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Abstract
The role of databases is changing because of the many new applications that
need database support. Applications in technical and scientific areas have a
great need for data modelling and application-database cooperation. In an
active database this is accomplished by introducing active rules that monitor
changes in the database and that can interact with applications. Rules can also
be used in databases for managing constraints over the data, support for man-
agement of long running transactions, and database authorization control.

This thesis presents work on tightly integrating active rules with a second
generation Object-Oriented(OO) database system having transactions and a
relationally complete OO query language. These systems have been named
Object Relational. The rules are defined as Condition Action (CA) pairs that
can be parameterized, overloaded, and generic. The condition part of a rule is
defined as a declarative OO query and the action as procedural statements.

Rule condition monitoring must be efficient with respect to processor time
and memory utilization. To meet these goals, a number of techniques have been
developed for compilation and evaluation of rule conditions. The techniques
permit efficient execution ofdeferred rules, i.e. rules whose executions are
deferred until acheck phase usually occurring when a transaction is committed.

A rule compiler generatesscreener predicates and partially differentiated
relations. Screener predicates screen physical events as they are detected in
order to efficiently capture those events that influence activated rules. Physical
events that pass through screeners are accumulated. In the check phase the
accumulated changes are incrementally propagated to the relations that they
affect in order to determine whether some rule condition has changed.Partial
Differentiation is defined formally as a way for the rule compiler to automati-
cally generate partially differentiated relations. The techniques assume that the
number of updates in a transaction is small and therefore usually only some of
the partially differentiated relations need to be evaluated. The techniques do
not assume permanent materializations, but this can be added as an optimiza-
tion option. Cost based optimization techniques are utilized for both screener
predicates and partially differentiated relations. The thesis introduces a calcu-
lus for incremental evaluation based on partial differentiation. It also presents a
propagation algorithm based on the calculus and a performance study that veri-
fies the efficiency of the algorithm.
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Preface

This thesis presents work in two areas of active database research. First, it
presents work on integrating active rules into an Object Relational Database
System(ORDBMS) called AMOS [35]. Secondly, it presents work on efficient
change monitoring of rule conditions. These two parts are fairly unrelated. The
first part considers the extension of the data model of AMOS with rules which
is a matter of rule expressability. The rule model presented here can be intro-
duced into any ORDBMS.

The second part considers the efficiency of rule execution which is a matter
of performance. The techniques that are presented for efficient rule condition
monitoring are general and can be used in any active database system.

The two parts are, however, not completely unrelated. The rules that are
presented are based on the idea that the user should not have to specify any pro-
cedural information of how the rule condition is to be monitored. This informa-
tion should be deduced by the database. This requires that the database can
efficiently monitor any complex rule condition that the user defines.

Thesis Outline
Chapter 1 introduces the work done on integrating active rules into AMOS and the
techniques that have been developed for efficient change monitoring of rule condi-
tions.

Chapter 2 introduces the research area of active databases and the AMOS
architecture.

Chapter 3 defines the data model of AMOS, the query language AMOSQL,
and the extension of AMOSQL with rules. Examples are also given that further
explain how the rules can be used.

Chapter 4 defines the semantics of AMOSQL rules and how condition mon-
itoring is related to function monitoring. The techniques of generating screener
predicates and partial∆-relations are introduced.

Chapter 5 defines the theoretical foundation for the incremental evaluation
by specifying a calculus based on changes and by evaluating partial∆-rela-
tions.

Chapter 6 discusses how rules are related to the transactions in which they
are created, deleted, activated, deactivated, triggered, and executed. How rules
can be used for transaction management is also discussed. Chapter 6 ends with
a discussion on how the update semantics of the database affects the propaga-
tion algorithm described in chapter 8.

Chapter 7 discusses how query optimization techniques can be enhanced for
optimization of screener predicates and partial∆-relations.



x

Chapter 8 outlines the algorithm used to implement the incremental evalua-
tion of rule conditions. The algorithm performs a bottom-up, breadth-first prop-
agation of changes through a propagation network.

Chapter 9 compares the efficiency of the incremental method with the naive
method based on experiments.

Chapter 10 concludes with a summary of the presented techniques and
future work.
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1 Introduction

1.1 Background and Orientation

The role of databases is changing because of the many new applications that
need database support. Applications in technical and scientific areas have a
great need for data modelling and application-database cooperation.

The limitations of relational databases when it comes to data modelling has
led to the development of new database technology based on Object Oriented
techniques. In the first generation of Object Oriented (OO) databases the sys-
tems were built by adding persistency to OO programming languages. The
query languages in these systems were limited to procedural iterators over data.
The second generation of OO databases, calledObject Relational Database
Systems(ORDBMS), will include relationally complete query languages. Such
systems are already emerging and will probably be based on standards for OO
extensions of relational query languages such as SQL-3[7]. The next generation
databases, both relational and OO, will also include extended capabilities for
constraint management, event triggering, and database-application interaction.

The cooperation between the database and applications can consist of moni-
toring specific changes in the database that are of interest to an application.
Active databases provide applications with the possibility of specifying rules
that monitor changes in the database that inform the applications of interesting
changes. The need for data modelling also includes the need for specifying con-
straints over the data in order to enforce the integrity of the data for an applica-
tion. In an active database these integrity constraints can be specified as
constraint rules that monitor changes that might violate a constraint. The con-
straint rules can undo these changes either by providing compensating updates
that restores the integrity of the data or by aborting the transaction that per-
formed the changes.

1.2 Summary of Contributions

This thesis presents work done on integrating active rules into an Object Rela-
tional Database System(ORDBMS) and work on efficient change monitoring of
rule conditions.

1.2.1 Introducing Active Rules into an ORDBMS

Active rules have been introduced into the AMOS[35] ORDBMS which is fur-
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ther described in the thesis. The rules are integrated into AMOSQL, the query
language of AMOS. The rules are of CA (Condition Action) type, where the
Condition is an AMOSQL query and the Action can be any sequence of
AMOSQL procedure statements. Rules monitor changes to the rule conditions
and data can be passed from the Condition to the Action of each rule by using
shared query variables, i.e. set-oriented Action execution[72] is supported. By
modelling rules as objects it is possible to make queries over rules. Overloaded
and generic rules are also allowed, i.e. rules that are parameterized and can be
activated for different types.

1.2.2 Efficient Change Monitoring Techniques

As mentioned above, the ability to perform change monitoring is introduced by
rules in active databases. When doing change monitoring in a database it is cru-
cial that the overall performance of the database is not impaired to any great
extent. Rule monitoring is the activity of monitoring changes of the truth value
of rule conditions. Anaive method of detecting changes is to execute the com-
plete condition of a rule. This, however, can be very costly, since a rule condi-
tion can span over large portions of the database.

Rule condition monitoring must not decrease the overall performance to any
great extent, with respect to either processor time or memory utilization. The
following techniques for compilation and evaluation of rule conditions have
been developed to meet these goals:

• To efficiently determine changes to all activated rule conditions, given updates of
stored data, arule compiler analyses rule conditions and generates change detec-
tion plans.

• To minimize unnecessary execution of the plans,screener predicatesthat screen
out uninteresting changesare generated along with the change detection plans.
The screener predicates are optimized using cost based query optimization tech-
niques.

• For efficient monitoring of rule conditions, the rule compiler generates several
partially differentiated relations that detect changes to a derived relation given
changes to one of the relations it is derived from. The technique is based on the
assumption that the number of updates in a transaction is usually small and there-
fore only small effects on rule conditions will occur. Thus, the changes will only
affect some of the partially differentiated relations. The partially differentiated
relations are optimized using cost based query optimization techniques.

• To efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially differentiated relations are computed byincremental
evaluation techniques [9] [59].

• To correctly and efficiently propagate both insertions and deletions (positive and
negative changes) without unnecessary materialization or computation, the calcu-
lation of changes to a relation must be preceded by the calculation of the changes
to all its sub-relations. This is accomplished by abreadth-first, bottom-up propa-
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gation algorithm, which also ensures graceful degradation as the complexity of
rule conditions and as the size of the database increases.

Incremental evaluation techniques are based on using incremental changes as
bases for evaluation instead of evaluating the full expressions. A good analogy
is that ofspreadsheet programs. Take a simple example of a spreadsheet table
consisting of three columns A, B, and C (A+B), see fig. 1.1. In the last cell in
each column the sum of the cells above is stored. If one cell of column A or B
is changed then the sum A+B of that row will have to be recalculated. The other
rows do not have to be checked since they have not changed. This is basically
the idea behind incremental change monitoring of rule conditions. Rule condi-
tions can be seen as equations that we want to monitor in order to determine if
the rule should be triggered by some specific change. The conditions can, how-
ever, reference data in many different tables in one equation. The tables repre-
sent different database relations.

The total sumfor each column in the spreadsheet example will have to be
recalculated as well. By using the difference between the new and the old value
the recalculation can be done efficiently. This is how incremental change moni-
toring of aggregation functions is done, see section 5.4.

The rule compiler analyses the execution plan for the condition of each rule and
determines what functions the condition depends on. The output of the rule
compiler is a plan for determining changes to all activated rule conditions,
given updates of stored functions. The rule processor uses incremental evalua-
tion techniques for efficiently computing the changes of a derived function
based on changes of sub-functions. The compiler generates∆-relations that for
given updates represent all the net changes of a relation which a rule condition
depends on. The∆-relations are defined in terms of several partial ∆-relations
that efficiently computes the changes of a derived function based on changes of
a single sub-function. This is calledPartial Differentiation of derived func-
tions. The technique assumes that the number of updates in a transaction is

Figure 1.1: A spreadsheet example

A B C

0 200 600 A0+B0 = 800

1 300 700 A1+B1 = 1000

2 400 800 A2+B2 = 1200

3 500 900 A3+B3 = 1400

4 ΣA = 1400 ΣB = 3000 ΣC = 4400
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small and therefore usually only small effects on rule conditions will occur.
Thus, the changes only affect some of the partial∆-relations. For updates that
have large effects on the rule conditions the rule evaluation will have to be
complemented with other techniques to be efficient, e.g. full evaluation of rule
conditions or view materialization techniques[9] to re-use partial results.

Partial differentiation will be defined formally as a way to automatically
generate∆-relations fromCA-rules (Condition-Action rules). A∆-set is defined
as a ’wave-front’ materialization of a∆-relation that exists temporarily and is
cleared as the propagation proceeds upwards. The operatordelta-union (∪∆) is
defined to calculate a∆-set from incremental changes. For good memory utili-
zation, the technique avoids permanent materialization of large intermediate
relations that span over a large number of objects. Such materialized relations
can be very large and can even be considerably larger than the original data-
base, e.g. where Cartesian products or unions are used. When many conditions
are monitored and the database is large, complete materialization will become
infeasible; thus the database will not scale up.

By using incremental evaluation techniques for rule condition execution the
cost of rule condition monitoring can be reduced significantly. There have been
significant work done in outlining algebras for incremental evaluation, but the
actual algorithms and how they relate to other database functionality is not out-
lined in any great detail. Areas that affect these algorithms include transaction
management, update semantics, materialization, and query optimization. This
thesis introduces a calculus for incremental evaluation of rule conditions as
well as a propagation algorithm for propagating changes. The more specific
topics include a calculus for incremental evaluation of queries based onpartial
differencing, transactional management of rule creation/deletion and of the net-
work for rule activation/deactivation, avoidance of unnecessary materializa-
tion, effects of different update semantics on the propagation algorithm, and
query optimization techniques for enhancing performance, an algorithm for
incremental evaluation based on breadth-first propagation of changes in a net-
work, and a performance study of the incremental algorithm.

1.3 Related Work

The pioneering work done in introducing rules into databases was carried out in
the HiPAC project [16][27]. In the project different rule semantics were
defined. The system was, however, not implemented in full. Rule systems were
implemented in POSTGRES[69] and Starburst[53]. In Ariel[41] CA-rules were
introduced that resembled the CA-rules in AMOS. In Ode[39] active capability
was introduced to an OODBMS. In section 2.3 more information about these
systems can be found as well as other related work.

In [68] a relational approach is taken on the monitoring of complex systems.
In [62] a model for functional monitoring of objects in an OODBMS is pre-
sented. This model of functional monitoring is adopted and extended in the
integration of rules into AMOS.

General work on incremental evaluation can be found in [9][59]. Theoreti-
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cal work on incremental evaluation of queries can be found in [6][60]. Related
work on propagation of changes in production systems can be found in [55].
Directly related work on incremental change monitoring techniques can be
found in [30][34][41][43][47].

For more detailed discussions of how different work relate to the work pre-
sented in this thesis, see related work at the end of each chapter.



6 Introduction



7

2 Active Databases

2.1 Active versus Passive Databases

Traditional databases arepassive in the sense that they are explicitly and syn-
chronously invoked by user or application program initiated operations. Appli-
cations send requests for operations to be performed by the database and wait
for the database to confirm and return any possible answers. The operations can
be definitions and updates of the schema, as well as queries and updates of the
data. Anactive database can be invoked, not only by synchronous events that
can have been generated by users or application programs, but also by external
asynchronous events such as changes of sensors or time. When monitoring
events in a passive database apolling technique or operation filtering can be
used to determine changes to data. With the polling method the application pro-
gram periodically polls the database by placing a query about the monitored
data. The problem with this approach is that the polling has to be fine tuned as
not to flood the database with too frequent queries that mostly returns the same
answers, or in the case of too infrequent polling, the application might miss
important changes of data. Operation filtering is based on that all change oper-
ations sent to the database are filtered by an application layer that does the situ-
ation monitoring before sending the operations to the database. The problem
with this approach is that it greatly limits the way condition evaluation can be
optimized. It is desirable to be able to specify the conditions to monitor in the
query language of the database. By checking the conditions outside the data-
base the complete queries representing the conditions will have to be sent to the
database. Many database systems allow precompiled procedures that can
update the database. The effects of calling such a procedure cannot be deter-
mined outside of the database.

If the condition monitoring is used to determine inconsistencies in the data-
base, it is questionable whether this should be performed by the applications,
instead of the database itself. In an active database the condition monitoring is
integrated into the database. This makes it possible to efficiently monitor con-
ditions and to notify applications when an event occurred that caused a condi-
tion to become true and that is of interest to the application. Monitoring of
specific conditions represented as database queries can be done more efficiently
since the database have more control of how to evaluate the condition effi-
ciently based on knowledge of what has changed in the database since the con-
dition was last checked. It also lets the database perform consistency
maintenance as an integrated part of the data management.
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Internal database functions that can use data monitoring includes, for exam-
ple, constraint management, management of long-running transactions, and
authorization control. In constraint management rules can monitor and detect
inconsistent updates and abort any transactions that violate the constraints. In
some cases compensating actions can be performed to avoid inconsistencies
instead of performing a roll-back of the complete transaction. In management
of long-running transaction rules can be used to efficiently determine synchro-
nization points of different activities and if one transaction has performed
updates that have interfered with another [28]. This can be used, for example,
in cooperation withsagas[37] where sequences of committed transactions are
chained together with information on how to execute compensating transac-
tions in case of a saga roll-back. In authorization control rules can be used to
check that the user or application has permission to do specific updates or
schema changes in the database.

Applications which depend on data monitoring activities such as CIM1[52],
Medical[44] and Financial Decision Support Systems[20] can greatly benefit
from integration with databases that have active capabilities.

2.2 Active Databases and other Rule Based Systems

At a first glance it might seem that active databases are in some sense similar to
knowledge based systems[45] and in other senses toreactive systems[54]. There
are, however, some fundamental differences. An active database has basic data-
base functionality such as transactions and a query language that give consist-
ent and declarative access to data. The rules provide a handle tomonitor[12]
changes in the database. The database can detect changes of data by monitoring
changes to rule conditions that express specific situations, or database states
that are of interest. Active databases are only partly rule driven and most
changes are not side-effects of other rules. In active databases there is a clear
separation between the condition of a rule and the events that causes the condi-
tion to be evaluated. The possibility of modelling complex events is considered
equally as important as modelling complex conditions.

In knowledge based systems the rules are used forreasoning using facts in a
knowledge base. In these systems there is usually no clear distinction between
events and rule conditions. Knowledge based systems usually provide different
kinds of rules such as both forward and backward chaining rules and usually
also provide more control of the rule inference machine. The rules can be used
to build Theorem Provers[57] and Truth Maintenance Systems (TMS)[31].
These systems are often used to model complex behaviour, often based on
uncertainties, through a large number of rules over a fairly limited amount of
data. Support for grouping rules and explanatory functions that explains ‘why’
the system behaved in a certain way are common in this systems. In active data-
bases the number of rules is usually smaller than in knowledge based systems,

1. Computer Integrated Manufacturing
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but the amount of data that the rules are defined over is usually large, some-
times very large.

In reactive systems the rules are used forcontrol of a physical environment.
These rules are usually event driven with no conditions or fairly uncomplicated
conditions. There is usually no database at all, all events come from changes in
the physical environment. The rules that trigger usually directly control some-
thing in the physical environment which in turn generate events that again trig-
ger some rule and so on. These kind of systems are usually real-time systems
with a concept of time and a high degree of parallelism.

In reality, of course, there are no pure active, knowledge based or reactive sys-

tems, all rule based systems incorporate some monitoring, reasoning and con-
trol(fig. 2.1). There are, however, differences between how much of these can
be found in a particular system. By mapping external events, that signal
changes in a physical environment, into an active database [24], the system
becomes partly reactive. The same can be done with a knowledge based system,
as is done inreal-time knowledge based systems[50]. Active databases that pro-
vide advanced constraint reasoning capabilities such as [13],or self reflective
rules as in [33], can be seen as moving from active databases closer to knowl-
edge based systems.Demons andblackboard based systems[32] can be seen as

reasoning

co
nt

ro
l

monitoring

knowledge based
systems

active databases

re
ac

tiv
e 

sy
ste

m
s

Figure 2.1: The relation between active databases and other rule based
systems
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moving from knowledge based systems towards active databases. Introducing
complex sensors andsensor fusion techniques [22] in reactive systems, can be
seen as moving closer to active databases, since the rules now trigger on more
complex events or conditions and the state of the sensors is usually saved in
some simple database. As can be seen in fig. 2.1, AMOS is mainly based on
monitoring, but can also be seen as having limited reasoning and control capa-
bilities.The reasoning in AMOS is based on having the declarativeness of
AMOSQL queries in the rule conditions. The control in rule actions is limited
to updating the database or by calling applications that in turn control some
external environment. The architecture of AMOS is presented in section 2.5.

In some system architectures, the reasoning, the monitoring and the control
are seen as different layers of the architecture [52].

2.3 Active Databases, a Short Survey

In System R [3] atrigger mechanism was defined that could execute a pre-
specified sequence of SQL statements whenever some triggering event
occurred. The triggering events that could be specified included retrieval, inser-
tion, deletion and update of a particular base table or view. Triggers have
immediate semantics, i.e. they are executed immediately when the event is
detected. In System Rassertions were also possible that specify permissible
states or transitions in the database through integrity constraints that always
have to be true after each transaction. Specific events have to be specified for
when assertions are to be checked as with triggers. Assertions have deferred
checking semantics, i.e. they are usually checked when transactions are to be
committed.

The termactive databases was coined by [56] as “a paradigm that combines
aspects of both database and artificial intelligence technologies”. In [56] a
mechanism for constraint maintenance,Constraint Equations, was presented as
a declarative representation for a set of related Condition-Action rules.

In HiPAC [16][27] a thorough specification was done of what different
mechanisms were desirable in an active database system. Rules are defined as
Event-Condition-Action (ECA) rules, where the Event specifies when a rule
should be triggered, the Condition is a query that is evaluated when the Event
occurs, and the Action is executed when the Event occurs and the Condition is
satisfied. In HiPAC coupling modes(fig. 2.2) were defined which specified how
the evaluation of rule conditions and the execution of rule actions were related
to the detected events and the transaction in which the events occurred.Imme-
diate rule processing means that the rule conditions are evaluated and the
actions are executed immediately after the event occurred. A separation was
also made between if the rule processing takes place before or after the update
has taken place in the database.Deferred rule processing means that rule
processing is delayed until the transaction is to be committed.Casually
Dependent Decoupled rule processing means that any triggered action execu-
tion is executed in a separate sub-transaction that waits until the main transac-
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tion is committed. Decoupled rule processing means that the sub-transaction is
completely decoupled from the main transaction and commits regardless of the
outcome of the main transaction.

In POSTGRES [69] rules were introduced as ECA rules where events can be
retrieve, replace, delete, append, new (i.e replace or append), andold (i.e.
delete or replace) of an object (a relation name or a relation column). The con-
dition can be any POSTQUEL query and the action any sequence of
POSTQUEL commands. Two types of rule systems exists, theTuple Level Rule
System which is called when individual tuples are updated, and theQuery
Rewrite System which resides in the parser and the query optimizer. The Query
Rewrite System converts a user command to an alternative form which checks
the rules more efficiently. No support exists for handling temporal, external
events, and composite events.

In Starburst [53] ECA rules were introduced and the events can beINSERT,
DELETE, andUPDATE of a table. The condition can be any SQL query and the
action any sequence of database commands. Rules that are defined can be tem-
porarily deactivated and then be re-activated. The condition and action parts
may refer totransition tables that contain the changes to a rule’s table made

BOT Event signal EOT Commit

BOT Event signal EOT Commit

BOT Event signal EOT Commit

BOT Event signal EOT Commit

Triggered operation

Triggered operation

BOT
Triggered operation Commit

BOT
Triggered operation Commit

Immediate

Deferred

Causally-
Dependent
Decoupled

Decoupled

BOT : Beginning of transaction
EOT : End of transaction

Figure 2.2: Rule processing coupling modes in HiPAC



12 Active Databases

since the beginning of the transaction or the last time that a rule was processed
(whichever happened most recently). The transition table INSERTED/
DELETED contains records inserted/deleted into/from the trigger table. Transi-
tion tables NEW_UPDATED and OLD_UPDATED contain new and old values
of updated rows, respectively. In [72] the set-oriented semantics of Starburst
rules is presented. In a set-oriented rule the action part is executed for all tuples
for which the condition is true.

Other systems based on ECA-rules are [11][38].
In Ariel [41] production rules were defined on top of POSTGRES. In Ariel

CA-rules were allowed which use only the condition to specifylogical events
which trigger rules.

In Ode [39] constraints and triggers were introduced into an Object Ori-
ented database. Thebasic events that can be referenced are creation, deletion,
update, or access by an object method. Ode also supportscomposite events
through event expressions that relate basic events. The event expressions can
define sequence orderings between events.

In both POSTGRES[69] and Starburst[53] events are intercepted in a simi-
lar manner as in AMOS. However, the events that are intercepted in AMOS
include all operations of high-level objects. This makes it possible to extend
rules to trigger on any change in the system, including schema updates. This is
further discussed in section 3.2.

Systems that can trigger on external events include [11][38].

2.4 Active Database Classifications

Considerable research has been carried out in the area of active databases.
There exist several good introductory papers to active database architectures
[19][42]. Two important evaluation aspects for comparing different architec-
tures are the expressiveness of the rule language and the execution semantics of
the rules.

The expressiveness of the rules can be divided into the expressiveness of
rule events, conditions and actions. The expressiveness of the event part can be
divided into comparing the types of events the rules can reference and how the
events can be modelled and combined into complex events. Different types of
events include database updates, schema changes and external events such as
sensor changes, specified state changes in the applications, or time. Modelling
events can include an event specification language that can combine events
using logical composition, event ordering, sequential and temporal ordering,
and event periodicity [17].

The expressiveness of the condition part can be divided into whether a full
query language is available or not, if events can be referenced as changed data
and if old values can be referenced or not.

The expressiveness of the action part can be divided into whether a full
query language is available or not, i.e. if queries and updates can be inter-
twined, and can include schema changes and rule activation/deactivation.

Execution semantics of rules includes rule processing coupling modes
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defined in section 2.3. If full query language expressiveness is possible in the
condition part, then set-oriented rule semantics is also possible [72], where the
action part is executed over a set of tuples produced by the condition. Cascad-
ing rule execution, i.e. whether one rule can trigger another, and if simultane-
ously triggered rules are subjected to some conflict resolution method are also
part of the classification of rule semantics.

2.5 AMOS

AMOS[35] (Active Mediators Object System) is an architecture to model,
locate, search, combine, and monitor data in information systems with many
workstations connected using fast communication networks. The architecture
uses themediator approach [73] that introduces an intermediate level of soft-
ware between databases and their use in applications and by users. We call our
class of intermediate modulesactive mediators, since our mediators support
active database facilities. The AMOS architecture is built around a main mem-
ory based platform for intercommunicating information bases. Each AMOS
server has DBMS facilities, such as a local database, a data dictionary, a query
processor, transaction processing, and remote access to databases.AMOS is an
extension of a main-memory version of Iris[36], called WS-Iris[51], where OSQL
queries are compiled into execution plans in an OO logical language called Object-
Log[51]. The query language of AMOS, AMOSQL, is a derivative of OSQL.
AMOSQL extends OSQL with active rules, a richer type system and multi-
database functionality. In the development of AMOSQL there is also an ambi-
tion to adapt to the future SQL-3[7] standard, but with the extensions men-
tioned above.

The AMOS architecture (fig. 2.3) is a layered architecture consisting of
seven levels.

• The external interface level can handle synchronous requests through a client-
server interface for loosely coupled applications and through a fast-path interface
for tightly coupled applications. The interface also handles asynchronous inter-
rupts as well as database-application call-backs. All synchronous interaction is
done through the AMOSQL interface. Asynchronous interrupts that signal exter-
nal events such as timer events or changes to external sensors are transformed
into database events and sent to the event manager.

• TheAMOSQL interface parses AMOSQL expressions and sends requests to the
levels below. A fast path interface that does not require any parsing is also availa-
ble. Any results are returned to the external interface, either directly or through
interface variables and cursors.

• Theevent manager dispatches events to the rule processor. Events can come ei-
ther from the external interface or from intercepted events in lower levels such as
schema updates or relational updates.

• Theschema manager handles all schema operations such as creating or deleting
types, i.e. object classes, and type instances including functions and rules. The
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query processor handles query optimization and query execution.

• Therule processor handles compilation, activation, monitoring and execution of
rules and is further described below.

• Thehigh level object manager manages all operations to all objects in the data-
base schema such as object creation, deletion and updates of object attributes in-
cluding updating, inserting and deleting data, in stored functions, i.e. base rela-
tions. The level also handles OIDs (Object Identifiers) of the objects. All opera-
tions on these objects are transactional and are thus logged. All operations
generate events that are intercepted and sent to the event manager.

• The transaction manager handles all database transactions by keeping an undo/
redo log of all database operations.

• The recovery manager ensures persistency by making periodical snapshots and
flushing the log to disk.

• The low level object manager handles all basic objects (everything in the data-
base is an object) such as lists, vectors, hash tables, atoms, strings, integers and
reals.

• Thememory manager manages all memory operations such as allocation, deal-
location and garbage collection.

external interface

event

transaction
manager

recovery
manager

memory manager

synchronous
communication

asynchronous
communication

applications
and

other AMOS’s

rule
processor

high level object manager

low level object manager

intercepted
events

 manager
schema manager /
query processor

AMOSQL interface

external
events

Figure 2.3:The AMOS architecture
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The event handling is tightly integrated into the system and internal changes
are intercepted where they occur in the lower levels for efficiency reasons. The
rule processor is tightly integrated with the query processor for the same rea-
son.

2.6 The Rule Processor

The rule processor handles rule creation/deletion, activation/deactivation, mon-
itoring, and execution. The processing of rules is divided into four phases:

1. Event Detection
2. Change monitoring
3. Conflict resolution1

4. Action execution

Event detection consist of detecting events that can affect any activated rules
and is performed continuously during ongoing transactions. Change monitoring
includes using the detected events to determine if any condition of any acti-
vated rules have changed, i.e. have become true. During action execution fur-
ther events might be generated causing all the phases to be repeated until no
more events are detected. Different conflict resolution methods are outside the
scope of the thesis. In the current implementation a simple priority based con-
flict resolution is used.

1. Conflict resolution is the process of choosing one single rule when more than one rule is triggered.

Event Action

Condition
evaluation

 execution

non rule
initiated

events

rule
initiated

eventsevent bus

action-set
tuples

screened
events

 dispatch

Figure 2.4: The ECA execution cycle
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The rule execution model in AMOS is based on theEvent Condition Action
(ECA) execution cycle (fig. 2.4).

All events are sent on a software bus, i.e. an event queue, called theevent
bus. The execution cycle is always initiated by non rule initiated events such as
database updates, schema changes, time events, or other external events. All
events are dispatched through table driven execution. A screening is made of
events that might change the truth values of rules. Rule conditions are evalu-
ated based on the screened events to produceaction-sets that contain tuples for
which the actions are to be executed. When the actions are executed new events
might be generated and the execution cycle continues until no more events are
detected on the bus.

The rules in AMOS are of Condition Action (CA) type where the involved
Events are calculated from the Condition by the rule compiler. The rules can be
classified according to the aspects presented section 2.4. The expressiveness of
events is planned to have all the full expressiveness of the derived functions in
AMOSQL, i.e. full logical composition, as well as having the possibility of
expressing event ordering and periodicity. Temporal event specifications are
also considered. The expressiveness of conditions is based on the availability
of complete AMOSQL queries in the condition. The expressiveness of actions
is based on full AMOSQL procedural statements, i.e. queries intertwined with
any updates of the schema, updates of functions, rule activation/deactivation,
and application call-backs. The rules in the current implementation are only
deferred, but immediate rules are planned.
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3 Object Relational Query
Rules

3.1 The Iris Data Model and OSQL

The data model of AMOS and AMOSQL are based on the data model of Iris
and OSQL[36]. The Iris data model is based on objects, types and functions
(fig. 3.1).

Everything in the data model is an object, including types and functions. All
objects are classified by belonging to one or several types, which equals object
classes. Types themselves are of the type ‘type’ and functions are of the type
‘function’.

The data model in Iris is accessed and manipulated through OSQL1. All
examples of actual schema definitions and database queries will here be written
in a courier font.

For example, it is possible to define user types and subtypes:

create type person;
create type student subtype of person;
create type teacher subtype of person;
create type course;

1. The OSQL presented here is the WS-Iris dialect, which differs slightly from the
OSQL in Iris and subsequent commercial products.

objects

functions types

classify
belong

to

defined with

constrain

operate
on

participate
in

Figure 3.1: The Iris data model
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Stored functions can be defined on types that equals attributes in Object Ori-
ented database or base relations in Relational databases, hence we call this
model Object Relational. One function in the Iris data model equals several
functions in a mathematical sense.

For example, a function can both give the name of a person given the person
object or give all the person objects associated with a name.

create function name(person) -> charstring as stored;

Stored functions is the default:

create function studies(student) -> course;
create function gives(teacher) -> course;

Derived functions equals methods or relational views and can be defined in
terms of stored functions (and other derived functions).

create function teaches(teacher t) -> student s
as select s for each course c where
gives(t) = c and
c = studies(s);

Instance objects of a type can be created and stored functions can be set for
these instances:

create student instances :iris 1, :amos;
set name(:iris) = “Iris”;
set name(:amos) = “AMOS”;
create course

instances :active_databases;
set studies(:amos) = :active_databases;

Multiple types (multiple inheritance) is possible by
adding more types to an object:

add teacher to :amos;

Procedures are defined as functions that have side-effects:

create function teach(teacher, student, course)
-> boolean 2

as begin
set gives(teacher) = course;
set studies(student) = course;

 end;

1. These are interface variables and are not part of the database.
2. A procedure that does not explicitly return anything implicitly return a boolean.

Iris
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Procedures are called by:

call teach(:amos, :iris, :active_databases);
select name(t)

for each teacher t
where teaches(t) = :iris;

<“AMOS”>

In the previous example the last query returns a single tuple. Queries, and sub-
sequently functions, can return several tuples. Duplicate tuples are removed
from stored functions if they are not explicitly defined to return a bag. We say
that we haveset-oriented semantics. Bag-oriented semantics is available as an
option and can be specified along with the return type of a function.

Functions can be overloaded on the types of their arguments, i.e. we can
define the same function in several ways depending on the types of the argu-
ments. The system will in most cases choose the correct function at compile
time, we call thisearly binding. In some cases the system can not determine
what function to choose at compile time and must check some types at run
time, we call thislate binding. Since types and functions are objects as well,
with the types ‘type’ and ‘function’, it is possible to define generic functions,
i.e. functions that take types as arguments, and higher order functions, i.e.
functions that take other functions as argument.

A transaction is aborted and rolled back by:

rollback;

A transaction can be finished and made permanent by:

commit ;

3.2 The AMOS Data Model and AMOSQL

The AMOS data model extends that of Iris by introducing rules (fig. 3.2). Rules
are also objects[26] and of the type ‘rule’. Rules monitor changes to functions
and changes to functions can trigger rules. All the events that the rules can trig-
ger on are modelled as changes to values of functions. This gives us the power
of AMOSQL functional expressions as our event modelling language. Func-
tions are seen as having passive (synchronous) or active (asynchronous) behav-
iour depending on if they are used in a query or in a rule condition. Passive
functions display synchronous polling behaviour while active functions display
asynchronous interrupt behaviour. Purely passive functions are functions that
never changes, such as built in arithmetic functions, e.g.+, - , * and / , boolean
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functions, e.g.=, < and>, and aggregate functions such assum andcount.
Foreign functions written in some procedural language are currently also con-
sidered to be passive functions. Functions that are defined in terms of these
functions can change, but never the passive functions themselves.1

The system currently does not have any purely active functions, but these
would be event functions, i.e. functions that represent internal or external
events. In some cases it is desirable to directly refer to specific events such as
added or removed, this can be modelled as higher order event functions that
change if tuples are added to their functional argument. Event functions that
represent external changes are active foreign functions and can be sensor func-
tions and time.

The rules presented here have conditions over stored and derived functions
only. The events that triggers these conditions are the function update events,
adding or removing tuples to/from functions. These functions can be seen as
having both passive and active behaviour depending on whether they are refer-
enced outside or inside rule conditions. Only functions without side-effects, i.e.
queries, are allowed in rule conditions.

The rule processor calculates all the events that can affect a rule condition.
This is the default for rule condition specifications and can be seen as asafe
way to avoid that users forget specifying relevant events, as can happen with
traditional ECA-rules. By allowing users to add specific event information
through active functions specific events that system have not deduced can be

1. It would be strange to trigger on1+1 = 3
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Figure 3.2: The AMOS data model
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used for triggering rules as well. By allowing users to remove events that the
system have deduced through negation of active functions, any event specifica-
tion that can be specified in traditional ECA-rules can be specified more safely
in CA-rules. The user can only remove events that he/she is aware of and
events that are part of OO encapsulation will still trigger the rules correctly
since these are deduced by the system. The extension of AMOSQL with event
specifications through active functions would include introducing event opera-
tors, such as those defined in [17], into AMOSQL. Introducing active functions
and extending AMOSQL with event modelling capability is future work.

By modelling rules as objects it is possible to make queries over rules.
Overloaded and generic rules are also allowed, i.e. rules that are parameterized
and can be activated for different types.

In AMOSQL, OSQL is extended with rules having a syntax conforming to
that of OSQL functions. AMOSQL supports rules of CA type where the Condi-
tion is an OSQL query, and the Action is any OSQL procedure statement,
exceptcommit. Data can be passed from the Condition to the Action of each
rule by using shared query variables, i.e. set-oriented Action execution[72] is
supported.

The syntax for rules is as follows:

create rule rule-name parameter-specificationas
when for-each-clause | predicate-expression
do procedure-expression

where
for-each-clause::=

for each variable-declaration-commalistwhere predicate-expression

Thepredicate-expression can contain any boolean expression, including conjunction,
disjunction and negation. Rules are activated and deactivated by:

activate rule-name ([parameter-value-commalist]) [priority 0|1|2|3|4|5]
deactivate rule-name ([parameter-value-commalist])

Rules can be activated/deactivated for different argument patterns. The seman-
tics of a rule are as follows: If an event of the database changes the truth value
for some instance of the Condition totrue, the rule is marked astriggered for
that instance. If something happens later in the transaction which causes the
Condition to become false again, the rule is no longer triggered. This ensures
that we only react tological events. The truth value of a condition is here repre-
sented bytrue for a non-empty result of the query that represents the condition
and false for an empty answer, see section 4.1.

In the current implementation a simpleconflict-resolution method, based on
priorities, is used to specify the order of action execution of rules that are
simultaneously triggered.

Some examples of AMOSQL rules are given below.
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A classical example for active databases is that of monitoring the quantity of
items in an inventory. When the quantity of an item drops below a certain
threshold new items are to be automatically ordered.

create type item;
create type supplier;
create function quantity(item) -> integer;
create function max_stock(item) -> integer;
create function min_stock(item) -> integer;
create function consume_frequency(item) -> integer;
create function supplies(supplier) -> item;
create function delivery_time(item, supplier)

-> integer;
create function threshold(item i) -> integer as

select consume_frequency(i) * delivery_time(i, s)
+ min_stock(i)

for each supplier s where supplies(s) = i;
create rule monitor_item(item i) as

when quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));1

This rule monitors the quantity of an item in stock and orders new items when
the quantity drops below the threshold (fig. 3.3) which considers the time to get
new items delivered (whereorder is some procedure that does the actual
ordering).The consume-frequency defines how many instances of a specific
item are consumed on an average per day.

1. In AMOSQLselect andcall are syntactic sugar and are optional.
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min_stock

threshold

max_stock
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Figure 3.3: Monitoring items in an inventory
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For example, the following definitions ensure that the quantity of shoelaces in
the inventory is always kept between 100 and 10000 (if the supplier delivers on
time) and will trigger the rule if the quantity drops below 140.

create item instances :shoelaces;
set max_stock(:shoelaces) = 10000;
set min_stock(:shoelaces) = 100;
set consume_frequency(:shoelaces) = 20;
create supplier instances :shoestring_inc;
set supplies(:shoestring_inc) = :shoelaces;
set delivery_time(:shoelaces, :shoestring_inc) = 2;
activate monitor_item(:shoelaces);

A rule that monitors all items can be defined as:

create rule monitor_all_items() as
when for each item i
where quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));

In real life there will probably be several suppliers for one item. In that case the rules
should really consider the minimum threshold, i.e. the supplier that can deliver fast-
est.

Another example of rules in active databases is that ofconstraints. If we
want to ensure that thequantity of an item can never exceed the
max_stock of that item, we can express that in the following rule.

create rule check_quantity() as
when for each item i where

quantity(i) > max_stock(i)
do rollback;

The previous rules did not really use any of the OO capabilities of AMOSQL, i.e.
there was only a flat set of user defined types. To illustrate these, take as an example
a rule that ensures that no one at a specific department has a higher salary than his/her
manager. Employees are defined to have a name, an income, and a department. The
net income is defined based on 25% tax for both employees and managers, but with a
bonus for managers of 100 before tax. Departments are defined to have a name and a
manager. The manager of an employee is derived by finding the manager of the
department to which the employee is associated. The rule no_high is defined to set
the income of an employee to that of his/her manager if he/she has a net income
greater than his/her manager. The AMOSQL schema is defined by:

create type department properties (name1 charstring);
create type employee properties

(name charstring, income number, dept department);

1. This is a short-hand for defining a stored function,name, on departments.
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create type manager subtype of employee;
create function grossincome(employee e) -> number as

select income(e);
create function grossincome(manager m) -> number as

select income(m) + 100;
create function netincome(employee e) -> number as

select employee.grossincome(e) * 0.75;
create function netincome(manager m) -> number as

select grossincome(m) * 0.75;
create function mgr(department) -> manager;
create function mgr(employee e) -> manager as

select mgr(dept(e));
create rule no_high(department d) as

when for each employee e
where dept(e) = d and

employee.netincome(e) > netincome(mgr(e))
do set employee.grossincome(e) = grossincome(mgr(e));

Note that the functionsgrossincome, netincome, andmgr are overloaded on
the typesemployee, manager, anddepartment, employee. For the function
calls grossincome(m), grossincome(mgr(e)), netincome(mgr(e)),
mgr(dept(e)), andmgr(e) this is resolved at compile time, we call thisearly
binding. This is possible since the actual parameters in the calls return distinct types.
In cases when the compiler cannot deduce what function to choose, a dot notation,
e.g.employee.netincome(e), can be specified to aid the compiler to choose
the correct function at compile time. In the rule condition,employee.netincome
can be called for all employees, including managers, since managers are employees
as well, but the condition will never be true for that case. This is because the
employee.netincome would always be 100 less thanmanager.netincome
for managers.

In cases when the compiler cannot deduce what function to choose, it will
produce a query plan that does run-time type checking to choose the correct
function, we call thislate binding. This would be the case ifnetincome was
not overloaded andgrossincome was specified without dot notation. Differ-
entgrossincome functions will then be chosen depending on if the argument
it is called with is just an employee, or a manager as well. The rule condition
would still be correct since if theemployee e is a manager, the condition
will never be true.

create function netincome(employee e) -> number as
select grossincome(e) * 0.75;

create rule no_high(department d) as
when for each employee e
where dept(e) = d and

netincome(e) > netincome(mgr(e))
do set employee.grossincome(e) = grossincome(mgr(e));
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This is becausemanager.grossincome would, in that case, be chosen in both
instances in the condition and which then, obviously, would not be true. This rule is
more elegant, but in order not to complicate the generated code and the discussion of
change monitoring techniques in the following chapters, the first version of
no_high will be used in the continuation of the example.

Also note that theemployee.grossincome function is updatable since
it is directly mapped to the stored functionemployee.income. The function
manager.grossincome is not directly updatable since it cannot be directly
mapped to a stored function. This is described in more detail in [51].

The no_high rule will be activated for a specific department and will
serve as an example throughout the thesis.

Let us define a toys department with a manager and five employees:

create department(name) instances
:toys_department("Toys")1;

create manager(name,dept,income) instances
:boss("boss",:toys_department,10400);

set mgr(:toys_department) = :boss;
create employee(name,dept,income) instances

:e1("employee1",:toys_department,10100),
:e2("employee2",:toys_department,10200),
:e3("employee3",:toys_department,10300),
:e4("employee4",:toys_department,10400),
:e5("employee5",:toys_department,10500);

The employees with their incomes and netincomes can be seen in fig. 3.4.

Figure 3.4: Initial employee salaries

Now, if we activate the rule for the toys department and try to commit the trans-

1. This is a short-hand for setting the functionname, for a department.

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10200 7650

employee3 10300 7725

employee4 10400 7800

employee5 10500 7875
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action a check is made if any of the employees have a netincome higher than
their manager. No such employees exists and thus, the rule is not triggered.

activate no_high(:toys_department);
commit; /* check and commit */

Now if we change the income of employee2 and employee4:
set income(:e2) = 10600;
set income(:e4) = 10600;

Now we can see in fig. 3.5 that the netincomes of employee2 and employee4
exceeds that of their manager.

Figure 3.5: Employee salaries before commit

If we try to commit this transaction theno_high rule will be triggered and the
salaries of employee2 and employee4 will be set to that of their manager. This
can be seen in fig. 3.6.

commit; /* check and commit */

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10600 7950

employee3 10300 7725

employee4 10600 7950

employee5 10500 7875

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10500 7875

employee3 10300 7725
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Figure 3.6: Employee salaries after commit

In this example, the rule condition monitoring consists of determining changes to the
condition of theno_high rule. Changes to several stored functions (i.e.dept,
income, andmgr) can affect the rule condition. In the example, only two updates
are made to theincome function. The rule condition monitoring must be efficient
even if the number of employees is very large. However, evaluating the condition of
no_high naively would result in checking the income of all employees for the
department. Efficient techniques for evaluating rule conditions based changes that
result from small updates, such as in these previous examples, will be discussed in
the rest of the thesis.

3.3 Related Work

The data model of Iris is related to DAPLEX[66] and OODAPLEX[29].
DAPLEX is a functional data definition and manipulation language for data-
base systems. DAPLEX introduced the concept ofderived functions for defin-
ing user views. One difference is that in DAPLEX types are defined as
functions as well. In OODAPLEX, DAPLEX is extended with objects that have
identities independent of the values of their attributes and thatencapsulate the
operations of the object. Objects are grouped according to types, i.e. object
class, and an inheritance mechanism is defined based on defining types in terms
of supertypes.

The HiPAC[16][27] project introducedECA-rules (Event-Condition-Action
rules), where the Event specified when a rule should be triggered, the Condition
was a query that was evaluated when the Event occurred, and the Action was
executed when the Event occurred and the Condition was satisfied. In Ariel[41]
the Event was made optional making it possible to specifyCA rules which use
only the Condition to specifylogical events which trigger rules. Rules in
OPS5[10] and monitors in [62] have similar semantics. In ECA rules the user
has to specify all the relevantphysical events in the Event part. Rules will not
be triggered properly if the user forgets to specify some event. CA rules make
physical events implicit, just as a query language makes database navigation
implicit. Good evaluation and optimization techniques are required to make
CA-rules as efficient as ECA-rules.

Our active rules [63] support the CA model by defining each rule as a pair,
<Condition,Action>, where the Condition is a declarative AMOSQL query, and
the Action is any AMOSQL database procedure statement. Data can be passed
from the Condition to the Action of each rule by using shared query variables,

employee4 10500 7875

employee5 10500 7875

name income netincome
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i.e. set-oriented Action execution[72] is supported. Condition evaluation is nor-
mally delayed to acheck phase usually at commit time. Immediate rule execu-
tion [27] is also possible, but is outside the scope of this thesis. In the check
phase, change propagation is performed only when changes affecting activated
rules have occurred, i.e. no overhead is placed on database operations (queries
or updates) that do not affect any rules. After the change propagation, one trig-
gered rule is chosen through a conflict resolution method. Then the action of
the rule is executed for each instance for which the rule condition is true based
on the∆-set representing the changes of the rule condition.

The types of events that AMOSQL rules can be triggered on include internal
events such as functional updates, creating/deleting objects, time related
events, and external events (e.g. sensory updates). All event types will be
included within the framework of CA-rules, however, this thesis discusses trig-
gering on functional updates only. Work on a language for event specifications
can be found in [17]. In our case this would be part of an extension of
AMOSQL, instead of introducing a new language.

In [68] sensors are introduced as relations in a database system and as being
traced or sampled. This is very much related to our view of passive and active
functions. A traced sensor will be introduced as apassive function that is syn-
chronously polled for changes. A sampled sensor will be introduced as an
active function that displays asynchronous interrupt behaviour for signalling
changes. Traced sensors can be used in queries and sampled sensors in rule
conditions.
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4 Condition Monitoring

4.1 Rule Semantics and Function Monitoring

The semantics of the rules in AMOS are based on function monitoring[62]. To
be more specific, rules are based on thewhen-function-changes-do-procedure
semantics(fig. 4.7).

Take a ruler(x) defined aswhen c(x) do a(x).

This is a forward chaining rule that means ‘executea(x) whenc(x) is evaluated
to be true’. This is an imprecise definition of rule semantics, one really has to
separate betweenstrict andnervous rule semantics. Strict rule semantics forr
would really be ‘executea(x) whenc(x) is evaluated to be true after previously
being false’and nervous rule semantics would be ‘executea(x) wheneverc(x)
is evaluated to be true regardless of whether it was true before’.

In order to explain how a rule is transformed into a function and a procedure, a
new notation is introduced.

Forward chaining rules are written as:

<name>(<parameter-specification>) = (<condition>⇒ <action>)

functions as:

when

do

changes

function

procedure

Figure 4.7: AMOSQL rule semantics
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<name>(<parameter-specification>) =select <return-specification>
where <predicate-expression>

and procedures as:

<name>(<parameter-specification>) = <procedure statements>

All parameters and heads of functions are subscripted with type information
that specifies the types of the incoming parameters and the types of the returned
values of functions, respectively.

We can now write the ruler as:

r(xtype of x) = (c(x) ⇒ a(x)),

wherec(x) is a function call that returns a boolean value, i.e.c(xtype of x)boolean,
and wherea(x) is a procedure call. Note thatx will be bound when the rule is
activated.

By defining acondition function f that returns the type ofx:

f(xtype of x)type of x= select x where c(x),

i.e. a function that returns a set of values of typex for all c(x) that returntrue,
and anaction procedure g that takes the type ofx as argument,

g(xtype of x) = a(x),

we can view rule condition monitoring as function monitoring off, i.e. monitor-
ing of changes to the set of values thatf returns. Rule execution can then be
defined fornervous rule behaviour as executingg on all the values off, g(f(x)),
andstrict rule behaviour as executingg on the changes off only, g(∆f(x)).

The condition of a rule can contain any logical expression and the action
any logical expressions as well as side effects. For a rule

r(xtype of x) = (c1(x) & c2(y) ⇒ a1(x) & a2(y)),

and wherec1(x) andc2(x) are boolean functions, i.e.c1(xtype of x)boolean, c2(ytype

of y)boolean. The condition function to monitor is defined as:

f(xtype of x)<type of x, type of y>= select x, y where c1(x) & c2(y),

and the action procedure to execute is defined as:

g(xtype of x, ytype of y) = a1(x) & a2(y).

The semantics of rule execution is defined asg(f(x)) or g(∆f(x)). Note thatx is
here bound when the rule is activated, buty is free and fetched from the data-
base.

Since functions are defined semantically as representing a set of values the
rules are said to have set-oriented semantics, i.e. the rules monitor changes of a
set that represents the condition and executes the action on the set that repre-
sents the changes to the condition set.
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Some rules do not use the set-oriented semantics, as is the case with con-
straint rules that have actions that do transaction roll-backs. Such rules do not
use any explicit values that have been produced in the condition when execut-
ing the action. Constraint rules are defined as:

r(xtype of x) = (c(x) ⇒ rollback),
f(xtype of x)boolean= select true where c(x),
g(bboolean) = if b then rollback,

The condition functionf returns true if c(x) returns a non-empty answer and
false otherwise. The semantics of rule execution is defined as before, i.e.g(f(x))
or g(∆f(x)).

Since rules are objects of the type ‘rule’, the rule activation can be defined
as a procedure

activate(rrule, llist of object)

wherer is a rule object andl is a list of objects that r is parameterized by. In the
actual implementation theactivate procedure is really defined as

activate(rrule, llist of object, pinteger)

wherep is the priority of the rule activation. Rule deactivation is defined like-
wise.

4.2 ObjectLog

AMOSQL functions are compiled into an intermediate language called Object-
Log[51]. ObjectLog is inspired by Datalog[14][71] andLDL[21] but provides
new facilities for effective processing of OO queries. ObjectLog provides a
type hierarchy, late binding, update semantics, and foreign predicates.

• Predicate arguments areobjects, where each object belongs to one or moretypes
organized in a type hierarchy that corresponds to the type hierarchy of AMOS.

• Object creation and deletion semantics maintain the referential integrity of the
type hierarchy.

• Update semantics of predicates preserve the type integrity of arguments. The op-
timizer relies on this to avoid dynamic type checking in queries.

• Predicates can be overloaded on the types of their arguments.

• Predicates can be further overloaded on the binding patterns of their arguments,
i.e. on which arguments are bound or free when the predicate is evaluated.

• Predicates can be not only facts and Horn clause rules, but also optimized calls to
invertibleforeign predicates implemented in a procedural language. In the current
system foreign predicates can be written in C.
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• Predicates themselves as well as types are objects, and there are second order
predicates that produce or apply other predicates. 2nd order predicates are crucial
for late binding and recursion.

The translation from AMOSQL to ObjectLog consists of several steps(fig. 4.8).
The Flattener transforms AMOSQLselect statements into a flattened
select statement where nested functional calls have been removed by intro-
ducing intermediate variables. TheType checker annotates functions with their
type signatures in thetype adornment phase, and finds the actual functions for
overloaded functions (in case of early binding), or adds dynamic type checks
(in case of late binding) in the overload resolution phase. The ObjectLog gen-
erator transforms stored functions into facts and derived functions become
Horn clause rules. TheObjectLog generator also translates foreign functions
into foreign predicates. TheObjectLog optimizer finally optimizes the Object-
Log program using cost based optimization techniques. More about the transla-
tion steps and the optimization techniques can be found in [51].

The optimized ObjectLog programs are currently interpreted, but work is in
progress on compiling them for more efficient execution.

The transformations that are presented in section 5 can be done on either un-
optimized or optimized ObjectLog programs. The resulting ObjectLog pro-
grams will need to be re-optimized in any case, see section 7.

4.3 Naive Change Monitoring

The condition in the first version ofno_high rule is compiled into a condition

Function F

Flattener

Flattened F

Type checker

TR ObjectLog Program

ObjectLog optimizer

Optimized TR ObjectLog

Type Adorned Resolvent

ObjectLog generator

Figure 4.8: The translation of AMOSQL to ObjectLog



33

function represented as an ordinary AMOSQL function,cnd_no_high, that
returns all employees of a particular department with salaries higher than their
manager:

create function cnd_no_high(department d) ->
employee e as

select e for each employee e
where dept(e) = d and
      employee.netincome(e) > netincome(mgr(e));

Here, netincome is called with mgr(e) which means that theman-
ager.grossincome, see section 3.2, (and consequentlyincome(m) + 100)
can be deduced innetincome at compile time since the functionmgr always
returns a manager. The query compiler transformscnd_no_high to a derived
relation (view) in ObjectLog1:

cnd_no_highdepartment,employee(D, E) ←
mgrdepartment,manager(D, _G1) ∧
incomeemployee,number(_G1, _G2) ∧
_G3 = _G2 + 100 ∧
_G4 = _G3 * 0.75 ∧
deptemployee,department(E, D) ∧
incomeemployee,number(E, _G5) ∧
_G6 = _G5 * 0.75 ∧
>(_G6, _G4)

Derived AMOSQL functions are compiled into derived relations and stored
functions are compiled into stored relations (facts). When we hereafter use the
term relation we use it interchangeably with the termfunction. The AMOSQL
compiler expands as many derived relations as possible to have more degrees
of freedom for optimizations. In the case of late binding full expansion is not
always possible.

If the functioncnd_no_high is evaluated with all the parameters to the
rule instantiated, in this case with theDdepartment instantiated, we can find
the truth value for the condition and values of the free variables in the action.
For theno_high rule, we get all theEemployee for which the condition is
true. The action part of the rule could then be executed for these truth values.
The AMOSQL action procedure generated for the action inno_high looks
like:

create function act_no_high(employee e) -> boolean as
set employee.grossincome(e) = grossincome(mgr(e));

1. In ObjectLog Horn clauses are annotated with type names.
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The execution of the action can be seen semantically as:
for each department d
where d = no_high_activations()

call act_no_high(cnd_no_high(d));

If considering strict rule semantics we must find the changes to
cnd_no_high:

for each department d
where d = no_high_activations()

call act_no_high(∆cnd_no_high(d));

whereno_high_activations is a function that returns all the arguments for
which theno_high rule is activated.

4.4 Screener Predicates

If a transaction involves changes to functions that are referenced in a rule con-
dition of some activated rule, it might be very expensive to evaluate the full
condition every time in the check phase (usually at commit time). A better
approach is to filter out changes that do not change the truth value of any acti-
vated rule condition. This can be done by generatingscreener predicates that
are executed every time a specific function is updated, i.e. after the update is
performed. If the update passes the screener predicate the change is saved and
used in the check phase to determine what conditions to evaluate.

By generating screener predicates as queries, ordinary query optimization
techniques can be used. How complex the predicate screeners should be
depends on information such as the cost of evaluating the predicate and how
often updates are performed, i.e. the update frequency of the base relation. A
screener that is very restrictive, e.g. the complete rule condition, might be too
expensive to execute every time a relation is updated while a screener that is
too un-restrictive might cause unnecessary evaluation of rule conditions.

A maximally discriminating screener predicate for theincome function
can be defined as:

scr_incomeemployee(E) ←
no_high_activationsdepartment(D) ∧
((mgrdepartment,manager(D, _G1) ∧
  incomeemployee,number(_G1, _G2) ∧
  _G3 = _G2 + 100 ∧
  _G4 = _G3 * 0.75 ∧
  deptemployee,department(E, D) ∧
  incomeemployee,number(E, _G5) ∧
  _G6 = _G4 * 0.75 ∧
  >(_G6, _G4)) ∨
 (mgrdepartment,manager(D, E) ∧
  incomeemployee,number(E, _G7) ∧
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  _G8 = _G7 + 100 ∧
  _G9 = _G8 * 0.75 ∧
  deptemployee,department(_G10, D) ∧
  incomeemployee,number(_G10, _G11) ∧
  _G12 = _G11 * 0.75 ∧
  >(_G12, _G9)))

The no_high_activations is a function that returns all the departments
for which theno_high rule is activated. This screener predicate checks if a
particular update involves an employee at a department that the rule is acti-
vated for and if he/she gets a higher income than his/her manager, or if the
update of the income of an employee involves a manager for a department that
the rule is activated for and if there exists an employee at the same department
with a higher income.

A minimally discriminating predicate screener for the income function can
be defined as:

scr_incomeemployee(E) ←
no_high_activationsdepartment(D) ∧
true

Neither of the above predicate screeners are satisfactory in most cases, the first
predicate is too expensive to execute every time an update to the income is
done, assumingno_high is activated for any department, and the second
predicate causes uninteresting updates to slip through, causing unnecessary
evaluation in the check phase. The goal is to find a predicate screener that is a
good compromise between these two. By using cost information on the
involved sub-expressions a good screener that is not too expensive can be
found. For theincome function a good candidate is:

scr_incomeemployee(E) ←
no_high_activationsdepartment(D) ∧
(deptemployee,department(E, D) ∨
 mgrdepartment,manager(D, E))

This screener predicate checks if the income is changed for an employee that is
a member or a manager of a department for which theno_high rule is acti-
vated for. If several predicate screeners are added to one function they are
ordered in a single disjunction.

4.5 Incremental Change Monitoring

By studying the expanded execution plans in theno_high example we can see
what updates of stored relations (i.e. stored AMOSQL functions) might affect
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the condition of a rule. The example rule depends on changes of dept (add-
ing/removing employees to/from a department), income (changing employee
or manager salaries), and mgr (changing the manager of a department). This
can be modelled as a dependency network (fig. 4.9), where all the dependencies
of a relation are modelled as sub-nodes.

A propagation network can then be generated from the dependency network
(fig. 4.10) where the partial ∆-relations ∆cnd_no_high/∆dept,
∆cnd_no_high/∆income1, and∆cnd_no_high/∆mgr denotes the influ-
ence of changes to the relationsdept, income and mgr on the relation
cnd_no_high.

A basic assumption is that most database transactions are short and the number
of changes that affect activated rules is small. Therefore, evaluating the entire
function that represents a rule condition is inefficient compared to evaluating a
function that examines only the changes. In the example, the naive method

1. Two partial∆-relations are created forincome, one for each occurrence.

∆cnd_no_high

∆dept ∆income ∆income ∆mgr

Figure 4.9: A dependency network for the ruleno_high

∆cnd_no_high

∆cnd_no_high/ ∆dept ∆cnd_no_high/ ∆mgr

∆dept ∆income ∆income ∆mgr

∆cnd_no_high/ ∆income’’

∆cnd_no_high/ ∆income’

Figure 4.10: A propagation network for the ruleno_high
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would check the salaries of all the employees in the given department. An
incremental technique is preferable that checks, e.g., only employees that have
had their income changed. By defining the above partial∆-relations we can sig-
nificantly reduce the cost of finding the changes tocnd_no_high. These par-
tial ∆-relations are computationally equivalent tocnd_no_high with the
exception that they each consider changes to one of its sub-relations instead of
evaluating it in full. If several sub-relations changes then several partial∆-rela-
tions will have to be evaluated and their results will have to be joined with a
special join operator, ∪∆.

In section 5 a calculus is presented based on the∪∆ operator for evaluating
∆-relations in terms of their partial∆-relations. Here a separation is also made
between positive and negative partial∆-relations that checks additions and
deletions separately.

The evaluation based on incremental change monitoring is by no means
optimal in all situations. If for example there is a mix of updates that causes
several partial∆-relations to be evaluated it might be more efficient to evaluate
the complete condition (as in the naive method). The choice of which method
to choose in different situations is discussed in section 7.4.

4.6 Relating the Techniques

Screener predicates differ from ∆-relations in the way the are evaluated.
Screener predicates are evaluated with top-down information flow since all the
parameters to the relation are bound from the update information and any
parameters from the rule activation are initially bound. Partial∆-relations are
evaluated with bottom-up information flow since not all of their parameters are
initially bounded, the information from the∆-set of one sub-relation is passed
upwards to bind the parameters. The technique of generating screener predi-
cates can be seen as pushing the condition downwards to the leaf nodes of the
network. The screener predicates dynamically prune the network from uninter-
esting changes to avoid unnecessary propagation.

When generating screener predicates, the cost of the predicate screener must
be compared with the sum of the cost of all the partial∆-relations that must be
evaluated because of the changes that slipped through the screener. To state it
very simply one can define cost based screener predicates by a simple rule,
‘The higher total cost of the partial∆-relations that are dependent on a particu-
lar ∆-set the higher complexity of the screener predicates can be motivated’.
For a flat, i.e. bushy, propagation network as in the previous example, screener
predicates are not really needed. They are more useful in deeper networks that
result, e.g., from late binding. More on cost models for generating screener
predicates can be found in section 7.2.

4.7 Related Work

In [12] a technique for detectingReadily Ignorable Updates (RIUs) to mini-
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mize execution ofalerters, i.e CA-rules, is presented.Construction diagrams
are constructed to determine how changes to base relations affect derived rela-
tions. Alerters are defined asadd-alerters anddelete-alerters that report addi-
tions or deletions of tuples, respectively. This is related to our techniques of
using screener predicates to filter out ignorable updates and separating∆-rela-
tions into positive and negative partial∆-relations to check additions and dele-
tions separately. Our techniques differ in that we use incremental evaluation
techniques through change propagation and also that we use query optimization
techniques when generating screener predicates and partial∆-relations.

The technique of generating screener predicates is also related to that of
magic sets[4] and magic predicates. However, magic predicates are used for
limiting unnecessary evaluation during bottom-up query evaluation, while
screener predicates are used for limiting propagation of changes. Screener
predicates are generated using cost based information to limit their complexity.
Screener predicates are not inserted into the body of a Horn clause, but are
instead evaluated when a stored relation is updated. This can be compared to
how triggers [3] are executed, except that screener predicates only determine if
the change is interesting for any deferred rules, while triggers react immedi-
ately.

HiPAC[64] defined incremental propagation of∆-relations through select-
project-join. It is generalized in Sentinel [18]. HiPac used ECA rules, while our
method uses CA rules with logical events where the physical events are calcu-
lated by the rule compiler. The method extinguishes complementary positive
and negative physical events detected during a transaction. Thechain rule of
HiPAC[64] was defined as one large complete differential expression, while we
are using a simpler partial differentiation when only a few functions are
updated during a transaction. POSTGRES [69] and Starburst [53] both use
ECA rules similar to HiPac. Starburst supports transition tables which corre-
spond to∆-relations or more precisely, ∆-sets, since they are defined only for
stored relations, not for views.

Ariel [41] is implemented on top of POSTGRES and has CA-rules with sim-
ilar semantics as our rules. Ariel uses a modified version of the OPS5 RETE
algorithm called TREAT [55] for incrementally monitoring rule conditions.
Tuples representing changes are propagated through the TREAT network.
Tuples that satisfy some selection criteria in the network are stored inα-memo-
ries. Ariel avoids some materialization by usingvirtual α-memories that use
derived relations instead of materialized ones. Instead of a technique that first
does full materialization and then tries to avoid some materialization; this the-
sis presents a general calculus that avoids all unnecessary materialization. Stra-
tegic materializations are introduced through cost based optimization
techniques. Our goal is furthermore a tightly coupled system that fully inte-
grates rules into a query language, i.e. we want a propagation network that is
integratable with our query execution mechanism, ObjectLog.

In [60] an extension of relational algebra with incremental relational
expressions is presented. An outline of an algorithm for propagation of changes
to the expressions is given. [60] defines two partial operationsdisjoint union
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andcontained difference that assumes disjoint operands. In our approach this is
maintained through the∪∆ operation on∆-relations. By using Horn Clause
Logic, i.e. Datalog[71] (or ObjectLog), to describe a calculus for incremental evalua-
tion, it is more straight forward to implement since this is how query plans are repre-
sented in the system. The mapping of relational calculus to Datalog, ordomain
calculus, can be seen in the appendix. The update semantics of a system, e.g.
set-oriented or bag-oriented semantics, affects in what order the propagation
must be done. Introducing views in rule conditions introduces the need for
cooperation in the propagation of changes affecting different conditions that
depend on the same sub-expressions. Propagation of changes through a depend-
ency network is not discussed at all in [60].

In [6] a method is presented that derives two optimized conditions from the
original condition of a rule. The new conditionsPreviously True (PT) andPre-
viously False (PF) are based on the knowledge of the previous truth value of
the condition. Our rules are set-oriented and there is no single truth value for a
rule condition, only a set of tuples for which the action of the rule is to be exe-
cuted. An attribute grammar is also presented in [6] for implementing the
approach, but nothing is said about how the actual propagation of changes is
going to be done.

In the PARADISER system[30] incremental evaluation techniques are used
for database rules processing. An algorithm for incremental evaluation of Data-
log programs for the PARULEL rule language is presented. However, this is
also a loosely coupled rule system built on top of a relational databases man-
ager (POSTGRES and Sybase). The technique is based onfact chains that are
stored and manipulated in the database and which are used to dynamically
maintain the status of facts; no graph structure is constructed in memory. We
believe that the rule system need to be tightly coupled with the database man-
ager, using main memory data structures, for efficiency reasons. The cost
model in a database manager must also be adopted to fit the new types of opti-
mization issues introduced by rule processing.
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5 A Formal Definition of
Partial Differentiation

5.1 Incremental Evaluation

Incremental evaluation techniques was introduced in [59] asFinite Differenc-
ing of computable expressions. This is a technique that transforms programs
into computationally equivalent programs that execute more efficiently by con-
sidering changes to expressions instead of executing them in full. A similar
technique is used in [9] for efficiently maintaining materialized views. Efficient
monitoring of rule conditions can be achieved by using similar techniques that
considers changes to the conditions instead of performing full, naive evalua-
tion.

Below follows a calculus for incremental evaluation of rule conditions. It
formalizes the phases for update event detection and incremental change moni-
toring. The calculus is based on the usual set operatorsunion (∪), intersection
(∩), difference (-), andcomplement (~). Three new operators are introduced,
delta-plus (∆+), delta-minus (∆-), and delta-union (∪∆). ∆+ returns all that
have been added to a set over a specified period of time, and∆- all that have
been removed from the set. Adelta-set (∆-set) is defined as a tuple <∆+S, ∆-S>
for some set S and∪∆ as the union of two∆-sets. The operators are also used
for discussing changes of bags that are more general than sets (set⊂ bag) since
they allow duplicates.

The intuition behind the calculus of partial differentiation is presented in
sections 5.2 and 5.3 with examples. In section 5.3.3 changes ofconjunction,
disjunction, and negation are formally defined in terms of set-operations. A
justification for partial differentiation is given in the appendix, along with
examples of partial differentiation of all the relational operatorsunion, differ-
ence, join, cartesian product, selection, projection, join, andintersection.

Separate partial∆-relations are generated for handling insertions and dele-
tions. The intuition behind the calculus is to execute partial∆-relations based
on insertions of tuples in the state at the beginning of the propagation phase,
since those tuples are present in the new state of the database. The partial∆-
relations based on deletions of tuple are executed in the state immediately after
the previous propagation phase, since this represent the (old) state when the
tuples were present in the database (fig. 5.1). The old state is calculated by per-
forming alogical rollback that inverts all the updates of a specific relation.
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The calculus is based on accumulating all the relevant updates during a transac-
tion. These accumulated changes are then used to calculate the partial∆-rela-
tions which also involves calculating the old state of specific relations.

5.2 Update Event Detection

All changes to stored functions, i.e. base relations, in the database are logged in
an undo/redo log. During database transactions, before physical update events
are written to the log, a check is made if a stored base relation was updated that
might change the truth value of some activated rule condition. If so, thephysi-
cal events are inserted into a∆-set that reflects alllogical events of the updated
relation. Since rules are only triggered by logical events the physical events
have to be added with a specialdelta union operator, ∪∆, that checks the con-
tents of the∆-set to see if each physical event has any effect or if it cancels out
any old events in the∆-set. We define the∆-set of a base relation B by

∆B = <∆+B, ∆-B>,

where∆+B is the set of added tuples to B and∆-B is the set of removed tuples.
We define∪∆ (i.e. ∆P ∪∆ ∆Q) informally by the table in fig. 5.2 where ’+’ is
the addition of a tuple, ’-’ is the removal of a tuple, and ’∅’ means that the
tuple is not in the∆-set. The operator works correctly when there is no net
effect of updates to a function.

If a change is made to an AMOSQL function value, the old value tuple is
first removed and then the new is added.

propagation

DBold DBnew

add remove add add

remove

remove

evaluate insertions in the new state

evaluate deletions in the old state

addaddadd removeremove

remove

logical rollback

propagation

Figure 5.1: Evaluating positive v.s. negative changes
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Figure 5.2: The∪∆ operator

For example, if we update the salary of some employee twice assuming that the
income was originally 10100:

set income(:e1) = 10400;
set income(:e1) = 10100;

This corresponds to the physical update events:
-(income,:e1,10100),
+(income,:e1,10400),
-(income,:e1,10400),
+(income,:e1,10100).

The ∆-set for income changes accordingly with:

∆income = <{},{(:e1,10100)}>
∆income = <{(:e1,10400)},{(:e1,10100)}>
∆income = <{},{(:e1,10100)}>
∆income = <{},{}>

i.e. there is no net effect of the updates.
For bag-semantics, i.e. allowing duplicates, the∆-set (or∆-bag) must keep a

count of duplicates and∪∆ must increment/decrement the count when adding
positive/negative tuples (if the count becomes 0 then the tuple is removed).

5.3 Partial Differentiation

For monitoring changes of a given derived relation (view) P we need to define a
∆-relation∆P. For stored relations, the∆-relation is defined by its materialized
∆-set as above. For derived relationsthe ∆-set is defined as a pair:

∆P = <∆+P, ∆-P>, where
∆+P = P - Pold and
∆-P = Pold - P, and where
Pold = (P∪ ∆-P) - ∆+P for any relation P1

This is a circular definition which is useless for anything but as a theoretical

∆P ∆Q  ∅ + -

 ∅  ∅

 ∅

 ∅

+

+++

-

-- -
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base for the following definitions. We need to define how to calculate the∆-set
of a derived relation in terms of the∆-sets of the relations it depends on. The
changes of the∆-relation are materialized in a new∆-set. This is a temporary
materialization done in the propagation algorithm and is discarded as the prop-
agation proceeds upwards. Changes, i.e.∆-sets, that are not referenced by any
partial ∆-relations further up in the network are considered as not needed any
more. This assumes that there are no loops in the network, which is not the case
with recursive relations, see section 8.5.

For efficient monitoring of rule conditions, the rule compiler generates sev-
eral partial ∆-relations that detect changes to a derived relation given a change
to one of the relations it is derived from. The technique is based on the assump-
tion that the number of updates in a transaction is usually small and therefore
only small effects on rule conditions will occur. Thus, the changes will only
affect some of the partially differentiated relations. The change monitoring is
separated into monitoring of positive changes (adding) and negative changes
(removing).

5.3.1 Monitoring Positive Changes

For a relation P defined as a Horn clause with a conjunctive body, let Dp be the
set of all relations that P depends on. Then the positive partial∆-relations ∆P/
∆+X are defined by the body of P where a single relation X∈Dp has been sub-
stituted by its positive∆-relation∆+X.

For example, if
p(X, Z) ←

q(X, Y) ∧
r(Y, Z)

then
∆p(X, Z)/∆+q ←

∆+q(X, Y) ∧
r(Y, Z)

and
∆p(X, Z)/∆+r ←

q(X, Y) ∧
∆+r(Y, Z)

In the example above the relations Q and R are either stored and the contents of
∆Q and∆R are found by update event detection or, in the case of derived∆-
relations, found by evaluating changes to other partial∆-relations in the same
manner.

Let DBold consist of the stored relations (facts)
q(1, 1)
r(1, 2)
r(2, 3)

1. The current database always reflects the new state
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from p defined above we can derive
p(1, 2)

A transaction performs the updates
assert q(1, 2)
assert r(1, 4)

DBnew is now
q(1, 1)
q(1, 2)
r(1, 4)
r(2, 3)
from p we can derive
p(1, 2)
p(1, 3)
p(1, 4)

The updates gives the∆-sets,
∆q = <{(1,2)},{}>
∆r = <{(1,4)},{}>

Evaluating∆p(X, Z)/ ∆+q and joining with∪∆ gives
∆p = <{1,3},{}> , i.e no changes are detected

Evaluating∆p(X, Z)/ ∆+r  and joining with∪∆ gives
∆p = <{(1,3),(1,4)},{}>

In the no_high  rule, there are two partial∆-relations defined for changes to
the cnd_no_high  relation with respect to theincome  relation:

∆cnd_no_high department,employee (D, E)/ ∆+income’ ←
mgrdepartment,manager (D, _G1)  ∧
∆+income employee,number (_G1, _G2)  ∧
_G3 = _G2 + 100 ∧
_G4 = _G3 * 0.75  ∧
dept employee,department (E, D)  ∧
income employee,number (E, _G5)  ∧
_G6 = _G5 * 0.75  ∧
>(_G6, _G4)

∆cnd_no_high department,employee (D, E)/ ∆+income’’ ←
mgrdepartment,manager (D, _G1)  ∧
income employee,number (_G1, _G2)  ∧
_G3 = _G2 + 100 ∧
_G4 = _G3 * 0.75  ∧
dept employee,department (E, D)  ∧
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∆+income employee,number (E, _G5)  ∧
_G6 = _G5 * 0.75  ∧
>(_G6, _G4)

Both of these partial∆-relations are evaluated when changes occur to the
income  relation. The first one checks if the income of a manager was changed
and if any employees have an income higher than his/her new income. The sec-
ond one checks if the changes involves an employee and if the income of the
employee is above that of the manager of his/her department.

Let us consider the example of the toys department again. Initially we
havethe incomes in fig. 5.3.

Figure 5.3: Before updates

When we do the updates:
set income(:e2) = 10600;
set income(:e4) = 10600;

the updates passes through any screener predicate ofincome  and we generate
the ∆-set,

∆income =

<{(:e2,10600),(:e4,10600)},

{(:e2,10200),(:e4,10400)}>

Then we have the incomes in fig. 5.4.

Figure 5.4: After updates

Evaluating cnd_no_high department,employee (D, E)/ ∆+income’  gives

name income netincome

boss 10400 7875

employee2 10200 7650

employee4 10400 7800

name income netincome

boss 10400 7875

employee2 10600 7950

employee4 10600 7950



47

nothing since neither of the employees are managers. Evaluating
cnd_no_high department,employee (D, E)/ ∆+income’’ and joining with
∪∆ gives the∆-set:

∆cnd_no_high =

<{(:toys_department,:e2),(:toys_department,:e4)},

{}>

and by evaluating:

act_no_high( ∆+cnd_no_high(:toys_department))

we get the final incomes in fig. 5.5.

Figure 5.5: After rule execution

Note that this is actually not how the rule execution is implemented since we
here ignore conflict resolution. The contents of

∆+cnd_no_high(:toys_department)

is really saved in anaction-set that eventually is used for action execution, see
section 8. The negative changes are not needed in this example rule since the
rule condition only depends on positive changes. If, however, some other rule
triggers on the same or a similar condition and does a compensation that can
cause the condition of this rule to become false, then the negative changes will
have to be considered as well, see section 5.3.2.

For set-oriented semantics this method of propagation of positive changes
might give a∆-set that is too large, i.e. contains positive changes that existed in
the old state of the database. This can lead tonervous rule behaviour because
the ∆-set might cause a rule to be triggered even though the rule condition was
already true before the changes occurred.

Take the example database:
t(11, 1)
s(X) ← t(Y, X), Y > 10
∆s(X)/ ∆+t ← ∆+t(X), X > 10
Froms we can derives(1) .
The update
assert t(12, 1)

name income netincome

boss 10400 7875

employee2 10500 7875

employee4 10500 7875
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gives ∆t = <{(12,1)},{}> and
evaluating∆s(X)/∆+t and joining with∪∆
gives ∆s = <{(1)},{}>.

From the last example it is easy to see why a partial∆-relation can produce a
set of changes that is too large. With set-oriented semantics we would have to
check if s(1) was present in DBold in order to havestrict rule semantics.
Strict rule semantics means that the rules are only triggered if the rule condi-
tions become true after previously having been false. In many cases nervous
rule behaviour is acceptable and this check will not have to be performed. For
example, in rules that enforce some constraint, such asno_high, the natural
thing to do in the action is to abort or compensate which will cause the condi-
tion to become false again. Themonitor_item rule is an example of a rule
that needsstrict semantics, since a nervousmonitor_item would make mul-
tiple orders, which is unacceptable. To avoid nervous rules it is necessary to
inspect the old state of the relation representing the condition and to filter out
positive changes of tuples that were already present.

5.3.2 Monitoring Negative Changes

In most cases a rule condition depends only on positive changes, as for the
no_high rule. However, for negation and aggregation operators, see section
5.4, negative changes will have to be propagated as well. For strict rule seman-
tics, propagation of negative changes is also necessary for rules that affect each
other’s rule conditions. A rule that is executed can produce negative changes
that causes the condition of an already triggered, but not executed rule, to
become false. This rule activation is then considered not to be triggered any
more. This is explained in more detail in section 8.5.

The two partial∆-relations of the relation P with regard to the negative
changes of Q and R are defined as:

∆p(X, Z)/∆-q ←
∆-q(X, Y) ∧
rold(Y, Z)

and
∆p(X, Z)/∆-r ←

qold(X, Y) ∧
∆-r(Y, Z)

where Rold = (∆-R ∪ R) - ∆+R
and since ∆+R ∩ ∆-R = ∅, i.e. ∆-R - ∆+R = ∆-R, we have
Rold = ∆-R ∪ (R - ∆+R) = ∆-R ∪ (R ∩ ~∆+R), where
~ denotes set complement, and which can be expressed logically by:
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rold(X, Y) ←
∆-r(X, Y) ∨
(r(X, Y) ∧ ¬(∆+r(X, Y)))

where Qold is defined likewise.

Let DBold consist of the stored relations (facts)
q(1, 1)
r(1, 2)
r(2, 3)
from p defined above we can now derive
p(1, 2)

A transaction performs the updates
assert q(1, 2)
assert r(1, 4)
retract r(1, 2)
retract r(2, 3)

DBnew is now
q(1, 1)
q(1, 2)
r(1, 4)
from p we can now derive
p(1, 4)

The updates gives the∆-sets,
∆q = <{(1,2)},{}> and
∆r = <{(1,4)},{(1,2),(2,3)}>.

Evaluating∆p(X, Z)/∆+q and joining with∪∆ gives
∆p = <{},{}>, i.e no changes are detected.

Evaluating∆p(X, Z)/∆+r and joining with∪∆ gives
∆p = <{(1,4)},{}>.

Evaluating∆p(X, Z)/∆-r and joining with∪∆ gives
∆p = <{(1,4)},{(1,2)}>.

Note that if we did not use the old state ofq in ∆p(X, Z)/∆-r we would
get ∆p = <{(1,4)},{(1,2),(1,3)}> which is clearly wrong. By prop-
agating breadth-first, bottom-up we can calculate the old value of the database
by doing alogical rollback, using the formulas above.

Take the database from the last example in the previous section:
t(11, 1)
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s(X) ← t(Y, X), Y > 10
∆s(X)/∆+t ← ∆+t(X), X > 10
∆s(X)/∆-t ← ∆-t(X), X > 10
Froms we can derives(1).
Now, let us assume the following updates instead,
assert t(12, 1)
retract t(11, 1)
These give∆t = <{(12,1)},{(11,1)}> and
evaluating∆s(X)/∆+t and joining with∪∆ gives
gives ∆s = <{(1)},{}>
and evaluating∆s(X)/∆-t and joining with∪∆ gives
∆s = <{},{}>, since positive and negative tuples are extinguished by
∪∆.

For set-oriented semantics, negative partial∆-relations might also produce a∆-set
that is too large, i.e. deletions of tuples that are still present in the new state of the
database. If we, for example, havet(11,1) andt(12,1) and retract one of them,
we get a negative change ofs(1), buts(1) can still be derived from the database.
Unlike for positive changes, this is more serious since it might cause rules not to trig-
ger on positive changes since these have been cancelled by incorrectly propagated
negative changes. To avoid this we have to check if the tuple is still present in the
new state of the database. If this is not done the rules might under-react, which is
unacceptable.

5.3.3 Combining Changes

The changes calculated in partial∆-relations have to be combined before they can be
propagated further in the network.

There exists an isomorphism f, denoted≅f, between the boolean algebra of
ObjectLog and set algebra[1]:

f: <O, ¬,∧, ∨> → <2At(O), ~, ∩, ∪>,

where O is the domain of objects in the database, ¬ is negationbased on the Closed
World Assumption, ∧ is logical conjunction,∨ is logical disjunction, 2At(O) is the
power set of atoms in O,~ is set complement,∩ is set intersection, and∪ is set
union. Using this we can define change monitoring of ObjectLog through set opera-
tions.

Let ∆+S,delta-plus of S, be the set of additions (positive changes) to a set S and
∆-S,delta-minus of S, the set of deletions (negative changes) from S. Let the∆-set
(delta-set) of S be a tuple of the positive and the negative changes of a set S:

∆S = <∆+S,∆-S>

We formally define thedelta-union, ∪∆, over∆-relations as:

∆P ∪∆ ∆Q = <(∆+P -∆-Q) ∪ (∆+Q - ∆-P),
(∆-P -∆+Q) ∪ (∆-Q - ∆+P) >
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To detect changes of derived relations we define conjunction, disjunction, and nega-
tion in terms of their∆-relations as:

∆(Q ∧ R) ≅f ∆(Q ∩ R) =
<(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>
∪∆
<{} , (∆-Q ∩ Rold) ∪ (Qold ∩ ∆-R>

∆(Q ∨ R) ≅f ∆(Q ∪ R) =
<(∆+Q − Rold) ∪ (∆+R − Qold), {}>
∪∆
<{}, ( ∆−Q − R) ∪ (∆−R − Q)>

∆(¬Q) ≅f ∆(~Q) = <∆-Q, ∆+Q>

Note that when there are changes to more than one part of a conjunction the defini-
tion above might give a set of changes that is too large, i.e. it might contain dupli-
cates. For set-oriented semantics of relations this is no problem since all duplicates
will be removed by∪∆. For bag-oriented semantics this is a serious problem since
we can only disregard tuples that were generated from overlaps in the execution. This
problem can be solved by adding checks that remove the overlaps:

∆(Q ∧ R) ≅f ∆(Q ∩ R) =
<(∆+Q ∩ R) ∪ ((Q - ∆+Q) ∩ ∆+R), {}>
∪∆
<{}, ( ∆−Q ∩ Rold) ∪ ((Qold − ∆−Q) ∩ ∆−R)>

Such a technique is presented in [47] and can also be used as a general technique for
optimizing partial∆-relations.

 For bag-oriented semantics,∪ and∪∆ are commutative so the order of
accumulation can be arbitrary. For set-oriented semantics,∪∆ has to be per-
formed in the same order as the changes occurred in the transaction, see section
6.3. For disjunctions a check is made that positive/negative changes are propa-
gated only if the other part of the disjunction was/is false (this check is only
done for set-oriented semantics).

 Note that the above definitions require that the∆-sets of both Q and R are
fully propagated before the new∆-set can be computed, i.e. a breadth-first bot-
tom-up propagation is crucial.

Next we define thepartial ∆-relation, ∆P/∆X, that incrementally monitors
changes to P through changes of a single sub-relation X.Partial Differentiation
of a relation is defined as generating partial∆-relations for all the sub-relations
of the relation. The net changes of partial∆-relations are accumulated (using
∪∆) into a ∆-set that materializes the changes represented by the∆-relation.
From the partial∆-relations a dependency (propagation) network is generated
where each node is a∆-relation (fig. 4.10).

 Let Dp be the set of all relations that P depends on. Positive partial changes
are combined by:
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∆+P = ∪ ∆P/∆+X, ∀X ∈Dp
and negative changes by
∆-P = ∪ ∆P/∆-X, ∀X ∈Dp
The full ∆-relation is defined as:
∆P = <∆+P, {}>  ∪∆ <{}, ∆-P>

For the example relation P in sections 5.3.1-5.3.2 the positive changes are
combined by

∆+p(X, Z) = ∆p(X, Z)/∆+q ∪ ∆p(X, Z)/∆+r
and the negative changes by
∆-p(X, Z) = ∆p(X, Z)/∆-q ∪ ∆p(X, Z)/∆-r
and finally ∆p(X, Z) = <∆+p(X, Z), {}>  ∪∆ <{}, ∆-p(X, Z)>

The order in which the accumulation of changes is done is important since∪∆ is not
commutative for set-oriented semantics, see section 6.3.

For set-oriented semantics the partial∆-relations might produce changes
that are not really there. To avoid this we have to check that positive changes
were not present in the old state of the database and that negative changes are
not present in the current state of the database:

∆P = <∆+P - Pold, ∆-P - P>

If this is not done, we might over/under-trigger rules since the positive/negative
changes might be incorrectly propagated. If a check is not made for positive changes
we will getnervous rule behaviour. For negative changes the check will always have
to be done since under-triggered rules are undesirable. The old state of the database
can be calculated using propagated changes or by using materialization techniques.
By including checks of Pold and P directly into the partial∆-relations the calculations
will usually be more efficient than full re-calculations of Pold and P. The reason is
that many variables will already be bound and there are usually many possibilities for
optimizations of common sub-expressions. Another option is to materialize P, but
this is always a trade-off between time and space, see section 7.5.

5.4 Changes to Aggregate Data

Changes of aggregates such asnotany (logical ¬∃, or negation as failure),
some (∃), count andsum will have to be defined through changes of incre-
mental versions of the aggregation functions [8][47]. These are defined by sav-
ing a boolean value (fornotany andsome), a count (forcount), or a sum
(for sum) for each aggregate data and by using the changes to perform logical
operations, increment/decrement the count or add/subtract from the sum. For
aggregate functions both positive and negative changes will have to be propa-
gated. For example,count will increment/decrement the counter associated
with each aggregate data for positive and negative changes, respectively. The
aggregate functionnotany is really a special case since it can be directly be
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determined by substituting positive changes for negative and vice versa, as was
defined in section 5.3.3. If some tuple is added to the database thennotany
for that tuple will become false and if some tuple is removed from the database
thennotany for that tuple will become true.

All aggregation functions are, however, not incrementally computable, see
[25].

5.5 Related Work

Work by [43] and [47] are very much related. In [43] rules are written directly
in Datalog by referencing positive and negative∆-relations directly. This
makes it possible to write ECA style rules, but where the Event can be changes
to any derived relation. In our system, the rule compiler generates partial∆-
relations, from AMOSQL CA style rules, that do incremental change monitor-
ing of one sub-relation at a time. However, we plan to introduce higher-order
functions that can refer to specific events, i.e. changes to any sub-function in
the condition of a rule. The generated partial∆-relations would then be very
similar to the rules directly stated in [43].

The technique for incremental maintenance of materialized views proposed
in [47] is also related and uses a technique similar to partial differentiation for
change monitoring of a view (derived relation) to update a materialized view
with the detected changes. However, our technique aims at avoiding view mate-
rialization. In [47] bag-oriented semantics are assumed and a technique for
avoiding overlaps when executing several partial∆-relations is presented. This
technique is necessary for bag-semantics, but can be seen as an optimization of
partial ∆-relations for set-oriented semantics.



54 A Formal Definition of Partial Differentiation



55

6 Database Transactions and
Update Semantics

6.1 Transactional Rules

When integrating active rules into a DBMS with transactional capabilities it is
important to specify the semantics of the rules in terms of transactional behav-
iour.

The events that are detected and the consequent changes saved in∆-sets will
discarded in case of a transaction rollback. The changes are accumulated with
∪∆ to capture the logical events instead of the physical. The actual changes to
the ∆-sets are logged.

The semantics of rule definition and activation must also be specified in
relation to transactions. Rules that are defined within a transaction are not per-
manent until the transaction is committed, hence a rollback will cause the rule
to be removed. Likewise, a rule activation will be deactivated in the case of a
rollback of the transaction in which the activation took place.

At rule creation, a condition function, an action procedure and partial∆-
relations are created. These are ordinary functions and relations and are thus
also transactional. At rule deletion, the condition function, the action proce-
dure, and the partial∆-relations are removed. At rule activation the rule is inte-
grated into the propagation network by inserting nodes for all the∆-relations
that the rule condition depends on. At rule deactivation the nodes are removed,
if they are not shared by other rules. All operations on the network, e.g. inser-
tions and deletions, have to be transactional.

If a rule is activated in the middle of a transaction the condition is naively
evaluated in order for the rule to catch up with changes that occurred prior to
the activation. The result is saved in the action-set of the rule activation. If the
rule is rolled back then the action-set is discarded.

6.2 Rules that Perform Transaction Management

Rules can be used to enforce constraints over data by defining rules that abort
transactions or perform compensating updates when changes occur that violates
some constraint, i.e. causes the rule condition to become true.

In the case ofoptimistic concurrency control [49] rules can also be used to
logically determine if updates of one transaction has interfered with some other
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transaction executing in parallel.
Another use for rules in transaction management is that of synchronizing

parallel activities in the database. This can be done by defining rules that have
conditions that specify the specific synchronization points and interacts with
the activities (applications) in the action parts of the rules.

6.3 Update Ordering

If relations are defined to have set-oriented semantics then the order of accu-
mulation of changes has to be the same as the changes occurred in the transac-
tion. The∪∆ operator is not commutative when using set-oriented semantics.
This is a problem related to deferred rules and does not concern immediate
rules, since they do not accumulate any changes before they have their condi-
tions evaluated.

Take, for example, a sequence of changes:

+(income,:e1,10400),
+(income,:e1,10400),
-(income,:e1,10400).

Assuming that the tuple is not originally present in the database, the second
positive change has no effect at all while the third negative change causes an
empty final net change. If the order is changed to:

+(income,:e1,10400),
-(income,:e1,10400),
+(income,:e1,10400),
then the final net change is
+(income,:e1,10400).

By defining a sequence to chronologically order all updates in a transaction, the
sequence number, or time stamp, of each change can be propagated along with
the changes. Before the changes of several partial∆-relations are added to the
complete∆-relation (by∪∆) the changes have to be ordered according to their
time stamps. To support this we redefine the incremental change propagation to
also propagate the time of updates.

We define thetimed ∆-set of a base relation B by:

∆BT = <∆+BT, ∆-B
T>

where∆+BT is the set of tuples and times when they were added to B and∆-B
T

is the set of removed tuples and times when they were removed.
Take the example relation

p(X, Z) ←
q(X, Y) ∧
r(Y, Z)



57

then
∆pT(X, Z, T)/∆+q ←

∆+qT(X, Y, T) ∧
r(Y, Z)

whereT is the time when a tuple was added and
∆pT(X, Z, T)/∆+r ←

q(X, Y) ∧
∆+rT(Y, Z, T)

and
∆pT(X, Z, T)/∆-q ←

∆-qT(X, Y, T) ∧
rold(Y, Z)

whereT is the time when a tuple was removed and
∆pT(X, Z, T)/∆-r ←

qold(X, Y) ∧
∆-rT(Y, Z, T)

We now define∪T
∆ to accumulate all changes and sort them according to their

times before inserting them into a timed∆-set. If two identical tuples are
inserted into a∆-set, the larger time stamp of the two is chosen.

Bags are more general than sets, i.e. set⊂ bag, and have no restrictions against
duplicate tuples.For bag-oriented semantics, the update order is unimportant
since the∆-bag has a count of all duplicate tuples. However, the propagation of
the time of updates is also useful when introducing time events and temporal
conditions into the active database, but this is outside the scope of this thesis.

6.4 Related Work

In HiPac[16],coupling modes(see section 2.3) were defined that specify the
coupling between the event, condition and action parts of rule execution and
the transaction(s) where they execute.

Constraints represented as assertions [3] specifies relationships that must
hold after each transaction. Any transaction that violates a constraint will be
aborted or the violating data will be changed through compensating updates.
This behaviour can be attained by specifying production rules for constraint
maintenance [15].

Sagas [37] can be used to specifywork flow by defining a sequence of trans-
actions together with compensating transactions that are to be executed in case
of a saga rollback.

In [28] rules were used for defining work flow by having rules with decou-
pled semantics initiate new transactions. The rule conditions specify the crite-
ria for starting work as separate transactions. In case of rollback rules can also
be used to specify compensating actions. A special technique calledpipelining
is also discussed that sequentially orders subtransactions that have been gener-
ated from decoupled rules and that have triggered in some specific order.

No directly related work on update ordering has been found. InTemporal
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Databases [67] there is usually a distinction betweentransaction time, valid
time anduser-defined time. Transaction time is the time when the information
was stored in the database. Valid time is the time when a specific relationship in
the database is valid. User-defined time is temporal information added by the
user that is not supported by the database. In [23]event time was defined as the
time when a certain event occurred in the real world and transaction time as the
time when it was recorded in the database.

By registering events as changes to functions and storing them in timed∆-
sets the event time is transformed into transaction time. Only those events that
are considered as potential changes to activated rule conditions are saved and
consequently stamped with transaction time. Using this definition, the time
which we use for ordering updates chronologically is transaction time based on
the event times of insert and delete events. The technique of propagating trans-
action time through timed∆-sets can be used for any timed events if they are
associated with functional changes. More discussions on time concepts in tem-
poral databases can be found in [48].
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7 Optimization

7.1 General Optimization Techniques

The ObjectLog optimizer in AMOS as described in [51] is based on Horn
clause rule substitution and a cost model for subgoal reordering. Horn clause
rule substitution means that the optimizer combines Horn clause rules into
larger rules by expanding subgoals. All subgoals cannot be expanded, e.g. late
bound calls and recursion. By expanding all possible subgoals the following
steps in the optimization process will have more degrees of freedom for optimi-
zation.

For any Horn Clause rule or predicate P, the input tuple is the tuple corre-
sponding to the variable(s) that are bound in P. For a given input tuple there are
zero, or several output tuples, corresponding to unbound variable(s) in P. Sub-
goal reordering is based on a cost model that calculates two cost estimates for
P:

1. Theexecution cost of P, CP, defined as the number of visited tuples, given
that all variables of the input tuple are bound.

2. Thefan out, Fp, which is the estimated number of output tuples produced by
P for a given input tuple.

For a conjunctive query consisting of subgoals {Pi}, 1 ≤ i ≤ n, the total cost C is
calculated by the formula:

For disjunctive queries, i.e. in disjunctive normal form, each part of the dis-
junction is optimized separately.

A rank for each subquery in a query plan is calculated by using fan out and
cost information and some optimization strategy. The rank is used to reorder
the subgoals in a query plan. In the system three different optimization strate-
gies are available. A heuristic method based on calculating the ranks through a
simple formula [51] is currently the default method. A randomized method
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based on Simulated Annealing and Iterative Improvement [46]is available as
an option, and which is the most effective of the three for optimizing large que-
ries, i.e. large join queries. Exhaustive optimization is also available [65]
which calculates the optimal plan, but can only be used for smaller queries.

The fan out is currently defined by the following default values:

• FP = 1 if the input tuple has a unique index.

• FP = 2 if it has a non-unique index.

• FP = 4 otherwise

The defaults for CP are:

• CP = FP if the input tuple has an index.

• CP = 100 if it is unindexed, since the system has to scan the entire table.

Foreign predicates have by default FP = 1 and CP = 1, assuming they are cheap
to execute and return a single result tuple. The user can provide cost hints for
each predicate, which override the default assumptions about CP and FP. For
Horn Clause rules FP is calculated by using FP of the subgoals.

The reordering of subgoals of a relation P, i.e. a Horn Clause, is performed
by the optimizer by using the given CQ and FQ of each subgoal Q of P, with the
aim of minimizing CP.

7.2 Optimization of Screener Predicates

The screener predicate s described in section 4.4 can be optimized using the
techniques described above. By calculating the total cost of the partial∆-rela-
tions that are affected by the update, CP, we have the cost of letting an update
slip through a screener predicate. For an update of Q affecting the partial∆-
relations {∆Pi/∆Q}, 1 ≤ i ≤ n, we have:

The total cost of a partial∆-relation is really a recursive calculation since one
partial ∆-relation,∆P/∆Q, can in turn affect other partial∆-relations,∆Ri/∆P.

CP C∆Pi

∆Q
---------i 1=

n

∑=
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This calculation is done bottom-up using the dependency network, and stops
when the rule conditions are reached.

The cost of the screener predicate scr_Q, Cscr_Q and the fan out Fscr_Q can be
used to determine the effectiveness of a screener predicate. By minimizing CP *
Fscr_Q, while keeping Cscr_Q * ufQ < CP, an optimal screener predicate can been
found, where ufQ is a constant that considers the update frequency of Q. The constant
ufQ could be defined by some estimation determined through experiments or it could
be changed continuously by using statistics on the numbers of updates per transaction
of particular base relations. How to calculate the size of ufQ is outside the scope of this
thesis.

7.3 Optimization of Partial ∆-relations

When optimizing a partial∆-relation the optimizer should take into account
that the∆-relation for which it is differentiated for is much smaller than the
original relation. The ObjectLog optimizer described in [51] is being extended
with new cost metrics for∆-relations. Since∆-relations usually are very small
they will often be moved early. Often the∆-relation will be placed first, how-
ever, this is not always the case as [43] assumes.

Take the partial∆-relations generated for the condition of theno_high  rule
for monitoring changes of the income relation. The first partial∆-relation:

∆cnd_no_high department,employee (D, E)/ ∆+income’ ←
mgrdepartment,manager (D, _G1)  ∧
∆+income employee,number (_G1, _G2)  ∧
_G3 = _G2 + 100 ∧
_G4 = _G3 * 0.75  ∧
dept employee,department (E, D)  ∧
income employee,number (E, _G5)  ∧
_G6 = _G5 * 0.75  ∧
>(_G6, _G4)

is already optimal sinceDdepartment  is bound when the partial∆-relation is
evaluated andmgr  is indexed on the department. The second partial∆-relation:

∆cnd_no_high department,employee (D, E)/ ∆+income’’ ←
mgrdepartment,manager (D, _G1)  ∧
income employee,number (_G1, _G2)  ∧
_G3 = _G2 + 100 ∧

C∆P
∆Q
--------

C∆Ri

∆P
---------i 1=

n

∑=
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_G4 = _G3 * 0.75  ∧
dept employee,department (E, D)  ∧
∆+income employee,number (E, _G5)  ∧
_G6 = _G5 * 0.75  ∧
>(_G6, _G4)

is not optimal. The∆-relation should here be placedbefore thedept  subgoal
sincedept  has an index on employee and not on the department:

∆cnd_no_high department,employee (D, E)/ ∆+income’’ ←
mgrdepartment,manager (D, _G1)  ∧
income employee,number (_G1, _G2)  ∧
_G3 = _G2 + 100 ∧
_G4 = _G3 * 0.75  ∧
∆+income employee,number (E, _G5)  ∧
dept employee,department (E, D)  ∧
_G6 = _G5 * 0.75  ∧
>(_G6, _G4)

By defining cost hints for partial∆-relations that specify, e.g. FP = 2 and CP = 1
this can be achieved.

Since all Horn clause rules have their subgoals fully expanded if possible,
many opportunities for common subexpressions between different rule condi-
tions are lost. By not doing full expansion common subexpressions can be
achieved. In theno_high  rule example thecnd_no_high  could be retained
as it is and allowing sharing of thenetincome  between different rule condi-
tions:

cnd_no_high department,employee (D, E) ←
mgrdepartment,manager (D, _G1) ∧
netincome manager,number (_G1, _G2) ∧
dept employee,department (E, D) ∧
netincome employee,number (E, _G3) ∧
>(_G3, _G2)

This would lead to a shared nodes in the propagation network. This node shar-
ing is not done in the current implementation, except for late bound subgoals,
i.e. when the correct functions cannot be determined at compile-time due to
lacking type information. If query plans are not expanded many possible oppor-
tunities for optimization might be lost. This is a trade-off which has to be stud-
ied in more depth. Changing the optimizer to avoid full expansion in favour of
common subexpressions is outside the scope of this thesis.

7.4 Incremental versus Naive Change Monitoring

As shown in section 9 the incremental change monitoring outperforms the
naive one in the case of small updates that have small effects on rule condi-
tions. In the case of large updates the incremental change monitoring performs
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badly, some times very badly. One possibility here, is to detect these large
updates and automatically use naive change monitoring in these cases. This
can, for example, be done by having a threshold size of∆-sets that will be prop-
agated. If the size exceeds the threshold, then the affected rule conditions will
be evaluated naively. By deactivating rules when large updates are to be done
and reactivating them before the transaction is to be committed, naive evalua-
tion of the rule conditions can be attained. This can be done by deactivating
rules when any of∆-sets that they depend on exceed their threshold sizes. How-
ever, the cost of deactivating and activating rules will have to be taken into
account. Deactivation and activation involves contracting and expanding the
propagation network.

7.5 Logical Rollback versus Materialization

The choice between making a logical rollback versus using materialization to
find the old value of a relation can be supported by cost information. The calcu-
lated execution cost of a relation P, CP, can be compared to the calculated fan
out, FP. For a small CP and a large FP, logical rollback is advantageous. For a
large CP and a small FP, materialization is a better decision. Exactly for what
actual values of CP and FP the different choices should be made, has to be
determined through further experiments.

7.6 Related Work

Since rule conditions are defined as ordinary queries, techniques for query opti-
mization are relevant [46][51][65].

In [43] simple ad hoc optimization of∆-relations is proposed, while it is
here recognized as a more general optimization problem. In [41] techniques for
finding common subexpressions are utilized.
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8 Change Propagation

8.1 The Check Phase

In the check phase all the activated rules are checked to see if they are trig-
gered. This is usually done at transaction commit. During ongoing transactions
updates are saved in∆-sets that are maintained for all stored relations that are
referenced in any activated rules, see fig. 8.1. In the check phase these∆-sets
are propagated to formaction-setsthat contain all positive changes to the func-
tions that represent the rule conditions. The∆-sets are cleared during propaga-
tion as soon they are no longer needed. The action-sets are maintained until the
transaction is actually committed, or aborted. After a round of propagation all
activated rules with non-empty action-sets are inserted into aconflict-set. Then
one rule is chosen, by some conflict-resolution method, and the action of the
rule is executed for all the tuples in the action-set. After the rule action has
been executed the action-set is cleared. The executed action might have caused
changes to new∆-sets, so these have to be propagated once more. This contin-
ues until the conflict-set is empty.

The action-sets of triggered rules are continuously updated while the rules
are in the conflict-set. If an action-set becomes empty the rule is removed from
the conflict-set.

Figure 8.1: The phases of deferred rule execution
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8.2 The Propagation Network

The propagation network contains all the information needed to propagate
changes affecting activated rules. Since the propagation is done in a breadth-
first, bottom-up manner the network can be modelled as a sequential list, start-
ing with the lowest level and moving upwards. Each level consists of:

• A change flag, chg_flg,that marks a level as changed.

• A list of network nodes.

In fig. 8.2 the network, consisting of two levels, for the ruleno_high can be
seen.

Figure 8.2: The propagation network forno_high

Each∆-relation affecting activated rules is associated with one (and only one)
node consisting of:

• A change flag, chg_flg, marking the node as changed.

• A reference count, cnt,that states how many nodes are dependent on this node.

• The∆-set of the∆-relation.

• A list of affects nodes, a-list, that are affected by changes to this node.

• A list of depends on nodes, d-list, together with the partial∆-relations affected by
the nodes below.

• A pointer to the level the node belongs to (not showed in fig. 8.3).

• A list of pointers to rule activations (if any) in the conflict set (not showed in fig.
8.3).

The number of levels needed in a network depends on how relations are
expanded. For late binding extra levels will be inserted. The more levels in a
network the more possibilities of node-sharing exist. This is discussed in sec-
tion 7.3. How the nodes in the two levels are connected forno_high can be
seen in fig. 8.3.

Level 0 Level 1

chg_flg list of nodes chg_flg list of nodes
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Figure 8.3: The nodes in the propagation network forno_high

8.3 Creation/Deletion of Rules

When a rule is created, a condition function and an action procedure is created
(see section 4.1). When rules are created all partial∆-relations of the rule con-
dition are also generated (see section 5.3). Any re-optimization needed (see
section 7.3) is also performed. When a rule is deleted, the condition function,
the action procedure, and the partial∆-relations are also deleted.

8.4 Activation/Deactivation of Rules

When rules are activated/deactivated the network is expanded/contracted with/
without the nodes needed to propagate changes to the rule condition. When a
rule is activated a naive evaluation of the rule condition for the specific activa-
tion pattern is performed. The result is saved in the action-set of the rule. This
is done in order for the rule to catch up with all the changes that have occurred
prior to the rule activation.

The algorithm for inserting∆-relations into the network looks as follows:
Insert(∆P):

if ∆P is not already inserted into the network then
create node_of(∆P);
if DP is empty, where DP is the set of relations that P depends on,

chg_flg cnt a-list d-list∆income

∆cnd_no_high/∆dept
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chg_flg cnt a-list d-list∆cnd_no_high
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then /* P is a base relation */
Insert_in_level(node_of(∆P), 0);

else
for each ∆Q where Q∈DP do

Insert(∆Q);
insert (node_of(∆Q) . ∆P/∆Q) into the
depends-on list node_of(∆P).d-list;
insert node_of(∆P) into the affects list
node_of(∆Q).a-list;

Insert_in_level(node_of(∆P),
max(for each ∆Q where Q∈DP: level_of(node_of(∆Q))) + 1);

Insert_in_level(node, level):
if level does not exist in network then create level;
insert node into the level of the network;
set level_of(node) = level;

The algorithm for removing∆-relations looks as follows:
Remove(∆P):

if ∆P is present the network then
if the affects list node_of(∆P).a-list is empty then

for each ∆Q where Q∈DP
remove (node_of(∆Q) . ∆P/∆Q) from the
depends-on list node_of(∆P).d-list;
remove node_of(∆P) from the affects list node_of(∆Q).a-list;
Remove(∆Q);

Remove_from_level(node_of(∆P), level_of(node_of(∆P)));
delete node_of(∆P);

Remove_from_level(node, level):
remove node from level of network;
if no nodes remain in the level then delete the level;

All operations to the network are transactional, i.e. the changes are logged so
that they can be undone during a transaction rollback.

8.5 The Propagation Algorithm

During ongoing transactions all changes to the log are screened for changes
that might affect activated rule conditions. If a change is made to a stored rela-
tion that has a corresponding node in level 0 in the propagation network, i.e. if
a relevant update event is detected, then the change is added to the correspond-
ing ∆-set (using∪∆).

In the check phase the propagation algorithm propagates all the non-empty
∆-sets in a breadth-first manner, as illustrated in fig. 8.4. Since the network is
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constructed in such a way that the change dependencies of one node, i.e. the∆-
relations it depends on, are calculated in the network levels below, a breadth-
first propagation ensures that all the changes have been calculated when we
reach the node.

In the check phase one round of propagation is first done using the changes
accumulated throughout the transaction. If any rules were triggered, i.e. were
inserted into the conflict set in the propagation, then one rule activation is cho-
sen, using some conflict resolution method. The action part of the chosen rule
activation is then executed for each tuple generated in the condition of the rule.
The action part is executed for each positive change since the last check phase,
we call this theaction set, which is calculated from the∆-set of the condition.
To determine if an already triggered rule (i.e. it is in the conflict set) is no
longer triggered, the action set is saved and is modified continuously to deter-
mine if it is still triggered.

If a rule is triggered, arule activation is inserted into the conflict-set. A rule
activation consists of:

• Therule that was triggered

• Theaction set which contains the tuples on which the action is to be applied

The algorithm presented here is not dependent on any specific conflict resolu-
tion method. In the present implementation of rules in AMOSQL a simple pri-
ority scheme is used. To support this, each rule activation has a priority and the
conflict set is divided into several priority levels. If the condition for which a

Changes to rule conditions

Changes to stored relations

Figure 8.4: Propagation by a breadth-first algorithm

∆
∆

∆ ∆ ∆

∆

control flow

data flow
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rule was triggered changes to false, i.e. the action-set of a rule activation
becomes empty, then the rule activation will be removed from the conflict set
without executing the action.

Note that the algorithm presented here does not handle recursion, but can be
extended to handle this. AMOSQL provides atransitive closure1 operator that
can handle most of the queries where recursive evaluation is needed. This oper-
ator is easier (or less difficult) to evaluate incrementally than general recursion
since it involves looping over only one node in the network, see related work in
section 8.6 and future work in section 10.

The log-screening looks as follows:

if a change is done to a stored relation with a corresponding node in the
propagation network then

if the screener predicate of the relation evaluates to true then
add the change to the ∆-set of the node (using ∪∆);
set node.chg_flag = true;
set (node.level).chg_flag = true; /* always level 0 */

The propagation algorithm looks as follows:
propagate():

for each level in the network do /* starting with level 0 */
if level.chg_flg then

for each node in level.nodes do *
if node.chg_flg then

for each below-node in node.d-list do
if below-node.chg_flg then

execute each partial ∆-relation and
accumulate the result into the ∆-set
of the node (using ∪∆); **
decrease_count(below-node);

if node.a-list is empty then
/*  node is a top node */
for all activations of the rule do

calculate the action-set;
/* using the ∪∆ and the ∆-set */

if node.∆-set has changed then
if node.∆-set is not empty and
node.a-list is not empty then

for each above-node in node.a-list do
set above-node.chg_flg = true;
set (above-node.level).chge_flg = true;
increase-count(node);

else /* node is a top node */

1. Transitive closure performs repetitive application of a function,
tclose(ffunction,oobject,ninteger) = f

n(o)
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set node.chg_flg = false;
clear node.∆-set;
for all activations of the rule do

if the action-set is not empty then
insert the rule activation into the
conflict-set; /* if it is not already there */

else /* the action-set is empty */
remove the rule activation from
the conflict-set; /* if it is there */

level.chg_flag = false;

increase_count(node):
set node.cnt = node.cnt + 1;

decrease_count(node)
set node.cnt = node.cnt - 1;
if node.cnt = 0 then

set node.chg_flg = false;
clear the node.∆-set;

*) The algorithm can be modified to keep a separate list of all changed nodes in
each level in order to avoid checking the change flag in all nodes. This will
increase performance when the network becomes large.

**) If the system has set-oriented semantics the accumulated updates must be
sorted in a chronological order.

The check phase looks as follows:
check():

propagate();
while conflict-set is not empty

choose (using some conflict resolution method) and
remove one rule activation from the conflict-set;
execute the action on the changes of the rule condition
(using the calculated action-set);
clear the action-set of the executed rule activation;
propagate();

8.6 Related Work

The PF-algorithm [43] is integrated with Datalog and uses incremental change
monitoring of conditions by defining∆-relations in a similar manner as in our
approach. Unlike PF, we use abreadth-first, bottom-uppropagation algorithm
(as in [61]) to correctly and efficiently propagate both positive and negative
changes without retaining space consuming materializations of intermediate∆-
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relations between check phases. The PF-algorithm uses permanent materializa-
tion and propagates first negative changes then positive ones in adepth-first
manner. Work on improving the PF-algorithm is presented in [40]. The algo-
rithms presented in [43] and [47] can handle change propagation of recursive
relations which our algorithm at the present can not.

Basic techniques on recursive query processing can be found in [5]. To han-
dle recursive∆-relations the propagation algorithm will have to be modified to
return to previous levels in the network and to re-propagate the changes of the
recursive∆-relations using materialization and fixed-point techniques.How-
ever, since recursive queries are uncommon in AMOSQL (and in general [70]), the
work has not been focused on recursion. When the network is constructed, loops can
automatically be detected and a naive evaluation of the condition can be used instead.

In [34] an algorithm is presented that given as set of production rules,
returns a set of the most profitable expressions that should be maintained. This
work considers the effects of rule actions to other rule conditions. Our work, on
the other hand, is concentrated on efficient monitoring of rule conditions. The
incremental change monitoring technique can be seen as just an optimization
since there is no semantic difference from naive evaluation. However, analysis
of the rule actions as well could be an interesting extension to the technique.

Transitive closure [1] is a simplification of general recursion to mimic
direct recursion where a function is continuously applied to its own result.
Transitive closure can handle many of the queries that would otherwise be
stated recursively in AMOSQL. Transitive closure is easier (less hard) to
implement in the algorithm presented here since it involves looping over only
one node in the propagation network, assuming the function is known at com-
pile time. Techniques for efficient evaluation of transitive closure based on
incremental evaluation techniques can be found in [25]. However, as mentioned
in [25], incremental evaluation is not possible in all cases of transitive closures.
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9 Performance

9.1 Performance Measurements of Change Monitoring

Performance of rule condition monitoring is related to expressability and the
complexity of rule conditions. Expressability relates to the number of rules
needed for a specific monitoring task. The rules in AMOSQL have the full
expressability of AMOSQL queries in the condition. Complexity relates to the
number of changes that can affect a rule condition and how they affect the con-
dition. One rule can monitor several different changes to one rule condition.
The incremental evaluation technique based on partial differentiation is effi-
cient for small changes of a few functions that affect the rule condition, but is
not so efficient for large changes to many such functions. The number of
changes that can affect the rule condition does not directly relate to the effi-
ciency of this technique since it only considers one change at a time. What
affects performance is the number of changes and how a particular change
affects the condition.

A series of measurements were made to determine how much more efficient
or inefficient incremental evaluation is, based on partial differentiation and
change propagation, compared to naive evaluation. Different kind of changes to
a rule condition were also studied. The rule that was used for the measurements
was themonitor_all_items rule in section 3.2:

create rule monitor_all_items() as
when for each item i
where quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));

where the threshold function is defined as

create function threshold(item i) -> integer as
select consume_frequency(i) * delivery_time(i, s)

+ min_stock(i)
for each supplier s where supplies(s) = i;

This rule monitors the changes in quantity of all items in an inventory. The rule
condition depends on changes to the quantity of items, the consume-frequency
of the items (how many items that are consumed on an average per day), the
delivery time of items, the minimum stock of items and which supplier delivers
a specific item. The first three measurements aimed at determining how much
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more efficient the incremental change monitoring is than the naive change
monitoring for small changes. For the naive evaluation version, simple screener
predicates were used. For the incremental evaluation version, the generated
partial ∆-relations were optimized as described in section 7.3.

9.1.1 Benchmark 1

A series of 100 transactions were run where each transaction changed the quan-
tity of one item. This will cause change to one partial∆-relation which is very
efficient to monitor by incremental techniques. The naive change monitoring
technique will evaluate the whole condition regardless of how much have
changed. The results can be seen in fig. 9.1. Note that the axis have logarithmic
scale since the magnitude between the execution times of the different tech-
niques is too great to display with linear scaled axis. The time for incremental
change monitoring is very constant, regardless of the number of items, with an
average time of 14 sec or 140 msec/transaction. Note that the times presented
here do not represent the possible throughput of the AMOS architecture, only
the results from running a prototype implementation as a regular application
process.1 The time for naive change monitoring increases linearly with the
number of items and is on the average 8.2 sec/transaction for 10000 items.

From this first benchmark it is easy to see why incremental change monitor-
ing is the better technique of the two, if the number of changes to a rule condi-
tion in a transaction is small. Naive change monitoring quickly becomes
unfeasible as the size of the database grows and where rule conditions are com-
plex queries over large portions of the database.

1. All measurements were made on a HP9000/710 with 64 Mbyte of main memory and
running HP/UX.



75

9.1.2 Benchmark 2

A series of 100 transactions were run where each transaction changed the quan-
tity of one item and the delivery time for the item. This will cause change to
two partial ∆-relations which is still very efficient to monitor by incremental
techniques. The naive change monitoring technique will evaluate the whole
condition and thus increases linearly with the size of the database. The results
can be seen in fig. 9.2. The time for incremental change monitoring is on the
average 15 sec or 150 msec/transaction.

Figure 9.1: 100 transactions with 1 change to 1 partial∆-relation
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9.1.3 Benchmark 3

A series of 100 transactions were run where each transaction changed the quan-
tity of one item, the delivery time for the item, and the consume-frequency for
the item. This will cause change to three partial∆-relations which is still very
efficient to monitor by incremental techniques. The naive change monitoring
technique will evaluate the whole condition and thus increases linearly with the
size of the database. The results can be seen in fig. 9.3. The time for incremen-
tal change monitoring is on the average 16 sec or 160 msec/transaction.

These first measurements show that the incremental change monitoring
technique is very efficient if the number of changes is small even if several
parts of the rule conditionare effected. As will be shown in benchmark 7 this is
not always the case. It depends on how the change affects the condition and
how expensive the related partial∆-relation is to evaluate.

Figure 9.2: 100 transactions with 1 change to 2 partial∆-relations
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9.1.4 Benchmark 4

In this test one transaction was run which updated the quantity of all items in
the database. This means that only one partial∆-relation is affected. The
affected partial∆-relation has to check the quantities of all the items which is
exactly what the naive change monitoring technique does. Since there is an
overhead in doing the actual propagation, the incremental change monitoring
technique performs slightly worse than the naive one (fig. 9.4).

Figure 9.3: 100 transactions with 1 change to 3 partial∆-relations
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9.1.5 Benchmark 5

In this test one transaction was run which updated the quantity and the delivery
time of all items in the database. This means that two partial ∆-relations are
affected. The affected partial ∆-relations have to check all the items which is
exactly what the naive change monitoring technique does, but it does it all at
once, as in the case of benchmark 4. The incremental change monitoring tech-
nique still performs only slightly worse than the naive one.

Figure 9.4: 1 transaction with n changes to 1 partial ∆-relation
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9.1.6 Benchmark 6

In this test one transaction was run which updated the quantity, the delivery
time, and the consume-frequency of all items in the database. This means that
three partial∆-relations are affected. The affected partial∆-relations have to
check all the items which is exactly what the naive change monitoring tech-
nique does, but it does it all at once, as in the case of benchmarks 4 and 5. The
incremental change monitoring technique now performs much worse than the
naive one. The reason for this can be found in the definition of thethreshold
function. Changing the consume-frequency causes a partial∆-relation to be
evaluated that has to check which supplier supplies the changed item, what is
the delivery time of the item, and what is the minimum stock of the item.
Changing the delivery time does not require finding the supplier since this is
part of the propagated change.

Figure 9.5: 1 transaction with n changes to 2 partial∆-relations
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9.1.7 Benchmark 7

The previous benchmark shows that different changes can have different effects
on performance because the partial∆-relations that they affect varies in cost of
evaluation. The number of changes of a partial∆-relation does not necessarily
need to be large in order to have a large effect on the total performance. To
highlight this we redefine themin_stock function to affect all items.
create function min_stock() -> integer;
create function threshold(item i) -> integer as

select consume_frequency(i) * delivery_time(i, s)
+ min_stock()

for each supplier s where supplies(s) = i;

Changing the minimum stock does have a dramatic effect on performance. The
quantity was changed for all items and the minimum stock was changed once in
a single transaction fig. 9.7. This can be compared with fig. 9.4 to show that
changing the minimum stock only once dramatically degrades performance for
the incremental change monitoring technique.

Figure 9.6: 1 transaction with n changes to 3 partial∆-relations
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From these measurements the conclusion can be made that the incremental
change monitoring technique is superior for a small number of changes in most
transactions. In this case, the performance is independent of the size of the
database, we say that the incremental change monitoring scale-up with respect
to size.

For a large number of changes in a transaction the naive change monitoring
technique performs better. In the worst case, the incremental change monitor-
ing, however, only performs worse than naive change monitoring by a constant
factor. By deactivating rules with incremental change monitoring during large
number of changes and activating them (causing a naive evaluation) before
transactions are committed the best of both techniques can be attained. How-
ever, the cost of deactivating and activating a rule again must be considered
here since this involves contracting and then expanding the propagation net-
work.

Note that these measurements are not really dependent on that only one rule
is activated. If several rules are activated, but only one of them is affected by
the changes, i.e. if the condition refers to the function that changes, then there
would be no overhead from the other rules. If, however, there are changes that
affect several rules or if one rule causes changes that affects the condition of
another rule then it is a different matter. Measuring performance in such cases
requires carefully designed benchmarks that can give valuable information
where the bottlenecks are in different change monitoring and action execution
strategies.

Figure 9.7: 1 transaction with n changes to 1 partial ∆-relation and 1
change to 1 expensive partial ∆-relation
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9.2 Related Work

In [58] a performance test is presented for incremental updates in two different
rule based programs. The first is the game of LIFE where incremental updates
of a matrix of varying size is monitored. The second is a combinatorial optimi-
zation problem for allocating mortgage-backed securities. The results favours
incremental update for the second program, but not for the first one. No real in-
depth analysis is provided why this is so, only that updates in the first program
produces major changes in the chain of inference which is unsuitable for incre-
mental evaluation.

There is a need for development of a set of standard benchmarks that can be
used for performance analysis of different evaluation strategies of rules.
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10 Conclusions and Future
Work

The thesis presents theObject Relational data model of AMOS and the intro-
duction of active rules into AMOSQL, the query language of AMOS. The rules
are based on the concept of function monitoring. All the changes in the system
that the rules are to monitor will be introduced as changes to functions. Specific
events that need to be referenced in rules will be introduced as higher order
functions. The thesis presents work on rules that trigger on database updates
only. Rules are of CA (Condition Action) type where the actual events that can
trigger a rule are calculated by a rule compiler. The Condition of a rule can
consist of an AMOSQL query and the action of AMOSQL procedure state-
ments, i.e. queries and updates. Rules monitor changes to the rule conditions
and data can be passed from the Condition to the Action of each rule by using
shared query variables, i.e. set-oriented Action execution[72] is supported. By
modelling rules as objects it is possible to make queries over rules. Overloaded
and generic rules are also allowed, i.e. rules that are parameterized and can be
activated for different types.

The thesis also presents techniques for efficient monitoring of changes to
rule conditions. Rule condition monitoring must not decrease the overall per-
formance to any great extent, with respect to either processor time or memory
utilization. The following techniques for compilation and evaluation of rule
conditions have been developed to meet these goals:

• To efficiently determine changes to all activated rule conditions, given updates of
stored data, arule compiler analyses rule conditions and generates change detec-
tion plans.

• To minimize unnecessary execution of the plans,screener predicates that screen
out uninteresting changesare generated along with the change detection plans.
The screener predicates are optimized using cost based query optimization tech-
niques.

• For efficient monitoring of rule conditions, the rule compiler generates several
partially differentiated relations that detect changes to a derived relation given
changes to one of the relations it is derived from. The technique is based on the
assumption that the number of updates in a transaction is usually small and there-
fore only small effects on rule conditions will occur. Thus, the changes will only
affect some of the partially differentiated relations. The partially differentiated
relations are optimized using cost based query optimization techniques.
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• To efficiently compute the changes of a rule condition based on changes of sub-
conditions, the partially differentiated relations are computed byincremental
evaluation techniques [9] [59].

• To correctly and efficiently propagate both insertions and deletions (positive and
negative changes) without unnecessary materialization or computation, the calcu-
lation of changes to a relation must be preceded by the calculation of the changes
to all its sub-relations. This is accomplished by abreadth-first, bottom-up propa-
gation algorithm, which also ensures graceful degradation as the complexity of
rule conditions and as the size of the database increases.

An algorithm was presented as well as a performance study that compares the
incremental evaluation technique with naive, full evaluation. The study showed
that for small updates the performance is independent of the size of the data-
base, we say that the change monitoringscale-up with respect to size.The main
conclusion from the performance study can be summarized as: use incremental
evaluation for small changes to rule conditions and use naive evaluation for
large changes. By deactivating rules for large changes and activating them
again at the end of transactions (causing a naive evaluation), the best of both
techniques can be attained. When to automatically deactivate rules, or what
handle to give the user for manual deactivation is open for further research.

There are several directions for possible future work on the rule system in
AMOS. The types of events that the rules can trigger on needs to be extended to
include schema updates, external events such as sensor updates, and time. This
can be done by introducing active functions for all the changes that are desired
to be monitored. Such functions already exist for querying the database
schema. Extending AMOSQL with active functions for event specifications and
event operations as in [17] is an important part of making AMOS a truly active
database. Immediate rules are also needed, especially when introducing exter-
nal asynchronous events and time events. How the incremental change moni-
toring techniques relate to time events must also be investigated further.

The incremental evaluation techniques presented here needs to be fully
implemented to handle aggregates, transitive closure or recursion, and tech-
niques for determine, or explicitly state, whether nervous rule semantics are
sufficient for a particular rule or if strict semantics are needed.

The cost models for deciding between incremental versus naive change
monitoring needs to be implemented and evaluated through empirical measure-
ments. The same is needed for the cost models for choosing between doing a
logical rollback or using materialization techniques for handling negative
changes, i.e. database removals.

Further research is also needed in integration of AMOS with applications
that utilize the rule system. Such work is important to give feedback on what
functionality and extensions are needed in an active database system such as
AMOS.
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Appendix

Relational operations in Datalog
Datalog, ordomain calculus, is equivalent to relational calculus in expressional
power. The relational operationsunion, difference, cartesian product, selection
and projection can be directly specified in Datalog. Other operations such as
join and intersection that can be derived from these basic operations can also
be directly specified.

Union

PARENT = FATHER ∪ MOTHER

is translated into

parent(X, Y) ← father(X, Y) ∨ mother(X, Y)

or

parent(X, Y) ← father(X, Y)

parent(X, Y) ← mother(X, Y)

Difference

FATHER = PARENT - MOTHER

is translated into

father(X, Y) ← parent(X, Y) ∧ ¬mother(X, Y)

Cartesian product

PAIR = PERSON× PERSON

is translated into

pair(X, Y) ← person(X) ∧ person(Y)

Selection

PAIR = σ$1 ≠ $2(PERSON$1 × PERSON$2)

MILLIONAIRE = σ$2 > 999999INCOME$1,$2

is translated into
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pair(X, Y) ← person(X) ∧ person(Y) ∧ X ≠ Y

millionaire(X) ← income(X, Y) ∧ Y > 999999

Projection

IS_FATHER = π$1FATHER$1

is translated into

is_father(X) ← father(X, Y)

Join

is directly translated into

grandparent(X, Z) ←
parent(X, Y1) ∧ parent(Y2, Z) ∧ Y1 = Y2

or more naturally expressed as

grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z)

Intersection

RICH_GRANDPARENT = GRANDPARENT ∩ MILLIONAIRE =

(GRANDPARENT ∪ MILLIONAIRE) -

((GRANDPARENT − MILLIONAIRE) ∪

(MILLIONAIRE − GRANDPARENT))

is directly translated into

rich_grandparent(X) ←
grandparent(X) ∨ millionaire(X) ∧
¬((grandparent(X) ∧ ¬millionaire(X)) ∨

(millionaire(X) ∧ ¬grandparent(X))

or more naturally expressed as

rich_grandparent(X) ← grandparent(X) ∧ millionaire(X)

GRANDPARENT = πX,ZPARENTX,Y PARENTY,Z =

πX,Z(σY1 =Y2PARENTX,Y1 × PARENTY2,Z )
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Justification for Partial Differ entiation
Below follows a formal justification for the correctness of partial differentia-
tion.

There exists an isomorphism f, denoted≅f, between the boolean algebra of
ObjectLog and set algebra[1]:

f: <O, ¬,∧, ∨> → <2At(O), ~, ∩, ∪>,

where O is the domain of objects in the database, ¬ is negationbased on the Closed
World Assumption, ∧ is logical conjunction,∨ is logical disjunction, 2At(O) is the
power set of atoms in O,~ is set complement,∩ is set intersection, and∪ is set
union. Using this we can define change monitoring of ObjectLog through set opera-
tions.

Let ∆+S, delta-plus of S, be the set of additions (positive changes) to a set S and∆-
S, delta-minus of S, the set of deletions (negative changes) from S. Let the∆-set
(delta-set) of S be a tuple of the positive and the negative changes of a set S:

∆S = <∆+S,∆-S>

Let ∪∆ (delta-union) be the operator that calculates the union of two∆-sets:

∆P ∪∆ ∆Q = <(∆+P -∆-Q) ∪ (∆+Q - ∆-P),
(∆-P -∆+Q) ∪ (∆-Q - ∆+P) >

To detect changes of derived relations we define conjunction, disjunction, and
negation in terms of their∆-relations as:

∆(Q ∧ R) ≅f ∆(Q ∩ R) =
<(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>
∪∆
<{} , (∆-Q ∩ Rold) ∪ (Qold ∩ ∆-R>

or for bag-oriented semantics
∆(Q ∧ R) ≅f ∆(Q ∩ R) =

<(∆+Q ∩ R) ∪ ((Q - ∆+Q) ∩ ∆+R), {}>
∪∆
<{}, ( ∆−Q ∩ Rold) ∪ ((Qold − ∆−Q) ∩ ∆−R)>

∆(Q ∨ R) ≅f ∆(Q ∪ R) =
<(∆+Q − Rold) ∪ (∆+R − Qold), {}>
∪∆
<{}, ( ∆−Q − R) ∪ (∆−R − Q)>

∆(¬Q) ≅f ∆(~Q) = <∆-Q, ∆+Q>

where Rold = (∆-R ∪ R) - ∆+R
and since ∆+R ∩ ∆-R = ∅, i.e. ∆-R - ∆+R = ∆-R, we have
Rold = ∆-R ∪ (R - ∆+R) = ∆-R ∪ (R ∩ ~∆+R) which can be
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expressed logically by:

Rold = ∆-R ∨ (R ∧ ¬(∆+R))

where Qold is defined likewise.

Let Dp be the set of all relations that a relation P depends on. Let thepositive
partial ∆-relations ∆P/∆+X of a relation P be defined by the body of P where a
single relation X∈Dp has been substituted by its positive∆-relation∆+X.

Let thenegative partial ∆-relations ∆P/∆-X of a relation P be defined by the
body of P where a single relation X∈Dp has been substituted by its negative∆-
relation∆-X and where all Y∈Dp, Y ≠ X, have been substituted by Yold.

Positive partial changes are combined by:
∆+P = ∪ ∆P/∆+X, ∀X ∈Dp
and negative changes by
∆-P = ∪ ∆P/∆-X, ∀X ∈Dp
The full ∆-relation (delta-relation) is defined as:
∆P = <∆+P, {}>  ∪∆ <{}, ∆-P>

Correctness is here defined as: given a relation P where Dp is the set of all other
relations that P depends on and that we have all the net changes∆S of all rela-
tions S∈ Dp, then∆P reflects the changes to P.

1. If P is a base relation then its changes can be found directly in∆P.

2. If P is a derived, conjunctive relation then:
i) If P ← S∧ T then we need to show that∆P/∆+S ← ∆+S ∧ T for all positive

changes to S
If T is a base relation then since the contribution of deduced facts in P are
dependent on the facts both in S and Tthen any added facts in S that are also
in T are also in P. In some cases and when using set-oriented semantics,
added facts in S might give deduced facts that were already present in Pold,
then the algorithm might causenervous triggering of rules.To avoid this we
have to calculate∆P/∆+S - Pold. If T is a derived relation of n conjunctions
then clearly:
∆P/∆+S ← ∆+S∧ T1 ∧ ... ∧ Tn
If T is a derived relation of n+1 conjunctions then we also have:
∆P/∆+S ← ∆+S∧ T1 ∧ ... ∧ Tn+1
and by induction the execution of positive, conjunctive partial∆-relations has
been shown to be correct.

ii) If P ← S∧ T then we need to show that∆P/∆-S← ∆-S∧ Told for all negative
changes to S
If T is a base relation then since the contribution of deduced facts in P are
dependent on the facts both in S and Tthen any removed facts from S that
also where in Told supported facts are facts that are no longer in P. In some
cases and when using set-oriented semantics, removed facts from S might
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give deduced facts that are still present in P.To avoid incorrectpropagation
of negative changes we have to check that the deduced change is not still
present in P, i.e.∆P/∆-S - P.
If T is a derived relation of n conjunctions then clearly:
∆P/∆-S ← ∆-S ∧ Told 1 ∧ ... ∧ Told n
If T is a derived relation of n+1 conjunctions then we also have:
∆P/∆-S ← ∆-S ∧ Told 1 ∧ ... ∧ Told n+1
and by induction the execution of negative, conjunctive partial∆-relations
has been shown to be correct.

3. If P is a derived, disjunctive relation, in disjunctive normal form, (and assuming set-
oriented semantics), then:

i) If P ← S∨ T then we need to show that∆P/∆+S← ∆+S∧¬Told for all positive
changes to S
If T is a base relation then since the contribution of deduced facts in P are
dependent on facts in S or Tthen anyadded facts to S will cause positive
changes to P if T was not already true for those facts.
If T is a derived relation of n disjuncts then clearly:
∆P/∆+S ← ∆+S∧ ¬Told 1 ∧ ... ∧ ¬Told n
If T is a derived relation of n+1 disjuncts then we also have:
∆P/∆+S ← ∆+S∧ ¬Told 1 ∧ ... ∧ ¬Told n+1
and by induction the execution of positive, disjunctive partial∆-relations has
been shown to be correct.

ii) If P ← S∨ T then we need to show that∆P/∆-S ← ∆-S ∧¬T for all negative
changes to S
If T is a base relation then since the contribution of deduced facts in P are
dependent on facts in S or Tthen any removed facts from S will cause
negative changes to P if T is not true for those facts.
If T is a derived relation of n disjuncts then clearly:
∆P/∆-S ← ∆-S∧ ¬T1 ∧ ... ∧ ¬Tn
If T is a derived relation of n+1 disjuncts then we also have:
∆P/∆-S ← ∆-S∧ ¬T1 ∧ ... ∧ ¬Tn+1
and by induction the execution of negative, disjunctive partial∆-relations has
been shown to be correct.

4. If P is a derived negated relation, P← ¬S then we need to show that:
i) ∆P/∆-S ← ∆+S

All facts not in S are deduced to be in P. If a fact is added to S then a negative
change has to be deduced for P.

ii) ∆P/∆+S ← ∆-S
All facts in S are deduced to not be in P. If a fact is removed from S then a
positive change has to be deduced for P.

5. If P is a derived relation that depends on the subrelationsDp then the changes
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calculated by∆P/∆+X and∆P/∆-X, X∈ Dp, can be combined by∪∆ to give the total
changes of P.

i) For set-oriented semantics∪∆ is defined as joining positive and negative
changes in∆-sets by removing duplicates and extinguishing complementary
positive and negative changes.

ii) For bag-oriented semantics∪∆ is defined as joining positive and negative
sets by keeping a count of duplicates and extinguishing complementary
positive and negative changes. For conjunctions a modification of partial∆-
relations will also have to be done to remove overlaps in the execution [47].
Positive changes are the calculated by:
changing all subgoals y in∆P/∆+x to y -∆+y, ∀x, y ∈ Dp and x≠ y and where
y precedes x in the conjunction,
and negative changes by:
changing all yold in ∆P/∆-x to yold - ∆-y, ∀x, y ∈ Dp and x≠ y and where yold
precedes x in the conjunction.

In the proof above an assumption was made that we have the net changes of the
relation S collected in∆S. The collection of changes of a relation was defined using
the∪∆ operator. If relations are defined to have set-oriented semantics then the order
of accumulation of changes has to be the same as the changes occurred in the
transaction.

The proof above can be used for calculating incremental changes to the relational
operators (with the related parts of the proof in parenthesis):
Union: (1, 3, 5)
parent(X, Y) ← father(X, Y) ∨ mother(X, Y)

∆parent(X, Y) /∆+father ← ∆+father(X, Y) ∧ ¬mother old(X, Y)

∆parent(X, Y) /∆+mother ← ¬father old(X, Y) ∧ ∆+mother(X, Y)

∆parent(X, Y) /∆-father ← ∆-father(X, Y) ∧ ¬mother(X, Y)

∆parent(X, Y) /∆-mother ← ¬father(X, Y) ∧ ∆-mother(X, Y)

Difference: (1, 2, 4, 5)
father(X, Y) ← parent(X, Y) ∧ ¬mother(X, Y)

∆father(X, Y) /∆+parent ← ∆+parent(X, Y) ∧ ¬mother(X, Y)

∆father(X, Y) /∆+mother ← parent(X, Y) ∧ ∆-mother(X, Y)

∆father(X, Y) /∆-parent ← ∆-parent(X, Y) ∧ ¬mother old(X, Y)

∆father(X, Y) /∆-mother ← parent old(X, Y) ∧ ∆+mother(X, Y)

Cartesian product: (1, 2, 5)
pair(X, Y) ← person(X) ∧ person(Y)

∆pair(X, Y) /∆+person’ ← ∆+person(X) ∧ person(Y)
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∆pair(X, Y) /∆+person’’ ← person(X) ∧ ∆+person(Y)

∆pair(X, Y) /∆-person’ ← ∆-person(X) ∧ person old(Y)

∆pair(X, Y) /∆-person’’ ← person old(X) ∧ ∆-person(Y)

Selection: (1, 2, 5)
millionaire(X) ← income(X, Y) ∧ Y > 999999

∆millionaire(X) /∆+income ← ∆+income(X, Y) ∧ Y > 999999

∆millionaire(X) /∆-income ← ∆-income(X, Y) ∧ Y > 999999

Projection: (1, 5)
is_father(X ) ← father(X, Y)

∆is_father(X )/∆+father ← ∆+father(X, Y)

∆is_father(X )/∆-father ← ∆-father(X, Y)

Join: (1, 2, 5)
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z)

∆grandparent(X, Z) /∆+parent’ ←
. ∆+parent(X, Y) ∧ parent(Y, Z)

∆grandparent(X, Z) /∆+parent’’ ←
parent(X, Y) ∧ ∆+parent(Y, Z)

∆grandparent(X, Z) /∆-parent’ ←
∆-parent(X, Y) ∧ parent old(Y, Z)

∆grandparent(X, Z) /∆-parent’’ ←
parent old(X, Y) ∧ ∆-parent(Y, Z)

Intersection: (1, 2, 5)
rich_grandparent(X) ← grandparent(X) ∧ millionaire(X)

∆rich_grandparent(X) /∆+grandparent ←
∆+grandparent(X) ∧ millionaire(X)

∆rich_grandparent(X) /∆+millionaire ←
grandparent(X) ∧ ∆+millionaire(X)

∆rich_grandparent(X) /∆-grandparent ←
∆-grandparent(X) ∧ millionaire old(X)

∆rich_grandparent(X) /∆-millionaire ←
grandparent old(X) ∧ ∆-millionaire(X)
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