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Abstract

The role of databases is changing because of the many new applications that
need database support. Applications in technical and scientific areas have a
great need for data modelling and application-database cooperation. In an
active database this is accomplished by introducing active rules that monitor
changes in the database and that can interact with applications. Rules can also
be used in databases for managing constraints over the data, support for man-
agement of long running transactions, and database authorization control.

This thesis presents work on tightly integrating active rules with a second
generation Object-Oriented(OO) database system having transactions and a
relationally complete OO query language. These systems have been named
Object Relational. The rules are defined as Condition Action (CA) pairs that
can be parameterized, overloaded, and generic. The condition part of a rule is
defined as a declarative OO query and the action as procedural statements.

Rule condition monitoring must befigfient with respect to processor time
and memory utilization. @ meet these goals, a number of techniques have been
developed for compilation and evaluation of rule conditions. The techniques
permit eficient execution ofdeferred rules, i.e. rules whose executions are
deferred until aheck phase usually occurring when a transaction is committed.

A rule compiler generatescreener predicates and partially differentiated
relations. Screener predicates screen physical events as they are detected in
order to eficiently capture those events that influence activated rules. Physical
events that pass through screeners are accumulated. In the check phase the
accumulated changes are incrementally propagated to the relations that they
affect in order to determine whether some rule condition has chaRgetilal
Differentiation is defined formally as a way for the rule compiler to automati-
cally generate partially dérentiated relations. The technigues assume that the
number of updates in a transaction is small and therefore usually only some of
the partially diferentiated relations need to be evaluated. The techniques do
not assume permanent materializations, but this can be added as an optimiza-
tion option. Cost based optimization techniques are utilized for both screener
predicates and partially dérentiated relations. The thesis introduces a calcu-
lus for incremental evaluation based on partialedéntiation. It also presents a
propagation algorithm based on the calculus and a performance study that veri-
fies the dficiency of the algorithm.
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Preface

This thesis presents work in two areas of active database research. First, it
presents work on integrating active rules into an Object Relational Database
System(ORDBMS) called AMOS [35]. Secondiy presents work on &€ient
change monitoring of rule conditions. These two parts are fairly unrelated. The
first part considers the extension of the data model of AMOS with rules which
is a matter of rule expressabilityhe rule model presented here can be intro-
duced into any ORDBMS.

The second part considers théi@éncy of rule execution which is a matter
of performance. The techniques that are presented ficiest rule condition
monitoring are general and can be used in any active database system.

The two parts are, howevenot completely unrelated. The rules that are
presented are based on the idea that the user should not have to specify any pro-
cedural information of how the rule condition is to be monitored. This informa-
tion should be deduced by the database. This requires that the database can
efficiently monitor any complex rule condition that the user defines.

Thesis Outline

Chapter 1 introduces the work done on integrating active rules into AMOS and the
techniques that have been developed for efficient change monitoring of rule condi-
tions.

Chapter 2 introduces the research area of active databases and the AMOS
architecture.

Chapter 3 defines the data model of AMOS, the query language AMOSQL,
and the extension of AMOSQL with rules. Examples are also given that further
explain how the rules can be used.

Chapter 4 defines the semantics of AMOSQL rules and how condition mon-
itoring is related to function monitoring. The techniques of generating screener
predicates and partid-relations are introduced.

Chapter 5 defines the theoretical foundation for the incremental evaluation
by specifying a calculus based on changes and by evaluating pantéda-
tions.

Chapter 6 discusses how rules are related to the transactions in which they
are created, deleted, activated, deactivated, triggered, and executed. How rules
can be used for transaction management is also discussed. Chapter 6 ends with
a discussion on how the update semantics of the datalfes¢sahe propaga-
tion algorithm described in chapter 8.

Chapter 7 discusses how query optimization techniques can be enhanced for
optimization of screener predicates and padiaklations.



Chapter 8 outlines the algorithm used to implement the incremental evalua-
tion of rule conditions. The algorithm performs a bottom-up, breadth-first prop-
agation of changes through a propagation network.

Chapter 9 compares thefiefency of the incremental method with the naive
method based on experiments.

Chapter 10 concludes with a summary of the presented techniques and
future work.
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1 Introduction

1.1 Background and Orientation

The role of databases is changing because of the many new applications that
need database support. Applications in technical and scientific areas have a
great need for data modelling and application-database cooperation.

The limitations of relational databases when it comes to data modelling has
led to the development of new database technology based on Object Oriented
techniques. In the first generation of Object Oriented (OO) databases the sys-
tems were built by adding persistency to OO programming languages. The
guery languages in these systems were limited to procedural iterators over data.
The second generation of OO databases, callbgbct Relational Database
Systems(ORDBMS), will include relationally complete query languages. Such
systems are already emgarg and will probably be based on standards for OO
extensions of relational query languages such as SQL-3[7]. The next generation
databases, both relational and OO, will also include extended capabilities for
constraint management, event triggering, and database-application interaction.

The cooperation between the database and applications can consist of moni-
toring specific changes in the database that are of interest to an application.
Active databases provide applications with the possibility of specifying rules
that monitor changes in the database that inform the applications of interesting
changes. The need for data modelling also includes the need for specifying con-
straints over the data in order to enforce the integrity of the data for an applica-
tion. In an active database these integrity constraints can be specified as
constraint rules that monitor changes that might violate a constraint. The con-
straint rules can undo these changes either by providing compensating updates
that restores the integrity of the data or by aborting the transaction that per-
formed the changes.

1.2 Summary of Contributions
This thesis presents work done on integrating active rules into an Object Rela-

tional Database System(ORDBMS) and work dficefnt change monitoring of
rule conditions.

121 Introducing Active Rulesinto an ORDBM S
Active rules have been introduced into the AMOS[35] ORDBMS which is fur-



2 Introduction

ther described in the thesis. The rules are integrated into AMOSQL, the query
language of AMOS. The rules are of CA (Condition Action) type, where the
Condition is an AMOSQL query and the Action can be any sequence of
AMOSQL procedure statements. Rules monitor changes to the rule conditions
and data can be passed from the Condition to the Action of each rule by using
shared query variables, i.e. set-oriented Action execution[72] is supported. By
modelling rules as objects it is possible to make queries over rules. Overloaded
and generic rules are also allowed, i.e. rules that are parameterized and can be
activated for diferent types.

1.2.2 Efficient Change Monitoring Techniques

As mentioned above, the ability to perform change monitoring is introduced by
rules in active databases. When doing change monitoring in a database it is cru-
cial that the overall performance of the database is not impaired to any great
extent. Rule monitoring is the activity of monitoring changes of the truth value
of rule conditions. Anaive method of detecting changes is to execute the com-
plete condition of a rule. This, howeyean be very costlysince a rule condi-

tion can span over lge portions of the database.

Rule condition monitoring must not decrease the overall performance to any
great extent, with respect to either processor time or memory utilization. The
following techniques for compilation and evaluation of rule conditions have
been developed to meet these goals:

» To efficiently determine changes to all activated rule conditions, given updates of
stored data, eule compileranalyses rule conditions and generates change detec-
tion plans.

* To minimize unnecessary execution of the plaogener pedicateghat screen
out uninteresting changese generated along with the change detection plans.
The screener predicates are optimized using cost based query optimization tech-
nigues.

» For efficient monitoring of rule conditions, the rule compiler generates several
partially differentiated elationsthat detect changes to a derived relation given
changes to one of the relations it is derived from. The technique is based on the
assumption that the number of updates in a transaction is usually small and there-
fore only small effects on rule conditions will occur. Thus, the changes will only
affect some of the partially differentiated relations. The partially differentiated
relations are optimized using cost based query optimization techniques.

» To efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially differentiated relations are computednbyemental
evaluationtechniques [9] [59].

» To correctly and efficiently propagate both insertions and deletions (positive and
negative changes) without unnecessary materialization or computation, the calcu-
lation of changes to a relation must be preceded by the calculation of the changes
to all its sub-relations. This is accomplished Hyr@adth-first, bottom-upropa-



gation algorithm, which also ensures graceful degradation as the complexity of
rule conditions and as the size of the database increases.

Incremental evaluation techniques are based on using incremental changes as
bases for evaluation instead of evaluating the full expressions. A good analogy
is that ofspreadsheet programs. @ke a simple example of a spreadsheet table
consisting of three columns A, B, and C (A+B), see fig. 1.1. In the last cell in
each column the sum of the cells above is stored. If one cell of column A or B
is changed then the sum A+B of that row will have to be recalculated. The other
rows do not have to be checked since they have not changed. This is basically
the idea behind incremental change monitoring of rule conditions. Rule condi-
tions can be seen as equations that we want to monitor in order to determine if
the rule should be triggered by some specific change. The conditions can, how-
ever, reference data in many tBfent tables in one equation. The tables repre-
sent diferent database relations.

The total sunfor each column in the spreadsheet example will have to be
recalculated as well. By using the féifence between the new and the old value
the recalculation can be dondieiently. This is how incremental change moni-
toring of aggregation functions is done, see section 5.4.

A B C
0 200 600 AO0+BO0O =800
1 300 700 Al1+B1 = 1000
2 400 800 A2+B2 = 1200
3 500 900 A3+B3 = 1400
4 2A =1400 | =B =3000 2C =4400

Figure 1.1: A spreadsheet example

The rule compiler analyses the execution plan for the condition of each rule and
determines what functions the condition depends on. The output of the rule
compiler is a plan for determining changes to all activated rule conditions,
given updates of stored functions. The rule processor uses incremental evalua-
tion techniques for étiently computing the changes of a derived function
based on changes of sub-functions. The compiler genekatelations that for

given updates represent all the net changes of a relation which a rule condition
depends on. ThA-relations are defined in terms of sevarattial A-relations

that eficiently computes the changes of a derived function based on changes of
a single sub-function. This is calleéPartial Differentiation of derived func-

tions. The technique assumes that the number of updates in a transaction is
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small and therefore usually only smalffexfts on rule conditions will occur
Thus, the changes onlyfatt some of the partidl-relations. For updates that
have lage efects on the rule conditions the rule evaluation will have to be
complemented with other techniques to bicednt, e.g. full evaluation of rule
conditions or view materialization techniques[9] to re-use partial results.

Partial diferentiation will be defined formally as a way to automatically
generaté\-relations fromCA-rules (Condition-Action rules). M\-set is defined
as a 'wave-front’ materialization of &-relation that exists temporarily and is
cleared as the propagation proceeds upwards. The opdettiaiunion (DA) is
defined to calculate A-set from incremental changes. For good memory utili-
zation, the technique avoids permanent materialization gflamtermediate
relations that span over a ¢gr number of objects. Such materialized relations
can be very lgge and can even be considerablygkarthan the original data-
base, e.g. where Cartesian products or unions are used. When many conditions
are monitored and the database igéarcomplete materialization will become
infeasible; thus the database will not scale up.

By using incremental evaluation techniques for rule condition execution the
cost of rule condition monitoring can be reduced significafthere have been
significant work done in outlining algebras for incremental evaluation, but the
actual algorithms and how they relate to other database functionality is not out-
lined in any great detail. Areas thafedt these algorithms include transaction
management, update semantics, materialization, and query optimization. This
thesis introduces a calculus for incremental evaluation of rule conditions as
well as a propagation algorithm for propagating changes. The more specific
topics include a calculus for incremental evaluation of queries baspartal
differencing, transactional management of rule creation/deletion and of the net-
work for rule activation/deactivation, avoidance of unnecessary materializa-
tion, efects of diferent update semantics on the propagation algorithm, and
guery optimization techniques for enhancing performance, an algorithm for
incremental evaluation based on breadth-first propagation of changes in a net-
work, and a performance study of the incremental algorithm.

1.3 Related Work

The pioneering work done in introducing rules into databases was carried out in
the HIRAC project [16][27]. In the project diérent rule semantics were
defined. The system was, howeveot implemented in full. Rule systems were
implemented in POSTGRES[69] and Starburst[53]. In Ariel[41] CA-rules were
introduced that resembled the CA-rules in AMOS. In Ode[39] active capability
was introduced to an OODBMS. In section 2.3 more information about these
systems can be found as well as other related work.

In [68] a relational approach is taken on the monitoring of complex systems.
In [62] a model for functional monitoring of objects in an OODBMS is pre-
sented. This model of functional monitoring is adopted and extended in the
integration of rules into AMOS.

General work on incremental evaluation can be found in [9][59]. Theoreti-



cal work on incremental evaluation of queries can be found in [6][60]. Related
work on propagation of changes in production systems can be found in [55].
Directly related work on incremental change monitoring techniques can be
found in [30][34][41][43][47].

For more detailed discussions of how different work relate to the work pre-
sented in this thesis, see related work at the end of each chapter.






2 Active Databases

2.1 Active versus Passive Databases

Traditional databases apassivein the sense that they are explicitly and syn-
chronously invoked by user or application program initiated operations. Appli-
cations send requests for operations to be performed by the database and wait
for the database to confirm and return any possible answers. The operations can
be definitions and updates of the schema, as well as queries and updates of the
data. Anactive database can be invoked, not only by synchronous events that
can have been generated by users or application programs, but also by external
asynchronous events such as changes of sensors or time. When monitoring
events in a passive databasedling techniqueor operation filteringcan be

used to determine changes to datathwhe polling method the application pro-
gram periodically polls the database by placing a query about the monitored
data. The problem with this approach is that the polling has to be fine tuned as
not to flood the database with too frequent queries that mostly returns the same
answers, or in the case of too infrequent polling, the application might miss
important changes of data. Operation filtering is based on that all change oper-
ations sent to the database are filtered by an application layer that does the situ-
ation monitoring before sending the operations to the database. The problem
with this approach is that it greatly limits the way condition evaluation can be
optimized. It is desirable to be able to specify the conditions to monitor in the
guery language of the database. By checking the conditions outside the data-
base the complete queries representing the conditions will have to be sent to the
database. Many database systems allow precompiled procedures that can
update the database. Thdeets of calling such a procedure cannot be deter-
mined outside of the database.

If the condition monitoring is used to determine inconsistencies in the data-
base, it is questionable whether this should be performed by the applications,
instead of the database itself. In an active database the condition monitoring is
integrated into the database. This makes it possiblefiesitly monitor con-
ditions and to notify applications when an event occurred that caused a condi-
tion to become true and that is of interest to the application. Monitoring of
specific conditions represented as database queries can be donefioiene|gf
since the database have more control of how to evaluate the condifion ef
ciently based on knowledge of what has changed in the database since the con-
dition was last checked. It also lets the database perform consistency
maintenance as an integrated part of the data management.
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Internal database functions that can use data monitoring includes, for exam-
ple, constraint management, management of long-running transactions, and
authorization control. In constraint management rules can monitor and detect
inconsistent updates and abort any transactions that violate the constraints. In
some cases compensating actions can be performed to avoid inconsistencies
instead of performing a roll-back of the complete transaction. In management
of long-running transaction rules can be used fiwiehtly determine synchro-
nization points of dierent activities and if one transaction has performed
updates that have interfered with another [28]. This can be used, for example,
in cooperation withsagas[37] where sequences of committed transactions are
chained together with information on how to execute compensating transac-
tions in case of a saga roll-back. In authorization control rules can be used to
check that the user or application has permission to do specific updates or
schema changes in the database.

Applications which depend on data monitoring activities such as'[S@,
Medical[44] and Financial Decision Support Systems[20] can greatly benefit
from integration with databases that have active capabilities.

2.2 Active Databases and other Rule Based Systems

At a first glance it might seem that active databases are in some sense similar to
knowledge based systems[45] and in other senses teactive systems[54]. There

are, howeversome fundamental ddrences. An active database has basic data-
base functionality such as transactions and a query language that give consist-
ent and declarative access to data. The rules provide a handienitmr[12]
changes in the database. The database can detect changes of data by monitoring
changes to rule conditions that express specific situations, or database states
that are of interest. Active databases are only partly rule driven and most
changes are not sidefefts of other rules. In active databases there is a clear
separation between the condition of a rule and the events that causes the condi-
tion to be evaluated. The possibility of modelling complex events is considered
equally as important as modelling complex conditions.

In knowledge based systems the rules are usekfsoning using facts in a
knowledge base. In these systems there is usually no clear distinction between
events and rule conditions. Knowledge based systems usually provieedtf
kinds of rules such as both forward and backward chaining rules and usually
also provide more control of the rule inference machine. The rules can be used
to build Theorem Proverg[57] and Truth Maintenance Systems (TMS)[31].

These systems are often used to model complex behawften based on
uncertainties, through a & number of rules over a fairly limited amount of
data. Support for grouping rules and explanatory functions that explains ‘why’
the system behaved in a certain way are common in this systems. In active data-
bases the number of rules is usually smaller than in knowledge based systems,

1. Computer Integrated Manufacturing



but the amount of data that the rules are defined over is usually, Isome-
times very lage.

In reactive systems the rules are usedcfotrol of a physical environment.
These rules are usually event driven with no conditions or fairly uncomplicated
conditions. There is usually no database at all, all events come from changes in
the physical environment. The rules that trigger usually directly control some-
thing in the physical environment which in turn generate events that again trig-
ger some rule and so on. These kind of systems are usually real-time systems
with a concept of time and a high degree of parallelism.

In reality, of course, there are no pure active, knowledge based or reactive sys-

reasonin
4 nowledge basev
systems

—
=il

active databases

>
monitoring

y 4

Figure 2.1: The relation between active databases and other rule bas
systems

tems, all rule based systems incorporate some monitoring, reasoning and con-
trol(fig. 2.1). There are, howevedifferences between how much of these can

be found in a particular system. By mapping external events, that signal
changes in a physical environment, into an active database [24], the system
becomes partly reactive. The same can be done with a knowledge based system,
as is done imeal-time knowledge based systems[50]. Active databases that pro-

vide advanced constraint reasoning capabilities such asdd3Eglf reflective

rules as in [33], can be seen as moving from active databases closer to knowl-
edge based systen@emons andblackboard based systems[32] can be seen as
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moving from knowledge based systems towards active databases. Introducing
complex sensors argknsor fusion techniques [22] in reactive systems, can be
seen as moving closer to active databases, since the rules now trigger on more
complex events or conditions and the state of the sensors is usually saved in
some simple database. As can be seen in fig. 2.1, AMOS is mainly based on
monitoring, but can also be seen as having limited reasoning and control capa-
bilities.The reasoning in AMOS is based on having the declarativeness of
AMOSQL queries in the rule conditions. The control in rule actions is limited
to updating the database or by calling applications that in turn control some
external environment. The architecture of AMOS is presented in section 2.5.

In some system architectures, the reasoning, the monitoring and the control
are seen as ddrent layers of the architecture [52].

2.3 Active Databases, a Short Survey

In System R [3] drigger mechanism was defined that could execute a pre-
specified sequence of SQL statements whenever some triggering event
occurred. The triggering events that could be specified included retrieval, inser-
tion, deletion and update of a particular base table or.vieiggers have
immediate semantics, i.e. they are executed immediately when the event is
detected. In System Rssertions were also possible that specify permissible
states or transitions in the database through integrity constraints that always
have to be true after each transaction. Specific events have to be specified for
when assertions are to be checked as with triggers. Assertions have deferred
checking semantics, i.e. they are usually checked when transactions are to be
committed.

The termactive databases was coined by [56] as “a paradigm that combines
aspects of both database and artificial intelligence technologies”. In [56] a
mechanism for constraint maintenan@enstraint Equations, was presented as

a declarative representation for a set of related Condition-Action rules.

In HIPAC [16][27] a thorough specification was done of whatfediént
mechanisms were desirable in an active database system. Rules are defined as
Event-Condition-Action (ECA) rules, where the Event specifies when a rule
should be triggered, the Condition is a query that is evaluated when the Event
occurs, and the Action is executed when the Event occurs and the Condition is
satisfied. In HIRC coupling modes(fig. 2.2) were defined which specified how
the evaluation of rule conditions and the execution of rule actions were related
to the detected events and the transaction in which the events ocdumed.
diate rule processing means that the rule conditions are evaluated and the
actions are executed immediately after the event occurred. A separation was
also made between if the rule processing takes place before or after the update
has taken place in the databa&xeferred rule processing means that rule
processing is delayed until the transaction is to be commitGzdually
Dependent Decoupled rule processing means that any triggered action execu-
tion is executed in a separate sub-transaction that waits until the main transac-
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tion is committed. Decoupled rule processing means that the sub-transaction is
completely decoupled from the main transaction and commits regardless of the
outcome of the main transaction.

Immediate
BOT — Event signal —m EOT —» Commit

Triggered operation
Deferred
BOT — Event signal —m EOT —®» Commit

Causally-
Dependent riggered operation
Decoupled

BOT —» Event signal — EOT —®» Commit

BOT Commit

Triggered operation
—» —
Decoupled

BOT—— Event signal—m EOT —®» Commit

BOT Triggered operation Commit

BOT : Beginning of transaction
EOT : End of transaction

Figure 2.2: Rule processing coupling modes in Ai®

In POSTGRES [69] rules were introduced as ECA rules where events can be
retrieve, replace, delete, append, new (i.e replace or append), araid (i.e.
delete or replace) of an object (a relation name or a relation column). The con-
dition can be any POSTQUEL query and the action any sequence of
POSTQUEL commands.ifo types of rule systems exists, theple Level Rule
System which is called when individual tuples are updated, and Qbery
Rewrite System which resides in the parser and the query optimizbe Query
Rewrite System converts a user command to an alternative form which checks
the rules more @&tiently. No support exists for handling temporal, external
events, and composite events.

In Starburst [53] ECA rules were introduced and the events cAISIERT,
DELETE, andUPDATE of a table. The condition can be any SQL query and the
action any sequence of database commands. Rules that are defined can be tem-
porarily deactivated and then be re-activated. The condition and action parts
may refer totransition tables that contain the changes to a rslédble made
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since the beginning of the transaction or the last time that a rule was processed
(whichever happened most recently). The transition table INEBR
DELETED contains records inserted/deleted into/from the trigger tabd@siF

tion tables NEW_UPDARED and OLD_UPDAED contain new and old values

of updated rows, respectivelin [72] the set-oriented semantics of Starburst
rules is presented. In a set-oriented rule the action part is executed for all tuples
for which the condition is true.

Other systems based on ECA-rules arH[R8].

In Ariel [41] production rules were defined on top of POSTGRES. In Ariel
CA-rules were allowed which use only the condition to spelfycal events
which trigger rules.

In Ode [39] constraints and triggers were introduced into an Object Ori-
ented database. Thmsic events that can be referenced are creation, deletion,
update, or access by an object method. Ode also supgmnsite events
through event expressions that relate basic events. The event expressions can
define sequence orderings between events.

In both POSTGRES[69] and Starburst[53] events are intercepted in a simi-
lar manner as in AMOS. Howevethe events that are intercepted in AMOS
include all operations of high-level objects. This makes it possible to extend
rules to trigger on any change in the system, including schema updates. This is
further discussed in section 3.2.

Systems that can trigger on external events includi§3a].

2.4 Active Database Classifications

Considerable research has been carried out in the area of active databases.
There exist several good introductory papers to active database architectures
[19][42]. Two important evaluation aspects for comparingetént architec-

tures are the expressiveness of the rule language and the execution semantics of
the rules.

The expressiveness of the rules can be divided into the expressiveness of
rule events, conditions and actions. The expressiveness of the event part can be
divided into comparing the types of events the rules can reference and how the
events can be modelled and combined into complex eventer&it types of
events include database updates, schema changes and external events such as
sensor changes, specified state changes in the applications, or time. Modelling
events can include an event specification language that can combine events
using logical composition, event ordering, sequential and temporal ordering,
and event periodicity [17].

The expressiveness of the condition part can be divided into whether a full
guery language is available or not, if events can be referenced as changed data
and if old values can be referenced or not.

The expressiveness of the action part can be divided into whether a full
guery language is available or not, i.e. if queries and updates can be inter-
twined, and can include schema changes and rule activation/deactivation.

Execution semantics of rules includes rule processing coupling modes
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defined in section 2.3. If full query language expressiveness is possible in the
condition part, then set-oriented rule semantics is also possible [72], where the
action part is executed over a set of tuples produced by the condition. Cascad-
ing rule execution, i.e. whether one rule can trigger anptiret if simultane-
ously triggered rules are subjected to some conflict resolution method are also
part of the classification of rule semantics.

25 AMOS

AMOSJ[35] (Active Mediators Object System) is an architecture to model,
locate, search, combine, and monitor data in information systems with many
workstations connected using fast communication networks. The architecture
uses thamediator approach [73] that introduces an intermediate level of soft-
ware between databases and their use in applications and by usecall\&ur
class of intermediate modulestive mediators, since our mediators support
active database facilities. The AMOS architecture is built around a main mem-
ory based platform for intercommunicating information bases. Each AMOS
server has DBMS facilities, such as a local database, a data dictiangugry
processartransaction processing, and remote access to datal#ddes is an
extension of a main-memory version of Iris[36], called WS-Iris[51], where OSQL
gueries are compiled into execution plans in an OO logical language called Object-
Log[51]. The query language of AMOS, AMOSQL, is a derivative of OSQL.
AMOSQL extends OSQL with active rules, a richer type system and multi-
database functionalityin the development of AMOSQL there is also an ambi-
tion to adapt to the future SQL-3[7] standard, but with the extensions men-
tioned above.

The AMOS architecture (fig. 2.3) is a layered architecture consisting of
seven levels.

» Theexternal interface level can handle synchronous requests through a client-
server interface for loosely coupled applications and through a fast-path interface
for tightly coupled applications. The interface also handles asynchronous inter-
rupts as well as database-application call-backs. All synchronous interaction is
done through the AMOSQL interface. Asynchronous interrupts that signal exter-
nal events such as timer events or changes to external sensors are transformed
into database events and sent to the event manager.

« The AMOSQL interface parses AMOSQL expressions and sends requests to the
levels below. A fast path interface that does not require any parsing is also availa-
ble. Any results are returned to the external interface, either directly or through
interface variables and cursors.

» Theevent manager dispatches events to the rule processor. Events can come ei-
ther from the external interface or from intercepted events in lower levels such as
schema updates or relational updates.

» Theschema manager handles all schema operations such as creating or deleting
types, i.e. object classes, and type instances including functions and rules. The
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guery processor handles query optimization and query execution.

Therule processor handles compilation, activation, monitoring and execution of
rules and is further described below.

Thehigh level object manager manages all operations to all objects in the data-
base schema such as object creation, deletion and updates of object attributes in-
cluding updating, inserting and deleting data, in stored functions, i.e. base rela-
tions. The level also handles OIDs (Object Identifiers) of the objects. All opera-
tions on these objects are transactional and are thus logged. All operations
generate events that are intercepted and sent to the event manager.

Thetransaction manager handles all database transactions by keeping an undo/
redo log of all database operations.

Therecovery manager ensures persistency by making periodical snapshots and
flushing the log to disk.

Thelow level object manager handles all basic objects (everything in the data-
base is an object) such as lists, vectors, hash tables, atoms, strings, integers and
reals.

The memory manager manages all memory operations such as allocation, deal-
location and garbage collection.

applications
and
other AMOS’s

synchronous asynchronous external
communication | communications" events

external interface *
: event
AMOSQL interface manager
schema manager rule intercepted
query processor | processor events

high level object manager

recovery transaction
> manager manager

low level object manager

memory manager

Figure 2.3:The AMOS architecture
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The event handling is tightly integrated into the system and internal changes
are intercepted where they occur in the lower levels fiicieficy reasons. The

rule processor is tightly integrated with the query processor for the same rea-
son.

2.6 The Rule Processor

The rule processor handles rule creation/deletion, activation/deactivation, mon-
itoring, and execution. The processing of rules is divided into four phases:

1. Event Detection

2. Change monitoring
3. Conflict resolutioh
4, Action execution

Event detection consist of detecting events that céacafiny activated rules

and is performed continuously during ongoing transactions. Change monitoring
includes using the detected events to determine if any condition of any acti-
vated rules have changed, i.e. have become true. During action execution fur-
ther events might be generated causing all the phases to be repeated until no
more events are detected. ifent conflict resolution methods are outside the
scope of the thesis. In the current implementation a simple priority based con-
flict resolution is used.

nonrule
initiated
events
( -+ O ‘/““e
initiated
event bus events
Event Action
dispatch execution
screened ]
events action-set
Condition tuples
evaluation

Figure 2.4: The ECA execution cycle

1. Conflict resolution is the process of choosing one single rule when more than one rule is triggered.
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The rule execution model in AMOS is based on Hvent Condition Action
(ECA) execution cycle (fig. 2.4).

All events are sent on a software bus, i.e. an event queue, calledettie
bus. The execution cycle is always initiated by non rule initiated events such as
database updates, schema changes, time events, or other external events. All
events are dispatched through table driven execution. A screening is made of
events that might change the truth values of rules. Rule conditions are evalu-
ated based on the screened events to prodctoen-sets that contain tuples for
which the actions are to be executed. When the actions are executed new events
might be generated and the execution cycle continues until no more events are
detected on the bus.

The rules in AMOS are of Condition Action (CA) type where the involved
Events are calculated from the Condition by the rule compilee rules can be
classified according to the aspects presented section 2.4. The expressiveness of
events is planned to have all the full expressiveness of the derived functions in
AMOSQL, i.e. full logical composition, as well as having the possibility of
expressing event ordering and periodicifgmporal event specifications are
also considered. The expressiveness of conditions is based on the availability
of complete AMOSQL queries in the condition. The expressiveness of actions
is based on full AMOSQL procedural statements, i.e. queries intertwined with
any updates of the schema, updates of functions, rule activation/deactivation,
and application call-backs. The rules in the current implementation are only
deferred, but immediate rules are planned.
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3 Object Relational Query
Rules

3.1 ThelrisData Model and OSQL

The data model of AMOS and AMOSQL are based on the data model of Iris
and OSQL[36]. The Iris data model is based on objects, types and functions

(fig. 3.1).

participate
in \ classify
operate belong
on to

constrain——
defined with-p

Figure 3.1: The Iris data model

Everything in the data model is an object, including types and functions. All
objects are classified by belonging to one or several types, which equals object
classes. ypes themselves are of the type ‘type’ and functions are of the type
‘function’.

The data model in Iris is accessed and manipulated through ©SXiL
examples of actual schema definitions and database queries will here be written
in a courier font.

For example, it is possible to define user types and subtypes:

create type person;
create type student subtype of person;
create type teacher subtype of person;
create type course;

1. The OSQL presented here is the WS-Iris dialect, whidemifslightly from the
OSQL in Iris and subsequent commercial products.
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Stored functions can be defined on types that equals attributes in Object Ori-
ented database or base relations in Relational databases, hence we call this
model Object Relational. One function in the Iris data model equals several
functions in a mathematical sense.

For example, a function can both give the name of a person given the person
object or give all the person objects associated with a name.

create function name(person) -> charstring as stored;
Stored functions is the default:

create function studies(student) -> course;
create function gives(teacher) -> course;

Derived functions equals methods or relational views and can be defined in
terms of stored functions (and other derived functions).

create function teaches(teacher t) -> student s
as select s for each course ¢ where
gives(t) = c and
¢ = studies(s);

Instance objects of a type can be created and stored functions can be set for

these instances:
create student instances :iris 1 .amos; ﬁ

set name(:iris) = “Iris”;
set name(;:amos) = “AMOS”;
create course
instances :active_databases;
set studies(:amos) = .active_databases;

=il
]
ill

Multiple types (multiple inheritance) is possible by
adding more types to an object:

add teacher to :amos;
Procedures are defined as functions that have sfdetsf

create function teach(teacher, student, course)
-> boolean
as begin
set gives(teacher) = course;
set studies(student) = course;
end;

1. These are interface variables and are not part of the database.
2. A procedure that does not explicitly return anything implicitly return a boolean.
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Procedures are called by:

call teach(:amos, :iris, :active_databases);
select name(t)
for each teacher t
where teaches(t) = :iris;

<*AMOS">

In the previous example the last query returns a single tuple. Queries, and sub-
sequently functions, can return several tuples. Duplicate tuples are removed
from stored functions if they are not explicitly defined to return a bagsay

that we haveset-oriented semantics. Bag-oriented semantics is available as an
option and can be specified along with the return type of a function.

Functions can be overloaded on the types of thguraents, i.e. we can
define the same function in several ways depending on the types ofgthe ar
ments. The system will in most cases choose the correct function at compile
time, we call thisearly binding. In some cases the system can not determine
what function to choose at compile time and must check some types at run
time, we call thislate binding. Since types and functions are objects as well,
with the types ‘type’ and ‘function’, it is possible to define generic functions,
i.e. functions that take types asgaments, and higher order functions, i.e.
functions that take other functions ag@ament.

A transaction is aborted and rolled back by:

rollback;
A transaction can be finished and made permanent by:

commit ;

3.2 The AMOS Data Model and AMOSQL

The AMOS data model extends that of Iris by introducing rules (fig. 3.2). Rules
are also objects[26] and of the type ‘rule’. Rules monitor changes to functions
and changes to functions can trigger rules. All the events that the rules can trig-
ger on are modelled as changes to values of functions. This gives us the power
of AMOSQL functional expressions as our event modelling language. Func-
tions are seen as having passive (synchronous) or active (asynchronous) behav-
iour depending on if they are used in a query or in a rule condition. Passive
functions display synchronous polling behaviour while active functions display
asynchronous interrupt behaviolurely passive functions are functions that
never changes, such as built in arithmetic functions,4.g,* and/, boolean
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Figure 3.2: The AMOS data model

functions, e.g=, < and>, and aggregate functions suchsasnandcount.
Foreign functions written in some procedural language are currently also con-
sidered to be passive functions. Functions that are defined in terms of these
functions can change, but never the passive functions themselves.

The system currently does not have any purely active functions, but these
would be event functions, i.e. functions that represent internal or external
events. In some cases it is desirable to directly refer to specific events such as
added or removed, this can be modelled as higher order event functions that
change if tuples are added to their functiongjuanent. Event functions that
represent external changes are active foreign functions and can be sensor func-
tions and time.

The rules presented here have conditions over stored and derived functions
only. The events that triggers these conditions are the function update events,
adding or removing tuples to/from functions. These functions can be seen as
having both passive and active behaviour depending on whether they are refer-
enced outside or inside rule conditions. Only functions without sifbetsf i.e.
gueries, are allowed in rule conditions.

The rule processor calculates all the events that daeted rule condition.

This is the default for rule condition specifications and can be seersais a

way to avoid that users fget specifying relevant events, as can happen with
traditional ECA-rules. By allowing users to add specific event information
through active functions specific events that system have not deduced can be

1. It would be strange to trigger d#1 = 3
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used for triggering rules as well. By allowing users to remove events that the
system have deduced through negation of active functions, any event specifica-
tion that can be specified in traditional ECA-rules can be specified more safely
in CA-rules. The user can only remove events that he/she is aware of and
events that are part of OO encapsulation will still trigger the rules correctly
since these are deduced by the system. The extension of AMOSQL with event
specifications through active functions would include introducing event opera-
tors, such as those defined in [17], into AMOSQL. Introducing active functions
and extending AMOSQL with event modelling capability is future work.

By modelling rules as objects it is possible to make queries over rules.
Overloaded and generic rules are also allowed, i.e. rules that are parameterized
and can be activated for &fent types.

In AMOSQL, OSQL is extended with rules having a syntax conforming to
that of OSQL functions. AMOSQL supports rules of CA type where the Condi-
tion is an OSQL queryand the Action is any OSQL procedure statement,
exceptconmi t . Data can be passed from the Condition to the Action of each
rule by using shared query variables, i.e. set-oriented Action execution[72] is
supported.

The syntax for rules is as follows:

createrulerule-name parameter-specificatias
when for-each-clausé predicate-expression
do procedure-expression
where
for-each-clause:=
for each variable-declaration-commalisther e predicate-expression

Thepredicate-expressiotan contain any boolean expression, including conjunction,
disjunction and negation. Rules are activated and deactivated by:

activate rule-name([parameter-value-commalj¥q priority 0]1]|2|3|4|5]
deactivate rule-name([parameter-value-commali}t

Rules can be activated/deactivated fofefiént agument patterns. The seman-

tics of a rule are as follows: If an event of the database changes the truth value
for some instance of the Condition e, the rule is marked asiggered for

that instance. If something happens later in the transaction which causes the
Condition to become false again, the rule is no longer triggered. This ensures
that we only react téogical eventsThe truth value of a condition is here repre-
sented bytrue for a non-empty result of the query that represents the condition
andfalsefor an empty answesee section 4.1.

In the current implementation a simplenflict-resolutionmethod, based on
priorities, is used to specify the order of action execution of rules that are
simultaneously triggered.

Some examples of AMOSQL rules are given below
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A classical example for active databases is that of monitoring the quantity of
items in an inventoryWhen the quantity of an item drops below a certain
threshold new items are to be automatically ordered.

create type item
create type supplier;
create function quantity(itenm) -> integer;
create function max_stock(item -> integer;
create function mn_stock(item -> integer;
create function consume_frequency(item -> integer;
create function supplies(supplier) -> item
create function delivery tine(item supplier)
-> integer;

create function threshold(itemi) -> integer as

sel ect consume_frequency(i) * delivery time(i, s)

+ mn_stock(i)

for each supplier s where supplies(s) =i;
create rule nonitor_itemitemi) as

when quantity(i) < threshol d(i)

do order (i, max_stock(i) - quantity(i ));1

This rule monitors the quantity of an item in stock and orders new items when
the quantity drops below the threshold (fig. 3.3) which considers the time to get
new items delivered (wherer der is some procedure that does the actual
ordering).The consumiequency defines how many instances of a specific
item are consumed on an average per day

max_st ock

quantity —pm

-------------------------- t hreshol d

m n_st ock
777777777777 -

Figure 3.3: Monitoring items in an inventory

1. In AMOSQLsel ect andcal | are syntactic sugar and are optional.
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For example, the following definitions ensure that the quantity of shoelaces in
the inventory is always kept between 100 and 10000 (if the supplier delivers on
time) and will trigger the rule if the quantity drops below 140.

create iteminstances :shoel aces;

set max_stock(:shoel aces) = 10000;

set m n_stock(:shoel aces) = 100;

set consune_frequency(:shoel aces) = 20;

create supplier instances :shoestring_inc;

set supplies(:shoestring_inc) = :shoel aces;

set delivery_time(:shoel aces, :shoestring_inc) = 2;
activate nonitor_iten(:shoel aces);

A rule that monitors all items can be defined as:

create rule nonitor_all _itenms() as
when for each itemi
where quantity(i) < threshold(i)
do order (i, max_stock(i) - quantity(i));

In real life there will probably be several suppliers for one item. In that case the rules
should really consider the minimum threshold, i.e. the supplier that can deliver fast-
est.

Another example of rules in active databases is thatooétraints. If we
want to ensure that thguantity of an item can never exceed the
max_st ock of that item, we can express that in the following rule.

create rule check_quantity() as
when for each itemi where
quantity(i) > max_stock(i)
do rol | back;

The previous rules did not really use any of the OO capabilities of AMOSQL, i.e.
there was only a flat set of user defined types. To illustrate these, take as an example
a rule that ensures that no one at a specific department has a higher salary than his/her
manager. Employees are defined to have a name, an income, and a department. The
net income is defined based on 25% tax for both employees and managers, but with a
bonus for managers of 100 before tax. Departments are defined to have a name and a
manager. The manager of an employee is derived by finding the manager of the
department to which the employee is associated. Themaolehi gh is defined to set

the income of an employee to that of his/her manager if he/she has a net income
greater than his/her manager. The AMOSQL schema is defined by:

create type department properties (nane! charstring);
create type enpl oyee properties
(name charstring, income nunber, dept departnent);

1. This is a short-hand for defining a stored functicanre, on departments.
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create type nanager subtype of enployee
create function grossi ncone(enpl oyee e) -> nunber as
sel ect incone(e);
create function grossi ncone(manager nm -> nunber as
sel ect incone(n) + 100;
create function netincone(enpl oyee e) -> nunber as
sel ect enpl oyee. grossi nconme(e) * 0.75;
create function netincone(manager m -> nunber as
sel ect grossincome(m * 0.75;
create function ngr(departnment) -> nanager
create function ngr(enpl oyee e) -> nanager as
sel ect ngr(dept(e));
create rul e no_hi gh(department d) as
when for each enpl oyee e
where dept(e) = d and
enpl oyee. neti ncone(e) > netincome(ngr(e))
do set enpl oyee. grossi ncone(e) = grossinconme(ngr(e));

Note that the functiongr ossi ncone, net i ncone, andngr are overloaded on

the typesenpl oyee, manager, anddepart ment , enpl oyee. For the function

calls gr ossi ncome(m, grossi nconme(ngr(e)), netincorme(ngr(e)),

ngr (dept (e) ), andngr (e) this is resolved at compile time, we call thisly
binding. This is possible since the actual parameters in the calls return distinct types.
In cases when the compiler cannot deduce what function to choose, a dot notation,
e.g.enpl oyee. neti ncone(e), can be specified to aid the compiler to choose
the correct function at compile time. In the rule conditempl oyee. net i ncomne

can be called for all employees, including managers, since managers are employees
as well, but the condition will never be true for that case. This is because the
enpl oyee. net i nconme would always be 100 less themnager . neti ncone

for managers.

In cases when the compiler cannot deduce what function to choose, it will
produce a query plan that does run-time type checking to choose the correct
function, we call thidate binding. This would be the case fifet i ncone was
not overloaded angr ossi ncone was specified without dot notation. Exf-
entgr ossi ncone functions will then be chosen depending on if thguarent
it is called with is just an employee, or a manager as well. The rule condition
would still be correct since if thempl oyee e is a managerthe condition
will never be true.

create function netincone(enpl oyee e) -> nunber as
sel ect grossinconme(e) * 0.75;
create rul e no_high(department d) as
when for each enpl oyee e
where dept(e) = d and
neti ncone(e) > netincome(ngr(e))
do set enpl oyee. grossi ncone(e) = grossinconme(ngr(e));
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This is becauseanager . gr ossi ncone would, in that case, be chosen in both
instances in the condition and which then, obviously, would not be true. This rule is
more elegant, but in order not to complicate the generated code and the discussion of
change monitoring techniques in the following chapters, the first version of
no_hi gh will be used in the continuation of the example.

Also note that theenpl oyee. grossi ncome function is updatable since
it is directly mapped to the stored functienpl oyee. i ncome. The function
manager . gr ossi ncone is not directly updatable since it cannot be directly
mapped to a stored function. This is described in more detail in [51].

The no_hi gh rule will be activated for a specific department and will
serve as an example throughout the thesis.

Let us define a toys department with a manager and five employees:

create departnment (nane) instances
:toys_departnent(”Toys”)%

creat e manager (name, dept, i ncone) instances
:boss("boss", :toys_depart ment, 10400) ;

set ngr(:toys_department) = :boss;

create enpl oyee(nane, dept, i ncone) instances
cel("enpl oyeel", :toys_departnent, 10100),
ce2("enpl oyee2", :toys_departnent, 10200),
:e3("enpl oyee3", :toys_depart ment, 10300),
ced("enpl oyeed", :toys_depart nent, 10400),
:e5("enpl oyee5", :toys_depart ment, 10500) ;

The employees with their incomes and netincomes can be seen in fig. 3.4.

name income netincome
boss 10400 7875
employeel | 10100 7575
employee2 | 10200 7650
employee3 | 10300 7725
employee4 | 10400 7800
employee5 | 10500 7875

Figure 3.4: Initial employee salaries

Now, if we activate the rule for the toys department and try to commit the trans-

1. This is a short-hand for setting the functivenre, for a department
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action a check is made if any of the employees have a netincome higher than
their managerNo such employees exists and thus, the rule is not triggered.

activate no_high(:toys_departnent);
commit; /* check and conmit */
Now if we change the income of employee2 and employee4:

set incone(:e2) 10600;
set incone(:ed) 10600;

Now we can see in fig. 3.5 that the netincomes of employee2 and employee4
exceeds that of their manager

name income netincome
boss 10400 7875
employeel | 10100 7575
employee2 | 10600 7950
employee3 | 10300 7725
employee4 | 10600 7950
employee5 | 10500 7875

Figure 3.5: Employee salaries before commit

If we try to commit this transaction the__hi gh rule will be triggered and the
salaries of employee2 and employee4 will be set to that of their maridasr
can be seen in fig. 3.6.

commt; /* check and conmmt */

name income netincome
boss 10400 7875
employeel | 10100 7575
employee2 | 10500 7875
employee3 | 10300 7725
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name income netincome
employee4 | 10500 7875
employee5 | 10500 7875

Figure 3.6: Employee salaries after commit

In this example, the rule condition monitoring consists of determining changes to the
condition of theno_hi gh rule. Changes to several stored functions @ept ,

i nconme, andngr) can affect the rule condition. In the example, only two updates
are made to thencon®e function. The rule condition monitoring must be efficient
even if the number of employees is very large. However, evaluating the condition of
no_hi gh naively would result in checking the income of all employees for the
department. Efficient techniques for evaluating rule conditions based changes that
result from small updates, such as in these previous examples, will be discussed in
the rest of the thesis.

3.3 Related Work

The data model of lIris is related to DAPLEX[66] and OODAPLEX[29].
DAPLEX is a functional data definition and manipulation language for data-
base systems. DAPLEX introduced the concepdesfved functions for defin-

ing user views. One diference is that in DAPLEX types are defined as
functions as well. In OODAPLEX, DAPLEX is extended with objects that have
identities independent of the values of their attributes andetitapsul ate the
operations of the object. Objects are grouped according to types, i.e. object
class, and an inheritance mechanism is defined based on defining types in terms
of supertypes.

The HIFAC[16][27] project introducedECA-rules (Event-Condition-Action
rules), where the Event specified when a rule should be triggered, the Condition
was a query that was evaluated when the Event occurred, and the Action was
executed when the Event occurred and the Condition was satisfied. In Ariel[41]
the Event was made optional making it possible to sp&iyules which use
only the Condition to specifyogical events which trigger rules. Rules in
OPS5[10] and monitors in [62] have similar semantics. In ECA rules the user
has to specify all the relevaphysical events in the Event part. Rules will not
be triggered properly if the user fts to specify some event. CA rules make
physical events implicit, just as a query language makes database navigation
implicit. Good evaluation and optimization techniques are required to make
CA-rules as difcient as ECA-rules.

Our active rules [63] support the CA model by defining each rule as ,a pair
<Condition,Action>, where the Condition is a declarative AMOSQL quang
the Action is any AMOSQL database procedure statement. Data can be passed
from the Condition to the Action of each rule by using shared query variables,
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i.e. set-oriented Action execution[72] is supported. Condition evaluation is nor-
mally delayed to &heck phase usually at commit time. Immediate rule execu-

tion [27] is also possible, but is outside the scope of this thesis. In the check
phase, change propagation is performed only when chanfpesiad activated

rules have occurred, i.e. no overhead is placed on database operations (queries
or updates) that do notfatt any rules. After the change propagation, one trig-
gered rule is chosen through a conflict resolution method. Then the action of
the rule is executed for each instance for which the rule condition is true based
on theA-set representing the changes of the rule condition.

The types of events that AMOSQL rules can be triggered on include internal
events such as functional updates, creating/deleting objects, time related
events, and external events (e.g. sensory updates). All event types will be
included within the framework of CA-rules, howey#ris thesis discusses trig-
gering on functional updates onM/ork on a language for event specifications
can be found in [17]. In our case this would be part of an extension of
AMOSQL, instead of introducing a new language.

In [68] sensors are introduced as relations in a database system and as being
traced or sampled. This is very much related to our view of passive and active
functions. A traced sensor will be introduced gsassive function that is syn-
chronously polled for changes. A sampled sensor will be introduced as an
active function that displays asynchronous interrupt behaviour for signalling
changes. fMfaced sensors can be used in queries and sampled sensors in rule
conditions.
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4 Condition Monitoring

4.1 Rule Semantics and Function Monitoring

The semantics of the rules in AMOS are based on function monitoring[62]. T
be more specific, rules are based on when-function-changes-do-procedure
semantics(fig. 4.7).

when

changes
do

procedure

Figure 4.7: AMOSQL rule semantics

Take a rule(x) defined asvhen c(x) do a(x).

This is a forward chaining rule that means ‘exea(i¢ whenc(x) is evaluated

to be true’. This is an imprecise definition of rule semantics, one really has to
separate betweesirict and nervous rule semantics. Strict rule semantics for
would really be ‘executa(x) whenc(x) is evaluated to be true after previously
being false’and nervous rule semantics would be ‘exea(t®¢ wheneverc(x)

is evaluated to be true regardless of whether it was true before’.

In order to explain how a rule is transformed into a function and a procedure, a
new notation is introduced.

Forward chaining rules are written as:

<name>(<parametespecification>) = (<condition®] <action>)

functions as:
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<name>(<parametespecification>) =select <return-specification>
where <predicate-expression>

and procedures as:

<name>(<parametespecification>) = <procedure statements>

All parameters and heads of functions are subscripted with type information
that specifies the types of the incoming parameters and the types of the returned
values of functions, respectively

We can now write the ruleas:

"Xtype of x) = (¢(X) O a(x)),

wherec(x) is a function call that returns a boolean value,d(®ype of x)booleans
and wherea(x) is a procedure call. Note thatwill be bound when the rule is
activated.

By defining acondition function f that returns the type of

f(Xtype of Xtype of x= Select x where c(x),

i.e. a function that returns a set of values of tyder all c(x) that returntrue,
and anaction procedure g that takes the type ofas agument,

g(xtype of x) = a(x),

we can view rule condition monitomras function monitoring off i.e. monitor-
ing of changes to the set of values thakturns. Rule execution can then be
defined fornervous rule behaviour as executingon all the values of, g(f(x)),
andstrict rule behaviour as executingon the changes dfonly, g(Af(x)).

The condition of a rule can contain any logical expression and the action
any logical expressions as well as sidieets. For a rule

MXtype of x) = (€1(x) & c2(y) O al(x) & a2(y)),

and wherec1(x) andc_2_(x) are b(_)olean fungtion_s, i.e}(xtype of )booleans C2(Ytype
of y)boolean+ 1€ condition function to monitor is defined as:

f(Xtype of x)<type of x, type of y>= Select X, y where c1(x) & c2(y),

and the action procedure to execute is defined as:

I(Xtype of x» Ytype of y) = al(x) & a2(y).

The semantics of rule execution is definedyéex)) or g(Af(x)). Note thatx is
here bound when the rule is activated, pu$ free and fetched from the data-
base.

Since functions are defined semantically as representing a set of values the
rules are said to have set-oriented semantics, i.e. the rules monitor changes of a
set that represents the condition and executes the action on the set that repre-
sents the changes to the condition set.
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Some rules do not use the set-oriented semantics, as is the case with con-
straint rules that have actions that do transaction roll-backs. Such rules do not
use any explicit values that have been produced in the condition when execut-
ing the action. Constraint rules are defined as:

I(Xtype of x) = (¢(X) O rollback),
f(Xtype of x)boolean= S€lect true where c(x),
d(bpoolean) = if b then rollback,

The condition functiorf returnstrue if c(x) returns a non-empty answer and
false otherwise. The semantics of rule execution is defined as beforg(f(xg).
or g(Af(x)).

Since rules are objects of the type ‘rule’, the rule activation can be defined
as a procedure

activate(ryje, liist of object)

wherer is a rule object antis a list of objects that r is parameterized lmythe
actual implementation thactivate procedure is really defined as

activate(ryje, liist of object: Pinteger)

wherep is the priority of the rule activation. Rule deactivation is defined like-
wise.

4.2 ObjectLog

AMOSQL functions are compiled into an intermediate language called Object-
Log[51]. ObjectLog is inspired by Datalog[14][71] ameD[21] but provides
new facilities for efective processing of OO queries. ObjectLog provides a
type hierarchylate binding, update semantics, and foreign predicates.

» Predicate arguments ambjects, where each object belongs to one or nigpes
organized in a type hierarchy that corresponds to the type hierarchy of AMOS.

» Object creation and deletion semantics maintain the referential integrity of the
type hierarchy.

» Update semantics of predicates preserve the type integrity of arguments. The op-
timizer relies on this to avoid dynamic type checking in queries.

» Predicates can be overloaded on the types of their arguments.

» Predicates can be further overloaded on the binding patterns of their arguments,
i.e. on which arguments are bound or free when the predicate is evaluated.

» Predicates can be not only facts and Horn clause rules, but also optimized calls to
invertibleforeign predicatesimplemented in a procedural language. In the current
system foreign predicates can be written in C.



32 Condition Monitoring

» Predicates themselves as well as types are objects, and there are second order
predicates that produce or apply other predicates. 2nd order predicates are crucial
for late binding and recursion.

The translation from AMOSQL to ObjectLog consists of several steps(fig. 4.8).
The Flattener transforms AMOSQLsel ect statements into a flattened
sel ect statement where nested functional calls have been removed by intro-
ducing intermediate variables. THgpe checker annotates functions with their
type signatures in thgype adornment phase, and finds the actual functions for
overloaded functions (in case of early binding), or adds dynamic type checks
(in case of late binding) in thaverload resolution phase. The ObjectLog gen-
erator transforms stored functions into facts and derived functions become
Horn clause rules. Th@®bjectLog generator also translates foreign functions
into foreign predicates. Th@bjectLog optimizer finally optimizes the Object-

Log program using cost based optimization techniques. More about the transla-
tion steps and the optimization techniques can be found in [51].

The optimized ObjectLog programs are currently interpreted, but work is in
progress on compiling them for mordieffent execution.

Function F

Flattener

Flattened F

Type checker

Type Adorned Resolvent

ObjectLog generator

TR ObjectLog Program

ObjectLog optimizer

Optimized TR ObjectLog

Figure 4.8: The translation of AMOSQL to ObjectLog

The transformations that are presented in section 5 can be done on either un-
optimized or optimized ObjectLog programs. The resulting ObjectLog pro-
grams will need to be re-optimized in any case, see section 7.

4.3 Naive Change Monitoring

The condition in the first version ofo_hi gh rule is compiled into a condition



33

function represented as an ordinary AMOSQL functiond _no_hi gh, that
returns all employees of a particular department with salaries higher than their
manager:

create function cnd_no_hi gh(departnent d) ->
enpl oyee e as
sel ect e for each enpl oyee e
where dept(e) = d and
enpl oyee. neti ncone(e) > netincone(ngr(e));

Here, netincone is called with ngr(e) which means that theran-
ager. gr ossi ncone, see section 3.2, (and consequentigone(m + 100)
can be deduced ineti ncome at compile time since the functiomgr always
returns a managem.he query compiler transformend_no_hi gh to a derived
relation (view) in ObjectLoy

cnd_no_hi ghdepartnent,enpl oyee( D B -
nmgr departmant,nanager(Dv _Gl) O
inCOrreer'rpl oyee, nunber(_le _G2) g
_&B =_& + 100 O
4= _&@* 0750
dept enpl oyee, departmant(Ev D O
i nCOrreer'rpl oyee, nunber( E, _GS) g
G =_G*0.750
>(_G6, _&A)

Derived AMOSQL functions are compiled into derived relations and stored
functions are compiled into stored relations (facts). When we hereafter use the
termrelation we use it interchangeably with the tefumction. The AMOSQL
compiler expands as many derived relations as possible to have more degrees
of freedom for optimizations. In the case of late binding full expansion is not
always possible.

If the functioncnd_no_hi gh is evaluated with all the parameters to the
rule instantiated, in this case with tBgepart ment instantiated, we can find
the truth value for the condition and values of the free variables in the action.
For theno_hi gh rule, we get all théEg ) oyee for which the condition is
true. The action part of the rule could then be executed for these truth values.
The AMOSQL action procedure generated for the actiomanhi gh looks
like:

create function act_no_hi gh(enpl oyee e) -> bool ean as
set enpl oyee. grossi ncone(e) = grossi ncone(ngr(e));

1. In ObjectLog Horn clauses are annotated with type names.
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The execution of the action can be seen semantically as:
for each department d
where d = no_hi gh_activations()

call act_no_hi gh(cnd_no_high(d));

If considering strict rule semantics we must find the changes to
cnd_no_hi gh:

for each department d
where d = no_hi gh_activations()
call act_no_hi gh(Acnd_no_hi gh(d));

whereno_hi gh_act i vati ons is a function that returns all thegaments for
which theno_hi gh rule is activated.

4.4 Screener Predicates

If a transaction involves changes to functions that are referenced in a rule con-
dition of some activated rule, it might be very expensive to evaluate the full
condition every time in the check phase (usually at commit time). A better
approach is to filter out changes that do not change the truth value of any acti-
vated rule condition. This can be done by generasongener predicates that

are executed every time a specific function is updated, i.e. after the update is
performed. If the update passes the screener predicate the change is saved and
used in the check phase to determine what conditions to evaluate.

By generating screener predicates as queries, ordinary query optimization
techniques can be used. How complex the predicate screeners should be
depends on information such as the cost of evaluating the predicate and how
often updates are performed, i.e. the update frequency of the base relation. A
screener that is very restrictive, e.g. the complete rule condition, might be too
expensive to execute every time a relation is updated while a screener that is
too un-restrictive might cause unnecessary evaluation of rule conditions.

A maximally discriminating screener predicate for tHenconme function
can be defined as:

scr_i NCONMBgpy) Oyee( E) -
no_hi gh_activati ONSgepart ment (D O
(( @r depart ment, nanager( D _Gl) O
I NCOMBenp| oyee, nunber (_GL, _&) 0O
_&B8 =_& + 100 O
&4 =_&@* 0750
ert enpl oyee, depart ment (E D O
I NCOMBenp| oyee, nunber (B, _G5) [
G =_&H*0.750
>(_G, _&)) O
( MYr depar t nent manager (D E) O
I NCONMEepp) oyee, nunber( E, _Gr) O
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G8 = G7 + 100 O

® = _&B*0.750

dept enpl oyee, depart nent ( _GlO, D) U
inCOmsenpl oyee,nunber(_Gloa _Gl1) O
_Gl2 = _@Gl1 * 0.75 O

>(_Gl2, _@)))

The no_hi gh_acti vati ons is a function that returns all the departments
for which theno_hi gh rule is activated. This screener predicate checks if a
particular update involves an employee at a department that the rule is acti-
vated for and if he/she gets a higher income than his/her managdrthe
update of the income of an employee involves a manager for a department that
the rule is activated for and if there exists an employee at the same department
with a higher income.

A minimally discriminating predicate screener for the income function can
be defined as:

scr_i NCONMBgpy Oyee( E) -
no_hi gh_activati onsgepartnent (D) U
true

Neither of the above predicate screeners are satisfactory in most cases, the first
predicate is too expensive to execute every time an update to the income is
done, assumingo_hi gh is activated for any department, and the second
predicate causes uninteresting updates to slip through, causing unnecessary
evaluation in the check phase. The goal is to find a predicate screener that is a
good compromise between these two. By using cost information on the
involved sub-expressions a good screener that is not too expensive can be
found. For the ncome function a good candidate is:

SCr _i NCOMBgpy) gyee( E) <
no_hi gh_activati onsgepartment (D) U
(dept enpi oyee, departnent (E; D) O
MY gepart nent , manager (D E))

This screener predicate checks if the income is changed for an employee that is
a member or a manager of a department for whichtthehi gh rule is acti-

vated for If several predicate screeners are added to one function they are
ordered in a single disjunction.

4.5 Incremental Change Monitoring

By studying the expanded execution plans inrtbe hi gh example we can see
what updates of stored relations (i.e. stored AMOSQL functions) migédtaf
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the condition of a rule. The example rule depends on changetept (add-
ing/removing employees to/from a departmentncone (changing employee

or manager salaries), andgr (changing the manager of a department). This
can be modelled as a dependency network (fig. 4.9), where all the dependencies
of a relation are modelled as sub-nodes.

Acnd_no_high

Adept Aincome Aincome Amgr
Figure 4.9: A dependency network for the rub®_hi gh

A propagation network can then be generated from the dependency network
(fig. 4.10) where the partial A-relations Acnd_no_hi gh/ Adept,
Acnd_no_hi gh/ Ai nconel, andAcnd_no_hi gh/ Amgr denotes the influ-
ence of changes to the relatiodept, i nconme and mgr on the relation
cnd_no_hi gh.

Acnd_no_high

ANN

Acnd_no_high/  Amgr

Acnd_no_high/ Adept

Acnd_no_high/  Aincome”
Acnd_no_high/ Aincome’
Adept Aincc/)me Aincome Amgr

Figure 4.10: A propagation network for the ruteo_hi gh

A basic assumption is that most database transactions are short and the number
of changes that &ct activated rules is small. Therefore, evaluating the entire
function that represents a rule condition is firoéént compared to evaluating a
function that examines only the changes. In the example, the naive method

1. Two partialA-relations are created foncomne, one for each occurrence.
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would check the salaries of all the employees in the given department. An
incremental technique is preferable that checks, e.g., only employees that have
had their income changed. By defining the above paktia@lations we can sig-
nificantly reduce the cost of finding the changesnd_no_hi gh. These par-

tial A-relations are computationally equivalent ¢md_no_hi gh with the
exception that they each consider changes to one of its sub-relations instead of
evaluating it in full. If several sub-relations changes then several partilh-

tions will have to be evaluated and their results will have to be joined with a
special join operatoi_] 5.

In section 5 a calculus is presented based oﬂhe)perator for evaluating
A-relations in terms of their partid-relations. Here a separation is also made
between positive and negative partisdrelations that checks additions and
deletions separately

The evaluation based on incremental change monitoring is by no means
optimal in all situations. If for example there is a mix of updates that causes
several partialA-relations to be evaluated it might be morécédnt to evaluate
the complete condition (as in the naive method). The choice of which method
to choose in dierent situations is discussed in section 7.4.

4.6 Relating the Techniques

Screener predicates tf from A-relations in the way the are evaluated.
Screener predicates are evaluated with top-down information flow since all the
parameters to the relation are bound from the update information and any
parameters from the rule activation are initially bound. Paftia¢lations are
evaluated with bottom-up information flow since not all of their parameters are
initially bounded, the information from th&-set of one sub-relation is passed
upwards to bind the parameters. The technique of generating screener predi-
cates can be seen as pushing the condition downwards to the leaf nodes of the
network. The screener predicates dynamically prune the network from uninter-
esting changes to avoid unnecessary propagation.

When generating screener predicates, the cost of the predicate screener must
be compared with the sum of the cost of all the paftia¢lations that must be
evaluated because of the changes that slipped through the screestate it
very simply one can define cost based screener predicates by a simple rule,
‘The higher total cost of the partiAtrelations that are dependent on a particu-
lar A-set the higher complexity of the screener predicates can be motivated'.
For a flat, i.e. bushypropagation network as in the previous example, screener
predicates are not really needed. They are more useful in deeper networks that
result, e.g., from late binding. More on cost models for generating screener
predicates can be found in section 7.2.

4.7 Related Work

In [12] a technique for detectinBeadily Ignorable Updates (RIUsS) to mini-



38 Condition Monitoring

mize execution oflerters, i.e CA-rules, is presente@onstruction diagrams

are constructed to determine how changes to base relatifets d@érived rela-

tions. Alerters are defined asld-alerters anddelete-alerters that report addi-

tions or deletions of tuples, respectivelhis is related to our techniques of
using screener predicates to filter out ignorable updates and sepdyaBiay

tions into positive and negative partiarelations to check additions and dele-
tions separatelyOur techniques diér in that we use incremental evaluation
techniques through change propagation and also that we use query optimization
techniques when generating screener predicates and gargtions.

The technique of generating screener predicates is also related to that of
magic sets[4] and magic predicates. However magic predicates are used for
limiting unnecessary evaluation during bottom-up query evaluation, while
screener predicates are used for limiting propagation of changes. Screener
predicates are generated using cost based information to limit their complexity
Screener predicates are not inserted into the body of a Horn clause, but are
instead evaluated when a stored relation is updated. This can be compared to
how triggers [3] are executed, except that screener predicates only determine if
the change is interesting for any deferred rules, while triggers react immedi-
ately.

HiPAC[64] defined incremental propagation &frelations through select-
project-join. It is generalized in Sentinel [18]. HiPac used ECA rules, while our
method uses CA rules with logical events where the physical events are calcu-
lated by the rule compilelThe method extinguishes complementary positive
and negative physical events detected during a transactionchihe rule of
HiPAC[64] was defined as one & complete dferential expression, while we
are using a simpler partial @gfrentiation when only a few functions are
updated during a transaction. POSTGRES [69] and Starburst [53] both use
ECA rules similar to HiPac. Starburst supports transition tables which corre-
spond toA-relations or more preciselp-sets, since they are defined only for
stored relations, not for views.

Ariel [41] is implemented on top of POSTGRES and has CA-rules with sim-
ilar semantics as our rules. Ariel uses a modified version of the OPS5 RETE
algorithm called TREA [55] for incrementally monitoring rule conditions.
Tuples representing changes are propagated through the TTREfAvork.
Tuples that satisfy some selection criteria in the network are stoesneamo-
ries. Ariel avoids some materialization by usinigtual a-memories that use
derived relations instead of materialized ones. Instead of a technique that first
does full materialization and then tries to avoid some materialization; this the-
sis presents a general calculus that avoids all unnecessary materialization. Stra-
tegic materializations are introduced through cost based optimization
techniques. Our goal is furthermore a tightly coupled system that fully inte-
grates rules into a query language, i.e. we want a propagation network that is
integratable with our query execution mechanism, ObjectLog.

In [60] an extension of relational algebra with incremental relational
expressions is presented. An outline of an algorithm for propagation of changes
to the expressions is given. [60] defines two partial operatiisjsint union
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andcontained difference that assumes disjoint operands. In our approach this is
maintained through thé]A operation onA-relations. By using Horn Clause
Logic, i.e. Datalog[71] (or ObjectLog), to describe a calculus for incremental evalua-
tion, it is more straight forward to implement since this is how query plans are repre-
sented in the systerifhe mapping of relational calculus to Datalog,domain
calculus, can be seen in the appendix. The update semantics of a system, e.g.
set-oriented or bag-oriented semanticge@s in what order the propagation
must be done. Introducing views in rule conditions introduces the need for
cooperation in the propagation of changefeafng diferent conditions that
depend on the same sub-expressions. Propagation of changes through a depend-
ency network is not discussed at all in [60].

In [6] a method is presented that derives two optimized conditions from the
original condition of a rule. The new conditioRseviously True (PT) andPre-
viously False (PF) are based on the knowledge of the previous truth value of
the condition. Our rules are set-oriented and there is no single truth value for a
rule condition, only a set of tuples for which the action of the rule is to be exe-
cuted. An attribute grammar is also presented in [6] for implementing the
approach, but nothing is said about how the actual propagation of changes is
going to be done.

In the ARADISER system[30] incremental evaluation techniques are used
for database rules processing. An algorithm for incremental evaluation of Data-
log programs for the ARULEL rule language is presented. Howev#ris is
also a loosely coupled rule system built on top of a relational databases man-
ager (POSTGRES and Sybase). The technique is bastattochains that are
stored and manipulated in the database and which are used to dynamically
maintain the status of facts; no graph structure is constructed in mewWery
believe that the rule system need to be tightly coupled with the database man-
ager using main memory data structures, foficdéncy reasons. The cost
model in a database manager must also be adopted to fit the new types of opti-
mization issues introduced by rule processing.
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5 A Formal Definition of
Partial Differentiation

5.1 Incremental Evaluation

Incremental evaluation techniques was introduced in [S%iage Differenc-

ing of computable expressions. This is a technique that transforms programs
into computationally equivalent programs that execute mdieiesitly by con-
sidering changes to expressions instead of executing them in full. A similar
technique is used in [9] for diently maintaining materialized views. figfient
monitoring of rule conditions can be achieved by using similar techniques that
considers changes to the conditions instead of performing full, naive evalua-
tion.

Below follows a calculus for incremental evaluation of rule conditions. It
formalizes the phases for update event detection and incremental change moni-
toring. The calculus is based on the usual set operatbos (D), intersection
(N), difference (-), andcomplement (~). Three new operators are introduced,
delta-plus (A,), delta-minus (A.), and delta-union (DA). A, returns all that
have been added to a set over a specified period of time)_aaldl that have
been removed from the set.d&lta-set (A-set) is defined as a tupl&sS, A.S>
for some set S anldl, as the union of twa-sets. The operators are also used
for discussing changes of bags that are more general than sdisb@gtsince
they allow duplicates.

The intuition behind the calculus of partial féifentiation is presented in
sections 5.2 and 5.3 with examples. In section 5.3.3 changesnpinction,
disjunction, and negation are formally defined in terms of set-operations. A
justification for partial diferentiation is given in the appendix, along with
examples of partial diérentiation of all the relational operatausion, differ-
ence, join, cartesian product, selection, projection, join, andintersection.

Separate partiah-relations are generated for handling insertions and dele-
tions. The intuition behind the calculus is to execute paftie¢lations based
on insertions of tuples in the state at the beginning of the propagation phase,
since those tuples are present in the new state of the database. The/Apartial
relations based on deletions of tuple are executed in the state immediately after
the previous propagation phase, since this represent the (old) state when the
tuples were present in the database (fig. 5.1). The old state is calculated by per-
forming alogical rollback that inverts all the updates of a specific relation.
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evaluateinsertionsin the new state

propagation propagation
I add remove add add remove remove
1 [ 1

1 [ [ [ |
T T T T |
\ remove add remove remove add add f

I:)Bold logical rollback DBnaN

-
evaluate deletionsin the old state

Figure 5.1: Evaluating positive . negative changes

The calculus is based on accumulating all the relevant updates during a transac-
tion. These accumulated changes are then used to calculate the pactial
tions which also involves calculating the old state of specific relations.

5.2 Update Event Detection

All changes to stored functions, i.e. base relations, in the database are logged in
an undo/redo log. During database transactions, before physical update events
are written to the log, a check is made if a stored base relation was updated that
might change the truth value of some activated rule condition. If sghjse

cal events are inserted into A-set that reflects allogical events of the updated
relation. Since rules are only triggered by logical events the physical events
have to be added with a speciglta union operator DA, that checks the con-
tents of theA-set to see if each physical event has afgcefor if it cancels out

any old events in thA-set. W\ define the\-set of a base relation B by

AB = <A,B, A.B>,

whereA,B is the set of added tuples to B ah® is the set of removed tuples.
We define L1, (i.e.AP [, AQ) informally by the table in fig. 5.2 where '+’ is
the addition of a tuple, ’-’ is the removal of a tuple, aiitl means that the
tuple is not in theA-set. The operator works correctly when there is no net
effect of updates to a function.

If a change is made to an AMOSQL function value, the old value tuple is
first removed and then the new is added.
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AP AQ O + -
O 0 + -
+ + + 0
_ ] T ;

Figure5.2: The DA operator

For example, if we update the salary of some employee twice assuming that the
income was originally 10100:

set incone(:el)
set incone(:el)

10400;
10100;

This corresponds to the physical update events:
-(inconeg, :el, 10100),
+(i nconeg, : el, 10400),
-(inconeg, : el, 10400),
+(incone, : el, 10100).

The A-set for income changes accordingly with:

Aincone = <{},{(:el, 10100)}>

Aincone = <{(:el,10400)},{(:el, 10100)}>
Aincone = <{},{(:el, 10100)}>

Aincome = <{},{}>

i.e. there is no net &dct of the updates.

For bag-semantics, i.e. allowing duplicates, Mhget (orA-bag) must keep a
count of duplicates anmA must increment/decrement the count when adding
positive/negative tuples (if the count becomes 0 then the tuple is removed).

5.3 Partial Differentiation

For monitoring changes of a given derived relation (view) P we need to define a
A-relationAP. For stored relations, therelation is defined by its materialized
A-set as above. For derived relatidhe A-set is defined as a pair:

AP = <A,P, AP>, where

AP =P - F())|d and

AP =R)q- P and where

Poia = (P L1 A.P) -A,P for any relation P

This is a circular definition which is useless for anything but as a theoretical
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base for the following definitions. 8heed to define how to calculate thaset

of a derived relation in terms of thesets of the relations it depends on. The
changes of thé-relation are materialized in a nevset. This is a temporary
materialization done in the propagation algorithm and is discarded as the prop-
agation proceeds upwards. Changes,A:sets, that are not referenced by any
partial A-relations further up in the network are considered as not needed any
more. This assumes that there are no loops in the network, which is not the case
with recursive relations, see section 8.5.

For eficient monitoring of rule conditions, the rule compiler generates sev-
eral partial A-relations that detect changes to a derived relation given a change
to one of the relations it is derived from. The technique is based on the assump-
tion that the number of updates in a transaction is usually small and therefore
only small efects on rule conditions will occuihus, the changes will only
affect some of the partially ddrentiated relations. The change monitoring is
separated into monitoring of positive changes (adding) and negative changes
(removing).

53.1 Monitoring Positive Changes

For a relation P defined as a Horn clause with a conjunctive, betdy, be the
set of all relations that P depends on. Then the positive pAFtialationsAP/
A,X are defined by the body of P where a single relationD{, has been sub-
stituted by its positivé-relationAX.

For example, if

p(X, 2) -
a(x, Y) O
r(y, 2)
then
Ap(X, 2)/Aq ~
Aq(X Y) O
r(y, 2)
and
Ap(X, 2) /Ay
(X, Y) O
A (Y, 2)

In the example above the relations Q and R are either stored and the contents of
AQ andAR are found by update event detectioniarthe case of derived-
relations, found by evaluating changes to other paftie¢lations in the same
manner

Let DBg4 consist of the stored relations (facts)

a(l, 1)
r(l, 2)
r(2, 3)

1. The current database always reflects the new state
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from p defined above we can derive
p(1, 2)

A transaction performs the updates
assert q(1, 2)
assert r(1, 4)

DBey iS Now

a(l, 1)

al, 2)

r(1, 4)

ri2, 3)

from p we can derive
p(1, 2)

p(1, 3)

p(1, 4)

The updates gives thesets,

Ag =<{(1,2)}{}>
Ar = <{(1,4)},{}>

EvaluatingAp(X, Z)/  A,qg and joining WithDA gives
Ap = <{1,3}.{}> , i.e no changes are detected

EvaluatingAp(X, Z)/  A,r and joining WithDA gives
Ap = <{(1,3),(1L. 1>

In theno_high rule, there are two partidl-relations defined for changes to
thecnd_no_high relation with respect to thecome relation:

Acnd_no_high  gepartmentemployee (D, E)/ Ajincome’
MQr gepartment,manager (D, _G1) [
A.income employee,number (G1, _G2) O
_G3=_G2+100 O
_G4=_G3*0.75 O
dept employee,department (E,D) O
income employee,number (E,_G5) O
_G6=_G5*0.75 O
>(_G6, _G4)

Acnd_no_high  gepartmentemployee (D, E)/ A,income™ -

MOl gepartment,manager (D, _G1) U
income employee,number (_le _GZ) 0
_G3=_G2+100 O
_G4=_G3*0.75 O

dept employee,department (E,D) O
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A,income employee,number (E, _G5) U
_G6=_G5*0.75 O
>(_G6, _G4)

Both of these partialA-relations are evaluated when changes occur to the
income relation. The first one checks if the income of a manager was changed
and if any employees have an income higher than his/her new income. The sec-
ond one checks if the changes involves an employee and if the income of the
employee is above that of the manager of his/her department.

Let us consider the example of the toys department again. Initially we
havethe incomes in fig. 5.3.

name income netincome
boss 10400 7875
employee2 | 10200 7650
employee4 | 10400 7800

Figure 5.3: Before updates

When we do the updates:
set income(:e2) = 10600;
set income(:e4) = 10600;

the updates passes through any screener predicateonfie and we generate
the A-set,

Aincome =

<{(:2,10600),(:e4,10600)},
{(:e2,10200),(:e4,10400)}>

Then we have the incomes in fig. 5.4.

name income netincome
boss 10400 7875
employee2 | 10600 7950
employee4 | 10600 7950

Figure 5.4: After updates

Evaluating cnd_no_high department,employee

(D, E) A,income’

gives
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nothing since neither of the employees are managers. Evaluating
cnd_no_high  gepartmentemployee (D, E)/  Ajincome” and joining with
[1, gives then-set:

Acnd_no_high =
<{(:toys_department,:e2),(:toys_department,:e4)},
>

and by evaluating:
act_no_high( A,cnd_no_high(:toys_department))
we get the final incomes in fig. 5.5.

name income netincome
boss 10400 7875
employee2 | 10500 7875
employee4 | 10500 7875

Figure 5.5: After rule execution

Note that this is actually not how the rule execution is implemented since we
here ignore conflict resolution. The contents of

A,cnd_no_high(:toys_department)

is really saved in aaction-set that eventually is used for action execution, see
section 8. The negative changes are not needed in this example rule since the
rule condition only depends on positive changes. If, howes@ane other rule
triggers on the same or a similar condition and does a compensation that can
cause the condition of this rule to become false, then the negative changes will
have to be considered as well, see section 5.3.2.

For set-oriented semantics this method of propagation of positive changes
might give aA-set that is too laye, i.e. contains positive changes that existed in
the old state of the database. This can leadetoous rule behaviour because
the A-set might cause a rule to be triggered even though the rule condition was
already true before the changes occurred.

Take the example database:
t(11, 1)

s(X) < t(Y, X),Y>10
As(X)) Dt~ A(X), X>10
Froms we can derives(1) .
The update

assert t(12, 1)
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gives At = <{(12,1)},{}>and
evaluatingAs( X) / A,t and joining with[],
gives As = <{(1)},{}>.

From the last example it is easy to see why a paftigdlation can produce a

set of changes that is too d@. Wth set-oriented semantics we would have to
check if s(1) was present in DBq in order to havestrict rule semantics.
Strict rule semantics means that the rules are only triggered if the rule condi-
tions become true after previously having been false. In many cases nervous
rule behaviour is acceptable and this check will not have to be performed. For
example, in rules that enforce some constraint, suaioai gh, the natural
thing to do in the action is to abort or compensate which will cause the condi-
tion to become false again. Th®ni t or _i t emrule is an example of a rule
that needstrict semantics, since a nervomsni t or _i t emwould make mul-

tiple orders, which is unacceptableo &void nervous rules it is necessary to
inspect the old state of the relation representing the condition and to filter out
positive changes of tuples that were already present.

5.3.2 Monitoring Negative Changes

In most cases a rule condition depends only on positive changes, as for the
no_hi gh rule. However for negation and aggregation operators, see section
5.4, negative changes will have to be propagated as well. For strict rule seman-
tics, propagation of negative changes is also necessary for rulesfétitesfch
others rule conditions. A rule that is executed can produce negative changes
that causes the condition of an already triggered, but not executed rule, to
become false. This rule activation is then considered not to be triggered any
more. This is explained in more detail in section 8.5.

The two partialA-relations of the relation P with regard to the negative
changes of Q and R are defined as:

Ap(X, 2)/D.q <
Aq(X, Y)O
rora(Y, 2)
and
Ap(X, Z)/Dr <
dorg( X, Y) O
Ar(Y, 2

where Rig= (A.R [ R)-A,R

and sinceA,R N A_R=0O,i.e.AR-A,R = AR, we have

Rog= AR L (R-A,R) = AR I (R N ~A,R), where

~ denotes set complement, and which can be expressed logically by:
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r0|d(X, Y) -
Ar(X Y) O
(r(X, Y) O=(Asr (X Y)))

where Q)q is defined likewise.

Let DB,4 consist of the stored relations (facts)

q(l, 1)
r(l, 2)
r(2, 3)
from p defined above we can now derive
p(1, 2)

A transaction performs the updates
assert q(1, 2)

assert r(1, 4)

retract r(1, 2)

retract r(2, 3)

DBey iS Now

q(l, 1)
qa(l, 2)
r(l1, 4)
from p we can now derive
p(1, 4)

The updates gives tlesets,
Ag = <{(1,2)},{}> and
Ar = <{(1,4)}.{(1,2),(2,3)}>.

EvaluatingAp( X, Z)/A,qg and joining WithDA gives
Ap = <{},{}>, i.e nochanges are detected.

EvaluatingAp( X, Z)/ A,r and joining WithDA gives
Ap = <{(1,4)}.{}>

EvaluatingAp( X, Z)/A_r and joining WithDA gives
Ap = <{(1,4)}.{(1,2)}>.

Note that if we did not use the old stategoin Ap( X, Z)/A.r we would
getAp = <{(1,4)},{(1,2), (1, 3)}> which is clearly wrong. By prop-
agating breadth-first, bottom-up we can calculate the old value of the database
by doing alogical rollback, using the formulas above.

Take the database from the last example in the previous section:
t(11, 1)
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S(X) < t(Y, X), Y > 10

As(X) /At « At (X), X > 10

As(X)/At — At(X), X > 10

Froms we can derives( 1) .

Now, let us assume the following updates instead,

assert t(12, 1)

retract t(11, 1)

These giveAt = <{(12,1)},{(11,1)}> and

evaluatingAs( X) / A,t and joining with[l, gives

givesAs = <{(1)},{}>

and evaluating\s( X) / A_t and joining with[], gives

As = <{}, {} >, since positive and negative tuples are extinguished by

A

For set-oriented semantics, negative padiiaélations might also producelaset
that is too large, i.e. deletions of tuples that are still present in the new state of the
database. If we, for example, havell, 1) andt (12, 1) and retract one of them,
we get a negative changesifl) , buts( 1) can still be derived from the database.
Unlike for positive changes, this is more serious since it might cause rules not to trig-
ger on positive changes since these have been cancelled by incorrectly propagated
negative changes. To avoid this we have to check if the tuple is still present in the
new state of the database. If this is not done the rules might under-react, which is
unacceptable.

5.3.3 Combining Changes

The changes calculated in parttatelations have to be combined before they can be
propagated further in the network.

There exists an isomorphism f, denotg@dbetween the boolean algebra of
ObjectLog and set algebra[1]:

f: <0, -, 0, 0> » <O ~ N O,

where O is the domain of objects in the database, - is ne@ats@d on the Closed
World Assumption O is logical conjunction{] is logical disjunction, 2©) is the
power set of atoms in G, is set complement)) is set intersection, and! is set
union. Using this we can define change monitoring of ObjectLog through set opera-
tions.

LetA,S,delta-plus of S, be the set of additions (positive changes) to a set S and
A_S,delta-minus of S, the set of deletions (negative changes) from S. Lét-Hat
(delta-set) of S be a tuple of the positive and the negative changes of a set S:

AS = <ALSAS>
We formally define thelelta-union, L1, overA-relations as:

AP U\ 0Q=<P-AQ U (1,Q-AP),
AP-AQ U @QQ-AP) >
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To detect changes of derived relations we define conjunction, disjunction, and nega-
tion in terms of theif-relations as:

AQOR)FAQN R) =
<D(A+Q N R) U (@n aR), §>

A
<{},(A.Q N Ry H (Qoig N AR>

AQUR) FAQLR) =
<[(|A+Q - Rold) D (A+R - Qold)a {}>

A
< (A.Q-R) L (A R-Q)>
A(-Q) 1 A(-Q) = A.Q,A,Q>

Note that when there are changes to more than one part of a conjunction the defini-
tion above might give a set of changes that is too large, i.e. it might contain dupli-
cates. For set-oriented semantics of relations this is no problem since all duplicates
will be removed byDA. For bag-oriented semantics this is a serious problem since
we can only disregard tuples that were generated from overlaps in the execution. This
problem can be solved by adding checks that remove the overlaps:

AQOR)FAQN R) =
<D(A+Q N R) U (Q-2,Q) N AR), §>

A
<{}, (A-Q N Ryg) U ((Quig - 2-Q) N AR)>

Such a technique is presented in [47] and can also be used as a general technique for
optimizing partialA-relations.

For bag-oriented semanticd,] and[], are commutative so the order of
accumulation can be arbitrarifor set-oriented semanticBA has to be per-
formed in the same order as the changes occurred in the transaction, see section
6.3. For disjunctions a check is made that positive/negative changes are propa-
gated only if the other part of the disjunction was/is false (this check is only
done for set-oriented semantics).

Note that the above definitions require that Msets of both Q and R are
fully propagated before the nefivset can be computed, i.e. a breadth-first bot-
tom-up propagation is crucial.

Next we define thgartial A-relation, AP/AX, that incrementally monitors
changes to P through changes of a single sub-relati®atial Differentiation
of a relation is defined as generating parfiaklations for all the sub-relations
of the relation. The net changes of parthatelations are accumulated (using
DA) into aA-set that materializes the changes represented bj-tiedation.
From the partiaA-relations a dependency (propagation) network is generated
where each node isfarelation (fig. 4.10).

Let D, be the set of all relations that P depends on. Positive partial changes
are combined by:
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AP =0 aP/A,X, OX 0D,

and negative changes by

AP =0 ap/ax, OX 0D,

The full A-relation is defined as:
AP =<AP, > L, <3, AP>

For the example relation P in sections 5.3.1-5.3.2 the positive changes are
combined by

Ap(X, 2)=0p(X, 2)A.q O Ap(X, 2)/n,r

and the negative changes by

Ap(X, Z)=0p(X, 2)/n.q O Ap(x, 2)/arx

and finallyAp(X, Z) = <A,p(X, 2), > U, <}, Ap(X, 2)>

The order in which the accumulation of changes is done is importanﬁi@dxe not
commutative for set-oriented semantics, see section 6.3.

For set-oriented semantics the partlalelations might produce changes
that are not really there.oTavoid this we have to check that positive changes
were not present in the old state of the database and that negative changes are
not present in the current state of the database:

AP = <\P-P, AP - P>

If this is not done, we might over/under-trigger rules since the positive/negative
changes might be incorrectly propagated. If a check is not made for positive changes
we will getnervous rule behaviour. For negative changes the check will always have

to be done since under-triggered rules are undesirable. The old state of the database
can be calculated using propagated changes or by using materialization techniques.
By including checks of ff; and P directly into the partial-relations the calculations

will usually be more efficient than full re-calculations gfjfand P. The reason is

that many variables will already be bound and there are usually many possibilities for
optimizations of common sub-expressions. Another option is to materialize P, but
this is always a trade-off between time and space, see section 7.5.

5.4 Changesto Aggregate Data

Changes of aggregates such rest any (logical =[] or negation as failuje

sonme (0), count andsumwill have to be defined through changes of incre-
mental versions of the aggregation functions [8][47]. These are defined by sav-
ing a boolean value (fanot any andsone), a count (forcount), or a sum

(for sum) for each aggregate data and by using the changes to perform logical
operations, increment/decrement the count or add/subtract from the sum. For
aggregate functions both positive and negative changes will have to be propa-
gated. For examplegzount will increment/decrement the counter associated
with each aggregate data for positive and negative changes, respectively
aggregate functiomot any is really a special case since it can be directly be
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determined by substituting positive changes for negative and vice versa, as was
defined in section 5.3.3. If some tuple is added to the databasetthemy
for that tuple will become false and if some tuple is removed from the database
thennot any for that tuple will become true.

All aggregation functions are, howeyerot incrementally computable, see
[25].

5.5 Related Work

Work by [43] and [47] are very much related. In [43] rules are written directly
in Datalog by referencing positive and negatikerelations directly This
makes it possible to write ECA style rules, but where the Event can be changes
to any derived relation. In our system, the rule compiler generates partial
relations, from AMOSQL CA style rules, that do incremental change monitor-
ing of one sub-relation at a time. Howeyefe plan to introduce higherder
functions that can refer to specific events, i.e. changes to any sub-function in
the condition of a rule. The generated parfialelations would then be very
similar to the rules directly stated in [43].

The technique for incremental maintenance of materialized views proposed
in [47] is also related and uses a technique similar to parti@rdiftiation for
change monitoring of a view (derived relation) to update a materialized view
with the detected changes. Howeveur technique aims at avoiding view mate-
rialization. In [47] bag-oriented semantics are assumed and a technique for
avoiding overlaps when executing several padiaklations is presented. This
technique is necessary for bag-semantics, but can be seen as an optimization of
partial A-relations for set-oriented semantics.
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6 Database fansactions and
Update Semantics

6.1 Transactional Rules

When integrating active rules into a DBMS with transactional capabilities it is
important to specify the semantics of the rules in terms of transactional behav-
iour.

The events that are detected and the consequent changes sAvsstsnwill
discarded in case of a transaction rollback. The changes are accumulated with
DA to capture the logical events instead of the physical. The actual changes to
the A-sets are logged.

The semantics of rule definition and activation must also be specified in
relation to transactions. Rules that are defined within a transaction are not per-
manent until the transaction is committed, hence a rollback will cause the rule
to be removed. Likewise, a rule activation will be deactivated in the case of a
rollback of the transaction in which the activation took place.

At rule creation, a condition function, an action procedure and padttial
relations are created. These are ordinary functions and relations and are thus
also transactional. At rule deletion, the condition function, the action proce-
dure, and the partidl-relations are removed. At rule activation the rule is inte-
grated into the propagation network by inserting nodes for allAthelations
that the rule condition depends on. At rule deactivation the nodes are removed,
if they are not shared by other rules. All operations on the network, e.g. inser-
tions and deletions, have to be transactional.

If a rule is activated in the middle of a transaction the condition is naively
evaluated in order for the rule to catch up with changes that occurred prior to
the activation. The result is saved in the action-set of the rule activation. If the
rule is rolled back then the action-set is discarded.

6.2 Rulesthat Perform Transaction M anagement

Rules can be used to enforce constraints over data by defining rules that abort
transactions or perform compensating updates when changes occur that violates
some constraint, i.e. causes the rule condition to become true.

In the case obptimistic concurrency control [49] rules can also be used to
logically determine if updates of one transaction has interfered with some other
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transaction executing in parallel.

Another use for rules in transaction management is that of synchronizing
parallel activities in the database. This can be done by defining rules that have
conditions that specify the specific synchronization points and interacts with
the activities (applications) in the action parts of the rules.

6.3 Update Ordering

If relations are defined to have set-oriented semantics then the order of accu-
mulation of changes has to be the same as the changes occurred in the transac-
tion. TheDA operator is not commutative when using set-oriented semantics.
This is a problem related to deferred rules and does not concern immediate
rules, since they do not accumulate any changes before they have their condi-
tions evaluated.

Take, for example, a sequence of changes:

+(i nconeg, : el, 10400),
+(i nconeg, : el, 10400),
-(inconeg, : el, 10400).

Assuming that the tuple is not originally present in the database, the second
positive change has nofeé€t at all while the third negative change causes an
empty final net change. If the order is changed to:

+(i nconeg, : el, 10400),
-(inconeg, : el, 10400),
+(i nconeg, : el, 10400),
then the final net change is
+(i nconeg, : el, 10400).

By defining a sequence to chronologically order all updates in a transaction, the
sequence numbeor time stamp, of each change can be propagated along with
the changes. Before the changes of several pdytielations are added to the
completeA-relation (byDA) the changes have to be ordered according to their
time stamps. @ support this we redefine the incremental change propagation to
also propagate the time of updates.

We define theéimed A-set of a base relation B by:

ABT =<A,BT, AB™>

whereA,BT is the set of tuples and times when they were added to B &1d
is the set of removed tuples and times when they were removed.
Take the example relation
p( X! Z) -
a(x, Y) O
rcy, 2)
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then
ApT(X, Z, T/Aq ~
AQT(X Y, T) O
rcy, 2)
whereT is the time when a tuple was added and
ApT(X, Z, T/ A «
a(x, v) O
A T(Y, Z, T)
and
ApT(X, Z, T)Y/A.q
Aq'(X Y, T)O
roId(Y! 2)
whereT is the time when a tuple was removed and
ApT(X, Z, /AT ~
Jol q(X, Y) O
AxT(Y, Zz, T)

We now defind 1T, to accumulate all changes and sort them according to their
times before inserting them into a timédset. If two identical tuples are
inserted into a\-set, the lager time stamp of the two is chosen.

Bags are more general than sets, i.e[Sed#g, and have no restrictions against
duplicate tuplesFor bag-oriented semantics, the update order is unimportant
since theA-bag has a count of all duplicate tuples. Howetee propagation of
the time of updates is also useful when introducing time events and temporal
conditions into the active database, but this is outside the scope of this thesis.

6.4 Related Work

In HiPac[16],coupling modegsee section 2.3) were defined that specify the
coupling between the event, condition and action parts of rule execution and
the transaction(s) where they execute.

Constraints represented as assertions [3] specifies relationships that must
hold after each transaction. Any transaction that violates a constraint will be
aborted or the violating data will be changed through compensating updates.
This behaviour can be attained by specifying production rules for constraint
maintenance [15].

Sagag37] can be used to specifyork flowby defining a sequence of trans-
actions together with compensating transactions that are to be executed in case
of a saga rollback.

In [28] rules were used for defining work flow by having rules with decou-
pled semantics initiate new transactions. The rule conditions specify the crite-
ria for starting work as separate transactions. In case of rollback rules can also
be used to specify compensating actions. A special technique pablelihing
is also discussed that sequentially orders subtransactions that have been gener-
ated from decoupled rules and that have triggered in some specific order

No directly related work on update ordering has been foundehmporal
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Databaseg[67] there is usually a distinction betwegansaction time valid

time anduserdefined time Transaction time is the time when the information
was stored in the databasealid time is the time when a specific relationship in
the database is valid. Usdefined time is temporal information added by the
user that is not supported by the database. Ing28ht timewas defined as the

time when a certain event occurred in the real world and transaction time as the
time when it was recorded in the database.

By registering events as changes to functions and storing them in fimed
sets the event time is transformed into transaction time. Only those events that
are considered as potential changes to activated rule conditions are saved and
consequently stamped with transaction time. Using this definition, the time
which we use for ordering updates chronologically is transaction time based on
the event times of insert and delete events. The technique of propagating trans-
action time through timed-sets can be used for any timed events if they are
associated with functional changes. More discussions on time concepts in tem-
poral databases can be found in [48].
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I Optimization

7.1 General Optimization Techniques

The ObjectLog optimizer in AMOS as described in [51] is based on Horn
clause rule substitution and a cost model for subgoal reordering. Horn clause
rule substitution means that the optimizer combines Horn clause rules into
larger rules by expanding subgoals. All subgoals cannot be expanded, e.g. late
bound calls and recursion. By expanding all possible subgoals the following
steps in the optimization process will have more degrees of freedom for optimi-
zation.

For any Horn Clause rule or predicatetlie input tuple is the tuple corre-
sponding to the variable(s) that are bound.ifk & a given input tuple there are
zero, or several output tuples, corresponding to unbound variable(spubP
goal reordering is based on a cost model that calculates two cost estimates for
P:

1. Theexecution cost of P, G, defined as the number of visited tuples, given
that all variables of the input tuple are bound.

2. Thefan out, Fp, which is the estimated number of output tuples produced by
P for a given input tuple.

For a conjunctive query consisting of subgoalg{P <i < n, the total cost C is
calculated by the formula:

For disjunctive queries, i.e. in disjunctive normal form, each part of the dis-
junction is optimized separately

A rank for each subquery in a query plan is calculated by using fan out and
cost information and some optimization strate@ie rank is used to reorder
the subgoals in a query plan. In the system threferdift optimization strate-
gies are available. A heuristic method based on calculating the ranks through a
simple formula [51] is currently the default method. A randomized method
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based on Simulated Annealing and Iterative Improvementifi@jailable as

an option, and which is the mosfedtive of the three for optimizing lge que-

ries, i.e. lage join queries. Exhaustive optimization is also available [65]

which calculates the optimal plan, but can only be used for smaller queries.
The fan out is currently defined by the following default values:

Fp = 1 if the input tuple has a unique index.
* Fp=2ifit has a non-unique index.

* Fp=4 otherwise

The defaults for g are:

* Cp= FRpifthe input tuple has an index.

Cp =100 if it is unindexed, since the system has to scan the entire table.

Foreign predicates have by defaug 1 and G = 1, assuming they are cheap
to execute and return a single result tuple. The user can provide cost hints for
each predicate, which override the default assumptions abgain@ - For
Horn Clause rulesgis calculated by usinggrof the subgoals.
The reordering of subgoals of a relatigni.B. a Horn Clause, is performed
by the optimizer by using the givery@nd K, of each subgoal Q of, Rith the
aim of minimizing G

7.2 Optimization of Screener Predicates

The screener predicate s described in section 4.4 can be optimized using the
techniques described above. By calculating the total cost of the paneh-

tions that are &écted by the update, CRe have the cost of letting an update
slip through a screener predicate. For an update off€gtafg the partialp-
relations AP,/AQ}, 1 < i< n, we have:

n
CP= Y Cpp
=1 20

The total cost of a partidl-relation is really a recursive calculation since one
partial A-relation,AP/AQ, can in turn d&ct other partialA-relations AR/AP.
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n
Cap = D Car
2O i=1 Ap

This calculation is done bottom-up using the dependency network, and stops
when the rule conditions are reached.

The cost of the screener predicate scr_Q, gand the fan outdz, gcan be
used to determine the effectiveness of a screener predicate. By minimizing CP *
Fscr_o While keeping G o* ufg < CP, an optimal screener predicate can been
found, where uj is a constant that considers the update frequency of Q. The constant
ufg could be defined by some estimation determined through experiments or it could
be changed continuously by using statistics on the numbers of updates per transaction
of particular base relations. How to calculate the sizeisusutside the scope of this
thesis.

7.3 Optimization of Partial A-relations

When optimizing a partial\-relation the optimizer should take into account
that theA-relation for which it is diferentiated for is much smaller than the
original relation. The ObjectLog optimizer described in [51] is being extended
with new cost metrics foA-relations. Sincé\-relations usually are very small
they will often be moved earlyOften theA-relation will be placed first, how-
ever this is not always the case as [43] assumes.

Take the partial\-relations generated for the condition of tiee high rule
for monitoring changes of the income relation. The first paktiadlation:

Acnd_no_high  gepartmentemployee  (Ds E)/  Ajincome’  —
MOl department,manager (D, _G1) U
Asincome employee,number (_Gl, _G2) U
_G3=_G2+100 4
_G4=_G3*0.75 0
dept employee,department (E,D) O
income employee,number (E, _G5) U
_G6=_G5*0.75 0
>(_G6, _G4)

is already optimal sinC®gepartment IS bound when the partidi-relation is
evaluated andhgr is indexed on the department. The second paktialation:

Acnd_no_high  gepartmentemployee (D, E)/ A,income™ -

MQr department,manager (b,_Gl) O
INCOME employee,number (G1,_G2) O
_G3=_G2+100 O
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_G4= _G3*0.75 O
dept employee,department (E.D) O
A,income employee,number (B, _G5) [
_G6=_G5*0.75 0

>(_G6, _G4)

is not optimal. TheA-relation should here be placedfore thedept subgoal
sincedept has an index on employee and not on the department:

Acnd_no_high department,employee (D, E)/ A income” -
MO department,manager (D, _G1) U
income employee,number (G1,_G2) O
_G3=_G2+100 O
_G4=_G3*0.75 O
Asincome employee,number (E,_G5 O
dept employee,department (E,D) O
_G6=_G5*0.75 0
>(_G6, _G4)

By defining cost hints for partidi-relations that specifye.g. p=2and =1
this can be achieved.

Since all Horn clause rules have their subgoals fully expanded if possible,
many opportunities for common subexpressions betwedardift rule condi-
tions are lost. By not doing full expansion common subexpressions can be
achieved. In theno_high rule example thend_no_high could be retained
as it is and allowing sharing of threetincome between difierent rule condi-
tions:

cnd_no_high  gepartmentemployee (D E) <
MQr department,manager (D, _G1) [
netincome manager,number (Gl,_G2) O
dept empioyee department  (E, D) O
netincome  empioyee,number (B, _G3) [
>(G3,_G2)

This would lead to a shared nodes in the propagation network. This node shar-
ing is not done in the current implementation, except for late bound subgoals,
i.e. when the correct functions cannot be determined at compile-time due to
lacking type information. If query plans are not expanded many possible oppor-
tunities for optimization might be lost. This is a tradéwhich has to be stud-

ied in more depth. Changing the optimizer to avoid full expansion in favour of
common subexpressions is outside the scope of this thesis.

7.4 Incremental versus Naive Change Monitoring
As shown in section 9 the incremental change monitoring outperforms the

naive one in the case of small updates that have snfalitefon rule condi-
tions. In the case of lge updates the incremental change monitoring performs
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badly, some times very badlyOne possibility here, is to detect thesegéar
updates and automatically use naive change monitoring in these cases. This
can, for example, be done by having a threshold sizeg#ts that will be prop-
agated. If the size exceeds the threshold, then fieetafl rule conditions will

be evaluated naivel\By deactivating rules when kg updates are to be done
and reactivating them before the transaction is to be committed, naive evalua-
tion of the rule conditions can be attained. This can be done by deactivating
rules when any oA-sets that they depend on exceed their threshold sizes. How-
ever the cost of deactivating and activating rules will have to be taken into
account. Deactivation and activation involves contracting and expanding the
propagation network.

7.5 Logical Rollback versus Materialization

The choice between making a logical rollback versus using materialization to
find the old value of a relation can be supported by cost information. The calcu-
lated execution cost of a relation &, can be compared to the calculated fan
out, i For a small @ and a lage Ry logical rollback is advantageous. For a
large G and a small F materialization is a better decision. Exactly for what
actual values of £and Fp the different choices should be made, has to be
determined through further experiments.

7.6 Related Work

Since rule conditions are defined as ordinary queries, techniques for query opti-
mization are relevant [46][51][65].

In [43] simple ad hoc optimization af-relations is proposed, while it is
here recognized as a more general optimization problem. In [41] techniques for
finding common subexpressions are utilized.
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8 Change Propagation

8.1 The Check Phase

In the check phasall the activated rules are checked to see if they are trig-
gered. This is usually done at transaction commit. During ongoing transactions
updates are saved asets that are maintained for all stored relations that are
referenced in any activated rules, see fig. 8.1. In the check phaseAtsese
are propagated to foraction-setghat contain all positive changes to the func-
tions that represent the rule conditions. Theets are cleared during propaga-
tion as soon they are no longer needed. The action-sets are maintained until the
transaction is actually committed, or aborted. After a round of propagation all
activated rules with non-empty action-sets are inserted iotm8ict-set Then
one rule is chosen, by some conflict-resolution method, and the action of the
rule is executed for all the tuples in the action-set. After the rule action has
been executed the action-set is cleared. The executed action might have caused
changes to neu-sets, so these have to be propagated once more. This contin-
ues until the conflict-set is empty

The action-sets of triggered rules are continuously updated while the rules
are in the conflict-set. If an action-set becomes empty the rule is removed from
the conflict-set.

action-sets
check A-sets check A-sets A-sets
/ Y Y R
-
u(pdate) U U u u u u B
propagate propagate propagate
database transaction deferred rule execution

Figure 8.1: The phases of deferred rule execution
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8.2 The Propagation Network

The propagation network contains all the information needed to propagate
changes décting activated rules. Since the propagation is done in a breadth-
first, bottom-up manner the network can be modelled as a sequential list, start-
ing with the lowest level and moving upwards. Each level consists of:

* A change flagchg_flg,that marks a level as changed.
* Alist of network nodes

In fig. 8.2 the network, consisting of two levels, for the nute_hi gh can be
seen.

chg_flg list of nodes L» chg_flg list of nodes

Level O Level 1

Figure 8.2: The propagation network fero_hi gh

EachA-relation afecting activated rules is associated with one (and only one)
node consisting of:

* A change flagchg_flg marking the node as changed.

» A refeence countcnt,that states how many nodes are dependent on this node.
* TheA-setof theA-relation.

» A list of affects nodes-list, that are affected by changes to this node.

« A list of depends on noded-list, together with the partid-relations affected by
the nodes below.

e A pointer to the levethe node belongs to (not showed in fig. 8.3).

» Alist of padnters to rule activationgif any) in the conflict set (not showed in fig.
8.3).

The number of levels needed in a network depends on how relations are
expanded. For late binding extra levels will be inserted. The more levels in a
network the more possibilities of node-sharing exist. This is discussed in sec-
tion 7.3. How the nodes in the two levels are connecteddorhi gh can be

seen in fig. 8.3.
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Level 1

[ chg_fig[ cnt| Acnd_no_higH a-list [d-list | @

Level O
Acnd_no_highidept

[chg_flg cnt|Adept |a-[ist|d-list|7|—|/| ]
Acnd_[no_highkincome’
|chg_flg| cnt|Aincoméa-list [d-list 7|— /] EEJZ
Acnd_no_highkincome”
[chg_fig cnt|amgr  [a-list [d-list 7|—|/|
Acnczi_no_high!}&mgr

Figure 8.3: The nodes in the propagation network far_hi gh

8.3 Creation/Deletion of Rules

When a rule is created, a condition function and an action procedure is created
(see section 4.1). When rules are created all paktiglations of the rule con-
dition are also generated (see section 5.3). Any re-optimization needed (see
section 7.3) is also performed. When a rule is deleted, the condition function,
the action procedure, and the parthatelations are also deleted.

8.4 Activation/Deactivation of Rules

When rules are activated/deactivated the network is expanded/contracted with/
without the nodes needed to propagate changes to the rule condition. When a
rule is activated a naive evaluation of the rule condition for the specific activa-
tion pattern is performed. The result is saved in the action-set of the rule. This
is done in order for the rule to catch up with all the changes that have occurred
prior to the rule activation.
The algorithm for inserting-relations into the network looks as follows:
Insert(AP):
if AP is not already inserted into the network then
create node_of(AP);
if Dp is empty, where Dp is the set of relations that P depends on,
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then /* P is a base relation */
Insert_in_level(node_of(AP), 0);
else
for each AQ where QUDp do
Insert(AQ);
insert (node_of(AQ) . AP/AQ) into the
depends-on list node_of(AP).d-list;
insert node_of(AP) into the affects list
node_of(AQ).a-list;
Insert_in_level(node_of(AP),
max(for each AQ where QUDp: level_of(node_of(AQ))) + 1);

Insert_in_level(node, level):
if level does not exist in network then create level,
insert node into the level of the network;
set level_of(node) = level,

The algorithm for removing-relations looks as follows:
Remove(AP):
if AP is present the network then
if the affects list node_of(AP).a-list is empty then
for each AQ where QUDp
remove (node_of(AQ) . AP/AQ) from the
depends-on list node_of(AP).d-list;
remove node_of(AP) from the affects list node_of(AQ).a-list;
Remove(AQ);
Remove_from_level(node_of(AP), level_of(node_of(AP)));
delete node_of(AP);

Remove_from_level(node, level):
remove node from level of network;
if no nodes remain in the level then delete the level;

All operations to the network are transactional, i.e. the changes are logged so
that they can be undone during a transaction rollback.

8.5 The Propagation Algorithm

During ongoing transactions all changes to the log are screened for changes
that might afect activated rule conditions. If a change is made to a stored rela-
tion that has a corresponding node in level 0 in the propagation network, i.e. if
a relevant update event is detected, then the change is added to the correspond-
ing A-set (usingDA).

In the check phase the propagation algorithm propagates all the non-empty
A-sets in a breadth-first mannes illustrated in fig. 8.4. Since the network is
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constructed in such a way that the change dependencies of one node,A:e. the
relations it depends on, are calculated in the network levels paldseadth-

first propagation ensures that all the changes have been calculated when we
reach the node.

ml-  CoNtrol flow

—A> data flow

Changes to rule conditions

PO\ VSV /ONY!

Changes to stored relations
Figure 8.4: Propagation by a breadth-first algorithm

In the check phase one round of propagation is first done using the changes
accumulated throughout the transaction. If any rules were triggered, i.e. were
inserted into the conflict set in the propagation, then one rule activation is cho-
sen, using some conflict resolution method. The action part of the chosen rule
activation is then executed for each tuple generated in the condition of the rule.
The action part is executed for each positive change since the last check phase,
we call this theaction set, which is calculated from thA-set of the condition.
To determine if an already triggered rule (i.e. it is in the conflict set) is no
longer triggered, the action set is saved and is modified continuously to deter-
mine if it is still triggered.

If a rule is triggered, aule activation is inserted into the conflict-set. A rule
activation consists of:

» Therulethat was triggered
» Theaction set which contains the tuples on which the action is to be applied

The algorithm presented here is not dependent on any specific conflict resolu-
tion method. In the present implementation of rules in AMOSQL a simple pri-
ority scheme is used.oTsupport this, each rule activation has a priority and the
conflict set is divided into several priority levels. If the condition for which a
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rule was triggered changes to false, i.e. the action-set of a rule activation
becomes empiythen the rule activation will be removed from the conflict set
without executing the action.

Note that the algorithm presented here does not handle recursion, but can be
extended to handle this. AMOSQL providesransitive closure! operator that
can handle most of the queries where recursive evaluation is needed. This oper-
ator is easier (or less fifult) to evaluate incrementally than general recursion
since it involves looping over only one node in the network, see related work in
section 8.6 and future work in section 10.

The log-screening looks as follows:

if a change is done to a stored relation with a corresponding node in the
propagation network then
if the screener predicate of the relation evaluates to true then
add the change to the A-set of the node (using DA);
set node.chg_flag = true;
set (node.level).chg_flag = true; /* always level 0 */

The propagation algorithm looks as follows:
propagate():
for each level in the network do /* starting with level 0 */
if level.chg_flg then
for each node in level.nodes do *
if node.chg_flg then
for each below-node in node.d-list do
if below-node.chg_flg then
execute each partial A-relation and
accumulate the result into the A-set
of the node (using [1,); **
decrease_count(below-node);
if node.a-list is empty then
/* node is a top node */
for all activations of the rule do
calculate the action-set;
/* using the [, and the A-set */
if node.A-set has changed then
if node.A-set is not empty and
node.a-list is not empty then
for each above-node in node.a-list do
set above-node.chg_flg = true;
set (above-node.level).chge_flg = true;
increase-count(node);
else /* node is a top node */

1. Transitive closure performs repetitive application of a function,
tclose(ftunctions Oobj ects Nj nteger) = f"(o0)
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set node.chg_flg = false;
clear node.A-set;
for all activations of the rule do
if the action-set is not empty then
insert the rule activation into the
conflict-set; /* if it is not already there */
else /* the action-set is empty */
remove the rule activation from
the conflict-set; /* if it is there */
level.chg_flag = false;

increase_count(node):
set node.cnt = node.cnt + 1;

decrease_count(node)
set node.cnt = node.cnt - 1;
if node.cnt = 0 then
set node.chg_flg = false;
clear the node.A-set;

*) The algorithm can be modified to keep a separate list of all changed nodes in
each level in order to avoid checking the change flag in all nodes. This will
increase performance when the network becomeelar

**) If the system has set-oriented semantics the accumulated updates must be
sorted in a chronological order

The check phase looks as follows:
check():
propagate();
while conflict-set is not empty
choose (using some conflict resolution method) and
remove one rule activation from the conflict-set;
execute the action on the changes of the rule condition
(using the calculated action-set);
clear the action-set of the executed rule activation;

propagate();

8.6 Related Work

The PF-algorithm [43] is integrated with Datalog and uses incremental change
monitoring of conditions by defining-relations in a similar manner as in our
approach. Unlike PRve use éreadth-first, bottom-upropagation algorithm

(as in [61]) to correctly and fdiently propagate both positive and negative
changes without retaining space consuming materializations of intermédiate
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relations between check phases. The PF-algorithm uses permanent materializa-
tion and propagates first negative changes then positive oneslépth-first
manner Work on improving the PF-algorithm is presented in [40]. The algo-
rithms presented in [43] and [47] can handle change propagation of recursive
relations which our algorithm at the present can not.
Basic techniques on recursive query processing can be found im[&hnF
dle recursiveA-relations the propagation algorithm will have to be modified to
return to previous levels in the network and to re-propagate the changes of the
recursiveA-relations using materialization and fixed-point techniquéew-
ever, since recursive queries are uncommon in AMOSQL (and in general [70]), the
work has not been focused on recursion. When the network is constructed, loops can
automatically be detected and a naive evaluation of the condition can be used instead.
In [34] an algorithm is presented that given as set of production rules,
returns a set of the most profitable expressions that should be maintained. This
work considers the &cts of rule actions to other rule conditions. Our work, on
the other hand, is concentrated ofioént monitoring of rule conditions. The
incremental change monitoring technique can be seen as just an optimization
since there is no semantic fdifence from naive evaluation. Howeyanalysis
of the rule actions as well could be an interesting extension to the technique.
Transitive closue [1] is a simplification of general recursion to mimic
direct recursion where a function is continuously applied to its own result.
Transitive closure can handle many of the queries that would otherwise be
stated recursively in AMOSQL. ransitive closure is easier (less hard) to
implement in the algorithm presented here since it involves looping over only
one node in the propagation network, assuming the function is known at com-
pile time. Techniques for dicient evaluation of transitive closure based on
incremental evaluation techniques can be found in [25]. Howagementioned
in [25], incremental evaluation is not possible in all cases of transitive closures.
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9] Performance

9.1 Performance Measurements of Change Monitoring

Performance of rule condition monitoring is related to expressability and the
complexity of rule conditions. Expressability relates to the number of rules
needed for a specific monitoring task. The rules in AMOSQL have the full
expressability of AMOSQL queries in the condition. Complexity relates to the
number of changes that carfeaft a rule condition and how theyfet the con-
dition. One rule can monitor several féifent changes to one rule condition.
The incremental evaluation technique based on partiféréiftiation is €f-
cient for small changes of a few functions thdeef the rule condition, but is
not so eficient for lage changes to many such functions. The number of
changes that can fett the rule condition does not directly relate to thie ef
ciency of this technique since it only considers one change at a time. What
affects performance is the number of changes and how a particular change
affects the condition.

A series of measurements were made to determine how much riiorenef
or inefiicient incremental evaluation is, based on partiafedéntiation and
change propagation, compared to naive evaluatiorief2ifit kind of changes to
a rule condition were also studied. The rule that was used for the measurements
was themoni t or _al | _i t ens rule in section 3.2:

create rule nonitor_all _itens() as
when for each itemi
where quantity(i) < threshol d(i)
do order (i, max_stock(i) - quantity(i));

where the threshold function is defined as

create function threshold(itemi) -> integer as
sel ect consune_frequency(i) * delivery time(i, s)
+ mn_stock(i)
for each supplier s where supplies(s) = i;

This rule monitors the changes in quantity of all items in an invenTdrg rule
condition depends on changes to the quantity of items, the consume-frequency
of the items (how many items that are consumed on an average per day), the
delivery time of items, the minimum stock of items and which supplier delivers

a specific item. The first three measurements aimed at determining how much
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more eficient the incremental change monitoring is than the naive change
monitoring for small changes. For the naive evaluation version, simple screener
predicates were used. For the incremental evaluation version, the generated
partial A-relations were optimized as described in section 7.3.

9.1.1 Benchmark 1

A series of 100 transactions were run where each transaction changed the quan-
tity of one item. This will cause change to one pamaklation which is very
efficient to monitor by incremental techniques. The naive change monitoring
technique will evaluate the whole condition regardless of how much have
changed. The results can be seen in fig. 9.1. Note that the axis have logarithmic
scale since the magnitude between the execution times of tleeedif tech-
niques is too great to display with linear scaled axis. The time for incremental
change monitoring is very constant, regardless of the number of items, with an
average time of 14 sec or 140 msec/transaction. Note that the times presented
here do not represent the possible throughput of the AMOS architecture, only
the results from running a prototype implementation as a regular application
processl. The time for naive change monitoring increases linearly with the
number of items and is on the average 8.2 sec/transaction for 10000 items.

From this first benchmark it is easy to see why incremental change monitor-
ing is the better technique of the two, if the number of changes to a rule condi-
tion in a transaction is small. Naive change monitoring quickly becomes
unfeasible as the size of the database grows and where rule conditions are com-
plex queries over lge portions of the database.

1. All measurements were made on a HP9000/710 with 64 Mbyte of main memory and
running HP/UX.
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Figure 9.1: 100 transactions with 1 change to 1 parfialelation

9.1.2 Benchmark 2

A series of 100 transactions were run where each transaction changed the quan-
tity of one item and the delivery time for the item. This will cause change to
two partial A-relations which is still very &tient to monitor by incremental
techniques. The naive change monitoring technique will evaluate the whole
condition and thus increases linearly with the size of the database. The results
can be seen in fig. 9.2. The time for incremental change monitoring is on the
average 15 sec or 150 msec/transaction.
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Figure 9.2: 100 transactions with 1 change to 2 parfialelations

9.1.3 Benchmark 3

A series of 100 transactions were run where each transaction changed the quan-
tity of one item, the delivery time for the item, and the consume-frequency for
the item. This will cause change to three pamiaklations which is still very
efficient to monitor by incremental techniques. The naive change monitoring
technique will evaluate the whole condition and thus increases linearly with the
size of the database. The results can be seen in fig. 9.3. The time for incremen-
tal change monitoring is on the average 16 sec or 160 msec/transaction.

These first measurements show that the incremental change monitoring
technique is very @étient if the number of changes is small even if several
parts of the rule conditioare efected. As will be shown in benchmark 7 this is
not always the case. It depends on how the charfgetafthe condition and
how expensive the related partisrelation is to evaluate.
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Figure 9.3: 100 transactions with 1 change to 3 parfialelations

914 Benchmark 4

In this test one transaction was run which updated the quantity of all items in
the database. This means that only one patdiiaélation is afected. The
affected partialA-relation has to check the quantities of all the items which is
exactly what the naive change monitoring technique does. Since there is an
overhead in doing the actual propagation, the incremental change monitoring
technique performs slightly worse than the naive one (fig. 9.4).
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Figure 9.4: 1 transaction with n changes to 1 partial A-relation

9.15 Benchmark 5

In this test one transaction was run which updated the quantity and the delivery
time of all items in the database. This means that two partial A-relations are
affected. The affected partial A-relations have to check all the items which is
exactly what the naive change monitoring technique does, but it does it all at
once, as in the case of benchmark 4. The incremental change monitoring tech-
nique still performs only slightly worse than the naive one.
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Figure 9.5: 1 transaction with n changes to 2 partflatelations

9.1.6 Benchmark 6

In this test one transaction was run which updated the quattigydelivery

time, and the consume-frequency of all items in the database. This means that
three partialA-relations are décted. The d&cted partialA-relations have to
check all the items which is exactly what the naive change monitoring tech-
nique does, but it does it all at once, as in the case of benchmarks 4 and 5. The
incremental change monitoring technique now performs much worse than the
naive one. The reason for this can be found in the definition dfltheshol d
function. Changing the consume-frequency causes a pdytialation to be
evaluated that has to check which supplier supplies the changed item, what is
the delivery time of the item, and what is the minimum stock of the item.
Changing the delivery time does not require finding the supplier since this is
part of the propagated change.
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Benchmark B
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Figure 9.6: 1 transaction with n changes to 3 parfiatelations

9.1.7 Benchmark 7

The previous benchmark shows thafeliént changes can havefeifent efects
on performance because the parfialelations that they &dct varies in cost of
evaluation. The number of changes of a padtaklation does not necessarily
need to be laye in order to have a lge efect on the total performanceoT
highlight this we redefine the n_st ock function to afect all items.
create function min_stock() -> integer;
create function threshold(itemi) -> integer as

sel ect consune_frequency(i) * delivery tine(i, s)

+ m n_stock()
for each supplier s where supplies(s) =i;

Changing the minimum stock does have a dramafecebn performance. The
guantity was changed for all items and the minimum stock was changed once in
a single transaction fig. 9.7. This can be compared with fig. 9.4 to show that
changing the minimum stock only once dramatically degrades performance for
the incremental change monitoring technique.
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Benchmark 7
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Figure 9.7: 1 transaction with n changes to 1 partial A-relation and 1
change to 1 expensive partial A-relation

From these measurements the conclusion can be made that the incremental
change monitoring technique is superior for a small number of changesin most
transactions. In this case, the performance is independent of the size of the
database, we say that the incremental change monitoring scale-up with respect
to size.

For alarge number of changes in a transaction the naive change monitoring
technique performs better. In the worst case, the incremental change monitor-
ing, however, only performs worse than naive change monitoring by a constant
factor. By deactivating rules with incremental change monitoring during large
number of changes and activating them (causing a naive evaluation) before
transactions are committed the best of both techniques can be attained. How-
ever, the cost of deactivating and activating a rule again must be considered
here since this involves contracting and then expanding the propagation net-
work.

Note that these measurements are not really dependent on that only one rule
is activated. If several rules are activated, but only one of them is affected by
the changes, i.e. if the condition refers to the function that changes, then there
would be no overhead from the other rules. If, however, there are changes that
affect several rules or if one rule causes changes that affects the condition of
another rule then it is a different matter. Measuring performance in such cases
requires carefully designed benchmarks that can give valuable information
where the bottlenecks are in different change monitoring and action execution
strategies.
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9.2 Related Work

In [58] a performance test is presented for incremental updates in tieoedif
rule based programs. The first is the game of LIFE where incremental updates
of a matrix of varying size is monitored. The second is a combinatorial optimi-
zation problem for allocating mortgage-backed securities. The results favours
incremental update for the second program, but not for the first one. No real in-
depth analysis is provided why this is so, only that updates in the first program
produces major changes in the chain of inference which is unsuitable for incre-
mental evaluation.

There is a need for development of a set of standard benchmarks that can be
used for performance analysis offdifent evaluation strategies of rules.
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10 Conclusions and Future
Work

The thesis presents tl@bject Relational data model of AMOS and the intro-
duction of active rules into AMOSQL, the query language of AMOS. The rules
are based on the concept of function monitoring. All the changes in the system
that the rules are to monitor will be introduced as changes to functions. Specific
events that need to be referenced in rules will be introduced as higher order
functions. The thesis presents work on rules that trigger on database updates
only. Rules are of CA (Condition Action) type where the actual events that can
trigger a rule are calculated by a rule compilene Condition of a rule can
consist of an AMOSQL query and the action of AMOSQL procedure state-
ments, i.e. queries and updates. Rules monitor changes to the rule conditions
and data can be passed from the Condition to the Action of each rule by using
shared query variables, i.e. set-oriented Action execution[72] is supported. By
modelling rules as objects it is possible to make queries over rules. Overloaded
and generic rules are also allowed, i.e. rules that are parameterized and can be
activated for diferent types.

The thesis also presents techniques fdicieht monitoring of changes to
rule conditions. Rule condition monitoring must not decrease the overall per-
formance to any great extent, with respect to either processor time or memory
utilization. The following techniques for compilation and evaluation of rule
conditions have been developed to meet these goals:

» To efficiently determine changes to all activated rule conditions, given updates of
stored data, aule compiler analyses rule conditions and generates change detec-
tion plans.

« To minimize unnecessary execution of the plaosener predicates that screen
out uninteresting changese generated along with the change detection plans.
The screener predicates are optimized using cost based query optimization tech-
nigues.

» For efficient monitoring of rule conditions, the rule compiler generates several
partially differentiated relations that detect changes to a derived relation given
changes to one of the relations it is derived from. The technique is based on the
assumption that the number of updates in a transaction is usually small and there-
fore only small effects on rule conditions will occur. Thus, the changes will only
affect some of the partially differentiated relations. The partially differentiated
relations are optimized using cost based query optimization techniques.
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» To efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially differentiated relations are computednbyemental
evaluationtechniques [9] [59].

» To correctly and efficiently propagate both insertions and deletions (positive and
negative changes) without unnecessary materialization or computation, the calcu-
lation of changes to a relation must be preceded by the calculation of the changes
to all its sub-relations. This is accomplished dyr@adth-first, bottom-upropa-
gation algorithm, which also ensures graceful degradation as the complexity of
rule conditions and as the size of the database increases.

An algorithm was presented as well as a performance study that compares the
incremental evaluation technique with naive, full evaluation. The study showed
that for small updates the performance is independent of the size of the data-
base, we say that the change monitosngle-upwith respect to size.The main
conclusion from the performance study can be summarized as: use incremental
evaluation for small changes to rule conditions and use naive evaluation for
large changes. By deactivating rules forglarchanges and activating them
again at the end of transactions (causing a naive evaluation), the best of both
techniques can be attained. When to automatically deactivate rules, or what
handle to give the user for manual deactivation is open for further research.

There are several directions for possible future work on the rule system in
AMOS. The types of events that the rules can trigger on needs to be extended to
include schema updates, external events such as sensor updates, and time. This
can be done by introducing active functions for all the changes that are desired
to be monitored. Such functions already exist for querying the database
schema. Extending AMOSQL with active functions for event specifications and
event operations as in [17] is an important part of making AMOS a truly active
database. Immediate rules are also needed, especially when introducing exter-
nal asynchronous events and time events. How the incremental change moni-
toring techniques relate to time events must also be investigated further

The incremental evaluation techniques presented here needs to be fully
implemented to handle aggregates, transitive closure or recursion, and tech-
niques for determine, or explicitly state, whether nervous rule semantics are
sufiicient for a particular rule or if strict semantics are needed.

The cost models for deciding between incremental versus naive change
monitoring needs to be implemented and evaluated through empirical measure-
ments. The same is needed for the cost models for choosing between doing a
logical rollback or using materialization techniques for handling negative
changes, i.e. database removals.

Further research is also needed in integration of AMOS with applications
that utilize the rule system. Such work is important to give feedback on what
functionality and extensions are needed in an active database system such as
AMOS.
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Appendix

Relational operationsin Datalog

Datalog, ordomain calculus, is equivalent to relational calculus in expressional
power The relational operationmion, difference, cartesian product, selection

and projection can be directly specified in Datalog. Other operations such as
join andintersection that can be derived from these basic operations can also
be directly specified.

Union

PARENT = FATHER O MOTHER

is translated into

parent (X, Y) « father(X, Y) Onmother(X, Y)
or

parent (X, Y) —~ father(X, YY)

parent (X, Y) « mother(X, Y)

Difference

FATHER = FARENT - MOTHER

is translated into

father (X, Y) « parent(X, Y) O-mother(X, Y)

Cartesian product

PAIR = PERSONx PERSON

is translated into

pair(X, Y) — person(X) Operson(Y)

Selection

PAIR = 0g1 > $(PERSON; x PERSON,)
MILLIONAIRE = 0g; > 99999NCOMEg; g2
is translated into
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pair(X, Y) « person(X) Operson(Y) OX#Y
mllionaire(X) — income(X, Y) OY>999999

Projection

IS_FATHER = 1g; FATHERg;
istranslated into

is_father(X) - father(X, Y)

Join
GRANDPARENT = 1y PARENTy v <] PARENTy 7 =
T 7(0y1 =y2PARENTy v1 X PARENTy, 7 )

isdirectly translated into

grandparent (X, Z) «
parent (X, Y1) Oparent(Y2, Z) OY1=Y2

or more naturally expressed as
grandparent (X, Z) — parent(X, Y) Oparent(Y, Z2)

Inter section

RICH_GRANDPARENT = GRANDPARENT n MILLIONAIRE =
(GRANDPARENT O MILLIONAIRE) -
((GRANDPARENT - MILLIONAIRE) O
(MILLIONAIRE - GRANDPARENT))

is directly translated into

ri ch_grandparent (X) -
grandparent (X) Onmillionaire(X) O
=((grandparent (X) O-millionaire(X)
(mllionaire(X) O-grandparent(X)

O

~—

or more naturally expressed as
ri ch_grandparent (X) « grandparent (X) Onm |lionaire(X)
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Justification for Partial Differ entiation

Below follows a formal justification for the correctness of partiatedé@ntia-
tion.

There exists an isomorphism f, denofg@dbetween the boolean algebra of
ObjectLog and set algebra[1]:

f: <O, -,0, 0> » <O - 0 O>,

where O is the domain of objects in the database, - is ne@as@d on the Closed
World Assumption O is logical conjunctiond is logical disjunction, AO) is the
power set of atoms in G, is set complement)) is set intersection, and! is set
union. Using this we can define change monitoring of ObjectLog through set opera-
tions.

LetA,S, delta-plus of S, be the set of additions (positive changes) to a seAS and
S, delta-minus of S, the set of deletions (negative changes) from S. Res¢he
(delta-set) of S be a tuple of the positive and the negative changes of a set S:

AS = <A, SAS>
Let DA (delta-union) be the operator that calculates the union of\hsets:
AP U\ 0Q=<@,P-AQ L (1,Q-AP),
@P-0Q U @QQ-AP) >
To detect changes of derived relations we define conjunction, disjunction, and
negation in terms of theik-relations as:

AQOR)FAQN R) =
<D(A+Q N R) U (@n aR), §>

A

<. (AQ N Rog) U (Quig N AR>
or for bag-oriented semantics
AQUR)LGAQRN R) =

<D(A+Q N R) U (@Q-2,Q N AR), >

A
<{}, (A-Q N Ryg) U ((Quig-2-Q) N AR)>

AQUR) FAQLR) =
<[(|A+Q - Rold) D (A+R - Qold)a {}>

A
< (AQ-R) L (A R-Q)>
A(-Q) F A(-Q) = A.Q,A,Q>
where Rig= (A.R LI R)-A,R

and sinceA,R N A.R=0,i.e.AR-A,R = AR, we have
Rog= A.R I (R-A,R) = A.R 0 (R N ~A,R) which can be
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expressed logically by:
Rolg =A.R O (RO-(A,R))

where Q)q is defined likewise.

Let D, be the set of all relations that a relation P depends on. Legothve
partial A-relations AP/A+X of a relation P be defined by the body of P where a
single relation XDy has been substituted by its positieelationA,X.

Let thenegative partial A-relations AP/A X of a relation P be defined by the
body of P where a single relationXD, has been substituted by its negative
relationA_X and where all YDy, Y # X, have been substituted by,y.

Positive partial changes are combined by:

AP =1 AP/A,X, OX 0D,

and negative changes by

AP =0 ap/ax, OX 0D,

The full A-relation (delta-relation) is defined as:

AP =<AP, > [, <3, AP>

Correctness is here defined as: given a relation P wheretbe set of all other
relations that P depends on and that we have all the net chASg#fsall rela-
tions SU Dy, thenAP reflects the changes to P

1. If P is a base relation then its changes can be found directB; in

2. If P is a derived, conjunctive relation then:
i) IfP ~ SOT then we need to show th&®P/A.S -« A,SOT for all positive

changesto S
If T is a base relation then since the contribution of deduced facts in P are
dependent on the facts both in S antthdn any added facts in S that are also
in T are also in P. In some cases and when using set-oriented semantics,
added facts in S might give deduced facts that were already presggt in P
then the algorithm might causervous triggering of rules.To avoid this we
have to calculatAP/A.S - R, 4. If T is a derived relation of n conjunctions
then clearly:
APIAS < A ST, 0...0T,
If T is a derived relation of n+1 conjunctions then we also have:
APIAS < ASUT 0. 0T
and by induction the execution of positive, conjunctive paktialations has
been shown to be correct.

iy IfP — SLIT then we need to show thHs®/A S — A S[IT,4for all negative
changesto S
If T is a base relation then since the contribution of deduced facts in P are
dependent on the facts both in S anthdn any removed facts from S that
also where in Jj4 supported facts are facts that are no longer in P. In some
cases and when using set-oriented semantics, removed facts from S might
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give deduced facts that are still present in P.To avoid incgrepagation

of negative changes we have to check that the deduced change is not still
present in P, i.AP/AS - P.

If T is a derived relation of n conjunctions then clearly:

APIAS « ASOTyg10...0Tgn

If T is a derived relation of n+1 conjunctions then we also have:

APIAS « ASOTyg10...O0Tgid net

and by induction the execution of negative, conjunctive pdxtialations

has been shown to be correct.

3. If P is a derived, disjunctive relation, in disjunctive normal form, (and assuming set-
oriented semantics), then:
i) IfP ~ SOT thenwe need to show tsR/A,S — A,S[HTy 4 for all positive
changesto S
If T is a base relation then since the contribution of deduced facts in P are
dependent on facts in S ottfien anyadded facts to S will cause positive
changes to P if T was not already true for those facts.
If T is a derived relation of n disjuncts then clearly:
APIAS « ASATyg10...0-Tggn
If T is a derived relation of n+1 disjuncts then we also have:
APIAS « ASATyg10... 0Ty net
and by induction the execution of positive, disjunctive paftigdlations has
been shown to be correct.

i) IfP — SOT then we need to show th&®/A.S — AST for all negative
changesto S
If T is a base relation then since the contribution of deduced facts in P are
dependent on facts in S oitflen any removed facts from S will cause
negative changes to P if T is not true for those facts.
If T is a derived relation of n disjuncts then clearly:
APAS — ASUI-T,0...0-T,
If T is a derived relation of n+1 disjuncts then we also have:
APAS « ASU-T 0. 0-Thyy
and by induction the execution of negative, disjunctive pdtialations has
been shown to be correct.

4. If P is a derived negated relationP-S then we need to show that:
i) APAS - AS
All facts not in S are deduced to be in P. If a fact is added to S then a negative
change has to be deduced for P.

i) APIAS - AS
All facts in S are deduced to not be in P. If a fact is removed from S then a
positive change has to be deduced for P.

5. If P is a derived relation that depends on the subreldligtisen the changes
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calculated byAP/A, X andAP/A X, X[ Dy, can be combined H;_dA to give the total
changes of P.
i) For set-oriented semantiEsl.A is defined as joining positive and negative
changes id\-sets by removing duplicates and extinguishing complementary
positive and negative changes.

i) For bag-oriented semanti@A is defined as joining positive and negative
sets by keeping a count of duplicates and extinguishing complementary
positive and negative changes. For conjunctions a modification of gartial
relations will also have to be done to remove overlaps in the execution [47].
Positive changes are the calculated by:
changing all subgoals y &P/A,x to y -A.y, Ux, y I Dy and x# y and where
y precedes x in the conjunction,
and negative changes by:
changing all g in AP/A X 0 Yoiq - Ay, X, y 0 Dp and x# y and where g
precedes x in the conjunction.

In the proof above an assumption was made that we have the net changes of the
relation S collected iAS. The collection of changes of a relation was defined using
the[] 5 operator. If relations are defined to have set-oriented semantics then the order
of accumulation of changes has to be the same as the changes occurred in the
transaction.

The proof above can be used for calculating incremental changes to the relational
operators (with the related parts of the proof in parenthesis):

Union: (1, 3, 5)

parent(X, Y) ~ father(X, Y) Omother(X, Y)

Aparent(X, Y) /A father  — A father(X, Y) O-mother 44(X, Y)
Aparent(X, Y) [A,mother ~ —father ,4(X,Y) OA;mother(X, Y)
Aparent(X, Y) /A father < Afather(X, Y) O -mother(X, Y)
Aparent(X, Y) /A_.mother ~ =father(X, Y) OA_mother(X, Y)
Difference: (1, 2, 4, 5)

father(X, Y) ~ parent(X, Y) O-mother(X, Y)

Afather(X, Y) /A parent ~ A parent(X, Y) O -mother(X, Y)
Afather(X, Y) /A;mother ~ parent(X, Y) OA_mother(X, Y)
Afather(X, Y) /A parent  ~ A_parent(X,Y) O-mother ,4(X,Y)
Afather(X, Y) /A mother —~ parent ,4(X,Y) OA;mother(X, Y)

Cartesian product: (1, 2, 5)
pair(X, Y) ~ person(X)  Operson(Y)

Apair(X, Y) /A person’ ~ A,person(X) Operson(Y)
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Apair(X,Y)  /Aiperson” < person(X) OA,person(Y)
Apair(X, Y)  /Aperson’ ~ Aperson(X) Operson g4(Y)
Apair(X, Y) /A person”  — person q(X) OA_person(Y)
Selection: (1, 2, 5)

millionaire(X) ~ income(X, Y) gy > 999999
Amillionaire(X) /A income ~ Ajincome(X, Y) gY >999999
Amillionaire(X) /Aincome ~ A.income(X,Y) 0OY>999999
Projection: (1, 5)

is_father(X ) « father(X, Y)

Ais_father(X  )/A father ~ A,father(X,Y)

Ais_father(X  )/Afather ~ Afather(X,Y)

Join: (1, 2,5)

grandparent(X, Z) ~ parent(X, Y) Oparent(Y, Z)

Agrandparent(X, Z) /A parent’ <
. A parent(X, Y) Oparent(Y, Z)
Agrandparent(X, Z) /A parent” -
parent(X, Y) OA,parent(Y, Z)
Agrandparent(X, Z) /A_parent’
A_parent(X, Y) Oparent g4(Y, 2Z)

Agrandparent(X, Z) /A parent” -
parent g4(X,Y) OAparent(Y, Z)

Intersection: (1, 2, 5)
rich_grandparent(X) ~ grandparent(X) O millionaire(X)

Arich_grandparent(X) /A.grandparent  ~
A,grandparent(X) Omillionaire(X)
Arich_grandparent(X) /A, millionaire -
grandparent(X) OA millionaire(X)
Arich_grandparent(X) /A_grandparent
A _grandparent(X) Omillionaire oldX)

Arich_grandparent(X) /A_millionaire -
grandparent  44(X) OA.millionaire(X)
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