisp.
The need frequently arises to also include other data sources that can

be accessed through the mediator. This is done by defining wrappers for
these data sources. A wrapper can be said to consist of an interface to the
data, implemented foreign functions in AmosQL that answers queries in
the data source’s native query language, and a translator which translates
a query in AmosQL into one or more calls to the functions in the interface.
The translator API lets a wrapper implementor define the capabilities of
the data source, and the translator uses a combination of cost-based and
capability-based rewrites of the query in order to minimize the total cost
of accessing the particular data source.

As a proof-of-concept a wrapper for relational data that uses JDBC was

implemented. The results are based on experiments comparing execution
times for translated and non-translated queries.

Supervisor: Tore Risch
Examiner: Tore Risch

Passed:

Contents

1

2

Introduction

Related work

Amos 11

3.1 The Amos data model and query language.
3.1.1 Objectsand Types o ..ot v it
3.1.2 Subtypes and Extents
3.1.3 Functions and Extents
3.1.4 Function Notation
3.1.5 Adornments e

3.2 Query Processing
3.21 Flattening
3.2.2 TypeResolution
3.2.3 Object Calculus Generator
3.2.4 Calculus Transformations
3.2.5 Object Algebra Generator
3.26 RewriteRules.

Extensible Wrappers

4.1 Basic Wrapper Interface
4.1.1 Mapped Types o i i i it i e e
4.1.2 The decode function
4.1.3 Foreign Functions

4.2 The Core-Cluster i i i ittt e i

4.3 The *Transformation

4.4 Modeling Capabilities 000,
4.4.1 Representation of Capabilities.
4.4.2 The Variable Environment
443 Accumulators e
4.4.4 Absorbents e
4.4.5 The Default Absorbent
44.6 Failureso

B-tree Wrapper

51 AmosITIndexing

5.2 Imterface

5.3 Translator e e
5.3.1 Access Function Capabilities
5.3.2 Accumulator

6 The JDBC Wrapper 25

6.1 Previously Implemented (ODBC) Wrapper 25
6.2 Imterface 25
6.3 Translator 26
6.3.1 Observations 26

6.3.2 Accumulator 27

6.3.3 Performance 29

7 Conclusions and Future Work 33
7.1 Other Datasources o v i i v i i it it 33
7.2 Limited pushdown 33

1 Introduction

The UDBL group at the department of information technology of Uppsala Univer-
sity has developed a database management system called Amos 11. The system
consists of communicating nodes connected in a peer-to-peer network where
data is distributed among different nodes. Such a network is called a federation
of database nodes. Its nodes can act as either clients interacting with a user,
database servers, or mediators. Mediators appear as database server to clients,
and as clients to servers. To a user connecting to a mediator it appears as if
the mediator contains all the data, but it is transparently connected to a data
source storing data in the federation, or to another mediator. The data may
also be distributed among several servers. The protocol used for communication
is tcp/ip, which allows for the mediators to be distributed over the Internet.

Queries are optimized in order to minimize the total cost of accessing the par-
ticular database holding the information. A mediator is dedicated to forwarding
a sub-query from another Amos II to one or several Amos systems (which can
also themselves be mediators.) If necessary the mediator will split the query
further into sub-queries and combining the result for returning to the calling
Amos 11. If the data is locally present it will simply return the information.

Amos 11 uses an object-oriented query language called AmosQL. While it
is believed that the object-oriented approach will gain in popularity in the fu-
ture, the relational model still proves sufficient for many applications and many
databases are relational and will stay that way. Therefore there is the need to
incorporate relational data sources in a federation. This is done by wrapping
the source inside an Amos II system so that to the outside world it will appear
as though it were an object-oriented database system. Furthermore, the need
frequently arises to wrap other data sources within Amos 11, for example visual
data or CAD models. A wrapper is thus a general concept that should be easy
to implement as a separate feature that is simply connected to Amos 1T through
a narrow and well-defined interface. Wrappers consist of two parts: an inter-
face which accesses the data and meta-data at the data source with a set of
functions, and a translator that translate queries in AmosQL into calls to the
interface.

In the past wrappers had to be added to the Amos 1I kernel in an ad-hoc
manner and deep knowledge of the internals of the code was necessary. The
result of this work is to find a more general way of writing wrappers using only
basic parts such as an interface to the source and a relatively simple translator
which translates the internal representation of the query into a query in the
source’s native language, taking the maximal advantage of the data source’s
capabilities.

2 Related work

There is a rising need in the industry and the computing world at large to
be able to integrate data from diverse sources, and being able to ask queries

over heterogeneous repositories of information. Until recently, few commercial
systems have attempted to address this issue, but the problem of wrapping
external data is receiving greater attention. I1BM have developed a wrapper
definition extension to their product relational database manager DB2 called
Garlic[4], which bears a lot of resemblance to this work. Garlic extends DB2
with facilities to access data from other sources as if they were relational tables.
DB2 uses a relational data model, whereas Amos II uses an object-oriented data
model. (see section3.1.)

Garcia-Molina, Ullman, and Widom|[7] discuss using templates to query the
data source. Templates are reminiscent of prepared statements in SQL, in that
they are finished queries with parameters that can later be set, and the source is
considered capable of a query if the query matches the template. This work uses
a somewhat different approach. Any access to a table in a wrapped database is
carried out through functions defined in terms of an interface function producing
the extent of the table. The definition of the extent function is in-lined by the
optimizer. The capability is to retrieve the entire extent of a source.

Garcia-Molina, Ullman, and Widom further introduce the concept of capability-
based rewrites which is very similar to this work. However, they have an as-
sumption that mediators will use sQL as their common data model, which is
not the case with Amos 11. In addition, they have a richer syntax for describing
capabilities than the capability description contained in this work. (see section
4.4.) In Amos 11 it is only possible to specify limitations on an argument to
a query so that the value must be specified for the argument (a constant in-
put argument), that it is forbidden to specify it (an output-only argument),
or that it may be left unspecified if desired (input or output). Garcia-Molina,
Ullman, and Widom have two more capability models to choose from, either
the argument must be chosen from a finite set of options, or that it can be left
unspecified but if specified it must be chosen from a set.

3 Amos II

This section gives an overview of the Amos 11 system for which the wrapper
definition API was written. The Amos 11 system is based on the IRIS functional
data model [3].

3.1 The Amos data model and query language.
3.1.1 Objects and Types

Amos 11 is a functional, object-oriented database system with a high level of
generalization. Every entity in the data model is represented by an object, and
objects are members of one or severals types. Types are used to classify objects,
and every object is an instance of one or several types. The extent of a type is
the set of all instances of the type (see section 3.1.2.) Types correspond directly
to the concept class in object-oriented programming languages.

Types are organized in a subtype/supertype graph where the most general
type is object. All other types are subtypes of object. Even types are repre-
sented as objects, and these meta-objects are instances of the type type.

3.1.2 Subtypes and Extents

Objects are classified into types, thus making each object an instance of a type.
If an object is an instance of a type t, it is also an instance of all the super-types
of t. A type can have several super-types either by inheriting several types
directly (multiple-inheritance,) or by being a subtype of a subtype (transitive
closure.) The extent of a type is the set of all instances of the type. In the
face of inheritance, however, the term extent is ambiguous. Amos IT uses the
following definitions

shallow extent the shallow extent of a type t is the set of objects that are
instances of this type. If ¢ is a subtype of ¢ only, then the shallow extents
of t and ¢’ are disjoint.

deep extent the deep extent of a type t is the set of objects that are instances
of the type, union-ed with the shallow extents of all subtypes of t. The
deep extent of a subtype of ¢ is always a subset of the deep extent of ¢.

The term extent is used throughout this paper, and when nothing else is stated
it should be taken to mean the deep extent.

3.1.3 Functions and Extents

Crucial in the data model is the function concept. They model the proper-
ties of objects and relations between objects. Functions are objects too, and
they are instances of the type function. All functions adhere to the DAPLEX
semantics[6], which means that a function may have several return values, i.e.
it will emit several results. This is normally referred to as bags and is denoted
with braces and bars: {|...|}. For example a function that computes the square
root would under this semantics be defined as sqrt z = {|y, —y|}.

A function can be implemented in three ways, it can be stored, derived or
foreign. A stored function has its extent stored in the mediator itself. Formally,
it is defined as the set of tuples that make up the arguments and the results of
a function. For example, the extent of the function defined as

create function name(person p)-> charstring name as stored;
is the set of tuples (p;, name;). In the general case, for a function
flao, a1, . am) = (ro,m1, ...)
the extent is defined as

extent f = {|[{ap,a1 ..., GQm, 7071, ..., Tn)|}

A derived function is defined in terms of an AmosQL query, and a foreign
function is written in some other programming language such as C, Lisp or
Java. Stored and derived functions are invertible, and Amos 11 will compute the
inverse when necessary.

Here is an example of a typical AmosQL query:

select name(e) from employee e where hobby(e)=’sailing’;

Here name and hobby are stored functions where each can emit several results,
and in order to answer the query, Amos II must be able to run the inverse of
hobby (as a function from the string ¢“sailing’’ to an object of type employee).

3.1.4 Function Notation

Throughout this report, function applications will - for sake of readability - be
notated without parentheses in the general case. A function is normally applied
to one object, if several arguments are desired, they will come in a tuple. For
example the function f applied to a single argument x will be notated

y:fxa

while a function g taking arguments = and y, will be notated as

=9 (I,y)

It is also common in Amos that functions have no arguments, only return values.
In these cases the reader will always be notified that we are dealing with the
function application, not the function itself. If nothing is said, however, f will
mean the actual function f and not the value returned by f when applied to no
arguments, unless otherwise stated.

3.1.5 Adornments

Functions in Amos II can be overloaded on the argument types and size of
argument tuple, i.e. one can define the following functions

e foo(integer x)->integer y
e foo(real x)->integer y
e foo(integer x, integer y)->integer z

without redefining foo each time. This is because Amos 1I views the different
varieties of foo as separate functions. They may all be called using the name
foo, but the type-resolver (see 3.2.2) will give these functions separate names by
using type adornments. Hence the three foo:s will be called foosnteger—integers
f00real—integer, and £00integer,integer—integer, respectively. The different ver-
sions of the function are referred to as resolvents. The query processor will
decide which resolvent to call.

Because of the invertibilty of functions - i.e. running a function backwards
- is normal behavior in query optimization and execution, there needs to be
a way to specify not only which type adornment to use. Also, each function
application is in addition to type-adornment also binding adorned, for example
a function f : Z — Z in the forward direction will be binding-adorned f*f. The
letters bf is called a binding pattern, and the superscripting to a function is
called a binding adornment. The meaning of the letters is

1. b means that the argument is a bound variable or a constant, e.g. 12 or

[P

a

2. f means that the argument is either a free variable, or a bound variable or
constant, as above. Running an adorned function with a bound variable
v in the place of an f argument results in running the function with v
replaced with a different, uninstantiated variable to determine v, and then
comparing the result.

Because f, for free, means also that the variable can be bound, an f adornment
is said to cover a b adornment. For example the binding pattern bbfbffb will
cover bbbbffb but not fofbffb. All binding patterns are not necessarily executable
for any function f. For stored functions, however, any adornment is possible
since for a stored function the extent is simply a set of stored tuples (see 3.1.3).
A foreign function can be defined for several binding patterns, with different
implementations for each binding pattern. It thus makes sense to talk about
type- and binding adorned functions. These are referred to as TBRs (see 3.2.5),
and are the actual functions.

3.2 Query Processing

An AmosQL query is defined by a select statement. Amos does not separate
derived functions and queries, and thus a select statement is treated as an
anonymous function. The steps in the compilation of a query are shown below.
As an example, suppose we have the following types and functions defined,

create type employee
properties(integer salary, name charstring);

create function manager (employee) -> employee as stored;

and the following query is posed; finding the name of all employees that earn
more money than their bosses:

query 1 select name(e)
from employee e
where salary(e) > salary(manager(e)).

AmosQL Query

Flattener

Flattened Function

\i

Type Checker

Type—Adorned Function

Y

Object Calculus Generator

Object Calculus
\ e
Calculus Optimizer TR Rewrite—Rules
.~
Object Calculus
-------------------- LSRR LR LR
| Algebra = ™
| G Cost—Based Optimizer TBR Rewrite—Rules
' Generator
| -—
Object Algebra expression
Y

Algebra Interpreter Object Algebra

Figure 1: The query processing chain in Amos II.

3.2.1 Flattening

Because the query plan interpreter does not allow nesting of function calls, they
are removed from the function definition by introducing intermediate variables.
The result of flattening applied to query 1 will result in the following flattened
function definition®.
create function *select*() -> charstring v; as
select vy
from employee vy, employee e

where v; = name(e) and
vy = manager(e) and
vy = salary(e) and
v, = salary(vy) and
V3 >Vy4;

3.2.2 Type Resolution

Functions in Amos 11 can be overloaded on the argument types, and therefore
the query processor must decide which resolvent to call. If this can be inferred
from the bound variables to a function, this is performed at compile-time. Type
resolution applied to the previous step will yield
create function *select*() -> charstring v; as
select v;
from employee vy, employee e

where vy = Name€employee—charstring (e) and

V2 = manageremployeeﬁemployee (e) and
V3 = SalarYemployeeﬂinteger (e) and
V4 = SalarYemployeeHinteger (v2) and

V3 >integer,integer—>boolean V45

A type-resolved function is also referred to as type adorned, or a TA-function.

3.2.3 Object Calculus Generator

After flattening and compile-time type-resolution the function is transformed
into an internal object calculus representation. This corresponds directly the
TBR (type- and binding-resolved) Object Log used in 3.2.5. Litwin and Risch[1]
use TR (type-resolved) Object Log for the representation of this step, while
the Object Calculus model is used by Fahl and Risch[2]. In this paper, object
calculus is used for the TR phase and TBR Object Log is used for the final
execution plan.

1 Amos II gives an anonymous query the function name *select* and treats it as an ordi-
nary function, the only difference being that it is executed directly after compilation.

10

{Ul | U1 = nameemployeeﬁcharstring(E)/\
V2 = MAanageremployee—employee (E) A
U3 = Salaryemployeeéinteger (E) A
V4 = Salaryemployeeéinteger (UQ) A
U3 >integer,integer—>boolean U4}
Note that no order between function calls is defined in this step.

3.2.4 Calculus Transformations

Once a function appears as an object calculus program, various transformations
are made to optimize the function. These are the most important ones

e All equalities are removed and one of the values substituted for the other.
e The *-transformation (see 4.3) was introduced at this stage.

e Normalization. The cost-based optimizer accepts only object algebra ex-
pressions in disjunctive normal form. This restriction may be lifted in
future versions.

In our example no such rule applies.

3.2.5 Object Algebra Generator

The cost-based optimizer transforms the declarative object calculus expression
into object algebra, where stored functions become facts and derived (and for-
eign) functions become predicates. For example, if the salary function is defined
for salary (e) = 2000 for some e of type employee, the function is stored as the
type-resolved fact salaryempioyee,integer (€, 2000) .. A derived function fa =r
becomes a predicate f(a, r) :-

In object algebra, as opposed to object calculus, a strict order is imposed
on the ordering of predicates, as dictated by the cost-based optimizer. Fur-
thermore, each function call is binding adorned. The product of such a rule
is a TBR predicate. For example, a function f : Z — Z will correspond to the
predicate f (vy, v2), and will be type- and binding-adorned f%te gerinteger (V15
vy). When applied to query 1 the TBR Object Log is

xselect*(vy) :-

name’” (e, v1) &

employee,charstring

managerbf (e, v9) &

employee,employee
bf
salaryemployee,integer (e ’ V3) &

bf
Salaryemployee,integer(V2’ V4) &

bbf
integer,integer,boolean

> (V3’ V4) .

which is a procedural program where an order between predicates is defined.
The query optimizer tries to find the optimal ordering between function calls
when transforming TR Object Log into TBR Object Log.

11

3.2.6 Rewrite Rules

The TR="TBR stage contains a hook for declaring a rewrite-rule for a function.
In this case the system will not do the default transformation from a TR resolvent
to a TBR resolvent, as dictated by the cost-based optimizer (see section 3.2.5.)
Instead, the specified rule will be called and its result used. Rewrite rules are
written in a general-purpose language which in practice enables a rewriter to
do anything, and this is indeed where a translator to another data source is
introduced.

Due to normalization, the scope of a rewrite is limited to only one disjunct at
a time, the disjunct being, of course, a conjunction. Optimization and rewriting
are carried out in terms of these conjunctions, with each conjunction handled
separately. A transformation applied to one conjunction will not affect any
other conjunction and a translator will not be able to see anything outside
the conjunction that it is working on. Furthermore, a TR-predicate is purely
declarative. No restrictions on bindings are imposed. Hence, a function body
that is subject to translation can be viewed as a set of predicates with only the
name of the function and its arguments. Some of these can be translated, under
certain binding adornments.

4 Extensible Wrappers

This work focuses on wrapping of external data sources within Amos II, in order
to get complete and transparent access to these sources through AmosQL. The
goal is to access any kind of data source with any kind of structuring, or lack
thereof. Even if the data has only trivial structuring, e.g. like a file system, it
should still be possible to query the data source. This means that the wrapper
must take as input a parsed query in AmosQL, translate this into low-level
calls to the source and then post-process the result in order to make up for any
limitation on the source’s behalf. The greatest challenge is to know in advance
which parts of the query can be translated into an external call and which parts
must be done inside Amos, and how to represent this knowledge. The problem
was divided into the following subproblems

1. Connecting external data sources to AmosQL. This is discussed in section
4.1.

2. The ability to query these sources. The naive - and most general - ap-
proach will be discussed in section 4.2.

3. The automatic translation of AmosQL queries into whatever query lan-
guage the source supports. Section 4.4 discusses this.

4. The translation should be optimized to minimize total query execution
cost. While this work implements some simple assumptions, this issue
remains to be settled in the general case. See section 7 for a discussion of
this.

12

The approach chosen was to first create a naive wrapper that assumes that the
source has no capabilities at all, and thus do all processing in Amos. A data
source is thus regarded as little more than a file system, with a function to open
and close a file, and nothing more. As we move along we will hopefully discover
that the data source is capable of doing much more. This requires a mechanism
called a translator which will, given a knowledge representation of capabilities,
translate a naive query into a more efficient one that takes advantage of the
source’s capabilities. Thus a wrapper can be split up into two largely indepen-
dent parts; an interface containing only the basic building blocks for importing
data to Amos and a translator to translate such a query into something more
cost-effective than importing the data into Amos and do all the processing there.

4.1 Basic Wrapper Interface
4.1.1 Mapped Types

Since Amos 1I is an object-oriented system, every entity in the system is repre-
sented by an object. Therefore external data must also somehow be represented
by objects. Those objects that represent external data are simply empty place-
holders without attributes - they contain no data and their functions are foreign
(see 4.1.3). Such objects are called prozy objects, and they are defined by mapped

types.

Proxy Object Lightweight objects that are simply containers for objects that
are stored in a different physical location.

Mapped Type A set consisting of proxy objects that classify such objects by
its extent function, which returns all proxy objects of the type.

Obviously, it is up to the author of a wrapper to decide to which entity in the
data source language an object should be mapped, and this mapping will reflect
how the system will treat the data source.

The problem that inevitably arises concerns identity of entities: Objects
are explicitly created and can always and uniquely be identified by their object
identifiers, or OIDs. Foreign entities may not exhibit this trait, and while it is
not completely crucial that there exist a one-to-one mapping between objects
and the entities that they represent, an OID must always correspond to only one
foreign entity. How this mapping is to be carried out depends completely on
the data source. So every mapped type needs a function from objects to foreign
entities that is also reversible. In Amos 11 this function is called decode.

4.1.2 The decode function

For every kind of data source there must be some way of identifying tuples, be
it a primary key, or a directory path etc, that is unique for the entity. The
purpose of the decode function is to produce a handle to a foreign entity given
an 0ID. The function is overloaded for each new mapped type that is created.

13

When a mapped type M is created that maps to a source entity E the system
will automatically create the following functions:

1. decodey;_ g

2. decodeELM

For the forward direction (1) the function result is simply stored on the mapped
object itself, as a property of some sort. It is supplied when instantiating a
mapped type and thus decode will operate on any instance of the mapped type.
The backward direction (2) is slightly more complicated because we have to
create a new object that is a proxy to the source entity. Here it is advantageous
to keep the mapped objects as lightweight as possible.

4.1.3 Foreign Functions

Amos 11 lets a user define functions in other languages than AmosQL, namely
C, Lisp, and Java. A function defined in any of these languages is referred to
as a foreign function. The function is declared as “foreign” and the definition
contains a reference to the foreign implementation. A foreign function lets the
implementor access any kind of data structure directly through AmosQL and it
will pass unaltered through optimization. Amos 11 normally opens up functions
when optimizing a query or a function. but a foreign function is somewhat
mysterious to the optimizer. It knows nothing of what will come out as a result,
but with a clever use of cost information, the cardinality of the output and the
cost can be used to incorporate foreign functions in an optimal plan. Thus a
foreign function is not a “black box” to the optimizer, but rather a “gray box”.

4.2 The Core-Cluster

The naive wrapper assumes that a data source has no structured facilities for
retrieving data. It is merely treated as a file system, where an entire file is
scanned through as it is being processed. This means that there is only one
primitive needed for each mapped type, namely the extent of the type. In Amos
11 the extent of a type is the set (see 3.1.2) of all existing objects of the type. By
using this definition of an extent function, however, we would be forced to create
objects for every entity that is in the extent, even when those objects will not
be used. Suppose we have a wrapper for some database of engine parts where
you can browse parts by some trait called part_id that uniquely identifies a
part. Now consider the query

select p from engine_part p

where begins_with(part_id(p), ’A’);

Intuitively, this will create mapped objects to represent those engine parts whose
part_id:s begin with the character ’A’; but only for those parts. No other
objects will be created. Now, if the wrapper uses the extent function described

14

above, the meaning of the above statement becomes “create proxy objects for all
the engine parts, throw away all of them except the ones whose id:s begin with
A’ and project the rest”. This would lead to the creation of a potentially very
large amount of unnecessary objects. There is a need for an extent function
that works on a lower level, and leaving object creation for a later stage, when
more is known about the query. So the minimal building block chosen is known
as the core-cluster function. It returns rather than the objects themselves a bag
of tuples which are the values of their stored attributes in some pre-specified
order. For example, consider the engine parts above. Suppose that an engine
part has two properties: part id and price. Then we would expect two functions
to be present

b part_Zdengine_part—»integer
b przceengine_partﬁreal

We then define the core-cluster of engine-parts as

CCengine _part = 1|(part_id, price)|}

Strictly speaking the core-cluster is not a function since it has no arguments.
However, its value changes over time as the database is updated. So in the
mathematical sense it is merely a function over time. Therefore, in practice the
core-cluster needs to be recomputed every time it is needed in order to be up to
date. The order of elements in the tuples is totally arbitrary, but it is important
that one order be agreed on, as we shall see later in this section.

The extent function can always be constructed from the core-cluster function
in the following manner

extent p = decodep_ CCengine _part

where cCengine part is the core-cluster itself, even though in practice it is a
function, applied to no arguments and returning a bag of tuples. We then have
the possibility of doing filtering before object creation like so (execution order
is right-to-left):

extent p = decodeg_. s filterbegms_with (partid, A’) CCengine__part

Here it is clear that object creation comes in after filtering of tuples. Actually,
the decode function will not need the entire tuple in order to create the object,
only enough information to distinguish a particular tuple. Thus, a subset of the
attributes is designated ’key’ and is expected to always be unique. This is why
it is important to know in advance which positions in the tuple that correspond
to which core properties. It is up to the wrapper implementor to make sure that
this holds for the data being wrapped.

15

4.3 The *-Transformation

One problem that arises in the rewriting of queries involving the combination of
core-cluster and decode calls is that, more often than not, the call to the decode
function is unnecessary [2]. Those cases are when the initial AmosQL query
looks like:

select f(e) from wrapped_datasource_entity e where ...;

Here what is asked for is simply a field from all objects, with or without a
filtering where clause. There is no need to introduce the creation of mapped
objects. Let’s see what this compiles to in the TR stage:

{wo |

chrapped_ datasource__entity (Ula V25 - 50 f5. - ;Un)/\

decodep_p(vy, €)N
vo = vy}

As we can see, there is no need to call decode here since the result is immediately
thrown away. The predicate is redundant (always true and introduces no new
tuples.) This is where the *-transformation is used. In Amos 11, a variable
named * can never be bound and will succeed in any comparison, much like the
__variable in Prolog.

The transformation performs a fix-point iteration consisting of two steps:

1. Identify variables which are never used and replace by a *,
2. remove the predicates which are redundant if one argument is a star, and

3. repeat until no more unused variables are encountered.

A variable is unused if it is a singleton variable that is not an argument to
the predicate (neither an input- nor an output variable). A predicate is redun-
dant if it does not produce any new tuples and never fails. It is harder to infer
redundancy of predicates, so therefore there is simply a “black list” of such pred-
icates which are redundant under certain conditions, and decode can definitely
be on that list, since decodep_, s (x,e) will create a mapped object without a
mapping, decodeg_,pr (v, *)will create an object and throw away the handle,
decode ;g (e, *)will extract the mapping but throw it away immediately, and
decode p;—, g (*,v)will not be executable. The same goes for any direction if both
arguments are .

So a *-transformation applied to the above expression will leave the following
calculus expression:

{UO|chrapped_datasource_entity(*7 Kyeo oy Ufyenny *)/\UO = Uf}

16

4.4 Modeling Capabilities

This section discusses the various challenges associated with the representation
of capabilities. An intuitive definition of capabilities would be “what can data
source A do for me?”. Filtering and comparisons are obviously capabilities,
for example the question “retrieve all employees for me but only if they make
less than 1500 dollars monthly” appeals to a capability to execute comparisons.
Capabilities go on to be more complex than this, for example inner and outer
joins, cross-products and solving parametric equations in 10 dimensions.

A data source is associated with a set of capabilities, and capabilities are
associated to rewriters for this particular TBR function. A rewriter for the combi-
nation of a particular TBR function and a particular data source will throughout
this text be referred to as an absorbent. These will be further explained in 4.4.4,
but for now we will only note that they are a variant of rewrite rules.

Commonly, one associates capabilities not with individual data sources but
with whole classes of data sources, e.g. with the type rather than the instance.
We may for example have a data source datasource; that is similar to Amos 11
in the sense that you can write foreign functions, and for a particular running
version of datasourcejthere may be an instance ds, which has an efficient im-
plementation of the function foo. Now, the set of capabilities associated with
datasource; are all the features that Amos 11 and datasource; have in common,
while the capability foo@ds can be associated only with ds. However, there is
never a need for a capability to be associated with both, since the semantics
of associating a capability with datasource; dictates that it also be associated
with ds through type membership, much like static members in Java.

4.4.1 Representation of Capabilities

A capability can be viewed as a triple (s, f,«) where s is either a subtype to
datasource or an instance of such a type, that is s € deepextent (datasource)V
subtype (s,datasource), f is a TBR function, and « is an absorbent. If the
capability is hooked to the type it is subsumed to belong to all instances of the
type. Armed with a set of capabilities, a data source can, using its associated
absorbents, rewrite a subset of a query.

4.4.2 The Variable Environment

The translator system includes an environment, which is a mapping from literals
(variable symbols or constants) to a variable descriptor, which is a 4-tuple

es=(t,bed)

1. t is the type of the symbol. If s is a constant then this is the type of the
constant, otherwise it is the type of the variable.

2. b is the current binding of the symbol, so that

17

— if sisbound or a constant.
b= + if sisfree.
0 if we are not permitted to specify a value.

3. e is the foreign entity that the variable maps to. For relational databases
an entity would be a column, and s could take on any value that is stored
in the column. It is up to the absorbent to determine this. If s is a
constant the entity is s itself. For example, the assignment

S <— SSNperson—integer (P)

leaves s’s entity being the column ssn in the table person if we are
wrapping a relational database, because s gets its value from this column.
Then the translator knows what to translate any occurrence of s into,
namely a projection of person.ssn. In the same scenario,

s <« 1000

means that s maps to the value 1000 and nothing else, regardless of data
source.

4. d is the data source that the variable maps to.

4.4.3 Accumulators

The translation framework does not translate a query in one go, the motivation
of which is flexibility. There is not one single translator associated with a data
source but rather a set of capabilities, each with its own specialized translator.
The motivation here is that it should be easy to add new capabilities. Capa-
bilities are likely to be discovered and implemented as you go along, often as
optimizations.

A difficult situation arises if some function f; with argument tuple 7 is
rewritten by an absorbent «;into a call to the wrapper interface, say fi7{, and
further down some other function fy75 is rewritten by a different absorbent as
into another interface call f475. In this case a lot may have been won as far as
speed is concerned, but for n rewriteable function calls we still end up with =n
calls through the wrapper interface. It is also necessary to somehow combine
several calls into a single one, if the data source allows it. This can be potentially
expensive, however. Consider for example if the communication with the data
source is carried out with strings, as is the case with relational databases. Now,
consider the object calculus expression

{name |
Person(p) A
sal = Salaryemployeeéinteger(m) A
name = firstnameper son—string(p) N
sal >integer,integer—>boolean 1200 A

sal <integer,integer—>boolean 1 800}

18

The above approach involves parsing and generating strings in every step in the
translation chain, each step ’eating’ one function call:

1. select name from person;
2. select name from person where salary>1200;

3. select name from person where salary>1200 and salary<1800;

A faster approach, which is now used in the implementation, is to introduce an
abstract representation of the above select statement. Such a representation
needs to have facilities for absorbing any new function call that the data source
has been found capable of, and it needs a way to translate it into a finalized
call to the interface. Such an abstract representation will be referred to as an
accumulator. The wrapper API expects a data source to have two functions for
accumulators,

1. initialize : datasource — absorbent

2. finalize : absorbent — call U L

where the function initialize will create an empty accumulator, and the function
finalize will transform any accumulator into an interface call that can later be
executed. L is a symbol used to denote failure (see 4.4.6.) Because of the
diversity of data sources nothing more can be generalized out of the notion of
an accumulator.

4.4.4 Absorbents

An absorbent is a function that translates a TBR function call f7, an envi-
ronment ¢ and an accumulator a. The result of this translation is also an
accumulator, a’ where hopefully f 7 has been absorbed. More formally, if F is
the set of functions that can be translated, E is the set of environments where
this is possible, and A is the set of possible accumulators, then an absorbent «
has the following signature (L is the failure symbol, see 4.4.6)

a:FxXExA—AxEU{Ll},

for example, for the f, 7, €, and a above, the result of applying a would be

a (f,e,a) = {(d &),

where a’ is the accumulator a with some representation of f included and
¢’ is an updated environment. It is necessary to let an absorbent update the
environment also. Consider, for example, an assignment operator <%/ . Any
remotely intuitive interpretation of the semantics of this is that when applied as
b < a, it should result in b being bound afterwards. It may be possible to absorb
this into a translation in the making, for example by treating any occurrence of

19

b as an occurrence of a. Either way, b must be bound hereafter, or the correct
capabilities will not be found.

If the absorbent does not return 1, it has by definition succeeded, and thus
the function call for which it was invoked will be removed from the conjunction.

There is likely to be an absorbent associated with each capability, although
it may prove more practical to have the same function translate everything.
The important part is that adding new capabilities to a source should not mean
redefining previous work.

4.4.5 The Default Absorbent

There is one absorbent that has to always be specified, and it is the one for
the core-cluster function that the translator is hooked on. This absorbent is
different from the others in three ways:

1. Tt is not necessarily part of a capability,

2. it will normally only be called once, the only exception being a self-join.
Any other absorbent will be called as many times as the function(s) for
which it is associated appears in a given conjunction.

3. Whereas no order is guaranteed for when other absorbents are invoked,
this one will always be invoked before any other of them.

For some data sources it makes sense to absorb more that one core-cluster
function call, the join capability. The source may even be capable of translating
any number of core-cluster calls that belong to the same data source, unlimited
join. There are only two options. Let mt be a mapped type, let ccyy be its
core-cluster function, and let a.,, be the absorbent that absorbs a call to ccye.

1. Register a.., as the translator’s default absorbent for the mt.

2. As above, but also add the capability (ds, ccp, acc,,,) to the set of capa-
bilities.

In the second case, the core-cluster function itself makes up a capability, and
the default absorbent is submitted just as any other absorbent. If this is done
then the first and second characteristics above do not apply. The only join
capability that can be explicitly expressed is the unlimited join. All others
must be implicitly stressed by failing when the full number has been reached.
(section 4.4.6).

4.4.6 Failures

An important requirement on the wrapper framework is that is should be able
to handle failures. The reasoning behind this is simple: The task of representing
every capability for any source in a uniform manner is infeasible. A source may

20

be capable of translating a large set of function calls but not certain combina-
tions, or it may only translate certain combinations. For instance, B-trees (see
section 5) accept only closed ranges.

Capabilities in the wrapper framework are to interpreted as “necessary but
not sufficient” conditions for being able to translate a set of function calls. There
framework never assumes that a translation will succeed until it does. In the
mean time, it can fail in two ways.

1. Failing to absorb. An absorbent function may, as noted above, return 1.
If it does, then the adorned function call in question will not be removed
from the conjunction and generally the effect is the same as if there were
no capability for this particular adornment. However, if the same function
call appears later, under a different adornment, the absorbent will be called
in the new context to see if it works.

2. The optimizer may try different orderings in order to get the optimal
absorption. In many cases this means to absorb as many predicates as
possible, but this does not always hold as costs may go up for advanced
source queries. Such considerations are beyond the scope of this paper,
however, and are discussed in 7.

3. Failing to finalize. The finalize function for the translator may fail, in
which case all translation is being rolled back. The query optimization
algorithm might try again by reordering the function calls, but depending
on the algorithm it may not explore the full solution space. In the general
case it is not possible to predict which orderings will succeed and which
will not.

5 B-tree Wrapper

In this section it is shown how the built-in indexing structure, b-tree, is imple-
mented as a wrapper in Amos I1I, rather than being hard-coded into the database
kernel.

5.1 Amos II Indexing

Like most DBMS:es, Amos 11 has an indexing facility. Indices can be created for
any argument or result of a stored function, and can be unique or non-unique.
A unique index prohibits storing different tuples where the indexed argument
appears. Indeed, this is how cardinality constraints are implemented in Amos
11. For a type person an intuitive unique constraint is the property or function
SSDperson—integer (aSSUmMIng every person has a unique social-security number).
The unique index is declared using the keyword key:

create type person;

create function ssn(person key) -> integer key

21

Function

1A
=Y

TR resolvent

type adornment

iy
|

Datasource

TBR resolvent

initializer
finalizer

A

binding adornment
implementation

cost

capabilities

Capability

Core—Cluster—TBR

default absorbent

Absorbent

Legend:

1 has one

* has one, many, or none

+ has one or many

white arrowhead is a/is an

text on arrow Indicates relation.

An absorbent is related to a TBR resol-

vent through a capability, and to core-cluster TBR by being its default

absorbent.

Figure 2: The relationships between components of the wrapper definition

framework.

22

In this case the system guarantees that there is a one-to-one mapping between
01Ds of type person and their social-security numbers. This concept may be a
little difficult to grasp if looking at the schema, from a relational viewpoint.(Why
should both be declared key?) The mystery arises from the fact that whereas a
relational table has to have at least one column to make sense,, an Amos II type
does not, because type instances can always be identified with the oID. The
closest relational counterpart to the above declaration would be

create table person(oid int);

create table ssn(person_oid int unique, ssn int unique);
An equivalent, and intuitive declaration of person would be
create type person properties(ssn integer key);

It is also possible to add indices at a later point using the system function
create_index. The signature is as follows:

create_index(function f, charstring argname, charstring index_type,
charstring uniqueness)

parameters are
f the function
argname the name of the argument/result parameter to be indexed.

index_type Kind of index to put on the parameter. Amos II supports hash
(type ‘““hash”’) and ordered B-tree indices (type ‘“mbtree”’).

uniqueness Can be “‘unique’ or “multiple’.

5.2 Interface

An internal foreign AmosQL function implements B-tree search:

mbt-select-range(function f, integer pos, object low, object
high)

This foreign function accesses (returns) the rows (tuples) of a B-tree index

associated with position pos of the stored AmosQL function f in the interval
[Low, high]. It does not handle open intervals.

23

5.3 Translator
5.3.1 Access Function Capabilities

The access function handles only closed ranges, i.e. a combination of two par-
ticular predicates, and only when they refer to the same indexed argument.
There is no way to explicitly express this capability with the capability system.
Instead, we declare capabilities for the general comparison operators:

L4 <mbtree, >object,object~>boolean; absorb>@mbtree>
L4 <mbtree, <object,object~>boolean; absorb<@mbtree>
L4 <mbtree7 Zobject,object—»boolean; abSOsz@mbtree>
L4 <mbtree7 Sobject,object—»boolean; abSOTbg@mbtree>7

where mbtree is the type that represents the main-memory B-tree data source,
and the functions absorb are the absorbents. Notice that equality(=) is managed
by the binding pattern mechanism and need not be implemented as a capability
mechanism.

5.3.2 Accumulator

In the translation of a range query, an accumulator will need to keep track of
the applicable index and the desired values of the indexed parameters. It is, of
course, also necessary to remember the function for which the query applies. So
a data structure is to be defined (no particular programming language intended):
structure rangequery {
function f;
variable indexed_variable;
function extent_function; // the actual table
predicate low;
predicate high;
}

For a query

select p from person p where ssn(p)>100000 and ssn(p)<=200000;
we would have the structure
{88Nperson—integer, Vs P_SSNperson—integer s INAETperson.ssn, ¥ > 100000, v < 20000}

when all predicates have been absorbed.
Finally, the finalizer is called, which asserts that both predicates are present,
i.e. that the range is closed. the finalizer then produces

24

1. A call to mbt-select-range, which produces a vector of the columns in
the storage manager’s table.

2. Two or more extraction operators from the vector. (in the case of a one-
argument-one-result function we get only two.)

3. Extra predicates to close the interval if open in either end.

Furthermore, the range predicates are removed from the conjunction as they are
no longer needed. Thus the final calculus expression becomes (type adornments
dropped for clarity:)

{v1 = mbt — select — range (88N person—integer, 1, 10000, 20000) A

p=u1[0]A
Vo = 1}1[1] AN
vy # 10000}

6 The JDBC Wrapper

The purpose of this part of the project was to define a wrapper for JDBC for
Amos 11. JDBC was chosen because it is at one extreme end when it comes to
expressibility of the source language, namely SQL. In fact many queries, when
successfully translated will look nearly identical to the 0SQL originals that they
once spawned out of. The wrapper is very large, about 1000 lines of code, owing
to the not entirely trivial task of generating SQL strings.

6.1 Previously Implemented (ODBC) Wrapper

There existed previously for Amos a wrapper for relational data that works
through the ODBC interface. It is not based on mapped types but rather on an
elaborate mechanism that is heavily integrated with the Amos 11 kernel. The
biggest difference, however, is that the translator must succeed in translating
any query to SQL. While the old wrapper for ODBC at the user level bears a lot
of resemblance to the JDBC wrapper, whereas this wrapper is heavily integrated
with the Amos 11 kernel, the JDBC wrapper uses no system functions at all.
However, the ODBC wrapper’s primitive interface has the same functionality as
that of the JDBC wrapper.

6.2 Interface

One new AmosQL type name jdbc was created as a subtype of relational,
the supertype of all relational data sources.

jdbc(charstring name, charstring driver)
the creator for jdbc objects.

25

load_driver(jdbc ds, charstring driver)
attempts to load the JDBC driver for the data source.

connect (jdbc ds, charstring url,
charstring name, charstring password)
connects with a given user name and password.

disconnect (jdbc ds)
closes the connection to a database.

sql(jdbc ds, charstring query)
direct SQL execution.

sql(jdbc ds, charstring query, vector arguments)
parameterized SQL execution, using prepared statements to cache the query
for reuse.

tables(jdbc ds)
returns a bag of all table names in the database.

columns(jdbc ds, charstring tablename)
returns a bag of all column names in the database.

primary_keys(jdbc ds, charstring tablename)
returns a bag of all names of columns that make up the primary key of a
table.

6.3 Translator
6.3.1 Observations

1. A call to the core-cluster function represents one table access, always. If
the same core-cluster function appears more than once, what is asked for
is a self-join, and thus the second time the table name must be aliased. If
different core-cluster calls appear then either a join or a straight union is
asked for. Hence, as soon as a core-cluster function is created, the data
source must be declared capable of translating them.

2. Because of the DNF form of the object calculus, there is never the need to
translate into ors, because we only see one conjunction at a time.

3. The entity that variables map to is in this case a column.

26

select femployee;.emp _no, department;.emp no}
Fromemployee;, department;

where femployee;.emp _no=department;.emp _no}
table—incarnations {employeel, departmentl}
input{,uo}

Figure 3: An abstract select structure

e The select part is simply a set of column names, for sake of removing
ambiguities prepended with table names (i.e. for self-joins). In sqQL it is
always legal to use the dot notation with table names when referring to
columns, so there is no need to remove them.

e The from part is a set of table names.

e The where part is simply a set of predicates in Object Log, by contract
with the Amos optimizer assumed to be a conjunction of these predicates.

e table-incarnations holds a set of tables that have been asked for.
If a table is asked for twice its incarnation number is increased
and the table is added again, for example if table-incarnations is
{employee,, department; } then the tables employee and department have
been asked for one time each. If for example, employee is asked for
again - by discovering yet another call to employee@ds cc - its incar-
nation number is increased by one and table-incarnations becomes
{employeer, departmenty, employees}.

6.3.2 Accumulator

The translator uses as accumulator a data type called an abstract-select. It
is a structure representing an abstract syntax representation of an SQL select
statement, meant to hold all relevant information until the statement can finally
be materialized as a string.

In the wrapper interface it is possible to prepare a query, which means that
the query is somehow precompiled at the source but it is still possible to alter one
or more parameters. This is of great help when doing joins over different data
sources: We shall now as an example introduce the compilation and subsequent
translation of a derived function called manager. Assume we have two SQL
tables, employee and department in the following schema,

emp_no | first_name | last_name | dept_no, . gepartment

employee ~ -
p-oy int | char | char | int
dept_no | name | mngr_no,,
department | | g suployee

int | char | int

27

where emp_no is the primary key of the employee table mapping to mngr_no in
the table department, where it is a foreign key. dept_no is the primary key of
the department table, and is referenced from dept_no in employee where it is a
foreign key. We now import these tables into amos with the following function
calls:

import_table(ds, ‘“‘employee’®);

import_table(ds, ‘‘department’’);
import_table automatically adds the core-cluster absorbents to the capabilities
of the type ds, so that the wrapper knows that it can translate several of them
in one go, as explained in section 4.4.5.

In creating a mapped type, property functions are automatically generated
for retrieval of all properties of the types employee and department:

® emp_NOemployee@ds—integer

o f irSt_na-meemployee@ds%charstring

Such a function is implemented in the following way (the function first_namecmpioycc@ds—charstring
is used as illustration:)

create function first_name(employee@ds e) -> charstring

as select name

from charstring name, integer emp_no,...

where employe@ds_cc= (emp_no,name,...};
The user can now define a function manager in AmosQL:

create function manager (employee@ds e) -> employee@ds
as select manager
from employee@ds manager, department@ds dept
where dept_no(employee)=dept_no(dept) and
emp_no (manager)=mngr_no (dept) ;
This translates into object calculus, using the *-transformation and substitution
of equalities.
{employee, manager|
1 decode (employee, v1) A
employee@Qds _cc (v, *, %, v3) A
departmentQds__cc (ve, *,vs) A

employee@Qds _cc (vs, *, *,v2) A

[SAET NN V)

decode (manager,v2)}

28

The execution plan is not fixed at this point but for sake of simplicity we will
assume that the calculus subexpressions will be dealt with in the order they are
numbered above. This happens to be the optimal execution plan, but how this
is inferred is beyond the scope of this thesis.

First, the default absorbent for employee@ds_cc will be called in this way:
jdbcTranslateCoreCluster(employeecQds cc (v, *,%,v2), €, S), € is the vari-
able environment, and s is an empty abstract select statement. The absorbent
will note that v1is bound since the call to decode is already binding-adorned (re-
member that we assume that the order above is followed) and v5 is free. So vy is
bound and it is recorded that the variables’ entity:s are emp_no and dept_no,
respectively. Their data source:s are set to ds. So the mapping ¢ is now:

e cv; = (integer, —, employee,.emp_no,ds)
e c vy = (integer, —, employee,.dept_no,ds)

The absorbent notes that v, was free, but its datasource is not equal to ds.
It came from the decode function and is meant to be an argument to the sql
function. The translation continues, and this time jdbcTranslateCoreCluster
is called with function call number 3. This time v, is bound and maps to a
column already, so its “meaning” is dept_no, while v3 is a free variable with no
entity. Nothing happens to vs but for vs we get

e cv3 = (integer, —,department,.mngr_no,ds)

And the table as well as column are added to the abstract select structure. Last
to be translated is function call number 4: First of all we see that table employee
was already asked for once so we increase the incarnation-counter by one. This
time v3 and ve are both bound with an entities so we add managers.emp_no =
department; .mgrno to the set of predicates in a, and we are done. The wrapper
API calls a finalize function that spits out a call to the sql function, complete
with a materialized sQL string.

6.3.3 Performance

Performance of the JDBC wrapper using a translator was measured against an
experiment database where the size of the database was altered. Two kinds
of queries were compared; queries against a single table and join queries. The
purpose of the test was to measure the efficiency gain of translating queries vs.
importing all data to Amos 11, and do the processing there.

Experiments were run on an Intel Pentium 111 with 785 952 kB RAM. The
interface part of the wrapper uses Interbase’s proprietary JDBC driver, and both
the database file and the database server were located on this machine. The
following schema was used for the experimental database:

create table m_department(dept_no int not null primary key);

29

Algorithm 1 Pseudo code for the default absorbent for core-cluster calls in the
JDBC wrapper

jdbcTranslateCoreCluster (f (vi,...,vn), €, a)
ds < get_datasource(f);
for¢ < 1 to n do begin
¢ « get_column_name (v;) ;
if bound(v;) then
if datasource(v;) = ds then
add_predicate(a, ¢ =entity(v;));
else
add_predicate(a, ¢ =v;);
e(v;) < (type_of(v;),—,c,ds);
end;
add_column(a,c);
add_table(a,c);

create table m_employee(emp_no int not null primary key, dept
int not null references m_department, first_name varchar(10),
last_name varchar(10)));

create unique index il on m_employee (emp_no);

create unique index i2 on m_department (dept_no);

Two AmosQL queries were executed against the two tables, for range queries
the following was used:

select emp_no(e)
from m_employee@ibds e
where emp_no(e)<i and emp_no(e)>=j;
where i and j were adjusted according to table size in order to give a selectivity

of .01 (1% of the tuples). The results can be seen in 6.3.3. The second query
was formulated as follows:

select emp_no(e)
from m_employee@ibds e, department@ibds d
where dept(e) = dept_no(d) and emp_no=500;
The result can be seen in section 6.3.3.
It is apparent from the results that translation and pushdown of selection

predicates that take advantage of a data source’s capabilities can give enormous
gains in execution speed.

30

Total execution times for translated and untranslated range queries against a single table

35 T T L. T . T T T T T T
.01 (1%) selectivity w/rewrites —
.01 (1%) selectivity w/o rewites B

3 - -

25 | B
(%)
el
c
3
(o]

(2] 2 - .
£
()
£

s 151 1
3
(0]
x
i

1 - -

o5f]

o Li——— i i i i i i i i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of tuples

Figure 4: Total execution times for range queries involving a single table with
varying size. The range selected was always .01, or one percent of the total table

size.

31

Total execution times for translated and untranslated two-way join queries.

35 T T L. T . T T T T T T T
.01 (1%) selectivity w/rewrites —
.01 (1%) selectivity w/o rewites B
3 - -
25 - o g
(%) L
el
c
(o]
(5]
[0}
(2] 2 - .
£
()
£
S 15¢ 1
5
(5]
(0]
x
i
1 - -
0.5 | i
— a a a e —— I R — —

0
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of tuples

Figure 5: Total execution times for two-way join queries selecting exactly one
tuple.

32

7 Conclusions and Future Work

In this work it is apparent that translation and pushdown of selection predicates
that take advantage of a data source’s capabilities can give enormous gains in
execution speed. However extreme an example a relational database may be,
the relational databases are the dominating storage for data.

7.1 Other Data sources

The JDBC wrapper, while fully functional, started out as an experiment platform
for testing the wrapper definition AP1. The API has a broader use, where any
data is import-able. The goal is to simplify the creation of wrappers for any
data source.

7.2 Limited pushdown

What has not been considered in the development of the JDBC wrapper was the
possibility that maximal pushdown may not always be desirable. For example, a
query with a cross-product (a join with no join condition) will lead to increased
transfer between the database and Amos if computed at the source rather that
doing the join in Amos. If the connection is slow then the latter approach is
desirable. The problem is not trivial however, since one needs some kind of
statistics of both the data source and the connection speed in order to infer
when a join actually produces more than the sum of the size of the involved
types. It remains to be seen whether this can be done using the API as-is or if
the design needs to be altered to accommodate for this.

References

[1] Fahl G, Risch T: Query processing over object views of relational data. The
VLDB Journal, Vol. 6 No. 4 November, 1997, pp 261-281.

[2] Litwin W, Risch T: Main Memory Oriented Optimization of OO Queries us-
ing Type Data log with Foreign Predicates, In IEEE Transactions on Knowl-
edge and Data engineering 4(6), 1992, pp 517-528

[3] Fishman DH et al: Overvies of the Iris DBMS. In Kim W, Lochovsky FH
(eds): Object-oriented concepts, databases and applications, ACM press, 1989,
pp 219-250, Addison-Wesley, Reading, Mass.

[4] Josifovski, Schwarz, Haas, Lin: Garlic: A New Flavor of Federated Query
Processing, ACM SIGMOD Conference, 2002.

[5] Shipman DW. The functional data model and the language daplex. TODS
6(1), 1981, 140-173, 1981.

[6] P. Gray: Logic, algebra and databases, ISBN 0-89791-169-1, ACM Press,
1984, pp 437-443.

33

[7] Garcia-Molina H, Ullman JD, Widom J: Database Systems the Complete
Book, 1SBN 0-13-031995-3, Prentice Hall, 2002, pp 1057-1069.

34

