
Linköping Studies in Science and Technology

Dissertation No. 494

Active Database Management
Systems for Monitoring and

Control

Martin Sköld

Department of Computer and Information Science
Linköping University, Linköping, Sweden

Linköping 1997

ii

Abstract
Active Database Management Systems (ADBMSs) have been developed to sup-
port applications with detecting changes in databases. This includes support for
specifying active rules that monitor changes to data and rules that perform
somecontrol tasks for the applications. Active rules can also be used for speci-
fying constraints that must be met to maintain the integrity of the data, for
maintaining long-running transactions, and for authorization control.

This thesis begins with presenting case studies on using ADBMSs for monitor-
ing and control. The areas of Computer Integrated Manufacturing (CIM) and
Telecommunication Networks have been studied as possible applications that
can use active database technology. These case studies have served as require-
ments on the functionality that has later been developed in an ADBMS. After
an introduction to the area of active database systems it is exemplified how
active rules can be used by the applications studied. Several requirements are
identified such as the need for efficient execution of rules with complex condi-
tions and support for accessing and monitoring external data in a transparent
manner.

The main body of work presented is a theory for incremental evaluation, named
partial differencing. It is shown how the theory is used for implementing effi-
cient rule condition monitoring in the AMOS ADBMS. The condition monitor-
ing is based on afunctional model where changes to rule conditions are defined
as changes to functions. External data is introduced asforeign functions to pro-
vide transparency between access and monitoring of changes to local data and
external data.

The thesis includes several publications from both international journals and
international conferences. The papers and the thesis deal with issues such as a
system architecture for a CIM system using active database technology, extend-
ing a query language with active rules, using active rules in the studied applica-
tions, grouping rules into modules (rule contexts), efficient implementation of
active rules by using incremental evaluation techniques, introducing foreign
data into databases, and temporal support in active database systems for storing
events monitored by active rules. The papers are complemented with back-
ground information and work done after the papers were published, both by the
author and by colleagues.

v

Preface

Thesis Outline

This thesis is based on several conference and journal papers published during
a period of four years. Each chapter usually contains background information
for one or two papers and work done after the publications. A list of the papers
can be found in the next section and the actual papers can be found in the last
chapter of the thesis.

Chapter 1 presents the main differences between active database systems
and “passive” database systems, and compares active database systems with
other rule-based systems.

Chapter 2 presents the areas of Computer Integrated Manufacturing (CIM)
and Telecommunication Networks and how database systems can be used to
support different functions in them. Paper I is presented as a system architec-
ture for a CIM system that uses active database technology.

Chapter 3 gives an overview of Active Database Management Systems
(ADBMSs) and introduces the AMOS ADBMS. The active rules in AMOSQL
are presented in Paper II along with changes and extensions made since the
paper was published.

Chapter 4 discusses heterogeneous data management in the applications
studied in chapter 2. The chapter also briefly presents the area of heterogeneous
database systems and with the heterogeneous database architecture of AMOS
presented in Paper III.

In chapter 5 Paper IV is presented as work on applying active database tech-
nology on a specific application, or more specifically using AMOS in the CIM
architecture presented in Paper I. In Paper V a technique for organizing rules
by grouping them intorule contexts is presented. Several scenarios for using
active rules in CIM and Telecommunications are also presented.

Chapter 6 presents work on efficient execution of active rules. This chapter
is based on Paper VI which presents a technique for incremental evaluation of
rule conditions,partial differencing. Chapter 6 also presents a comparison
between event propagation and incremental condition evaluation.

Chapter 7 discusses implementation issues of different aspects of the active
rules and specifically the management of thepropagation network and the
propagation algorithm used for partial differencing.

In chapter 8 time series are presented for storing event histories in temporal
functions that are monitored by active rules. The area of temporal and scientific
databases are also briefly presented. Paper VII presents a technique for auto-
matically building secondary indexes on time series.

Chapter 9 presents the concept offoreign data sources as a way to access

vi Preface

data originating outside the database. Different systems and protocols for
accessing foreign data sources are discussed. Techniques for monitoring
changes to foreign data sources and possible extensions to AMOS are also pre-
sented.

Chapter 10 concludes with a summary of the contributions in this thesis and
presents possible future research directions.

In the appendix (chapter 14) the complete syntax of the active rules in the
AMOS system is presented and the relation between Datalog and the relational
operators. A formal justification for partial differencing is also presented.

In chapter 15 the different papers that the thesis is based on are presented.

List of Papers

Here follows a list of the published papers that this thesis is based on. The
author has been a major contributor to and editor of all papers except Paper III
and Paper VII.

Paper I

P. Loborg, P. Holmbom, M. Sköld, and A. Törne: A Model for the Execution of
Task Level Specifications for Intelligent and Flexible Manufacturing Systems,
in Proceedings of the Vth International Symposium on Artificial Intelligence,
ISAI92, Cancun, Mexico, December 7-11, 1992. Also published in Journal of
Integrated Computer-Aided Engineering (special issue on AI in Manufacturing
and Robotics).

Paper II

T. Risch and M. Sköld: Active Rules based on Object-Oriented Queries, in spe-
cial issue on Active Databases in Data Engineering Bulletin 15(1-4), Pages 27-
30, 1992.

Paper III

G. Fahl, T. Risch, and M. Sköld: AMOS - An Architecture for Active Media-
tors, in Proceedings of the Workshop on Next Generation Information Technol-
ogies and Systems (NGITS’92), Haifa, Israel, June 1993.

Paper IV

P. Loborg, T. Risch, M. Sköld, and A. Törne: Active Object-Oriented Databases
in Control Applications, in Proceedings of the 19th Euromicro Conference,
Barcelona, September 1993.

Paper V

M. Sköld, E. Falkenroth, and T. Risch: Rule Contexts in Active Databases - A
Mechanism for Dynamic Rule Grouping, in the Second International Workshop
on Rules in Database Systems (RIDS’95), Athens, Greece, September 25-27,
1995, Springer Lecture Notes in Computer Science, ISBN 3-540-60365-4,

vii

Pages 119-130, 1995.

Paper VI

M. Sköld and T. Risch: Using Partial Differencing for Efficient Monitoring of
Deferred Complex Rule Conditions, presented at the 12th International Confer-
ence on Data Engineering (ICDE’96), New Orleans, Louisiana, USA, February
1996.

Paper VII

L. Lin, T. Risch, M. Sköld, and D. Badal: Indexing Values of Time Sequences,
presented at the Fifth International Conference on Information and Knowledge
Management (CIKM’96), Rockville, Maryland, USA, November 12-16, 1996.

Financial Support

This work has been supported by NUTEK (The Swedish National Board for
Industrial and Technical Development), TFR (The Swedish Technical Research
Council), CENIIT (The Center for Industrial Information Technology), and the
ISIS project (Information Systems for Industrial Control and Supervision),
Linköping University.

Acknowledgements

I would like to thank my supervisor Professor Tore Risch for his continuous
support and for introducing me to the area of active database systems. Tore
brought the WS-Iris system with him from HP-labs and his system has now
become the AMOS system. Because of this my research got a running start.

I also would like to thank all the other members of the lab for Engineering
Databases and Systems (EDSLAB) for inspiration and for fruitful discussions
on the development of the AMOS system.

I also would like to thank the people in the robotics and measurement group
at the Department of Physics and Measurement Technology (IFM), the staff at
Ericsson Development, and the staff at Telia Research for providing equipment
and sharing their knowledge.

Finally I would like to thank my family and friends for all their support over
the years of my research studies.

To my parents for love and encouragement.

Martin Sköld

Linköping, July, 1997

viii Preface

ix

Table of Contents

1 Introduction .1

1.1 Database Management Systems (DBMSs) .1

1.2 Active DBMSs (ADBMSs) versus Passive DBMSs2

1.3 Using Rules as a Complement to Traditional Coding3

1.4 Rule-Based Systems and Active Database Systems 4

1.5 DBMSs in Large Complex Systems .5

1.6 ADBMSs in Large Complex Systems .6

1.7 Summary of Contributions .7

2 Background .9

2.1 Application Studies .9

2.2 Computer Integrated Manufacturing (CIM) .9

2.3 DBMSs in CIM .10

2.4 About Paper I .11

2.5 Telecommunication Networks .11

2.6 DBMSs in Telecommunication Networks .15

3 Active Database Management Systems .25

3.1 An Overview of Active Database Management Systems (ADBMSs)25

3.2 ADBMS Classifications .27

3.3 AMOS .30

3.4 The Rule Processor and the Event Manager .33

3.5 The Iris Data Model and OSQL .35

3.6 About Paper II .40

3.7 The AMOS Data Model and AMOSQL .40

3.8 ECA-rules .48

3.9 ECA-rules in AMOS .49

4 Heterogeneous Data Management .53

4.1 DBMSs in Networks .53

4.2 Distributed v.s. Multidatabases Database Systems 53

x Table of Contents

4.3 About Paper III . 54

4.4 Active Multidatabase Systems . 54

4.5 Heterogeneous Databases in CIM . 54

4.6 Heterogeneous Databases in Telecommunication Networks 55

5 Applying Active Database Systems . 59

5.1 Applications and Active Database Systems . 59

5.2 Scenarios for an ADBMSs in CIM Systems . 59

5.3 About Paper IV . 63

5.4 About Paper V . 64

5.5 Monitoring Long-running Transactions . 64

5.6 Scenarios for ADBMSs in Telecommunication Networks 64

6 Efficient Rule Execution Using Partial Differencing 77

6.1 Efficiency Problems in ADBMSs . 77

6.2 Partial Differencing of Rule Conditions . 77

6.3 Related Work . 79

6.4 An Example Rule with Efficiency Problems . 82

6.5 CA-rule Semantics and Function Monitoring . 83

6.6 ObjectLog . 87

6.7 The Calculus of Partial Differencing . 89

6.8 The Propagation Algorithm . 102

6.9 Performance Measurements . 103

6.10 Optimization Techniques for Partial Differencing 111

6.11 Strict and Nervous Rule Semantics . 115

6.12 Bag-oriented and Set-oriented Semantics . 115

6.13 Partial Differencing of Overloaded Functions . 116

6.14 ECA-rule Semantics . 118

6.15 Propagating Events of ECA-rules . 120

6.16 Event Propagation vs. Partial Differencing of Rule Conditions 122

6.17 Extended Partial Differencing Calculus for Updates 126

6.18 Partial Differencing of Aggregates . 128

6.19 Rule Termination Analysis . 130

6.20 Real-time Aspects of Rule Execution . 130

7 The Propagation Network . 133

7.1 Implementing Active Rules . 133

xi

7.2 Capturing and Storing Events .133

7.3 The Propagation Network .134

7.4 Accessing Event Functions in Conditions and Actions146

7.5 Creation and Deletion of Rules .146

7.6 The Algorithms for Activating and Deactivating Rules 146

7.7 The Event and Change Propagation Algorithm .148

7.8 The Check Phase and Propagating Rule Contexts153

7.9 Event Consumption .154

8 Time Series and Event Histories .157

8.1 Time in Applications and ADBMSs .157

8.2 Temporal Databases and Scientific Databases .157

8.3 Supporting Time in Databases .158

8.4 Time Stamps .158

8.5 Time Intervals .158

8.6 Time Series .159

8.7 Temporal Functions .159

8.8 Time Stamped Events .160

8.9 About Paper VII .161

8.10 Temporal Event Specifications and Temporal Conditions 161

9 Foreign Data Sources .163

9.1 Introduction .163

9.2 Related Work .166

9.3 Accessing Foreign Data Sources .170

9.4 Monitoring Foreign Data Sources .172

9.5 Implementation Issues .176

9.6 Foreign Data Sources in AMOS .186

10 Conclusion .189

10.1 Summary .189

10.2 Future Work .190

13 References .191

14 Appendix .199

14.1 The Current Rule Syntax in AMOS .199

14.2 The Relational Operators in Datalog .202

14.3 Justification for Partial Differencing .203

xii Table of Contents

15 The Papers . 209

15.1 Paper I . 209

15.2 Paper II . 225

15.3 Paper III . 232

15.4 Paper IV . 244

15.5 Paper V . 258

15.6 Paper VI . 271

15.7 Paper VII . 272

1

1 Introduction

1.1 Database Management Systems (DBMSs)

A Database Management System (DBMS) [39] is a general information man-
agement system that can manage many different kinds of data, stored in the
database. By DBMS we here mean more than just a system that manages varia-
bles or files of data. The data can be both application data of differenttypes and
meta-data used by the DBMS to define the database layout, the database
schema. In relational DBMSs (RDBMSs) data is defined with relations between
data which are stored intables and can be accessed through logical queries, or
relational views.

The DBMS provides support forlogical views of data that are separate from
the physical views, i.e. how the data is actually stored in the database. This sep-
aration is accomplished by allowing applications to define, access, and update
data through a Data Definition Language (DDL) and Data Manipulation Langu-
age (DML) combined into adeclarative query language such as the relational
query language SQL [6].

The DBMS providespersistency of data by ensuring that no data is lost in
the case of system failures. The persistency can be achieved in many ways, e.g.
by storing data and a log of uncommitted changes to data on disk.

DBMSs are traditionally self-contained systems (servers) and users or
applications (clients) execute in separate processes (often on separate
machines) and are provided access to the DBMS through aclient/server inter-
face. For many technical applications the performance requirements forces a
tighter integration between the application and the DBMS. The DBMS is then
embedded with the applications and executes in the same process (or at least
shares the same address space). Applications with embedded DBMSs are pro-
vided fast access to data through afast-path interface.

Another important aspect of functionality supported by a DBMS istransac-
tion management. Transactions provide a mechanism for organizing and syn-
chronizing database operations. Different users and applications can use
transactions for defining sequences of database operations without, more or
less, having to consider possible interaction with other users and applications.
If, for some reason, something goes wrong during a transaction, the user or the
application can choose toabort the transaction and all the database operations
are undone. If a transaction is finished successfully, the DBMS cancommit the
transaction and make all the changes in the database permanent.

In recent years there has been development of DBMSs with more data mod-

2 Introduction

elling support. This is often needed in technical and scientific applications
where the schemas can be highly complex. In Object Oriented Database Man-
agement Systems (OODBMSs) OO programming languages have been
extended to support database management through persistent object classes. A
standard query language, OQL [20], has been defined for declarative access to
the data. The OODBMS model does not, however, provide a fully declarative
query language for both defining, accessing, and updating data (object defini-
tions with attributes and methods are still defined in the OO programming lan-
guage). OO programming languages such as C++ allow low-level operations on
objects which makes the separation between a logical and physical view of data
in OODBMSs difficult to support.

In Object Relational Database Management Systems (ORDBMSs) [118] the
data models from the relational DBMS and the OODBMS have been merged.
ORDBMSs provide declarative OO query languages such as OSQL [85] and
SQL3 [90] for defining, accessing, and updating objects. Object classes are
defined as types, and object attributes and methods are defined as functions.
Functions are also equivalent to tables (or table attributes) and views in the
relational model. The tables themselves are sometimes considered as a special
abstract type [10], but which is accessed through functions.

1.2 Active DBMSs (ADBMSs) versus Passive DBMSs

Traditional DBMSs arepassive in the sense that they are explicitly and syn-
chronously invoked by user or application program initiated operations. Appli-
cations send requests for operations to be performed by the DBMS and wait for
the DBMS to confirm and return any possible answers. The operations can be
definitions and updates of the schema, as well as queries and updates of the
data. Active DatabaseManagement Systems (ADBMSs) are event driven sys-
tems where operations such as schema changes and changes to data generate
events that can be monitored byactive rules. An ADBMS can be invoked, not
only by synchronous events that have been generated by users or application
programs, but also by external asynchronous events such as changes of sensor
values or time. When monitoring events in a passive database, apolling tech-
nique or operation filtering can be used to determine changes to data. With the
polling method the application program periodically polls the database by plac-
ing a query about the monitored data. The problem with this approach is that
the polling has to be fine-tuned so as not to flood the DBMS with too frequent
queries that mostly return the same answers, or in the case of too infrequent
polling, the application might miss important changes of data. Operation filter-
ing is based on the fact that all change operations sent to the DBMS are filtered
by an application layer that performs the situation monitoring before sending
the operations to the DBMS. The problem with this approach is that it greatly
limits the way rule condition evaluation can be optimized. It is desirable to be
able to specify the conditions to monitor in the query language of the DBMS.
By checking the conditions outside the database the complete queries repre-
senting the conditions will have to be sent to the DBMS. Many DBMSs allow

3

precompiledstored procedures that can update the database. The effects of call-
ing such a procedure cannot be determined outside of the database.

If the condition monitoring is used to determine inconsistencies in the data-
base, it is questionable whether this should be performed by the applications,
instead of by the DBMS itself. In an integrated ADBMS condition monitoring
is integrated into the database. This makes it possible to efficiently monitor
conditions and to notify applications when an event occurred that caused a rule
condition to become true and that is of interest to the application. Monitoring
of specific conditions, represented as database queries, can be performed more
efficiently since the ADBMS has more control of how to evaluate the condition
efficiently based on knowledge of what has changed in the database since the
condition was last checked. It also lets the ADBMS perform consistency main-
tenance as an integrated part of the data management.

Internal ADBMS functions that can use data monitoring includes, for exam-
ple, constraint management, management of long-running transactions, and
authorization control. In constraint management, rules can monitor and detect
inconsistent updates and abort any transactions that violate the constraints. In
some cases compensating actions can be performed to avoid inconsistencies
instead of performing an abortion of the complete transaction. In the manage-
ment of long-running transactions, rules can be used to efficiently determine
synchronization points of different activities and also whether if one transac-
tion has performed updates that have interfered with another [32]. This can be
used, for example, in cooperation withsagas [51] where sequences of commit-
ted transactions are chained together with information on how to execute com-
pensating transactions in case of a saga roll-back. Groups of rules can be
associated with a saga to detect any interference with the operations in the saga
and that can redo the operations or roll-back the saga to undo the operations. In
authorization control rules can be used to check that the user or application has
permission to do specific updates or schema changes in the database.

Applications which depend on data monitoring activities such as CIM, Tele-
communications Network Management, Medical [66] and Financial Decision
Support Systems [26] can greatly benefit from integration with ADBMSs.

1.3 Using Rules as a Complement to Traditional Coding

Active rules can serve as a complement to traditional coding techniques where
all the functionality of the system is specified in algorithms written in modules
and functions. Active rules provide a more dynamic way of handling new situa-
tions and are often better alternatives to modifying old functions to cope with
new situations. Great care has to be taken, however, when using active rules to
avoid introducing unanticipated behaviour into the system. Misuse of rules,
such as using too many levels of rules that can affect each other in unpredicta-
ble ways or attempts to use rules where traditional functions are more suited is
one reason why the use of active rules in software development has only had
limited success. A common technique that is used is to use rules for specifying
parts of the system during the design phases and to use these rules as guidelines

4 Introduction

for the actual coding phases or to compile the rules into corresponding func-
tions to simplify the coding. This last technique is sometimes found directly
supported in some programming languages such as Eiffel [88] where pre- and
post-conditions on data can be specified. If the conditions are violated an error
is generated. Rules can, however, specify pre- or post-conditions that should
apply in many different situations not just in one piece of code. The rules can
signal to the user or some application that a condition has been violated. Rules
can also specify actions to be taken, such as removing inconsistencies by
changing illegal values of data.

In most programming languages and query languages such as SQL3 [90]
fault or signal handlers can be defined that catches errorsignals. Rules in an
ADBMS can be seen as having similar behaviour, but catches databaseevents
such as updates.

Rules can also be used for monitoring changes to data. These are often spec-
ified as conditional expressions (if-then-else, or case expressions) in traditional
coding. These are static expressions that cannot be changed unless the code is
changed and recompiled. In databases that support incremental recompilation
of functions and rules (such as the AMOS ADBMS), the rules can be dynami-
cally changed. New situations can also be monitored by adding new rules.

1.4 Rule-Based Systems and Active Database Systems

In rule-based systems the rules can be used for different purposes. In fig. 1.1
the distinction is made between using rules formonitoring, control, andreason-
ing. We here make a distinction betweenactive database systems [92] and other
rule based systems such asreactive systems [87] (sometimes called real-time
expert systems)and knowledge-based systems [68] (often just referred to as
expert systems).

Active database systems are primarily database management systems with
the main task of storing large amounts of data and providing efficient access to
this data through a query language. In active database systems the rules are pri-
marily used for monitoring changes to the data stored in the database. In reac-
tive systems the rules are used for reacting to changes of some external
environment and performing actions on (controlling) the environment in
response to the changes. In knowledge-based systems the rules are usually used
for reasoning using stored facts and by deducing new facts by using the rules.
As can be seen in fig. 1.1 there is no sharp distinction between the three differ-
ent kinds of rule systems. An active database system can do limited reasoning
by using rules with more complicated rule conditions and which store new data
in the database as new facts that signify that the rules have triggered. Control of
the environment represented by the data in the database itself can also be per-
formed, e.g. with constraint rules that modify the database to remove any
inconsistencies. By allowing the active database manager to access an external
environment that can be both accessed and updated, the rules in the active data-
base can be used for control of an external environment as well. The primary
use of active rules in an active database system as presented in this thesis is to

5

monitor changes to the data that can be accessed in the database.

1.5 DBMSs in Large Complex Systems

DBMSs provide support for handling information in large complex systems.
Integrating a system with a DBMS provides shorter development times (assum-
ing the DBMS is already available), reduced complexity, reliability, and sup-
port for extensibility.

When complex systems are designed, the information or data that they
should handle has to be considered early in the design process. Data modelling
is often performed at an early design phase together with functionality model-
ling. In this phase specific modelling techniques such as Object-Oriented data
modelling are often used. In later phases the actual data structures are chosen
for storing the data. An OODBMS can support data modelling and select effi-
cient data structures already provided by the OODBMS. If an RDBMS (non-
OO) is used, then any OO models have to be translated into tables and views.
Inheritance of attributes in tables and views will then have to be handled out-
side the DBMS. DBMSs usually support a separation between the logical view
of the data seen by the system functions and the physical view, i.e. what data
structures are used to store the data physically. This makes it possible to change

reasoning

co
nt

ro
l

monitoring

knowledge-based
systems

active database

re
ac

tiv
e

sy
ste

m
s

Figure 1.1: The relation between active database systems and other rule-
based systems

systems

6 Introduction

the data structures in the database without affecting the applications.
Large complex systems usually consist of many functions that all call for

data management. Having a DBMS that can support the functions with this, the
complexity of the system can be reduced. For example, if two functions use
similar data structures, there is no need to implement these data structures for
each function. By implementing them using abstract data types or object
classes they can be reused by each function. In ORDBMSs [118] abstract data
types are provided through an Object-Oriented extension of the relational
model.

Another problem is that the reliability of these systems is often dependent
on no data being lost, i.e. even if the system fails due to power loss or faulty
hardware, the data should be available again as soon as the system recovers.
This is a common trait in both Telecommunication Systems and many Compu-
ter Integrated Manufacturing (CIM) systems. A solution to these problems has
been to introduce a DBMS into the system that supports persistency of data and
transactions for organizing database operations.

A common problem in designing large complex systems is that the systems
must support modification without too much redesign. Often it must be possible
to modify data structures without recompiling application programs and some-
times even without taking the system out of service. It could be the case that
some data structures are too small or perhaps lack some data fields that are
needed to support new functionality. Such modifications are usually directly
supported by a DBMS.

1.6 ADBMSs in Large Complex Systems

The introduction of a DBMS into a system provides a good platform for design-
ing rules that access data from different parts of the system. Rules are depend-
ent on the fact that all the information that is needed to check the rules is
available. In a system without a general mechanism for storing data the rules
have to be compiled into each module or function that can affect the rule condi-
tion. This limits the rule to just relating to data available in that module or
function.

In an ADBMS active rules are managed by the ADBMS and the rules can
thus directly access data stored in the database. Rules specified in a database
can have conditions that span over data belonging to several modules of the
system. The active rules can be used for directly supporting various applica-
tions with monitoring of changes to data in the database, with synchronizing
activities in the system, and with maintaining the integrity of data in the data-
base.

Care has to be taken when designing these systems to not introduce
unwanted or unspecified communication between modules through the data-
base. A common and successful technique in designing large systems has been
to carefully design the interaction between different modules or processes by
special interfaces, i.e. by exported interface functions or by inter-process com-
munication. The design phase now has to take into consideration what data that

7

is going to be stored in the database for each module and what data is going to
be visible to other modules.

By storing information about the state of the system in the database, e.g. the
state of different hardware and software components, active rules can be used
to monitor the state of the system itself. If the system is interacting with some
external environment, e.g. a telecommunication network or a manufacturing
plant, state information of these environments can be made available in the
database as well. This could be done by mapping sensor data into the database
and making it available in queries and rules. This does not have to mean that
the sensor data is always stored permanently in the database. It may be the case
that the sensor data is available to read as if it was stored directly in the data-
base and that the ADBMS is informed when the sensor data changes. In many
cases it makes no sense to store the data permanently since it changes quite fre-
quently. The sensor data can sometimes be stored for logging purposes, but this
might already be done in some other system that is part of the external environ-
ment. Allowing access to the state of the external environment through the
database makes it possible to use active rules to monitor changes in the external
environment.

1.7 Summary of Contributions

This thesis presents some case studies from the application areas of Computer
Integrated Manufacturing (CIM) and Telecommunication Network Manage-
ment (TNM). These application studies serve as requirements for the design of
the AMOS ADBMS and especially the active functionality of AMOS that is
presented in this thesis. The thesis is based on several publications such as
papers at international conferences and articles in international journals. The
major contributions within the field of active database systems are:

• Identifying the need of ADBMSs through thecase studies of CIM and TNM. In
the application studies the requirements for efficient execution of rules with com-
plex conditions and the need for transparent access of external data were identi-
fied.

• Using active rules formonitoring andcontrol in CIM and TNM.

• Identifying the need formediators in CIM and TNM.

• Defining an ADBMS architecture.

• Identifying the need for generalizing the architecture towardsactive mediators.

• Adding active rules to an Object-Relational DBMS.

• Integrating (E)CA-rules into a query language.

• Rule modularization by grouping rules intorule contexts.

• Efficient rule evaluation techniques based onpartial differencing.

• Defining external data in a transparent manner through the concept offoreign

8 Introduction

data sources.

• Defining external events through the concept offoreign events of foreign func-
tions.

• Work on introducingtime series for storing event histories.

• Work on newindexing techniques for inverse queries over time series.

9

2 Background

2.1 Application Studies

This chapter presents application studies done as background research to find
what requirements there are on an ADBMS for supporting various technical
applications. The goal is to provide the ADBMS with general functionality that
is suitable for the various needs of different applications. Some functionality
might not be as important for one application as for another, but all functional-
ity should be as general as possible instead of implementing very specialized
functionality tailored for just one specific application.

Two application areas were studied and are presented in this thesis:

• Computer Integrated Manufacturing (CIM)

• Telecommunication Networks

2.2 Computer Integrated Manufacturing (CIM)

Computer Integrated Manufacturing (CIM) is a broad term that covers all
aspects of automated manufacturing from using welding robots in car manufac-
turing to using specialized equipment for making integrated circuits or control-
ling a steel- or paper-mill. There are usually many computer systems used in
manufacturing plants and the number of systems and level of automatization is
constantly increasing. Most systems that are considered are directly involved in
controlling the manufacturing process, usually calledprocess control systems.
These systemscontrol a manufacturing process usingactuators (e.g. conveyor-
belts, feeders, robots, lathes, or boilers) andmonitor the progress usingsensors
(e.g. speedometers, position sensors, force sensors, image processing systems,
thermometers, or pressure gauges).

Some other systems that are also sometimes covered by CIM include vari-
ous systems that are being used within manufacturing companies. These can be
systems involved in the design process such as product specification and Com-
puter Aided Design (CAD) systems, systems that handle parts and products in
stock, and economic information systems such as product costs and sales infor-
mation. A current trend in many manufacturing companies is to integrate all of
these systems to provide better control of the whole manufacturing process, not
just the process control.

10 Background

2.3 DBMSs in CIM

CIM systems handle many different kinds of information for controlling the
manufacturing process such as product data (e.g. what parts a product consists
of), parts data (e.g. physical data such as size, weight, and number of parts
available in stock), data related to the manufacturing equipment (e.g. configu-
ration data), sensor and actuator data. Other data that can be handled by a CIM
system, but which is not directly used in the process control can be product
specification data (e.g. CAD-drawings), economic data (e.g. product and part
costs), and sales data (e.g. how many products have been sold and thus have to
be manufactured). The types of CIM applications that can be considered as can-
didates for the use of (active) database technology are applications where a
fairly large amount of data access is needed during the automated process. This
could be data such as information about the components involved in an assem-
bly, data about the machines involved and sensor data stored or data directly
accessible in the database. The data could also be information about the number
of components in stock. This often involves applications where the level of
autonomy has to be high and thus allowing the CIM system to operate without
too much human intervention. This could be in a system that is more fault toler-
ant, e.g. by using sensors to detect abnormal situations and to deal with them
without an operator having to restart the system, and that can also interact with
other systems, e.g. to automatically order more components when the stock is
running low.

2.3.1 The ARAMIS Project

The ARAMIS project [83][123] was the continuation of a joint research project
between the Department of Computer and Information Science (IDA) at
Linköping University, ABB Corporate Research and ABB Robotics in
Västerås, Sweden. The project continued as cooperation between IDA and the
Department of Physics and Measurement Technology (IFM). The work at IDA
consisted of developing the software platform for the target hardware (a real-
time system and robot with a gripper and various sensors) being developed at
IFM. The software platform was developed in a three-layered architecture. The
layers are: thetask level, thecontrol level, and thephysical level.

On the task level, task programs can be written that specify the main tasks
of the application in a declarative rule-based language. The task programs are
written using a graphical notation and using special programming tools. In the
task-level programs low-level details can be ignored such as how the actual
control algorithms will perform different high-level operations. The task pro-
grams operate on objects in a World Model (WM) which is stored in a database.
Objects (called components) in the WM can be active, which means that if the
task level changes attributes of active components, the WM can issue calls to
the control level that executes algorithms that perform the corresponding
changes to the physical object that is represented by the active component in
the WM. The architecture is presented more thoroughly in Paper I.

11

This work uses an ADBMS for control of manufacturing equipment with
obvious real-time requirements, but the focus was not on real-time databases
[101]. One basic idea in the architecture is to push real-time requirements into
the control algorithms as much as possible, i.e. out of the database and the
active rules. The control algorithms can be cyclic operations with fixed cycle
times that can be adjusted to meet hard real-time requirements. Some soft real-
time requirements can still be present on the database.

The ADBMS should provide high-performance transaction processing
through efficient rule/query processing and efficient updates of the database. To
meet these requirements a main-memory DBMS [34][38][52] was considered
as the most likely candidate.

My work consisted of developing the control software which included
developing languages and tools for specifying active components that perform
the control of the physical hardware (see Paper I). This work was the initial
incentive to focus my research on the area of active database systems.

2.4 About Paper I

This paper presents the ARAMIS architecture with an emphasis on the control
level and the specification ofactive components. The model chosen for defining
components was based on Object-Oriented (OO) techniques. The components
can be eitherpassive or active. Passive components represent modules contain-
ing functions that have some common functionality such as specialized algo-
rithms for 3D-rotation of objects. The inheritance structure of passive
components representsspecialization (or generalization) of functionality such
as a 3D-rotation component can be defined as a specialization of a 2D-rotation
component. Active components represent objects with a state and are used for
representing objects in the real-world such as equipment in the manufacturing
plant and the parts being assembled. The inheritance structure of active compo-
nents represents anis-a (or instance-of) hierarchy. In [120] general definitions
of different inheritance models can be found. The OO model chosen for the
components later influenced the choice of using an OODBMS to represent the
WM. The ARAMIS system had a primitive main-memory active database sys-
tem that was used for storing the active components, but it lacked well-defined
transactions and a query language. This database system was later substituted
with the AMOS ADBMS [43]. AMOS is presented in chapter 3. In chapter 5
the use of an ADBMS in CIM applications is more discussed.

2.5 Telecommunication Networks

Telecommunication networks consist of the infrastructure and the equipment
needed to provide different telephony services. Traditional telecommunication
networks provide transfer of low bandwidth analog data such as voice data in a
point-to-point manner. The services provided by the telecommunication net-
work can be divided into services provided to the end user and services pro-

12 Background

vided to the network operator. Traditional user services include Plain Ordinary
Telephony Service (POTS), i.e. basic point-to-point voice-based communica-
tion without operator assistance, different subscriber services such as call
transfer, call waiting, and number presentation of who is calling. Traditional
operator services include monitoring network usage and billing subscribers,
adding/removing subscribers, load balancing the network (e.g. transferring
traffic from heavily used sections to less used sections, sometimes by splitting
one high bandwidth connection into several connections), reconfiguring the
network without disrupting network traffic, and network supervision functions
(e.g. monitoring network overload and equipment failure). Future telecommu-
nication networks will provide transfer of high bandwidth digital data in both
point-to-point and in a broadcast (one to many) manner. Today’s fixed networks
are digital between the exchanges, but usually not all the way to the end users
(subscribers).

In ISDN (Integrated Services Digital Networks) subscribers can be given a
fixed medium bandwidth transfer. The basic idea in ISDN is that a digitalbit-
pipe through an Integrated ISDN Transport Network is set up between users
(fig. 2.1). The bits can originate from any digital ISDN device such as a digital
telephone, a digital fax, or a terminal (or any general computer). The connec-

tions to the end users are defined to use existing twisted pair connections using
special ISDN interface hardware. Within the transport network any media can
be used such as optical fiber cables. The ISDN bit-pipe supports multiple chan-
nels interleaved by time division multiplexing. Several channels have been
defined:

A - 4 kHz analog telephone channel
B - 64 Kbit/sec digital PCM channel for voice data
C - 8 or 16 Kbit/sec digital channel
D - 16 or 64 Kbit/sec digital channel for out-of-band signalling
E- 64 Kbit/sec digital channel for internal ISDN signalling
H - 384, 1536, or 1920 Kbit/sec digital channel

Dif ferent combinations of these channels have been defined such as the basic
rate 2B+1D which can be viewed as a replacement for the communication in
POTS. The ISDN standard as it was initially defined has never been realized in

Integrated
ISDN
Transport
Network

ISDN
Exchange

ISDN
Exchange

ISDN
Devices

ISDN
Devices

Figure 2.1: The basic ISDN network

13

integrated large-scale public networks. ISDN is usually provided through spe-
cial networks that work in parallel with the public telecommunication networks
or in local networks through a Private Branch eXchange (PBX). A major reason
why the ISDN standard has not been widely implemented is that many new
applications require network performance above that which an ISDN network
can provide. Applications such as transfer of images, video, or high-fidelity
sound have a verybursty nature, i.e. low data transfer can be followed by sud-
den burst of high data transfers. The basic ISDN standard provides a statically
allocated bandwidth and applications must allocate enough bandwidth to sup-
port the maximum bandwidth that they need. For bursty applications this leads
to a lot of waste of bandwidth since the whole allocated bandwidth is only used
parts of the time. To support these kind of applications the basic ISDN standard
was extended and was named Broadband ISDN (B-ISDN). B-ISDN supports
dynamic bandwidth allocation by using the ATM (Asynchronous Transfer
Mode) technology to implement the Integrated B-ISDN Transport Network.

The ATM network standard has been defined to support integration of both
local and public networks consisting of different transport media such as
unshielded twisted pairs, shielded coaxial cables, and optical fibers using dif-
ferent kinds of broadband switches such as local ATM PBXs and large public
ATM exchanges. The broadband ATM devices in an office or a home can be
defined to belong to ATM workgroups that are connected to ATM PBXs in pri-
vate (corporate/enterprise) networks or directly to local ATM exchanges in a
public carrier’s ATM network (fig. 2.2). The private ATM networks can consist
of several ATM PBXs in a Local Exchange Carrier Network and the public
ATM network can consist of several networks with ATM Exchanges in Inter
Exchange Carrier Networks that are being managed by different network pro-
viders.

In an ATM-network users can be given dynamic high bandwidth transfer. The
physical communication layer is actually not part of the ATM specification, but
standards for optical networks such as SONET/SDH (Synchronous Optical Net-
work/Synchronous Digital Hierarchy) specify the speeds, 155.5 Mbit/sec, 622
Mbit/sec, 2.4 Gbit/sec. ATM networks transfer data as digital packages contain-
ing parts of the data along with the destination address and control data (e.g.

ATM
Exchange

ATM
Exchange

ATM
Devices

Inter Exchange
Carrier Network

Local Exchange

ATM
Exchange

Private Network Public NetworkOffice/Home

ATM Workgroup Carrier Network

ATM
Exchange

Figure 2.2: The ATM (B-ISDN) network main layout

14 Background

for error checking). The packages can be routed different ways depending on
the current load situation. The exchanges disassemble the data from the sending
party into a sequence of packages and performpackage switching by routing
the packages to their correct destination and assemble them in the correct
sequence and send the data to the receiving party. How connections are set-up
between the users and how the connections are controlled is different from how
connections are managed in traditional telecommunication networks. The con-
nections in ATM networks must have higher reliability and this will make both
the control and management of these networks more complicated. In section
2.6.1 the control of these networks and how connections are set-up are dis-
cussed. In section 2.6.2 the management of these networks and set-up connec-
tions is discussed. The main difference to the users of the networks will be
increased performance through a high bandwidth network, more user services,
and the fact that the communication is digital all the way making modems
redundant for digital data transfer.

Today’s second generation mobile telecommunication networks, i.e. GSM/
TDMA 1 or CDMA2 cellular phone networks [67], are already digital all the
way (the first generation was analog), but do not provide very much bandwidth
to the subscribers. When ATM-networks are widely available, cellular phone
networks will probably be upgraded to benefit from the higher broad band
capability, but there will probably still be a limitation on the bandwidth availa-
ble in the mobile phone - base station connection because the radio band will
always be cramped. In the Universal Mobile Telecommunications System
(UMTS), defined in an EU RACE-program (Research on Advanced Communi-
cations), a third generation mobile telecommunications network has been
defined. In UMTS the mobile network has been integrated with a broad-band
package switched network such as ATM3. Mobile phones are already beginning
to be integrated with hand-held computers to becomemobile workstations [72].
Users with mobile terminals will thus be mobile and have access to broad band
services (a bandwidth of 2 Mbit/sec. has been defined). Work is also in progress
on mobile ATM [127] where users can access an ATM network directly from
mobile terminals. One complication with using the ATM protocol all the way to
the mobile users is that there are no sequence numbers in ATM packages. In a
wireless network ATM packages can become misordered and there are propos-
als for adding sequence numbers to help reordering ATM packages at the
receiving end [127].

Future user services other than POTS and the standard subscriber services
(e.g. call transfer and call waiting) will include direct, real-time, transfer of any
digital data (e.g. digital television and teleconferencing), and other services

1. In the Global System of Mobile communications (GSM) a Time Division Multiple
Access is used for multiplexing several logical channels onto each physical carrier
channel.

2. Code Division Multiple Access (CDMA) is a future North American mobile telecom-
munication system.

3. Initially UMTS was to be integrated with B-ISDN, but this is not considered a good
technical solution anymore.

15

using non-real-time data transfers such as electronic mail, news services such
as electronic newspapers and stock market information, accessing the Internet,
and video-on-demand services. Monitoring services such as a service that
allows users to directly monitor how much money he/she has spent might be
possible. Future operator services might include better monitoring of network
use and misuse (e.g. by using encryption and authorization control), controlling
how much bandwidth is given to different users, billing according to used
bandwidth, better support for load balancing the network (e.g. automatic split-
ting of high bandwidth connections through package switching and delaying
transfer of non-real-time data until low traffic periods), better support for
dynamic reconfiguration without disrupting network traffic (e.g. by having bet-
ter support for rerouting data away from equipment that is being replaced or
upgraded).

2.6 DBMSs in Telecommunication Networks

In the area of telecommunications there are many different needs for DBMS
support. Telecommunication networks already have DBMSs integrated with
them and will have even more so in the future. Telecommunication networks
are large heterogeneous systems with many, sometimes conflicting, needs that
the DBMSs must fulfil [58]. When discussing DBMSs in telecommunication
networks it is important to separate betweennetwork traffic control, network
management, andnetwork applications.

The network traffic control involves the actual operation of the network in
terms of setting up communication paths, maintaining them, and disconnecting
them. In this thesis POTS (i.e. point-to-point communication) and standard
subscriber services (e.g. wake-up call, call diversion, call waiting, malicious
call tracing) are considered to belong to network traffic control. Network traffic
control have requirements on DBMSs to provide high throughput and a large
number of parallel transactions, main-memory storage, fast-path interfaces to
programming languages, and real-time support. In network traffic control,
availability and reliability is important [122], but losing a single connection is
not a catastrophe.

Network management[59] involves monitoring network traffic in terms of
performance (network throughput), fault management, and configuration man-
agement. Network management makes requirements on the DBMSs to provide
support for interconnecting with other DBMSs and with other systems and to
provide support for monitoring connections, alarms in the network, and net-
work configuration changes. Collecting accounting data to support billing of
network use is also a task for network management. The DBMSs for network
management have a high requirement on reliability since losing, for example,
accounting data is unacceptable to a network operator. The network manage-
ment also requires support for more complex data models to support modelling
the layout of the actual network (such as network elements and their connec-
tions) within the database. The DBMSs need to store accounting data securely
on disk, but might still be main-memory based to meet some of the perform-

16 Background

ance requirements and with a disk for backup only.
Network applications that use a DBMS can include applications other than

traditional telephone calls such as Internet access (e-mail, news, WWW, file
transfer, and remote system access), text and voice mail, multi-media, and
video-on-demand. Network applications will require support from a high-per-
formance DBMS that can handle a large number of simultaneous transactions.
To meet these requirements main-memory DBMSs can be considered. Disk
based DBMSs that can store large amounts of data will also be needed for log-
ging purposes and for applications needing to store large volumes of data. Sup-
port for new data structures will be needed for storing, for instance, voice data,
graphical data, and video data in the databases. To support queries over these
new data structures the DBMSs must support efficient indexing techniques and
optimization of queries that access them.

2.6.1 Telecommunication Network Traffic Contr ol

Network traffic control is probably the area within telecommunications where
there are the most manufacturer-specific solutions. Each telecommunication
exchange (switch) developer has its own solutions of how to handle data.
DBMSs are being integrated into the software platforms for the switching sys-
tems. In an ATM exchange the data being stored can be connection data, system
management data, and configuration data.

Connections in an ATM network are associated with each other throughVir-
tual Circuit Identifiers (VCIs) that are sent along with data packages to identify
where they come from and where they should be routed. Two kinds of virtual
circuits have been defined,Permanent Virtual Circuits (PVC) andSwitched Vir-
tual Circuits (SVC). PVCs require that the customer defines the characteristics
of the connection, including the end-points. SVCs allow connections to be
established on-demand between any two points in the network. SVCs are going
to be needed in a dynamic public ATM network and are assumed in the contin-
ued discussion. When new connections are established, new VCIs are allocated
and are maintained until the connection is terminated causing the VCI to be
deallocated (and be reused by new connections).

Connections (trails) routed through several exchanges will have several
VCIs for each sub-connections (segments) through the network. Each ATM
exchange will keep records on how each incoming and outgoing sub-connec-
tion is connected by recording the associated VCIs. Each sub-connection will
be monitored by the ATM-exchanges making sure that the connections get the
good throughput by varying the actual bandwidth acquired during fluctuations
(bursts) in the transmitted data. Data about setup connections, i.e. associated
VCIs, can be stored in local databases. Network usage can be temporarily
stored for each sub-connection, but will be forwarded to network management
systems for monitoring the overall performance and for calculating the total
network usage for billing. Maintaining the complete connections through the
network is part of the network management.

System management such as monitoring the performance of the whole

17

exchanges, different physical links, and logging of alarms will need DBMS
support. Such a DBMS must be accessible from or have direct contact with a
network management center that monitors the larger part of the network that
the exchange belongs to. System configuration data, such as hardware and soft-
ware configuration, will probably be handled by a DBMS as well. System
reconfiguration can be managed more securely by using DBMS transactions to
atomically change many parameters simultaneously.

In local exchanges (with directly connected subscribers) a DBMS can be
used to store subscriber information such as subscriber numbers, subscriber
services, accounting information. For fast number analysis special data struc-
tures for fast look up and with possibly incomplete keys (parts of subscriber
numbers) are usually implemented. The searching can usually start before the
subscriber has dialled all the digits. Subscriber numbers are usually defined in
number series according to a number plan that specifies country and area codes.
These are usually defined and stored in a hierarchical structure that is searched
for finding where incoming calls should be routed. Usually no single database
contains all the numbers, but each exchange DBMS can determine where (in
what other exchange) the number analysis should be continued. In future
mobile telecommunication networks the subscriber numbers will be global, i.e.
without any fixed association with where the subscriber is physically located.
This will change how subscriber numbers are looked up in the database. Since
mobile subscribers usually type in the whole number they are calling, there is
no need for incomplete search keys. Some hierarchical definition will probably
still be needed to avoid full replication of all numbers in the local exchanges.

The local exchanges usually have charging functions that monitor the
number of time periods used in calls set-up by local subscribers. Local account-
ing information is usually stored temporarily before it is forwarded as charging
records to some external DBMS in the network management system. In the
future such charging will also include the use of network services not handled
by the local exchanges. On-line billing of network services will probably be
performed by DBMSs of the network management system.

Subscriber services usually have specific functions or modules in the system
that need to store their own information in the database (such as to what num-
bers to transfer calls to subscribers that have activated the call diversion serv-
ice). In Intelligent Network Services some new services such as routing calls to
different locations at different times of the day, translation of numbers, and
redirecting of charging have been defined. To support such services Service
Control Points (SCPs) have been defined that will use network DBMSs for
looking up data.

In third generation mobile telecommunication networks such as UMTS
users will not be physically connected to a particular local exchange and will
probably have portable subscriber numbers that can be used to find them any-
where in the network. Home Location Registers (HLRs) and Visited Location
Registers (VLRs) are specialized DBMSs used in second generation mobile
networks for finding the location (local home exchange and current location) of
mobile users. In UMTS HLR/VLRs will probably use SCPs and network

18 Background

DBMSs to support portable subscriber numbers.
In section 5.6.1 the use of ADBMSs in telecommunication network traffic

control is discussed.

2.6.2 Telecommunication Network Management

Telecommunication networks are large hierarchical networks consisting of subscrib-
ers connected to local exchanges, local exchanges connected to transit exchanges,
and network supervision centers that monitor the traffic between the exchanges.
DBMSs for network management are integrated parts of these networks to some
extent and will be even more so in the future [59].

The tasks of network management are the following:

• Performance Management.
To monitor the status of network resources, traffic load, equipment utilization,
and identify exceptional conditions.

• Fault Management.
To detect alarms, diagnose problems, and apply control.

• Configuration Management.
To provide support for installation of new equipment or services, audit, and
reconfigure network resources.

• Accounting Management.
To provide billing data, resource usage reports, and cost calculations.

• Network Planning Management.
To prepare for capacity growth, contingency, and strategic planning.

• Security Management.
To handle authorization and authentication.

Network management of ATM networks [5] is divided into several levels and inter-
faces. The ATM Forum is developing a five-layer ATM management model for
Operation, Administration, and Maintenance (OAM) of ATM networks. The model
defines interfaces for managing hybrid networks that consist of both private and pub-
lic networks. OAM cells are being defined that automatically distribute management
information throughout the ATM network. The model also includes end-to-end man-
agement based on the Common Management Information Protocol (CMIP).

Local networks (LAN) connected to an ATM network can use the ATM Data
Exchange Interface (DXI) for exchanging data. Network management in pri-
vate ATM networks has been defined by the Interim Local Management Inter-
face (ILMI) which is based on the Simple Network Management Protocol
(SNMP). SNMP was defined by the Internet Engineering Task Force (IETF)
and is widely used in management of computer networks. SNMP is based on

19

the definition of Management Information Bases (MIBs) which support read-
ing, writing, and monitoring changes to data related to network elements. The
IETF has produced an ATM MIB for SNMP and the ATM Forum has defined
the ATM DXI MIB (as an extension of the ISDN MIB). A remote monitoring
AMON MIB (based on RMON, Remote MONitoring) has also been defined for
support of more automatic ATM network monitoring. MIBs define objects (or
variables) which can be polled to monitor the operation and performance of a
managed component. Managed components can be any piece of hardware in the
communication network. More discussions on SNMP and MIBs can be found in
section 9.5.3.

The Customer Network Management (CNM) interface makes it possible for
customers of an ATM service to manage certain aspects of the service from
their own local network management system. The CNM is the interface
between the customer and the carrier’s public network management systems
and gives the customer a view into the carrier’s network. CNM systems also
rely on MIBs for accessing data. The goal of the integration of customer and
carrier’s network management systems is that customers will have real-time
control over the services they use. The carrier wants to provide the private net-
work management with the ability to monitor and control the quality of the
services received, but without giving away full control of the network.

To support management of the public networks the interfaces based on the
Network Management Level (NML) views and the Element Management Level
(EML) views have been defined [81]. The NML provides an abstraction of the
functions provided by the systems that manage network elements on a collec-
tive basis (the network management systems) to make it possible to monitor
and control the network end-to-end. The EML provides an abstraction of the
functions provided by the systems which manage each network element on an
individual basis (the network control systems). The basic idea behind the inter-
faces is to allow the network management system to work on an integrated and
logical view of larger parts or the complete public network. More on logical
views of telecommunication networks can be found later in this section.

Since there will probably be several carrier network providers, there is a
need for an interface for integrating different carriers’ network management
systems. This is needed to provide monitoring of complete connections through
the whole network. Information such as forwarding of network usage, billing
information, and alarms will have to be forwarded using standard formats. This
interface has yet to be defined.

In fig. 2.3 an overview of the different network management interfaces can
be seen with the interface codes explained below.

• M1, M2 - Interim Local Management Interface (ILMI) based on the Simple Net-
work Management Protocol (SNMP)

• M3 - Customer Network Management (CNM) interface

• M4 - Interface providing Network Management Level (NML) views and Element
Management Level (EML) views of the public network

20 Background

• M5 - Interface between the public network management systems

In telecommunication network management, logical views are usually defined in
terms of the physical network (fig. 2.4). Logical names of devices and users will have
to be translated to physical addresses by a name server function. The views reflect

ATM Private
Network

Public
Network

Public
NetworkWorkgroup

M1

M2

M3

M4 M4

M5

Private
Network
Manager

Public
Network
Manager

Public
Network
Manager

Figure 2.3: The ATM Forum Management Interface Reference Architecture

Figure 2.4: Mapping the physical network to a logical network through logical
views

Physical Network

Logical Network

Logical views

21

area code regions and geographical regions more than how the network is physically
interconnected. The operators of network management centers will usually find it
more convenient to access the different parts of the network using the logical view.
The physical network addresses will usually only be needed when devices and users
are added (removed) to (from) the network.

The views can be defined on several levels for local and regional network
management (fig. 2.5). In reality (as for example is defined in the North Amer-

ican Telephone Switching Office Hierarchy) the telecommunication networks
consist of several levels such as regional centers, sectional centers, primary
centers, toll centers and local offices. DBMSs will be needed on all these dif-
ferent levels. The information that will be stored in the databases includes
static data such as objects representing the network elements, the network con-
figuration, and dynamic data such as the status of the network elements, statis-
tics, set up trail connections, actual network usage, and billing information. In
telecommunication network management there is a greater need for data model-
ling than in network traffic control. The network modelling is likely to be
defined using international standards based on the Object-Oriented (OO) para-
digm.

Figure 2.5: Storing sub-networks, network elements and connection trails in data-
bases

Network Traffic Control

Sectional/Primary Network Management

Regional Network Management

22 Background

The Guidelines for Development of Managed Objects (GDMO) [74] is a
standard for modelling of network elements based on OO techniques. Network
providers can define how their networks are logically connected using GDMO
and then use the NML and EML views to define how the logical view of the
network is mapped to the physical view, i.e. the relationship between how the
elements of the logical network are defined to be interconnected and how the
physical network elements are physically interconnected. The logical view
makes it easier to understand how the network is connected and easier to man-
age by network operators. Operations such as monitoring can be done on the
logical model with all the requests and data being translated between the phys-
ical and the logical views. Changes to the physical and the logical views and
the mapping between them must be possible to allow for reconfiguration with-
out taking the whole network out of service.

To support the network management the logical views can be stored in a
database with direct support for the network modelling. OODBMSs, for exam-
ple, can be used to directly store GDMO based models of the networks. Inter-
connections between DBMSs at different levels of the network hierarchy can
provide the mappings between the different views. Support for defining the
NML/EML mappings and doing the actual translations will have to be provided
as part of the functionality of the network management software that is tightly
integrated with the DBMS.

The DBMSs can be seen as being part of a heterogeneous system that con-
nects different databases and network elements (fig. 2.6). The data sent
between the different databases and the network elements can be:

• Alarms signalling different errors in the network. Failed network elements and
traffic congestion.

• Reconfiguration information, new added network elements, removed network
elements, and new interconnections between network elements.

• Information about set-up connections.

• Accounting information.

To allow databases to access other databases they have to be designed with this in
mind. Inheterogeneous DBMSs access to other databases is supported and queries
spanning over several databases can be defined and optimized. In chapter 4 heteroge-
neous DBMSs are discussed further. To support access to other non-database sources
of data such as network elements the DBMSs must support this as well. Standards
have been defined such as different MIBs that specify how the different objects
(data) in other databases and network elements can be accessed and monitored.
DBMSs integrated in network management have to be designed to support these
standards. In chapter 9foreign data sources are defined and discussed that allow
DBMSs to access and monitor changes to data that is not stored physically in the
database.

In section 5.6.2 the use of ADBMSs in telecommunication network manage-

23

ment is discussed.

2.6.3 Telecommunication Network Applications

Current Internet applications such as e-mail, news, and WWW (the World Wide
Web) will most likely be provided through future telecommunication networks [15].
This can be achieved by just extending the Internet to partly run on top of the tele-
communications networks through an IP (Internet Protocol) gateway in an ATM net-
work (see section 9.5.3). It can also be achieved by introducing these applications as
new telecommunication services separate from equivalent applications on the Inter-
net. Future broad-band telecommunication networks can hopefully provide better
bandwidth, reliability, and support for billing of used services which cannot be pro-
vided by the Internet today. Future applications such as multi-media e-mail, interac-
tive TV (multi-media WWW), and video-on-demand can be provided directly to the
telecommunication network users or indirectly from the Internet through an IP/ATM
gateway.

Many of these applications will need DBMS support. DBMSs can be used as
search engines, e.g. searching for a particular service, for storing multi-media

Figure 2.6: Connecting DBMSs and network elements in different levels as for-
eign data sources

Network Traffic Control

Regional Network Management

Sectional/Primary Network Management

24 Background

data, and for on-line billing of the services provided. These applications will
require more support for storing non-tabular data, such as multi-media docu-
ments consisting of both audio and video information. BLOBs (Binary Large
Objects) are used as a common term for these new data structures. Support for
extending the databases with these data structures is not enough in itself; sup-
port is also needed for accessing these objects or parts of them using indexed
search and through a query language. The DBMSs must support extensions of
their type systems with new data types and with application-specific operations
on them. These kinds of extensible database systems have been namedObject-
Relational Database Systems [118].

In future mobile telecommunication networks such as UMTS where users
will have mobile terminals there are special challenges to application data man-
agement [71]. To support mobile applications DBMSs formobile computing
[72] have to deal with users who can connect to the database for brief periods
and then disconnect while moving somewhere else. Data can be stored both in
network databases and locally in the mobile terminal. Here a separation is made
betweenglobal and local data management. Global data management deals
with network problems such as locating, addressing, replicating, and broadcast-
ing application data to users. Local data management refers to end-user level
data management in the mobile terminal and includes energy-efficient data
access with caching of data, management of disconnection and reconnection,
and management of query processing for efficient navigation through the net-
work to find the desired data. There are many new possible applications for
mobile DBMSs. One interesting application is that of integratingvehicle navi-
gation systems and mobile telecommunication systems. In vehicle navigation
systems the positions of vehicles are monitored usingGPS (Global Positioning
System) [112] which is based on using satellites together with the reference sig-
nal from mobile telecommunication base stations1. Mobile terminals can be
used for sending and receiving data related to the position of the vehicle. This
application will rely heavily on DBMS support for storing and sending infor-
mation requested by the user such as maps and multi-media data related to the
vehicle position.

In section 5.6.3 the use of ADBMSs in telecommunication network applications
is discussed.

1. For improved accuracy in determining a more exact position compared to the position
provided by only using GPS.

25

3 Active Database
Management Systems

3.1 An Overview of Active Database Management Systems
(ADBMSs)

In System R [6] atrigger mechanism was defined that could execute a pre-
specified sequence of SQL statements whenever some triggering event
occurred. The triggering events that could be specified included retrieval, inser-
tion, deletion, and update of a particular base table or view. Triggers had imme-
diate semantics, i.e. they were executed immediately when the event was
detected. In System R it was also possible to makeassertions that specified per-
missible states or transitions in the database throughintegrity constraints that
always had to be true after each transaction. Specific events had to be specified
for when assertions were to be checked in the same way as with triggers. Asser-
tions usually had deferred checking semantics, i.e. they were checked when
transactions were to be committed. If an assertion failed, then the transaction
was aborted.

The termactive databases was coined in [92] as meaning “a paradigm that
combines aspects of both database and artificial intelligence technologies”. In
[92] a mechanism for constraint maintenance,Constraint Equations, was pre-
sented as a declarative representation for a set of related Condition-Action
rules.

In HiPAC [23][29][31][133] a thorough specification was made of what dif-
ferent mechanisms are desirable in anActive Database Management System
(ADBMS). Active rules are defined asEvent-Condition-Action (ECA) rules,
where the Event specifies when a rule should be triggered, the Condition is a
query that is evaluated when the Event occurs, and the Action is executed when
the Event occurs and the Condition is satisfied. Events can be seen as signals
that inform that a change to data in the database has occurred, e.g. an update of
a table. In HiPAC coupling modes (fig. 3.1) were defined which specify how the
evaluation of rule conditions and the execution of rule actions are related to the
detected events and the transaction in which the events occur.

Immediate rule processing means that the rule conditions are evaluated and
the actions are executed immediately after the event occurred. A distinction
was also made between whether rule processing takes place before or after the
change has taken place in the database.Deferred rule processing means that
rule processing is delayed until the transaction is to be committed.Casually

26 Active Database Management Systems

Dependent Decoupled rule processing means that any triggered action execu-
tion is executed in a separate sub-transaction that waits until the main transac-
tion is committed.Decoupled rule processing means that the sub-transaction is
completely decoupled from the main transaction and commits regardless of the
outcome of the main transaction.

In POSTGRES [116][133] rules are introduced as ECA rules where events can
be retrieve, replace, delete, append, new (i.e replace or append), andold (i.e.
delete or replace) of an object (a relation name or a relation column). The con-
dition can be any POSTQUEL query and the action can be any sequence of
POSTQUEL commands. Two types of rule systems exist, theTuple Level Rule
System which is called when individual tuples are updated, and theQuery
Rewrite System which resides in the parser and the query optimizer. The Query
Rewrite System converts a user command to an alternative form, i.e. by wrap-
ping extra code which checks the rules more efficiently. No support exists for
handling temporal, external events, or composite events.

In Starburst [84][133] ECA rules are supported which can monitor the
events INSERT, DELETE, andUPDATE of a table. The condition can be any

BOT Event signal EOT Commit

BOT Event signal EOT Commit

BOT Event signal EOT Commit

BOT Event signal EOT Commit

Triggered operation

Triggered operation

BOT
Triggered operation Commit

BOT
Triggered operation Commit

Immediate

Deferred

Causally-
Dependent
Decoupled

Decoupled

BOT : Beginning of transaction
EOT : End of transaction

Figure 3.1: Rule processing coupling modes in HiPAC

27

SQL query and the action any sequence of database commands. Rules that are
defined can be temporarily deactivated and then be re-activated. The condition
and action parts may refer totransition tables that contain the changes to a
rule’s table made since the beginning of the transaction or the last time that a
rule was processed (whichever happened most recently). The transition table
INSERTED/DELETED contains records inserted/deleted into/from the trigger
table. Transition tables NEW_UPDATED and OLD_UPDATED contain new
and old values of updated rows, respectively. In [132] theset-oriented seman-
tics of Starburst rules are presented. In set-oriented rule execution the action
part of a rule is executed for all tuples for which the condition is true in con-
trast toinstance-oriented rule execution where it is executed for one tuple at a
time.

In Ariel [63][133] production rules are defined on top of POSTGRES. In
Ariel CA-rules are allowed which use only the condition to specifylogical
events which trigger rules. Logical events can be expressed by a query or a
relational view and specify the logical conditions that are the result of one or
severalphysical events (such as an update of a table).

In Ode [55][133] constraints and triggers are introduced into an OODBMS.
The primitive events that can be referenced are creation, deletion, update, or
access by an object method. Ode also supportscomposite events through event
expressions that relate primitive events. The event expressions can define
sequence orderings between events. A third type of event has been defined,
known as an external event, which signals the occurrence of an event outside
the database (either in application programs, in the operating system, or in
hardware). Other systems based on ECA-rules and which can trigger on exter-
nal events include REACH [18] and SAMOS [53]. In AMOS external events
are introduced as foreign events together with foreign data sources (se chapter
9).

In Chimera [133] different models for processing events,event consumption
modes, can be specified. Chimera also includes adebugging mode where the
state of an executing rule can be monitored interactively.

Considerable research has been carried out in the area of active database
systems. A good introduction to the research area and active database architec-
tures can be found in [133] which includes overviews of most of the research
systems mentioned above (an additional system, A-RDL, is discussed in
section6.3 in this thesis).

3.2 ADBMS Classifications

In the Active Database Management System Manifesto [35] required and
optional functionality for an ADBMS are presented. Required functionality
includes support for creating, modifying, activating, and deactivating (called
enabling and disabling) ECA-rules. The ADBMS must support event monitor-
ing and storing events in anevent history as (<event type>, <time>) where the
<event type> represents any primitive event and the <time> is the time (transac-
tion time) when the event occurred. The ADBMS must have clearly defined

28 Active Database Management Systems

rule semantics such as theevent consumption policy (i.e. when events are dis-
carded), event detection (i.e. when events are detected and signalled to the rule
manager), and rule semantics such as coupling modes and instance or set-ori-
ented semantics. Some possible event consumption policies are:recent, chroni-
cle, andcumulative. In the recent policy the latest instance of a primitive event
that is part of a complex event is consumed if the complex event occurs. In the
chronicle policy the events are consumed in time order. In the cumulative pol-
icy all instances of a primitive event are consumed if the complex event occurs.

Two new coupling modes are suggested in [35] (fig. 3.2),Sequential Caus-
ally Dependent (sometimes called Detached) rule processing, where the trig-
gered transaction starts after the triggering transaction is committed, and
Exclusive Causally Dependent rule processing, where the triggered transaction
may commit only if the triggering transaction has failed.Conflict resolution
policies must also be defined for managing simultaneously triggered rules, e.g.
by allowing the user to specify different priorities for conflicting rules. Access
to events in condition and action parts of rules might also be defined. Optional
functionality includes a rule programming environment with tools such as rule
editors, rule browsers, rule analyzers, rule debuggers, trace facilities, and per-
formance tuning tools. Some examples of tools in a support environment for

active rule design can be found in [8].
Two important aspects for comparing different architectures are the expres-

siveness of the rule language and the execution semantics of the rules.
The expressiveness of the rules can be divided into the expressiveness of

rule events, conditions and actions. The expressiveness of the event part can be

BOT Event signal EOT Commit

Triggered operation

Sequential
Causally
Dependent

BOT : Beginning of transaction
EOT : End of transaction

Commit

BOT Event signal EOT Abort

Triggered operation

Exclusive
Causally
Dependent

CommitBOT

BOT

(Detached)

Figure 3.2: Two newly suggested rule processing coupling modes

29

divided into comparing the types of events that the rules can reference and how
the events can be modelled and combined into complex events. Different types
of events include database updates, schema changes, and external events such
as sensor value changes, specified state changes in the applications, or time.
Modelling events can include an event specification language that can combine
events using logical composition, event ordering, sequential and temporal
ordering, and event periodicity [24].

The expressiveness of the condition part can be divided into whether a full
query language is available or not, whether the events can be referenced as
changed data, and whether old values can be referenced or not.

The expressiveness of the action part can be divided into whether a full
query language is available or not, i.e. whether queries and updates can be
intertwined, and whether the action can include schema changes and rule acti-
vation/deactivation.

Execution semantics of rules includes rule processing coupling modes
defined in section 3.1. If full query language expressiveness is possible in the
condition part, then set-oriented rule semantics are also possible [132], where
the action part is executed over a set of tuples produced by the condition. Cas-
cading rule execution, i.e. whether one rule can trigger another, and if simulta-
neously triggered rules are subjected to some conflict resolution method are
also part of the classification of rule semantics.

In [133] different architectures of ADBMSs are defined aslayered architec-
tures, built-in architectures, andcompiled architectures.

• In a layered architecture the rule system is loosely coupled with the DBMS by in-
tercepting client-server communication and by calling application procedures or
submitting commands to the DBMS. Layered architectures are usually easier to
implement, but can exhibit poor performance.

• In a built-in architecture the rule system is tightly coupled with the DBMS and rule
processing is integrated with query processing. Built-in architectures usually pro-
vide good performance, but are substantially more difficult to implement.

• In a compiled architecture the rule system is an extension of the application or da-
tabase query language where the rules are wrapped as procedural code around ex-
pressions that generate events that might affect the rule. A compiled architecture
requires that the compiler can detect all events at compile-time which is usually
not the case in general database interfaces where applications are allowed to per-
form ad-hoc modifications to the database.

In [35] ADBMSs are classified according to how they are used by applications,
i.e. for monitoring or for control. A classification is also made according to
how the applications are integrated with the ADBMS. The ADBMS is often
considered as a stand-alone system with applications as clients that connect to
the ADBMS server. Alternatively, the ADBMS can be integrated (embedded) in
a system as a component that can be used by applications, but where the appli-
cations are considered as providing the main functionality of the whole system.

The AMOS ADBMS is based on a built-in architecture where rule process-

30 Active Database Management Systems

ing is tightly integrated with query processing. Active rules in AMOS are pri-
marily designed for efficient monitoring of changes to the database, but can be
used for control as well. AMOS can be run as a stand-alone system or be tightly
integrated with applications.

3.3 AMOS

AMOS [41] (Active Mediators Object System) is a system that can model,
locate, search, combine, and monitor data in information systems with many
workstations connected using fast communication networks. The architecture
uses themediator approach [131] that introduces an intermediate level of soft-
ware between databases and their use in applications and by users. We call our
class of intermediate modulesactive mediators, since our mediators support
active database facilities. The AMOS architecture is built around a main mem-
ory-based platform for intercommunicating information bases. Each AMOS
server has DBMS facilities, such as a local database, a data dictionary, a query
processor, transaction processing, and remote access to databases. The AMOS
multi-DBMS architecture is presented in Paper III, [42], and [130]. TheAMOS
DBMS is an extension of a main-memory version of Iris [47], called WS-Iris [82],
where OSQL queries are compiled into execution plans in an OO logical language,
ObjectLog [82]. The query language of AMOS, AMOSQL, is a derivative of
OSQL [85]. AMOSQL extends OSQL with active rules, a richer type system,
and multi-database functionality.

In fig. 3.3 the AMOS architecture (excluding the multi-DBMS parts) can be
seen where the different levels and modules are:

• The external application interface level can handle embedded AMOSQL by
sending the expressions to the level below for parsing and execution. An AMOS
fast-path interface that does not require any parsing is also available. Results are
returned to the external interface, either directly or through interface variables
and cursors.

• The AMOSQL interpreter parses AMOSQL expressions and sends requests to
the levels below. AMOSQL supports precompiled functions (views and stored
procedures) and most applications will only parse and optimize complicated que-
ries once and then call the functions directly.

• Theschema manager handles all schema operations such as creating or deleting
types, i.e. object classes, and type instances including functions and rules.

• Therule processor handles rule compilation, activation/deactivation, monitoring
of events, and execution of rules and is described in more detail in this chapter.

• Theevent manager dispatches events received on theevent bus to the rule proc-
essor. Events can come frominternal events intercepted by the transaction man-
ager such as schema updates or relational updates. Other possible events arefor-
eign events from foreign data sources andtime events from the agenda. The
event manager also supports storing events in event histories represented as time

31

series that can be accessed through event functions. The event functions can be
accessed by the rule processor through AMOSQL queries.

• Theagenda is a time management module that can schedule activities to be per-
formed at specific times. The agenda is more discussed in section9.3.6.

• The foreign data source interface supports extension of AMOS with new data
structures and interfaces to other non-local data. It interacts with the AMOSQL
optimizer since access of new data structures such as available indexes are crucial
for query optimization. It interfaces with the ObjectLog interpreter since com-
piled execution plans will need access to foreign data.It interfaces with the logi-

Figure 3.3: The AMOS architecture

TransactionPhysical Object Manager

Recovery

AMOS Fast-path Interface

Schema
Manager

Logical Object Manager

Rule
Processor

AMOSQL Interpreter

Optimizer

ObjectLog Interpreter

External Application Interface

Embedded AMOSQL

Time Series

Manager

Manager

Disk
Manager

Memory
Manager

CORBA

SNMP MIB

Event
Manager

Fo
re

ig
n

Ev
en

ts

In
te

rn
al

E
ve

nt
s

Data StructuresF
or

ei
gn

 D
at

a
S

ou
rc

e
In

te
rf

ac
e

Agenda

Time
Events

32 Active Database Management Systems

cal object manager since many foreign data sources need to create special objects,
e.g. time series are used for storing the data of event functions and interfaces such
as CORBA and SNMP MIB (see section9.5.3) would need to create interface ob-
jects andforeign functions that are accessible through AMOSQL queries. Final-
ly it also needs to interface with the physical object manager since new data struc-
tures such as time series have to be defined together with operations for alloca-
tion, deallocation, access, and updating. Foreign data sources in general are
discussed in chapter 9.

• The AMOSQL optimizer is responsible for transforming ad hoc queries, update
statements, functions, and stored procedures into efficient execution plans using
query optimization and compilation techniques. This process involves the appli-
cation of transformation rules and heuristic cost-based query optimization tech-
niques that produce executable and efficient query plans. By supporting the defi-
nition of execution costs for foreign functions (default costs are also provided),
the optimizer can optimize expressions that include foreign functions as well.
Query optimization in AMOS and the management of foreign predicates are pre-
sented in [82] and [48].

• TheObjectLog interpreter [82] supports efficient execution of optimized query
plans. All data is accessed here through logical predicates. Stored functions, i.e.
tables, are represented as facts and derived functions, i.e. views, are represented
as Horn Clauses. Foreign functions are represented as foreign predicates that can
access the foreign data through the foreign data source interface.

• Thelogical object manager manages all operations to all objects in the database
schema such as object creation, deletion, and updates of object attributes includ-
ing updating, inserting, and deleting data in stored functions, i.e. base relations.
This level also handles OIDs (Object Identifiers) of the logical objects. All opera-
tions on these objects are transactional and are thus logged. All operations gener-
ate events that are intercepted and sent to the event manager.

• The physical object manager handles all basic objects (everything in the data-
base is an object) such as atoms, strings, integers, real numbers, lists, arrays, hash
tables, tree structures, and time series.

• The transaction manager handles all database transactions by keeping an undo/
redo log of all database operations. It also intercepts logged operations such as
updates and schema changes and passes them as events to the event manager
through the event bus.

• The recovery manager ensures persistency by making periodical snapshots and
flushing the log to disk.

• Thememory manager manages all memory operations such as allocation, deal-
location, and garbage collection.

• The disk manager in AMOS is more primitive in comparison to disk-based
DBMSs. It mainly handles flushing of database images and logs between main-
memory and disk for initiation, connection, or saving of databases.

33

The event handling is tightly integrated into the system and internal changes
are intercepted where they occur in the lower levels for efficiency reasons. The
rule processor is tightly integrated with the query processing for the same rea-
son.

3.4 The Rule Processor and the Event Manager

The active rules in AMOS are of Condition Action (CA), Event Condition
Action (ECA), and Event Action (EA) types. The AMOS rule processor han-
dles rule creation/deletion, activation/deactivation, monitoring, and execution.
The processing of rules is divided into four phases:

1. Event Detection
2. Change monitoring
3. Conflict resolution1

4. Action execution

Event detection consists of detecting events that can affect any activated rules
and is performed continuously during ongoing transactions. Events are accu-
mulated in event histories represented byevent functions. Complex event
detection (in ECA-rules) is performed by executing logical expressions (basi-
cally simple queries) over several event functions. Change monitoring includes
using theevent data from the event functions to determine whether any condi-
tion of any activated rules have changed, i.e. have become true. During action
execution further events might be generated causing all the phases to be
repeated until no more events are detected. Different conflict resolution meth-
ods are outside the scope of the thesis. In the current implementation a simple
priority based conflict resolution is used.

The rule execution model in AMOS is based on theEvent Condition Action
(ECA) execution cycle (fig. 3.4). All events are sent on anevent bus that
queues the events until they are processed. The execution cycle is always initi-
ated by non-rule-initiated events such as database updates, schema changes,
time events, or other external events. In AMOS events are intercepted in a sim-
ilar manner as in POSTGRES [116] and Starburst [84]. However, the events
that are intercepted in AMOS include all operations of logical objects. This
makes it possible to extend rules to trigger on any change in the system, includ-
ing schema updates. All events are dispatched through table-driven execution.
Events are accumulated chronologically in stored temporal event functions rep-
resented by time series. More about the temporal aspects of event functions can
be found in chapter 8. Event functions are used in AMOSQLevent expressions
that can define complex events. The event expressions are automatically gener-
ated from analyzing rule conditions for CA-rules and are created from the event
part of ECA and EA-rules. The event expressions generate event data which is

1. Conflict resolution is the process of choosing one single rule when more than one rule
is triggered.

34 Active Database Management Systems

used for evaluating the rule conditions.
Rule checking is performed in acheck phase usually at transaction commit

(deferred rule checking). Rule checking can also be invoked by calling the
check procedure explicitly. During rule checking, rule conditions are evaluated
if there is any event data, since this signals that the rule has been triggered. The
evaluation of the rule conditions producesaction-sets that contain tuples for
which the actions are to be executed. If an action-set is empty, this signifies that
the rule condition was false. When the actions are executed, new events might
be generated and the execution cycle continues until no more events are
detected on the event bus.

The active rules in AMOS can be classified according to the features pre-
sented in section 3.2. The expressiveness of events is based on logical composi-
tion (AND, OR), event ordering (BEFORE, AFTER), and simple temporal
events (AT <time point>, WITHIN <time interval>). Events can beprimitive,
internal (such as ADD, REMOVE, and UPDATE of tables and CREATE/
DELETE of objects) and external (such changes to a sensor). Events can also
be complex such as ADD, REMOVE, and UPDATE of relational views. The
expressiveness of conditions is based on the availability of complete AMOSQL
queries in the condition. The expressiveness of actions is based on full
AMOSQL procedural statements, i.e. queries intertwined with any updates of
the schema, updates of functions, rule activation/deactivation, and application
call-backs. The rules in AMOS have as default a deferred coupling mode, but
other coupling modes, such as immediate, sequential causally dependent (or
detached), and manual invocation of rule checking, can be used by using differ-
ent rule contexts (see Paper IV and section7.8).

Event Action

Condition
evaluation

 execution

non-rule-
initiated

events

rule-
initiated

eventsEvent Bus

action-set
tuples

event
data

 detection

Figure 3.4: The ECA execution cycle

35

3.5 The Iris Data Model and OSQL

The data model of AMOS and AMOSQL is based on the data model of Iris [47]
and OSQL [85]. The Iris data model is based on objects, types, and functions
(fig. 3.5). Everything in the data model is an object, including types and func-
tions. All objects are classified by belonging to one or several types, which
equal object classes. Types themselves are of the type ‘type’ and functions are
of the type ‘function’.

The data model in Iris is accessed and manipulated through OSQL1. (All exam-
ples of actual schema definitions and database queries will here be written in a
courier font.) For example, it is possible to define user types and subtypes:

create type person;
create type student subtype of person;
create type teacher subtype of person;
create type course;

Stored functions can be defined on types that equal attributes in Object-Ori-
ented databases or base relations in Relational databases; hence we call this
modelObject Relational [118]. One function in the Iris data model equals sev-
eral functions in a mathematical sense. For example, the built-insqr function
can be used for calculating both the square of a number and the square root. By
callingsqr in a query with the argument unbound and the result bound to some
number, the AMOSQL compiler will choose an internal function that calculates
and binds the argument ofsqr to the square root of the result.

Let us define a function that can both give the name of a person given the
person object or give all the person objects associated with a name.

create function name(person) -> charstring as stored;

Stored functions is the default so the ‘as stored’ part can be omitted:

1. Some syntax here, especially for stored procedures, is actually AMOSQL.

objects

functions types

classify
belong

to

defined with

constrain

operate
on

participate
in

Figure 3.5: The Iris data model

36 Active Database Management Systems

create function studies(student) -> bag of course;
create function passed(course) -> bag of student;
create function gives(teacher) -> bag of course;

Bags are used for storingmulti-valued functions. Derived functions equal
methods or relational views and can be defined in terms of stored functions
(and other derived functions).

create function teaches(teacher t) -> student s
as select s for each course c where
gives(t) = c and
c = studies(s);

Note that derived functions such as theteaches function implicitly return
bags, even though they are declared as returning a single type, since they are
the result of a query. Queries return a stream of data that can accessed one at a
time or be collected into a bag.

Instance objects of a type can be created and stored
functions can be set for these instances:

create student instances :iris 1, :amos;
set name(:iris) = “Iris”;
set name(:amos) = “AMOS”;
create course instances :active_DBMSs;

All user-defined objects will be given an Object Identifier
(OID). Single values can be added to (and removed
from) multiple-valued functions.

add studies(:amos) = :active_DBMSs;
remove studies(:amos) = :active_DBMSs;

Functions can be defined withmultiple arguments and values, i.e. with tuple
results.

create function grade(student) ->
bag of <course, charstring>;

Stored procedures are defined as functions that have side-effects:

create function teach(teacher t, student s, course c)
-> boolean as
begin

if (s = passed(c))
/* the student has already passed the course */

1. These are interface variables and are not part of the database.

Iris

37

then result false
else
begin

/* if teacher t is not already teaching the
course c, mark t as teacher of course c */

if notany(select gives(t) = c) 1

then add gives(t) = c;
/* if student s is not already taking the

course c, add s as student of course c */
if notany(select studies(s) = c)
then add studies(s) = c;
result true;

end;
end;

create function mark(student s, course c, charstring g)
-> boolean as
begin

if (c = studies(s))
/* the student is taking the course */
then
begin

add grade(s) = <c, g>;
if g != “Failed” then add passed(c) = s;
remove studies(s) = c;
result true;

end
else
/* the student is not taking the course */
result false;

end;

As can be seen in the examples above, stored procedures can access functions
and perform ad hoc queries. Stored procedures are, however, not allowed in
queries (and derived functions) since a series of queries should always return
the same result regardless of in what order the queries are executed2, i.e. they
cannot contain side-effects.

Multiple inheritance, i.e. multiple supertypes, is possible by creating a type
with two supertypes:

create type student_teacher subtype of student, teacher;

1. Bags can be created at run-time by sub-select expressions, andnotany is an aggre-
gate function that returns true if it is called with an empty bag.

2. This is crucial for query optimization since the query optimizer will reorder queries to
generate an efficient execution plan.

38 Active Database Management Systems

New types1 can be added to an instances:
add type student_teacher to :amos;

Procedures are called by:

call teach(:amos, :iris, :active_DBMSs);
TRUE

Functions aremulti-directional which means that they can be accessed in
inverse queries where the result value is known and the argument(s) is(are)
required.

select name(t)
for each teacher t
where teaches(t) = :iris;

“AMOS”

In the previous example the last query returns a single tuple. Queries, and sub-
sequently functions, can return several tuples. Duplicate tuples are removed
from stored functions if they are not explicitly defined to return a bag. We say
that we haveset-oriented semantics. Bag-oriented semantics is available as an
option and can be specified along with the return type of a function as defined
for thestudies function.

Functions can be overloaded on the types of their arguments, i.e. we can
define the same function in several ways depending on the types of the argu-
ments. The system will in most cases choose the correct function at compile
time, this is known asearly binding. In some cases the system cannot deter-
mine what function to choose at compile time and the execution plan must
check some types at run time, this is known aslate binding. Let us define a new
function name that overloads on the first argument:

create function name(course) -> charstring;

The AMOSQL compiler will choose the correct versions of thename function
by looking at the type of the arguments (early binding). If, however, the exact
type of the argument is unknown, e.g. the type is only specified asobject (the

1. Instances belong to a set of types (usually the immediate supertype with its super-
types) and a new added type must be a subtype of one of the current types of the
instance.

39

most general type) at compile-time, but is known at run-time, then the choice
will be made at run-time (late binding). If for some reason the exact type is not
known at run-time either, it is possible to help the AMOSQL compiler by spec-
ifying the full names of the functions. Full names of functions are specified by
the complete function signature: <arg1 type>. ...<argm type>. <function
name>-> <res1 type>. ...<resn type>, e.g.person.name->charstring and
course.name->charstring .

Interface variables are untyped if they are not declared1 so the following
expression must be manually type resolved:

set course.name->charstring(:active_DBMSs) =
“Active Database Management Systems”;

On the top-levelselect andcall can be left out:

course.name->charstring(:active_DBMSs);
“Active Database Management Systems”
mark(:iris, :active_DBMSs, “Excellent”);
TRUE

AMOS also allows the introduction of functions written in some other pro-
gramming language such as C and these are known asforeign functions:

create function print(charstring) -> boolean as
foreign “Cprintfn” 2;
create function print_grades(course c) -> boolean as
begin /* prints course grades on a console or printer */

print(name(c));
for each student s, charstring g
where grade(s) = <c, g>

print(name(s) + ”: “ + g); 3

end;

print_grades(:active_DBMSs);
Active Database Management Systems
Iris: Excellent

Dif ferent access patterns and cost information can be specified for foreign
functions to support inverse queries and query optimization. See [82] for more
details.

1. Variables can be declared by:declare course :active_DBMSs;
2. Bindings to foreign functions are resolved during linking and at system initialization.
3. The ‘+’ operator is overloaded oncharstring with a foreign function for string

concatenation.

40 Active Database Management Systems

A transaction can be completed and made permanent by:

commit;

A transaction is aborted and rolled back by:

rollback;

More information about the AMOSQL compiler and optimizer can be found in
[48][82]. Since types and functions are objects as well, of the types ‘type’ and
‘function’, it is possible to define generic functions, i.e. functions that take
types as arguments, and higher order functions, i.e. functions that take other
functions as argument.

3.6 About Paper II

This paper was the first publication on adding rules to AMOS. The rules pre-
sented in this paper have later been implemented. Note that the rule syntax in
Paper II differs slightly from the syntax in this chapter which is based on the
actual implementation. To distinguish this new extended query language from
that of Iris we decided to change the name to AMOSQL.

3.7 The AMOS Data Model and AMOSQL

The AMOS data model extends that of Iris by introducing rules (fig. 3.6). Rules
are also objects [30] and of the type ‘rule’. AMOS is also based on thefunc-
tional data model of Daplex [108] and the active rules of AMOS are based on a
functional model. Rules monitor changes to functions and changes to functions
can trigger rules. All the events that the rules can trigger on are modelled as
changes to values of functions. This gives us the power of AMOSQL functional
expressions as our event modelling language. Functions are seen as having pas-
sive (synchronous) or active (asynchronous) behaviour depending on whether
they are used in a query or in a rule condition. Passive functions display syn-
chronous polling behaviour, i.e. query answering behaviour, while active func-
tions display asynchronous interrupt behaviour, i.e. event signalling behaviour.
This is similar to the idea offluents[104] as functions for modelling dynamic
behaviour. Purely passive functions are functions that never change their
extent, such as built-in arithmetic functions, e.g.+, -, *, and/, boolean func-
tions, e.g.=, < and>, and aggregate functions such assum andcount. Func-
tions that are defined in terms of these functions can have their values changed,
but never the purely passive functions themselves.1Foreign functions written in
some procedural language were initially also considered to be purely passive
functions, but this was later changed with the introduction offoreign data

1. It would be strange to monitor changes toplus, e.g. if1+1 were to become3.

41

sources (see chapter 9).
The first version of the rule system (using CA-rules) did not have any purely

active functions, but these would have beenevent functions, i.e. functions that
represent internal or foreign events. In some cases it is desirable to directly
refer to specific events such as added or removed; these can be modelled as
specific event functions that change if tuples are added/removed to/from a spe-
cific function. This was later implemented in a rule system supporting ECA-
rules (as well as CA and EA-rules) where changes to stored functions are
defined through three event functions for added, removed, and updated tuples.
Event functions that represent external changes are active foreign functions or
foreign data sources and can be functions representing sensors in a CIM appli-
cation or the status of network elements in an ATM network (see chapter 9).

The CA-rules presented here have conditions that reference stored and
derived functions only. The events that trigger these conditions are the function
update events, or events from adding or removing tuples to/from functions.
Stored and derived functions can be seen as having active behaviour if they are
referenced in event expressions in ECA and EA-rules, or in event expressions
derived from CA-rules. Functions can be seen as having passive behaviour if
referenced inside queries. Only functions without side-effects, i.e. no stored
procedures, are allowed in rule conditions.

The rule processor calculates all the events that can affect a CA-rule condi-
tion. This is the default for rule condition specifications and can be seen as a
safe way to avoid users forgetting to specify relevant events, as can happen
with traditional ECA-rules. ECA-rules are sometimes needed if the user, for

objects

functions types

rules

participate
in

operate
on

participate
in operate

on

constrain

constrain
defined with

classify

belong
to

defined
withmonitor

trigger

Figure 3.6: The AMOS data model

42 Active Database Management Systems

some reason, wants the rule to disregard some events that would be automati-
cally monitored by a CA-rule (such as updates that are allowed to violate the
condition of an integrity rule) or if the user wants to monitor some event that
would be ignored by a CA-rule (such as specific temporal ordering of events).

By modelling rules as objects it is possible to make queries over rules.
Overloaded and generic rules are also allowed, i.e. rules that are parameterized
and can be activated for different types. However, unknown type information
during rule compilation will cause late binding, i.e. run-time type checking,
and will degrade rule processing performance.

In AMOSQL, OSQL is extended with rules having a syntax conforming to
that of OSQL functions. AMOSQL supports rules of CA type where the condi-
tion is an AMOSQL query, and the action is any AMOSQL procedure state-
ment, exceptcommit. Data can be passed from the condition to the action of
each rule by using shared query variables, i.e. set-oriented action execution
[132] is supported.
The syntax for creating and deleting CA-rules is as follows1:

create rule rule-name parameter-specification as
[for-each-clause]
when predicate-expression
do procedure-expression

where
for-each-clause ::=

for each variable-declaration-commalist

delete rule rule-name

Thepredicate-expression can contain any boolean expression, including conjunction,
disjunction, and negation. Rules are activated and deactivated by:

activate rule rule-name ([parameter-value-commalist]) [priority 0|1|2|3|4|5]
deactivate rule rule-name ([parameter-value-commalist])

Rules can be activated/deactivated for different argument patterns. The seman-
tics of a rule is as follows: If an event in the database changes the truth value
for some instance of the condition totrue, the rule is marked astriggered for
that rule activation. If something happens later in the transaction which causes
the condition to become false again, the rule is no longer triggered. This
ensures that we only react tological events. The truth value of a condition is
here represented bytrue for a non-empty result of the query that represents the
condition andfalse for an empty answer.

When the condition of a triggered rule activation is evaluated, it is executed
separately with its actual parameter values. After the evaluation of the condi-
tion the values of any shared variables between the condition and action are

1. Note that the syntax differs slightly from that in the published papers.

43

saved in anaction-set for each rule activation.
In the current implementation a simpleconflict-resolution method, based on

priorities, is used to specify the order of action execution of rule activations
that are simultaneously triggered. Rule activations with corresponding action-
sets are stored asscheduled rule activations in a priority queue based on the
priority of the rule activation. The scheduled rule activations are then fetched
in priority order and each action is evaluated using the corresponding action-
set. Any duplicates are removed from the action-set to give true set-oriented
rule execution.

Some examples of AMOSQL rules are given below.

A classic example for active databases is that of monitoring the quantity of
items in an inventory. When the quantity of an item drops below a certain
threshold, new items are to be automatically ordered.

create type item;
create type supplier;
create function quantity(item) -> integer;
create function max_stock(item) -> integer;
create function min_stock(item) -> integer;
create function consume_frequency(item) -> integer;
create function supplies(supplier) -> item;
create function delivery_time(item, supplier)

-> integer;
create function threshold(item i) -> integer as

select consume_frequency(i) * delivery_time(i, s)
+ min_stock(i)

for each supplier s where supplies(s) = i;

create rule monitor_item(item i) as
when quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));1

This rule monitors the quantity of an item in stock and orders new items when
the quantity drops below the threshold (fig. 3.7) which considers the time to get
new items delivered (whereorder is some procedure that does the actual
ordering). The consume-frequency defines how many instances of a specific
item are consumed on average per day.

For example, the following definitions ensure that the quantity of shoelaces
in the inventory is always kept between 100 and 10 000 (if the supplier delivers
on time) and will trigger the rule if the quantity drops below 140.

create item instances :shoelaces;
set max_stock(:shoelaces) = 10000;
set min_stock(:shoelaces) = 100;

1. In AMOSQLselect andcall are syntactic sugar and are optional on the top-level.

44 Active Database Management Systems

set consume_frequency(:shoelaces) = 20;
create supplier instances :shoestring_inc;
set supplies(:shoestring_inc) = :shoelaces;
set delivery_time(:shoelaces, :shoestring_inc) = 2;
activate rule monitor_item(:shoelaces);

A rule that monitors all items can be defined as:

create rule monitor_items() as
for each item i
when quantity(i) < threshold(i)
do order(i, max_stock(i) - quantity(i));

In real life there will probably be several suppliers for one item and with different
prices. In this case the rules should really consider the minimum threshold, i.e. the
supplier who can deliver the fastest and at an acceptable cost.

Another example of rules in active databases is that ofconstraints. If we
want to ensure that thequantity of an item can never exceed the
max_stock of that item, we can express this in the following rule:

create rule check_quantity() as
for each item i
when quantity(i) > max_stock(i)
do rollback;

If this rule is triggered by too many items being ordered, it is not enough to just roll
back the transaction. Sometimescompensating transactions are needed that undo
some external operation such as undoing an order for too many items by returning
excess items to the supplier. See section5.5 for further discussion about compensat-
ing transactions.

The previous rules did not really use any of the OO capabilities of
AMOSQL, i.e. there was only a flat set of user-defined types. To illustrate OO
capabilities, take as an example a rule that ensures that no one at a specific

�����������������������

min_stock

threshold

max_stock

quantity

Figure 3.7: Monitoring items in an inventory

45

department has a higher salary than his/her manager. Employees are defined as
having a name, an income, and a department. The net income is defined based
on 25% tax for both employees and managers, but with a bonus of 100 before
tax for managers. Departments are defined as having a name and a manager.
The manager of an employee is derived by finding the manager of the depart-
ment to which the employee is associated. The ruleno_high is defined to set
the income of an employee to that of his/her manager if he/she has a net income
greater than his/her manager. The AMOSQL schema is defined by:

create type department properties (name1 charstring);
create type employee properties

(name charstring, income number, dept department);
create type manager subtype of employee;
create function grossincome(employee e) -> number as

select income(e);
create function grossincome(manager m) -> number as

select income(m) + 100;
create function netincome(employee e) -> number as

select employee.grossincome->number(e) * 0.75;
create function netincome(manager m) -> number as

select grossincome(m) * 0.75;
create function mgr(department) -> manager;
create function mgr(employee e) -> manager as

select mgr(dept(e));

create rule no_high(department d) as
for each employee e
when dept(e) = d and

employee.netincome->number(e) >
netincome(mgr(e))

do set employee.grossincome->number(e) =
grossincome(mgr(e));

Note that the functionsgrossincome, netincome, andmgr are overloaded on
the typesemployee, manager, anddepartment, employee. For the function
calls grossincome(m), grossincome(mgr(e)), netincome(mgr(e)),
mgr(dept(e)), andmgr(e) this is resolved at compile time; we call thisearly
binding. This is possible since the actual parameters in the calls are of distinct types.
In cases when the compiler cannot deduce what function to choose, the complete
function signature, e.g.employee.netincome>number(e), can be specified
to aid the compiler to choose the correct function at compile time. In the rule condi-
tion, employee.netincome->number can be called for all employees, includ-
ing managers, since managers are employees as well. Ife is a manager, the rule will
check if the manager makes more than his/her manager; if there is no manager above
him/her, the condition will be considered false since the answer to the querymgr(e)

1. This is shorthand for defining a stored function,name, on departments.

46 Active Database Management Systems

will be empty.
In cases when the compiler cannot deduce what function to choose, it will

produce a query plan that does run-time type checking to choose the correct
function; we call thislate binding. Look at the following redefinition of the
no_high rule:

create rule no_high(department d) as
for each employee e
when dept(e) = d and

netincome(e) > netincome(mgr(e))
do set employee.grossincome->number(e) =

grossincome(mgr(e));

Dif ferentnetincome functions will here be chosen depending on whether the
argument it is called with is just an employee, or a manager as well. The rule
condition is different than that of the previous rule since, if theemployee e
is a manager, the net income will be calculated differently. This is becauseman-
ager.netincome->number would, in this case, be chosen in both instances in
the condition. This rule is more elegant, but in order not to complicate the generated
code and the discussion of change-monitoring techniques in the following chapters,
the first version ofno_high will be used in the continuation of the example.

Note that theemployee.grossincome->number function is updata-
ble since it is directly mapped to the stored functionemployee.income-
>number. The functionmanager.grossincome->number is, however,
not directly updatable since it cannot be directly mapped to a stored function.
This is described in more detail in [82].

The no_high rule will be activated for a specific department and will
serve as an example in the rest of the section.

Let us define a toys department with a manager and five employees:

create department(name) instances
:toys_department("Toys")1;

create manager(name, dept, income) instances
:boss("boss", :toys_department, 10400);

set mgr(:toys_department) = :boss;
create employee(name,dept,income) instances

:e1("employee1",:toys_department,10100),
:e2("employee2",:toys_department,10200),
:e3("employee3",:toys_department,10300),
:e4("employee4",:toys_department,10400),
:e5("employee5",:toys_department,10500);

The employees with their incomes and netincomes can be seen in fig. 3.8.
Now, if we activate the rule for the toys department and try to commit the

transaction, a check is made as to whether any of the employees have a net

1. This is a short-hand for setting the functionname, for a department instance.

47

income higher than their manager. No such employees exist and thus the rule is
not triggered.

.

Figure 3.8: Initial employee salaries

activate rule no_high(:toys_department);
commit; /* check and commit */

Now if we change the income of employee2 and employee4:

set income(:e2) = 10600;
set income(:e4) = 10600;

we can see in fig. 3.9 that the netincomes of employee2 and employee4 exceed
that of their manager.

Figure 3.9: Employee salaries before commit

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10200 7650

employee3 10300 7725

employee4 10400 7800

employee5 10500 7875

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10600 7950

employee3 10300 7725

employee4 10600 7950

employee5 10500 7875

48 Active Database Management Systems

If we try to commit this transaction, theno_high rule will be triggered and
the salaries of employee2 and employee4 will be set to that of their manager.
This can be seen in fig. 3.10.

commit; /* check and commit */

Figure 3.10: Employee salaries after commit

In this example, the rule condition monitoring consists of determining changes to the
condition of theno_high rule. Changes to several stored functions (i.e.dept,
income, andmgr) can affect the rule condition. In the example, only two updates
are made to theincome function. The rule-condition monitoring must be efficient
even if the number of employees is very large. However, evaluating the condition of
no_high naively (i.e. evaluating the whole query of the rule condition) would result
in checking the income of all employees for the department. Efficient techniques for
evaluating rule conditions based on changes that result from small updates, such as in
these previous examples, are discussed in chapter 6.

Note that the rules can also be invoked explicitly at any time during a trans-
action by calling the check procedure:

check();

Rules can also be grouped into rule contexts that can be passed as argument to
the check procedure (see Paper IV and section7.8).

3.8 ECA-rules

CA-rules do not always provide all the control over the rules and their behav-

name income netincome

boss 10400 7875

employee1 10100 7575

employee2 10500 7875

employee3 10300 7725

employee4 10500 7875

employee5 10500 7875

49

iour that is sometimes needed. A CA-rule can be translated to an ECA-rule
where the event part is a disjunction of all the events that can affect the condi-
tion. In some situations it is desirable to separate this rule into several ECA-
rules that perform different actions depending on which event triggered the
rules. An ECA-rule can be written to disregard events that a CA-rule would
monitor and to monitor events that a CA-rule would ignore.

3.9 ECA-rules in AMOS

The implementation of the rule system in AMOS has continued with the intro-
duction of explicit events and ECA-rules [86]. The syntax for the rules has now
changed to:

create rule rule-name parameter-specification
[for-each-clause]
[on event-type-specification]
[when predicate-expression]
do procedure-expression

delete rule rule-name

where

for-each-clause ::=
for each variable-declaration-commalist

This allows for writing ECA-rules, CA-rules, and EA-rules. The main differ-
ence from the CA-rule syntax is the explicit event specification. The event, the
condition, and the action part can all share the same variables to allow data to
be passed between the parts of the rule during rule execution. The events that
can be specified include:

event-type-specification ::=
added(function-call) |
removed(function-call) |
updated(function-call) |
created(variable-name) |
deleted(variable-name)1 |
foreign-event-name |
event-type-specificationand event-type-specification |
event-type-specificationor event-type-specification|
event-type-specificationbefore event-type-specification|
event-type-specificationafter event-type-specification

1. Actually not yet implemented due to technical problems in AMOS on how to refer-
ence objects that have been marked as deleted. Here the marking of deleted objects
can be delayed or an immediate coupling mode with checking before operations take
effect is needed.

50 Active Database Management Systems

The added, removed, and updated event types monitor changes to stored and
derived functions. The created and deleted event types monitor the creation and
deletion of object instances of some certain object type.

The semantics for ECA and EA-rules is: If enough events occur to make the
event specification of an activated rule true, then the rule is marked as triggered
for this rule activation. Any event data, i.e. shared variables between event and
condition, action parts, is saved. If the rule has a condition, it is evaluated with
the event data. The data shared between the action and both the event and the
condition is then saved as the action-set for each rule activation. Any dupli-
cates in event data are removed to avoid multiple triggering on the same events.
Any duplicates are removed from the action-set to give true set-oriented rule
execution. Action execution is then scheduled as was defined for CA-rules.

Take the rule:

create rule eca_no_high(department d) as
for each employee e, manager m
on updated(income(e)) or updated(income(m)) or

updated(dept(e)) or updated(mgr(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do set employee.grossincome->number(e) =
grossincome(m);

This rule has identical behaviour to the CA-ruleno_high. It is, however, more
cumbersome to write. When a CA-rule is compiled, the rule compiler will auto-
matically deduce all involved events and assume an implicit disjunction
between them. If we wanted to define a rule that only triggers when an
employee gets a salary raise and ignore all other events (such as if an employee
changes department or manager), we can write:

create rule no_raise(department d) as
for each employee e, manager m
on updated(income(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do set employee.grossincome->number(e) =
grossincome(m);

This rule is impossible to write as a CA-rule and shows the need for having
ECA-rules as well. Most ADBMSs with ECA-rules only support specifying
events relating to tables (stored functions in AMOSQL) and not events relating
to views (derived functions in AMOSQL). In AMOS it is possible to specify
events relating to derived functions as well [86]. Theno_raise rule could be
written as:

51

create rule no_raise(department d) as
for each employee e, manager m
on updated(employee.netincome->number(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do set employee.grossincome->number(e) =
grossincome(m);

This makes the ECA-rules more convenient to write since we do not have to
know what stored functions affect a derived function. ECA-rules in AMOS can
also specify conjunctive events such as in the rule:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and

updated(employee.netincome->number(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do rollback;

This rule specifies that new employees at a certain department are not allowed
to be given an immediate income that is higher than the manager; if this is the
case, then the transaction is considered faulty and is rolled back.

It is possible to specify the event of creating an object as well:

create rule check_new(department d) as
for each employee e, manager m
on created(e) and

updated(employee.netincome->number(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do rollback;

This rule specifies that new employees at the company, i.e. employees who did
not previously exist in the company database, are not allowed to be given a sal-
ary higher than their manager.

Examples of AMOSQL rules for the applications studied in chapter 2 can be
found in chapter 5. Efficiency issues of active rules are discussed in chapter 6.
Implementation details on the active rules are discussed in chapter 7.

52 Active Database Management Systems

53

4 Heterogeneous Data
Management

4.1 DBMSs in Networks

In both CIM and telecommunication networks (as presented in chapter 2) the
DBMSs will be connected in networks. The networks will most likely beheter-
ogeneous, i.e. the nodes in the networks will perform different functions in the
system and will probably contain different pieces of software and sometimes
have different hardware. The databases in the network will reflect this hetero-
geneity by storing different data in different nodes, e.g. data that is needed
locally by the functions provided by a particular node. Sometimes the nodes
will contain different DBMS products with different storage structures. To sup-
port access of several nodes in the same queries there is a need for a heteroge-
neous database layer that can interact with the different heterogeneous nodes.

4.2 Distributed v.s. Multidatabases Database Systems

In distributed database systems [94] the goal is to show a global schema to the
user to give the illusion of a single database system. This causes much over-
head during database operations to keep all the databases in consistent states.
Queries that reference distributed data need to be optimized to minimize a total
cost which includes accessing remote data over a network.

In multidatabase systems [19][69] the goal of providing a global distributed
view has been relaxed and the user is allowed to reference the individual nodes
in the system directly. This simplifies the implementation and provides more
autonomy to each node while at the same time forcing the user to make sure
that the nodes are kept consistent. Multidatabases are often used as platforms
for connecting heterogeneous databases (which could be either single node or
distributed databases). In some cases a global schema can be split into several
sub-schemas that each represents data that is stored on a subset of the nodes.
Then the multidatabase can support maintenance of each sub-schema. The sub-
schemas can sometimes overlap, i.e. nodes can have different data in different
sub-schemas. Multidatabases usually provide optimization of multidatabase
queries which may involve translating data from different formats into some
standard format provided by the multidatabase (as well as considering commu-
nication costs). Often heterogeneous networks are hierarchical (such as in tele-

54 Heterogeneous Data Management

communication networks). The sub-schemas can then reflect different levels in
the network hierarchy.

In a mediator architecture [131] such as AMOS a multidatabase is used for
integrating various data sources with non-conforming data formats which are
integrated for access through the multidatabase.

4.3 About Paper III

Paper III presents an overview of the AMOS multidatabase architecture. This is
an early paper that introduces the AMOS mediator architecture. More work
done on the AMOS mediator and multidatabase functionality is described in
[42][130].

4.4 Active Multidatabase Systems

Active DBMSs in networks is nothing new, but most such systems (such as
AMOS) do not support active rules that span over several databases. One major
problem that has to be resolved is how to generate and monitor events between
several databases. A major problem is how to compare events originating in
different nodes (such as which event occurred before another) and how to com-
bine these events into complex events. Some research on this topic is presented
in [106].

Another problem in active multidatabase (or distributed) systems is that it
can be expensive to ship events over the network when the rules that monitor
the events are not executed by the same DBMS as where the events originate.
One technique that can be used is to have the rule compiler split multidatabase
rules (i.e. rules that have event expressions or conditions that reference changes
to data stored in other databases) into several rules that are shipped and
inserted into the databases where the different events originate. The original
rule must then be defined to collect the results from all the distributed rules to
finally determine if the multidatabase-rule has been triggered and if the condi-
tion is true.

Active multidatabases can be used for adding constraints to data stored in
several heterogeneous database systems. In [27] a toolkit for constraint man-
agement in a heterogeneous information system is presented.In [119] a descrip-
tion of some work can be found on the specification of a language for achieving rule-
based interoperabillity among heterogeneous systems. In [137] work can be found on
maintaining consistency of an integrated view of information from various distrib-
uted data sources.

4.5 Heterogeneous Databases in CIM

In CIM applications there are many sources of information that are not directly
involved in the manufacturing process, but which are still desirable to be able

55

to access from the CIM system. This can be information such as product data
(e.g. what sub-parts a manufactured item consists of), inventory data (e.g. how
many sub-parts are available in stock), economic data (e.g. profit margins in
terms of how much each produced item should cost based on the sum of the
costs of the sub-parts and the cost of manufacturing), and sales data (e.g. how
many items should be produced).

For a CIM system to be able to access heterogeneous data a mediating
DBMS such as AMOS can provide uniform access to all data (fig. 4.1). A medi-
ating ADBMS can also support monitoring changes to heterogeneous data such
as monitoring the number of parts in store and to order more when the stock
runs low.

Monitoring of heterogeneous databases usually requires some monitoring sup-
port from each involved DBMS. If ECA-rules or triggers are supported, these
can be generated by the mediating ADBMS and be compiled into the involved
databases (see section 9.5.8).

4.6 Heterogeneous Databases in Telecommunication Net-
works

In telecommunication networks there will be a need to integrate different heter-
ogeneous databases such as DBMSs belonging to several parts of the network,

CIM System

Mediating
ADBMS

Product
Information
System

Database

Inventory
Information
System

Database

Sales
Information

System

Database

Economic
Information
System

Database

(Process Control)

Figure 4.1: A mediating ADBMS in CIM for accessing heterogeneous data

56 Heterogeneous Data Management

e.g. DBMSs in local networks and in public networks operated by different net-
work providers.

Dif ferent kinds of heterogeneity can be defined on the basis of location, i.e.
where the information is stored geographically, and on the basis of functional-
ity, i.e. what functions in the network hierarchy are using the data (fig. 4.2).
The higher up in the hierarchical distribution, the more the access sideways in
the geographic distribution is utilized. In network traffic control there is little
exchange of data between databases, usually only the data needed for setting up
connections. In sectional and regional network management there can be a con-
siderable exchange of data, e.g. passing of billing data between different parts
of the network or network providers.

The DBMSs used in network control might be distributed to achieve high-
performance transaction processing and to provide reliability at hardware fail-
ures [122]. The network management will collect data from the network con-
trol, such as basic billing data based on used resources. The data will be passed
upwards in the hierarchy to off-line DBMSs for processing and, eventually,
sending bills to subscribers. On-line billing might also be performed where

subscribers are notified of the cost while they are utilizing specific services.
Note that this is only a discussion of data passed between DBMSs in the

network. Traffic data (e.g. speech data) in the physical network can be consid-
erable, but this data usually originates from one user and is directly passed to
another user. In cases where the databases contribute directly to the traffic data,

Figure 4.2: Heterogeneous dimensions in a network hierarchy

Network Traffic Control

Sectional/Primary Network Management

Regional Network Management

Geographical (Locational) Heterogeneous Distribution

Hierarchical

(Functional)

Heterogeneous

Distribution

57

such as databases for network applications that send multi-media data to the
network users, the heterogeneous distribution model has to be extended to
include network applications.

By considering databases for network applications as well, we can define
the generic termnetwork DBMS as a DBMS that can manage the databases for
network traffic control, network management, and network applications (fig.
4.3). Different network DBMSs can be used separately for each kind of data-
base or sometimes for all kinds of databases at once. The most likely model is
that several network DBMSs makes up a heterogeneous (multidatabase) DBMS
architecture. The individual network DBMSs are most likely (homogeneous)
distributed cluster DBMSs to provide the performance and high reliability
required by the different database applications.

The configuration of the heterogeneous network DBMS depends on the geo-
graphical and hierarchical distribution of the network. The configuration of
each network DBMS server (such as distribution topology, fragmentation and
duplication of data) depends on the requirements of the specific database appli-
cations using a specific server.

Communication between heterogeneous DBMSs will be based on network spe-
cific protocols while communication between nodes in individual cluster nodes
in each DBMS server can be any high-speed protocol (see section 9.5.3 for
more discussion about protocols). The heterogeneous network DBMS will most
likely have to mediate between various data sources, e.g. when mapping data
from the physical level to a logical level in the network hierarchy, integrating
databases managed by different networkproviders, or accessing databases
belonging to specific network applications.

Network Applications

Applications Database

Network Management

Network Management Database

Network Traffic Control

Network Control Database

Network
DBMS

Figure 4.3: A network DBMS for managing databases of network con-
trol, network management, and network applications

Hierarchical

(Functional)

Heterogeneous

Distribution

Distributed Servers

58 Heterogeneous Data Management

59

5 Applying Active Database
Systems

5.1 Applications and Active Database Systems

In the development of new features in an active database system it is important
to have some potential applications that require these features. In chapter 2
application studies of Computer Integrated Manufacturing (CIM) and telecom-
munications networks were presented. These studies were made to motivate
some of the active functionality in AMOS. This chapter presents some possible
scenarios of integration between the applications and ADBMS technology.

5.2 Scenarios for an ADBMSs in CIM Systems

Consider a CIM system for process control in a manufacturing plant. The actual
control of the plant is carried out by a real-time process control system (fig.
5.1).

An ADBMS is used for storing data about plant layout (equipment such as
manufacturing machines with actuators and sensors and their configuration),

Pressure: 301

Temp: 127

ADBMS

Process Control
System

Figure 5.1: The Active DBMS for integration of a Process Control System

60 Applying Active Database Systems

equipment data (machine status, sensor readings), parts data (data about the
parts being produced such as size, weight, colour, position, sub-parts, com-
pleteness status), and system configuration (configuration of the whole CIM
system). The data from sensors is made available from the real-time process
control system by either storing the data directly in the ADBMS or by allowing
the ADBMS access the data as foreign data sources.

The ADBMS can monitor changes to sensor data through active rules by
monitoring changes to sensor data stored in the database, or by letting the proc-
ess control system send foreign events when a sensor has changed (every time
or when there is a significant change). The active rules can, for example, be
used for managing automatic redisplay functions in user interface tools [97]
that display the status of the controlled plant or for detecting abnormal situa-
tions that the process control system cannot detect (such as situations involving
several local control loops).

A Scenario for Automatic Redisplay of User Interface Tools

Let us take a scenario where an ADBMS should monitor the change of the state
of a control process to automatically refresh interface tools that monitor the
process. In the schema below the process state is defined as a foreign function
that is exported by the process control system. The process control system also
signals an update event when the state of the process changes. Note that it is up
to the process control system to determine how often it should inform the
ADBMS. It is very likely that the process state seen in the database might have
a coarser granularity than the state used in controlling the process.

Interface tools are defined to have several interfaces that can be associated
with a certain process that is being displayed. The interface management sys-
tem provides the ADBMS with a function that can directly refresh a certain
interface.

One active rule is defined that monitors updates to the state of a certain
process and refreshes the corresponding interfaces of a given tool if the change
exceeds some given threshold. If the interfaces are refreshed, then the rule
caches the process state so that it can determine the change the next time the
process state changes. The rule also automatically refreshes new interfaces
associated with the monitored process and the given tool.

create type process;
create function process_state(process) -> real
as foreign;
create function cached_state(process) -> real;
create type tool;
create type interface;
create function tool_interface(tool, process) ->
bag of interface;
create function refresh(interface, real) -> boolean
as foreign;

61

create rule monitor_process(process p, real threshold,
tool t) as

for each real s
on update(process_state(p)) or added(tool_interface(t,p))
when abs(cached_state(p) - s) > threshold

and s = process_state(p)
do begin

set cached_state(p) = s;
for each interface i where i = tool_interface(t, p)

refresh(i, s);
end;

A Scenario for Monitoring Interaction Between Controlled Processes

Another use of an ADBMS in process control applications is for monitoring
several processes at once. The control process system usually only monitors
and controls each defined process separately. It usually has no way of determin-
ing interactions between the different processes. All such interactions were
defined when the different processes were defined. An ADBMS can support
adding new monitoring functionality that detects interaction between processes
in the control system. Take an example of two robots that can in rare circum-
stances interact by entering each other’s working areas. This would usually be
avoided by the control system, but in case of software errors it can still occur.
Two functions are used, one for detecting what is an illegal interaction and a
procedure that calls the control system to resolve the conflict. The resolve func-
tion could decide to move one of the robots out of the way or to emergency stop
both robots.

create type robot;
create function position(robot)

-> <real x, real y, real z>;
/* The current 3D-position of the robot */
create function working_area(robot)

-> <real origin, real radius>;
/* The working area of a robot defined as a sphere */
create function within(real x, real y, real z,

real origin, real radius)
-> boolean as foreign;

/* Foreign function that checks if a point is inside
a sphere */

create function illegal_interaction(robot r1,
robot r2)

-> boolean as
select within(x1, y1, z1, or2, ra2) or

within(x2, y2, z2, or1, ra1)
for each real x1,real y1,real z1,real or1,real ra1,

62 Applying Active Database Systems

real x2,real y2,real z2,real or2,real ra2
where <x1,y1,z1> = postion(r1) and

<or1, ra1> = working_area(r1) and
<x2,y2,z2> = postion(r2) and
<or2, ra2> = working_area(r2);

create function resolve_interaction(robot r1,
robot 2)

-> boolean as ...; /* Application dependent code */

create rule monitor_interaction(robot r1, robot r2) as
on update(position(r1)) or

update(position(r2))
when illegal_interaction(r1, r2)
do resolve_interaction(r1, r2);

This rule could also be written more declaratively as a CA-rule where the rule
compiler will deduce what events to monitor from the condition. The following
rule would monitor changes to robot positions as well as changes to the working
areas.

create rule monitor_interaction(robot r1, robot r2) as
when illegal_interaction(r1, r2)
do resolve_interaction(r1, r2);

Automatic Generation of Active Rules

In a real CIM scenario it is not likely that the operators or engineers that set-up
the applications are familiar with DBMSs or have the knowledge to use a query
language or even less likely, active rules in an ADBMS. It is more likely that
the CIM system will have a dedicated application task language for specifying
the tasks of the control applications. The system can then compile the task pro-
grams into the schema definitions, queries, and active rules that are needed by
the ADBMS.

An extension of the above scenarios above could be an architecture similar
to ARAMIS (see Paper I) where a high-level task language is used for defining
the manufacturing tasks which are then executed on top of the ADBMS with
support of automatically generated active rules that interact with the real-time
process control system (fig. 5.2). In this architecture the environment with the
controlled equipment is directly modelled in a World Model (WM) stored in the
database. The WM (as defined in Paper I) would consist of two parts, a high-
level control part managed by the ADBMS and a low-level control part which
managed by the real-time process control system.

63

Here the physical control is still being performed by the real-time process con-
trol system, but the effects on the data in the WM from control loops are known
by the ADBMS. If an actuator is ordered to change its physical state, then the
ADBMS will know what the outcome in terms of sensor values will be (if the
control was successful). This allows for defining constraint rules over allowa-
ble actuator settings in terms allowed sensor values.

The active rules can be involved in more coarse-grained control loops that
monitor and affect several fine-grained control loops in the process control sys-
tem. These may be rules that monitor the progress of the whole manufacturing
process not just one operation.

5.3 About Paper IV

The ARAMIS system was taken as an application to study the use of the active
rules in AMOS. The initial ideas of how this could be achieved are presented in
Paper IV. An implementation was made that joined together the ideas in the
ARAMIS architecture with AMOS. The results from this work are presented in
[43][44].

Real-time

SensorsActuators
Physical Level

Logical Level

Active Database Level

Task Level

Actuator data Sensor data

Compilation of

task language

Executable task programs

Stored relations and views
Active rules

application

Control
programs

Pressure: 301

Temp: 127

Tools

Transaction management

Figure 5.2: Compiling a task language into active rules

Process Control System

T
he

 W
or

ld
 M

od
el

64 Applying Active Database Systems

The rules presented in this paper seem to be involved in fairly low level
control, but the real-time control loops are in practice just initiated by the
actions of these rules. The procedures called in the actions will generate calls to
the underlying process control system which will schedule the activities to
meet any real-time requirements.

5.4 About Paper V

In a manufacturing application there are usually different phases in the manu-
facturing process. Different operations are usually applicable in different
phases and thus different active rules are also applicable. One result from the
AMOS-ARAMIS study was the need for grouping rules. To support this the
concept ofrule contexts was developed and is presented in Paper V.

Rule contexts support grouping of rules to enable efficient activation and
deactivation of several rules simultaneously. The rule contexts have been
implemented in AMOS and further implementation details can be found in
chapter 7.

5.5 Monitoring Long-running Transactions

Active rules and triggers have been used for organizing long-running transac-
tions [32]. Inworkflow management systems [57] business or control processes
are modelled using workflow languages that specify sequences and interactions
of operations in the processes. Workflow management systems can use transac-
tions and active rules in ADBMSs for organizing and synchronizing processes
as long-running transactions. In AMOS support for long-running transactions
have been implemented assagas[51]. Sagas specify sequences of committed
transactions that are chained together with compensating transactions that are
executed when a saga is aborted. The rule contexts presented in Paper V can be
attached to a saga to be automatically activated for transactions in that saga.
When the saga is exited, i.e. when a transaction in that saga is committed, the
attached rule contexts can be automatically checked and then be deactivated.
Alternatively, the attached contexts can be checked when the complete saga is
committed. When the saga is entered again, the attached rule contexts are auto-
matically reactivated. When (or if) a saga is rolled back, the same or different
rule contexts can be defined to be automatically activated and checked. See
section14.1 for syntax descriptions of sagas in AMOS.

5.6 Scenarios for ADBMSs in Telecommunication Networks

Future telecommunication networks will have very complicated monitoring
tasks that need to be supported. Integration of DBMSs in the networks provides
a dynamic property to data management that is needed for long-term network
management and will support future growth and network reconfigurations. In

65

the development of these networks there are many challenges such as meeting
performance requirements and supporting new functionality. Integrating
ADBMSs with these networks is perhaps a solution that meets some of the
challenges. Using an ADBMS to store network data makes it possible to moni-
tor changes to the network data through the database.

The integration of ADBMSs must, however, be planned early in the devel-
opment phases of the networks since it can radically change how the different
functionality is implemented and where different data is generated, stored, and
can be accessed. The use of ADBMSs can be divided into different scenarios
for network traffic control, network management, and network applications.

5.6.1 ADBMSs in Telecommunications Network Traffic
Control

Today’s large telecommunication exchanges usually consist of a large number
of software functions integrated with dedicated DBMSs for passive data man-
agement. The argument for using active DBMS technology in network traffic
control is perhaps not as strong as for network management, but there are some
possible uses here as well.

These systems have some functions for monitoring the state of the switch
hardware and software. By storing state information in an ADBMS active rules
can be used for monitoring the status of the system and to inform operators of
possible problems and failures.

Some subscriber services in local exchanges could also be supported by the
use of active rules, such as:

• wake-up call, where a temporal event triggers a wake-up call to a sleeping sub-
scriber

• call diversion, where active rules trigger on an attempted call-setup to a busy sub-
scriber and re-routes the call somewhere else

• call waiting, where active rules trigger on an attempted call-setup to a busy sub-
scriber and notifies the called subscriber with an intrusion signal

• malicious calltracing, where a called subscriber triggers an active rule by pressing
a button and that traces where the call comes from

• call cost information, where the termination of a call triggers a rule that causes call
cost information to be sent to the calling (paying) subscriber

Subscriber services are quite intricate and will require many different trigger-
ing points, i.e. different events, to be defined during call-setup, during a call,
and at call termination.

One main problem in these systems is that of handlingfeature interactions
[60], i.e. how to handle the activation of several interacting subscriber services.
Currently each manufacturer handles these in different ways. In heterogeneous
telecommunication network products from many manufacturers this can be dif-
ficult without some cooperation based on standards.

66 Applying Active Database Systems

One (among many) solutions of how to specify and perhaps resolve feature
interaction is to specify logical rules that determine what should happen in spe-
cific interaction scenarios. These rules are then used during implementation of
the features. Currently the features are often hard-coded into the systems,
which makes it difficult if the interaction between the features is changed or if
new features are added. A more flexible solution is to support direct execution
of the rules in a rule-based system that is integrated into the systems. Rules in
an ADBMS are possible candidates for achieving this. Below follows a simpli-
fied scenario to give the reader some idea of how some functionality for tele-
communication network traffic control can be provided by an ADBMS.

A Scenario for using Active Rules in Subscriber Services

In this scenario an ADBMS is directly involved in the call set-up phase and can
monitor the actions of the subscribers which are defined as instances of the type
‘subscriber’. A call is, somewhat simplified, defined as an instance of the ‘call’
type and can be in the states: ringing, busy, connecting, connected, or discon-
necting. A call has one subscriber who controls the call and one or several par-
ticipants (fig. 5.3). The call controller is usually the one who initiated the call
and is usually the one who is billed. In conference calls a participant can some-
times take over the role of controller, e.g. if the original controller hangs up. If
a call participant has some special service, e.g. call diversion, then he is usually
billed for the transferred call, not the caller.

Three rules are defined in this scenario:

 • One rule that supports the malicious call tracing (MCT) where a sub-
scriber can press the R(flash)-button when he/she receives an unwanted
call. The rule will find who made the call and inform the operator of the
malicious call.

 • One rule that supports the call transfer (call diversion) on busy (CTB).
The rule automatically transfers the caller to another number if the called
subscriber is busy.

 • One rule that supports the call waiting (CW) service where a subscriber
who is engaged in a call will receive notification about incoming calls.
The subscriber can choose to talk to the new calling subscriber (switching

subscriberA subscriberB

subscriberC

call participant(s)controller

subscriber
services
MCT
CTB

CW

Figure 5.3: A simplified call model

67

back and forth) or engage in a three-party call. The CW service has prece-
dence over CTB so the CW rule is activated with a higher priority than the
CTB rule.

create type subscriber;
create function key_press(subscriber) -> integer;
/* 0 - 9, 10(*), 11(#) 12(R) */
create type subscriber_service;
create function provided_service(subscriber)

-> bag of subcriber_service;

create type call;
create function call_controller(call) -> subscriber;
create function call_participant(call)

-> bag of subscriber;
create function call_state(call) -> charstring;
/* ringing, busy, connecting, connected, disconnecting */

create type charging_record;
create function tariff(call) -> charging_record as ...
/* Procedure for calculating cost of a call */
create function tariff(subscriber_service)

-> charging_record as ...
/* Procedure for calculating flat rate cost of a service */
create function tariff(subscriber_service, call)

-> charging_record as ...
/* Procedure for calculating usage cost of a service in a

call */
create function bill(subscriber s, charging_record cr)

-> boolean as ...
/* Procedure that bills or prepares billing of subscriber

depending on the state of the call in the charging
record */

/* ****************************** */
/* Malicious Call Tracing Service */
/* ****************************** */

create subcriber_service instances :MCT;
create function malicious_call(subscriber sa,

subscriber sb)
-> boolean as ...

/* Procedure that informs operator about the MCT */

create rule MCT(subscriber sb) as
for each call c, subscriber sa

68 Applying Active Database Systems

on added(key_press(sb))
when key_press(sb) = 12 and /* Flash (R) */

sb = call_participant(c)
state(c) = “connected” and
sa = call_controller(c) and

do malicious_call(sa, sb); /* Inform operator */

create function setup_MCT(subscriber s) -> boolean as
begin

add provided_service(s) = :MCT;
activate rule MCT(s);
bill(s, tariff(:MCT)); /* Bill subscriber */

end;

/* ********************* */
/* Call Transfer on Busy */
/* ********************* */

create subscriber_service instances :CTB;
create function ctb_redirect(subscriber sb)

-> subscriber sc;
create function reconnect(call c, subscriber s)

-> boolean as ...
/* Procedure redirects a call attempt, will set

call_state(c) = “connected” if successful */

create rule CTB(subscriber sb) as
for each call c
on updated(call_state(c))
when call_state(c) = “busy” and

call_participant(c) = sb
do begin

reconnect(c, ctb_redirect(sb));
bill(sb, tariff(:CTB, c));

end;

create function setup_CTB(subscriber sb,
subscriber sc) -> boolean

begin
add provided_service(sb) = :CTB;
set ctb_redirect(sb) = sc;
activate rule CTB(sb) priority 3;
bill(sb, tariff(:CTB)); /* Flat rate */

end;

69

/* ************ */
/* Call Waiting */
/* ************ */

create subscriber_service instances :CW;
create function cw_inform(subscriber) -> boolean as ...
/* Procedure that sends intrusion signal to busy

subscriber */

create rule CW(subscriber sb) as
for each call c
on updated(call_state(c))
when call_state(c) = “busy” and

call_participant(c) = sb
do begin

cw_inform(sb);
bill(sb, tariff(:CW, c));

end;

create function setup_CW(subscriber s) -> boolean
begin

add provided_service(s) = :CW;
activate rule CW(s) priority 4;
bill(s, tariff(:SW)); /* Flat rate */

end;

Note that in this scenario the problem of feature interaction is handled through
different rule priorities on the rule activations where the call waiting rule is
given a higher priority than the call transfer on busy rule. This is a major sim-
plification of the feature interaction problem in general. In a real scenario the
interaction can be more complex where combinations of features can provide
new functionality (e.g. such as initiating a three-party call or conference call
when accepting new participants in call waiting) that has to be defined proce-
durally or with other rules.

5.6.2 Telecommunication Network Management

Management of future broad-band telecommunication networks such as ATM-
networks is a more likely application for the use ADBMSs than in telecommu-
nication network control. The network can be modelled in the ADBMS using
international standards for network specification. An ADBMS with OO capa-
bility will directly be able to store OO specifications based on standards such as
GDMO [74]. The ADBMSs will have to support the different interfaces for net-
work management as specified in section2.6.2 and support the mappings
between the logical view and the physical views of the network. The ADBMS
must also have a foreign data source interface supporting protocols such as

70 Applying Active Database Systems

SNMP MIB (see section9.5.3) for directly accessing data in different network
elements. The monitoring functionality in SNMP MIB will have to be adapted
to present changes to network elements as foreign events that the active rules
can monitor.

A Scenario for Monitoring Failures in an ATM-network

In an ATM-network a connection is considered full-duplex (two data streams in
two directions). If a failure occurs we have to define where it is detected and
what has been affected by the failure. In the ATM-network failur e model we
distinguish between network elements upstream or downstream from the point
of failure (fig. 5.4). A detected failure is not always detected at the point of
failure, i.e. faulty equipment might be detected through lost packages down-
stream from the equipment. If failures are detected in both streams in a connec-
tion, but at dif ferent points, then the point of failure can sometimes be deduced
by meeting half-way and upstream from the detected failures.

To explain how connections in an ATM-network can be monitored we also have
to define anATM-network connection model . A network connection is defined
by a trail connection through the different subnetworks that make up the ATM-
network (fig. 5.5). Connections between subnetworks are grouped intolinks
with connection termination points (mapped to VCIs) in each end of the sub-
network. The trail is an allocated sequence of connections withtrail termina-
tion points in both ends of the network.

The following database schema is an example of how the model above can
be implemented in an ADBMS. It should be regarded as a somewhat simplified
scenario1 to show the complexity of the application and not as a full implemen-

1. The modelling is based on definitions from the ATM-Forum [3][81] and in GDMO
[74].

Source
ATM

end-station

Destination
ATM

end-station
ATM
switch

ATM
switch

Failure-A

Failure-B

Upstream
from A

Downstream
from A

Downstream
from B

Upstream
from B

Figure 5.4: The ATM-network failure model

71

tation. Two rules are defined: one rule that monitors thequality of service (qos)
in a specific trail connection and one that monitors alarms that affect a specific
link. Note that most functions in this scenario would be foreign functions that
access and monitor the network status externally from the database. Monitoring
foreign functions is discussed further in chapter 9.

create type network;
create type subnetwork subtype of network;
create type link;
create function bandwidthUpstream(link) -> real;
create function bandwidthDownstream(link) -> real;
/* Quality of service */
create function qosUpstream(link)

-> <real error_ratio,
real loss_ratio,
real average_delay,
real variance_delay,
real misinsertion_rate>;

create function qosDownstream(link)
-> <real error_ratio,

real loss_ratio,
real average_delay,
real variance_delay,
real misinsertion_rate>;

create function unacceptableQos(
real error_ratio,
real loss_ratio,
real average_delay,

Subnetwork

Subnetwork

Link

Connections between subnetworks

Trail
Trail

Trail termination point

Connection termination point

Network

Figure 5.5: An ATM-network connection model

72 Applying Active Database Systems

real variance_delay,
real misinsertion_rate)

-> boolean as ...
/* Function that checks if qos is too low */
create type connection;
/* Traffic data */
create function receiveData(connection)

-> <real bandwidth,
real average_information_rate,
real peak_information_rate,
real burstiness>;

create function transmitData(connection)
-> <real bandwidth,

real average_information_rate,
real peak_information_rate,
real burstiness>;

create type TP; /* Termination Point */
create type linkTP subtype of TP;
create type connectionTP subtype of TP;
create type trailTP subtype of TP;
create type managedElement;
create type equipment subtype of managedElement;
create type software subtype of managedElement;

create function networkLink(subnetwork, subnetwork)
-> link;

create function linkConnections(link)
-> bag of connection;

create function connectionEnds(connection)
-> <connectionTP, connectionTP>;

create function direction(TP)
-> chartstring; /* Uni- or bi-directional */

create function trailConnections(trail)
-> bag of connection;

create function networkElement(network)
-> bag of managedElement;

create function alarm(TP) -> bag of charstring;
create function alarm(managedElement)

-> bag of charstring;
create function raiseTrailAlarm(trail, charstring)

-> boolean as ...
/* Procedure that signals trail alarm */
create function raiseLinkAlarm(link, charstring)

-> boolean as ...
/* Procedure that signals link alarm */

73

create rule monitorQos(trail t) as
for each connection c, link l,

real er, /* error_ratio */
real lr, /* loss_ratio */
real ad, /* average_delay */
real vd, /* variance_delay */
real mr /*misinsertion_rate */

on update(qosUpstream(l)) or
update(qosDownstream(l))

when c = trailConnections(t) and
c = linkConnections(l) and
(<er, lr, ad, vd, mr> = qosUpstream(l) or

<er, lr, ad, vd, mr> = qosDownstream(l)) and
unacceptableThroughput(er, lr, ad, vd, mr)

do begin
raiseLinkAlarm(l, “Unacceptable QOS”);
raiseTrailAlarm(t, “Unacceptable QOS”);

end;

create rule monitorLink(link l) as
for each connectionTP ctp, connectionTP ctp1,

managedElement me, connection c,
subnetwork sn, subnetwork sn1

on added(alarm(ctp)) or added(alarm(me))
when c = linkConnections(l) and

(<ctp, ctp1> = connectionEnds(c) or
<ctp1, ctp> = connectionEnds(c)) and

(networkLink(sn, sn1) = l or
networkLink(sn1, sn) = l) and

me = networkElement(sn)
do for each charstring ad

where (ad = alarm(ctp) or ad = alarm(me))
raiseLinkAlarm(l, ad);

5.6.3 Telecommunication Network Applications

In network applications the use of a DBMS in general is fairly obvious (see
section2.6.3), while the use of an ADBMS, however, is perhaps not as obvious.
Some uses of active database functionality in telecommunication network applica-
tions could be services such as:

• subscribing to newsgroups that are of particular interest to the user, e.g. subscrib-
ing to news relating to the user’s professional interests or hobbies

• integration of vehicle navigation systems and mobile telecommunication networks

74 Applying Active Database Systems

where an ADBMS monitors the position of vehicles (e.g. using GPS) and informs
drivers of the routes to destinations or changes to the traffic situation (e.g. by mes-
sages to a mobile terminal)

• on-line monitoring of access to certain services, e.g. can be used by the users to
keep track on misuse of their account and for the service providers to monitor user
access profiles (of different users, at different hours)

• on-line billing by monitoring the use and total cost of the services used so far, e.g.
to help the user monitor how much his or her family has spent so far and perhaps
to lock certain services in order to avoid receiving unexpectedly high bills

A Scenario for On-line Billing of Network Applications

This scenario relates to the network control scenario where charging records
are produced from the use of various services. Here charging records are being
received (monitored) that are the result of the use of some network application.
Here an ADBMS is intended to perform on-line billing by incrementally calcu-
lating the bill so far and sending it to the user (perhaps showing up in a counter
or as a meter on the display on his cellular phone) while he is using the service.
When the user finishes the call or the application session, the bill is finalized
and sent to the user as an invoice. Alternatively, the incremental bill can
directly be used to decrease some virtual resources (e.g. NetCash [89]) of the
user while he is using the application.

create function charging_records(subscriber)
-> bag of charging_record;

create type bill;
create function subscriber_bill(subscriber) -> bill;
create function calculate_bill

(subscriber, bill, charging_record) -> bill;
/* Procedure that incrementally calculates the

subscriber’s bill */
create function notify_subscriber(subscriber, bill)

-> boolean as ...
/* Procedure that informs subscriber of current bill

amount */

create rule online_billing(subscriber s) as
on added(charging_records(s))
do /* EA-rule */
begin

set subscriber_bill(s) =
calculate_bill(s, added(charging_records(s)),

subscriber_bill(s));
notify_subscriber(s, subscriber_bill(s));

end;

75

Note that in this rule the added charging record data is accessed in the action of
the rule to incrementally calculate the new bill. This is an access of an event
function outside the event part of a rule (in the condition or the action) which is
discussed in section 7.4.

76 Applying Active Database Systems

77

6 Efficient Rule Execution
Using Partial Differencing

6.1 Efficiency Problems in ADBMSs

One major requirement that was concluded from the case studies in chapter 2 was the
need for efficient execution of rules with complex conditions. When introducing
rules into a database it is crucial that the overall performance of the DBMS is not
impaired significantly.Rule monitoring is the activity of monitoring changes to the
state of rule conditions. Anaive method of detecting changes is to execute the com-
plete condition when an event that triggers the rule has occurred. This, however, can
be very costly, since a rule condition can span over large portions of the database.
One major reason for introducing rules into databases is that it is more efficient
to detect changes to the data inside the database than to have applications pose
queries that detect the changes. When rules are introduced, they will impose
some overhead on transactions that are performing updates to data referenced
in event specifications or conditions of active rules. Since these transactions
might belong to an application unaware of the rules it affects, it is important
that the rules are processed efficiently.

6.2 Partial Differ encing of Rule Conditions

This chapter presents a technique for efficient evaluation of rule conditions.
The technique is based on incremental evaluation techniques and is namedpar-
tial differencing. It is used for efficient monitoring of active rules in AMOS.
The technique is especially designed fordeferred rules, i.e. rules where the rule
execution is deferred until a check phase that usually occurs when transactions
are committed. The technique can also be used for immediate rule processing
[31].

Partial differencing is presented here based on a conference paper [110]
(Paper VI) along with some continued work. Adifference calculus is defined
for computations of the changes to the result of database queries and views.
Queries and relational views are regarded as functions over sets of tuples and
the calculus for monitoring changes is regarded as an extension of set algebra.
Let P be a function dependent on the functions Q and R, denoted theinfluents
of theaffected function P. The problem offinite differencing[80][96] is how to
calculate the changes to P, ∆P, in terms of the changes to its influents. With par-

78 Efficient Rule Execution Using Partial Differencing

tial differencing, changes to P are defined as the combination of the changes to
P originating in the changes to each of its influents. Thus,∆P is defined in
terms of thepartial differential functions ∆P/∆Q and∆P/∆R. We will define
how to automatically derive the partial differentials ∆P/∆Q and ∆P/∆R, and
how to calculate∆P from them. The calculus is mapped to relational algebra by
defining partial differentials for the basic relational operators. Partial differenc-
ing has the following properties compared to other approaches:

• We assume that the number of updates in a transaction is usually small and often
very few (or only one) tables are updated. Therefore, very few partial differentials
are affected in each transaction. Each partial differential generated by the rule
compiler is a relatively simple database query which is optimized using tradi-
tional query optimization techniques [107]. The optimizer assumes few changes
to a single influent.

• We separately definepositive andnegative partial differentials, denoted∆P/∆+Q
and∆P/∆-Q, respectively, since monitored conditions are often only dependent on
insertions in influents (not on deletions), as will be shown. Furthermore, the par-
tial differentials for handling insertions and deletions do not have the same struc-
ture. Conditions that depend on deletions are actually historical queries that must
be executed in the database state when the deleted data were present. This makes
negative differentials different and not easily mixable with positive ones.

• The calculus allows us to optimize both space and time. Space optimization is
achieved since the calculus and the algorithm does not presuppose materialization
of monitored conditions to find their previous state.Instead it gives a choice
between materialization and computation of the old state from the new one,
given all the state changes.Time optimization is achieved through incremental
evaluation techniques.

• Based on the calculus, an algorithm has been developed for efficient rule condi-
tion monitoring by propagation ofincremental changes through apropagation
network. For correct handling of deletions in the absence of materializations and
for efficient execution, abreadth-first, bottom-up propagation is made through
the network of both insertions and (only when applicable) deletions. The algo-
rithm reduces memory utilization by only temporarily saving the intermediate
changes occurring during the propagation.

• For explainability, one can easily determine which influents actually caused a
rule to trigger and whether it was triggered by an insertion or a deletion. It is
straightforward to determine this by remembering which partial differentials were
actually executed in the triggering.

Partial differencing has been implemented for CA-rules in AMOS and perform-
ance measurements have been made. We have implemented both our incremen-
tal algorithm and a ‘naive’ condition monitoring algorithm that recomputes the
whole rule condition every time an update has been made to an influent affect-

79

ing a condition. The performance evaluation shows that for transactions with
few updates our incremental algorithm scales better over the database size than
the naive method. For transactions with many updates to several influents the
method is not as efficient as the naive evaluation, but only by a factor that is
constant over the size of the database.

The method supports ECA-rules as well; the event part just further restricts when
the condition is tested. Partial differencing also allows for specifying events such as
added, removed, and updated over views by propagating physical changes to the event
parts of ECA and EA-rules (while propagating logical changes to conditions of CA
and ECA-rules). Partial differencing for ECA-rules is discussed in section6.15,
section6.16, and section6.17.

6.3 Related Work

In [96] finite differencing was presented as a technique for improving the effi-
ciency of the set-oriented programming language SETL. It was based on pro-
gram transformations using differentiation operators defined for the basic set-
functions in SETL. Finite differencing for maintaining derived data in material-
ized views in a functional data model was defined in [80]. In [13] finite differ-
encing was used for maintaining materialized views in the relational data
model defined in terms of Select-Project-Join (SPJ) views.

The technique was adopted for rule condition monitoring in HiPAC
[31][103], Ariel [63], PARADISER [33], and in A-RDL [40][133]. Recent work
on incremental maintenance of materialized views can be found in
[61][62][75][77][100]. Related work on incremental evaluation of Datalog pro-
grams can be found in [36] and on change computation in deductive databases
in [126].

In [103] incremental evaluation of SPJ-views was presented for efficient
evaluation of ECA-rules with complex rule conditions. The work was based on
defining an algebra for computations over database changes,∆-relations. Each
relation had an associated∆-relation where the tuples that got added and
deleted during database updates were stored. Each SPJ-view also had∆-rela-
tions which were computed through achain-rule for SPJ queries.

Our work differs from the above in that we deal with the problem ofpartial
differencing of database queries, i.e. automatic generation of several separate partial
differentials from a given rule condition rather than one large incremental expression.
Furthermore, we also deal with deletions and incremental evaluation of deferred rule
conditions.

In [99] the relational algebra is extended with incremental expressions. In [9] a
method is presented that derives two optimized conditions,Previously True and
Previously False, based on a materialization of a simple truth value of a condition.
Since our rules are set-oriented, we need to consider sets of truth values.

A classical algorithm for incremental evaluation of rule conditions in AI is the
Rete algorithm [49]. It is used to incrementally evaluate rule conditions (called
patterns) in the OPS5 [17] expert system shell. OPS5 is a forward-chaining production
rule system where all patterns are checked using Rete. Thus, in difference to active

80 Efficient Rule Execution Using Partial Differencing

database systems, all the instantiations of all patterns in an OPS5 program are
incrementally maintained. Regular demand-driven database queries are not supported.
In Rete the system records each incremental change (insertions or deletions, called
tokens) to the stored data. For patterns that reference other patterns (i.e derived
patterns) a propagation network is built that incrementally maintains the instances of
the derived patterns. The propagation network may contain both selections
(represented as alpha nodes) and joins (represented as beta nodes). The alpha nodes
(selections) are always propagated before the beta nodes (joins).

The main problem with using Rete for rule matching in active databases is that
Rete is very space inefficient for large databases since Rete saves all intermediate
results for all rule conditions. Rete furthermore does not do join optimizations which
may result in a combinatorical explosion of the size of the working memory [91]. To
improve the performance of Rete the TREAT [91] algorithm was developed. TREAT
avoids the combinatorical explosion by using relational database optimization
techniques and has been shown to be more efficient for large databases than Rete
[129].

Ariel [63] uses an extension of TREAT, A-TREAT, that further reduces the
memory usage by avoiding to materialize some intermediate results by defining some
selection nodes in the propagation network as simple relational expressions (named
virtual alpha nodes). A related approach is proposed in [40] where an algorithm is
presented that can take a set of rules and return a set of relational expressions that are
the most profitable to materialize to support efficient execution of the rules. These are
examples of how to trade query execution time for space in rule condition checking.

In contrast to the work above we use a propagation algorithm based on our
calculus for partial differencing. The nodes in the propagation network do not reflect
hard-coded primitive operations such as alpha or beta nodes, but represent temporary
storage of data propagated from the nodes below. The arcs represent differential
relational expressions that calculate the changes from an input node below that should
be propagated to the output node above. By using breadth-first, bottom-up
propagation to correctly and efficiently propagate both positive and negative changes
without retaining space consuming materializations of intermediate views our
algorithm differs from the PF-algorithm [65]. The materialized views can be very
large and can even be considerably larger than the original database, e.g. where
cartesian products or unions are used. This may exhaust memory or buffers when
many conditions are monitored and the database is large.

In A-RDL [40][133] incremental evaluation and a fixpoint technique are used for
determining whether a rule has been triggered and whether a set of rules will
terminate, i.e. if they have some fixpoint. This technique is used in a rule system
outside a DBMS where the client-server communication is intercepted to detect
events. This is different from the approach in this thesis in which the rule condition
monitoring is integrated into an ADBMS and where incremental expressions are
generated that are executed by the query processor (i.e. by the ObjectLog interpreter).
The fixpoint technique could be used as an extension to partial differencing, but this
would require an analysis of the rule actions to determine what events will be
generated, which is not discussed in this thesis.

In [75] a differential technique is presented for supporting efficient execution of

81

historical queries based on transaction time. The technique is based on efficient
calculation of cached queries by usingdifferential files that contain transaction time-
ordered insert, delete, and update data. The differential files can be used for both
incremental calculation (moving to a future state in the database) anddecremental
calculation (moving to a past state in the database). The technique is supported by
differential versions of the relational operators (select, project, and join) which are
used in full differential expressions similarly as in finite differencing. The differential
expressions are optimized using a state transition network, dynamic programming
techniques, and a number of optimization rules. The optimization technique is related
to that in AMOS which is discussed further in section6.10. The technique for
supporting transaction time is related to an extension of partial differencing to support
propagation of temporal information such as the time of updates. It is based on event
histories ordered by transaction time for an integration of partial differencing and
event propagation for ECA-rules. This makes it possible to use the same propagation
network to calculate complex event specifications and to incrementally calculate
complex rule conditions. This is more discussed further in sections 6.16 and 6.17.

In [22][117] ECA-rules are used to incrementally maintain materialized views.
In [22] a technique is presented how the rules can be semi-automatically derived given
the views to be materialized. The generated ECA-rules are parameterized to allow for
a simple form of incremental evaluation. In [117] ECA-rules are used to manually
maintain materialized views.

Heraclitus [50] is a dedicated database programming language which directly
supports incremental evaluation by supportingdeltas, i.e. objects containing update
information. The deltas can be explicitly constructed, combined, and accessed through
the programming language. The Heraclitus paradigm can be used to implement
different execution models for active rules in an ADBMS.

In [93] a performance test is presented for incremental updates in two dif-
ferent rule-based programs. The first is the game of LIFE where incremental
updates of a matrix of varying size are monitored. The second is a combinato-
rial optimization problem for allocating mortgage-backed securities. The
results favour incremental update for the second program, but not for the first
one. No real in-depth analysis is provided as to why this is so, only that updates
in the first program produce major changes in the chain of inference which is
unsuitable for incremental evaluation. In section6.9 partial differencing is ana-
lyzed through a performance measurement consisting of seven different bench-
marks.

In section6.16 the propagation technique used for partial differencing is
extended for propagating events of ECA-rules. ECA-rules in AMOS allow
specifying the events added, removed, and updated on both stored functions
(tables) and derived functions (views). This is related to work on specifying
composite events in Sentinel [25], SAMOS [54], and Ode [56] which are
defined in terms of primitive events. The propagation techniques for calculat-
ing the occurrence of composite events from primitive events are related to the
propagation technique presented in this thesis. The propagation techniques for
composite event detection is usually based on techniques and data structures
specialized for event detection and not for change propagation. In [25] anevent

82 Efficient Rule Execution Using Partial Differencing

tree is used for propagating events, [54] uses amodified colored Petri Net, and
[56] uses astate automata. The work in this thesis focuses on detecting
changes to relational views, i.e. implicit composite event specifications of the
events added, removed, and updated. The technique could be extended to allow
explicit composite event specifications and of other events as well, but this is
outside the scope of this thesis.

6.4 An Example Rule with Efficiency Problems

Let us look at the inventory rule examplefrom chapter 3 again. When the quan-
tity of an item drops below a certain threshold, new items are to be automati-
cally ordered.Here is themonitor_items rule again:

create type item;
create type supplier;
create function quantity(item) -> integer;
create function max_stock(item) -> integer;
create function min_stock(item) -> integer;
create function consume_frequency(item)

-> integer;
create function supplies(supplier) -> item;
create function delivery_time(item,supplier)

-> integer;
create function threshold(item i) -> integer

as
select consume_frequency(i) *

delivery_time(i, s) + min_stock(i)
for each supplier s where supplies(s) = i;

create rule monitor_items() as
when for each item i
where quantity(i) < threshold(i)
do order(i,max_stock(i) - quantity(i));

Executing this rule can be very inefficient if the database contains thousands of
items. If we evaluate the condition as it stands we will scan the quantity and
calculate the threshold for all items every time there is a change to some item.
The user could define a CA-rule that is parameterized with specific items
(monitor_item), but if we want to monitor all items we would have to acti-
vate this rule for every item. Alternatively, an ECA-rule could be defined that
captures the relevant events for a specific item and passes the item to the condi-
tion through a shared variable. This requires that the user knows what events
can affect the condition. The rule above is more elegant since the user does not
need to know what events the rule should monitor, thus we want the ADBMS to
efficiently monitor these kind of CA-rules as well.

83

6.5 CA-rule Semantics and Function Monitoring

Another requirement that was concluded from the case studies presented in chapter 2
was the need for transparent access and monitoring of external data. The AMOS data
model uses functions that return data of some specific type when accessing all data.
When the AMOS data model was extended with rules it was natural to use functions
when monitoring changes to data as well.The semantics of the rules in AMOS is
thus based on function monitoring [102]. To be more specific, rules are based
on thewhen-function-changes-do-procedure semantics (fig. 6.1).

Take a CA-ruler(x) defined aswhen c(x) do a(x).
This is aforward chaining rule that means: when there is a change in the

database that might change the valuec(x), then ‘executea(x) when c(x) is
evaluated to be true’. This is an imprecise definition of rule semantics, one
really has to separate betweenstrict and nervous rule semantics. Strict rule
semantics forr would really be ‘executea(x) whenc(x) is evaluated to be true
after previously being false’and nervous rule semantics would be ‘executea(x)
wheneverc(x) is evaluated to be true regardless of whether it was true before’.

In order to explain how a rule is transformed into a function and a proce-
dure, a new notation is introduced.

The rules are written as:

<name>(<parameter-specification>) =
[<variable-quantification>] (<condition>⇒ <action>)

where the condition is a functional expression and the action a procedural
expression.

Functions are written as:

<name>(<parameter-specification>) =[<variable-quantification>]
select <return-specification>
where <logical-expression>

when

do

changes

function

procedure

Figure 6.1: AMOSQL rule semantics

84 Efficient Rule Execution Using Partial Differencing

and procedures as:

<name>(<parameter-specification>) = <procedure statements>

All parameters and heads of functions are subscripted with type information
that specifies the types of the incoming parameters and the types of the returned
values of functions, respectively.

We can now write the ruler as:

r(xtype of x) = (c(x) ⇒ a(x)),

where c(x) is a function call that returns a boolean value, i.e.c(xtype of

x)boolean, and wherea(x) is a procedure call. Note thatx will be bound when
the rule is activated.

Next we define acondition function fc that returns the data shared by the
condition and action (here data of the type ofx):

fc(xtype of x)type of x= select x where c(x)

This function returns a set of values of typex for all c(x) that returntrue. We
also define anaction procedure fa that takes the output of the condition func-
tion (here the type ofx) as argument and executes the action statements:

fa(xtype of x) = a(x),

Rule condition monitoring is now defined as function monitoring offc, i.e.
monitoring of changes to the set of values thatfc returns. Executing CA-rules
can now be seen as the function applicationfa(fc(x)). To be more precise, rule
execution is defined fornervous rule behaviour as executingfa on all the
changes tofc, ∆fc:1

∀ xtype of x where x ∈ ∆fc(x)
do fa(x)

We also definestrict rule behaviour as executingfa on all the changes offc, ∆fc,
only if they are not present in the old state offc, (fc)old, which is the value offc
the last time this particular rule activation was checked. Strict rule monitoring
is defined as:

∀ xtype of x where x ∈ ∆fc(x) ∧ x ∉ (fc)old(x)
do fa(x)

Note that before the action procedure of a triggered rule is executed, a conflict resolu-
tion method is applied. The condition of a rule can contain any logical expres-
sion and the action any logical expressions as well as side effects. For a rule

1. Actually we execute the action procedurefa on the positive changes representing
additions (∆+fc) to fc,

85

r(xtype of x) = ∀ ytype of y (c1(x) ∧ c2(y) ⇒ a1(x) ∧ a2(y)),

and wherec1(x) andc2(y) are boolean functions, i.e.c1(xtype of x)boolean and
c2(ytype of y)boolean. The condition function to monitor is defined as:

fc(xtype of x)<type of x, type of y>= ∀ ytype of y select x, y
where c1(x) ∧ c2(y),

and the action procedure to execute is defined as:

fa(xtype of x, ytype of y) = a1(x) ∧ a2(y).

The semantics of nervous and strict rule execution, respectively, are defined as:

∀ xtype of x, ytype of y where <x, y> ∈ ∆fc(x)
do fa(x, y)

∀ xtype of x, ytype of y where <x, y> ∈ ∆fc(x) ∧ <x, y> ∉ (fc)old(x)
do fa(x, y)

Note that herex is bound when the rule is activated, buty is free and is fetched
from the database.

Since functions are defined semantically as representing sets of values the
rules are said to have set-oriented semantics1, i.e. the rules monitor changes of
a set that represents the condition and executes the action on each element of
the set that represents the changes to the condition set.

Some rules do not use the set-oriented semantics, as is the case with con-
straint rules that have actions that do transaction roll-backs. Such rules do not
use any explicit values that have been produced in the condition when execut-
ing the action. Constraint rules are defined as:

r(xtype of x) = (c(x) ⇒ rollback),
fc(xtype of x)boolean= select true where c(x),
fa() = rollback,

The condition functionf returnstrue if c(x) returns a non-empty answer and
false otherwise. The semantics is defined for nervous and strict rule execution,
respectively, by:

∀ xtype of x where ∆fc(x)
do fa()

∀ xtype of x where ∆fc(x) ∧ ¬(fc)old(x)
do fa()

1. To support the same set-oriented action execution as in Starburst [132] the action
function fa should take a set of all the changes from∆fc instead of applyingfa(x) for
each possiblex.

86 Efficient Rule Execution Using Partial Differencing

Actually, strict rule semantics does not make sense for a rule that does a roll-
back since the rollback will probably undo the changes and make the condition
false. However, if the action of a constraint rule just signals the user or applica-
tion that a constraint was violated then we need strict rule semantics since we
usually do not want to signal more than once.

Since rules are objects of the type ‘rule’, the rule activation can be defined
as a procedure:

activate(rrule, llist of object)

wherer is a rule object andl is a list of objects that r is parameterized by. For
rule activations with explicit priorities1 theactivate procedure is overloaded as

activate(rrule, llist of object, pinteger)

wherep is the priority of the rule activation. Rule deactivation is defined like-
wise.

In the inventory rule example the rule compiler generates the condition function
cnd_monitor_items from the condition of the rulemonitor_items. This
function returns all the items with quantities below the threshold. Condition
monitoring is done by monitoring changes to the condition function
cnd_monitor_items.

create function cnd_monitor_items() -> item
as
select i for each item i
where quantity(i) < threshold(i);

The action part of the rule generates a procedure that takes an item as argument and
orders new items to fill the inventory.

create function act_monitor_items(item i)
-> boolean2 as
order(i, max_stock(i) - quantity(i));

At run-time theact_monitor_items procedure will be applied tothe setof
changes calculated from the differential denoted∆cnd_monitor_items.

AMOSQL is a stream-oriented language so the action procedure is executed for
every changed value of the condition. With strict semantics the action procedure is
executedonly when the truth value of the monitored condition changes from false to
true in some transaction. With nervous semantics the rule sometimes triggers when
there has been an update that causes the rule condition to become true without having
been false previously. Nervous semantics is often sufficient; however, in our example
strict semantics is preferable since we only want to order an item once when it

1. Rule activations without explicit priorities are given the lowest priority.
2. A procedure that does not explicitly return anything implicitly returns a boolean.

87

becomes low in stock. Note that before the action part of a triggered rule is executed
a conflict resolution method based on priorities is applied.

6.6 ObjectLog

AMOSQL functions are compiled into an intermediate language called Object-
Log [82]. ObjectLog is inspired by Datalog [21][125] andLDL [28], but pro-
vides new facilities for effective processing of OO queries. ObjectLog supports
a type hierarchy, late binding, update semantics, and foreign predicates.

• Predicate arguments areobjects, where each object belongs to one or moretypes
organized in a type hierarchy that corresponds to the type hierarchy of AMOS.

• Object creation and deletion semantics maintain the referential integrity of the
type hierarchy.

• Update semantics of predicates preserve the type integrity of arguments. The op-
timizer relies on this to avoid dynamic type checking in queries.

• Predicates can be overloaded on the types of their arguments and results.

• Predicates can be further overloaded on the binding patterns of their arguments,
i.e. on which arguments are bound or free when the predicate is evaluated.

• Predicates can be not only facts and Horn clause rules, but also optimized calls to
invertibleforeign predicates implemented in a procedural language. In the current
system foreign predicates can be written in C and Lisp.

• Predicates themselves as well as types are objects, and there are second order
predicates that produce or can be applied to other predicates. Second order predi-
cates are crucial for late binding and recursion.

The translation from AMOSQL to ObjectLog consists of several steps (fig.
6.2). Theflattener transforms AMOSQLselect statements into a flattened
select statement where nested functional calls have been removed by intro-
ducing intermediate variables. Thetype checker annotates functions with their
type signatures in thetype adornment phase, and finds the actual functions for
overloaded functions (in case of early binding) or adds dynamic type checks (in
case of late binding) in the overload resolution phase. The ObjectLog generator
transforms stored functions into facts and derived functions are transformed
into Horn clause rules. TheObjectLog generator also translates foreign func-
tions into foreign predicates. TheObjectLog optimizer finally optimizes
ObjectLog programs using cost-based optimization techniques. More about the
translation steps and the optimization techniques can be found in [48][82]. The
optimization step is discussed further in section6.10.

The ObjectLog facts represent base relations, i.e. tables, and the Horn Clauses
represent derived relations, i.e. views.In section14.2 in the appendix the relation-
ship between Datalog (which can be seen as a relational subset of ObjectLog)
and the relational operators is presented.The AMOSQL query compiler will

88 Efficient Rule Execution Using Partial Differencing

translate the stored functions defined in the example into facts and the condition
function and the threshold function will be compiled into the following ObjectLog
Horn Clauses:

cnd_monitor_itemsitem(I) ←
quantityitem,integer(I,_G1) ∧
thresholditem,integer(I,_G2) ∧
_G1 < _G2

thresholditem,integer(I,T) ←
consume_frequencyitem,integer(I,_G1) ∧
delivery_timeitem,supplier,integer(I,_G2,_G3) ∧
suppliessupplier, item(_G2, I) ∧
_G4 = _G1 * _G3 ∧
min_stockitem,integer(I,_G5) ∧
T = _G4 + _G5

By looking at the generated ObjectLog forcnd_monitor_items and
threshold we can define a dependency network (fig. 6.3) that specifies what
changes can affect the differential∆cnd_monitor_items. Each edge in the
dependency network defines the influence from one function to another. With
each edge we also associate the partial differentials that calculate the actual
influence from a particular node. For instance,∆quantity is an influent of
∆cnd_monitor_items with a partial differential∆cnd_monitor_items/
∆quantity (the edge marked * in fig. 6.3). The dependency network is con-

Function F

Flattener

Flattened F

Type checker

TR ObjectLog Program

ObjectLog optimizer

Optimized TR ObjectLog

Type Adorned Resolvent

ObjectLog generator

Figure 6.2: The translation of AMOSQL to ObjectLog

89

structed from the definition of the condition function and its sub-functions. By
analyzing the ObjectLog code instead of the AMOSQL the rule compiler can
find all dependencies, i.e. all relations that can affect a rule condition. The
ObjectLog relations above are not optimized; this is a later stage which gener-
ates optimized and executable ObjectLog code. The ObjectLog code is used to
generate partial differentials (which are optimized by the ObjectLog optimizer)
and the propagation network (see section6.7.3).

The transformations that are presented for partial differencing can be made
on either un-optimized or optimized ObjectLog programs. The resulting
ObjectLog programs will need to be re-optimized in any case.

6.7 The Calculus of Partial Differencing

The calculus of partial differencing is our theoretical basis for incremental
evaluation of rule conditions. It formalizes update event detection and incre-
mental change monitoring. The calculus is based on the usual set operators
union (∪), intersection (∩), difference (-), andcomplement (~). The boolean
algebra of ObjectLog can directly be translated1 into set algebra which is easier
to comprehend than relational algebra. Three new operators are introduced,
delta-plus (∆+), delta-minus (∆-), anddelta-union (∪∆). ∆+ returns all tuples
added to a set over a specified period of time, and∆- all tuples removed from
the set. Adelta-set (∆-set) is defined as a disjoint pair <∆+S, ∆-S> for some set
S and∪∆ is defined as the union of two∆-sets. The calculus is general and in
section6.7.6 partial differencing of the relational algebra operators is shown.

Separatepartial differentials are generated for monitoring insertions and dele-

1. There exists an isomorphismf: <O, ¬,∧, ∨> → <2At(O), ~, ∩, ∪> between the boolean
algebra and set algebra [1] where O is the domain of objects in the database, ¬ is negation
based on the Closed World Assumption, ∧ is logical conjunction,∨ is logical disjunction,
2At(O) is the power set of atoms in O,~ is set complement,∩ is set intersection, and∪ is set
union.

∆quantity

Figure 6.3: Dependency network of the rule condition

∆cnd_monitor_items

∆threshold

∆consume_frequency
∆delivery_time ∆supplies

∆min_stock

*

90 Efficient Rule Execution Using Partial Differencing

tions for each influent of a derived relation. The intuition is to calculate positive par-
tial differentials (monitoring insertions) in the new state of the database. The negative
partial differentials (monitoring deletions) are calculated in the old state since this
was when the deleted tuples were present in the database.

The old state of a relation is calculated from the new state by performing alogical
rollback (similar to decremental computation in [75]) that inverts the changes to the
database.Given the value ofSnew we can calculateSold by inverting all opera-
tions done to S, i.e. by usingSold = (Snew ∪ ∆−S) - ∆+S. The calculus is based
on accumulating all the relevant updates to base relations during a transaction.
These accumulated changes are then used to calculate the partial differentials
of derived relations. Changes are propagated in a breadth-first, bottom-up man-
ner through a propagation network where the∆-sets can be seen as temporary
‘wave-front’ materializations.Calculating the old state,Sold, requires all the propa-
gated changes that influence S, i.e. the complete∆+S and∆−S, which in turn requires
a breadth-first, bottom-up propagation algorithm.

The algorithm guarantees that all changes to influents of an affected relation are
propagated before the changes to the affected relation are propagated further. There-
fore, by propagating breadth-first, bottom-up we can calculate the old states (Sold) of
relations by doing a logical rollback. Next we define how to accumulate these
changes and how to generate partial differentials.

6.7.1 Differencing of Base Relations

All changes to base relations, i.e. stored functions, are logged in a logical undo/
redo log. During database transactions and before the physical update events
are written to the log, a check is made as to whether a stored base relation was
updated that might change the truth value of some activated rule condition. If
so, thephysical events are accumulated in a∆-set that reflects alllogical events
so far of the updated relation. Only those functions that are influents of some
rule condition need∆-sets. The∆-sets can be discarded when the changes of the
affected relations have been calculated, which saves space. Since CA-rules are
only triggered by logical events the physical events have to be added with the
delta union operator, ∪∆, that cancels counteracting insertions and deletions in
the ∆-set. The∆-set for a base relation B is defined as:

∆B = <∆+B, ∆-B>,

where∆+B is the set of added tuples to B and∆-B is the set of removed tuples,
they are defined as:

∆+B = B - Bold and1

∆-B = Bold - B, and thus
Bold = (B ∪ ∆-B) - ∆+B

We define∪∆ formally as:
∆B1 ∪∆ ∆B2 = <(∆+B1 ∪ ∆+B2) - (∆-B1 ∪ ∆-B2),

 (∆-B1 ∪ ∆-B2) - (∆+B1 ∪ ∆+B2) >

1. The current database always reflects the new state.

91

The operator ensures that we only consider the net-effect of updates to a func-
tion. Updates to stored functions are made by first removing the old value tuples and
then adding the new ones. For example, let us update the minimum stock of some
item twice assuming thatmin_stock was originally 100:
set min_stock(:item1) = 150;
set min_stock(:item1) = 100;

This produces the physical update events:
-<min_stock,:item1,100>,
+<min_stock,:item1,150>,
-<min_stock,:item1,150>,
+<min_stock,:item1,100>.

The ∆-set formin_stock changes accordingly with:
∆min_stock = <{},{<:item1,100>}>
∆min_stock = <{<:item1,150>},{<:item1,100>}>
∆min_stock = <{},{<:item1,100>}>
∆min_stock = <{},{}>

i.e. there is no net effect of the updates.

6.7.2 Partial Differencing of Views

As for base relations, the∆-set of a relational view, i.e. a derived function, is
defined as a pair:

∆P = <∆+P, ∆-P>

We need to define how to calculate the∆-set of an affected view in terms of the
∆-sets of its influents. To motivate our calculus we next exemplify change mon-
itoring of views for positive changes (adding) and negative changes (remov-
ing), respectively. We then show how to combine partial differentials into the
final calculus.

6.7.3 Positive Partial Differentials

For a view P defined as a Horn Clause with a conjunctive body, let Ip be the set
of all its influents. The positive partial differentials ∆P/∆+X i, Xi ∈Ip (for inser-
tions only) are constructed by substituting Xi in P with its positive differential
∆+X i. The full positive differential is found by performing a∪∆ of all the pos-
itive partial differentials.

For example, if we have

p(X, Z) ←
q(X, Y) ∧
r(Y, Z)

then
∆p(X, Z)/∆+q ←

∆+q(X, Y) ∧
r(Y, Z)

92 Efficient Rule Execution Using Partial Differencing

and
∆p(X, Z)/∆+r ←

q(X, Y) ∧
∆+r(Y, Z)

If DBold consists of the stored relations (facts) q(1, 1), r(1, 2), r(2, 3), then
we can derive p(1, 2).
A transaction performs the updates
assert q(1, 2), assert r(1, 4)

DBnew now becomes q(1, 1), q(1, 2), r(1, 2), r(1, 4), r(2, 3), and
we can derive p(1, 2), p(1, 3), p(1, 4)

The updates produce the ∆-sets,
∆q = <{<1,2>},{}>
∆r = <{<1,4>},{}>

Then ∆p(X, Z)/∆+q = <{<1,3>},{}>
and ∆p(X, Z)/∆+r = <{<1,4>},{}>
and joining with ∪∆ finally gives
∆p = <{<1,3>,<1,4>},{}>

The AMOSQL compiler expands as many derived relations as possible to have
more degrees of freedom for optimizations. The condition function of our running
example will be expanded to:

cnd_monitor_itemsitem(I) ←
quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
suppliessupplier, item(_G3, I) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

The positive partial differentials based on the influents quantity and
consume_frequency are defined as:

∆cnd_monitor_itemsitem(I)/∆+quantity ←
∆+quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
suppliessupplier, item(_G3, I) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧

93

_G7 = _G5 + _G6 ∧
_G1 < _G7

∆cnd_monitor_itemsitem(I)/∆+consume_frequency ←
quantityitem,integer(I,_G1) ∧
∆+consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
suppliessupplier, item(_G3, I) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

The other differentials ∆cnd_monitor_items/∆+delivery_time,
∆cnd_monitor_items/∆+supplies, and ∆cnd_monitor_items/
∆+min_stock are defined likewise. Using these partial differentials we can
build a propagation network for cnd_monitor_items (fig. 6.4). This is

basically the dependency network (fig. 6.3) augmented with partial differen-
tials. One difference to fig. 6.3 is that the propagation network for
cnd_monitor_items is flat since the AMOS query compiler expands func-
tions as far as possible. In the case of late binding this is not possible and the
result is a more bushy network (see section6.13). In section6.10.3 we show
how sub-expressions can be reused to produce a more bushy network that ena-
bles node sharing.

Note that the examples above only deal with conjunctions in the bodies of the
Horn Clauses. In ObjectLog disjunctions are introduced in the body only and not as
separate Horn Clauses as in traditional Datalog1. Disjunctions, i.e. unions, are treated

1. In ObjectLog separate Horn Clauses are generated for different AMOSQL functions
that are overloaded on the type signatures of a single function name. Since only one
of these functions is chosen at run-time, this is not a disjunction.

∆quantity(q)

Figure 6.4: Propagation network of the rule condition

∆cnd_monitor_items(cmi)

∆consume_frequency(cf)
∆delivery_time(dt) ∆supplies(s)

∆min_stock(ms)

∆cmi/
∆+q ∆cmi/

∆+s∆cmi/
∆+cf

∆cmi/
∆+dt

∆cmi/
∆+ms

∪∆

94 Efficient Rule Execution Using Partial Differencing

in section6.7.5

6.7.4 Negative Partial Differentials

Often the rule condition depends only on positive changes, as for the
monitor_items rule. However, for negation and aggregation operators, neg-
ative changes must be propagated as well. For strict rule semantics, propaga-
tion of negative changes is also necessary for rules whose conditions are
negatively affected by other rules’ actions, i.e. for a rule defined to be strict it is
necessary to monitor the negative partial differentials as well.

In our example in section6.7.3 the two partial differentials of the relation P with
regard to the negative changes of Q and R are defined as:

∆p(X, Z)/∆-q ←
∆-q(X, Y) ∧
rold(Y, Z)

and
∆p(X, Z)/∆-r ←

qold(X, Y) ∧
∆-r(Y, Z)

where Rold = (R ∪ ∆-R) - ∆+R and where Qold is defined likewise.
These can be calculated by a logical rollback (fig. 6.5) or be maintained by mate-

rialization.

The materializations can be space-consuming so doing a logical rollback will
save space. The execution cost (in time or in number of operations) of perform-
ing one logical rollback of a relation is comparable to the execution cost of
maintaining a materialization of that relation (i.e. the execution cost of updat-
ing the materialization). If a logical rollback of a relation is performed several
times during the rule checking phase it can, however, cost more than maintain-
ing the materialization.

The full negative differential is found by performing a∪∆ of all the nega-
tive partial differentials and the complete differential is found by a∪∆ of all

Rold R (Rnew)

assert (∆+R)
evaluate insertions in the new state

evaluate deletions in the old state

logical rollback

Figure 6.5: Calculating the old state by a logical rollback

retract (∆−R)

∆−R ∆−R∆−R

∆−R∆−R

∆+R ∆+R

∆+R

∆+R

∆+R

95

the positive and negative partial differentials.
Let DBold consist of the stored relations (facts)q(1, 1), r(1, 2), r(2, 3),

from p defined above we can now derivep(1, 2). A transaction performs the
updates:

assert q(1, 2), assert r(1, 4),
retract r(1, 2), retract r(2, 3)

DBnew is nowq(1, 1), q(1, 2), r(1, 4), and we can derivep(1, 4).
The updates give the∆-sets,

∆q = <{<1,2>},{}>
∆r = <{<1,4>},{<1,2>,<2,3>}>.
Then∆p(X, Z)/∆+q = <{},{}>,
∆p(X, Z)/∆+r = <{<1,4>},{}>,
∆p(X, Z)/∆-r = <{},{<1,2>}>,
and joining with∪∆ gives
∆p = <{<1,4>},{<1,2>}>.

Note that if we did not use the old state ofq (qold) in ∆p(X,Z)/∆-r we would
get
∆p = <{<1,4>},{<1,2>,<1,3>}>, which is clearly wrong.

6.7.5 The Calculus of Partial Differentials

Let ∆+P be the set of additions (positive changes) to a view P and∆-P the set of
deletions (negative changes) from P. As before, the∆-set of P, ∆P, is a pair of
the positive and the negative changes of P:

∆P = <∆+P,∆-P>

As for base relations, we formally define thedelta-union, ∪∆, over differentials as:

∆P1 ∪∆ ∆P2 = <(∆+P1 ∪ ∆+P2) - (∆-P1 ∪ ∆-P2),
 (∆-P1 ∪ ∆-P2) - (∆+P1 ∪ ∆+P2) >

Next we define thepartial differential, ∆P/∆X, that incrementally monitors
changes to P from changes of each influent X.Partial differencing of a relation is
defined as generating partial differentials for all the influents of the relation. The net
changes of the partial differentials are accumulated (using∪∆) into ∆P.

Let Ip be the set of all relations that P depends on. The∆-set of P, ∆P, is then
defined by:

∆P = ∪∆
∆P =1 ∪∆ <∆P , ∆P > , ∀X ∈ Ip∆X ∆+X ∆-X

For example, if P depends on the relations Q and R then:

1. Equivalent to∪∆ ∆P/∆X.

96 Efficient Rule Execution Using Partial Differencing

∆P =∆P ∪∆
∆P = <∆P , ∆P > ∪∆ <∆P , ∆P

∆Q ∆R ∆+Q ∆-Q ∆+R ∆ -R
>

To detect changes of derived relations we define intersection (conjunction), union
(disjunction), and complement (negation) in terms of their differentials as:

∆(Q ∩ R) = <(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>
 ∪∆

<{} , (∆-Q ∩ Rold) ∪ (Qold ∩ ∆-R>

∆(Q ∪ R) = <(∆+Q - Rold) ∪ (∆+R - Qold), {}>
 ∪∆
<{}, (∆−Q − R) ∪ (∆−R − Q)>

∆(~Q) = <∆-Q, ∆+Q>

From the expressions above we can easily generate the simpler expressions in the
case of, for instance insertions only. For example, when only considering insertions,
changes to intersections are defined as:

∆(Q ∩ R) = <(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>

6.7.6 Partial Differencing of the Relational Operators

The calculus of partial differencing can easily be applied to the relational alge-
bra to incrementally evaluate its operators. This is illustrated by table 6.1. This

was generated by separating the expressions above for insertions and deletions
and by using the definitions of the relational operators in terms of set opera-
tions. The table has been derived by applying the definitions in section6.7.5 on
the boolean expressions that represent the relational operators (see section14.2

P
∆P
∆+Q

∆P
∆+R

∆P
∆−Q

∆P
∆−R

σcondQ σcond∆+Q σcond∆-Q

πattrQ πattr∆+Q πattr∆-Q

Q ∪ R ∆+Q - Rold ∆+R - Qold ∆-Q - R ∆-R - Q

Q - R* ∆+Q - R Q ∩ ∆-R ∆-Q - Rold Qold ∩ ∆+R

Q × R ∆+Q × R Q × ∆+R ∆-Q × Rold Qold × ∆-R

Q R ∆+Q R Q ∆+R ∆-Q Rold Qold ∆-R

Q ∩ R ∆+Q ∩ R Q ∩ ∆+R ∆-Q ∩ Rold Qold ∩ ∆-R

Table 6.1: Partial differencing of the Relational Operators
*) Q - R = Q∩ ~R

97

in the appendix). Note that the definitions in table 6.1 assume set-oriented
semantics.

To make it easier to compare how partial differencing relates to other rela-
tional incremental evaluation techniques defined using relational algebra here
is a relational version of thecnd_monitor_items condition function.

Let us assume we have the tablesITEMS andSUPPLIES:

ITEMS(INO, QUANTITY , MAX_ ST OCK, MIN_ST OCK,
CONSUME_FREQUENCY)

SUPPLIES(SNO, INO, DELIVER Y_TIME)

where INO and SNO are primary keys (in AMOS these are defined using the
OIDs of the objects of the types item and supplier).

The CND_MONIT OR_ITEMS condition can now be defined by (in SQL
syntax):

SELECT INO
FROM ITEMS, SUPPLIES
WHERE ITEMS.INO = SUPPLIES.INO AND

QUANTITY <
CONSUME_FREQUENCY * DELIVER Y_TIME + MIN_ST OCK

This relational view can be defined using the standard relational operators in
the query tree in fig. 6.6.

This modelling dif fers slightly from the AMOSQL version since we only have

ITEMS.INO = SUPPLIES.INO

ITEMS SUPPLIES

πINO, QUANTITY, CONSUME_FREQUENCY,

σQUANTITY < CONSUME_FREQUENCY *

πINO

Figure 6.6: The relational operators forCND_MONITOR_ITEMS

DELIVERY_TIME + MIN_STOCK

DELIVERY_TIME, MIN_STOCK

98 Efficient Rule Execution Using Partial Differencing

two tables compared to five stored functions. Here the functions are modelled
as five attributes:

ITEMS.QUANTITY,
ITEMS.CONSUME_FREQUENCY,
ITEMS.MIN_STOCK,
SUPPLIES.INO,and
SUPPLIES.DELIVERY_TIME

Using table 6.1 we can see that the join gives two major partial differentials:

∆CND_MONITOR_ITEMS/∆+ITEMS and
∆CND_MONITOR_ITEMS/∆+SUPPLIES,
but since all non-key attributes can be directly updated these are really five

partial differentials:
∆CND_MONITOR_ITEMS/∆+ITEMS.QUANTITY,
∆CND_MONITOR_ITEMS/∆+ITEMS.CONSUME_FREQUENCY,
∆CND_MONITOR_ITEMS/∆+ITEMS.MIN_STOCK,
∆CND_MONITOR_ITEMS/∆+SUPPLIES.INO, and
∆CND_MONITOR_ITEMS/∆+SUPPLIES.DELIVERY_TIME

In these partial differentials the influent table and one of its attributes would be
substituted by their differential versions where the differential of a table con-
tains the changed rows and the differential of an attribute contains just the pri-
mary key and the changed value of the attribute. For example, for
∆CND_MONITOR_ITEMS/∆+ITEMS.QUANTITY we get the query tree in
fig. 6.7 and for ∆CND_MONITOR_ITEMS/∆+SUPPLIES.INO we get the

ITEMS.INO = SUPPLIES.INO

∆+ITEMS SUPPLIES

π

σQUANTITY < CONSUME_FREQUENCY *

πINO

DELIVERY_TIME + MIN_STOCK

DELIVERY_TIME, MIN_STOCK
INO, ∆+QUANTITY, CONSUME_FREQUENCY,

Figure 6.7: The relational operators for∆CND_MONITOR_ITEMS/
∆+ITEMS.QUANTITY

99

query tree in fig. 6.8.
.

6.7.7 Using Partial Differencing for Maintaining
Materialized Views

There exist many publications where incremental evaluation techniques are
used for maintaining materialized views [80][13][62][75][77]. Partial differ-
encing was developed for change monitoring of active rule conditions, but it
can also be used for managing materialized views. The calculus of partial dif-
ferencing is defined over∆-sets which are defined as a pair consisting of a pos-
itive part (insertions) and a negative part (deletions). By viewing the
materialized view as the positive1 part of a∆-set the calculus can be used to
incrementally calculate the new state of a cached (materialized) view P, P’,
using P’ = (P∪ ∆+P) - ∆−P. Likewise, we can also decrementally calculate the
old value P of a view P’, using P = (P’∪ ∆−P) - ∆+P. Using partial differenc-
ing we can calculate incremental expressions to calculate the new value of a
materialized view. Here are the definitions of the new values of materialized
views defined in terms of select (σ), project (π), and join () using the defini-
tions in partial differencing and some simple transformations:

1. This is based on the assumption that the database only stores positive data, i.e.
inserted positive facts. Databases allowing negated data are not considered in this
thesis.

ITEMS.INO =∆+SUPPLIES.INO

ITEMS ∆+SUPPLIES

πINO, QUANTITY, CONSUME_FREQUENCY,

σQUANTITY < CONSUME_FREQUENCY *

πINO

DELIVERY_TIME + MIN_STOCK

DELIVERY_TIME, MIN_STOCK

Figure 6.8: The relational operators for∆CND_MONITOR_ITEMS/∆+SUP-
PLIES.INO

100 Efficient Rule Execution Using Partial Differencing

(σcondP)’ = ∆+(<σcondP, {}> ∪∆ σcond∆P) = ∆+(<σcondP, {}> ∪∆
(<σcond∆+P, {}> ∪∆ <{}, σcond∆−P>)) =
/* Transform the second∪∆ using the definition of∪∆ */
∆+(<σcondP, {}> ∪∆ <σcond∆+P, σcond∆−P>) =
/* Transform the last∪∆ */
∆+<(σcondP ∪ σcond∆+P) - σcond∆−P,

σcond∆−P - (σcondP ∪ σcond∆+P)> =
/* Extract the∆+ part of the∆-set */
(σcondP ∪ σcond∆+P) - σcond∆−P

Note thatσcondP is here directly available since this is the view that is being
maintained as a materialized view.

(πattrP)’ = ∆+(<πattrP, {}> ∪∆ πattr∆P) = ∆+(<πattrP, {}> ∪∆ (<πattr∆+P, {}>
∪∆ <{}, πattr∆−P>)) =
/* Transform the second∪∆ using the definition of∪∆ */
∆+(<πattrP, {}> ∪∆ <πattr∆+P, πattr∆−P>) =
/* Transform the last∪∆ */
∆+<(πattrP ∪ πattr∆+P) - πattr∆−P,

πattr∆−P - (πattrP ∪ πattr∆+P)> =
/* Extract the∆+ part of the∆-set */
(πattrP ∪ πattr∆+P) - πattr∆−P

Note thatπattrP is here directly available since this is the view that is being
maintained as a materialized view.

(P Q)’ = ∆+(<P Q, {}> ∪∆ ∆(P Q)) =
∆+(<P Q, {}> ∪∆ (<∆+(P Q), {}> ∪∆ <{}, ∆−(P Q)>)) =
/* Expand∆+(P Q) and∆−(P Q) using table 6.11 */
∆+(<P Q, {}> ∪∆
(<(∆+P Q’) ∪ (P’ ∆+Q), {}> ∪∆
<{}, (∆−P Q) ∪ (P ∆−Q)>))
=
/* Transform the second∪∆ using the definition of∪∆ */
∆+(<P Q, {}> ∪∆

<((∆+P Q’) ∪ (P’ ∆+Q)) - ((∆−P Q) ∪ (P ∆−Q)) ,
((∆−P Q) ∪ (P ∆−Q)) - ((∆+P Q’) ∪ (P’ ∆+Q))>) =

/* Transform the remaining∪∆ using the definition of∪∆ */
∆+<(P Q ∪

(((∆+P Q’) ∪ (P’ ∆+Q)) - ((∆−P Q) ∪ (P ∆−Q))))
-

(((∆−P Q) ∪ (P ∆−Q)) - ((∆+P Q’) ∪ (P’ ∆+Q))),
(((∆−P Q) ∪ (P ∆−Q)) - ((∆+P Q’) ∪ (P’ ∆+Q)))
-

(P Q ∪
(((∆+P Q’) ∪ (P’ ∆+Q)) - ((∆−P Q) ∪ (P ∆−Q))))>

1. Note that P and Q represent Pold and Qold.

101

=
/* Extract the∆+ part of the∆-set */
(P Q ∪
(((∆+P Q’) ∪ (P’ ∆+Q)) - ((∆−P Q) ∪ (P ∆−Q))))
-
((∆−P Q) ∪ (P ∆−Q)) - ((∆+P Q’) ∪ (P’ ∆+Q)))

Note that P Q is here directly available since this is the view that is being
maintained as a materialized view.

The expression for incrementally maintaining a join above depends on the
fact that the future states of sub-expressions are available which is exactly what
a breadth-first, bottom-up propagation algorithm guarantees. This expression is
what is used for execution in partial differencing where the four partial differ-
entials are kept intact. These are easier to optimize separately than a full differ-
ential expression.

Similar, but full, differential expressions can be found in [75]. A major dif-
ference is that in partial differencing all net-effects are calculated by the∪∆
operator while in full differential expressions the net-effect calculation is
embedded in the full expression. By isolating the net-effect to one operator it is
possible to also use partial differencing for propagating physical changes (e.g.
physical events of ECA-rules) by using∪ instead of∪∆ (see section6.16 and
section7.7).

In view maintenance the new value, P’, of a view P will usually become the
new cached value. If we then want to go back to the previous value of the view
P, given P’, we can use P = (P’∪ ∆−P) - ∆+P to perform adecremental compu-
tation (or a logical rollback). Similarly to the incremental expressions above,
we can define the decremental expressions of select (σ), project (π), and join
() by:

σcondP = ((σcondP)’ ∪ σcond∆−P) - σcond∆+P

Note that (σcondP)’ is here directly available since this is the view that is being
maintained as a materialized view.

πattrP = ((πattrP)’ ∪ πattr∆−P) - πattr∆+P

Note that (πattrP)’ is here directly available since this is the view that is being
maintained as a materialized view.

P Q = ((P Q)’ ∪
((∆−P Q) ∪ (P ∆−Q)) - ((∆+P Q’) ∪ (P’ ∆+Q))))
-
(((∆+P Q’) ∪ (P’ ∆+Q)) - ((∆−P Q) ∪ (P ∆−Q)))

Note that (P Q)’ is here directly available since this is the view that is being
maintained as a materialized view.

Here we also depend on the breadth-first, bottom-up propagation algorithm
to ensure that old states of the sub-expressions are available when the partial
differentials are to be executed.

102 Efficient Rule Execution Using Partial Differencing

6.8 The Propagation Algorithm

A breadth-first, bottom-up propagation algorithm has been implemented to sup-
port the partial differencing calculus. In the implementation∆-sets are repre-
sented as temporary materializations done in the propagation algorithm and are
discarded as the propagation proceeds upwards. Changes, i.e.∆-sets, which are
not referenced by any partial differentials further up in the network are dis-
carded. This assumes that there are no loops in the network, which is not possi-
ble with recursive relations1. The algorithm propagates changes breadth-first
by first executing all affected partial differentials of an edge and then by accu-
mulating the changes in the nodes above (fig. 6.9).

Here is an outline of the quite simple algorithm (see chapter 7 for more details):

for each level (starting with the lowest level)
for each changed node (marked as changed when a node below

gets a non-empty ∆-set)
for each edge to a node below

execute the partial differential(s)
and accumulate the result in the
∆-set of the node using ∪∆

if the ∆-set is non-empty
mark the nodes above as changed

1. The algorithm can be extended to handle linear recursion by revisiting nodes below
and using fixed point techniques. Work on incremental evaluation of recursive
expressions can be found in [65].

Changes to rule conditions

Changes to stored functions (∆-sets)

Figure 6.9: Propagation by a breadth-first, bottom-up algorithm

∆
∆

∆ ∆ ∆

∆

control flow

data flow

103

Note that the nodes in the lowest level represent changes to stored functions
and are marked as changed during the transaction when the changes are
detected and accumulated in the corresponding∆-set. The∆-sets of each node
are cleared after the node has been processed, i.e. after the partial differentials
that reference the∆-sets have been executed.

In section7.7 the propagation algorithm is discussed in more detail.

6.9 Performance Measurements

Performance of rule condition monitoring is related to expressibility and the
complexity of rule conditions. Expressibility relates to the number of rules
needed for a specific monitoring task. The rules in AMOSQL have the full
expressibility of AMOSQL queries in the condition. Complexity relates to the
number of changes that can affect a rule condition and how they affect the con-
dition. One rule can monitor several different changes to one rule condition.
The incremental evaluation technique based on partial differencing is efficient
for small changes to a few functions that affect the rule condition, but is not so
efficient for large changes to many such functions. The potential number of
changes that can affect the rule condition does not directly relate to the effi-
ciency of this technique since it only considers one change at a time. What
affects performance is the actual number of updates and how a particular
update affects the condition.

A performance measurement was performed using two implementations of
rule condition evaluation, one based on naive, i.e. full, evaluation and another
based on partial differencing. The benchmarks were based on monitoring the
monitor_items rule defined previously and with full expansion of rule con-
ditions. Seven benchmarks were run and with encouraging results. The first
three measurements aimed at determining how much more efficient the incre-
mental change monitoring is than the naive change monitoring for small
changes. These consider few changes per transaction to one, two, or three par-
tial differentials. These are considered normal cases and are shown to be very
efficient to monitor using partial differencing. The next three consider many
changes to one, two, or three partial differentials. These are considered worst
case situations, and are more efficient to monitor naively, but they are still
monitored with an acceptable efficiency using partial differencing. The last
benchmark modifies the rule condition to contain a function that affects all
items with one update; this function will now create one very expensive partial
differential. This last benchmark considers one change to this expensive partial
differential together with many changes of another cheap partial differential.

6.9.1 Benchmark 1: One Change to One Partial
Differential

A series of 100 transactions was run where each transaction changed the quan-
tity of one item. This causes change to only one partial differential in each
transaction in the incremental change monitoring. The reason for this can be

104 Efficient Rule Execution Using Partial Differencing

seen in fig. 6.4 where changes to quantities (∆quantity) will be propagated
by executing only the partial differential∆cnd_monitor_items/∆+quan-
tity. By contrast, the naive method goes through all the quantities of all the
items in the database. The results can be seen in fig. 6.10. Note that the axis
have logarithmic scale since the magnitude between the execution times of the
different techniques is too great to display with a linear scaled axis. The time
for incremental change monitoring is very constant, regardless of the number of
items, with an average time of 14 sec. or 140 msec/transaction. Note that the
times presented here do not represent the possible throughput of the AMOS
architecture, but only the results from running a prototype implementation as a
regular application process.1 The time for naive change monitoring increases
linearly with the number of items and is on the average 8.2 sec/transaction for
10 000 items.

From this first benchmark it is easy to see why incremental change monitor-
ing is the better technique of the two when the number of changes to a rule con-
dition in a transaction is small. Naive change monitoring quickly becomes
infeasible as the size of the database grows and where rule conditions are com-
plex queries over large portions of the database.

6.9.2 Benchmark 2: One Change to Two Partial
Differentials

A series of 100 transactions was run where each transaction changed the quan-

1. All measurements were made on an HP9000/710 with 64 Mbyte of main memory and
running HP/UX.

Figure 6.10: 100 transactions with 1 change to 1 partial∆-relation

105

tity of one item and the delivery time for the item. This will cause change to
two partial differentials which is still very efficient to monitor by incremental
techniques. The naive change monitoring technique will evaluate the whole
condition and thus increases linearly with the size of the database. The results
can be seen in fig. 6.11. The time for incremental change monitoring is on the
average 15 sec. or 150 msec/transaction.

6.9.3 Benchmark 3: One Change to Three Partial
Differentials

A series of 100 transactions was run where each transaction changed the quan-
tity of one item, the delivery time for the item, and the consume-frequency for
the item. This will cause change to three partial differentials which is still very
efficient to monitor using incremental techniques. The naive change monitoring
technique will evaluate the whole condition and thus increases linearly with the
size of the database. The results can be seen in fig. 6.12. The time for incremen-
tal change monitoring is on the average 16 sec. or 160 msec/transaction.

These first measurements show that the incremental change monitoring
technique is very efficient if the number of changes is small even if several
parts of the rule conditionare effected. As will be shown in benchmark 7 this is
not always the case. It depends on how the change affects the condition and
how expensive the related partial differential is to evaluate.

Figure 6.11: 100 transactions with 1 change to 2 partial∆-relations

106 Efficient Rule Execution Using Partial Differencing

6.9.4 Benchmark 4: Many Changes to One Partial
Differential

In this test one transaction was run which updated the quantity of all items in
the database. This means that only one partial differential
(∆cnd_monitor_items/∆+quantity) is affected. The affected partial dif-
ferential has to check the quantities of all the items which is exactly what the
naive change monitoring technique does. Since there is an overhead in doing
the actual propagation, the incremental change monitoring technique performs
slightly worse than the naive one (fig. 6.13).

Figure 6.12: 100 transactions with 1 change to 3 partial∆-relations

107

6.9.5 Benchmark 5: Many Changes to Two Partial
Differentials

In this test one transaction was run which updated the quantity and the delivery
time of all items in the database. This means that two partial differentials are
affected. As shown in fig. 6.4 the partial differentials ∆cnd_monitor_items/
∆+quantity and ∆cnd_monitor_items/∆+delivery_time will both need
to be executed, which results in overlapping execution. In the naive version these
overlaps in the execution do not appear. As shown in fig. 6.14 many changes to three
partial differentials perform slightly worse than naive change monitoring. The
affected partial differentials have to check all the items which is exactly what
the naive change monitoring technique does, but it does it all at once, as in the
case of benchmark 4. The incremental change monitoring technique still per-
forms only slightly worse than the naive one.

Figure 6.13: 1 transaction with n changes to 1 partial ∆-relation

108 Efficient Rule Execution Using Partial Differencing

6.9.6 Benchmark 6: Many Changes to Three Partial
Differentials

In this test one transaction was run which updated the quantity, the delivery
time, and the consume-frequency of all items in the database.This caused
changes to three out of the five partial differentials in each transaction in the incre-
mental change monitoring. As shown in fig. 6.4 the partial differentials
∆cnd_monitor_items/∆+quantity, ∆cnd_monitor_items/
∆+delivery_time, and∆cnd_monitor_items/∆+consume_frequency
will all need to be executed, which results in overlapping execution. In the naive ver-
sion these overlaps in the execution do not appear. As shown in fig. 6.15 many
changes to three partial differentials perform worse than naive change monitoring,
but only by a constant factor of about 1.6.The affected partial differentials have to
check all the items, which is exactly what the naive change monitoring tech-
nique does, but it does it all at once, as in the case of benchmarks 4 and 5. The
incremental change monitoring technique now performs much worse than the
naive one. The reason for this can be found in the definition of thethreshold
function. Changing the quantity or the consume-frequency causes partial differ-
entials to be evaluated that both have to check which supplier supplies the
changed item, what the delivery time of the item is, and what the minimum
stock of the item is. Changing the delivery time does not require finding the
supplier since this is part of the propagated change.

Figure 6.14: 1 transaction with n changes to 2 partial∆-relations

109

6.9.7 Benchmark 7: One Change to One Expensive
Partial Differential and Many Changes to One
Cheap Partial Differential

The previous benchmark shows that different changes can have different effects
on performance because of the partial differentials that they affect varies in
cost of evaluation. The number of changes of a partial differential does not nec-
essarily need to be large in order to have a large effect on the total performance.
To highlight this we redefine themin_stock function to affect all items:

create function min_stock() -> integer;
create function threshold(item i) -> integer as

select consume_frequency(i) * delivery_time(i, s)
+ min_stock()

for each supplier s where supplies(s) = i;

Changing the minimum stock has a dramatic effect on performance. The quan-
tity was changed for all items and the minimum stock was changed once in a
single transaction fig. 6.16. This can be compared with fig. 6.13 to show that
changing the minimum stock only once dramatically degrades performance for
the incremental change monitoring technique.

Figure 6.15: 1 transaction with n changes to 3 partial∆-relations

110 Efficient Rule Execution Using Partial Differencing

From these measurements the conclusion can be made that the incremental
change monitoring technique is superior for a small number of changes in most
transactions. In this case, the performance is independent of the size of the
database; we say that the incremental change monitoring scales-up with respect
to size.

For a large number of changes in a transaction the naive change monitoring
technique performs better. In the worst case incremental change monitoring,
however, only performs worse than naive change monitoring by a constant fac-
tor. By deactivating rules with incremental change monitoring during a large
number of changes and activating them (causing a naive evaluation) before
transactions are committed, the best of both techniques can be attained. How-
ever, the cost of deactivating and activating a rule again must be considered
here since this involves contracting and then expanding the propagation net-
work.

Note that these measurements are not really dependent on the fact that only
one rule is activated. If several rules are activated, but only one of them is
affected by the changes, i.e. if the condition refers to the function that changes,
then there will be no overhead from the other rules. If, however, there are
changes that affect several rules or if one rule causes changes that affect the
condition of another rule, then it is a different matter. Measuring performance
in such cases requires carefully designed benchmarks that can give valuable
information on where the bottlenecks are in different change monitoring and
action execution strategies.

Figure 6.16: 1 transaction with n changes to 1 partial ∆-relation and 1
change to 1 expensive partial ∆-relation

111

6.10 Optimization Techniques for Partial Differencing

There are several optimization techniques that can be used to improve the per-
formance of partial differencing. One basic idea was that it should be possible
to optimize the partial differentials with general query optimization techniques.
There are also some additional optimization techniques that can be considered
for improving the propagation in the propagation network.

6.10.1 General Optimization Techniques

The ObjectLog optimizer in AMOS as described in [82] is based on Horn
clause rule substitution and a cost model for subgoal reordering. Horn clause
rule substitution means that the optimizer combines Horn clause rules into
larger rules by expanding subgoals. Not all subgoals can be expanded, e.g. late
bound calls and recursion. By expanding all possible subgoals the following
steps in the optimization process will have more degrees of freedom for optimi-
zation.

For any Horn Clause rule or predicate P, the input tuple is the tuple corre-
sponding to the variable(s) that are bound in P. For a given input tuple there are
zero or several output tuples, corresponding to unbound variable(s) in P. Sub-
goal reordering is based on a cost model1 that calculates two cost estimates for
P:

1. Theexecution cost of P, CP, defined as the number of visited tuples, given
that all variables of the input tuple are bound.

2. Thefanout, FP, which is the estimated number of output tuples produced by
P for a given input tuple.

For a conjunctive query consisting of subgoals {Pi}, 1 ≤ i ≤ n, the total cost C is
calculated by the formula:

For disjunctive queries, i.e. in disjunctive normal form, each part of the dis-
junction is optimized separately.

A rank for each subquery in a query plan is calculated by using fanout and
cost information and some optimization strategy. The rank is used to reorder
the subgoals in a query plan. In the system three different optimization strate-
gies are available. A heuristic method based on calculating the ranks through a
simple formula [82] is currently the default method. A randomized method

1. Assuming that the query execution uses a nested-loop join.

C CPi
FPj

j 1=

i 1–

∏

i 1=

n

∑=

112 Efficient Rule Execution Using Partial Differencing

based on Simulated Annealing and Iterative Improvement [73] is available as
an option, and which is the most effective of the three for optimizing large que-
ries, i.e. large join queries. Exhaustive optimization is also available [107]
which calculates the optimal plan, but can only be used for smaller queries.

The fanout of predicates, i.e. stored relations, is currently defined by the fol-
lowing default values:

• FP = 1 if the input tuple has a unique index.

• FP = 2 if it has a non-unique index.

• FP = 4 otherwise.

The defaults for CP of predicates are:

• CP = FP if the input tuple has an index.

• CP = 100 if it is unindexed, since the system has to scan the entire table.

Foreign predicates (i.e. foreign functions) have by default FP = 1 and CP = 1,
assuming they are cheap to execute and return a single result tuple. The user
can provide cost hints for each predicate, which override the default assump-
tions about CP and FP. For Horn Clause rules, i.e. for views, FP is calculated by
using FP of the subgoals.

The reordering of subgoals of a relation P, i.e. a Horn Clause, is performed
by the optimizer by using the given CQ and FQ of each subgoal Q of P, with the
aim of minimizing CP.

Take an unoptimized version of ObjectLog code for
cnd_monitor_items:

cnd_monitor_itemsitem,item(I) ←
quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
suppliessupplier, item(_G3, I) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

HereI is bound by the scan ofquantity and sinceI is the unique index of
consume_frequency it will get Cconsume_frequency = Fconsume_frequency
= 1. SinceI is not an index tosupplies we get Csupplies = Fsupplies = 4.
AssumingI is not a unique index fordelivery_time, i.e. different suppliers
can be defined to have different delivery times for the same item, we get
Cdelivery_time = Fdelivery_time = 2. By swapping supplies and
delivery_time we bind_G3 by the indexed access ofdelivery_time and

113

we get Csupplies = Fsupplies = 1.

Using the cost formula above the query optimizer will determine that the
following query plan is more efficient.

cnd_monitor_itemsitem,item(I) ←
quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
suppliessupplier, item(_G3, I) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

6.10.2 Optimizing Partial Differentials

When optimizing a partialdifferential the optimizer should take into account
that the∆-relation for which it is differentiated for is much smaller than the
original relation. The ObjectLog optimizer described in [82] is being extended
with new cost metrics for∆-relations. Take the unoptimized version of
∆cnd_monitor_items/∆+supplies:

∆cnd_monitor_itemsitem(I)/∆+supplies ←
quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
∆+suppliessupplier, item(_G3, I) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

By defining fanout and cost for∆-relations that give a much cheaper total cost
the query optimizer moves the∆-relations early in a query plan (usually first).

For example, we can define the fanout and cost defaults for a predicate P, ∆P
by:

• F∆P = 0.1 if the input tuple has a unique index.

• F∆P = 0.2 if it has a non-unique index.

• F∆P = 0.4 otherwise

with the defaults for C∆P defined by:

• C∆P = FP if the input tuple has an index.

114 Efficient Rule Execution Using Partial Differencing

• C∆P = 2 if it is unindexed, since the system has to scan the entire event history.

From these we get C∆supplies = F∆supplies = 0.4 and the query optimizer will
find that the following query plan is more efficient:

∆cnd_monitor_itemsitem(I)/∆+supplies ←
∆+suppliessupplier, item(_G3, I) ∧
quantityitem,integer(I,_G1) ∧
consume_frequencyitem,integer(I,_G2) ∧
delivery_timeitem,supplier,integer(I,_G3,_G4) ∧
_G5 = _G2 * _G4 ∧
min_stockitem,integer(I,_G6) ∧
_G7 = _G5 + _G6 ∧
_G1 < _G7

Since∆-relations are usually very small they will often be moved early. Often
the ∆-relation will be placed first, but this is not always the case as is assumed
in [65]. For example, if some foreign predicate is defined to be very cheap, it
might produce a more efficient plan if it is placed before a∆-relation. A∆-rela-
tion could also be defined to be more expensive than indexing a stored relation,
e.g. if we assume that it represents a function that will be changed quite heavily
during a transaction.

The fanout and cost of a differential can be application dependent, espe-
cially if it represents changes to external data. An application can update some
data very often while other data is changed more seldom. The AMOS query
optimizer allows the user to specify fanout and cost for a function and in
section9.5.2 this is discussed as part of the definition of foreign data sources
that defines external data in a database schema. The actual choice of default
values for fanout and cost will have to be investigated further. The above
default values have been chosen to produce a lower cost for query plans with
partial differentials early, but are not backed up by any empirical studies or
benchmarks.

In [75] a framework for query optimization of differentiated queries is pre-
sented. Some of these rules such as performing selections or projections to
smaller differentials instead of full expressions are covered by the query opti-
mizations techniques discussed above. In AMOS a differential is given a
smaller fanout (and cost) than the full corresponding expression causing the
query optimizer to choose selections or projections to differentials before most
full expressions.

6.10.3 Common Subqueries and Node Sharing

Optimizations such as reusing sub-expressions can be made by restricting the
way AMOSQL functions are expanded when being compiled into ObjectLog.
There is a trade-off between expansion for better query optimization and node
sharing for more efficient change propagation. This is an area for further
research.

115

To achieve a propagation network analogous to that in fig. 6.3 we could choose to
definecnd_monitor_items in terms of two partial differentials instead:

∆cnd_monitor_itemsitem(I)/∆+quantity ←
∆+quantityitem,integer(I, _G1) ∧
thresholditem,integer(I, _G2) ∧
_G1 < _G2

∆cnd_monitor_itemsitem(I)/∆+threshold ←
quantityitem,integer(I, _G1) ∧
∆+thresholditem,integer(I, _G2) ∧
_G1 < _G2

The∆threshold function would then be defined in terms of four partial differ-
entials and become an intermediate node in the network. This would be benefi-
cial if the threshold function is referenced in other rule conditions as well since
this would enable node sharing.

6.11 Strict and Nervous Rule Semantics

Partial differentials that contain selections might produce∆-sets that are too
large. This occurs, for example, if we want to calculate∆σem-

ployee.income>10000(employee) where we get an update of employee.income from
10 001 to 10 002. Such an update causes no change to the set of all employees
with a salary > 10 000 while a partial differential of such an expression will
report an update. This is acceptable for rule conditions only dependent on posi-
tive changes and that use nervous semantics.

For strict semantics these tuples have to be removed by checking the old
state of the selection. In the example above we have to materialize the set of all
employees with a salary > 10 000. Negative partial differentials might also pro-
duce a∆-set that is too large, i.e. deletions of tuples that are still present in the
new state of the database. Unlike for positive changes, this is more serious as it
might cause rules not to trigger on positive changes since these have been can-
celled by incorrectly propagated negative changes. To avoid this, for negative
changes we have to check if the tuple is still present in the new state of the
database. If this is not done, the rules might under-react, which is unacceptable.
For strict semantics of unions a check is made that positive/negative changes
are propagated only if the other part of the union was/is not present.

6.12 Bag-oriented and Set-oriented Semantics

Note that we assume set-oriented semantics since this is the most natural
semantics for rule conditions.Partial differencing can be defined forbag-ori-
ented semantics as well, which is discussed in section6.17.Partial differencing
of the relational operators for bag-oriented semantics is not as straight forward
as for set-oriented semantics.Some work on differencing where bag-oriented

116 Efficient Rule Execution Using Partial Differencing

semantics is assumed can be found in [61][77][100].
In [77] a technique similar to partial differencing is used, but with support for

removing overlaps between different partial differentials to have true bag-oriented
semantics.

In [77] positive changes are calculated by: changing all subgoals Y in∆P/∆+X to
Y - ∆+Y, ∀X, Y ∈ Dp and X≠ Y and where Y precedes∆+X in the conjunction, and
negative changes by: changing all Yold in ∆P/∆-X to Yold - ∆-Y, ∀X, Y ∈ Dp and X≠
Y and where Yold precedes∆-X in the conjunction. (See appendix for how this modi-
fication affects partial differencing of conjunctions).

With set-oriented semantics, when there are changes to more than one influ-
ent, the definitions in fig. 6.1 might lead to a set of changes that is too large, i.e.
containing duplicates. These will, however, be removed by∪∆. Since∪∆ is
not commutative for set-oriented semantics,∪∆ has to be performed in the
same order as the changes originally occurred in the transaction. For example,
if a tuple is first inserted and is later removed, then there is no net effect. If the
order of operations is reversed, i.e. a removal (without any effect) followed by
an addition, then the net effect is one added tuple. In section6.17 partial differ-
encing and the∪∆ are extended to handle updates separately. Part of this
extension is to define∆-sets as transaction time relations, i.e. as timestamp
ordered time series. The new version of∪∆ joins the∆-sets in timestamp order
and thus can support both set-oriented semantics and bag-oriented semantics1.

6.13 Partial Differencing of Overloaded Functions

In the previous sections it has not been explained how partial differencing is
performed on overloaded functions. If a rule condition references an over-
loaded function, all the possible resolvents have to be considered when the con-
dition is monitored. In the change propagation of partial differencing the
propagation network will have different propagation paths for each resolvent.
The network now becomes a graph instead of a a tree structure. Lets look at the
no_high rule again:

create rule no_high(department d) as
when for each employee e
where dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
do set employee.grossincome->number(e) =

grossincome(mgr(e));

The condition function for this rule will become:

1. Time series can be used to represent a bag since each duplicate tuple will have a
unique timestamp which represents the transaction time when the tuple was inserted
into the bag.

117

create function cnd_no_high(department d) -> employee as
select e for each employee e
where dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e));

The query compiler/optimizer can here deduce that there are two different
netincome functions (resolvents) involved, one for employees and one for
managers. There is no confusion of which resolvent to choose, i.e. the compiler
will perform early binding. The propagation network for this function can be
seen in fig. 6.17.

Since bothnetincome andgrossincome are overloaded, different partial
∆-relations will be defined that can calculate the changes to the full functions in
terms of changes to theincome function. Since the AMOSQL compiler can
determine exactly what two different resolvents ofnetincome andgross-
income are involved here, the final execution plan for the partial differentials
will reference these. Actually in the current implementation the execution plan
will be expanded to reference theincome function directly twice, i.e. once for
each resolvent. Two different partial differentials will be generated for moni-
toring ∆income , i.e. ∆cnd_no_high /∆income’ and ∆cnd_no_high /
∆income’’ . If this expansion was not done, the propagation network would
look as above and we get the partial differentials ∆cnd_no_high /∆emp-
loyee.netincome->number and ∆cnd_no_high /∆manager.netin-
come->number . This can be beneficial if several rules reference these
resolvents in their conditions, since it would promote node sharing in the net-

∆cnd_no_high

∆dept

∆employee.netincome->number

∆employee.grossincome->number
∆manager.grossincome->number

Figure 6.17: The propagation network forcnd_no_high

∆income

∆manager.netincome->number

∆mgr

118 Efficient Rule Execution Using Partial Differencing

work.
If the compiler cannot determine the correct resolvents at compile-time this

will have to done at run-time, i.e. late binding of functions will be done. This
would be the case in the rule:

create rule no_high(department d) as
for each employee e
when dept(e) = d and netincome(e) > netincome(mgr(e))
do set employee.grossincome->number(e) =

grossincome(mgr(e));

The condition function for this rule will become:

create function cnd_no_high(department d) -> employee as
select e for each employee e
where dept(e) = d and
netincome(e) > netincome(mgr(e));

Here the first reference tonetincome in the condition can result in either of
the two resolvents depending on whethere is a manager or not. This will result
in a special algebra operator in the execution plan called a DTR (Dynamic Type
Resolver) [48]. This operator makes access to several resolvents possible and
also supports optimization and inverted calls. In a propagation network the
DTR will cause the creation of a special node1 that collects changes from all
the possible resolvents for that specific DTR. Each resolvent will then have its
own ∆-set with different changes. Which changes (which∆-set) that should be
propagated is determined at run-time. This node can be seen named∆netin-
comeDTR in the propagation network in fig. 6.18.

6.14 ECA-rule Semantics

Take an ECA-ruler() defined as:

for each ‘type of x’ x, ‘type of y’ y
on e1(x) or e2(x)
when c1(x) and c2(y)
do a1(x) and a2(y).

Using the notations defined in section6.5 we can define an ECA-rule as:

<name>(<parameter-specification>) =
[<variable quantification>]
<event-specification> | (<condition>⇒ <action>)

We can now write the ruler as:

1. Not yet implemented.

119

r() = ∀ xtype of x, ytype of y e1(x) ∨ e2(x)| (c1(x) ∧ c2(y) ⇒ a1(x) ∧ a2(y)),

The event part is monitored by defining a derivedevent function fe that
accesses other event functions and that returns the data shared by the event and
the condition (here data of the type ofx):

fe()type of x= ∀ xtype of x select x where e1(x) ∨ e2(x),

As before we define acondition function fc that returns the data shared by the
condition and action (here data of the type ofx and of the typey):

fc(xtype of x)type of x, type of y = ∀ ytype of y select x, y where c1(x) ∧ c2(y),

i.e. a function that returns a set of values of typex for all c(x) that returntrue,
and anaction procedure fa that takes the output of the condition function (here
the of type ofx and type ofy) as argument,

fa(xtype of x, ytype of y) = a1(x) ∧ a2(y)

ECA-rule execution can now be seen as the function applicationfa(fc(fe()))
wherefe only returns a value if the whole event specification is true. More pre-

∆cnd_no_high

∆dept

∆employee.netincome->number

∆employee.grossincome->number
∆manager.grossincome->number

∆income

∆manager.netincome->number

∆mgr

∆netincomeDTR

Figure 6.18: The propagation network forcnd_no_high with late binding

120 Efficient Rule Execution Using Partial Differencing

cisely for nervous and strict rule execution, respectively, we define:

∀ xtype of x, ytype of y
where x ∈ fe(x) ∧ <x, y> ∈ ∆fc(x)1

do fa(x, y)

∀ xtype of x, ytype of y
where x ∈ fe(x) ∧ <x, y> ∈ ∆fc(x) ∧ <x, y> ∉ (fc)old(x)
do fa(x, y)

Note that herex is bound from the event part, buty is free and is fetched from
the database. In AMOS the action function and the condition function are exe-
cuted at the same time, i.e. in the propagation phase. Conflict resolution is, of
course, applied to a triggered ECA-rule before the action function is actually
executed.

For EA-rules the condition functionfc can be skipped in the definitions
above and the result from the event functionfe is directly passed to the action
function fa. Of course the separation between nervous and strict rule execution
semantics does not apply to EA-rules since it only applies to rules with logical
conditions and EA-rules only monitor physical events.

In contrast, CA-rules only monitor logical events and ECA-rules monitor
both physical and logical events.

6.15 Propagating Events of ECA-rules

Propagating events in AMOS [86] is very similar to propagation of changes to
conditions. One major difference is that here we distinguish between three
basic changes (events) on stored functions.∆+ and∆- represent insertions and
removals to/from a stored function (using the AMOSQLadd and remove
operations). Updates (AMOSQLset operation) are handled separately using
the∆-+-function. In partial differencing updates are defined as one or several∆-
events immediately followed by a∆+ event. Partial differencing can be defined
in terms of updates, i.e.∆-+-functions, as well (see section6.17). The∆-+-
function is defined to return the new tuple from an update along with a bag of
the old tuples that were removed as a consequence of the update2. The ∆-
functions represent how event histories are defined in AMOS (see chapter 8).
The ∆-functions (or ∆-relations) of stored functions are calledstored event
functions and derived event functions for derived functions. In an ECA-rule
such as:

1. Actually we execute the action procedurefa on the positive changes representing
additions (∆+fc) and updates (∆-+fc) of fc.

2. In the general case an update should be defined as a new bag and an old bag, but here
only tuple-based updates are assumed to simplify the discussion.

121

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and updated(income(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do rollback;

the events that trigger the rule have to be calculated in a similar manner as in
partial differencing. During the compilation of ECA-rules a derived event func-
tion is created (along with the condition and action functions). For the
check_new rule these functions would be:

create function evt_check_new(department dnew)
-> <department dnew, employee e>

as select dnew, e
for each bag of department dold,

bag of number nold, number nnew
where <dold, dnew> = ∆-+dept(e) and

<nold, nnew> = ∆-+income(e);

create function cnd_check_new(department d, employee e)
-> boolean as

select true for each manager m
where dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m);

create function act_check_new(boolean)-> boolean as
rollback;

The event function (or∆-functions) can be referenced in the conditions of
ECA-rules as ordinary functions by passing the event data from the event func-
tion to the condition function, e.g. fetching the previous value of an update.
When the rules are checked the event functions are evaluated and if they return
anything, i.e. if the rule has been triggered, the result can be passed to the con-
dition and action functions. This gives a limited kind of incremental evaluation
on functions in the condition and action that share variables with the event part.
A triggering graph (fig. 6.19) is used to determine which event functions should
be executed.

In this ECA-rule the valuennew returned by the stored event function
∆-+income(e) is not used for calculatingnetincome in the condition. The
variablee is shared between the event and the condition makes the calculation
of thenetincome function efficient since e is the primary key to the updated
income function which is accessed bynetincome. In most cases this pro-
vides efficient condition evaluation since it is natural to share variables
between the event and the condition. In those cases where the condition refer-

122 Efficient Rule Execution Using Partial Differencing

ences a complex view (derived function) that does not share any variables with
the event part, the technique is modified to use partial differencing for change
monitoring of the rule conditions as well as for event propagation.

6.16 Event Propagation vs. Partial Differencing of Rule Con-
ditions

Event propagation and rule condition change monitoring can be defined to
coexist. The major difference is that event propagation is based on physical
changes and change propagation is based on logical changes. By adding infor-
mation to network nodes if they are part of event propagation, the physical
changes can be kept during the propagation. Note that physical changes will
always be translated into logical changes if they are to be used in condition
change monitoring. The main requirement is that we have to keep all physical
changes if they are needed as physical events in an event expression further up
in the network.

Note that physical changes are not only limited to stored relations. If an
ECA-rule references a view in the event part, then we must keep all physical
changes to that view.

In section6.17 partial differencing is extended to handle updates. The∆-set
is extended to contain a∆-+ part and the∪∆ operator is extended to support the
union of the extended∆-sets. By using the∪ operator instead of∪∆ all physi-
cal events calculated by partial differentials will be propagated. Partial differ-
encing of intersections (conjunctions), unions (disjunctions), and complements
(negations) are also modified to handle the updates. ECA-rules in AMOS [86]
that reference complex events, i.e. changes to derived functions, use a similar
propagation network as is used for partial differencing. This technique is lim-
ited to derived functions that are directly dependent on the updates of the stored
functions that they reference, i.e. they cannot contain any selections. Event
propagation of more complex derived functions can use partial differencing,
but with propagation physical changes instead of logical ones. This has not
been implemented yet, but is part of ongoing and future work. In chapter 9
monitoring of foreign functions is also considered as a further extension that

evt_check_new

∆-+dept
∆-+income

Figure 6.19: The triggering graph forevt_check_new

123

can use the change and event propagation techniques discussed here.
Let us look at an alternative version of thecheck_new rule with an event

part referencing a derived function:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and

updated(employee.netincome->number(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do rollback;

Now the generated functions will be:

create function evt_check_new(department dnew)
-> <department dnew, employee e>

as select dnew, e
for each department dold,

number nold,number nnew
where <dold, dnew> = ∆-+dept(e) and

<nold, nnew> = ∆-+netincome(e);

create function cnd_check_new(department d, employee e)
-> boolean as

select true for each manager m
where dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m);

create function act_check_new(boolean)->boolean as
rollback;

The∆-+netincome cannot be calculated directly since it is a derived function.
Instead we must use an event propagation network (fig. 6.20) which is a gener-
alization of the triggering graph and which is very similar to the propagation
network in partial differencing.

The calculation of∆netincome will be done using partial differencing, but
using physical changes instead of logical ones. Event functions like
evt_check_new are calculated directly using the propagated changes. The
evt_check_new will directly access the events in∆-+dept and those propa-
gated to∆-+netincome. If several ECA-rules are defined, the propagation
network will propagate all the changes breadth-first, bottom-up in a similar
way as for propagation of changes to rule conditions. The event propagation
network propagates all the physical changes and the event functions will be
able to access all the changes to the stored and derived functions that they ref-
erence. Techniques for optimization of partial differentials and network node

124 Efficient Rule Execution Using Partial Differencing

sharing are analogous to those for condition change monitoring.

By combining this technique with that of change propagation for partial differ-
encing, event propagation networks and change propagation networks can
share nodes. Note that incremental evaluation of conditions in ECA-rules is
usually only needed for functions that do not use shared variables passed
between the event and the condition. If a function call involves a shared varia-
ble, the propagated event data is passed from the event part to the condition in
a kind of user-defined incremental evaluation.

One major difference between propagating events to event functions and
propagating changes to incrementally calculate condition functions is that in
the first case physical events are propagated and in the other case logical events
(the logical changes) are propagated where conflicting events are cancelled out
by the∪∆. The physical and logical propagation can be viewed as two separate
sub-networks of that can share nodes (fig. 6.21).

evt_check_new

∆-+dept

∆-+employee.netincome->netincome

∆-+employee.grossincome->number

∆-+income

Figure 6.20: The event propagation network forevt_check_new

125

,

If physical events are propagated to the logical propagation network they will
be transformed into logical events by the∪∆ only when they are not needed as
physical events in higher levels of the propagation network. The combined net-
work for propagating events toevt_check_new and changes to
∆cnd_check_new can be seen in fig. 6.22.

Here changes to∆employee.netincome->number will be kept as phys-
ical events since they are needed byevt_check_new. They will be trans-
formed to logical events when they are added to∆cnd_check_new by ∪∆.

physical propagation logical propagation

event functions condition functions

∪∆

Figure 6.21: Propagating physical events to event functions and logical
events (the logical changes) to condition functions

∆cnd_check_new

∆dept

∆manager.grossincome->number

∆income

∆manager.netincome->number

∆mgr

evt_check_new

∆employee.netincome->number

∆employee.grossincome->number

Figure 6.22: The combined propagation network forevt_check_new and
∆cnd_check_new

126 Efficient Rule Execution Using Partial Differencing

6.17 Extended Partial Differencing Calculus for Updates

The added and removed of tuples of a relation P are defined as∆+P(ta) and∆-
P(tr) where ta and tr are the transaction times of the add and remove operations,
respectively. The update of a relation P is defined as∆-+P = {<{−<P, tu, keyn, a1,
..., ak>}, {+<P, tu, keyn, b1, ..., bk>}>n}, where {+<P, tu, keyn, b1, ..., bk>} is a new
added bag of tuples, tu is the time of the update, and k is the arity of P. {−<P, tu, keyn,
a1, ..., ak>} is the bag of tuples that the update removed and n≥ 0 is the number of
updates to P.

The definition of a∆-set is now modified to:
∆P = <∆+P,∆-P,∆-+P>

Thedelta-union, ∪∆, over differentials is defined as:
∆P1 ∪∆ ∆P2 =

<(∆+P1(ta) − ∆-P2(tr) − {−<P2, tu, keyn, c1, ..., ck>}n) where (ta<tr, ta<tu)
∪

(∆+P2(ta) − ∆-P1(tr) − {−<P1, tu, keym, a1, ..., ak>}m) where (ta<tr, ta<tu),
(∆-P1(tr) − ∆+P2(ta) − {+<P2, tu, keyn, d1, ..., dk>} n) where (tr<ta, tr<tu)

∪
(∆-P2(tr) − ∆+P1(ta) − {+<P1, tu, keym, b1, ..., bk>} m) where (tr<ta, tr<tu),
{<{ −<P1, tu, keym, a1, ..., ak>} − ∆+P2(ta), where tu<ta

{ +<P1, tu, keym, b1, ..., bk>} − ∆-P2(tr) >m} where tu<tr
∪

{<{ −<P2, tu, keyn, c1, ..., ck>} − ∆+P1(ta), where tu<ta
{ +<P2, tu, keyn, d1, ..., dk>} − ∆-P1(tr)>n}>, where tu<tr

where k is the arity of P, m≥ 0 is the number of updates in P1 and n≥ 0 is the number
of updates in P2. Note that the order of the operations is captured by comparing the
time stamps. The∆-sets are stored as tuples of time series (se section8.6) and will
thus behave as bags since duplicates will be stored with different timestamps. The−
and∪ operations above usebag-oriented semantics, − removes the latest matching
tuples and∪ joins time series by inserting the tuples into new ordered time series.
The∪∆ is now completely bag-oriented and the∆-sets are really∆-bags.

Next we modify the definition of thepartial differential, ∆P/∆X, that incremen-
tally monitors changes to P from changes of each influent X.Partial differencing of a
relation is defined as generating partial differentials for all the influents of the rela-
tion. The net changes of the partial differentials are accumulated (using∪∆) into ∆P.
The new version of ∪∆ above sorts all the added, remove, and updated tuples into
the respective parts in the resulting∆-set.

Let Ip be the set of all relations that P depends on. The∆-set of P, ∆P, is then
defined by:

∆P = ∪∆
∆P =1 ∪∆ <∆P , ∆P , ∆P > , ∀X ∈ Ip∆X ∆+X ∆-X ∆-+X

For example, if P depends on the relations Q and R then:

1. Equivalent to∪∆ ∆P/∆X.

127

∆P =∆P ∪∆
∆P = <∆P , ∆P , ∆P > ∪∆ <∆P , ∆P

∆-+R∆Q ∆R ∆+Q ∆-Q ∆-+Q ∆+R ∆ -R
, ∆P >

To detect changes of derived relations we define intersection (conjunction), union
(disjunction), and complement (negation) in terms of their differentials as:

∆(Q ∩ R) = <(∆+Q(ta) ∩ R) ∪ (Q ∩ ∆+R(ta)), {}, {}>
 ∪∆

<{} , (∆-Q(tr) ∩ Rold) ∪ (Qold ∩ ∆-R(tr), {}>
 ∪∆

<{} , {}, {<{ −<Q, tu, keym, a1, ..., aj>} m ∩ Rold,
{ +<Q, tu, keym, b1, ..., bj>} m ∩ R>}

∪
{<Qold ∩ { −<R, tu, keyn, c1, ..., ck>} n,

Q ∩ {+<R, tu, keyn, d1, ..., dk>} n>}>

∆(Q ∪ R) = <(∆+Q(ta) - Rold) ∪ (∆+R(ta) - Qold), {}, {}>
 ∪∆
<{}, (∆−Q(tr) − R) ∪ (∆−R(tr) − Q), {}>
 ∪∆
<{}, {}, {<{ −<Q, tu, keym, a1, ..., aj>} m − R,

{ +<Q, tu, keym, b1, ..., bj>} m − Rold>}
∪

{<{ −<R, tu, keyn, c1, ..., ck>} n − Q,
{ +<R, tu, keyn, d1, ..., dk>}n − Qold>}

∆(~Q) = <∆-Q(tr), ∆+Q(ta),
{<{+<Q, tu, key1, b1, ..., bj>}, { −<Q, tu, key1, a1, ..., aj>}>1}

∪
.
.
∪

{<{+<Q, tu, keym, b1, ..., bj>}, { −<Q, tu, keym, a1, ..., aj>}> m}>

where j is the arity of Q, k is the arity of R, m≥ 0 is the number of updates in Q, and
n ≥ 0 is the number of updates in R. Note that timestamps from each partial differen-
tial are propagated and sorted (by∪∆) in timestamp order separately for the
added(ta), removed(tr), and updated(tu) parts in the∆-set that is the result of each of
the above expressions. Note that overlaps between different partial differentials still
have to be removed to have true bag-oriented semantics as is explained in
section6.12.

Note also that the logical rollback is here defined in terms of updates as well, i.e.
Rold = (R ∪ ∆-R ∪ { −<R, tu, keyn, c1, ..., ck>} n) - ∆+R - { +<R, tu, keyn, d1, ...,
dk>} n and likewise for Qold.

128 Efficient Rule Execution Using Partial Differencing

6.18 Partial Differencing of Aggregates

Aggregate functions such as sum or count must be handled specially when
using partial differencing to calculate changes to rule conditions.

Take a rule that limits the number of allowed employees in a department:

create rule max_employees(department d,
integer max_nr_emp) as

when count(select e for each employee e
where dept(e) = d) > max_nr_emp

do rollback;

The condition function for this rule will be:

create function cnd_max_employees(department d,
integer max_nr_emp)

-> boolean as
select true

where count(select e for each employee e
where dept(e) = d) > max_nr_emp;

Bags created in sub-selects in AMOS are created by a special make-bag func-
tion that the function compiler creates automatically for each AMOSQL
expression that generates a bag. Bags are generated by sub-select expressions
and at calls to aggregate functions. The make-bag function takes all the free
variables in the sub-select as arguments and returns a generated bag. For the
sub-select above the following function is created and is called in the condition
function:

create function make_bagcnd_max_employees(department d)
-> bag of employee as

select e for each employee e
where dept(e) = d;

create function cnd_max_employees(department d,
integer max_nr_emp)

-> boolean as
select true
where count(make_bagcnd_max_employees(d)) > max_nr_emp;

By incrementally calculating the value of make_bagcnd_max_employees, using
partial differencing1, we can incrementally maintain the value of the count aggre-
gate without materializing the whole bag.

1. Note that to support correct incremental evaluation of aggregates, bag-oriented
semantics of the partial differencing calculus has to be used.

129

Changes to cnd_max_employees are calculated from changes
make_bagcnd_max_employees which in turn is calculated from changes to
dept. Two different partial differentials of∆make_bagcnd_max_employees,
called∆make_bagcnd_max_employees/∆+dept and
∆make_bagcnd_max_employees/∆−dept, will generate bags for the added and
removed tuples to the bag, respectively. The propagation network for
cnd_max_employees can be seen in fig. 6.23.

To support incremental calculation of thecount aggregate the condition func-
tion will cache the old value and only call a special incremental version of
count with the new changes to the bag:

create function cnd_max_employees(department d,
integer max_nr_emp)

-> boolean as
select true
where countcnd_max_employees

(∆+make_bagcnd_max_employees(d),
∆−make_bagcnd_max_employees(d), d)

> max_nr_emp;

where the incremental aggregate function is defined as:

create function countcnd_max_employees
(bag of employee ae, bag of employee re, department d)
-> integer as
begin

set cached_countcnd_max_employees(d) =
cached_countcnd_max_employees(d) +
count(ae) - count(re);

result cached_countcnd_max_employees(d);
end;

and where the cache is a stored function:

create function cached_countcnd_max_employees(department d)

∆cnd_max_employees

∆make_bagcnd_max_employees

∆dept

Figure 6.23: The propagation network forcnd_max_employees

130 Efficient Rule Execution Using Partial Differencing

-> integer;

Note that for maintaining the cached aggregate correctly the initial bag has to
be calculated completely when the corresponding rule is activated. After the
initial value of the aggregate has been determined it can be incrementally main-
tained. For the above rule the following expression will be evaluated when the
rule is activated:

set cached_countcnd_max_employees(d) =

count(make_bagcnd_max_employees(d));

whered is the department for which the rule is activated. If updates are treated
separately (as presented in section6.17) then there will be three partial differ-
entials for ∆make_bagcnd_max_employees and the materialized aggregate
function countcnd_max_employees will take four arguments for the bags of
added, removed, updated tuples, and the department, respectively.

Partial differencing of thesum aggregate can be done in a similar manner as
for count.

In [100] some work can be found on incremental maintenance of views with
aggregates.

6.19 Rule Termination Analysis

Another problem with rule execution is that the actions of one rule can affect
the conditions of other rules. This gives a potential risk for non-termination and
unpredictable execution times of rules. Some work on rule analysis has been
done such as in [8] where graphs are constructed on how rules affect each other
and where cycles are detected.

Another simple way to avoid non-termination is to limit the number of rule
execution cycles in the rule check phase. This is the approach currently chosen
in AMOS. An error is signalled if the number of iterations exceeds a constant
which can be set by the user. This, however, does not directly help the user with
what to do if this occurs. A back-trace facility would here be helpful to let the
user see which rules caused the problem. To detect possible sources of non-ter-
mination during the design phase it is desirable to have some analysis tools that
can detect potential rule execution cycles.

6.20 Real-time Aspects of Rule Execution

An ADBMS involved in monitoring and control of real-time applications such
as CIM and telecommunication network management needs to have some sup-
port for real-time behaviour. The rule priority specification at rule activation in
AMOS should not be considered for achieving different performance of rule
execution, but is rather for defining how simultaneously triggered rules should
behave semantically, e.g. to avoid incorrect or non-terminating execution.

Real-time issues such as predictability and meeting deadlines are not dis-

131

cussed in this thesis. The work in this thesis is focused on active rule execution
performance in general. Real-time issues considered inreal-time DBMSs [101]
can be applied to ADBMSs as well. Scheduling transactions triggered by active
rules is not much different from scheduling any transactions where real-time
limitations have to be considered. There are, however, some problems if the
scheduling has to be done in advance to ensure that all deadlines will be met
before execution has even begun. Such applications are usually hard real-time
applications, e.g. fine-grained control loops in real-time process control sys-
tems, and it is questionable whether full-fledged ADBMSs (supporting com-
plex rules in a declarative query language) should be used in such applications
at all.

Predictability of access of data can also be applied to data accessed by rules.
Ideas presented in [95] where new cost information based on quality of infor-
mation and cost in access time guides the optimizer to choose different access
methods, can be directly applied to query optimization of rule conditions.

There is also some research specific to active database systems where active
rules are directly specified with real-time constraints, such as in REACH [18]
and in [11].

132 Efficient Rule Execution Using Partial Differencing

133

7 The Propagation Network

7.1 Implementing Active Rules

Active rules can be implemented outside a DBMS as a wrapper application, but
this has serious implications on functionality and performance as was
explained in chapter 1. This chapter discusses detailed issues of implementing
active rules in an ADBMS. The issues discussed include: capturing and storing
events, building the propagation network, activating/deactivating rules, and the
algorithm for propagating events and changes in the propagation network.
Compilation and execution of rules using partial differencing were discussed in
chapter 6.

7.2 Capturing and Storing Events

Most events in an ADBMS are related to operations that modify the database,
such as changes to the contents of stored functions (tables) or changes to the
database schema1. These operations are usually logged, i.e. stored in a transac-
tion log, until the transaction is committed or aborted. If these operations affect
an activated rule, i.e. a rule that references the operation directly in the event
part or indirectly in the condition part, then the operation along with any opera-
tion data must be stored as an event. In the ADBMS manifesto [35] it is also
stated that the transaction time of the operation must be recorded with the event
as well.

A major difference between transaction logs and event logs (or event histo-
ries) is that a transaction log of disk-based DBMSs is usually a physical log
that records changes to pages while an event log is a logical log that records
events that represent logical changes to the database (e.g. tuples added to a
table). Storing events can be performed by recording the operations along with
the transaction time of their occurrence. In a main-memory DBMS such as
AMOS a logical transaction log is maintained since recording physical
changes to main-memory is difficult and usually inefficient. In some systems, a
separate logical transaction log is maintained, such as the transition log in Star-
burst [84], which contains the modifications done in a transaction. These logi-
cal transaction logs can also serve as an event histories. Such logical

1. Most relational DBMSs store the schema in meta-tables so schema changes can some-
times be regarded as changes to tables as well.

134 The Propagation Network

transaction logs are usually special data structures that can be updated effi-
ciently since new events will always be added last.

The logical transaction log will store all the events in one data structure and
will make the access of particular events, e.g. the update events of a particular
table, less efficient. Indexes can be added for accessing particular events, but
this will make the insertion of events less efficient. Storing all events in one log
makes it difficult to support different event consumption modes where all
events are not consumed at the same time.

A second better alternative is to provide adifferentiated event log by using
partial event logs for each event type and table. This alternative was chosen for
implementing events histories in AMOS (a similar technique is used in Monet
[79]). The advantages compared to one event log are:

• Fast access since each partial event log is usually small.

• Supports efficient rule condition execution by using partial differencing.

• Events can be defined on views as well since partial differencing can be used to
generate view events based on the events that the view depends on.

• Supports rule contexts that need events that exist longer than just during the trans-
action when they were raised. Each context will have its own partial event logs for
storing the events of the rules activated into that particular context.

• Supports event consumption by partitioning the event logs into separate logs for
each rule context that is currently active. When all the rules activated in a context
have been checked, i.e. the events are considered to be consumed, then the event
logs of that context are cleared (this is part of the propagation algorithm).

• Supports the concept of foreign events (see section9.4.1) which will have their
own partial event logs and which reflect the updates of a foreign data source that
are not logged on the transaction log.

The ∆-functions∆+(add event),∆-(remove event), and∆-+(update event) were
presented in chapter 6. These are temporal functions that directly access the
differentiated event log. See chapter 8 for a discussion on temporal functions.
Partial event logs are created for foreign events and can be used in partial dif-
ferencing in the same manner as local events. The event logs (or event histo-
ries) are implemented as time series as presented in chapter 8. This allows for
using all special indexing techniques defined for the time series. Foreign events
can be defined as time windows where a maximum size is defined and outdated
events are automatically discarded. Event logs are only created for events that
are referenced in rules and events are only stored for activated rules in acti-
vated rule contexts.

7.3 The Propagation Network

The propagation network contains all the information needed to propagate
changes affecting activated rules.

135

Let us look at the ruleno_high again:

create rule no_high(department d) as
when for each employee e
where dept(e) = d and

employee.netincome->number(e) > netincome(mgr(e))
do set employee.grossincome->number(e) =

grossincome(mgr(e));

The condition function forno_high is defined as:

create function cnd_no_high(department d) -> employee as
select e for each employee e
where dept(e) = d and
employee.netincome->number(e) > netincome(mgr(e));

The partial differencing technique is then used to define the partial differencing
functions:
∆cnd_no_high/∆-+employee.netincome->number,

∆cnd_no_high/∆-+manager.netincome->number,

∆employee.netincome->number/
∆-+employee.grossincome->number,

∆employee.netincome->number/
∆-+employee.grossincome->number,

∆manager.netincome->number/
∆-+manager.grossincome->number,

∆cnd_no_high/∆-+dept,

∆employee.grossincome->number/∆-+income, and

∆manager.grossincome->number/∆-+income.

When this rule is activated the above partial differentials will be inserted into
the propagation network. The dependency graph representing the propagation
network ofcnd_no_high can be seen in fig. 6.17.

Since the propagation is performed in a breadth-first, bottom-up manner the
network levels can be modelled as a sequential lists, starting with the lowest
level and moving upwards. Each level consists of:

• A change flag, chg_flg,that marks a level as changed.

• A list of network nodes.

In fig. 7.1 the propagation network for the ruleno_high can be seen showing

136 The Propagation Network

the different levels.

Each differential (with corresponding∆-set) that can affect activated rules is
associated with one (and only one) node (see fig. 7.2) consisting of:

• A change flag, chg_flg, marking the node as changed.

• An event count, event_cnt,that states how many event nodes (nodes with an
event function) are dependent on this node (including itself).

• Thedifferential with corresponding∆-set or anevent function with event_res
associated with each rule activation for storing results from the execution of the
event function.

• A list of affects nodes, a-list, that are affected by changes to this node.

• A list of depends on nodes, d-list, together with the partial differentials affected
by the nodes below.

• A pointer to the level the node belongs to (not shown in fig. 7.2).

• A reference counter ref_cnt used by the propagation algorithm to determine
when a∆-set has been propagated to all nodes in the a-list and thus can be cleared
(not shown in fig. 7.2).

• A list of pointers to rule activations, acts, which will also be in the conflict set
if rules are triggered (not shown in fig. 7.2).

Level 0

Level 1

chg_flg list of nodes

Figure 7.1: The propagation network forno_high

chg_flg list of nodes

chg_flg list of nodes

chg_flg list of nodes

Level 3

Level 2

137

The number of levels needed in a network depends on how relations are
expanded. In theno_high rule there is overloading onnetincome and
grossincome that is resolved at compile-time (early binding). In the actual
implementation the query plan will be expanded to directly use theincome
function, but this is disregarded in this discussion since it will make the propa-
gation network flat and too trivial for explaining how it is constructed. Here the
overloaded functions will cause extra nodes to be inserted into the propagation
network. In fig. 7.2 the four levels of nodes with their respective partial differ-
entials can be seen. How the nodes in the four levels are connected for
no_high can be seen in fig. 7.3 and fig. 7.4. In fig. 7.3 the upward dependen-
cies, i.e. the a-lists, can be seen. It specifies what nodes above are dependent on
changes to a∆-set in a certain node. Note that the a-list of the top node has a
NULL value since it has no upward dependency.

chg_flg 0 a-list d-list∆mgr

∆cnd_no_high/∆-+dept

Level 0

Level 3

chg_flg 0 a-list d-list∆dept

chg_flg 0 a-list d-list∆income

chg_flg 0 a-list d-list∆cnd_no_high

chg_flg 0 a-list d-list∆manager.grossincome->number

Level 1

Level 2
chg_flg 0 a-list d-list∆employee.netincome->number

chg_flg 0 a-list d-list∆manager.netincome->number

chg_flg 0 a-list d-list∆employee.grossincome->number

∆cnd_no_high/∆-+mgr

∆employee.grossincome->number/∆-+income

∆manager.grossincome->number/∆-+income

∆employee.netincome->number/∆-+employee.grossincome->number

∆manager.netincome->number/∆-+manager.grossincome->number

∆cnd_no_high/∆-+employee.netincome->number
∆cnd_no_high/∆-+manager.netincome->number

Figure 7.2: The nodes in the propagation network forno_high

1

2

3

4

5

6

7

8

138 The Propagation Network

In fig. 7.4 the downward dependencies, i.e. the d-lists, can be seen. It specifies
what changes in the∆-sets of the nodes below a certain node is dependent on.
Note that the d-lists for the nodes in level 0 have NULL values since they are
not dependent on any other nodes (because they represent base events such as
updates to stored functions). The a-lists and the d-lists are implemented as lists
with direct pointers to the nodes. This is straight-forward to implement in a
main-memory DBMS like AMOS. In a disk-based DBMS the propagation net-
work has to be implemented with similar techniques as any other data structure
in the DBMS such as B-trees. Propagation networks can become fairly large
when there are many rules activated and with rules with fairly complicated con-
ditions activated simultaneously. When large propagation networks are stored
on disk, issues such as clustering have to be considered.

Level 0

Level 3

Level 2

Level 1

Figure 7.3: The a-list (affects) for upward dependencies forno_high

1

2

3

4

5

6

7

8

139

For the late bound version of the ruleno_high the propagation network will
be expanded with an extra level for the extra node∆netincomeDTR (as dis-
cussed in section6.13).

create rule no_high(department d) as
when for each employee e
where dept(e) = d and

netincome(e) > netincome(mgr(e))
do set employee.grossincome->number(e) =

grossincome(mgr(e));

The condition function for the late boundno_high is defined as:

create function cnd_no_high(department d) -> employee as
select e for each employee e
where dept(e) = d and
netincome(e) > netincome(mgr(e));

The dependency graph representing the propagation network can be seen in fig.
6.18. The propagation network nodes, a-lists, and d-lists can be seen in fig. 7.5,
fig. 7.6, and fig. 7.7. Note that the node for∆netincomeDTR has no partial
differential, instead it directly accesses the changes in the∆-sets of its resolvent

Level 0

Level 3

Level 2

Level 1

Figure 7.4: The d-list (depends on) for downward dependencies forno_high

1

2

3

4

5

6

7

8

140 The Propagation Network

differentials ∆employee.netincome->number/
∆-+employee.grossincome->number and
∆manager.netincome->number/
∆-+manager.grossincome->number.

Which changes are accessed by partial differential ∆cnd_no_high/∆-
+netincomeDTR is determined at run-time (late binding). Note also that there
is still a partial differential ∆cnd_no_high/∆-+manager.netincome-
>number since the manager.netincome->number is also referenced
using early binding.

chg_flg 0 a-list d-list∆mgr

∆cnd_no_high/∆-+dept

Level 0

Level 4

chg_flg 0 a-list d-list∆dept

chg_flg 0 a-list d-list∆income

chg_flg 0 a-list d-list∆cnd_no_high

chg_flg 0 a-list d-list∆manager.grossincome->number

Level 1

Level 2
chg_flg 0 a-list d-list∆employee.netincome->number

chg_flg 0 a-list d-list∆manager.netincome->number

chg_flg 0 a-list d-list∆employee.grossincome->number

∆cnd_no_high/∆-+mgr

∆employee.grossincome->number/∆-+income

∆manager.grossincome->number/∆-+income

∆employee.netincome->number/∆-+employee.grossincome->number

∆manager.netincome->number/∆-+manager.grossincome->number

∆cnd_no_high/∆-+manager.netincome->number

Level 3
chg_flg 0 a-list d-list∆netincomeDTR

∆cnd_no_high/∆-+netincomeDTR

Figure 7.5: The nodes in the propagation network for late bound no_high

1

2

3

4

5

6

7

8

9

141

Level 0

Level 3

Level 2

Level 1

Level 4

Figure 7.6: The a-list (affects) for upward dependencies for late bound no_high

1

2

3

4

5

6

7

8

9

Level 0

Level 3

Level 2

Level 1

Level 4

Figure 7.7: The d-list for downward dependencies for late bound no_high

1

2

3

4

5

6

7

8

9

142 The Propagation Network

The propagation network is not only used for propagating changes to rule con-
ditions, but also for propagating the events for ECA and EA-rules as well. Let
us look at thecheck_new rule again:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and

updated(employee.netincome->number(e))
when dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m)

do rollback;

The event function forcheck_new is defined as:

create function evt_check_new(department dnew)
-> <department dnew, employee e>

as select dnew, e
for each bag of department dold,

bag of number nold, number nnew
where <dold, dnew> = ∆-+dept(e) and

<nold, nnew> = ∆-+employee.netincome->number(e);

The condition function ofcheck_new is defined as:

create function cnd_check_new(department d, employee e)
-> boolean as

select true for each manager m
where dept(e) = d and

m = mgr(e) and
employee.netincome->number(e) > netincome(m);

The dependency graph used for building the propagation network can be seen
in fig. 6.22. The propagation network (fig. 7.8, fig. 7.9, and fig. 7.10) is now
augmented with a special node (node 1) where the∆-set is substituted with an
event function. Note that the event count is now set for the nodes that propa-
gates physical events to the event function.

Note that the partial differencing can still be used for evaluating the condi-
tion. In thecheck_new rule this is actually not needed since reasonable effi-
ciency will be achieved by just passing the result from the event function to the
condition function. Theemployee.netincome->number(e) in the condi-
tion function can now be executed efficiently since the employee argumente is
now bound. This could be decided by the rule compiler which then would only
generate the nodes for partial differencing of the condition function if they are

143

to be used. In (fig. 7.8, fig. 7.9, and fig. 7.10) the propagation network for
check_new which propagates both the events to the event function
evt_check_new and changes to the condition function∆cnd_check_new
can be seen.

When the partial differentials of ∆cnd_check_new are executed, the
departmentd and the employeee will be bound since they were passed from
the event function. In this example incremental evaluation of the rule condition
will not give much improved efficiency. In general, however, ECA-rules can
contain complex conditions where the data passed from the event function can-
not be used directly.

chg_flg 0 a-list d-list∆mgr

∆cnd_check_new/∆-+dept

Level 0

Level 3

chg_flg 1 a-list d-list∆dept

chg_flg 1 a-list d-list∆income

chg_flg 0 a-list d-list∆cnd_check_new

chg_flg 0 a-list d-list∆manager.grossincome->number

Level 1

Level 2
chg_flg 1 a-list d-list∆employee.netincome->number

chg_flg 0 a-list d-list∆manager.netincome->number

chg_flg 1 a-list d-list∆employee.grossincome->number

∆cnd_check_new/∆-+mgr

∆employee.grossincome->number/∆-+income

∆manager.grossincome->number/∆-+income

∆employee.netincome->number/∆-+employee.grossincome->number

∆manager.netincome->number/∆-+manager.grossincome->number

∆cnd_check_new/∆-+employee.netincome->number
∆cnd_check_new/∆-+manager.netincome->number

chg_flg 1 a-list d-listevt_check_new

Figure 7.8: The nodes in the propagation network forcheck_new

1

2

3

4

5

6

7

8

9

144 The Propagation Network

Level 0

Level 3

Level 2

Level 1

Figure 7.9: The a-list (affects) for upward dependencies for check_new

1

2

3

4

5

6

7

8

9

Level 0

Level 3

Level 2

Level 1

Figure 7.10: The d-list (depends on) for downward dependencies for check_new

1

2

3

4

5

6

7

8

9

145

If, for example, the rulecheck_new looks like:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and updated(income(e))
when dept(e) = d and

m = mgr(e) and
mgr_makes_most(m) != true

do rollback;

and wheremgr_makes_most is defined as:

create function mgr_makes_most(manager m) -> boolean as
select employee.netincome->number(e) < netincome(m)
for each employee e where m = mgr(e);

In this rule condition the employee e from the event part is of no use for evalu-
ating the mgr_makes_most function. With incremental evaluation of
mgr_makes_most and using change propagation with partial differencing, the
efficiency will be comparable to the first version of thecheck_new rule. The
rule compiler will have to use the cost information calculated by the query opti-
mizer when optimizing the condition function to determine whether partial dif-
ferencing should be used or not.

Another example is the rule:

create rule check_total(department d) as
for each employee e
on updated(income(e))
when sum(select income(e) for each employee e

where dept(e) = d) >
salary_account(d)

do rollback;

This rule states that a given department must balance its salary budget. In this
rule condition the sub-query in the call tosum contains a quantification of all
employees. Theemployee e in the event part is not the same as the one spec-
ified in the sub-query in the condition (the new definition ofemployee e
shadows the previous declaration). In this case the ECA-rule would be no more
efficient than a CA-rule since the data from the event part cannot be passed
directly to the condition. If the previous value of the sum is materialized
(cached) then the change to the income of the employee specified in the event
part can be used to manually calculate the new sum incrementally. A CA-rule
that uses partial differencing and automatically does view maintenance of the
cachedsum (in a similar manner as for the incremental calculation ofcount in
section6.18) would here be the best solution.

146 The Propagation Network

7.4 Accessing Event Functions in Conditions and Actions

In section5.6.3 a rule was presented that accessed an event function in the
action part. In general, all event functions that are used for calculating the
event part of an ECA-rule can be accessed in the condition and action parts.
These may be references to added or removed tuples and to previous values of
updates. The explicit reference can also fetch the transaction time of the event
(see section8.8).

When ECA-rules (and EA-rules) are compiled, the conditions and actions
are analyzed for direct access to event functions. If the event functions are ref-
erenced in the condition or action parts, the event function is defined to return
the contents of the referenced event functions to the condition and action func-
tions. The conditions of ECA-rules do not directly access any explicitly refer-
enced event functions themselves since they are accessed by the event function.
The condition will implicitly access the event functions through partial differ-
entials, but these physical events are transformed into logical events. The
actions are not allowed to directly access the event functions themselves since
the events are consumed before the action is executed. If the condition or action
of an ECA-rule tries to access an event function that is not referenced in the
event part, then the rule compiler will generate an error.

CA-rules are not allowed to explicitly access event functions in conditions
and actions at all since CA-rules only monitor logical conditions. The partial
differentials of the condition will implicitly access the event functions, but the
physical events will be transformed into logical events.

7.5 Creation and Deletion of Rules

When a rule is created, an event function (if ECA or EA-rule), a condition
function (if ECA or CA-rule), and an action procedure are created. When rules
are created all partial differentials needed to monitor the rule condition are also
generated (if they do not already exist) and optimized. When a rule is deleted,
the event function, the condition function, the action procedure, and the partial
differentials are also deleted (partial differentials shared with other rules will
only be deleted when the last rule that uses them is deleted). Note also that
rules cannot be deleted until they have been completely deactivated (with all
actual arguments and from all rule contexts).

7.6 The Algorithms for Activating and Deactivating Rules

When an active rule is activated, it is inserted into the propagation network. If
the rule is parameterized, then the rule is only inserted at the first activation.
When a rule is deactivated, it is removed from the propagation network. If the
rule is parameterized, it is only removed when the last activation of the rule,
i.e. the last actual parameter pattern, is deactivated.

When a rule is to be inserted into the propagation network, the event func-

147

tion (if any) and the condition function have to be inserted by extending the
propagation network with new nodes. When rules are activated/deactivated the
network is expanded/contracted with/without the nodes needed to propagate
changes to the currently active rule conditions. Two functions are needed for
expanding/contracting the propagation network: one for inserting differentials
or event functions (Insert) and one for removing differentials or event func-
tions (Remove).

A dif ferential ∆fc of a rule condition functionfc is inserted byInsert(net-
work, ∆fc, false) and is removed byRemove(network, ∆fc, false). A rule event
functionfe is inserted byInsert(network, fe, true) and is removed byRemove(net-
work, fe, true).

The algorithm for inserting differentials and event functions into the net-
work is a depth-first, top-down algorithm as follows:

Insert(network, ∆P, event_flg):
if ∆P is not already inserted into the network then

create node_of(∆P);
if event_flg

then set event_cnt(node_of(∆P)) = 1
else set event_cnt(node_of(∆P)) = 0;

if DP is empty, where DP is the set of functions that P depends on,
then /* P is a stored function */

Insert_in_level(network, node_of(∆P), 0, event_flg);
else /* P is a derived function */

for each ∆Q where Q∈DP do
Insert(network, ∆Q, event_flg); /* recursive call */
insert (node_of(∆Q) . ∆P/∆Q) into the
depends-on list node_of(∆P).d-list;
insert node_of(∆P) into the affects list
node_of(∆Q).a-list;

Insert_in_level(network, node_of(∆P),
max(for each ∆Q where Q∈DP: level_of(node_of(∆Q))) + 1,
event_flg)

else /* ∆P is already in the network */
if event_flg then

set event_cnt(node_of(∆P)) = event_cnt(node_of(∆P)) + 1;
/* increase the event_cnt of the nodes below */
for each ∆Q where Q∈DP do Insert(network, ∆Q, event_flg);

Insert_in_level(network, node, level, event_flg):
if level does not exist in network then create level;
if event_flg

then insert node first into the level of the network
else insert node last into the level of the network;

set level_of(node) = level;

148 The Propagation Network

The algorithm for removing differentials and event functions from the network
is also a depth-first, top-down algorithm that looks as follows:

Remove(network, ∆P, event_flg):
if ∆P is present the network then

if the affects list node_of(∆P).a-list is empty then
for each ∆Q where Q∈DP

remove (node_of(∆Q) . ∆P/∆Q) from the
depends-on list node_of(∆P).d-list;
remove node_of(∆P) from the affects list node_of(∆Q).a-list;
Remove(network, ∆Q, event_flg); /* recursive call */

Remove_from_level(network, node_of(∆P), level_of(node_of(∆P)));
delete node_of(∆P)

else /* the affects list node_of(∆P).a-list is not empty */
if event_flg then

set event_cnt(node_of(∆P)) = event_cnt(node_of(∆P)) - 1;
/* decrease the event_cnt of the nodes below */
for each ∆Q where Q∈DP do Remove(network, ∆Q, event_flg);

Remove_from_level(network, node, level):
remove node from level of network;
if no nodes remain in the level then delete the level;

All operations to the network are transactional, i.e. the changes are logged so
that they can be undone during a transaction rollback. This means that rules
created/deleted during a transaction will be deleted/recreated if the transaction
is rolled back and rules activated/deactivated during a transaction will be deac-
tivated/reactivated if the transaction is rolled back.

Note that event functions are always placed first in each level. This is
needed in the propagation algorithm which executes breadth-first (left to right
in each level), bottom-up to always execute the event part of a rule before the
condition (if the propagation network is used for propagating events to the
event part as well as changes to the condition). See section7.7 for a detailed
description of the propagation algorithm.

When a CA-rule is activated a complete evaluation of the rule condition for
the specific activation pattern is performed. The result is saved in the action-set
of the rule. This is done in order for the rule to catch up with all the changes
affecting it and that have occurred prior to the rule activation.

7.7 The Event and Change Propagation Algorithm

During ongoing transactions all changes to the logical transaction log are
screened for changes that might affect activated rule conditions. If a change is
made to a stored relation that has a corresponding node in level 0 in the propa-
gation network, i.e. if a relevant update event is detected, then the change is

149

added to the corresponding∆-set (using∪∆ if the event_cnt of the correspond-
ing node is 0 and using∪ otherwise). The node of the changed∆-set is marked
as changed (chg_flg of both the network level and the node) and the reference
count (ref_cnt) is set to the length of the a-list of the node.

In the check phase the propagation algorithm propagates all the non-empty
∆-sets in a breadth-first manner, as illustrated in fig. 6.9. Since the network is
constructed in such a way that the change dependencies of one node, i.e. the∆-
relations it depends on, are calculated in the network levels below, a breadth-
first, bottom-up propagation ensures that all the changes have been calculated
when we reach that node.

In the check phase one round of propagation is first done using the changes
accumulated in∆-sets throughout the transaction (fig. 7.11). If any rules were
triggered, i.e. were inserted into the conflict set in the propagation, then one
rule activation is chosen, using some conflict resolution method. The action
part of the chosen rule activation is then executed using the tuples generated in
the condition of the rule. The action part is executed for each positive change
since the last check phase, we call this theaction set, which is calculated from
the ∆-set of the condition (passing the positive data from∆+ and ∆-+ to the
action function). To determine if an already triggered rule (i.e. it is in the con-
flict set) is no longer triggered, the action set is saved and is modified continu-
ously using the∆-set of the condition (removing any negative data found in∆-
and∆-+) to determine if it is still triggered. This is only done for CA-rules that
monitor logical changes (and negative) changes to their conditions, i.e. condi-
tions with negative partial differentials that are executed during the change
propagation.

If a rule is triggered, arule activation is inserted into the conflict-set. A rule
activation consists of:

• Therule that was activated.

• The specific ruleactivation arguments.

check

propagate propagate propagate

∆-sets ∆-sets

action-sets

∆-sets

database transaction rule execution

u(pdate) u u u uu u
. . . .

Figure 7.11: The propagation phases in rule execution

150 The Propagation Network

• Theresult of the associated event function, event_res (used for temporary stor-
age in the propagation algorithm).

• Theaction set which contains the tuples on which the action is to be applied.

The rule execution phase continues to propagate, trigger, and execute rules
until no more events (empty∆-sets) are detected. The algorithm presented here
is not dependent on any specific conflict resolution method. In the present
implementation of rules in AMOS a simple priority scheme is used. To support
this, each rule activation has a priority and the conflict set is divided into sev-
eral priority levels. When a rule activation is triggered it is inserted into the
corresponding priority level of the conflict-set. If the condition for which a rule
was triggered changes to false, i.e. the action-set of a rule activation becomes
empty, then the rule activation will be removed from the conflict-set without
executing the action.

The rule execution works in four stages (see fig. 7.12):

physical propagation logical propagation

event functions condition functions

∪∆

ECA

conflict-set

conflict
resolution

action
execution

EA

(E)CA

1

2
3

4

Figure 7.12: The four stages of rule execution

rule activations

151

 1. The events and changes are propagated in the propagation network.
 2. The event parts are evaluated for each rule activation and the results are

saved.
 3. The event data (if ECA-rule) is used for evaluation the of the rule condi-

tions. Data from rule conditions which are non-empty is stored in action-
sets for the corresponding rule activations and which are stored in the
conflict-set. EA-rules store their event data directly with the correspond-
ing rule activations in the conflict-set.

 4. The rule activation with the highest priority chosen from the conflict-set
and its action is executed.

The four stages are repeated until the conflict-set is empty. The propagation
algorithm is defined using three functions:

 • propagate(network) that does the actual breadth-first, bottom-up propa-
gation.

 • evaluate_ruleEC(node) that evaluates event and condition functions of a
top node in the propagation network.

 • trigger_rule(activation, ∆-set) that takes the changes to the condition
function and triggers or untriggers the rule activation.

The propagation algorithm looks as follows:

propagate(network):
for each level in the network do /* starting with level 0 */

if level.chg_flg then /* some node in the level has changed */
for each node in level.nodes do /*moving left to right */

if node.chg_flg then /* we have found a changed node */
if node.a-list is empty then

/* node is a top node */
evaluate_ruleEC(node)

else /* not a top node */
for each below-node in node.d-list do

if below-node.∆-set is non-empty then
execute each partial differential and
accumulate the result into the node.∆-set
(using ∪∆ if node.event_flg = 0 and ∪ otherwise);
decrease_count(below-node);

if node.∆-set is not empty then
for each above-node in node.a-list do

set above-node.chg_flg = true;
set (above-node.level).chg_flg = true;

set node.ref_cnt = length(node.a-list);
set node.chg_flg = false;

level.chg_flag = false;

152 The Propagation Network

evaluate_ruleEC(node):
for each rule activation in node.acts do

if node is an event node then
/* ECA- or EA-rule */
execute the node event function using the activation arguments
and ∆-sets in the nodes below and save the result in
activation.event_res;
if EA-rule and activation.event_res is non-empty then

/* pass the activation.event_res directly to the action */
trigger_rule(activation, <activation.event_res,{},{}>);
clear activation.event_res;

else
/* a condition node */
if ECA-rule then

for each below-node in node.d-list do
if below-node.∆-set is non-empty then

execute each partial differential
using activation.event_res as arguments and
accumulate the result into node.∆-set (using ∪∆);

clear activation.event_res;
if CA-rule then

for each below-node in node.d-list do
if below-node.∆-set is non-empty then

execute each partial differential
using the activation arguments and
accumulate the result into node.∆-set (using ∪∆);

if node.∆-set is non-empty then
trigger_rule(activation, node.∆-set);1

clear node.∆-set;2

for each below-node in node.d-list do
if below-node.∆-set is non-empty then

decrease_count(below-node);

trigger_rule(activation, ∆-set):
if activation.action-set is empty then

/* the rule activation is not previously triggered */
set activation.action-set = ∆-set;
insert activation into the conflict-set; /* using the activation priority */

else /* the rule activation is already triggered */
set activation.action-set = activation.action-set ∪∆ ∆-set;

1. In case of strict rule semantics a check should be made here that none of the tuples in
the ∆-set are in the materialized view representing the old value of the condition
function.

2. In case of strict rule semantics the ∆-set should here be used for maintaining the
materialized view that represents the old value of the condition function.

153

if activation.action-set is empty then
/* the rule is not triggered */
remove activation from the conflict-set;

decrease_count(node)
set node.ref_cnt = node.ref_cnt - 1;
if node.ref_cnt = 0 then

clear node.∆-set; /* deleting consumed events */

Note that the algorithm presented here does not handle recursion, but can be
extended to handle this. Work on incremental evaluation of recursive expres-
sions can be found in [65]. AMOSQL provides atransitive closure1 operator
that can handle most of the queries where recursive evaluation is needed. This
operator is easier (or less difficult) to evaluate incrementally than general
recursion since it involves looping over only one node in the network.

7.8 The Check Phase and Propagating Rule Contexts

The check phase is started either automatically just before a transaction is com-
mitted or if the user calls the check function. The check function is called with
an optional rule context with thedeferred rule context as the default (called
automatically when a transaction is committed).

Rule contexts are groups of activated rules that are to be executed in the
same check phase (see Paper V). Rules are activated into rule contexts and rule
contexts are activated causing all of the active rules in them to be monitored,
i.e. events affecting active rules in the context are accumulated in the differen-
tiated event logs (∆-sets) of the context. Likewise, rule contexts can be deacti-
vated causing the monitoring of the active rules in them to stop, i.e. no events
are accumulated for the context. Rules can also be deactivated from contexts. If
rules are activated without mentioning any context then they are by default
activated into the deferred rule context.

The rule contexts are implemented as separate objects of the type context.
Each context has its own propagation network attached to it. When rules are
activated into a context they are inserted into the propagation network of that
context. When a context is activated, it is just marked as active. All event logs
that an active context is dependent on, i.e. the event functions in the leaves of
the propagation network, are indexed by the context to save the events specifi-
cally with that context. When events are captured, they are saved in separate
event logs, i.e. event functions indexed by each active context. If there are no
activated contexts that are interested in the event, then it is not saved.

When a context is deactivated, it is just marked not active. The propagation
network is not modified during context activation and deactivation which
makes it much faster than activating and deactivating separate rules. When

1. Transitive closure performs repetitive application of a function,
tclose(ffunction,oobject,ninteger) = f

n(o)

154 The Propagation Network

rules are deactivated from a context, they are removed from the propagation
network. The algorithms for rule activation/deactivation presented in
section7.6 have an extra parameter for the specific network of the context that
the rules are being activated into (or deactivated from).

When a context is to be checked, the changes are only propagated if the con-
text is active. After the changes have been propagated, the event functions (i.e.
event histories) of that context are cleared. Since each context has its own
event functions, there is no problem of one context consuming the events
needed by another context.

The check function looks as follows:

check(context):
if context is active then

propagate(network(context));
while conflict-set is not empty

choose the rule activation with the highest priority
from the conflict-set;
execute the action using the calculated action-set1;
clear the action-set of the executed rule activation;
propagate(network(context));

In the implementation a check is made if the iteration in the check function
exceeds a certain limit. If this happens the check phase is aborted with an error
stating there is probably a non-termination problem with the current set of
active rules.

7.9 Event Consumption

Event consumption usually considers when events are consumed by rules dur-
ing event monitoring. AMOS has a very simple event consumption model and
does not support user-defined consumption models like Chimera [133]. In
AMOS events are consumed when they have been processed for all rules that
are monitoring them. To be more precise, when the∆-sets have been propa-
gated to all nodes above in the propagation network that depends on them, i.e.
when any partial differentials or event functions that access them have been
executed, the∆-sets are cleared. Event and condition functions generate tuples
that are stored in action-sets associated with each active rule. The action-sets
are maintained, i.e. expanded by added tuples and contracted by removed
tuples, for triggered rules and are cleared after the action is executed.

All rules that have been activated into a rule context are processed at the
same time, i.e. in the same propagation phase. Different contexts have their
own copies of∆-sets so they cannot consume each other’s events. Rule activa-
tions are unique for each rule context and thus have their own action-sets. The
same rule can be activated with the same arguments (or different ones) into

1. Using the positive parts of∆+ and∆-+.

155

several contexts, but these will be represented by different rule activations with
separate action-sets.

Time series are defined to support moving time windows where old data are
discarded when they are considered too old. This is important for event func-
tions for foreign data sources (see chapter 9) where the number of events can
accumulate quickly. Time series defined with a maximum size will automati-
cally discard the oldest data when they have reached their maximum size.

Time series are discussed more in chapter 8.

156 The Propagation Network

157

8 Time Series and Event
Histories

8.1 Time in Applications and ADBMSs

Many applications use the concept of time. In CIM data originating from sen-
sors need to be timestamped for the system to determine the usability (recency)
of the data. Time series of sensor data can be used to determine trends such as
the direction of moving of objects and if some sensor value such as tempera-
ture, is increasing or decreasing. In some advanced applications the sensor data
is seen as a function varying over time and on which specific transformation
algorithms will be executed as, for example, in stock market trend analysis.

In telecommunications time is important as well. In network management
functions such as accounting, load statistics, and fault management are all
based on information being timestamped. For example, it is important to know
at what times during the day there are communication bottlenecks in the net-
work and if the congestion levels in alarms from some network element are
increasing or decreasing. To support applications such as CIM and telecommu-
nication network management DBMSs need to have some support for time.

In an ADBMS it is desirable have active rules that can access the time when
events occurred. For example, the event specification of an ECA-rule can dic-
tate that one event must have occurred before or after another event. Rule con-
ditions can contain special functions which perform special operations such as
interpolation or extrapolation of time series that represent changes to data over
time.

8.2 Temporal Databases and Scientific Databases

In temporal databases [111] the DBMS has been extended to support storing
and accessing data through a temporal extension of the query language. The
time dimension can be the time of insertion, temporal validity of data, or user-
defined time. A temporal DBMS usually has extensions to the basic relational
operations to support temporal queries, i.e. queries that use the time dimension.

In statistical and scientific databases [109][136] the DBMS has been
extended to support storing data from results of scientific experiments. The
data can represent discrete samples of continuous functions or measurements
and is usually stored in time series with special support for operations such as

158 Time Series and Event Histories

statistical operations (averages, mean values) and interpolation of discrete val-
ues to reconstruct a continuous function.

8.3 Supporting Time in Databases

When considering support for time in databases it is important to define what
timelines should be supported. A common classification of different timelines
is:

• Transaction time. When some data was inserted (and usually when committed)
into the database (e.g. the employee salary table was updated at 12:01, September
2, 1996).

• Valid time. When some data stored in the database is (was) valid (e.g. the new sal-
ary of a specific employee is valid from or will take effect at, 00:00, September 3,
1996 until changed again). The valid time is usually different from transaction
time, but in the case of storing changes of physical entities when the changes hap-
pens, the transaction time and valid time can be considered the same.

• User time. Some temporal data that is not directly supported by the database, but
is still considered as temporal by the user (e.g. the new salary will start at the date
agreed during negotiations).

• Event time. In active databases the time when an event occurred is important. For
update events this will equal transaction time for uncommitted updates. Rules ref-
erencing time in the event part of a rule will presuppose event time.

Storing time in a database can be done by storingtime stamps representing
instant time values (single chronon),time intervals, or time series for transac-
tion or valid time. For storing data with timelines of both transaction and valid
time, bitemporal chronons can be used.

8.4 Time Stamps

A basic requirement is to support storing time as a data type. Storing time as
character strings or as integers might be inefficient and does not support strong
typing for operations specific on the time type. Absolute time in UNIX systems
is usually defined as two integers,timevals, that represent the elapsed number
of seconds andµ-seconds elapsed since 00:00, January 1, 1970. More work on
storing time stamps in databases can be found in [37]. In AMOS time stamps
are instances of the typetimeval and are referenced as|year-month-
day/hour:minute:second|. Internally AMOS timevals are stored as
UNIX timevals using GMT, but with automatic translation to local time.

8.5 Time Intervals

Time intervals are usually pairs of timestamps representing the beginning and

159

end of an interval. The intervals can also be defined as open- or closed-ended.
In AMOS intervals are referenced as|[start-timeval,stop-time-
val)| with ‘[‘ representing a closed end of the interval and ‘)’ representing an
open end.

8.6 Time Series

Time series are discussed more in the area of scientific databases than in tem-
poral databases. Time series can be classified assparse (irregular) or dense
(regular), where sparse means that some interval within a time series does not
contain any data, while dense often refers to data generated with a constant
time period between the data in the time series. Sparse time series have to be
stored with the time-stamp for each datum, while timestamps in dense time
series can be calculated from the time period. Time series can be both sparse
and dense in different time intervals.

Time series (sparse with explicit timestamps) have been implemented in
AMOS as a foreign data source with a special data structure for efficient stor-
age and access. Functions for indexing based on timestamps and time intervals
have been defined. Special operations have been defined on timeseries such as
time series difference (-) and time series union (∪) to support efficient execu-
tion of the∪∆ operation (see section6.17).

8.7 Temporal Functions

Time series in AMOS have been used for implementing timestamp-based tem-
poral functions. The timestamps for temporal functions usually reflect the
transaction time. Temporal functions can be accessed just like any other func-
tion, but have efficient access based on timestamps or time intervals.

Temporal functions in AMOS can be accessed through several overloaded
versions and using the@ (at) operation for timestamp access and thewithin
operation for time interval access.

For example, if we have a temporal functiondepartment_meetings that
stores the time and a description of department meetings, we can access the
function in several ways:

select t, c for each timeval t, charstring c
where c = department_metings(:toys_department)@t;
<|1996-12-01/15:00:00|, “Sales meeting”>
<|1996-12-03/12:15:00|, “Lunch meeting”>
<|1996-12-07/19:00:00|, “Late meeting”>
<|1996-12-11/15:00:00|, “Sales meeting”>

select department_metings(:toys_department);
“Sales meeting”
“Lunch meeting”

160 Time Series and Event Histories

“Late meeting”
“Sales meeting”

select department_metings(:toys_department)@
|1996-12-01/15:00:00|;

“Sales meeting”

select department_metings(:toys_department) within
|(|1996-12-01/15:00:00|, |1996-12-07/19:00:00|]|;

“Lunch meeting”
“Late meeting”

The implementation in AMOS is not a complete temporal extension of
AMOSQL, but is enough for supporting implementation of event functions as
temporal functions. Currently temporal functions in AMOS are only repre-
sented by event functions that are used for storing events monitored by active
rules. These functions are transaction time relations, i.e. the timestamps for
event functions reflect the time when the event occurred in a transaction.

8.8 Time Stamped Events

In the active database manifesto [35] events are specified as a pair (<event
type>, <time>) stored in an event log (event history) where the time specifies
the transaction time when the event occurred. In AMOS this is achieved by
storing the events in event functions defined as temporal functions. Take an
ECA-rule such as:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) and updated(income(e))
when dept(e) = d and

m = mgr(e) and
netincome(e) > netincome(m)

do rollback;

Here the event functions fordept and income are stored as time series. The
event function for the rule is really defined as:

create function evt_check_new(department d)
-> <department d new, employee e>

as select d, e
for each bag of department d old ,

bag of number n old , number n new,
timeval t1, timeval t2

where <d old , d new> = ∆-+ dept(e)@t1 and
<nold , n new> = ∆-+ income(e)@t2;

161

The event functions can be referenced in the condition so the time of an event
can be easily retrieved. Event functions can be accessed by using time intervals
which is useful for relating events in time. A rule such as:

create rule check_new(department d) as
for each employee e, manager m
on updated(dept(e)) before updated(income(e))
when dept(e) = d and

m = mgr(e) and
netincome(e) > netincome(m)

do rollback;
will have an event function that looks like:

create function evt_check_new(department d)
-> <department dnew, employee e>

as select d, e
for each bag of department dold,

bag of number nold, number nnew,
timeval t1, timeval t2, timeval t3

where <dold, dnew> = ∆-+dept(e) within |[t1,t2]| and
<nold, nnew> = ∆-+income(e) within |(t2,t3]|;

This expression is more efficient than accessing the event functions with just a
timestamp since time series can use the start of an interval as the starting index
for scanning.

8.9 About Paper VII

Time series are often accessed using inverse queries, i.e. using the values as
keys instead of the timestamps. To support efficient inverse queries over time
series a new indexing technique was developed. This could be useful in active
rules that reference a temporal data source (represented by a long time serie) in
the event part and where the actual time(s) for a specific value is/are needed in
the condition part and the event time(s) cannot be passed from the event part to
the condition part. It can also be useful if the condition uses interpolation when
accessing the time serie and needs the time of an interpolated value.

8.10 Temporal Event Specifications and Temporal Conditions

It is also desirable to define active rules that directly reference time in event
specifications and rule conditions. For example, an event specification might
define that a rule condition should be checkedafter a certain time period that
the event(s) occurred or the condition of a rule shouldhold true over a certain
period of time. Some work ontemporal triggers and ECA-rules where time can

162 Time Series and Event Histories

be explicitly referenced can be found in [24][64][98][134]. When foreign data
sources are introduced into an ADBMS it is desirable to have support for spec-
ifying complex temporal rules that monitor changes of the foreign data (see
section 9.4.1).

163

9 Foreign Data Sources

9.1 Introduction

DBMSs are more and more being integrated in systems that produce data from vari-
ous sources that need to be integrated into the database. In many cases the data
should not be stored physically in the database, but should instead be accessed exter-
nally when referenced. We call such sourcesforeign data sources. These foreign data
sources should be presented in the database as if they are local data and the database
should support access (including optimization of queries involving access to foreign
data sources), monitoring, e.g. using triggers or ECA-rules, and possibly updates in a
transparent manner.

In applications such as manufacturing process control, telecommunications
network management, and financial information systems new data comes from
foreign data sources such as manufacturing equipment, network elements, or
the stock exchange. This data might originate from physical sensors (e.g. a
thermometer sensing the temperature in a chemical process), external pieces of
software (e.g. real-time control software with functions returning the state of a
controlled process) or as in the case of the stock exchange, a transaction system
with its own databases.If we want to monitor changes to this data in an

External Environment

C
Temperature

Function f

F

External Software

DBMS with
foreign tables/objects/functions

Sensor

Figure 9.1: Foreign data sources in a DBMS

164 Foreign Data Sources

ADBMS, the traditional way is to store the data in the database and monitor it
there when it changes. In applications such as the ones above, this is not a fea-
sible solution since the amount of data is probably too large or is changing too
frequently to be stored permanently, or it is already stored permanently some-
where else and it is unnecessary to store it twice. By allowing the database to
refer to this data as foreign data sources (see fig. 9.1) and in the same manner
as if it was stored in the database we can also handle it as local data, i.e. access
it in queries, monitor changes to it, and perhaps update it.

Providing transparent access involves how to define foreign data sources in
the database schema. The DBMSs must also define how to physically connect
foreign data sources, e.g. defining communication protocols, polled or interrupt
driven communication, synchronous or asynchronous communication, and any
transformations needed to be done on the data. If the foreign data source is to
be stored permanently or semi-permanently in the database, this has to be sup-
ported. If new data structures are defined in the database, these have to be sup-
ported with new data types with access methods and indexing techniques.
Optimization of queries involving foreign data sources requires an extensible
query optimizer. To support monitoring of foreign data sources mechanisms
have to be defined as to how to inform the database that a foreign data source
has changed, e.g. through signalling of events that can be referenced in triggers
or ECA-rules. Updates of foreign data sources might not always be possible,
e.g. if they represent information sensed in some physical environment. Some-
times updates can be made indirectly through user-defined update procedures.

To achieve transparency between foreign data and local data there are sev-
eral issues that have to be addressed:

Defining foreign data sources in the database schema

If the goal is to provide real transparency, we must be able to define how for-
eign data is to be represented in the database and how to make it transparent to
other stored data. This could be done as tables (in an RDBMS), as objects or
object attributes (in an OODBMS), or as functions (in an ORDBMS [118]).
Several pieces of information have to be provided to the DBMS for it to be able
to access the foreign data source, e.g. data formats and means of communica-
tion.

Accessing foreign data

Transparent access to foreign tables, objects, or functions must be provided. If
the foreign data is represented in some other format than can be supported or is
required in the database, we must specify how the data should be translated.
Standard protocols should be considered here, but must perhaps be extended. If
we can support several different communication protocols, we might define
which one the database should use for specific data sources. If the data is polled
(using a pull model protocol, see section9.3.4), we might want to specify poll-
ing frequencies. Data from foreign data sources must also be transferred to the
database and perhaps be stored, permanently or semi-permanently (see

165

section9.4.5). If the data is temporal, i.e. timestamped, and cached it might be
useful to define how recent the data should be and automatically discard data
which is too old. Special data structures might be needed for storing data such
as time series with indexing for fast access. To access the foreign data the data-
base must transparently communicate with the foreign data sources when they
are referenced in database queries and in active rules. If the foreign data
sources can interrupt the DBMS, the DBMS can be notified through OS inter-
rupt signals and process updates in the background. The DBMS will be inter-
rupted when foreign data has changed and the interrupt handler of the DBMS
will start a background transaction that fetches the latest data and stores it in
the database (see section9.3.3). If the foreign data sources cannot interrupt the
database, they have to be polled at regular intervals (see section9.3.4). This
processing can be done by database transactions running in the background
without disturbing user or application transactions. A combination of both
interrupts and polling is also possible. Caching the latest values in the database
might also be possible here. If long communication delays are involved when
communicating with foreign data sources, it is important not to block the sys-
tem while waiting for replies (see section9.3.5). Queries containing access to
foreign data sources must be optimized based on the cost of accessing them.
This must include communication delays, costs of translating data, and costs of
searching data structures storing the foreign data.

Monitoring changes to foreign data

To support monitoring of foreign data sources, changes to the foreign data
sources must be signalled as events that can be referenced in triggers or ECA-
rules. (E)CA-rules with conditions that access foreign data sources makes it
necessary for partial differencing to support monitoring of changes to foreign
data sources. Changes to foreign data sources can be defined in terms of∆-sets
to make them indistinguishable from changes to locally stored data. In the
ECA-model, external events (foreign events) can be introduced that represent
the change of some foreign data source (see section9.4.1).

Updating foreign data sources

In order to provide full transparency between foreign and stored data we need
to define what it means to update a foreign data source. If data is just stored
externally the action could be to just change the externally stored value. If the
value is represented by a sensor it might not be possible to change it directly,
but perhaps indirectly. Changes to local data are logged and we allow changes
to be undone by aborting transactions. This could be the case for externally
stored data as well, but not for sensed data since it reflects a value in some
external environment that we have no direct (but perhaps indirect) control over.
Sensors can sometimes be indirectly updated by operating some actuator
through a special update procedure (e.g. changing the temperature sensed by a
thermometer by operating a heater).

166 Foreign Data Sources

9.2 Related Work

In Starburst [84] virtual tables can be defined that represent data stored outside the
database.

In the Amazonia project [105] a framework was developed for providing
transparent access of scientific data and various tools and services distributed
over a network. Different access methods such as NFS, Anonymous FTP, and
PFS (protocol for data access and data transfer) are supported. Support for
specifying “filters” on the data as well as storing data locally in a cache to min-
imize communication is also provided.

The STRIP system [2] is a soft real-time main memory database with spe-
cial facilities for importing, exporting, and handling derived data. The STRIP
system exchanges data with other systems overstreams. The actual format of
the data is described in the stream schema record that is provided whenever a
new connection is provided.

In the RAPID [134] DBMS external data produced by sensors is stored in
history tables as time series with limited sizes. Changes to the history tables
can be monitored with emphasis on fast response and using SQL3 [90] like trig-
gers with temporal extensions.

In the TriggerMan [64] trigger processor external data stored in some data-
base server (e.g. Informix, Oracle, or Sybase) can be defined and triggers can
monitor changes to this external data. TriggerMan uses the replication server
interfaces to monitor internal events representing changes to local tables in the
database servers.

In OLE DB [14], new interfaces are defined with support for external data
access (see section9.5.3).

9.2.1 Commercial Replication Servers

In distributed databases it is possible to replicate tables on several nodes and to frag-
ment the tables horizontally (row-wise) and vertically (column-wise). The replicated
and fragmented tables can be accessed transparently as if they are local tables stored
in the server that is accessing them (see fig. 9.2).

If a replicated table is updated, the DBMS makes sure that the master table
and all the replicas are updated. This can be compared with the goal of intro-
ducing foreign data sources as tables where we want the tables to act as “repli-
cas” of the state of the foreign data source (see fig. 9.1). In a distributed
database the master copy of a table can be viewed as a foreign data source to all
databases that keep replicas of the table. The actual techniques for implement-
ing replication servers [113] can be used to implement foreign data sources.

A distributed DBMS can use the replication server interface to import for-
eign data into the database. This can be done by defining a foreign data source
as a replication server that maps its data as ‘replicated’ tables and that supports
the DBMS with access of the foreign data and informs about any changes to the
data.

In many distributed DBMSs it is also possible to use the interface utilized

167

between replicated nodes to write a special application node as a replication
server that can monitor changes to local tables in the DBMS. The interface
passes information about updated tables (rows and attributes) making it possi-
ble to execute active rules outside the database server and monitor internal
update events (even updates generated from the execution of stored procedures
in the database server).

Below follows a short presentation of the techniques used by Sybase, IBM/
DB2, and Oracle based on the comparisons in [113]. None of the systems dis-
cussed currently support extending the query optimizer to deal specially with
foreign data sources. They do not currently support introducing any new spe-
cial data structures to support storing foreign data either.

Sybase System 10’s Replication Server

In Sybase System 10’s Replication Server all updates are committed to the master
table before they are transmitted asynchronously to the sites containing the replicas.
Remote sites are specified to subscribe to data copies using the Replication Com-
mand Language (RCL). If an update is issued at a replica site, it is forwarded to the
master site (write through) and then indirectly back to the original site. This is done
by the Log Transfer Manager (LTM) that reads the log of the SQL Server to detect
changes to replicated data. Every site that has a data copy must have an LTM. If such
a change is detected the local Replication Server is contacted which in turn contacts
the remote Replication Server of the site containing the master copy. Communication
between the sites can be performed synchronously by invoking remote stored proce-
dures or asynchronously through special “replicated” stored procedures at the remote

Replicated

Fragmented

DBMS containing replicated
and fragmented tables

DBMSs containing
master tables

Figure 9.2: Replicated and fragmented tables

server 1

server 2

server 3
Table

Table

168 Foreign Data Sources

site. With asynchronous communication the procedure and its arguments are trans-
ferred asynchronously to the server with the master copy to be executed there. It is
also possible to replicate horizontal fragments of a master copy to several different
sites.

It is possible to implement a foreign data source by implementing your own
customized Replication Server that detects changes to the foreign data sources
and forwards them to sites containing copies, i.e. references to the foreign data
source. Sybase thus supports the push model for propagating changes from for-
eign data sources. Since it is possible to define triggers on replicated tables,
this technique makes it possible to use triggers to monitor changes of foreign
data sources as well. To support updates of foreign data sources a special LTM
has to be implemented that captures updates from the log and sends them in an
acceptable format to the customized Replication Server.

IBM’ s DB2 Copy Management and the DataPropagator products

In IBM’s DB2 Copy Management is based on the DataPropagator products. The Dat-
aPropagator Relational (DPROP/R) can propagate changes to tables between DB2
databases. DPROP/R works by capturing log records directly from the log buffer
area. From this raw log data, logical log records are reconstructed that contain details
on how the data has changed. DROP/R refers to control tables to determine which
tables have been registered for capturing. Each registered table has achanged data
table into which the changes are stored. When a user subscribes to aregistered table
copy an Apply Program (AP) must satisfy the subscription. The AP can run at the pri-
mary site or at any of the remote sites. At the primary site, the AP creates aconsistent
changed data table by using the changed data and appending four columns to each
row containing transaction information (such as time of commitment, user ID, trans-
action ID) to provide time slices of the consistent data. The AP can operate in refresh
or update mode. In the refresh mode it takes the complete source data copy and cop-
ies it to one or more targets. In the update mode the AP only captures and copies
changes to the source data copy. This is useful if the tables are large since it limits
unnecessary communication between sites. The AP can also handle changes to aggre-
gate data.

Foreign data sources can be implemented with the DataPropagator Non-
Relational (DPROP/NR) product. Using this the users can provide any data
they wish as a consistent change table which will then be propagated by the AP.
DPROP/NR will extract data from other data sources and format it to be loaded
into a consistent changed table. DPROP/NR thus makes it possible to support
foreign data sources with the push model for propagating changes. Monitoring
of foreign data sources is also possible by using triggers. DPROP/NR will also
capture updates from the IMS (Information Management System) log and put
them into a consistent changed data table.

169

Oracle’s Symmetric Replication

In Oracle’s Symmetric Replication it is possible to definesnapshots that are copies of
master tables in some other server. The snapshots can be full copies of the master
table or subsets of master table rows satisfying some value-based selection criteria.
Oracle supports the pull model to propagate changes to all sites that have snapshots
of the changed master table. Any changes to the master table since the last refresh
will be propagated and applied to the snapshot at time-based intervals or on demand.
Oracle also supports the push model for propagating changes. Like Sybase, Oracle
follows a loose consistency model and provides the updates to the remote sites asyn-
chronously. Unlike Sybase, Oracle does not scan the database log to detect updates;
instead Oracle depends on triggers and asynchronous stored procedures for propagat-
ing changes. A trigger at the primary site fires on an update, insert, or delete. The
trigger initiates execution of an asynchronous remote procedure call by submitting
the request to a propagation queue. The requests are then forwarded to remote sys-
tems for execution within separate transactions. Asynchronous RPC transactions are
executed on each remote system in the same order as they were committed to the
local propagation queue.

Foreign data sources can be implemented with the Symmetric Replication
by defining them as snapshot masters for read-only snapshots in Oracle. The
Oracle server can then pull data at regular intervals or on demand. The push
model can be implemented by having the data sources supported with asyn-
chronous stored procedures that are called when the foreign data source
changes and which store the changes in a local table (either just the changes or
the whole table). Oracle will then support monitoring the foreign data sources
through triggers. Updates of foreign data sources are not supported by Oracle’s
Symmetric Replication since snapshots are read-only.

9.2.2 Illustra/Informix DataBlade Modules

In Illustra [118], which has now become the Informix Universal Server [78],
the concept of DataBlade modules has been introduced as a way to integrate
new data structures into the DBMS. For example, a DataBlade module exist for
storing time series in special data structures with various operations supported
on the time series. Users can also create their own DataBlade modules that can
be linked into the DBMS. This is supported by an extensible query optimizer
that supports optimizing queries that access new data structures.

The system also supports SQL3 [90] which is a standardization of SQL with
Object Relational extensions. SQL3 supports defining abstract data types and
functions which provides some support for integrating foreign data sources in
the database schema. Informix Universal Server supports asynchronous (non-
blocking) I/O which is important for supporting access to foreign data sources
without blocking the whole server. The DataBlade concept does not, however,
include any way of signalling changes to data defined in the DataBlade so using
SQL3 triggers to monitor changes to data in the DataBlade data structures is
not supported.

Oracle and IBM/DB2 have announced similar functionality in future

170 Foreign Data Sources

releases, but it is unclear how they will compare with the DataBlade concept.

9.3 Accessing Foreign Data Sources

9.3.1 Foreign Tables/Foreign Objects and Attributes/
Foreign Functions

Foreign data sources can be introduced into a database in many ways. The most natu-
ral way is to introduce them into the database schema as if they represent stored data,
i.e. as relational tables in a RDBMS, as objects with attribute values in an OODBMS,
or as types and functions in an ORDBMS. This makes it possible to support iterative
design techniques during the design of large systems where foreign data sources not
yet available can be simulated by locally stored data.

To support foreign tables/attributes/functions the whole database must have
been designed to be extensible. The query optimizer must have an extensible
cost model to support optimizations of query plans that include accesses to for-
eign data sources. When discussing internal and foreign tables/attributes/func-
tions we hereafter use the names internal functions and foreign functions for
short.

9.3.2 Optimization of Queries that Access Foreign Data
Sources

Queries and ECA-rules that reference foreign data sources must be optimized with
the goal of minimizing all unnecessary communication. Accessing foreign data
sources is generally more expensive than accessing local data, at least when indexes
are available on the local data, but linear scans can sometimes make access of foreign
data sources cheaper in comparison. Different foreign data sources might have differ-
ent access costs, so the optimizer must not only have the information to compare
local and foreign data access, but also in which order it should access different for-
eign data sources. If foreign data is stored locally in special data structures, the opti-
mizer must also be aware of these and if it is possible to utilize any indexes when
accessing them [118]. In some cases it might be possible to access the same the for-
eign data from different foreign data sources, the optimizer must then be able to make
this decision. This is sometimes referred to as performance polymorphism [95].

9.3.3 Interrupting the Database

When an internal function changes, it can be monitored by change detection events.
If a foreign function is to be monitored, then the changes to it have to be presented as
events to the ADBMS as well. Changes to internal functions are usually related to
logging, but changes to foreign functions are usually not logged (rolling back a trans-
action can not change the read values of a sensor).

An ideal scenario would be to let the external data source inform the DBMS

171

when it has changed by using interrupts. In most cases this would not cause too
much extra load on the DBMS. We refer to this as a push model of communica-
tion where the foreign data sources pushes changes into the DBMS. If the push
model is implemented with just OS signals to interrupt the DBMS, there is no
support for transferring any data. In this case, the foreign data source can trans-
fer data through shared memory (if this is supported by the OS) or by having
the DBMS poll the foreign data source for the actual data when it receives an
interrupt. This can be done by letting the interrupt handler of the DBMS sched-
ule a background transaction that fetches the data. Protocols such as RPC and
CORBA (see section 9.5.3) support the push model with transfer of data.

9.3.4 Polling Data Sources

In some cases the foreign data source has no support for interrupting the DBMS or
the DBMS does not support being interrupted. In such cases the data source has to be
polled by the DBMS. Another case is when a data source changes so frequently that
interrupting the DBMS every time it changes would congest the DBMS. If the
DBMS can poll a foreign data source, it can decide itself when it is time to check
whether it has changed. We refer to this as the pull model of communication where
the DBMS pulls changes from the foreign data source. Of course, when a foreign
data source is pulled the new values will usually be sent to the DBMS to signal that it
has changed. If it has not changed, an empty answer can be returned. A perhaps better
scheme is to always return the latest value together with a timestamp that reflects the
time when the foreign data source last changed. The database can then compare this
with the timestamp of the previously read value to determine if the foreign data
source has really changed. Foreign data that represents some alarm where the pres-
ence of an alarm is detected, but where the non-presence is not, will be considered as
changed whenever a new alarm is detected. All protocols discussed in section 9.5.3
support the pull model.

9.3.5 Synchronous versus Asynchronous I/O

When a data source is polled it is important that this operation does not cause the
DBMS to hang. When the database issues a read request to a foreign data source, it
must still be available (both through standard interfaces and for interrupts from other
data sources). In some cases it might even be desirable to support simultaneous poll-
ing of several data sources, e.g. when long communication delays are involved. To
support this behaviour asynchronous (non-blocking) I/O is a must. The reading oper-
ation of a foreign data source should, however, appear as synchronous to the transac-
tion that performs it. The transaction scheduler of the DBMS can suspend
transactions while they are waiting for asynchronous replies from foreign data
sources.

172 Foreign Data Sources

9.3.6 The Agenda

To support the polling of foreign data sources the DBMS must be able to schedule
read requests. The DBMS must support cyclic polling in the background with differ-
ent interval times for different foreign data sources as well as sporadic polling per-
formed by users and applications. The actual times for polling should be determined
from parameters defined for specific foreign data sources and from temporal event
specifications in the active rules that monitor the foreign data sources. Theagenda is
a function that could support such behaviour.

It could be implemented using the UNIXcron daemon with its built in
scheduling queue or by using the system timer and having the DBMS maintain
its own scheduling queue or by reading the system clock at certain intervals and
having the DBMS maintain both its own timer and scheduling queue. Which
implementation scheme is the best depends on portability requirements, i.e. a
system less dependent on OS support, and on efficiency requirements. The cron
daemon maintains a file of the scheduled activities and is probably too slow for
a DBMS with a high load on the agenda mechanism. Maintaining the schedul-
ing queue in the DBMS has the advantages that the DBMS can better control
the actual scheduling and is less dependent on the OS scheduler. It can cause
extra overhead on the load of the DBMS, but will probably be more efficient
than having the agenda mechanism outside of the DBMS.

9.4 Monitoring Foreign Data Sources

9.4.1 Foreign Events

To fit the ECA-model, foreign data sources will have to be defined through external
events that signal a change to a foreign data source. We call theseforeign events. For-
eign events should always be defined together with a foreign data source. Introducing
external events without actual data sources makes it possible to use the database rules
for event programming (i.e. using just EA-rules) that perhaps is better supported in
dedicated programming languages. In fact, it is our view that events should always
signal change of some data (insert, delete, or update of data). This may involve
changes to stored data, data stored in tables, stored object attributes, or stored func-
tions. It may also involve changes to the schema. Changes to foreign data sources can
be presented through foreign events as discussed here. Even temporal events can be
viewed in this way; a temporal event signals a change of the foreign data sourcetime.
The only events that perhaps do not fit this model are events signalling access of data
and signalling of the beginning and end of transactions (unless we regard the log with
log records as changing data as well). By storing changes to foreign data sources in
∆-sets these can be used in event propagation and change propagation for partial dif-
ferencing as presented in chapter 6.

A rule that monitors a foreign data source could look like:

173

on added/removed/updated(<foreign-function-call>) | <foreign-event-name>
when <predicate-expression>
do <procedure-expression>

The foreign data source can be monitored through the foreign events of a foreign
function that represents added/removed/updated data or through some specially
named foreign events. The condition here is a query that can access the value of the
foreign data source, either through data passed from the event part or by directly
accessing the data source (see section9.3). Other foreign data sources not referenced
in the event part as well as local data should, of course, also be accessible. The action
can access foreign data sources as well and perhaps also update them (see
section9.4.2).

The external events can be raised directly by the foreign data source or by
the ADBMS itself when it detects a change to a data source. Having data
sources raising events themselves requires an interrupt procedure where the
data source interrupts the ADBMS and transfers the necessary information
(data) to support raising of the event. Having the ADBMS detecting changes to
foreign data sources themselves requires a polling procedure where the data-
base regularly polls the data source to detect changes. This can be done by hav-
ing periodic temporal events that trigger reading of the data source. This can be
done by ECA-rules, but is probably more efficient to hard-code into a special
low-level agenda mechanism. Polling data sources is usually less efficient than
letting them interrupt the ADBMS, but might be necessary if the data sources
(or the ADBMS) lacks this capability. Polling the data sources might also be
necessary if they are referenced in an ECA-rule containing temporal events
[24][64][98][134]. Temporal events and temporal rules were also discussed in
chapter 8.

For example, if we want to monitor a foreign function or foreign event
every 10th second1:

on added/removed/updated(<foreign-function-call>) | <foreign-event-name>and
every 10 seconds

when <predicate-expression>
do <procedure-expression>

The same mechanism as is used for background polling of the foreign data source
could be used here but with a modified polling interval. The polling interval would
have to be the minimum of all the temporal events referenced together with the for-
eign event and the background polling interval that has been specified for the foreign
data source. This should be a task for the agenda (see section9.3.6).

A rule such the one above probably requires immediate rule processing to
be effective, unless transactions are shorter than 10 seconds in which case
deferred rule processing might still be acceptable.

An alternative solution can be to extend the rule contexts in AMOS to sup-

1. Temporal events are currently not supported in AMOS, but can instead be introduced
as foreign events that are raised periodically.

174 Foreign Data Sources

port contexts that are processed at certain time intervals. Any rule activated
into such a rule context will be periodically checked. If several rules share the
same interval specifications, then a periodically checked rule context is proba-
bly a better solution. If most rules have different interval specifications, they
have to be processed separately and probably with an immediate coupling
mode.

If we want to delay the rule condition check until a period after a certain
event has been detected, we might want an ECA-rule like1:

on <event-type-specification>after 10 seconds
when <predicate-expression>
do <procedure-expression>

Another example can be a CA-rule where a check is done if a rule condition holds for
a period of at least 10 seconds:

when <predicate-expression>holds_for 10 seconds
do <procedure-expression>

This rule will need a similar monitoring interval as for the previous rule, but with a
check if the rule condition is true both at the beginning and at the end of a 10 second
interval. Both of the last two rules probably need immediate rule processing.

These kind of rules will require modification of the rule execution presented
in chapter 7 since it is based on simultaneous execution of events, conditions,
and (after conflict resolution) the action. One possible solution could be to sep-
arate these kind of rules into one immediate EA-rule that, when being executed,
schedules (with the agenda) a CA- or ECA-rule (in a special rule context) to be
checked after a certain time period.

9.4.2 Updating Foreign Data Sources

If foreign functions are to be indistinguishable from internal functions they have to
be updatable as well. Since an internal function just represent stored data, it can eas-
ily be changed. A foreign function that represents a value that is stored outside the
database can perhaps be changed. A foreign function, however, can also represent
information which can not be directly changed. In some applications it might be
desirable to define the update of a foreign function to be an operation that indirectly
changes its value. If the foreign function represents a sensor, its update might be
defined to operate an actuator that indirectly changes the sensor value, e.g. changing
the value of a thermometer by operating a heater or changing detected congestion in a
network by rerouting messages over other links.

Allowing update operations of foreign data sources can be seen as closing
the control loop and allowing an ADBMS to indirectly participate in all parts of
the execution cycle of a control application. Many control applications are,

1. Currently not supported in AMOS.

175

however, real-time applications and might put demands on the efficiency and
predictability of the ADBMS that it might not meet. Closing the control loop
might be desirable in some applications, but should not be seen as letting the
ADBMS take the role of dedicated real-time control systems. With more sup-
port for real-time behaviour in ADBMSs [101], the number of applications
where the ADBMS can participate in the whole control loop might increase.

9.4.3 Callbacks and Notifications

When the ADBMS triggers a rule due to the change of a foreign data source, the
action might be to update the foreign data source. Another response might be to issue
a callback or anotification to an external application. Update procedures of foreign
data sources will often be defined to issue callbacks to an external application that
indirectly updates the foreign data source. The callback can be represented by a gen-
eral callback mechanism or by dedicated functions that each communicate with a
specific external application. A notification could be to open a notification window to
signal a certain situation or to sound an alarm. If the rule is some kind of constraint
rule, the callback can be to an external function that resolves a constraint violation, in
the case where the ADBMS cannot resolve it directly itself.

9.4.4 Storing Foreign Data

Even though foreign functions represent foreign data, it might still be desirable to
store the data in the database. This could be for persistency reasons, i.e. to log all data
for later analysis, or for support of temporal queries over time series representing the
historic changes of the foreign data sources. Another reason might be to avoid unnec-
essary polling of foreign data sources by storing the latest value(s) semi-permanently
in a cache. By timestamping data which has been read, the latest reading of a data
source can be checked to see if it is good enough to use instead of polling the foreign
data source for a new value. This operation is usually much cheaper than actually
polling the data source. The extent to how old values we allow depends on the actual
foreign data source and the monitoring situation. These decisions will usually be
made at run-time. In aperformance polymorphic query optimizer [95] the decision
of how to access a data source can sometimes be made at compile time (during query
optimization).

9.4.5 Storing Foreign Events

In an ADBMS the events are usually stored, either in the transaction event log or in
dedicated data structures as the time series used for∆-sets in AMOS. The same data
structures can be used for storing foreign events, but since the foreign events can
occur in the background they are usually not related to one particular transaction so
logging them in a transaction event log is not a good solution. If events are stored in
some special data structure, such as∆-sets that are used for propagating events to
incrementally calculate complex events (events defined in terms of other events),

176 Foreign Data Sources

these could be used for storing foreign events as well. If we want to support complex
events defined in terms of foreign events this could then be done in a similar manner
as for internal events. Foreign data sources might, however, change very rapidly and
this might give rise to problems such as overflowing the database if all the related
foreign events are stored over long periods of time. If we want to combine temporal
events with foreign events, we also need to timestamp when they occurred (this
might be the case for internal events as well).

9.4.6 Time Series and Time Windows

To support temporal queries and temporal ECA-rules that reference foreign data
sources it might be necessary to store foreign data in time series. Since a data source
might change very rapidly it is crucial that the time series can be updated without too
much overhead. Storing the time series directly in a tree structure that is indexed by
time will cause to much overhead since the tree will have to be re-balanced as the
time series grow. Still it is necessary to support fast access of particular time points in
the time series without linearly scanning them. This can be done by special index
data structures or by using computational indexes [45]. It might also be necessary to
limit the size of time series and to discard old values when they become full. This can
be done automatically by defining sliding time series,time windows. See chapter 8
for more discussions on time series.

9.5 Implementation Issues

9.5.1 Connecting Foreign Data Sources to a Database

Basically foreign data sources can be connected in two different ways to the data-
base. The data source can be tightly connected by linking the code of the data source
with that of the DBMS. This requires, of course, that the DBMS supports this, which
is not the case with most commercial DBMS products. A more common model is to
connect the data source through some client/server interface that supports foreign
data sources. Most commercial databases do not support this either, but hopefully
they will in the future. Some commercial DBMSs have replication servers that can be
used to connect foreign data sources, as discussed in section9.2.1. As discussed in
section9.3, the actual monitoring of changes to the foreign data sources can be done
in three different ways:

• The data source interrupts the DBMS when it has changed and writes its new
value directly into the database.

• The data source interrupts the DBMS when it has changed and the DBMS polls
for the new value.

• The DBMS polls the data source at periodical intervals or when needed.

177

Combinations of these techniques can be used on the same foreign data source
depending on what is needed to support the application tasks. For example, in a com-
bination of interrupt driven monitoring and polling, the read operation can look at the
timestamp of the latest received data to decide whether to actually poll the data
source. How the foreign data sources are to be connected has to be declared in the
database schema. This includes information about which models of communication
should be used, i.e. push- or pull-based. If the pull model of communication is
defined, then the polling intervals will have to be specified. The actual polling inter-
vals will be decided dynamically by all the temporal events that are specified in the
rules that monitor the actual foreign data sources. Actual communication protocols
will also have to be specified, as well as any translations that have to be performed on
the data. Information needed by the optimizer to optimize queries that involve for-
eign data source access has to be specified as well.

9.5.2 Declaring Foreign Data Sources in the Database
Schema

When foreign data sources are declared in the database schema, they should be
declared in terms of the standard way of declaring data, i.e. as special tables, objects
and attributes, or as types and functions. Several pieces of information have to be
provided with these declarations:

• The name of the foreign data source.

• Data type declarations.
Information about what data type(s) will be returned from the foreign data source
and, if it can be parameterized, the types of the parameters.

• Modes of communication (push, pull, or both).
If the pull model is specified then information about when it should be polled, e.g.
by specifying the time interval.

• Foreign event specifications.
Information about what foreign event should be raised to signal a change of the
foreign data source and how the change will be detected. If the push model is
specified, then information about what interrupt will be used has to be specified.
If the pull model is specified, then information has to be specified as to how a
change is detected in polled data, e.g. by a new value or a newer timestamp.

• Update information.
If the foreign data source can be updated, it has to be specified how. This could be
done by specifying special user defined update procedures. If the updates are to
be logged, undo operations will have to be specified as user-defined procedures
as well.

• Storage information.

178 Foreign Data Sources

If the foreign data source is to be stored permanently or semi-permanently, this
has to be specified along with information about what data structures should be
used, and whether there are any indexes on the parameters and return values.

• Optimization information.
To help the optimizer, information about costs of accessing the foreign data
source, e.g., communication costs, translation costs, and the cost of accessing any
special data structures have to be specified. If the same foreign data can be
accessed from other foreign data sources, this has to be specified as well.

• Actual communication protocols that will be used.
The specified protocols must match the specified communication modes as well
as foreign event specification, i.e. if the specified protocol can provide them. If
any conversions to the data and parameters are needed, this has to be specified as
well.

• Physical connection data.
Information about how the foreign data source is physically connected, e.g. what
IP addresses, port numbers, file descriptor numbers, or on what physical
addresses in memory data will be written.

9.5.3 Standard Protocols

Low level protocols such as RS-232, X.25, X.29, dedicated real-time protocols such
as real-time Ethernet, instrumentation buses such as Fieldbus, and telecommunica-
tion protocols such as CCS7, ISDN and ATM can all be used for connecting foreign
data sources to a database, but are not discussed here. Software protocols like TCP/IP
(discussed below) can be used on top of hardware implemented transport protocols
like ATM (discussed in section2.5) and SCI (discussed below).

TCP/IP, SMTP

TCP/IP [115] is the packet-based protocol for communicating over the Internet, but
can be used on local communication networks, e.g. a local Ethernet network, as well.
It is based on a global addressing scheme where all sites are uniquely identified by
global addresses. TCP/IP provides reliable two-way connections, e.g. bysockets, that
can be used for both pushing and pulling data. Sockets can thus provide both syn-
chronous and asynchronous communication between databases and foreign data
sources. Pushing the data requires a local interrupt daemon that informs the DBMS
that new data has arrived.

SMTP [115] is the TCP/IP electronic mail protocol. Providing SMTP inter-
faces to DBMSs makes it possible to use database technology to better handle
large amounts of e-mail. For example, the problem of mass copying broad-
casted mails as is done today might be avoided by storing the mails in one or a
few databases and accessing them instead of copying data. Better search facili-
ties would also be provided by the full use of database query languages to

179

access the mailboxes. SMTP is basically a push protocol where mails are sent
out and the recipients are notified by the mail server. It is possible to pull infor-
mation from most SMTP servers by monitoring changes to special files as is
done by thebiff program which can inform when new mail has arrived and the
finger program which checks if and when a user has read his/her mail.

RPC

In Remote Procedure Calls (RPC) [12][115] the client can call remote procedures in
the server as if they are local procedures. RPC packages are usually built on top of
the TCP/IP protocol, but can also be built on other protocols as well. The RPC pack-
age will provide the client with procedure stubs,client stubs, that actually calls the
server. The RPC provides the server with correspondingserver stubs that receive
calls from the client stubs. Calls from client stubs are packaged into a network mes-
sage containing the procedure arguments. The server stubs unpack the network mes-
sages and send the procedure arguments to the actual server function. When the
server function returns to the server stub, the return values are packed in a network
message which is sent back to the client stub. The client stub finally returns the result
to the caller of the RPC to make it appear as if it was a local procedure call.

RPC based communication is common for connecting databases over a net-
work and can be used as a synchronous, low-level connection protocol between
databases and foreign data sources.

File Access, NFS, FTP

Foreign data sources defined as external files are very common. If these are accessi-
ble through remotely mounted file systems, they can be accessed with protocols such
as NFS (Network File System) [115]. If the files are not on remotely mounted file
systems, they can be accessed with protocols such as FTP (File Transfer Protocol)
[115]. The data accessed in files usually have to be translated into data readable by
the DBMS.

HTTP, CGI

HTTP (Hyper Text Transfer Protocol) [46] is a standard protocol for distributed
hypermedia applications on the World-Wide Web (WWW) and is used by Web
browsers, for example. HTTP is a pulling protocol where the foreign data sources,
e.g. WWW-pages will have to be fetched from WWW servers and then be scanned
by the DBMS. Using a DBMS for accessing the WWW can help to better search the
vast amount of information available on the WWW. Web crawlers and search
engines are examples of the use of DBMSs for accessing the WWW.

The Common Gateway Interface (CGI) is a standard for interfacing external
applications with information servers, such as HTTP or WWW servers. A plain
HTML (Hyper Text Markup Language) document that the WWW daemon
retrieves is static, which means it exists in a constant state: a text file that does
not change. A CGI program, on the other hand, is executed in real-time, so that

180 Foreign Data Sources

it can output dynamic information. If one wants to connect a DBMS to the
WWW where queries can be put to the DBMS and where the answers are
dynamically created, then a CGI gateway can be used. The interface will be a
CGI program that the WWW daemon (a local process interacting with the
WWW server) can execute to transmit information to the DBMS, and receive
the results back again and display them to the client. Vendor-specific exten-
sions to CGI have been provided such as NSAPI (Netscape Server Application
Programming Interface) and ISAPI (Internet Server Application Interface).

CORBA

The Common Object Request Broker Architecture (CORBA) [135] is quickly
becoming the de facto standard for achieving interoperability between Object-Ori-
ented systems. CORBA is defined within the Object Management Architecture
(OMA) by the Object Management Group (OMG). OMA defines the Object Request
Broker (ORB) as a common communication bus for objects and where CORBA is an
architecture for distributed objects. CORBA defines:

• Exportable object identifiers

• Static and dynamic invocation interfaces

• Interaction models

CORBA makes it possible to export objects as object references from one system to
another. A DBMS with a CORBA-interface could thus reference foreign data sources
through CORBA-objects exported from some application with a CORBA interface.

CORBA defines both static and dynamic invocation interfaces. In the static
invocation the interface is determined at compile-time and is presented to client
code using code stubs defined in the OMG Interface Definition Language
(IDL). In a DBMS foreign data sources can be defined by IDL stubs that
defines the objects of the foreign data source (this can be used with an OOD-
BMS where the database schema usually is static anyway). In the dynamic
invocation interface the clients can construct and issue requests whose signa-
tures are not known until run-time. The dynamic interface can be used by a
DBMS to connect foreign data sources dynamically and where it is not possible
to compile and link the database schema with static code (which is the case
with most RDBMSs).

The CORBA interaction models are based on RPC, i.e. synchronous invoca-
tions. CORBA also supports asynchronous interaction by allowing a client to
continue without waiting for the result of a request. In the dynamic invocation
interface CORBA also supportsdeferred synchronous interactions where the
client can receive a response some time after issuing a request and after having
done something else instead of just waiting for the response. Supporting both
synchronous and asynchronous interaction is important for defining different
kinds of foreign data source interfaces.

Within OMA an Object Event Notification Service has been defined that

181

supports notification of events to interested objects. It defines objects to have
supplier roles (produces data) andconsumer roles (consumes data). The event
data are communicated between suppliers and consumers by issuing standard
CORBA requests. Two models for communicating events are defined. Apush
model where the supplier of events initiate the transfer of event data to the con-
sumer(s). This is similar to the push model defined in this chapter where a for-
eign data source (the producer) interrupts a DBMS (the consumer) to signal
that it has changed. In thepull model a consumer requests event data from a
supplier. This is similar to the pull model where a DBMS polls a foreign data
source to detect if it has changed.

The service also definesevent channels that are intervening objects that
allow producers to communicate with multiple consumers asynchronously. Dif-
ferent event channels need to be implemented to provide push or pull models or
a combination of these.

Another service within OMA is the Object Transaction Service (OTS)
which provides ACID-transactions. More specifically, OTS supports develop-
ment of transactional object classes. OTS defines both flat and nested transac-
tions. In a CORBA interface to a DBMS these have to be mapped to the
transactions provided by the DBMS. If the DBMS has definedcoupling modes
for active rule execution, e.g immediate, deferred, and decoupled, that are
related to the transactions, these could be defined to relate to the CORBA trans-
actions.

SQL/CLI

SQL/CLI [128] is a standard client/server interface for applications interacting with a
relational (SQL) DBMS. It is based on that the application (the client) only wants to
access and store data permanently within the DBMS (the server). If the application is
to act as a foreign data source to the DBMS, this can only be achieved by having the
application updating a stored table in the database. This can be seen as push-based
communication where the data is stored permanently or semi-permanently (the for-
eign data source will have to delete old data itself) in the DBMS. SQL/CLI also
defines how the application can specify how data from a table should be translated to
fit the data format of the application language. This can be useful for defining transla-
tion of data from external data sources so that it conforms with the data formats of the
DBMS. SQL/CLI is based on synchronous communication and where all operations
are performed (and logged) inside a transaction. SQL/CLI as it is defined today is not
sufficient as a general foreign data source interface.

OLE DB/ODBC

OLE DB [14] is a new set of interfaces being developed by Microsoft. It is an exten-
sion of OLE/COM (Object Linking and Embedding/ Component Object Model) with
better support for database integration. OLE DB supports representing foreign data in
a tabular format to make it accessible in SQL. Transparent access of the foreign data
sources is supported. Notifications can be defined to monitor changes to a foreign

182 Foreign Data Sources

data source. Updates can be provided by special method calls. OLE DB is defined in
OLE COM and is thus mainly for integrating DBMSs and applications within the
Windows and WindowsNT platforms. ODBC (Open Database Connectivity) is a
general protocol that supports full SQL and SQL/CLI can be seen as a subset of
ODBC. Compatibility between OLE DB and ODBC is provided through an OLE DB
library. It is also possible to extend OLE DB with user defined communication proto-
cols. OLE DB has support for adding new data structures throughdata providers, as
long as they expose their data in a tabular format. Support for extensible optimizers is
also possible by support for specifyingoptimization goals, e.g. limits on CPU time,
memory utilization, I/O, or network messages.

Microsoft have also defined their own protocol, DCOM (Distributed Com-
ponent Object Model), for distributed communication for integrating different
resource managers such as SQL-servers and MTSs (Microsoft’s Transaction
Servers). DCOM is a competitor to CORBA. Microsoft also have a distributed
message server, MSQS (Microsoft’s Message Queue Server), which uses RPCs
for transferring messages and DCOM to exchange control and management
information among queue manager nodes.

Low level transport protocols (ATM and SCI)

TCP/IP can be defined on top of a protocol like ATM (fig. 9.3) where IP packages
are fragmented into ATM packages (cells) at the source and then are assembled back
into the IP package at the destination. This will make it possible to extend the Internet
to run on future broad-band telecommunication networks. DBMSs for network appli-
cations can interconnect over the TCP/IP interface without bothering about over
which networks the connections are being set-up. ATM ports in network devices may
be assigned IP addresses which makes it possible to reference any network element
using IP addresses.

A new standard, MPOA (Multi Protocol Over ATM), has been defined that allows
ATM networks to better supportinternetworking, i.e. integrating local sub-networks
with their own protocols through ATM networks. See section2.5 for a more thor-
ough discussion of ATM in telecommunication networks.

Another interesting transport protocol for interconnecting DBMSs and for-
eign data sources is the SCI (Scalable Coherent Interface) [70]. The SCI is a
specification developed to provide high bandwidth and the ability to connect a
large number of processors, memory, and I/O devices. These devices are con-
nected via a point to point interconnect. The SCI interface is mostly used for
fast mulitprocessor interconnection [124], but can also be used for connecting
different peripherals to a computer system. The SCI standard provides:

• Scalability: The network performs well in systems scaling from a few to a large
number of processors.

• Coherence: The distribution is transparent through a distributed shared memory.

• StandardInterface: The provided interface is not restricted to a particular princi-
ple or technology and can be provided by many different vendors.

183

SCI provides a directory-based cache coherence protocol for the processors or
peripherals (nodes) to exchange information. The directory provides a shared
memory between the SCI connected nodes through cache memories in each
node. Each node communicates by reading and writing into the cache memo-
ries. The reading and writing is synchronized using locks (basically sema-
phores). The SCI standard supports up to 64K nodes and provides a raw point-
to-point throughput of 1 Gbyte/sec. Since SCI is based on shared memory all
the involved nodes must store the data in the same manner, i.e. when consider-
ing significant bits (Little or Big Endian architectures) and how the data is
interpreted (how different data types are encoded). TCP/IP can also be set-up
on top of SCI to provide more transparency, but at the cost of assembling/disas-
sembling data into IP packages and translating data instead of reading it
directly in the shared memory (data type encoding will still have to be per-
formed at both ends).

SNMP/MIBs

The Simple Network Management Protocol (SNMP) [114] is a protocol for
Internet network management services. In SNMP there is a separation between
the management system and the managed device (network element). SNMP
basically supports four different operations. Three operations are specified
from the management system to the managed device:

1. Get - Retrieve one element of management data from an IP addressable
device.

2. Get next - Get the next element of data from that device.
3. Set - Modify an element of management data in that IP addressable

device.

Data

TCP

IP

ATM Adaption Layer

ATM Datalink Layer

Physical Layer (e.g. SONET/SDH)

Figure 9.3: Running TCP/IP on top of ATM

184 Foreign Data Sources

One operation is defined from the managed device to the management system:
4. Trap - Tell the management system that something has happened. Can be

used for sending alarms and for monitoring the status of the network
device.

Within SNMP the Management Information Base (MIB) is a group of standards
for different network devices that should be accessible through SNMP. An
ATM MIB [3] is defined for managing network elements in an ATM-network.
In the NSM (Network Services Monitoring) MIB generic attributes have been
defined for managing network applications. In the RDBMS MIB [16] most
RDBMS vendors have agreed on how to access and manage RDBMSs over a
network. The RDBMSs are defined as servers that can be:

• 1 database : 1 server

• 1 database many servers

• many databases : 1 server

• many databases : many servers

The RDBMS MIB sees the servers as a collection of tables and has nine MIB-
specific tables for managing the servers:

• databases installed on the host/system

• actively opened databases

• database configuration parameters

• database limited resources

• database servers installed in a system

• active database servers

• configuration parameters

• server limited resources

• relation of servers and databases on host

A special SNMP Replication MIB has also been defined for managing repli-
cated data in a distributed DBMS. Other proposed MIBs are MADMAN (Mail
And Directory MANagement) MIB, WWW MIB (extension to NSM MIB), and
an HTTP MIB.

If an ADBMS is to be used for network management it has to support stand-
ard SNMP MIBs. If network elements are introduced as foreign data sources
the monitoring functionality of SNMP MIBs (the Trap operation) can be intro-
duced as foreign events that can be monitored through ECA-rules.

185

9.5.4 A Foreign Data Source Protocol

The above protocols are not enough for connecting foreign data sources to a data-
base. Some of them have the notion of events, such as CORBA and OLE DB, but this
need to be specified more exactly in order to support real interoperability between
foreign data sources and databases. OLE DB actually has support for foreign data
sources, but is platform- or vendor-specific. In many cases protocols such as CORBA
are too heavy to use between simple data sources and databases. Many data sources
can have simple non-OO data models, perhaps just a couple of sensors defined as
simple foreign functions returning real valued data. In those cases it would be desira-
ble to have a minimal protocol for minimal overhead (such as SNMP MIBs). Such a
limited protocol could be sometimes mapped to standards such as CORBA or general
protocols such as OLE DB to provide general foreign data source access. Protocols
such as SMTP have the notion of events defined as arriving mail to a users mailbox
and should be possible to map to a more general protocol. It should be possible to
map HTTP to a general protocol as well.

9.5.5 Connecting Foreign Databases

As systems and business platforms are becoming more heterogeneous, there is a
growing need for database interoperability. One solution is to connect different data-
bases though mediating software. Products are available on the market and there are
several research platforms. None of these support interoperabillity from an active
database standpoint. There is no coherent way to connect different active databases
and there are no products that support a coherent way of specifying active rules that
refer to several heterogeneous databases. In [119] an extension of CORBA is defined
for interconnecting different heterogeneous DBMSs using rules.

9.5.6 Mediating DBMSs

Mediating DBMSs [41][131] work as a glue between different databases and can
provide translations between different data models such as relational to Object Ori-
ented [42]. Mediating databases can be used in connecting heterogeneous databases
as foreign data sources. Support for accessing remote databases and updating them
are available in protocols like SQL/CLI, ODBC, CORBA, and to a limited extent in
commercial replication servers (see section 9.2.1).

9.5.7 Exporting Events

In order to provide monitoring capability of foreign data sources represented as other
databases, the communication protocols must be provided for exporting events that
make this possible. CORBA provides events that could be used for this purpose. OLE
DB notifications could also be used for this. Techniques used in commercial replica-
tion servers (section 9.2.1) also provides means for exporting events, i.e. information
about changed tables, but these are specific for each vendor.

186 Foreign Data Sources

9.5.8 Compiling Down Triggers

If foreign data sources that represent tables in other databases are referenced in ECA-
rules we must be informed when these tables change. Instead of exporting all events
of referenced tables it might be possible to compile down triggers into the remote
database (provided it supports triggers). This technique is used in the Oracle replica-
tion server for detecting changes to replicated tables (see section9.2.1). If several
foreign data sources in the same remote database are referenced in one ECA-rule, e.g.
in a conjunctive event specification, this technique might be very beneficial since we
only export the events if they really might trigger the rule. Another way to approach
this is to view this as exporting more complex events involving several data sources.

9.6 Foreign Data Sources in AMOS

Foreign data sources as presented here are not yet implemented in the AMOS system.
AMOS does support the concept of foreign (external) events, but these have tobe
specified manually by registering a new event type by name with the event
manager along with an event function that stores the event data. The new event
can be manually raised by:

raise(<event-name>, <event-data>);

This operation raises the event and associates the transaction time and the spec-
ified event-data with the event. As can be seen in the event specification pre-
sented in section3.8, foreign events can be specified by naming the event
specifically:

event-type-specification ::=
added(function-call) |
removed(function-call) |
updated(function-call) |
created(variable-name) |
deleted(variable-name) |
foreign-event-name |
event-type-specificationand event-type-specification |
event-type-specificationor event-type-specification|
event-type-specificationbefore event-type-specification|
event-type-specificationafter event-type-specification

A future extension of this will be to automatically create foreign events as part
of the foreign function definitions.Note that if data of a foreign function can be
added, removed, and updated, it can have events defined for it as well which can be
monitored just as if it was a stored function.

Foreign data sources in AMOS are currently used for extending the DBMS
with new data structures and operations (similar to the Informix DataBlade
concept). A new data structure for storing time series has been implemented in

187

AMOS to support storing events monitored by active rules, this data structure
is discussed in chapter 8. The AMOS foreign data source concept is being
extended to support external data access as discussed in this chapter. This will
sometimes include defining new data structures, but the focus this chapter is on
access to external data. Foreign data sources in AMOS will be based on an
extension of the foreign function concept in AMOS. A foreign function of a
foreign data source could be declared as:

create function function-nameparameter-specification result-specification
as foreign foreign-data-source-access-specification

[set foreign-data-source-change-specification]
[add foreign-data-source-change-specification]
[remove foreign-data-source-change-specification]
[event foreign-event-name]

foreign-data-source-access-specification ::=
[implementation-specification]
[size integer]
[push interrupt-method [file-descriptor | address]]
[pull frequency time]
[transformations transformation-specification]
[costhint optimization-specification]

foreign-data-source-change-specification ::=
function-call
[event foreign-event-name]

The foreign data source specification includes information such as the name of
the actual function, access specification, set (update), add, or remove change
specifications, and any specific event name specification. The access specifica-
tion includes specific implementation information such as the actual communi-
cation protocol (if any), physical addresses, IP addresses, port numbers, and
interrupt signals. The size defines if the foreign function should have a cache
and of what size. Push and pull specifies access method and this must be
matched by the actual communication protocol that has been specified. Trans-
formations specify any transformations of the physical data when it is accessed
such as rounding or transforming continuous values to discrete values (sam-
pling) or transformations such as transforming discrete values to continuous
(interpolation). The costhint specification is used for specifying different
access patterns to allow inverse queries and also what costs are involved in
accessing the foreign data source (see [82] for more details). The costhint spec-
ification can also be extended to support real-time costs as is defined in [95].

Dif ferent methods can be defined for updating, adding, or removing data of
the foreign function (if supported at all). The change specification specifies

188 Foreign Data Sources

how changes to the foreign function will be signalled to support defining ECA-
rules that monitor changes to the foreign function. This could register poll
operations with the agenda that reads the foreign data at certain intervals and
raises the event if a change is detected or an interrupt routine that raises the
event when a specified interrupt occurs.

189

10 Conclusion

10.1 Summary

In this thesis some background work from the application areas of Computer
Integrated Manufacturing (CIM) and Telecommunication Network Manage-
ment (TNM) have been presented. These applications served as motivation for
the functions of an Active Database Management System (ADBMS) that were
presented in the thesis. The major contributions within the field of active data-
base systems are:

• Identifying the need of ADBMSs through thecase studies of CIM and TNM. In
the application studies the requirements for efficient execution of rules with com-
plex conditions and the need for transparent access of external data were identi-
fied.

• Using active rules formonitoring andcontrol in CIM and TNM.

• Identifying the need formediators in CIM and TNM.

• Defining an ADBMS architecture.

• Identifying the need for generalizing the architecture towardsactive mediators.

• Adding active rules to an Object-Relational DBMS.

• Integrating (E)CA-rules into a query language.

• Rule modularization by grouping rules intorule contexts.

• Efficient rule evaluation techniques based onpartial differencing.

• Defining external data in a transparent manner through the concept offoreign
data sources.

• Defining external events through the concept offoreign events of foreign func-
tions.

• Work on introducingtime series for storing event histories.

• Work on newindexing techniques for inverse queries over time series.

Most of the ideas presented here, such as CA- ECA-, EA-rules, partial differ-
encing for efficient rule condition monitoring, time series for storing times-
tamped events in event logs, and rule contexts have been implemented in the
AMOS ADBMS.

190 Conclusion

10.2 Future Work

Future work includes a full implementation of the rule system with support for
the aspects presented here, for example, defining and monitoring foreign data
sources, larger applications, incremental evaluation of aggregates, temporal
events, rule conditions using temporal queries, and multidatabase rules.

191

13 References

[1] Abbott J. C.: Sets, Lattices and Boolean Algebra,Allyn and Bacon, 1969.

[2] Adelberg B., Kao B., and Garcia-Molina H.: Overview of the STanford Real-time Infor-
mation Processor (STRIP),SIGMOD Record, Vol. 25, No. 1, March 1996.

[3] Ahmed M.and Tesink K.: Definitions of Managed Objects for ATM Management Ver-
sion 8.0 using SMIv2, Network Working Group, Stand. Doc. RFC 1695, August 1994.

[4] Ahn I.: Database Issues in Telecommunications Network Management,SIGMOD 5/94,
1994.

[5] Alexander P. and Carpenter K.: ATM Net Management: A Status Report, Data Commu-
nications, Tech. Tutorials, Sept. 1995.

[6] Astrahan M. M., Blasgen M. W., Chamberlin D. D., Eswaran K. P., Grey J., Griffiths P.
P., King W. F, Lorie R. A, Mc Jones P. R., Mehl J. W, Putzolu G. R., Traiger I. L., Wade
B. W., and Watson V. : System R: Relational Approach to Database Management,ACM
Transactions on Database Systems, Vol.1, No. 2, June 1976, Pages 97-137.

[7] Baekgaar L. and Mark L.: Incremental Computation of Nested Relational Query Expres-
sions,ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995, Pages 111-
148.

[8] Baralis E., Ceri S., Fraternelli P., and Paraboschi S.: Support Environment for Active
Rule Design,Journal of Intelligent Information Systems, 7, Pages 129-149, 1996.

[9] Baralis E.and Widom J.: Using Delta Relations to Optimize Condition Evaluation in
Active Databases,RIDS’95(Rules in Database Systems), Springer Lecture Notes in
Computer Science, pp. 292-308, Athens, Greece, Sept., 1995.

[10] Beech D.: Collections of Objects in SQL3, inthe 19th International Conference on
Very Large Databases (VLDB’93), Dublin, Ireland, 1993, Pages 244-255.

[11] Berndtsson M.and Hansson J.: Issues in Active Real-Time Databases, Proceedings of
Active and Real-Time Database Systems (ARTDB-95), Pages 142-157, Skövde 1995.

[12] Bernstein A. J. and Lewis P. M.: Concurrency in Programming and Database Sys-
tems, Jones and Bartlett Publishers, Inc. ISBN 0-86720-205-X, 1993.

[13] Blakeley J. A., Larson P-Å., and Tompa F.W.: Efficiently Updating Materializing Views,
ACM SIGMOD Conference, Washington D.C., 1986, pp. 61-71.

[14] Blakeley J. A.: Data Access for the Masses through OLE DB,Proceedings of ACM
SIGMOD International Conference on Management of Data, Montreal, June 1996,
Pages 161-172.

[15] Blumenthal M. S.: Unpredictable Certainty: The Internet and the Information Infrastruc-
ture,IEEE Computer, Jan. 1997, Pages 50-56.

[16] Brower D. (ed.): Relational Database Management System (RDBMS) Management
Information Base (MIB) using SMIv2, Network Working Group, Stand. Doc. RFC
1697, August 1994.

[17] Brownston L., Farrell R., Kant E., and Martin N.:Programming Expert Systems in
OPS5, Addison-Wesley, 1985.

192 References

[18] Buchman A. P., Branding H., Kudrass T., and Zimmermann J.: REACH: a REal-time,
ACtive and Heterogeneous mediator system,IEEE Data Engineering Bulletin, Vol. 15,
No. 1-4, Dec. 1992, Pages 44-47.

[19] Bukhres O. A.and Elmagarmid A. K.:Object-Oriented Multidatabase Systems - A
Solution for Advanced Applications, Prentice-Hall Inc., ISBN 0-13-103813-2, 1996.

[20] Cattell R. G. G:The Object Database Standard: ODMG-93b Release 1,2, Morgan
Kaufmann Publishers Inc., 1994.

[21] Ceri S., Gottlib G., and Tanca L.: What You Always Wanted to Know About Datalog
(And Never Dared to Ask),IEEE Transactions on Knowledge and Data Enginee-
ring, Vol. 1, No. 1, March 1989.

[22] Ceri S. and Widom J.: Deriving Production Rules for Incremental View Maintenance, In
Proceedings of the 17th VLDB Conference, Brisbane, Queensland, Australia, Aug.
1990, Pages 577-589.

[23] Chakravarthy S., et. al.: HiPAC: A Research Project in Active Time-Constrained Data-
base Management,Xerox Advanced Information Technology, Technical Report XAIT-
89-02, Cambridge, MA, Aug. 1989.

[24] Chakravarthy S.and Mishra D.: An Event Specification Language (Snoop) for Active
Databases and its Detection,UF-CIS Technical Report, TR-91-23, Sept. 1991.

[25] Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S-K.: Composite Events for
Active Databases: Semantics, Contexts and Detection, inProceedings of the 20th
VLDB Conference, Santiago, Chile, 1994, Pages 606-617.

[26] Chandra R.and Segev A.: Active Databases for Financial Applications,RIDE ´94,
Houston, Febr., 1994, Pages 46-52.

[27] Chawathe S. S., Garcia-Molina H., and Widom J.: A Toolkit for Constraint Management
in Heterogeneous Information Systems,Proceedings of the Twelfth International
Conference on Data Engineering, New Orleans, 1996, Pages 56-65.

[28] Chimenti D., Gamboa R., and Krishnamurthy R.: Towards an Open Architecture for
LDL, Proceedings of the15th VLDB Conference, 1989, Pages 195-205.

[29] Dayal U., Blaustein B., Buchmann A., Chakravarthy, Hsu M., Ledin R., McCarthy D.,
Rosenthal A., and Sarin S.: The HiPAC Project: Combining Active Databases and Tim-
ing Constraints,SIGMOD Record, Vol. 17, No. 1, March 1988.

[30] Dayal U., Buchman A.P., and McCarthy D.R.: Rules are Objects too: A Knowledge
Model for an Active, Object-Oriented Database System,Proceedings of the 2nd Interna-
tional Workshop on Object-Oriented Database Systems, Lecture Notes in Computer Sci-
ence 334, Springer 1988.

[31] Dayal U. and McCarthy D., The Architecture of an Active Database Management Sys-
tem, inProceedings ofthe ACM SIGMOD Conference, 1989, Pages 215-224.

[32] Dayal U., Hsu M., and Ladin R.: Organizing Long-Running Activities with Triggers and
Transactions,Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Atlantic City, May 1990.

[33] Dewan H. M., Ohsie D., Stolfo S. J., Wolfson O., and Da Silva S.: Incremental Database
Rule Processing in PARADISER,Journal of Intelligent Information Systems, 1:2, 1992.

[34] Dewitt D.J., Katz R.H., Olken F., Shapiro L.D., Stonebraker M.R., and Wood D.: Imple-
mentation Techniques for Main Memory Database Systems,SIGMOD Record, Vol. 14,
No. 2, 1984, Pages 1-8.

[35] Dittrich K. R., Gatziu S., and Geppert A.: The Active Database Management System
Manifesto: A Rulebase of ADBMS Features, Inthe Second International Workshop

193

on Rules in Database Systems (RIDS’95), Athens, Greece, September 25-27, 1995,
Springer Lecture Notes in Computer Science, ISBN 3-540-60365-4, Pages 119-130,
1995.

[36] Dong G. and Su J.: First-Order Incremental Evaluation of Datalog Queries,Proceedings
of the Fourth Intternational Workshop on Database Programming Languages - Object
Models and Languages, Springer-Verlag, Aug. 30, 1993, pp. 295-308.

[37] Dyreson C.E.and Snodgrass R.T: Efficient Timestamp Input Output,Technical Report
of the Department of Computer Science, University Arizona, TR 93-01, Febr., 1993.

[38] Eich M. H. (ed.): Main-Memory Databases: Current and Future Research Issues (fore-
word), Special section on main-memory databases,IEEE Transactions on Knowledge
and Data Engineering, Vol. 4, No. 6, December 1992.

[39] Elmasri R.and Navathe S. B.:Fundamentals of Database Systems, Second Edition,
The Benjamin/Cummings Publishing Company, Inc., ISBN 0-8053-1753-8, 1994.

[40] Fabret F., Regnier M., and Simon E.: An Adaptive Algorithm for Incremental Evalua-
tion of Production Rules in Databases,Proceedings of 19th VLDB Conference,Dublin
1993.

[41] Fahl G., Risch T., and Sköld M.: AMOS - An Architecture for Active Mediators,Inter-
national Workshop on Next Generation Information Technologies and Systems (NGITS
’93), Haifa, Israel, June 1993, Pages 47-53, (in this thesis as Paper VI).

[42] Fahl G. and Risch T.: Query Processing Over Object Views of Relational Data, to appear
in the VLDB Journal, 1997.

[43] Falkenroth E., Törne A., and Risch T.: Using an Embedded Active Database in a Control
System Architecture, inthe 2nd International Conference on Applications of Data-
bases, San Jose, CA, USA, Dec. 1995.

[44] Falkenroth E.: Data Management in Control Applications - A Proposal based on Active
Database Systems, Lic. Thesis, LiU-Tek-Lic 1996:54, Department of Computer and
Information Science, Linköping University, Linköping, Sweden, 1996.

[45] Falkenroth E.: Computational Indexes for Time Series, inthe 8th International Con-
ference on Scientific and Statistical Database Management, Stockholm, Sweden,
June 1996.

[46] Fielding R., Frystyk H., and Berners-Lee T.: Hypertext Transfer Protocol - HTTP/1.1,
HTTP Working Group, INTERNET DRAFT, Nov. 22, 1995.

[47] Fishman D., Annevelink J., Chow E., Connors T., Davis J. W., Hasan W., Hoch C. G.,
Kent W., Leichner S., Lyngbaek P., Mahbod B., Neimat M. A, Risch T., Chan M. C., and
Wilkinson W. K: Overview of the Iris DBMS,Object-Oriented Concepts, Databases,
and Applications, ACM press, Addison-Wesley Publ. Comp., 1989.

[48] Flodin S.and Risch T.: Processing Object-Oriented Queries with Invertible Late Bound
Functions. inthe 21st International VLDB Conference, Zurich, Switzerland, Sept. 11-
15, 1995.

[49] Forgy C. L.: Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match
Problem,Artificial Intelligence, 19(1):17-34, 1982.

[50] Ghandeharizadeh S., Hull R., and Jacobs D.: Heraclitus : Elevating Deltas to be First-
Class Citizens in a Database Programming Language, inACM Transactions on Data-
base Systems, Vol. 21, No. 3., September 1996, Pages 370-426.

[51] Garcia-Molina H.and Salem K.: Sagas,ACM SIGMOD Conference, San Francisco, Cal-
ifornia, 1987, Pages 249-259.

[52] Garcia-Molina H. and Salem K.: Main-Memory Database Systems: an Overview, IEEE

194 References

Transactions on Knowledge and Data Engineering, Vol. 4, No.6, Dec. 1992.

[53] Gatziu S. and Dittrich K. R: SAMOS: an Active Object-Oriented Database System,
IEEE Data Engineering Bulletin, Vol. 15, No. 1-4, Dec. 1992, Pages 23-26.

[54] Gatziu S. and Dittrich K. R.: Events in an Active Object-Oriented Database System, in
Proceedings of the 1st International Workshop on Rules in Database Systems,
Edinbourgh, Scottland, 1993.

[55] Gehani N. H.and Jagadish H. V.: Ode as an Active Database: Constraints and Triggers,
in Proceedings of the 17th VLDB Conference.,Barcelona, Spain, Sept. 1991, Pages
327-336.

[56] Gehani N. H., Jagadish H. V., and Shmueli O.: Composite Event Specification in Active
Databases: Model & Implementation, inProceedings of the 18th VLDB Conference,
Vancouver, British Colombia, Canada, 1992, Pages 327-338.

[57] Georgakopoulos D., Hornick M., Sheth A.: An Overview of Workflow Management:
From Process Modelling to Workflow Automation Infrastructure,Distributed and Par-
allel Databases, 3, 2, April 1995, Pages 119-153.

[58] Goebel V., Johansen B. H., Løchsen H. C., and Plagemann T.: Next Generation Database
Technologies for Advanced Communication Services, inProceedings of the Third
International Conference on Intelligence in Broadband Services and Networks -
IS&N’95, Herakliton, Crete, Greece, Oct. 1995, Pages 320-333.

[59] Gopal G.and Herman G.: Toward a Database-Driven Network,IEEE 1988.

[60] Grifeth N. D.and Lin Y-J: Extending Telecommunications Systems: The Feature-Inter-
action Problem,Special Issue on Telecommunications, IEEE Computer Magazine,
Aug. 1993.

[61] Griffin T. and Libkin L.: Incremental Maintenance of Views with Duplicates,ACM Sig-
mod Conference, 1995, Pages 328-339.

[62] Gupta A.and Mumick I. S.: Maintenance of Materialized Views: Problems, Techniques
and Applications,IEEE Data Engineering bulletin, Vol. 18, No. 2, 1995.

[63] Hanson E. N.: Rule Condition Testing and Action Execution in Ariel,ACM SIGMOD
Conference, 1992, Pages 49-58.

[64] Hanson E. N. and Khosla S.: An Introduction to the TriggerMan Asynchronous Trigger
Processor, in Proceedings of the 3rd International Workshop on Rules in Database
Systems - RIDS’97, Skövde, Sweden, June 1997.

[65] Harrison J. V. and Dietrich S. W.: Condition Monitoring in an Active Deductive Data-
base, Arizona State University, ASU Technical Report TR-91-022 (Revised), Dec. 1991.

[66] Hayes-Roth D., Washington R., Hewett R., Hewett M., and Seiver A.: Intelligent Moni-
toring and Control,Proceedings of the 1989 International Joint Conference on Arti-
ficial Intelligence, 1989.

[67] Hild S. G.: A Brief History of Mobile Telephony, University of Cambridge, Computer
Laboratory, Technical Report No. 372, January 1995.

[68] Hedberg S. and Steizner M.: Knowledge Engineering Environment (KEE) System:
Summary of Release 3.1, Intellicorp Inc. July 1987.

[69] Hurson A. R., Bright M. W., and Pakzad S. H.: Multidatabase Systems: An Advanced
Solution for Global Information Sharing,IEEE Computer Society Press, ISBN-0-
8186-4422-2, 1994.

[70] IEEE SCI Draft 2.00, SCI Scalable Coherent Interface, SCI: D2.00 P1596-18Nov91-
doc233, 1991.

[71] Imielinski T. and Badrinath B. R.: Mobile Wireless Computing: Challanges in Data

195

Management,Communications of the ACM, 37(10), Oct. 1994.

[72] Imielinski T. and Korth H. F. (eds.):Mobile Computing, Kluwer Academic Publishers,
ISBN: 0-7923-9697-9 , 1996.

[73] Ioannidis Y. E. and Cha Kang Y.: Randomized Algorithms for Optimizing Large Join
Queries,ACM SIGMOD Conference,1990, NJ, May 23-25, pp. 312-321.

[74] ITU (CCITT) X.722 Guidelines for the Management of Managed Objects (GDMO),
Geneva 1992.

[75] Jensen C. S.and Mark L., Roussopoulos N.: Using Differential Techniques to Efficiently
Support Transaction Time, in the VLDB Journal, Vol. 2, No. 1, Jan. 1993.

[76] Kalbfleisch C. W.: A MIB for Managing Web Servers, Internetwork, Sept. 1996, Page
28.

[77] Katiyar A. G. D.and Mumick I. S.: Maintaining Views Incrementally, AT&T Bell Labo-
ratories, Technical Report 921214-19-TM, Dec. 1992.

[78] Keeler M.: Database of All Trades,Database Programming & Design, ISSN 0895-
4518, Vol. 9, No. 11, Nov. 1996.

[79] Kersten M. L.: An Active Component for a Parallel Database Kernel, Inthe Second
International Workshop on Rules in Database Systems (RIDS’95), Athens, Greece,
September 25-27, 1995, Springer Lecture Notes in Computer Science, ISBN 3-540-
60365-4, Pages 277-291, 1995.

[80] Koenig S. and Paige R.: A Transformational Framework for the Automatic Control of
Derived Data, InProceedings of VLDB Conference, 1981, Pages 306-318.

[81] Lamy P.: M4 Interface Requirements and Logical MIB: ATM Network View, The ATM
Forum, 1996.

[82] Litwin W. and Risch T.: Main Memory Oriented Optimization of OO Queries using
Typed Datalog with Foreign Predicates,IEEE Transactions on Knowledge and Data
Engineering Vol. 4, No. 6, Dec. 1992.

[83] Loborg P. and Törne A.: A Hybrid Language for the Control of Multimachine Environ-
ments, inthe 4th Conference on Industrial and Engineering Applications of Artifi-
cial Intelligence and Expert systems (IEA/AIE-91), (Hawaii, USA), June 1991.

[84] Lohman G. M., Lindsay B., Pirahesh H., and Schiefer K. B.: Extensions to Starburst:
Objects, Types, Functions and Rules,Communications of the ACM, Oct. 1991, vol. 34,
no. 10, Pages 94-109.

[85] Lyngbaek P.: OSQL: A Language for Object Databases, Technical Report , HPL-DTD-
91-4,Hewlett-Packard Company, January 1991.

[86] Machani S-E.: Events in an Active Object-Relational Database System, Technical
Report LiTH-IDA-Ex.9634, Department of Computer and Information Science,
Linköping University, Sweden, 1996.

[87] Manna Z. and Pnueli A.: Models for Reactivity, Acta Informatica, 30:609-678, 1993.

[88] Mayer B.:Eiffel - The Language, Prentice-Hall, ISBN-0-13-247925-7, 1992.

[89] Medvinsky G. and Neuman B. C: . NetCash: A design for practical electronic currency
on the Internet. InProceedings of 1st the ACM Conference on Computer and Com-
munication Security, Nov., 1993.

[90] Melton J.(ed.): ANSI SQL3 Papers SC21 N9463 - SC21 N9467, ANSI SC21 Secretar-
iat, New York, USA, 1995.

[91] Miranker D. P.: TREAT: A Better Match Algorithm for AI Production Systems,AAAI 87
Conference on Artificial Intelligence, Aug. 1987, Pages 42-47.

[92] Morgenstern M.: Active Databases as a Paradigm for Enhanced Computing Environ-

196 References

ments,Proceedings of the 9th VLDB Conference,Florence, Nov. 1983.

[93] Ohsie D., Dewan M. D., Stolfo S. J., and Da Silva S.: Performance of Incremental
Update in Database Rule Processing,RIDE ADS’94, Houston, Februari, 1994.

[94] Özsu M. T. and Valduriez P.: Principles of Distributed Database Systems, Prentice
Hall Inc., ISBN 0-13-715681-2, 1991.

[95] Padron-McCarthy T. and Risch T.: Performance-Polymorphic Execution of Real-Time
Queries. Inthe First Workshop on Real-Time Databases: Issues and Applications
(RTDB-96), Newport Beach, CA, March 7-8, 1996.

[96] Paige R. and Koenig S.: Finite Differencing of Computable Expressions, InACM
Transactions on Programming Languages and Systems, 4(2):402-454, 1992.

[97] Paton N. W., Doan K., Díaz O., and Jaime A.: Exploitation of Object-Oriented and
Active Constructs in Database Interface Development,IDS 1996: 1.

[98] Prasad Sistla A. and Wolfson O.,: Temporal Triggers in Active Databases, IEEE Trans-
actions on Knowledge and Data Engineering, Vol. 7., No. 3, June 1995.

[99] Qian X.and Wiederhold G.: Incremental Recomputation of Active Relational Expres-
sions,IEEE Transactions on Knowledge and Data Engineering Vol. 3, No. 3 , Dec.
1991, Pages 337-341.

[100] Quass D.: Maintenance Expressions for Views with Aggregation, inWorkshop on
Materialized Views: Techniques and Applications, in cooperation with ACM SIG-
MOD, Montreal, Canada, June 1996.

[101] Ramamritham K.: Real-Time Databases,Distributed and Parallel Databases, Kluwer
Academic Publishers, Vol. 1, 1993, Pages 199-226.

[102] Risch T.: Monitoring Database Objects, Inthe Proceedings of 15th VLDB Conference,
Amsterdam, 1989.

[103] Rosenthal A., Chakravarthy S., Blaustein B., and Blakely J.: Situation Monitoring for
Active Databases, InProceedings of the 15th VLDB Conference,Amsterdam, 1989,
Pages 455-464.

[104] Sandewall E.:Features and Fluents. The Representation of Knowledge about
Dynamical Systems. Volume I. Oxford Univ. Press, 1994.

[105] Saran A., Sastri A., Agrawal D., El Abbadi A., and Smith T.R.: Experiences in the
Design of a Kernel for Computational and Modelling Systems, inthe 6th International
Conference on the Management of Data, India, Dec. 1994.

[106] Schwiderski S.: Monitoring the Behaviour of Distributed Systems, Ph. D Thesis, Selwyn
College, University of Cambridge, Cambridge 1996.

[107] Selinger P., Astrahan M. M., Chamberlin R.A., Lorie R. A., and Price T.G.: Access Path
Selection in a Relational Database Management System,ACM SIGMOD Conference,
Boston, MA, June 1979, Pages 23-54.

[108] Shipman D. W.: The Functional Data Model and the Data Language Daplex,ACM
Transactions on Database Systems, 6(1), 3, 1981.

[109] Shoshani A., Olken F., and Wong H. K. T., Characteristics of Scientific Databases,Pro-
ceedings of the 10th VLDB Conference,Singapore, Aug. 1984.

[110] Sköld M.and Risch T.: Using Partial Differencing for Efficient Monitoring of Deferred
Complex Rule Conditions, inProceedings of the 12th International Conference on
Data Engineering (ICDE’96), New Orleans, Louisiana, Feb. 1996.

[111] Snodgrass R.and Ahn I.: Temporal Databases, inIEEE Computer, Pages 35-42, Sept.
1986.

[112] Spilker J.and Parkinson B. (eds.) :Global Positioning System: Theory and Applica-

197

tions, AIAA, 1997.

[113] Stacey D.: Replication: DB2, Oracle, or Sybase,SIGMOD Record Vol. 24, No. 4, Dec.
1995, Pages 95-98.

[114] Stallings W.: SNMP, SNMPv2 and CMIP:The Practical Guide to Network Manage-
ment Standards, Addison-Wesley Publishing Co. Inc., ISBN 0-201-63331-0, 1993.

[115] Stevens W.R.: TCP/IP Illustrated, Volume 1, Addison Wesley, ISBN 0-201-63346-9,
Oct. 1995.

[116] Stonebraker M.and Row L.: The Design of POSTGRES, InProceedings ofACM SIG-
MOD Conference, Washington, D.C., May 1986, Pages 340-355.

[117] Stonebraker M., Jhingran A., Goh J., and Potamianos S.: On Rules, Procedures, Cach-
ing, and Views in Database Systems, InProceedings of ACM SIGMOD Conference,
1990, Pages 281-290.

[118] Stonebraker M.and Moore D.:Object-Relational DBMSs - The Next Great Wave,
Morgan Kaufmann Publishers, Inc., ISBN 1-55860-397-2, 1996.

[119] Su S. Y. W., Lam H., Yu T-F., Arroyo-Figueroa J. A., Yang Z., and Lee S.: NCL - A
Common Language for Achieving Rule-Based Interoperabillity Among Heterogeneous
Systems,Journal of Intelligent Information Systems, Vol. 6, No. 2/3, May 1996.

[120] Taivalsaari A.: On the Notion of Inheritance,ACM Computing Surveys, Vol. 28, No. 3
Sept. 1996, Pages 438-479.

[121] Tanenbaum A. S.:Computer Networks, Second Edition, Prentice-Hall International
Inc., 1989, ISBN 0-13-166836-6.

[122] TorbjørnsenØ.: Multi-Site Declustering Strategies for Very High Database Service
Availability, Ph. D. Thesis, Doktor Ingeniøravhandling 1995:16, Dept. of Computer
Systems and Telematics, Norwegian Institute of Technology, University of Trondheim,
Norway 1995.

[123] Törne A.: The Instruction and Control of Multi-Machine Environments, inProceedings
of the 5th International Conference on Applications of Artificial Intelligence in
Engineering, Vol. 2, Springer Verlag, 1990.

[124] Tving I.: Multiprocessor Interconnection using SCI, Master Thesis, DTH ID-E 579,
Dept. of Comp. Science, the Technical University of Denmark, Denmark 1992.

[125] Ullman J. D.:Principles of Database and Knowledge-Base Systems, Volume I & II,
Computer Science Press, 1988, 1989.

[126] Urpí T. and Olivé A.: A Method for Change Computation in Deductive Databases, in
Proceedings of the 18th International VLDB Conference, Vancouver, 1992, Pages
225-237.

[127] Varshney U.: Supporting Mobility with Wireless ATM, IEEE Computer, Jan. 1997,
Pages 131-133.

[128] Venkatrao M.and Pizzo M.: SQL/CLI- A New Binding Style For SQL,SIGMOD
Record Vol. 24, No. 4, Dec. 1995, Pages 72-77.

[129] Wang Y-W. and Hanson E. N.: A Performance Comparison of the Rete and TREAT
Algorithms for Testing Database Rule Conditions, InProceedings of the International
Conference on Data Engineering (ICDE) 1992, Arizona, Feb. 1992, Pages 88-97.

[130] Werner M.: Multidatabase Integration using Polymorphic Queries and Views, Licentiate
Thesis No 546, Department of Computer and Information Science, Linköping Univer-
sity, Sweden, 1996.

[131] Wiederhold G.: Mediators in the Architecture of Future Information Systems,IEEE
Computer, March 1992.

198 References

[132] Widom J. and Finkelstein S.J.: Set-oriented production rules in relational database sys-
tem, ACM SIGMOD Conference,Atlantic City, New Jersey 1990, Pages 259-270.

[133] Widom J. and Ceri S. (ed.): Active Database Systems - Triggers and Rules for
Advanced Database Processing, Morgan Kaufmann Publishers, Inc., ISBN-1-55860-
304-2, 1996.

[134] Wolski A., Karvonen J., and Puolakka A.: The RAPID Case Study: Requirements for
and the Design of a Fast-Response Database System, in Proceedings of the First Inter-
national Workshop on Real-Time Databases: Issues and Applications, Newport
Beach, California, USA, March 1996, Pages 32-39.

[135] Yang Z., Duddy K.: CORBA: A Platform for Distributed Object Computing, ACM
Operating Systems Review, Volume 30, No. 2, April 1996.

[136] Zbigniew M. (ed.): Statistical and Scientific Databases, The Ellis Horwood Limited,
ISBN 0-13-850652-3, 1991.

[137] Zhuge Y., Wiener J. L., and Garcia-Molina H.: Multiple View Consistency for Data
Warehousing, in Proceedings of the 13th International Conference on Data Engine-
ering (ICDE), Birmingham, UK, 1997, Pages 289-300.

199

14 Appendix

14.1 The Current Rule Syntax in AMOS

The final syntax (when this thesis was printed) of the rules in AMOS are as fol-
lows:

14.1.1 Rule Creation and Deletion

create rule rule-name parameter-specification
[for-each-clause]
[on event-type-specification]
[when predicate-expression]
do procedure-expression

delete rule rule-name

where

for-each-clause ::=
for each variable-declaration-commalist

event-type-specification ::=
added(function-call) |
removed(function-call) |
updated(function-call) |
created(variable-name) |
deleted(variable-name)1 |
foreign-event-name |
event-type-specificationand event-type-specification |
event-type-specificationor event-type-specification|
event-type-specificationbefore event-type-specification|
event-type-specificationafter event-type-specification

14.1.2 Rule Activation and Dectivation

activate rule rule-name ([parameter-value-commalist])

1. Actually not yet implemented due to technical problems in AMOS on how to refer-
ence objects that have been marked as deleted.

200 Appendix

[strict]
[priority 0|1|2|3|4|5]
[into context-name]

deactivate rule rule-name ([parameter-value-commalist])
[from context-name]

14.1.3 Rule Checking

check();

The rules in the default deferred context will be checked.

check(:context);

The rules activated into the specified context will be checked.

commit;

The deferred context will be checked, then the transaction will be committed,
and finally the detached context will be checked.

14.1.4 Rule Contexts and Sagas

create context context-name

delete context context-name

activate context context-name

deactivate context context-name

create saga saga-name

create subsaga saga-name

A subsaga will be created (within the current saga) that will cause nesting of
compensations.

delete saga saga-name

saga saga-name procedure-body
compensation procedure-body

The first procedure body will be executed and committed as a separate transac-
tion and the second procedure body will be registered as the corresponding
compensating transaction.

commit_saga(:saga);

abort_saga(:saga);

The specified compensations will be executed in reverse order.

stop_compensation();

The ongoing chain of compensations will be aborted.

201

associate(:context, :saga, check_mode);

The associated contexts will be automatically activatedwhen the specified
saga is entered, checked when transactions of the saga are committed (if
check_mode is “exit”), and deactivated when the saga is exited. When a saga is
entered again, the associated contexts are reactivated. Alternatively, the
attached contexts can be checked when the complete saga is committed (if
check_mode is “commit”). When a saga is aborted, associated rule contexts can
also be checked during the compensating transactions (if check_mode is “roll-
back”).

14.1.5 Creation Foreign Data Sources

Foreign events are supported in AMOS ECA-rules. Currently the foreign
events can be specified by hand by registering a new event type by name with
the event manager along with an event function that stores the event data. The
new event can be manually raised by:

raise(<event-name>, <event-data>);

Raises the event and associates the transaction time and the specified event-
data with the event1.

A future extension of this will be to automatically create foreign events as part
of the foreign function definitions. This is not yet implemented, but could look
something like:

create function function-nameparameter-specification result-specification
as foreign foreign-data-source-access-specification

[set foreign-data-source-change-specification]
[add foreign-data-source-change-specification]
[remove foreign-data-source-change-specification]
[event foreign-event-name]

where

foreign-data-source-access-specification ::=
[implementation-specification]
[size integer]
[push interrupt-method [file-descriptor | address]]
[pull frequency time]
[transformations transformation-specification]
[costhint optimization-specification]

foreign-data-source-change-specification ::=
function-call

1. The raise operation is also available through the AMOS fast path application inter-
face.

202 Appendix

[event foreign-event-name]

14.2 The Relational Operators in Datalog

Datalog, ordomain calculus, is equivalent to relational calculus in expressional
power. The relational operationsunion, difference, cartesian product, selection
and projection can be directly specified in Datalog. Other operations such as
join and intersection that can be derived from these basic operations can also
be directly specified.

Union

PARENT = FATHER ∪ MOTHER

is translated into

parent(X, Y) ← father(X, Y) ∨ mother(X, Y)

or

parent(X, Y) ← father(X, Y)

parent(X, Y) ← mother(X, Y)

Difference

FATHER = PARENT - MOTHER

is translated into

father(X, Y) ← parent(X, Y) ∧ ¬mother(X, Y)

Cartesian product

PAIR = PERSON× PERSON

is translated into

pair(X, Y) ← person(X) ∧ person(Y)

Selection

PAIR = σ$1 ≠ $2(PERSON$1 × PERSON$2)

MILLIONAIRE = σ$2 > 999999INCOME$1,$2

is translated into

pair(X, Y) ← person(X) ∧ person(Y) ∧ X ≠ Y

millionaire(X) ← income(X, Y) ∧ Y > 999999

Projection

203

IS_FATHER = π$1FATHER$1

is translated into

is_father(X) ← father(X, Y)

Join

is directly translated into

grandparent(X, Z) ←
parent(X, Y1) ∧ parent(Y2, Z) ∧ Y1 = Y2

or more naturally expressed as

grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z)

Intersection

RICH_GRANDPARENT = GRANDPARENT ∩ MILLIONAIRE =

(GRANDPARENT ∪ MILLIONAIRE) -

((GRANDPARENT − MILLIONAIRE) ∪

(MILLIONAIRE − GRANDPARENT))

is directly translated into

rich_grandparent(X) ←
grandparent(X) ∨ millionaire(X) ∧
¬((grandparent(X) ∧ ¬millionaire(X)) ∨

(millionaire(X) ∧ ¬grandparent(X))

or more naturally expressed as

rich_grandparent(X) ← grandparent(X) ∧ millionaire(X)

14.3 Justification for Partial Differ encing

Below follows a formal justification for the correctness of partial differencing.
There exists an isomorphism f, denoted≅f, between the boolean algebra of

ObjectLog and set algebra [1]:

f: <O, ¬,∧, ∨> → <2At(O), ~, ∩, ∪>,

where O is the domain of objects in the database, ¬ is negationbased on the Closed
World Assumption, ∧ is logical conjunction,∨ is logical disjunction, 2At(O) is the
power set of atoms in O,~ is set complement,∩ is set intersection, and∪ is set

GRANDPARENT = πX,ZPARENTX,Y PARENTY,Z =

πX,Z(σY1 =Y2PARENTX,Y1 × PARENTY2,Z)

204 Appendix

union. Using this we can define change monitoring of ObjectLog through set opera-
tions.

Let ∆+S, delta-plus of S, be the set of additions (positive changes) to a set S and∆-
S, delta-minus of S, the set of deletions (negative changes) from S. Let the∆-set
(delta-set) of S be a tuple of the positive and the negative changes of a set S:

∆S = <∆+S,∆-S>

Let ∪∆ (delta-union) be the operator that calculates the union of two∆-sets:

∆P1 ∪∆ ∆P2 = <(∆+P1 ∪ ∆+P2) - (∆-P1 ∪ ∆-P2),
 (∆-P1 ∪ ∆-P2) - (∆+P1 ∪ ∆+P2) >

To detect changes of derived relations we define conjunction, disjunction, and
negation in terms of their differentials as:

∆(Q ∧ R) ≅f ∆(Q ∩ R) =
<(∆+Q ∩ R) ∪ (Q ∩ ∆+R), {}>
∪∆
<{} , (∆-Q ∩ Rold) ∪ (Qold ∩ ∆-R>

or for bag-oriented semantics
∆(Q ∧ R) ≅f ∆(Q ∩ R) =

<(∆+Q ∩ R) ∪ ((Q - ∆+Q) ∩ ∆+R), {}>
∪∆
<{}, (∆−Q ∩ Rold) ∪ ((Qold − ∆−Q) ∩ ∆−R)>

∆(Q ∨ R) ≅f ∆(Q ∪ R) =
<(∆+Q − Rold) ∪ (∆+R − Qold), {}>
∪∆
<{}, (∆−Q − R) ∪ (∆−R − Q)>

∆(¬Q) ≅f ∆(~Q) = <∆-Q, ∆+Q>

where Rold = (∆-R ∪ R) - ∆+R
and since ∆+R ∩ ∆-R = ∅, i.e. ∆-R - ∆+R = ∆-R, we have
Rold = ∆-R ∪ (R - ∆+R) = ∆-R ∪ (R ∩ ~∆+R) which can be
expressed logically by:

Rold = ∆-R ∨ (R ∧ ¬(∆+R))

where Qold is defined likewise.

Let Dp be the set of all relations that a relation P depends on. Let thepositive
partial differentials ∆P/∆+X of a relation P be defined by the body of P where a
single relation X∈Dp has been substituted by its positive∆-relation∆+X.

Let the negative partial differentials ∆P/∆-X of a relation P be defined by
the body of P where a single relation X∈Dp has been substituted by its nega-
tive ∆-relation∆-X and where all Y∈Dp, Y ≠ X, have been substituted by Yold.

205

Positive partial changes are combined by:
∆+P = ∪ ∆P/∆+X, ∀X ∈Dp
and negative changes by
∆-P = ∪ ∆P/∆-X, ∀X ∈Dp
The full differential (delta-relation) is defined as:
∆P = <∆+P, {}> ∪∆ <{}, ∆-P>

Correctness is here defined as: given a relation P where Dp is the set of all other
relations that P depends on and that we have all the net changes∆S of all rela-
tions S∈ Dp, then∆P reflects the changes to P.

1. If P is a base relation then its changes can be found directly in∆P.

2. If P is a derived, conjunctive relation then:
i) If P ← S∧ T, then we need to show that∆P/∆+S← ∆+S∧ T for all positive

changes to S.
If T is a base relation, then since the contribution of deduced facts in P are
dependent on the facts both in S and T,then any added facts in S that are also
in T are also in P. In some cases and when using set-oriented semantics,
added facts in S might give deduced facts that were already present in Pold,
then the algorithm might causenervous triggering of rules. To avoid this we
have to calculate∆P/∆+S - Pold. If T is a derived relation of n conjunctions
then clearly:
∆P/∆+S ← ∆+S∧ T1 ∧ ... ∧ Tn
If T is a derived relation of n+1 conjunctions, then we also have:
∆P/∆+S ← ∆+S∧ T1 ∧ ... ∧ Tn+1
and by induction the execution of positive, conjunctive partial∆-relations has
been shown to be correct.

ii) If P ← S∧ T, then we need to show that∆P/∆-S ← ∆-S∧ Told for all
negative changes to S.
If T is a base relation, then since the contribution of deduced facts in P are
dependent on the facts both in S and T,then any removed facts from S that
also where in Told supported facts are facts that are no longer in P. In some
cases and when using set-oriented semantics, removed facts from S might
give deduced facts that are still present in P. To avoid incorrectpropagation
of negative changes we have to check that the deduced change is not still
present in P, i.e.∆P/∆-S - P.
If T is a derived relation of n conjunctions, then clearly:
∆P/∆-S ← ∆-S ∧ Told 1 ∧ ... ∧ Told n
If T is a derived relation of n+1 conjunctions, then we also have:
∆P/∆-S ← ∆-S ∧ Told 1 ∧ ... ∧ Told n+1
and by induction the execution of negative, conjunctive partial differentials
has been shown to be correct.

3. If P is a derived, disjunctive relation, in disjunctive normal form, (and assuming set-
oriented semantics), then:

206 Appendix

i) If P ← S∨ T, then we need to show that∆P/∆+S ← ∆+S ∧¬Told for all
positive changes to S.
If T is a base relation, then since the contribution of deduced facts in P are
dependent on facts in S or T,then anyadded facts to S will cause positive
changes to P if T was not already true for those facts.
If T is a derived relation of n disjuncts, then clearly:
∆P/∆+S ← ∆+S∧ ¬Told 1 ∧ ... ∧ ¬Told n
If T is a derived relation of n+1 disjuncts, then we also have:
∆P/∆+S ← ∆+S∧ ¬Told 1 ∧ ... ∧ ¬Told n+1
and by induction the execution of positive, disjunctive partial differentials
has been shown to be correct.

ii) If P ← S∨ T, then we need to show that∆P/∆-S← ∆-S∧¬T for all negative
changes to S.
If T is a base relation, then since the contribution of deduced facts in P are
dependent on facts in S or T,then any removed facts from S will cause
negative changes to P if T is not true for those facts.
If T is a derived relation of n disjuncts then clearly:
∆P/∆-S ← ∆-S∧ ¬T1 ∧ ... ∧ ¬Tn
If T is a derived relation of n+1 disjuncts then we also have:
∆P/∆-S ← ∆-S∧ ¬T1 ∧ ... ∧ ¬Tn+1
and by induction the execution of negative, disjunctive partial differentials
has been shown to be correct.

4. If P is a derived negated relation, P← ¬S, then we need to show that:
i) ∆P/∆-S ← ∆+S

All facts not in S are deduced to be in P. If a fact is added to S, then a negative
change has to be deduced for P.

ii) ∆P/∆+S ← ∆-S
All facts in S are deduced to not be in P. If a fact is removed from S, then a
positive change has to be deduced for P.

5. If P is a derived relation that depends on the subrelationsDp, then the changes
calculated by∆P/∆+X and∆P/∆-X, X∈ Dp, can be combined by∪∆ to give the total
changes of P.

i) For set-oriented semantics∪∆ is defined as joining positive and negative
changes in∆-sets by removing duplicates and extinguishing complementary
positive and negative changes.

ii) For bag-oriented semantics∪∆ is defined as joining positive and negative
sets by keeping a count of duplicates and extinguishing complementary
positive and negative changes. For conjunctions a modification of partial
differentials will also have to be done to remove overlaps in the execution.
Positive changes are calculated by:
changing all subgoals Y in∆P/∆+X to Y - ∆+Y, ∀X, Y ∈ Dp and X≠ Y and

207

where Y precedes∆+X in the conjunction,
and negative changes by:
changing all Yold in ∆P/∆-X to Yold - ∆-Y, ∀X, Y ∈ Dp and X≠ Y and where
Yold precedes∆-X in the conjunction.

In the proof above an assumption was made that we have the net changes of the
relation S collected in∆S. The collection of changes of a relation was defined using
the∪∆ operator. If relations are defined to have set-oriented semantics, then the order
of accumulation of changes has to be the same as the changes occurred in the
transaction.

The proof above can be used for calculating incremental changes to the relational
operators (with the related parts of the proof in parenthesis):

Union: (1, 3, 5)
parent(X, Y) ← father(X, Y) ∨ mother(X, Y)

∆parent(X, Y) /∆+father ← ∆+father(X, Y) ∧ ¬mother old(X, Y)

∆parent(X, Y) /∆+mother ← ¬father old(X, Y) ∧ ∆+mother(X, Y)

∆parent(X, Y) /∆-father ← ∆-father(X, Y) ∧ ¬mother(X, Y)

∆parent(X, Y) /∆-mother ← ¬father(X, Y) ∧ ∆-mother(X, Y)

Difference: (1, 2, 4, 5)
father(X, Y) ← parent(X, Y) ∧ ¬mother(X, Y)

∆father(X, Y) /∆+parent ← ∆+parent(X, Y) ∧ ¬mother(X, Y)

∆father(X, Y) /∆+mother ← parent(X, Y) ∧ ∆-mother(X, Y)

∆father(X, Y) /∆-parent ← ∆-parent(X, Y) ∧ ¬mother old(X, Y)

∆father(X, Y) /∆-mother ← parent old(X, Y) ∧ ∆+mother(X, Y)

Cartesian product: (1, 2, 5)
pair(X, Y) ← person(X) ∧ person(Y)

∆pair(X, Y) /∆+person’ ← ∆+person(X) ∧ person(Y)

∆pair(X, Y) /∆+person’’ ← person(X) ∧ ∆+person(Y)

∆pair(X, Y) /∆-person’ ← ∆-person(X) ∧ person old(Y)

∆pair(X, Y) /∆-person’’ ← person old(X) ∧ ∆-person(Y)

Selection: (1, 2, 5)
millionaire(X) ← income(X, Y) ∧ Y > 999999

∆millionaire(X) /∆+income ← ∆+income(X, Y) ∧ Y > 999999

∆millionaire(X) /∆-income ← ∆-income(X, Y) ∧ Y > 999999

208 Appendix

Projection: (1, 5)
is_father(X) ← father(X, Y)

∆is_father(X)/∆+father ← ∆+father(X, Y)

∆is_father(X)/∆-father ← ∆-father(X, Y)

Join: (1, 2, 5)
grandparent(X, Z) ← parent(X, Y) ∧ parent(Y, Z)

∆grandparent(X, Z) /∆+parent’ ←
 . ∆+parent(X, Y) ∧ parent(Y, Z)

∆grandparent(X, Z) /∆+parent’’ ←
parent(X, Y) ∧ ∆+parent(Y, Z)

∆grandparent(X, Z) /∆-parent’ ←
∆-parent(X, Y) ∧ parent old(Y, Z)

∆grandparent(X, Z) /∆-parent’’ ←
parent old(X, Y) ∧ ∆-parent(Y, Z)

Intersection: (1, 2, 5)
rich_grandparent(X) ← grandparent(X) ∧ millionaire(X)

∆rich_grandparent(X) /∆+grandparent ←
∆+grandparent(X) ∧ millionaire(X)

∆rich_grandparent(X) /∆+millionaire ←
grandparent(X) ∧ ∆+millionaire(X)

∆rich_grandparent(X) /∆-grandparent ←
∆-grandparent(X) ∧ millionaire old(X)

∆rich_grandparent(X) /∆-millionaire ←
grandparent old(X) ∧ ∆-millionaire(X)

209

15 The Papers

15.1 Paper I

P. Loborg, P. Holmbom, M. Sköld, and A. Törne: A Model for the Execution of
Task Level Specifications for Intelligent and Flexible Manufacturing Systems,
in Proceedings of the Vth International Symposium on Artificial Intelligence,
ISAI92,Cancun, Mexico, Dec. 7-11, 1992. Also published in Journal of Inte-
grated Computer-Aided Engineering (special issue on AI in Manufacturing and
Robotics).

210 The Papers

A MODEL FOR THE EXECUTION OF T ASK-LEVEL

SPECIFICATIONS FOR INTELLIGENT AND FLEXIBLE

MANUFACTURING SYSTEMS

Peter Loborg, Per Holmbom*, Martin Sköld and Anders Törne

Department of Computer and Information Science
*Department of Physics and Measurement Technology

Linköping University, Sweden

ABSTRACT

We introduce here a software architecture for the control of a sensor-based
manufacturing system consisting of a number of machines and peripheral
equipment. The architecture divides the programming effort into two levels,
task-level programming and control-level programming. The task-level pro-
gramming is based on the programming of a discrete model of the world, the
World Model (WM). The WM provides a symbolic representation of the world
state and isolates the task programs from the control level algorithms. Program-
ming the control level amounts to modelling the manufacturing equipment as
components with ‘behaviour’ using object oriented techniques. Each compo-
nent specifies how it should react to changes in the WM, i.e. selection and spec-
ification of the control algorithms to be executed. Programming at both levels
can be done incrementally and control algorithms may be changed dynamically
in the real-time kernel.

INTRODUCTION

This paper presents a model for the execution of task level specifications in a
manufacturing system. The work presented has been carried out within the
ARAMIS-project1 and is a part of a cooperation project between the Dept. of
Computer Science (IDA) and the Dept. of Physics and Measurement Techno-
logy (IFM) at Linköping University.

The motivation behind this project has been to provide control engineers
with adequate tools to design and specify intelligent behaviours, i.e. behaviours
which from the engineer’s point of view are robust to changes in the environ-
ment and perform a required high-level function without additional detailed
low level control programming. By control engineers we mean any engineer or
operator who is specifying or diagnosing the behaviour of a physical system,
with one or several embedded computers/control systems. More specifically,

1. The ARAMIS-project at CAELAB, Department of Computer Science, Linköping
University, Sweden, is the continuation of a joint research project between the Depart-
ment of Computer Science, ABB Corporate Research and ABB Robotics in Västerås,
Sweden, during the years 1985 -1988.

211

we focus on manufacturing systems consisting of a number of machines and
peripheral equipment. This kind of environment is characterized by high
demands on the precision and accuracy of movements, complicated and inter-
dependent sequential actions and different user categories performing different
tasks with respect to the equipment. The users must therefore be provided with
means to specify accurate control algorithms as well as task level programs.
These programming tasks are also normally performed by different user catego-
ries.

The function of an embedded control system is to provide the engineer with
the means to execute actions in the environment - automatically by prepro-
gramming or manually by interactive command. We are using ‘programming’
to denote not just the actual programming of the computer, but also the specifi-
cation of work descriptions and operation lists. The engineer specifies in the
program a “sequence” of actions to perform. This program is very often cyclic,
e.g. a feedback algorithm for fast motoric actions or a manufacturing cycle in a
machine cell. The former is an example of an action which traditionally is spec-
ified at a low level, close to the controlled process and involving explicit refer-
ence to I/O on the embedded computer. The latter, on the other hand, is an
example of a program which is originally specified at a higher level involving
basic operations of larger time granularity. More importantly, the latter type of
program is specified without reference to the embedded control systems, e.g. as
operations lists or work descriptions. The translation of such specifications to
executable programs in the embedded computers is today performed manually
as a specific programming task.

Our aim is to equip the embedded computer system with the ability to exe-
cute “task programs”, like operations lists and work descriptions, directly, i.e.
behaving intelligently. The different user categories and abilities, the different
primitive elements in the specification languages and the different types of
abstract machines for task programs and control algorithms imply some sort of
multi-level programming and executing environment. For the moment we are
investigating the possibilities of just three levels, which should provide enough
evidence for the usability of the ideas. The levels are - the task level, the con-
trol level and the physical level. Three levels might also be a just compromise
between functionality and complexity in the programming and run-time envi-
ronments.

First we present a general view on sensing and sensor fusion which moti-
vates the concept of sensor integration and the ARAMIS-model of the environ-
ment and task program execution. Next the ARAMIS-model is described in
more detail. After this, a presentation is made about the specification and
encapsulation of control algorithms, together with an example. Finally we dis-
cuss the current status of the project and some future work.

We will not discuss the task-level language and the higher level functional-
ity in this paper. The general ideas regarding the task level are presented in [14]
and the graphical task level language for specifying intelligent behaviours is
presented in [7].

212 The Papers

SENSOR INTEGRATION AND PROGRAMMING IN PHYSICAL
ENVIRONMENTS

Sensor fusion is characterized by Clark and Yuille [2] as concerned with meth-
ods for combining raw sensory data to obtain information about the world.
They classify the methods into weakly and strongly coupled, where the weakly
coupled assume independence of data sources. Dependence means that the
algorithm and its validity constraints for calculating one world (fused sensor-)
data is dependent on the output of another, separately calculated, world data,
e.g. feature matching stereo algorithms which are dependent on the depth infor-
mation calculated from other sources.

Our concept of sensor integration extends this dependence to also comprise
the dependence of algorithms on implicit knowledge about the world state and
not only on measurable, sensed knowledge. This implicit knowledge is derived
from the knowledge of the executing context of the actions performed in the
environment.

Example 1:
Consider a program which can switch the light ON and OFF in the room. No

sensory device exists for light detection and the operation of the switch is fail-
proof (within the validity of the system specification). If there is a position
determination task in the program, it might have different fusion algorithms for
darkness and light. This information is implicit in the sense that it is deter-
mined by the last switching command and is non-local to the position sensing
device. The program using the ON/OFF information is independent of whether
this information is explicitly measured or implicitly calculated from execution
context information.

We stress the point that the programming environment should support a uni-
fied view on explicitly sensed and implicitly known information in the pro-
gramming of the (intelligent) behaviour of the complete system. To clarify this
point, consider the example again. An operator or an engineer who is interested
in using the position function in the description of the behaviour would like the
program to be independent of whether there exists a sensor for light or of the
type of sensor used. This abstraction barrier is realized by the concept of world
model programming explained below. We are convinced that such abstraction
barriers are desirable in industrially used control equipment, where several dif-
ferent user categories cooperate in supervision and programming.

Our model has similarities with current implementations of different inte-
grated environments for programming (“controlling”) computers where the
machine is an abstract computing device designed for the portability of pro-
grams. However, our case differs in some respects [15]. The hardware (i.e. the
machine environment) is not static even for a single ‘executing’ environment.
The machinery and sensory equipment may change over time or differ slightly
between sites, although the functionality for the end user is identical. A chang-
ing abstract machine means that the engineers must change the behavioural,
control level specification to reflect the new (or different) environment. The
task for the machine is constant, however, and should be portable to the new
executing machine. Therefore a good programming environment must be pro-

213

vided not only for the task level programming, but also for the control level
programming.

THE ARAMIS MODEL

Layered architectures and ARAMIS

The system has been designed with a layered architecture, based on different
levels of abstraction. It consists of three different levels: the task programming
level, the control level, and the physical level (fig. 1). At the task level the
operator specifies what operations should be performed in the physical environ-
ment and under what conditions, using a graphical hybrid, rule-based language
[7]. The task program executes by setting reference values for the objects in the
world model. The control level is responsible for keeping the real world in a
state represented in the model of the world (WM), i.e. a servomechanism, as
the WM is changed by task program execution. The programming at this level
is typically done by control engineers. The physical level is the actual connec-
tion to the real world, where explicit I/O is performed with sensors and actua-
tors.

Figure 1 The abstract machine/world model viewed as a reference
value that is set, used by a servo controller, controlling the
‘real world’ and the reading of actual values.

Other principles for layered architectures in this area have been proposed,
for example, Brooks [1] defined “behavioural decomposition” as a design crite-
rion for a layered architecture for sensor/actuator control systems, to make
them robust and flexible. The different levels then reflects different levels of
“competence”. Our approach differs from this in that our ”modules”, the WM-
objects (explained below), are not ordered in a simple subsumption hierarchy.
Instead each module or object has responsibility for controlling the behaviour
of a part of the system. The interaction between the objects is orchestrated by

Control

ARAMIS Program

Sensing

Real World

WM

Task Programming
Level

Control Level

Physical Level

(indicates information flow)

Set
Refvalue

Read
Actualvalue

214 The Papers

the task-level program. Each goal (following Brooks) is represented as a
”worker” (or process) on the task-level.

In [4] a three-layer architecture consisting of an analysis layer, a rule layer
and a process layer, is presented. In the analysis layer, requested goals or tasks,
expressed in temporal logic, are translated into plans for the rule layer to exe-
cute. The rule layer transforms the plans into sets of rules which are passed to
the process layer. The process layer uses the rules to control the execution of
the actions in the plan. Our task level corresponds to the rule layer, but also
incorporates the ability for context dependent plan selection. We furthermore
model the world as a set of objects which introduces structure into the (process)
state representation.

CHIMERA II [13] is a programming environment and operating system
designed to reduce the development time for sensor-based control applications.
This design is influenced by the NASREM Model for Telerobot Control System
Architecture. Chimera II is a real-time operating system which supports multi-
processor environments, but does not provide any specific modelling tools
other than light-weight tasks, locally shared memory, local semaphores etc.
Similar approaches but incorporating object-oriented paradigms are presented
in [10] and [11]. Our work does not focus on the OS support, but rather on the
specification tools. The approaches above normally assume application pro-
gramming in C or C++, which correspond to the control level in our model.
Since our work started with investigating the desirable properties of the task-
level language, the stress on full object-orientation in the control-level has been
decreased.

The task-level programming problem has been thoroughly investigated, e.g.
[3][6][9][12]. In our opinion these approaches handle the problem as a conven-
tional computer programming issue. Our model takes into consideration that
the executing machine is not discrete and is changing (sometimes during execu-
tion) and has a partially unknown state. Even if theoretical work has been
applied to these issues, the combination of control algorithms and symbolic
plans remains fairly uninvestigated experimentally.

Generally we aim at providing “adequate tools to design and specify intelli-
gent behaviours” for a sensor-based manufacturing system. The assumption is
that these kind of processes are well known by the operators and that the proc-
esses should be deterministic from a global perspective. Therefore we do not
need, or even wish, “exploring” or other non-deterministic behaviour embed-
ded in the system, as in [1]. Another issue is that we aim at different user cate-
gories which includes non-programmers for the application programming. This
means, for example, that a rule layer as in [4], which does not give a good over-
view of the task plans, is unsuitable. As plans somehow have to be specified for
the system, we prefer a graphical language for representing them.

The world model

The task program operates, for an external observer, by executing actions in the
physical environment. The state of the environment is represented in a world
model (WM). Each primitive action corresponds to a change of model state.

215

Each machine or part is viewed abstractly as a modified deterministic finite
state automaton (DFA), and is referred to as a world object (WO). The WO
state is from the task program view a mapping from WO state variable names to
other WO’s or to simple data types like integers or symbols (an ordered
sequence of symbols is called a symbolic state vector).

Each WO state is identified by the set of {state-variable,value} pairs of the
WO. At any time, the actual WO state might be fully or partially known. Par-
tially means that the value of some variables are unknown and impossible to
determine by sensory action. A set of WOs corresponds to the abstract machine
mentioned previously and a primitive operation by the task program corre-
sponds to changing one (or several, simultaneously) of the state variables of
one WO, called a WO transition.

The state of a WO is considered constant unless a transition takes place. A
transition occurs in finite, non-zero time. During the transition the values of the
state variables which are requested to change are unknown, (in fact known to
be changing from an earlier to a later value, unless the variable is explicitly
characterized as a sensed variable, see below). Thus, the timeline for the actual
WO state consists of intervals of a fully determined constant state, interspersed
with time intervals of partially known states during transitions.

Modelling of objects

In the control level there is a numerical model of object behaviour, the control
algorithm, which calculates output signals from given input. This numerical
model is constant as long as the WO state of the object is constant. If the WO
state changes, then the model might or might not change. Let this be an injec-
tive mapping from WO state to a numerical model. This means that the set of
state variable pairs for the WO denotes a numerical model in the control level
and that the model is constant between transitions. Some WO-states have iden-
tical control models but with different parameters. Other WO-states differ also
in model structure and may therefore be thought of as different modes in the
object control model.

Each state variable is represented by two values, one called the reference
value and the other called the actual value. Each time the task program orders a
WO-transition, the reference value(s) is(are) changed and a request is made to
the control level to change the state of the environment to the corresponding
state. When this change has been performed, it is acknowledged by the control
level.

If the value of a state variable is requested by the task program (possibly in
another concurrent sequence of events), the actual value is returned. Normally
this value is simply equal to the reference value or unknown. The normal action
in this case would be to wait for the completion of the WO-transition, but other
options may be possible1. However, if the variable is specified at the control

1. The resource allocation problem has not been addressed so far, and must currently
be taken care of explicitly by the user/programmer.

216 The Papers

level as a sensed variable, it can be calculated (from real sensor data) at any
time, even during transitions ordered by the task program. For the task program
there is no semantic difference between reading a sensed or an unsensed state
variable. This effectively makes it possible to isolate the task program from the
configuration, e.g. to selectively simulate sensors or to change the sensor con-
figuration. The world model is discussed more fully in [8].

The control level

The control level must perform actions on the real world so that the difference
between the reference value and the actual value of state variables in the world
model disappears. This can be done in several ways - a single serial message
output on a communication link, setting bits on output ports or by executing a
control algorithm which reads sensor data and outputs control signals in a
cycle. Such an execution (a transition, servoing algorithm) will bring the real
object into the state desired by the task program. On the other hand, sometimes
the new state is not an equilibrium state, thus there is a need to execute main-
taining control algorithms (these would correspond to control modes for the
object in question). The transition algorithms are parameterized by the start and
end value of the state variable(s) in the transition and the maintaining algo-
rithms are, of course, parameterized by the end value of the last transition.

The control level must also transfer sensed information back to the world
model. This is, however, only necessary in those cases where the intention is
for the task program to be able to specify a feedback loop. For mixed sensors/
actuators, i.e. a sensor which has some controllable feature (like the direction
of a supervision video camera), there must never be any possibility for interac-
tion between feedback loops defined in the task program and the transition and
maintaining algorithms defined for the corresponding WO. This cannot be
guaranteed in the present model, but is the responsibility of the programmer of
the control level.

THE IMPLEMENTATION OF THE CONTROL LEVEL

The ARAMIS system consists of three levels, the task programming level, the
control level and the physical level (fig. 2). In the task programming level the
system operator can write task programs. The ARAMIS programs are specified
in a graphical editor and are stored in a memory resident database, ITEM.
When modelling objects of the manufacturing system in the control level,
which we hereafter callactive components, an object-oriented view is used.
Component code (control algorithms) is specified in a special programming
language that is compiled and downloaded to a real-time kernel. Component
behaviour is specified by DFA1-diagrams, for each component, that specifies
the algorithms to execute in case of a change in the WM. Component behaviour
and component code are specified in an integrated component editor/compiler
tool. The real-time kernel is implemented in a multi-tasking Forth system exe-

1. Deterministic Finite Automation

217

cuting on a separate real-time processor which directly communicates with the
actual sensors and actuators.

Figure 2 Modules and tools in the system implementation

Modelling the world as components

Components are divided into two main hierarchies, active and passive compo-
nents (fig. 3). An active component is a model of a physical object in the world
(e.g. a sensor or an actuator) or a virtual object (e.g. an abstract sensor using
sensor fusion of several physical sensors). Active components have a local
state associated with the control algorithms and are represented as concurrent
processes. The hierarchy of active components specifies the levels of parentage
or kinship (e.g. an asynchronous- and a synchronous motor can both be seen as
instances of an electrical motor). The inheritance from a parent component
includes both the static code and the dynamic behaviour of the parent. All
objects in the WM are modelled as active components, but not all active com-
ponents are WM-objects.

Figure 3 The component hierarchy

Task Programming

Control Level

Physical Level

Message Buffer

Graphical Editor

Control Module

 Real-Time Kernel

Component
Editor/Compiler

Sensors Actuators

ITEM

ARAMIS Interpreter

Level

is-a specialization-of

is-a

is-a is-a

specialization-of

specialization-of

passiveactive

component

218 The Papers

Active components (fig. 4) may be structured to consist of other active com-
ponents to model complex behaviour and may use passive components to struc-
ture and share code with other components. Active components which are used
by others cannot be referenced from the task level. Active components which
are not used by other components are called top components and can be refer-
enced from the task program.

Figure 4 The active component aggregation model

A passive component is a package (in a software module sense) which con-
tains related code (e.g. a package containing mathematical functions). Passive
components have no local state and are represented as a collection of data and
code. The hierarchy of passive components specifies the levels of abstraction
(e.g. packages for path-following algorithms with and without sensory feed-
back can both be seen as specializations of an abstract path following package).
By having the same external interface in an abstract passive component, no
changes have to be made in an active component that uses the passive compo-
nent, when one algorithm is exchanged with another (procedural abstraction).

Calls to active components are implemented as implicit message passing
(i.e. syntactically as procedure calls, but semantically as interprocess calls) and
calls to passive components are implemented as regular procedure calls (both
syntactically and semantically). Passive components can use other passive
components. Passive components can not define or reference local state varia-
bles since this would violate the integrity (OO encapsulation) of active compo-
nents, according to the ARAMIS model.

The component description language

The component description language consists of two parts, an algorithm speci-
fication and a behaviour specification. Algorithms are written as functions and
procedures in a typed, imperative language. The language includes primitive
types like booleans, integers and reals together with traditional logic and arith-
metic operators. The language includes traditional control constructs such asif-
then-else and case constructs and iterative constructs such asfor, repeat and
while loops, and recursion. The language also includes primitive I/O for com-
munication with sensors and actuators.

part-of used-by

active components passive components

active usage partbehavioural part

219

The behaviour specification is a state transition graph (or a state machine),
where the states denotes a set of legal valuesets of the WO state variables and
the transitions represent legal changes of the WO state variables. The state
transitions denotes an initial and a final state, an algorithm (in the algorithm
specification) which will execute the state change and a time constraint speci-
fying a possible time out for the state change. Maintenance algorithms can also
be specified for each state. The state transition graph is made to cover all
remaining (illegal) subsets of the value domain by adding one or several error
states.

Component definitions are compiled and downloaded to the real-time kernel
in two phases. In the first phase (the instantiation phase) the algorithm specifi-
cation of the component is compiled to target code. In the second phase (the
installation phase) the behaviour specification is used to install the active com-
ponent as an executable unit, by creating a state table in the control module
reacting to changes in the WM and a task in the real-time kernel which can exe-
cute the changes in the real world.

To be more specific, an instantiated active component consists of two main parts:

• A database part, stored in a memory resident database, consisting of one static and
one dynamic part:
The static part includes the complete description, i.e. both the algorithm specifica-
tions and the behaviour specifications. The dynamic part includes state variables,
accessible from the task program through the memory resident database, and a
state table generated at the instantiation from the behaviour specification (top
components only). State variables are represented as a tuple with an actual value
and a reference value. When a state variable of an active component is changed
by the task program, the reference value is set. The state table is then indexed by
the current state of the component, returning a function that takes the reference
state vector (the values of all the state variables of the component) and returns the
next state, the transition algorithm to be called, and the maintenance algorithm of
the next state. When the state transition is acknowledged from the real-time ker-
nel, i.e. when the transition algorithm has terminated successfully, the actual val-
ue of the state variable is updated. When the task program reads a state variable,
the new actual value is returned. The actual value might also be changed due to
asynchronous changes in the real-time kernel induced by nondeterministic events
in the environment. In this case the actual value is changed directly. The first class
of state variables are called implicitly determined and the latter are explicitly de-
termined (sensed).

• A real-time kernel part consisting of:
One main process representing the active top component:

• A communication channel.

• A table of constants and state variables.

• A table of algorithms.

• A table of subcomponents represented as processes defined as above.

220 The Papers

Installed components are registered in the control level and are activated in a
system initialization phase. When an active component is declared to consist of
other active components, the subcomponents are also instantiated and installed
before the main component. An active component class can be instantiated both
as a stand-alone component and as being part of another component (i.e. as two
different instances), but only the stand-alone component will have a dynamic
part installed in the data base and thus be visible from the task level.

A COMPONENT EXAMPLE

We illustrate the modelling of component behaviour with an example - a con-
veyer belt. The model consists of an active component consisting of a motor, a
speed sensor and the actual conveyer belt. The main component may be mod-
elled as follows. The conveyer belt can be in three different states, halted, mov-
ing forward or moving backwards (fig. 5).

Figure 5 Example of a state graph - a conveyor belt

The component has two WO state variables,direction andspeed, which can

halted

forward

backward

change_direction(<direction>)

change_speed(<speed>)

change_speed(<speed>)

change_speed(halted)

change_speed(halted)

State variables:
direction (forward,backward)
speed (halted,low,medium,high)

Algorithms:
change_direction(direction)
change_speed(speed)

State constraints:
halted: speed = halted
forward: direction = forward, speed = low,medium,high
backward: direction = backward, speed = low,medium,high

change_speed(<speed>)

change_speed(<speed>)

maintain_speed()

maintain_speed()

maintain_speed()

221

be directly manipulated by the task level. The halted state is the initial state.
The initial value ofdirection in the halted state is unknown. The algorithm
change_direction will be called in the real-time kernel to change the direc-
tion. The algorithmchange_speed is called to set the speed to eitherhalted,
low, medium or high and, if the algorithm succeeds, a state change will occur.
In the states forward and backward the maintenance algorithm
maintain_speed is executed continuously to make sure the speed is kept.
When the speed is changed, the maintenance algorithm is interrupted and the
algorithmchange_speed is called. If the speed is changed tohalted, the state
changes to halted. If the speed is changed to some other value thanhalted, the
current state will be kept and the maintenance algorithm will be called again
after the speed change. If either a transition algorithm or a maintenance algo-
rithm fails, the task level is notified by an error message. In the case where an
inconsistent state occurs, i.e. if the state variables are set to values not consist-
ent with any of the defined states, a transition to an error state will occur and
the task level will be notified. In the example, this is the case ifdirection is
unknown when settingspeed to some other value thanhalted. How the values
of the WO state variables, seen by the task level, correspond to the values in the
real-time kernel has to be defined in a mapping between the values of the varia-
bles in the WM and the “real” values of the variables in the real-time kernel.
This mapping defines the accuracy to which the maintenance algorithms should
maintain the variable values and it also defines the intervals by which asyn-
chronous changes of values (from sensory data) should be reported to the WM.

CURRENT STATUS

Hardware and Software Platforms

The hardware for the task level and the control level programming is a SUN
SPARCstation 1. For the real-time environment a VME-bus based Motorola
68020 is used. The software for the SPARC is the XEROX EnVõs Common
Lisp environment and for the Motorola, the TILE multi-tasking Forth environ-
ment1.

The Real-Time Environment

The real-time environment consists at present of a robot with a three-finger
gripper and some various sensors, controlled by the Motorola 68020. The robot
is a conventional 6-axis PUMA 560. Some additions have been made to the
control system to provide extended external control. The gripper is specially
designed to be more flexible and controllable than conventional grippers, and is
also prepared for mounting sensors onto it. A CCD camera is used as vision
sensor, providing 256x256 pixels resolution and placed as a scene camera. The
vision system is situated on a separate computer, communicating with the VME
computer. Tactile sensor arrays are mounted on the gripper’s fingers, giving

1. M. Patel, Dept. Computer and Information Science, Linköping University.

222 The Papers

imprint patterns. An ultra-sonic sensor on the gripper can be used as range/
proximity sensor. A strain-gauge sensor on the robot arm can be used as force
sensor. A similar sensor is also intended to be mounted in the gripper, to be
able to measure the grip force.

For accessing and controlling sensors and actuators from the Forth environ-
ment, some extensions have been made. These include code for reading and
writing from analogue and digital I/O boards and communicating with the robot
control system and the vision computer. The communication is performed by
using a simple package based protocol that is embedded in the communication
code, thus making it transparent to the user.

FUTURE WORK

Many aspects of the architecture described in this paper needs to be expanded
further. Some of the urgent extensions include fault handling and the schedul-
ing of processes in the real-time kernel. Simple fault handling is supported at
present, but this does not include propagation and translation of error informa-
tion between the two levels in the architecture. Error information at the control
level needs to be translated using the context of the task being executed at the
task level. This involves translating from how the error presents itself to what
the logical cause of the error might be. By extending control level program-
ming to include components as first-class objects, e.g. by moving closer to an
object-oriented programming language, it will be possible to implement
generic control algorithms. Today every executable algorithm must be encapsu-
lated within the corresponding component. Other areas that need further work
include support for software requirement analysis to determine the consistency
of a component behaviour specification and support for the distribution of data
and programs on distributed hardware.

ACKNOWLEDGEMENTS
We would like to thank NUTEK, the Swedish National Board for Industrial and

Technical Development, and CENIIT at Linköping University, for funding this
project. We would also like to thank other members of the Measurement Technology
group at IFM for providing us with a real-time environment and for teaching us more
about sensor technology.

REFERENCES
[1] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot”, in

IEEE Journal of Robotics and Automation vol. RA-2 No. 1, March 1986.

[2] J. J. Clark and A. L. Yuille, “Data Fusion for Sensory Information Process-
ing Systems”, Kluwer Academic Publ.

[3] G. C. Gini and M. L. Gini, ”Dealing with World-Model-Based Programs”,
ACM Transactions on Programming Languages and Systems,7,2, 1985.

223

[4] J. Hultman, A. Nyberg, and M. Svensson, “A Software Architecture for Au-
tonomous Systems”,6th International Symposium on Unmanned, Unteth-
ered Submersible Technology, Elicott City, Maryland, 1989.

[5] S. Levi and A. K. Agrawala, “Real-Time System Design”, chap. 7, Mc-
Graw-Hill, 1990.

[6] L. I. Lieberman and M.A.Wesley, “AUTOPASS: an automatic programming
system for computer controlled mechanical assembly”, IBM J. Research &
Development, 21,4, 1977.

[7] P. Loborg and A. Törne, “A Hybrid Language for the Control of Multima-
chine Environments”, inProc. of 4th International Conference on Industrial
& Engineering Applications of AI & Expert Systems., Koloa, Hawaii, 1991,
by University of Tennessee Space Institute.

[8] P. Loborg, M. Sköld, and A. Törne, “A Hierarchical Software Architecture
for Control of Industrial Robots and Manufacturing Equipment”, presented
at 1st National Symposium on Real-Time Systems, Proc. in Tech. Rep. No.
30, Dept. of Computer Systems, Uppsala University, June 1991.
CAELAB Memo 92-01.

[9] T. Lozano-Perez and P.H. Winston, “LAMA: a language for automatic me-
chanical assembly”, inProceedings of the 5th IJCAI Conference, 1977.

[10] C. W. Mercer and H. Tokuda, “The ARTS Real-Time Object Model”, in
Proceedings of 11th IEEE Real-Time Systems Symposium. December, 1990.

[11] D. J. Miller and R. C. Lennox, “An object-oriented Environment for Robot
System Architectures”, inProceedings of the IEEE International Confer-
ence on Robotics and Automation in Ohio 1990, Vol. 1, Page 352.

[12] B. Shepherd, “Task-level programming of a robot using an intelligent hu-
man-robot interface”, in theProceedings of the 2nd International Confer-
ence on IEA-AIE, ACM, 1989.

[13] D. B. Stewart, D. E. Schmitz, and P. K. Khosla, “Implementing Real-Time
Robotic Systems Using CHIMERA II”, in theProceedings of the IEEE In-
ternational Conference on Robotics and Automation in Ohio 1990, vol. 1,
Page 598.

[14] A. Törne, “The Instruction and Control of Multi-Machine Environments”, in
Proceedings of the 5th International Conference on Applications of Artifi-
cial Intelligence in Engineering, Springer-Verlag, Vol. 2, Page 137, Boston,
July 1990.

[15] H. Van Dyke Parunak, J. Kindrick, and B. W. Irish, “Viewing the factory as
a Computer: A Cognitive Approach to Materials Handling”, inArtificial In-
telligence - Manufacturing Theory and Practice, eds. S.T. Kumara, R. L.
Kashyap, A.L. Soyster, The Institute of Industrial Engineers, Industrial and
Management Press, 1989, Pages 225-264.

224 The Papers

225

15.2 Paper II

T. Risch and M. Sköld: Active Rules based on Object-Oriented Queries, in spe-
cial issue on Active Databases in the Data Engineering Bulletin 15(1-4), Pages
27-30, 1992.

226 The Papers

Active Rules based on Object-Oriented Queries

Department of Computer and Information Science

Linköping University

Sweden

Abstract
We present a next generation object-oriented database with active properties by

introducing rules into OSQL, an Object-Oriented Query Language. The rules are
defined as Condition Action CA rules and can be parameterized, overloaded, and
generic. The condition part of a rule is defined as a declarative OSQL query and the
action part as an OSQL procedural body The action part is executed whenever the
condition becomes true. The execution of rules is supported by a rule compiler that
installs log screening filters and uses incremental evaluation of the condition part.
The execution of the action part is performed in a check phase that can be carried out
after any OSQL commands in a transaction or at the end of the transaction. Rules are
first-class objects in the database which makes it possible to make queries over rules.
We present some examples of rules in OSQL, some implementation issues, some
expected results, and some future work such as temporal queries and real-time
support

Key Words: Active Database, Object-Oriented Query Language, Object-Oriented
Rules

 1 Introduction
A powerful query language will be an essential part of the next generation Object-
Oriented (OO) database systems. When active properties are introduced into these
databases, the query language should be extended to support them.

The HiPac [4] project introducedECA rules (Event-Condition-Action). The
Event specifies when a rule should be triggered. The Condition is a query that is
evaluated when the Event occurs. The Action is executed when the Event occurs and
the Condition is satisfied.

In Ariel [6] the Event was made optional, making it possible to specifyCA rules,
which use only the Condition to specifylogical events which trigger rules. Rules in
OPS5 [1] and monitors in [8] have similar semantics. In ECA rules the user has to
specify all the relevantphysical events in the Event part. We believe that CA rules are
more suitable for integration in a query language, since they are more declarative.
CA rules make physical events implicit, just as a query language makes database

Tore Risch

torri@ida.liu.se

Martin Sköld

marsk@ida.liu.se

227

navigation implicit.
We define active rules by extending the OO query language OSQL of Iris [5].

OSQL is based on functions for associating attributes with objects (both stored and
derived). OSQL permits functional overloading on types, and types and functions are
first-class objects. Likewise, rules are first-class objects in the database too [3]. This
makes it possible, for example, to make queries over rules. By implementing rules on
top of OSQL, overloaded and generic rules are possible, i.e. rules that are
parameterized and that can be instantiated for different types. We also utilize the
optimizations performed by the OSQL compiler [7].

Each rule is defined by a<Condition,Action> pair, where the Condition is a
declarative OSQL query and where the Action is an OSQL database procedure body.
The rule language thus permits CA rules where the Action is executed (i.e. the rule is
triggered) whenever the Condition becomes true, similar to OPS5 and Ariel. Unlike
those systems, the Condition can refer to derived functions (which correspond to
views). Data can be passed from the Condition to the Action of each rule by using
shared query variables. By quantifying query variables set-oriented Action execution
is possible [11].

We are implementing our ideas in the research prototype, AMOS1 (Active
Mediators Object System), by extending a Main-Memory version of Iris, WS-Iris[7].
OSQL queries are compiled into execution plans in an OO logical language. The
system logs all side effect operations on the database. The rule compiler analyzes the
execution plan for the Condition of each rule. It then generates ’log screening filters’
which check each event that is added to the log. When a log event passes a log
screening filter associated with a Condition, it indicates that the event can cause the
corresponding rule to fire. The screening of the log is often complemented with
incremental evaluation [9],[10] of the Condition.

Distributed execution of AMOS is being implemented too, and we plan to
introduce temporal queries and real-time facilities as well.

 2 Object-Oriented Query Rules
In AMOS OSQL has been extended with rules having a syntax conforming to that of
OSQL functions as closely as possible. AMOS supports rules of CA type where the
Condition is an OSQL query, and the Action an OSQL procedure body. The syntax
for rules is the following:

create rule rule-name param-spec as
when [for-each-clause | predicate-expression]
do [once] action

where
for-each-clause ::=

1. The AMOS project is supported by Nutek (The Swedish National Board for Indu-
strial and Technical Development) and CENIT (The Center for Industrial Informa-
tion Technology), Linköping University

228 The Papers

for each variable-declaration-commalist where predicate-expression

The predicate-expression can contain any boolean expression, including
conjunction, disjunction and negation. Rules are activated anddeactivated by:

activate rule-name ([parameter-value-commalist])

deactivate rule-name ([parameter-value-commalist])
The semantics of a rule are as follows: If an event in the database changes the

boolean value of the condition fromfalse to true, then the rule is marked as
triggered. If something happens later in the transaction which causes the condition to
become false again, the rule is no longer triggered. This ensures that we only react to
logical events1. In thecheck phase (usually done before committing the transaction),
the actions are executed of those rules that are marked as triggered. If an action is to
be executed only once per activation, the rule is deactivated after the action has been
executed. We can also introduce animmediate coupling mode [4] by instructing the
system that the check phase is to be done immediately after each OSQL command.

Example 1:
The salary changes of employees and managers are to be monitored. We want to

ensure that only managers can have their salaries reduced. First we define the
employee and manager types and the respective income functions, where managers
receive an additional bonus:

create type person;
create type employee subtype of person;
create type manager subtype of employee;
create function name(person) -> charstring as stored;
create function mgrbonus(manager) -> integer as stored;
create function income(employee) -> integer as stored;
create function income(manager m) -> integer i

as select i where i = employee.income(m) + mgrbonus(m);
create employee(name,income) instances

:joe (‘Joe Smith’,30000);
create manager(name,employee.income) instances

:harold (‘Harold Olsen’,80000);
set mgrbonus(:harold) = 10000;
Then we define procedures for what to do when a salary is decreased:
create procedure compensate(employee e)

/* employee income cannot be decreased */
as set income(e) = previous income(e);

create procedure compensate(manager);
/* dummy procedure, managers are not compensated */

1. To support physical events the system should provide functions that change values
whenever a physical event occurs and thus can be referenced in the condition of a
rule.

229

The function compensate uses the system operator previous to fetch the
value of a function at the previous checkpoint.

Finally we define the rule to detect decreasing salaries for all employees:
create rule no_decrease() as

when for each employee e
where income(e) < previous income(e)
do compensate(e);
Activate the rule:

activate no_decrease();
If an employee who is not a manager has his salary decreased, the rule will

automatically set the salary back to the old value at check time:
set income(:joe) = 20000;
/* => reset income(:joe) to 30000 at check time */

Note: Since the rule is defined for all employees, and manager is a subtype of
employee, the rule is overloaded for managers (because the functionsincome and
the procedurecompensate are overloaded). If a person of type manager gets a
salary reduction, no action is taken. This is an example of a set-oriented rule. The
action is executed for every binding of the universally quantified variablee for which
the condition is true.

Example 2:
Rules can be parameterized and instantiated with different arguments.Take a rule

that ensures that a specific employee has an income below a certain maximum
income, and the transaction is rolled back if anemployee receives an income above
the threshold. This maximum income is fixed for all employees, but can vary for
individual managers.

create function maxincome(employee) -> integer
as select 50000;

create function maxincome(manager) -> integer as stored;
create rule exceeding_maxincome(employee e) as

when income(e) > maxincome(e)
do rollback;

Set the income limit for Harold:
set maxincome(:harold) = 120000;

Activate the rule for a particular employee Joe and manager Harold:
activate exceeding_maxincome(:joe);
activate exceeding_maxincome(:harold);
set income(:joe) = 75000;
/* rollback at check time because 75000 > 50000 */
set maxincome(:harold) = 90000;
/* rollback at check time because 90000+10000 > 90000 */
set mgrbonus(:harold) = 45000;
/* rollback at check time because 80000+45000 > 120000 */

230 The Papers

It is non-trivial to determine the physical events that trigger an OSQL rule with
many interdependent and overloaded functions, such as the rule above. Hence we let
the compiler determine this. Thisillustrates the convenience of CA rules.

Example 3:
Since types are first class objects, one can write generic rules that are instantiated

for a specific object type:

create rule exceeding_maxincome(type t) as
when for each employee e
where typesof(e) = t and
income(e) > maxincome(e)
do rollback;
Activate the rule for all managers:

activate exceeding_maxincome(typenamed(‘manager’));

Since rules are first-class objects in the database, one can make queries over
rules. For example, the system could provide a function that returns all active
rules dependent on a certain object type or a function that takes a rule as argu-
ment and returns all the functions it depends on.

 3 Expected results
The extension of OSQL with rules is expected to provide a powerful language to
express active properties in an object-oriented database. The overloading of rules
provides a way to specify reusable rules that can be applied uniformly in different
situations. One of the goals in the project is to investigate if CA rules can be
implemented as efficiently as ECA rules. This involves efficient event detection as
well as incremental evaluation of rule conditions. We will verify the applicability of
OO rules by investigating how they can be used for various applications, e.g. CIM.

 4 Future work
Temporal rules can be introduced by having functions that vary over time and by
time-stamping events in the database. The condition can then refer to the time when a
certain event occurred. By introducing a timer event, a rule can be triggered at a
certain time. These extensions do not support all the possible reasoning that can be
made in an event algebra such as [2]. However, it allows for reasoning about whether
one event happened before another or vice versa (by comparing time-stamps).

Introducing real-time properties in the database would require taking the cost of
executing an action into account. Active database facilities are important for real-
time applications that, e.g., monitor combinations of sensor data and perform actions
whenever ’interesting’ situations occur. The rule language will need to be

231

complemented with timeliness constraints for rule conditions and actions.

References
[1] Brownston L., Farell R., Kant E., and Martin A.: Programming Expert Sys-

tems in OPS5,Addison-Wesley, Reading Mass., 1986.

[2] Chakravarthy S. and Mishra D.: An Event Specification Language (Snoop)
for Active Databases and its Detection,UF-CIS Technical Report, TR-91-
23, Sept. 1991.

[3] Dayal U., Buchman A.P., and McCarthy D.R.: Rules are objects too: A
Knowledge Model for an Active, Object-Oriented Database System,Proc.
2nd Intl. Workshop on Object-Oriented Database Systems, Lecture Notes in
Computer Science 334, Springer-Verlag, 1988.

[4] Dayal U. and McCarthy D.: The architecture of an Active Database Man-
agement System,ACM SIGMOD, 1989, Pages 215-224.

[5] Fishman D. et. al.: Overview of the Iris DBMS,Object-Oriented Concepts,
Databases, and Applications, ACM press, Addison-Wesley Publ. Comp.,
1989.

[6] Hanson E. N.: Rule Condition Testing and Action Execution in Ariel,ACM
SIGMOD, 1992, Pages 49-58.

[7] Litwin W. and Risch T.: Main Memory Oriented Optimization of OO Que-
ries using Typed Datalog with Foreign Predicates,IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 6, Dec. 1992.

[8] Risch T.: Monitoring Database Objects,VLDB conf. Amsterdam, 1989.

[9] Rosenthal A., Chakravarthy S, Blaustein B., and Blakely J.: Situation Moni-
toring for Active Databases, inthe Proceedings of the VLDB Conference,
Amsterdam, 1989.

[10] Paige R. and Koenig S.: Finite Differencing of computable expressions, in
ACM Transactions on Programming Languages and Systems, 4.3, July
1982, Pages 402-454.

[11] Widom J. and Finkelstein S.J.: Set-oriented production rules in relational da-
tabase system, inthe Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, Atlantic City, New Jersey, 1990, Pages
259-270.

232 The Papers

15.3 Paper III

G. Fahl, T. Risch, and M. Sköld: AMOS - An Architecture for Active Media-
tors, in Proceedings of the Workshop on Next Generation Information Technol-
ogies and Systems (NGITS’92), Haifa, Israel, June 1993.

233

AMOS - An Architecture
for Active Mediators

Gustav Fahl, Tore Risch, Martin Sköld

Department of Computer and Information Science
Linköping University

S-581 83 Linköping, Sweden
E-mail: gusfa@ida.liu.se, torri@ida.liu.se, marsk@ida.liu.se

Abstract

AMOS1 (Active Mediators Object System) is an architecture to model, locate,
search, combine, update, and monitor data in information systems with many work-
stations connected using fast communication networks. The approach is calledactive
mediators, since it introduces an intermediate level of ‘mediator’ software between
data sources and their use in applications and by users, and since it supports ’active’
database facilities. A central part of AMOS is an Object-Oriented (OO) query lan-
guage with OO abstractions and declarative queries. The language is extensible to al-
low for easy integration with other systems. This allows for knowledge, now hidden
within application programs as local data structures, to be extracted and stored in
AMOS modules. A distributed AMOS architecture is being developed where several
AMOS servers communicate, and where queries in a multi-database language are al-
lowed to refer to several AMOS databases or other data sources. An overview is pro-
vided of the architecture and components of AMOS, with references to ongoing and
planned work.

1 Introduction

Future computer supported engineering, manufacturing, and telecom environments
[Lob93, Imi92] will have large number of workstations connected with fast commu-
nication networks. Workstations will have their own powerful computation capacities
which store, maintain, and make inferences over local engineering data- and knowl-
edge-bases, orinformation bases. Each information base is maintained locally by
some human operator and is autonomous from other information bases. Each infor-
mation base will need a set of DBMS capabilities, e.g. data storage, a data model, a
query and data modelling language, transactions, and external interfaces. The classi-
cal relational database languages are not powerful enough for the manipulations
needed, for example, to build advanced models to filter and extract required informa-

1. The AMOS project is supported by TFR (The Swedish Research Council for the Enginee-
ring Sciences), NUTEK (The Swedish National Board for Industrial and Technical Develop-
ment) and CENIIT (The Center for Industrial Information Technology), Linköping University.

234 The Papers

tion. Facilities are also needed to support ‘reactive’ applications that sense changes in
information, i.e.active database facilities [DE92].

The AMOS (Active Mediators Object System) architecture uses themediator ap-
proach [Wie92] that introduces an intermediate level of software between databases
and their use in applications and by users. We call our class of intermediate modules
active mediators, since our mediators support active database facilities.

We have identified four classes of mediators needed in our architecture, which will be
explained in more detail in the next sections:

1. Integrators that retrieve, translate, and combine data from data sources with dif-
ferent data representations.

2. Monitor models that notify mediators or application programs when data updates
of interest occur.

3. Domain models that represent application-oriented models and database operators.

4. Locators that locate mediators and data in a network of AMOS servers.

The AMOS architecture is built around a main memory based platform for intercom-
municating information bases. Each AMOS server has DBMS facilities, such as a lo-
cal database, a data dictionary, a query processor, transaction processing, and remote
access to data sources. Central to the AMOS architecture is an OO query language,
AMOSQL, which is a derivative of OSQL [Fis89]. AMOSQL supports OO abstrac-
tions and declarative queries. It is extensible to allow for easy integration with other
systems. AMOS makes it possible to extract knowledge that currently is hidden with-
in application programs as local data structures and represent it in AMOS modules.
Query processing must be efficient enough to encourage the use of local embedded
databases linked into applications without significant performance penalty. The query
and modelling language must also be powerful enough to store complex knowledge
models. Furthermore, queries should be allowed to access more than one autonomous
AMOS server as well as other data sources. It should be possible to state queries us-
ing the same multi-database query language independently of where the queried data
reside. AMOSQL also supportsactive rules [Ris92] that execute when certain more
or less complex conditions change.

To support the initial work on AMOS, a main-memory OO DBMS engine, WS-IRIS
[Lit92], is being modified. It provides an extended OSQL version and fast execution.
WS-IRIS is open and easy to modify for research purposes. The system supports ex-
tensibility throughforeign functions written in an external programming language
(usually Lisp or C). A query optimizer translates OSQL queries and methods into op-
timized execution plans in an internal logical language, ObjectLog [Lit92]. The opti-
mizer is extensible so thatcost hints can be associated with arbitrary OSQL functions
to guide the optimizer about alternative execution plans. We are developing new opti-
mization strategies by new kinds of transformations on the ObjectLog query plans.

235

2 AMOS Components

Figure 1 illustrates how a set of application programs access a set of data sources
through active mediators. An overview follows of the work we are doing on each
kind of mediator.

Figure 1 Active mediators of different classes mediating between data
sources and users/applications

2.1 Integrators

Data sources are likely to be heterogeneous. Data could be stored in different
DBMSs, using different data models. Even if the same DBMS is used, data could still
be semantically heterogeneous [She91].

Integrators are responsible for making this heterogeneity transparent to higher-level
mediators and applications. Integrators retrieve and combine data from underlying
data sources, giving applications and higher-level mediators an integrated view of
data and decoupling them from the necessity of understanding multiple data models.

Integrators are implemented with two kinds of AMOS servers;Translation AMOS
(TAMOS) servers andIntegration AMOS (IAMOS) servers (see figure 2). We will in-
itially concentrate onaccess to heterogeneous data sources, not updates.

Much current research is being applied to heterogeneous database systems [She90].
The usual way to deal with data model heterogeneity is to map the schemas of the
data sources to schemas in a common data model (CDM). In most previous research
a relational CDM has been used. This is inadequate if there are data sources with a
data model that is semantically richer than the relational model. In these cases, it will
not be possible to capture all of the semantics of the data sources in the CDM. Ideal-
ly, the expressiveness of the CDM should be greater than, or equal to, the expressive-
ness of all the data models of the data sources. We use the functional and object-
oriented data model from IRIS [Fis89] as our CDM.

Integrator

Data
Source

Data
Source

Data
Source

Data
Source

Data
Source

IntegratorMonitor

Application ApplicationApplication

AMOS

Domain modelDomain model

236 The Papers

Figure 2 Translation AMOS (TAMOS) and Integration AMOS (IAMOS)
- the servers implementing Integrators

Related work of particular interest include the Multibase [Lan82] and Pegasus
[Ahm91] projects.

Multibase has a similar architecture and uses a functional data model as their CDM
and DAPLEX [Shi81] as the Data Manipulation Language (DML). AMOSQL is a
DAPLEX derivative, but an important difference is that AMOSQL is object-oriented.
Queries in AMOSQL can return OIDs. Another difference is the role of the transla-
tion component. This will be discussed in section 2.1.1.

The Pegasus project also uses the IRIS data model as their CDM and an extension to
OSQL as the DML. The main difference to AMOS is architectural. A Pegasus server
performs both translation and integration, whereas in AMOS this is separated in two
modules. There is one type of TAMOS server for each type of data source. Each TA-
MOS server only needs to know the data model of one data source and how to map
this to the CDM. IAMOS servers only need to understand the CDM. The Pegasus
server must understand all underlying data models and must have language con-
structs for mapping each of these data sources to the CDM.

IAMOS

TAMOS

Data
Source

Data
Source

Data
Source

Data
Source

MMMM

M = Mediator, Application, or End-User

IAMOS

TAMOSTAMOSTAMOS

237

2.1.1 TAMOS

Translation AMOS servers map the schemas of the data sources to schemas in the
CDM. There is one TAMOS server for each kind of data source. An AMOSQL query
sent to a TAMOS server is translated to calls to the underlying data source. The re-
sults of these calls are then processed to form answers to the AMOSQL query.

A TAMOS server can be used by one or more IAMOS servers or directly by applica-
tions and other mediators. We are initially developing TAMOS servers for a relation-
al database (SYBASE), and for a conventional file data source.

A central problem is how to get OO access to a non-OO data source. In the method
chosen, each TAMOS server will contain descriptions of how to map values in the
underlying data source to object identifiers (OIDs). OIDs are dynamically generated
when necessary and are thereafter maintained by the TAMOS server.

When the data model of the data source provides fewer semantic modelling con-
structs than the CDM, mapping a data source schema into a schema in the CDM in-
volves a semantic enrichment process [Cas93]. We want TAMOS to capture as much
of the semantics of the data source as possible. This is different from, for instance,
Multibase, where the translated schema is the simplest possible and where the seman-
tic enrichment is performed in the integration module. We want to avoid this ap-
proach, which leads to increased communication between the translation and
integration modules. Our approach makes query optimization in TAMOS more diffi-
cult, since query processing involves both calls to the data source and local TAMOS
computations. The optimizer must find the most effective combination of these.

TAMOS query plans are represented by an extended version of ObjectLog. Some
TAMOS types will have instances corresponding to atomic values in the data source.
OIDs must be generated when a query returns objects of such a type. Similarly, OIDs
must be converted back to atomic values when they are used in queries to the data
source. Thus, TAMOS query plans often contain statements which map between
OIDs and atomic values. However, when a query is a used as a subquery of a larger
query and thus query plans are combined, the OID mappings on intermediate results
are not needed. The optimizer recognizes these cases and removes such unnecessary
OID mappings from the execution plan. This makes larger portions of TAMOS exe-
cution plans translatable to, e.g., relational queries to the data source, which minimiz-
es communication between TAMOS and its data source.

2.1.2 IAMOS

An Integration AMOS server combines data from other AMOS servers (TAMOS or
IAMOS) and presents an integrated view of the data. A query sent to an IAMOS ser-
ver is transformed into several queries for the underlying AMOS servers. The results
of these queries are then processed to form an answer to the initial query. Special op-
timization techniques are needed compared to conventional distributed DBSs due to
the heterogeneity and autonomy of the data sources [Lu93].

To define the mapping between the integrated IAMOS schema and the underlying
TAMOS/IAMOS schemas, an OO multi-database query language is needed. This

238 The Papers

language is used to define object views[Abi91] in terms of combinations of data
from other AMOS servers and from local data and views.

To access the data sources it is not necessary to use an IAMOS server. Queries can be
put directly to TAMOS servers using the multi-database language. Using the termi-
nology from[She90], our architecture can be seen as a combination of a Loosely
Coupled Federated DBS and a Tightly Coupled Federated DBS (with multiple feder-
ations).

Thus, the same OO multi-database query language is used for local queries, multi-da-
tabase queries, and for defining multi-database object views. One proposal being
studied for such a language is found in [Cho92].

2.2 Monitor Models

Some applications require a mechanism to handle the problem of dynamically chang-
ing data. Mediators are provided that continuously monitor these data changes and
notify applications when changes of interest for some application occur. Thesemoni-
tor models allow application programs to cooperate via AMOS. Of particular interest
is to provide means to build monitor models that filter change in data sources, so that
irrelevant changes are ignored.

To support monitor models AMOS provides active database capabilities byactive
rules using AMOSQL queries [Ris92]. The active database capabilities of AMOS are
used also for other purposes than monitor models, such as for consistency checking.
AMOSQL permits functional overloading on types, and types and functions are first-
class objects. By implementing rules on top of AMOSQL, overloaded and generic
rules are possible, i.e. rules that are parameterized and that can be instantiated for dif-
ferent types. We also utilize the optimizations performed by the AMOSQL compiler.

The HiPac [Day89] project introduced activeECA rules (Event-Condition-Action).
The event specifies when a rule should be triggered. The condition is a query that is
evaluated when the event occurs. The action is executed when the event occurs and
the condition is satisfied.

In our active rules the event is made optional by defining each rule as a pair <Condi-
tion,Action>, where the condition is a declarative OO query and where the action is
an OO database procedure body, i.e. aCA rule. An action is executed (i.e. the rule is
triggered) when the condition becomes true. We believe that CA rules are more suita-
ble for integration in a query language, since they are more declarative. CA rules
make physical events implicit, just as a query language makes database navigation
implicit. OPS5 [Bro85] and Ariel [Han92] have similar rule semantics. Unlike those
systems, the condition in an AMOS rule can refer to derived AMOSQL functions
(which correspond to views). Data can be passed from the condition to the action of
each rule by using shared query variables. By quantifying query variables set-orient-
ed action execution is possible [Wid90]. Rules are furthermore parameterized and
type overloaded, so that they can be instantiated for objects of different types.

An interface has also been developed between active rules and application programs
where the programmer can specifytrackers [Ris89], which are procedures or proc-
esses of the application or other AMOS servers that are invoked or called by AMOS

239

when a rule action is triggered. AMOS thus needs a callback mechanism that is in-
voked from active rules. Such a mechanism will be part of the application program-
ming language interface to AMOS. We have developed such an interface between
AMOS and the functional concurrent programming language Erlang [Arm93] for
real-time applications. The callback mechanism is also a part of the communication
protocol between AMOS servers.

Possible tasks for the trackers include:

- Notifying the end user that data have changed.

- Refreshing data browsers

- Modifying values in mediators.

- Changing processing heuristics in mediators.

- Changing stored abstractions in mediators.

- Informing applications that data views which the application depends on have
changed.

By using active rules the monitor model canfilter insignificant data source changes
before notifying the application. This decreases the frequency of notification for in-
tensively updated data. Notification filtering is required, for example, by real-time
monitoring AI systems where the tracker initiates time-consuming reasoning activi-
ties [Was89].

2.3 Domain Models

Domain knowledge and data now hidden in application programs should be extracted
from the applications and stored in mediators with domain specific models and oper-
ators, calleddomain models. The benefits of using domain models include easier ac-
cess through a query language, better data description (as schemas), transaction
capabilities, and other benefits currently provided only by advanced DBMSs. Exam-
ples of domain models are models for structural analysis of mechanical designs,
models to obtain a preferred part for a product, or models to describe properties of a
user interface. The query processing of AMOSQL must be about as efficient as cus-
tomized main-memory data structure representations. This would encourage the use
of local embedded AMOS databases linked into applications. Domain models often
need to be able to represent specialized data structures for the intended class of appli-
cations.

Important research problems in developing domain models are to investigate:

1. How is the domain modelled using an OO query and modelling language?

2. Which domain-oriented data structures are required, and how should they be rep-
resented?

3. What domain-oriented operators need to be defined?

4. How are queries accessing domain-oriented data structures optimized?

240 The Papers

2.4 Locators

In large dynamic information bases, it is not trivial to know which data sources con-
tain requested data. For this, a class of mediators is needed which, given descriptions
of the data to retrieve, locates the matching data sources. AMOS mediators, called lo-
cators, will be developed as servers that know properties of other mediators and
where they are located. In a simple environment the application will know exactly
where the data sources are located, e.g., by knowing the exact locations of database
tables. In a broadly distributed environment one may not have such direct ’handles’
to the data sources, but rather query the locators given descriptions of what to look
for. Locators provide a query language for connecting data to application programs.
The effect is to increase flexibility when information sources are changing.

The need for locator facilities has been acknowledged in the research area ofmobile
databases [Imi92], which combine future telecommunication and database capabili-
ties. In a global and very fast network of information servers, databases are accessi-
ble via radio links. When people travel long distances, the system will eventually
move data to (or create data in) new locations. In such an environment non-trivial lo-
cator facilities become very important. There are some connections between locators
and traditional name servers, where IP addresses are looked up via a set of distributed
servers. However, since AMOS servers are relatively lightweight, it will be feasible
to make each of our locators a complete AMOS server. This will make it possible to
provide many new locator services through locator querying. Locators also have con-
nections to traditional DBMS data dictionaries. However, data dictionaries are cen-
tralized, i.e. a single data dictionary knows where all data is located, which is what is
required to support conventional distributed databases. In contrast, our locators are
distributed, autonomous, and loosely coupled.

2.5 Distributed AMOS Systems

The architecture requires facilities to state OO queries and to build OO models that
span many AMOS servers. Therefore the system needs to contain means for inter-
communication between AMOS servers as well as between AMOS and applications.

We have developed a transactional remote procedure call mechanism that handles
low level message interfaces between AMOS servers. A query layer will be built on
top of this mechanism. Transactional behaviour ensures that each database can re-
main consistent after communication or software failures.

We also plan to generalize monitor models so that active rules can be specified that
access more than one AMOS server.

3 A Scenario

With AMOS it will be possible to build domain models that combine data from sev-
eral outside data sources with local data, and which contain rules that assists the user
in making decisions.

241

As an example, consider a computer-supported quotation task, where the suggested
design and price depend upon prices from subcontractors, e.g. a HV-transformer de-
sign depends on copper and oil prices, or turn-key dairy process equipment depends
on stainless steel tubing prices. Integrators allow the information to be stored in and
be accessible from different vendor databases.

Product data are represented differently by different suppliers. Integrator models al-
low conversions between semantically different data representations.

Domain models allow customization of parts of the product selection model by local
data and rules. For example, the user might specify preferred price ranges, quality re-
quirements, and constraints on the means for transportation from the supplier. Differ-
ent domain models will be used by different users and have different customizations.

All data used in the product selection may not be directly available for each consid-
ered product and locators must then be used to find the appropriate database. For ex-
ample, access to each supplier’s database is needed in order to estimate the cost of
obtaining a product.

Assuming that the main contractor is not in a direct hurry to buy the product, s/he
may postpone the purchase until the right market conditions arise which can be pro-
vided by monitor models. For example, if supplier A does not have the required prod-
uct in stock, the main contractor may want a signal if and when it can be delivered
from supplier A. Similarly, s/he may want a signal if the price for the product drops
below some threshold in the case where a sale is expected. These kinds of monitoring
conditions are expressible in the rule language. We also plan to add timeliness speci-
fications in monitoring models, e.g. to specify a deadline after which it is absolutely
necessary to have an order put on the needed product, even if the choices are not the
best.

4 Summary

The AMOS architecture was described where AMOS information bases mediate be-
tween application programs and data sources. AMOS provides facilities to extract da-
ta, and to manipulate and model the extracted data using a powerful query and
modelling language. The system provides integrator servers that combine data from
many different data sources, and provide OO views for all types of data sources. The
modelling language has active rule facilities that detect when the state of a data
source is updated in some ’critical’ way. Critical data source updates can then initiate
reasoning in application programs or just notify the user. The modelling language is
based on extensions to OSQL [Fis89].

An example scenario was given of the use of AMOS to help main contractors get
timely and needed information for the quotation task. One may construct similar sce-
narios for other domains, e.g., computer network service planning systems, and
project planning and tracking systems.

242 The Papers

References

[Abi91] Abiteboul S. and Bonner A.:’Objects and Views’, inthe Proceedings of
ACM SIGMOD, 1991.

[Ahm91] Ahmed R., DeSmedt P., Du W., Kent W., Ketabchi M.A., Litwin W., Rafii
A., and Shan M-C.: ’The Pegasus Heterogeneous Multidatabase System’,
IEEE Computer, Vol. 24, No. 12, Dec. 1991.

[Arm93] Armstrong J., Williams M., and Virding R.: Concurrent Programming in
Erlang, Prentice-Hall, 1993. ISBN 13-285792-8.

[Bro85] Brownston L., Farell R., Kant E., and Martin A.:Programming Expert Sys-
tems in OPS5, Addison-Wesley, Reading Mass., 1986.

[Cas93] Castellanos M.: ’Semantic Enrichment of Interoperable Databases’,Proc.
RIDE-IMS (Interoperability in Multidatabase Systems) Workshop, Vienna
1993.

[Cho92] Chomicki J. and Litwin W.: ’Declarative Definition of Object-Oriented
Multidatabase Mappings’, in Özsu M.T., Dayal U., Vadduriez P. (eds.):
Distributed Object Management, Morgan Kaufmann Publishers, 1993 (to
appear).

[Day89] Dayal U. and McCarthy D., ’The Architecture of an Active Database Man-
agement System’, inthe Proceedings of ACM SIGMOD, 1989, pp. 215-
224.

[DE92] IEEE Data Engineeringbulletin, Vol. 15, No. 1-4, Dec. 1992.

[Fis89] Fishman D. et al.: ’Overview of the Iris DBMS’,Object-Oriented Con-
cepts, Databases, and Applications, ACM press, Addison-Wesley Publ.
Comp., 1989.

[Han92] Hanson E. N.: ’Rule Condition Testing and Action Execution in Ariel’, in
the Proceedings of ACM SIGMOD, 1992, pp. 49-58.

[Imi92] Imielinski T. and Badrinath B.R.: ’Querying in highly mobile distributed
environments’, inthe Proceedings of VLDB ’92, pp. 41-52.

[Lan82] Landers T. and Rosenberg R.: ’An Overview of Multibase’, in Schneider
H-J. (ed.):Distributed Databases, North-Holland, 1982, pp. 153-184.

[Lit92] Litwin W. and Risch T.: ’Main Memory Oriented Optimization of OO Que-
ries using Typed Datalog with Foreign Predicates’,IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 6, December 1992.

[Lob93] Loborg P., Risch T., Sköld M., and Törne A.: ’Active Object-Oriented Da-
tabases in Control Applications’, inthe Proceedingsof the 19th Euromicro
Conference, Barcelona 1993 (to appear).

[Lu93] Lu H., Ooi B-C., and Goh C-H.: ’Multidatabase Query Optimization: Is-
sues and Solutions’, inthe Proceedings of RIDE-IMS (Interoperability in
Multidatabase Systems) Workshop, Vienna 1993.

243

[Ris89] Risch T.: ’Monitoring Database Objects’, inthe Proceedings of VLDB ’89,
Amsterdam 1989.

[Ris92] Risch T. and Sköld M.: ’Active Rules based on Object-Oriented Queries’,
IEEE Data Engineeringbulletin, Vol. 15, No. 1-4, Dec. 1992, pp. 27-30.

[She90] Sheth, A. and Larson, J.: ’Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases’,ACM Computing
Surveys, Vol. 22, No. 3, September 1990.

[She91] Sheth, A.: ’Semantic Issues in Multidatabase Systems’, Preface in the spe-
cial issue by editor,SIGMOD RECORD, Vol. 20, No. 4, December 1991.

[Shi81] Shipman, D.W.: ’The Functional Data Model and the Data Language DA-
PLEX’, ACM Transactions on Database Systems, Vol. 6, No. 1, March
1981.

[Was89] Washington R. and Hayes-Roth B.: ’Input Data Management in Real-
Time AI Systems’,11th International Joint Conference on Artificial Intel-
ligence, 1989, pp. 250-255.

[Wid90] Widom J. and Finkelstein S.J.: ’Set-oriented production rules in relational
database system’,Proc. ACM SIGMOD,Atlantic City, New Jersey, 1990,
pp. 259-270.

[Wie92] Wiederhold G.: ’Mediators in the Architecture of Future Information Sys-
tems’,IEEE Computer, March 1992.

244 The Papers

15.4 Paper IV

P. Loborg, T. Risch, M. Sköld, and A. Törne: Active Object-Oriented Databases
in Control Applications, in Proceedings of the 19th Euromicro Conference,
Barcelona, September 1993.

245

Active Object-Oriented Databases in Control Applications

Peter Loborg, Tore Risch, Martin Sköld, Anders Törne

Dept. of Computer and Information Science, Linköping University
S-581 83 Linköping, Sweden

E-mail: petlo, torri, marsk, andto@ida.liu.se

Abstract

This paper describes a unified architecture for control applications using an
extended object-oriented database system with queries and rules. We specify
the requirements that control applications demand on the database, and how
they are met by our database system architecture. The database system,
AMOS1, is a main memory database that provides information sharing, power-
ful data access via an object-oriented query language (AMOSQL), data inde-
pendence, and reactive behavior by active rules. The application considered is a
robot and manufacturing instruction system, ARAMIS, which is a task-level
programming system. The presentation describes a specific scenario related to
manufacturing control.

1. INTRODUCTION

Control applications are a significant and important part of the industrial use of
information technology. Control may be described as the means to control or
restrict the behaviour of external world processes, so that a “correct” or
“intended” behaviour is achieved. This might be done by software, specially
designed hardware, human intervention or mechanical devices. We will here
discuss design and architectural issues with regard to control by software.

Typical for the software design problem in control applications are the
requirements originating from timing constraints, some derived from pure con-
trol considerations and others from the external processes themselves. These
requirements put constraints on the software execution times [7][19]. Much
research effort has been put into methods and formalisms for timing analysis to
guarantee the timing requirements of the system - so called hard real-time sys-
tems.

This paper will not focus on this issue, but rather on thedata management
problems which arise when the controlled and controlling systems become
large, composite, and complex, and when the controlling subsystem involves
human operators.

1. This work is partially supported by the Swedish National Board for Industrial and Technical De-
velopment (NUTEK) and by CENIIT, Linköping University.

246 The Papers

Traditionally the understanding of control by software focuses on fully
automatic control at algorithmic level or at a level close to the external process
[23]. At this level the data management problems are small. Usually there is no
problem with sharing data between different applications or use of data, since
data is local and normally not used outside the local algorithm or control loop.
However, as soon as the controlled system becomes larger and more complex,
typical data management and information processing problems arise.

The contemporary most popular approach to handling the design of complex
software systems is object orientation. A common approach when applying this
to control by software is to use object-oriented (OO) modelling and program-
ming to structure the software [1][13]. This structure usually reflects the physi-
cal structure of the controlled system. Although this aspect of the design is
important, the approach ignores the problems with loosely coupled control
processes possibly involving several human operators, e.g., nuclear power
plants or large manufacturing facilities, which have a high degree of autonomy
and parallelism. This extension of the problem domain makes the management
problem of the shared data obvious. The present paper focuses on this problem.

One of the important issues is the separation of shared data and local data
for control. All the different control processes share the same data model. How-
ever, data independence will be achieved by allowing each process to have its
own views on shared data. The shared data model is called aworld model
(WM). These properties are achieved by representing the WM in an OO data-
base system having query and logical data view capabilities.

The use of databases in real-time control systems has recently attained
increasing interest. Some of the relevant issues are discussed in
[7][9][14][16][17].

We are developing a robotics and manufacturing instruction and runtime
system, ARAMIS, for manufacturing applications, and a next generation data-
base architecture, AMOS[4], as a general framework for engineering data-
bases. AMOS has an OO Query Language AMOSQL, which is an extension of
OSQL [5]. AMOSQL has transactions, active rules, and extensibility by foreign
functions. This paper will discuss a unified approach for control applications,
where the world model is represented in an OO database with query and rule
capabilities, like AMOS, with ARAMIS as the control application environ-
ment.

The next section will present a scenario to be used in the later sections. Sec-
tion 3 and 4 will present the ARAMIS world model and the AMOS architec-
ture. Section 5 will discuss the unified database architecture for control
applications and then we conclude with a general discussion.

2. AN EXAMPLE SCENARIO

In following sections a scenario from a manufacturing application will be used
to exemplify the use of active OO databases in control applications.

The task in the scenario is to assemble a subassembly of, for example, an
airplane. The resources available are a manipulator and a fixture to perform the

247

assembly itself. Some of the parts needed in the subassembly arrive via a con-
veyor belt in the order necessary to perform the assembly. These parts originate
from part feeders. Finished subassemblies are placed on a pallet.

The functional requirements on the application is that the assembly should
only start if all needed parts are available to the manipulator during the assem-
bly process. If feeder storage is low, it should be filled, manually or by auto-
matic guided vehicles, from central storage. Some suboperations of the
different processes need preconditions to be fulfilled before starting, e.g., the
PICK-UP operation of the manipulator has as a precondition that the part is
available in the pick-up position and the conveyor belt is secured (locked).

The task can naturally be decomposed into processes - the assembly process
itself involving the manipulator and the fixture, the part transport process for
feeding parts onto the conveyor belt and positioning them for the pick-up oper-
ation, and the central storage fetching process which serves this assembly cell
together with many others.

3. THE ARAMIS WORLD MODEL

The ARAMIS system is an instruction and runtime system for control of manu-
facturing environments. The system has been designed with a layered architec-
ture based on different levels of abstraction [21].

3.1 Description

ARAMIS consists of three different programming levels,the task level, the
control level and the physical level. The task level specifies what operations
should be performed in the physical environment and under what conditions. It
uses a graphical rule-based hybrid language with primitives for creating paral-
lel execution threads dynamically and synchronization of different parallel
threads [12]. The concept corresponding to a task is called aworker, which can
contain parallel threads by using the parallelisation primitives. The task level
program (a set of workers) executes by setting reference values for the objects
in a world model (WM). The WM is shared between the different tasks (work-
ers) executing in the physical environment. Basically this corresponds to a
blackboard model for communication [8], although we emphasize the database
aspects. The model data may be functions or sensor values or they might be
implicitly known by the known postconditions resulting from executed actions.
One of the benefits of the model is that no difference is made between these
forms of knowledge about the world state.

The control level is responsible for keeping the real world in a state repre-
sented by the world model. This level therefore mimics aservo mechanism for
the whole system. The programming at this level is typically done by control
engineers in a traditional language.

The physical level is the actual connection to the real world, where explicit
I/O is performed with sensors and actuators.

One of the important aspects of the world model is that every variable has

248 The Papers

two values, theset value and theget value. Set values have the semantics of
reference values for the servo mechanism and the get values have the semantics
of “known” state parameters - actual values.

3.2 The execution model

Each object in the world model (also called anactive component) is represented
as a deterministic finite automaton (DFA), augmented with control algorithms
to be executed for each state transition and state [11]. Each DFA may be in one
of two states - transiting between states or being held in a state by the control
level. Concurrent transitions between objects are orchestrated by the task level.

The execution model implies that state transitions have a time duration.
During the state transition the value of the changing model values are consid-
ered as unknown, unless explicit reference to a sensing model is made.

The graphical language for describing tasks is, as was indicated above, able
to represent conditional sequencing and possible parallelism of the subactions
in each task (worker).

The tasks (workers) model reactive behaviour.

1. external event

2. possible satisfaction of conditions in the world model

3. triggering the execution of one or several tasks

4. execution of possibly parallel subactions

5. requests for possibly concurrent state transitions in the WM
objects

3.3 The scenario data model

In this paper a data model of the scenario in section 2 will be given as an exam-
ple. It is possible to create the complete corresponding database model and

1

2

3

4

5

Figure 1. The ARAMIS execution cycle

249

worker specifications from this description (if completed).
The manipulator, the conveyor belt, the fixture, the feeders and the pallets

are represented as active components. Furthermore the parts are active compo-
nents because they have state and restrictions on their state transitions. How-
ever, they only have a passive role for the control process as information
carriers in the world model, and are therefore not needed for the following
presentation.

Objecttype Attribute/ Valuetype
Function

Workcell assembles Subassembly

transport_of Transport

manipulator_of Manipulator

feeder_of Feeder

out_pallet_of Pallet

Manipulator state_of {OK, idle,
 busy}

Transport at_pickup_location Part
state_of {locked,

 moving}

Feeder state_of {OK, empty,
needs-refill}

feeds_part Part

Pallet state_of {OK, empty,
 full}

The objects will be instantiated for different configurations of workcells.

3.4 Requirements on the database realization

The ARAMIS model presented briefly above have certain requirements on a
database realization:

• Performance is obviously important, since control actions and reactivity should
be as timely as possible. Database functionality always imposes overhead per-
formance costs, but they should be minimized. Any control action or reactive
action with timing requirements faster than is realizable in the database must be
modelled at the control level, thereby losing the benefits of database management.

• The response time of the database must be predictable, i.e., it is not acceptable
that the same database operation performs significantly different from time to
time. This is not the case if, for example, data access is dependent on whether
sought data are available in a buffer or not, as in the case of disk-based DBMS.

• Object-oriented modelling and access via a query and data definition language is
desirable. This levels the database approach for control applications with OO pro-
gramming approaches. The query language gives declarative data access func-
tionality.

• Extensibility is required to execute actions and to perform sensing.

• Heterogeneous database access is important when control actions are dependent
upon data of traditional character, like in-stock figures or exchange rates.

250 The Papers

• The reactive behaviour requirements in control applications demand active data-
base behaviour.

• Transactions and other error recovery mechanisms must be supported.

4. THE AMOS ARCHITECTURE

The AMOS (Active Mediators Object System) architecture [4] uses themedia-
tor approach [22], which introduces an intermediate level of software between
the database and its use in applications and by users. We call our class of inter-
mediate modulesactive mediators, since they support ’active’ database facili-
ties.

The AMOS architecture is built around amain memory based platform for
intercommunicating object-oriented databases. Each AMOS server has DBMS
facilities, such as a local database, a data dictionary, a query processor, transac-
tion processing, remote access to data sources, etc. Main-memory database
processing is necessary for control applications in order to achieve fast and pre-
dictable response times. In AMOS the disk is used for background back-up pur-
poses only.

4.1 Object-Oriented Queries

A central component of AMOS is an object-oriented (OO) query language
AMOSQL that generalizes OSQL [5]. AMOSQL supports OO abstractions and
declarative queries, which makes it possible to declaratively specify different
object views for different applications.

The system is extensible throughforeign functions written in an external
programming language (usually Lisp or C), e.g., to access sensor data [16], or
to start actuator action.

To support the initial work on AMOS, a main-memory OO DBMS engine is
used [10]. A query optimizer translates AMOSQL queries and methods into
optimized execution plans in an internal logical language, ObjectLog.

4.2 Active rules based on OO queries

AMOS supports ’active rules’ as an extension of OSQL [15]. In an active rule a
procedure is executed when the database reaches a specified state. The rules are
of the type:

 when query(parameters)
do exec procedure(parameters)

The query in the rule condition can be any AMOSQL query and specifies when
the rule should be triggered. The action part can be any AMOSQL database
operation.

These types of rules are more powerful than ordinary database triggers or
‘ECA’ rules [2], since the entire condition for the triggering of a rule is speci-
fied through a declarative query. Rules can be parameterized and overloaded on
different types in the database. The execution of rules is made efficient by

251

using incremental computation of rule conditions and by using efficient optimi-
zation techniques of the involved queries.

4.3 Transactions

AMOS supports atomic transactions so that database updates are rolled back in
case an error occurs. The ’rollback routines’ can be programmed to customized
clean-up, e.g., to restore the external world to the new state after a rollback of
the world model database.

4.4 Heterogeneous database access

A distributed AMOS architecture is being developed where several AMOS
servers communicate, and where queries in a multi-database language are
allowed to refer to other autonomous AMOS servers, relational databases, sen-
sors, and other data sources [4]. A relational database system, SYBASE, is cur-
rently being integrated with AMOS. A particular problem with such an
integration is to get OO access to non-OO data sources. The method allows OO
queries to be stated with transparent access to non-OO data sources. It will be
possible to state queries that combine sensor data with, for instance, conven-
tional databases.

5. A UNIFIED ARCHTECTURE FOR CONTROL APPLICATIONS

5.1 Declarative modelling/access via OSQL

The representation of the WM of ARAMIS in a database provides powerful
data access through the query language. The object-oriented data modelling
language of AMOS, AMOSQL, has the benefits of a traditional OO language
by providing a type system with an inheritance mechanism over subtypes. Fur-
thermore, by accessing the database through object views defined by a query
language, data independence between the database and the rest of the system
can be achieved, since a data access query can be made in the same format,
even after the database structure has changed.

Access to sensors can be implemented as external side-effect free function
calls from AMOSQL [10]. This would allow the application programs and/or
the operator to state arbitrary complex queries over the current state of the
world model - superior to ad hoc navigational database access.

5.2 Active rules in control applications

Active rules in the database can be used for two basic functions in the ARAMIS
architecture.

The starting conditions for ARAMIS processes (workers) can be compiled
to AMOSQL rules. Starting conditions in AMOS are conditions over the WM,
and are thus monitored more efficiently, directly in the database. A starting
condition compiled as an AMOSQL rule awakes the associated process when

252 The Papers

the starting condition becomes true.
The servo mechanism in the ARAMIS architecture can be implemented as

active rules ranging over properties of active components in the WM. The rules
can be defined for specific component instances or for whole component
classes. The servo mechanism can be implemented by an interplay between
ARAMIS actions, AMOSQL rules, and control algorithms.

The rules have conditions that are sensitive to state changes of particular
active components and actions that call algorithms in the control system or
awakes the ARAMIS inference machine.

The servo mechanism will consist of three phases:

• An ARAMIS process changes the state of the WM and is suspended.

• An AMOSQL rule detects the change and calls a control algorithm.

• The control algorithm executes and changes the physical state of the controlled
system to match the state in the WM. Upon completion the rule calls the ARA-
MIS inference machine to awaken the suspended process.

5.3 Heterogeneous database access in control applications

The distributed and heterogeneous database access capabilities provided by
AMOS have the following benefits for ARAMIS:

• Uniform access to heterogeneous data makes it easy to extend the WM with
access to conventional databases. It will be possible to state AMOSQL queries
combining control and conventional data. For example, error messages can refer
to manufacturing data for robot parts, which are accessible from a relational data-
base. Similarly, activity reports can be printed that combine control and relational
data.

• Data distribution will make it possible to have geographically distributed ARA-
MIS systems, each having its own WM views, but also sharing parts of the WM
with other ARAMIS processes.

• By generalizing active rules to be distributed over several databases, one may
coordinate the behavior of several ARAMIS processes so that WM updates of one
process remotely triggers actions in other processes.

5.4 Error detection and recovery

As the ARAMIS system is divided into a task level and a control level, so is the
error handling. Furthermore, the error handling (at each level) can be viewed as
twofold: handling anticipated errors and unanticipated ones. Different tech-
niques may be used to handle each case.

At the control level each request for a state change (a state transition) is
viewed as a transaction. However, using pure transactions as a base for error
recovery at this level is not always possible, since there are irreversible state
transitions and transitions where the inverse transition is composed of several
transitions through some intermediate states. Classifying the transitions as
‘continuable’, ‘undoable’, etc., and augmenting them with extra information is
one possible approach to handle ‘anticipated’ errors [20]. Therefore, the state
transition should be modelled as a collection of coupled transactions, e.g.,

253

SAGAs [6] or activity models [3]. Some of the transitions do not guarantee that
the resulting state is consistent, i.e., there might be transitions that may abort
and report an error, as well as those that fail (but leave everything in a consist-
ent state) and report the failure. The reasons leading to the abortion or failure
of a transition may be internal (programming errors) as well as external - in the
latter case, either detected by the algorithm itself, by operator intervention or
by active rules monitoring the state transition (e.g., prevail condition checks).

At the task level active rules can be used as exception handlers, i.e., to han-
dle more or less anticipated errors. For unanticipated errors a combination of
manual intervention and planning is required.

create function assembles(Workcell) -> Subassembly;

create function feeder_of(Workcell) -> Feeder;

create function out_pallet_of(Workcell) -> Pallet;

create function parts_of_subassembly(Subassembly)
-> bag of Part;

create function state_of(Feeder) -> Charstring;

create function state_of(Pallet) -> Charstring;

create function feeds_part(Feeder) -> Part;

create function ready_parts(Workcell c) -> Part p as

select p for each Feeder f

where p = feeds_part(f) and

f = feeder_of(c) and

state_of(f) != “empty”;

create rule ready_to_go(Workcell c, Worker w) as

when in(parts_of_subassembly(assembles(c)),
ready_parts(c)) and

state_of(out_pallet_of(c)) != “full”
do activate_worker(w); /* procedure that calls

ARAMIS */

Figure 2. A worker initiation condition modelled by an AMOSQL rule

254 The Papers

5.5 The Scenario

The scenario in section 2 can be implemented as a number of AMOSQL func-
tions and rules.

In figure 2 the condition for activation of an assembly worker is monitored
by the ruleready_to_go . The functionparts_of_subassembly returns
the parts of a particular subassembly. The functionready_parts returns all
the parts that are ready to be feed onto to the transporter. The condition in the
rules checks that all the parts needed for the subassembly are present in the
feeders. In figure 3 the condition for the PICK-UP operation is monitored by
the ruleready_to_pickup . The condition in the rule checks that an object
is in the pick-up location on the transporter, that the transporter is locked and
that the manipulator is not busy.

6. DISCUSSION

Our approach has the following advantages vis-a-vis conventional approaches.
The world model may be designed at a very high level using OO abstrac-

tions and declarative queries.
The world model is easy to access using OO queries. Sensor data can easily

be made accessible from within AMOSQL queries.

Figure 3. An operation invocation condition modelled by an AMOSQL rule

create function manipulator_of(Workcell) -> Manipulator;

create function transport_of(Workcell) -> Transport;

create function at_pickup_location(Transport) -> Part;

create function state_of(Transport) -> Charstring;

create function state_of(Manipulator) -> Charstring;

create rule ready_to_pickup(Manipulator m) as

when for each Workcell c, Transport t, Part p where

state_of(m) != “busy” and

m = manipulator_of(c) /* f ind c given m */ and

t = transport_of(c) and

p = at_pickup_location(t) and

state_of(t) = “locked”

do pickup(m, p); /* activates a control algorithm */

255

Incremental modification of the world model is supported by, for example,
adding new functions, rules, data sources, actuators, etc. Much flexibility is
gained.

The transaction management of AMOS can be utilized to guarantee atomic
updates of the world model, even when much data is updated simultaneously
and concurrently. This guarantees world model data consistency after more or
less complex updates.

The main-memory representation of the database, guarantees predictable
and fast response times.

REFERENCES

[1] T. E. Bihari and P. Gopinath: Object-Oriented Real-Time Systems: Concepts
and Examples,IEEE Computer, 25, 12, 25-32, 1992.

[2] U. Dayal and D. McCarthy: The Architecture of an Active Database Manage-
ment System, in the Proceedings ofACM SIGMOD Conference, 1989, pp.
215-224.

[3] U. Dayal, M. Hsu, and R. Ladin: Organizing Long Running Activities with
Trigger and Transactions, in the Proceedings ofACM SIGMOD, May 23-25,
Atlanta City, 1990, pp. 204-214.

[4] G. Fahl, T. Risch, and M. Sköld: AMOS - An Architecture for Active Media-
tors,NGITS’93, Haifa, Israel, 1993 (to be published).

[5] D. Fishman, et. al.: Overview of the Iris DBMS,Object-Oriented Concepts,
Databases, and Applications, ACM press, Addison-Wesley Publ. Comp., 1989.

[6] H. Garcia-Molina and K.Salem: Sagas,Proc. SIGMOD, May 27-29, 1987, San
Francisco, pp. 249-259.

[7] M. H. Graham: Issues in Real-Time Data Management, J. Real-Time Systems,
4, 185-202, 1992.

[8] B. Hayes-Roth: A blackboard architecture for control,Artificial Intelligence,
Vol. 26, pp. 251-321, 1985.

[9] J. Huang: Extending Interoperability into the Real-Time Domain,Research
Issues in Data Engineering: Interoperability in Multidatabase Systems, RIDE-
IMS’93, Vienna, Austria, IEEE Computer Society Press, April 1993.

[10] W. Litwin and T. Risch.: Main Memory Oriented Optimization of OO Queries
Using Typed Datalog with Foreign Predicates,IEEE Transactions on Know-
ledge and Data Engineering, 4, 6, Dec. 1992.

[11] P. Loborg, M. Sköld, A. Törne, and P. Holmbom: A Model for the Execution of
Task Level Specifications for Intelligent and Flexible Manufacturing Systems,
in Proceedings of the Vth Int. Symposium on Artificial Intelligence, ISAI92,
Cancun, Mexico, Dec. 1992.

[12] P. Loborg and A. Törne: A Hybrid Language for the Control of Multimachine
Environments, inProceedings of EIA/AIE-91, Hawaii, June 1991.

[13] O. Z. Maimon and E. L. Fisher: An Object-Based representation Method for a
Manufacturing Cell Controller, Artificial Intelligence in Engineering, 3, 1, 2-

256 The Papers

11, 1988.

[14] K. Ramamritham: Real-Time Databases,Distributed and Parallel Databases,
1, 2, April 1993.

[15] T. Rischand M. Sköld: Active Rules based on Object-Oriented Queries,IEEE
Data Engineering (Quarterly), Jan. 1993.

[16] R. Snodgrass: A Relational Approach to Monitoring Complex Systems,ACM
Transactions on Computer Systems,6,2, May 1988, pp. 157-196.

[17] S. H. Son: Real Time Database Systems: A New Challenge,IEEE Data Engine-
ering, 13, 4, 51-57, 1990.

[18] J. A. Stankovic, and K. Ramamritham:Hard Real-Time Systems, Tutorial,
IEEE, 1988.

[19] J. A. Stankovic: Misconceptions about Real-time Computing,Computer, 21,
10, 10-19, 1988.

[20] U. Schmidt: A Framework for Automated Error Recovery in FMS, in the Pro-
ceedings of2nd International Conference on Automation, Robotics and Com-
puter Vision, Singapore, 1992.

[21] A.Törne: The Instruction and Control of Multi-Machine Environments, in the
Proceedings ofApplications of Artificial Intelligence in Engineering V,
Springer-Verlag, vol. 2, Boston, July 1990.

[22] G. Wiederhold: Mediators in the Architecture of Future Information Systems,
IEEE Computer, March 1992.

[23] K. J. Åström and B. Wittenmark:Computer Controlled Systems, Prentice Hall,
N.J., 1984.

257

258 The Papers

15.5 Paper V

M. Sköld, E. Falkenroth, and T. Risch: Rule Contexts in Active Databases - A
Mechanism for Dynamic Rule Grouping. in the Second International Workshop
on Rules in Database Systems (RIDS’95), Athens, Greece, September 25-27,
1995, Springer Lecture Notes in Computer Science, ISBN 3-540-60365-4,
Pages 119-130, 1995.

259

Rule Contexts in Active Databases
- A Mechanism for Dynamic Rule Grouping

Martin Sköld, Esa Falkenroth, Tore Risch
Department of Computer and Information Science, Linköping University

S-581 83 Linköping, Sweden
e-mail: {marsk,esafa,torri}@ida.liu.se

Abstract. Engineering applications that use Active DBMSs (ADBMSs)
often need to group activities into modes that are shifted during the execution
of different tasks. This paper presents a mechanism for grouping rules into
contexts that can be activated and deactivated dynamically. The ADBMS
monitors only those events that affect rules of activated contexts.
By dynamic rule grouping the set of monitored rules can be changed during
the transactions. In astatic rule grouping the rules are associated with spe-
cific objects during the schema definition.
A rule is always activated into a previously defined context. The same rule
can be activated with different parameters and into several different contexts.
Rules in a context are not enabled for triggering until the context is activated.
However, rules can be directly activated into a previously activated context.
When rule contexts are deactivated all the rules in that context are disabled
from triggering.
The user defined contexts can be checked at any time in a transaction. Rule
contexts can be used as a representation of coupling modes, where the
ADBMS has built-in contexts for immediate, deferred, and detached rule
processing. These built-in coupling modes are always active and are auto-
matically checked by the ADBMS.
Contexts and rules are first-class objects in the ADBMS. Database proce-
dures can be defined that dynamically activate and deactivate contexts and
rules to support dynamically changing behaviours of complex applications.
The context mechanism has been implemented in the AMOS ADBMS. The
paper concludes with an example of a manufacturing control application that
highlights the need for rule contexts.

1 Introduction

A system for building manufacturing control applications was implemented using an
ADBMS [10]. In the system active rules control the manufacturing tasks. Details
about the system and examples of active rules are presented in section4. Results
from this system integration are:

• These type of engineering applications need to group activities into modes that
are shifting during the execution of different tasks.

• Since the ADBMS did not initially have mechanisms for handling mode changes
the application had to implement this functionality by introducing state variables
in the rule conditions.

260 The Papers

• The state variables caused the rules to become complex and unintuitive. A rule
would often need to refer to several different state variables.

• The state variables represent control knowledge. It is better to separate rules rep-
resenting domain knowledge from rules for control knowledge, e.g. by defining
meta-rules [1][2].

• Implementing mode changes by altering state variables is inefficient since the
total number of simultaneously monitored rules will be unnecessarily large. By
having the ADBMS support mode changes internally the overhead for rule check-
ing can be kept low.

This paper presents an ADBMS mechanism for dynamically grouping rules intocon-
texts that are activated and deactivated dynamically. The contexts are associated with
different modes in the applications. When the application shifts between modes, the
ADBMS is ordered to shift attention, orfocus, to the associated rule context. Shifting
between contexts means that all rules in the old context are ignored and the rules in
the new context are monitored instead. There are applications that need to work with
modes on different levels where a mode can consist of many hierarchically ordered
sub-modes. This means that the ADBMS must be able to handle several rule contexts
simultaneously and to support modelling of contexts in the schema. By defining con-
texts and rules as first-class objects in the ADBMS this is accomplished. This
approach also supports the definition ofmeta-rules that are defined over rules and
contexts.

Applications must not only have the possibility to create and delete contexts and
activate and deactivate them, but must also be able to control when the rules are to be
checked. For example, the application might initiate a series of operations and then
check if any rules were triggered. This usually falls outside of the general coupling
modes defined in ADBMSs. Our contexts therefore haverule processing points,
which allow applications to define their own coupling modes where the rules can be
checked at a user-specified time in a transaction.

The contexts are also used internally in the ADBMS to implement system cou-
pling modes. System coupling modes are associatedwith predefined contexts that are
automatically checked by the system.

The paper presents rules and rule contexts as implemented in the AMOS (Active
Mediating Object System)[5][13] ADBMS. The paper concludes with an example of
a manufacturing control application that highlights the need for rule contexts.

2 Related Work

The idea of grouping rules dynamically into different contexts was initially devel-
oped in expert systems [1][17]. Other names for these groups of rules includeworlds
andviewpoints. In expert systems these rule contexts are usually used for organizing
differenthypotheses during a deduction process. In an ADBMS the issue is more of
organizing the differentactivities.

The contexts were also supported in the rule-based expert system Mycin and its
successor Oncosin [1]. In Mycin contexts had to be specified as special context varia-

261

bles in rule conditions; in Oncosin a special CONTEXT clause on each rule referred
to the context variables. By contrast our contexts completely separate the context
specifications (i.e. the control information) from the rules (i.e. the knowledge) and
therefore the same rule can occur in many contexts with different control strategies.

The rules in an ADBMS are often defined as first-class objects in the database
schemas [3]. In Object-Oriented (OO) systems the rules can often be grouped as
belonging to a class and rules can be associated with other classes in a similar way to
class methods. KEE [8] used this model for grouping rules intoworlds. This classifi-
cation is useful when associating rules with specific objects statically, e.g. when asso-
ciating some constraint on the possible values of a class attribute or reacting to a
user-defined event associated with an object. These kinds of rules are usually always
active and are triggered when a method is invoked of an instance of the class. How-
ever, in many applications there is a need to dynamically group rules that are associ-
ated with many different classes of objects.

Both POSTGRES[15] and Starburst[18] allow rules to be members ofrule sets,
which can be ordered hierarchically and where complete rule sets can be activated
and deactivated. Rule sets are checked at certainrule processing points. The contexts
in AMOS are more dynamic since the same rule can be activated in different contexts
for different parameters, i.e. for different object instances. The contexts are objects
and thus can be stored in any data structure and can be used for relating different data
to different contexts. In AMOS contexts are also used for defining built-in coupling
modes for rule execution. This means that these contexts have rule processing points
that are automatically executed by the system. Since the same rule can be activated
into different contexts the same rule can also be given many coupling modes.

In [16] a model is presented for defining applications in terms ofbrokers that rep-
resent reactive system components androles that specify the responsibilities of bro-
kers in various situational and organizational contexts. A proposal was made to
implement rules using rules and special role-dependent state variables. As was men-
tioned earlier, we believe this kind of modelling is better supported by rule contexts
in the ADBMS.

We define rule contexts as first-class objects to enable functions to be parameter-
ized with contexts, organizing them hierarchically in data structures, and defining
rules that manage (create/delete, activate/deactivate) other contexts than their own.
This makes it possible to definemeta-rules as in [1][2] where the meta data consists
of other rules and contexts.

3 Rules and Contexts in the AMOS Active DBMS

Active rules have been introduced into AMOS[5][13], an Object Relational DBMS.
The data model of AMOS is based on the functional data model of Daplex[14] and
Iris[6]. AMOSQL, the query language of AMOS, is a derivative of OSQL[11]. The
data model of AMOS is based on objects, types, functions, and rules. Everything in
the data model is an object, including types, functions, and rules [3]. All objects are
classified as belonging to one or several types, i.e. classes. Functions can be stored,
derived, or foreign. Stored functions correspond to object attributes in an OO system
and to base tables in a relational system, derived functions correspond to methods

262 The Papers

and relational views, and foreign functions are functions written in some procedural
language1. Database procedures are defined as functions that have side-effects.
AMOSQL extends OSQL[11] with active rules, a richer type system, and multidata-
base functionality.

3.1 Contexts

When rules are activated in AMOS, they are always associated with rule contexts.
The contexts are first-class objects and are created by the statement:

create context context-name

where the context-name is a global name. Contexts are deleted by:

delete context context-name

The contexts are initially inactive which means that before a context is activated the
events affecting its rules are not monitored (unless the events are monitored by
another already active context). Contexts are activated by:

activate context context-name

which enables all the activated rules in the context to be monitored. Contexts are
deactivated by:

deactivate context context-name

which disables all the activated rules in the context from being monitored. Two built-
in contexts, named deferred and detached, are predefined and always active
for deferred and detached rules, respectively. These are checked automatically by the
system. Deferred rules are checked immediately before transaction-commit and
detached immediately after.

3.2 Rules

AMOSQL supports Condition Action (CA) rules. The condition is defined as an
AMOSQL query and the action as an AMOSQL procedural expression.
The syntax for rules is as follows:

create rule rule-name parameter-specification as
when for-each-clause | predicate-expression
do procedure-expression

where
for-each-clause ::=

for each variable-declaration-commalist where predicate-expression

The predicate-expression can contain any boolean expression, including conjunction,
disjunction, and negation. The rules are deleted by:

delete rule rule-name

1. In AMOS foreign functions can be written in Lisp or C.

263

The rules are activated and deactivated separately for different parameters. Rules are
activated in different contexts, where the default context is thedeferred con-
text:

activate rule rule-name parameter-list [strict] [priority 0|1|2|3|4|5] [into con-
text-name]

deactivate rule rule-name parameter-list [from context-name]

The semantics of a rule in an active context is as follows: If an event in the database
changes the truth value for some instance of the condition totrue, the rule is marked
as triggered for that instance. If something happens later in the transaction which
causes the condition to become false again, the rule is no longer triggered. This
ensures that we only react to net changes, i.e.logical events. A non-empty result of
the query of the condition is regarded astrue and an empty result is regarded asfalse.
Since events are not monitored in inactive contexts, rules in them will not trigger
until the context is activated and some event happens that causes the condition to
become true.Strict rule processing semantics guarantees that a rule is triggered only
once for each change that causes its condition to become true. Rule priorities can be
used for defining conflict resolution between rules that are triggered simultaneously
in the same context.

3.3 Rule Contexts and Rule Processing Points

Each context in AMOS has a separaterule processing point where the conditions of
the rules in the context are checked and where the corresponding actions are executed
if the condition is true. (For strict semantics the action is executed only if the condi-
tion was false in the previous processing point of the context).

A processing point is eitherexplicit or implicit. Explicit processing points are
issued by explicit calls from applications to acheck system procedure. Implicit
processing points are issued by the ADBMS at specific database states, e.g. just
before (deferred rule processing) and after (detached rule processing) each commit
point.

Rule contexts can be used as a representation of coupling modes [4]. The cou-
pling modes are defined as named contexts with implicit processing points. All rules
that are activated in the same context also have the same coupling mode, i.e. the same
rule processing point. Traditionally coupling modes have been associated directly
with individual rules. By associating the coupling modes with rule contexts a more
flexible model can be achieved. Since rules can be activated into several contexts
they can also be given several coupling modes. Coupling modes forimmediate,
deferred, anddetached rule processing can be defined as built-in contexts that are
automatically checked by the transaction mechanism of the ADBMS (fig. 1). In [4] a
separation was made between E-C and C-A coupling modes. When we refer to
immediate coupling mode here, we really mean immediate-immediate, and by
deferred we mean deferred-deferred. Contexts for other E-C and C-A combinations
could also be defined. Immediate rule checking is currently not supported in AMOS,
but its processing points would have to be just after (or before) triggering database
operations. User defined contexts with explicit processing points can be checked at
any time within a transaction. The detached coupling mode is important in a multida-

264 The Papers

tabase architecture like AMOS. In such an architecture one agent or broker may need
to monitor the behaviour of another agent [12]. This monitoring must be made on
committed data. By using a detached coupling mode the rules that perform the moni-
toring will never trigger on uncommitted changes.

Decoupled and causally dependent decoupled coupling modes [4] can be imple-
mented using general transaction mechanisms for creating sub-transactions and syn-
chronizing transactions.

4 A Manufacturing Control System

The need for a context mechanism became apparent when an ADBMS was used in
the implementation of a system for building manufacturing control applications [10].
ARAMIS (A Robot And Manufacturing Instruction System) [9] is a high-level lan-
guage and a set of tools for designing intelligent behaviour of control systems. The
ARAMIS language has similarities with workflow languages [7], but is oriented
towards specifying the high-level activities of control applications. The low-level
control programs that interact with the physical hardware are isolated from the appli-
cation programmer by the World Model (WM) metaphor. All the objects in the
model of the manufacturing task can be observed and manipulated as objects in the
WM. The original ARAMIS system [9] was fully implemented (controlling a robot
with various sensors), but with a primitive ADBMS. In [10] a three-level architecture
combining the ARAMIS language and an ADBMS is presented. In CAMOS (Control
Applications Mediating Object System), see fig. 2, a manufacturing task is expressed
in a high-level task language that is partly compiled into an AMOS database that

deferred detached

immediately triggering
check(:context1); commit;DBMS event

immediate user-defined context

transaction
committed

Fig. 1. Contexts as a representation of coupling modes

265

stores the WM and monitors changes to the objects in the WM.

The WM is synchronized with a physical world or a simulator by cooperation
between a control system and an ADBMS through a servo mechanism. When the task
level updates the WM, the control level affects the physical world to correspond to
the WM. Likewise, when the control level senses changes in the physical world, it
updates the WM. In the CAMOS architecture the high-level query language and
active rules of AMOS are used to support much of the functionality in the WM, e.g.
to monitor changes to the WM. Parts of this architecture have been implemented to
verify the ideas. Instead of using actual hardware, a simulator of a production cell
was used1. In the initial implementation state variables were used to model mode
changes. Below follows an example of how rule contexts in AMOS can be used
instead.

4.1 A Production Cell Simulation

A production cell consisting of a two-armed robot, an elevating rotary table, a press,

1. Based on a simulator developed by Artur Brauer at University of Karlsruhe.

Task Level

Control Level

World Model Level
WM-Objects, Queries, Rules, and
Contexts in an Active DBMS
(AMOS)

Fig. 2. The three-level architecture of CAMOS

Physical World/ Simulator

(The ARAMIS language)
for manufacturing tasks
Specification Language

(Real Time Control System)
in some concurrent real-time language
Real Time Control Algorithms

DBMS operations
(context and rule operations)

calls to external procedures

acknowledgements
results,
callbacks

external events
DBMS updates

controlling affectuators reading sensors(affectuating) (sensing)

266 The Papers

a crane, and two conveyor-belts produces body parts for cars (fig. 3). Unprocessed
parts arrive from the left on the lower conveyor-belt and are transported to the elevat-
ing rotarytable that puts them into gripping position for the first arm (:arm1) of the
robot. The robot moves a part to the press that presses it into a finished body part.
The robot then moves the part, using the second arm (:arm2), to the top conveyor-
belt that moves to the left. A crane finally picks up the parts and place them on a pal-
let (lower left of fig. 3).

This is an application that requires a database for storage of data relating to the
different parts in stock and also active database management for the actual control of
the production task. Another requirement is that the setup should be flexible and the
production cell should easily be reconfigured for production of different parts.

Take a scenario where the production cell can alternate between the production of
two different parts. This can be modelled by two different contexts (fig. 4). Each con-
text is used to relate to data needed for each part. Rules that are specific for each dif-
ferent part are activated into the respective contexts. Sub-contexts can also be defined
for different activities within the cell. This is illustrated here by two contexts used in
both production tasks, one for rules relating to the elevating rotary table and one for
the press. There will of course be more contexts and rules, but these are enough to
illustrate the idea.

Fig. 3. A top-view of a simulated production cell for manufacturing car
body parts

267

An example of a task program for producing part1 is shown in fig. 5. It is a cyclic
program that keeps producing parts until it is stopped explicitly.

Below follows part of an example schema in AMOSQL that illustrates the example
above. The two main contexts are first defined followed by a context for the elevating
rotary table. A rule that defines when the robot can grip a part on the table is activated
into the context for the first arm of the robot (:arm1). A context for the press is then
created along with a rule that specifies when it is safe to operate the press. The first
rule is also activated into this context, but for the second arm of the robot (:arm2)
instead. It specifies when the robot can grip an object in the press. Here follow
extracts of the context related parts of the schema for this application:

body_part1_context

press_context

body_part2_context

e_r_table_context

press_context

Fig. 4. Example contexts for producing two different parts and two general sub-
contexts

e_r_table_context

initiate feed pick1

presspick2store

body_part1_context
e_r_table_context

press_context

Fig. 5. An example of a task program for producing part1

268 The Papers

create context body_part1_context;
/* Definitions of rules related to part1 */
...
create context body_part2_context;
/* Definitions of rules related to part2 */
...
create context e_r_table_context;
create rule grip_rule(robot_arm a) as

when for each part prt
where above(position(a), prt)
do robot_grip(a, prt);

activate rule grip_rule(:arm1) into e_r_table_context;

create context press_context;
create rule press_rule(robot r, press p) as

when for each robot_arm a
where a = arm(r) and

outside(position(a), p) and
part_in_press_position(p)

do close_press(p);
activate rule press_rule(:robot, :press) into

press_context;
activate rule grip_rule(:arm2) into press_context;

During the execution the task program for producing part1 the order of database
operations initiated from the task level might be:

activate context body_part1_context;
...

check(:body_part1_context);
...
activate context e_r_table_context;
...
check(:e_r_table_context);
...
deactivate context e_r_table_context;
....
activate context press_context;
...
check(:press_context);
...
deactivate context press_context;

269

5 Conclusions and Future Work

The paper presented rule contexts as a mechanism for dynamically grouping rules.
Rules are activated into contexts and are deactivated from contexts. When a context
is activated it enables all its rules for monitoring. In deactivated contexts all the rules
are disabled from being monitored. Events are only monitored if they are referenced
from some rule in an active context.

Contexts are used to represent coupling modes where all rules in the same context
also share the same coupling mode. Predefined contexts are defined for the usual sys-
tem coupling modes.

Contexts are first-class objects, which makes it possible to store them in any data
structure and to define meta-rules that activate and deactivate them.

Future work includes investigating the need for several contexts belonging to the
same coupling mode. This will cause a need for ordering the execution order of dif-
ferent contexts. Using priorities is one way of doing this, but since the conflict resolu-
tion between different rules inside the same context is also done with priorities this
might lead to an unnecessary complicated model.

The issue of event consumption is also important. If checking of one context con-
sumes events then rules in consecutively checked contexts might not trigger the way
they were intended.

Defining meta-rules that manage other contexts is another subject for future
research.

6 References

[1] Buchanan B. G. and Shortliffe E. H.: Rule-based Expert Systems,The Mycin Experi-
ments of the Stanford Heuristic Programming Project, Addison-Wesley, 1984.

[2] Davis R.: Meta-rules: Reasoning about Control,AI, vol. 15, 1980, pp. 179-222.

[3] Dayal U., Buchman A.P., and McCarthy D.R.: Rules are objects too: A Knowledge
Model for an Active, Object-Oriented Database System, inProceedings of the 2nd Inter-
national. Workshop on Object-Oriented Database Systems, Lecture Notes in Computer
Science 334, Springer-Verlag 1988.

[4] Dayal U. and McCarthy D.: The Architecture of an Active Database Management Sys-
tem, inProceedings of the ACM SIGMOD Conference, 1989, pp. 215-224.

[5] Fahl G., Risch T., and Sköld M.: AMOS - An Architecture for Active Mediators,Inter-
national. Workshop on Next Generation Information Technologies and Systems
(NGITS’93) Haifa, Israel, June 1993, pp. 47-53.

[6] Fishman D. et. al.: Overview of the Iris DBMS,Object-Oriented Concepts, Databases,
and Applications, ACM press, Addison-Wesley Publ. Comp., 1989.

[7] Georgakopoulos D., Hornick M., and Sheth A.: An Overview of Workflow Manage-
ment: From Process Modelling to Workflow Automation Infrastructure,Distributed and
Parallel Databases, 3, 2, April 1995, pp. 119-153.

[8] Hedberg S. and Steizner M.: Knowledge Engineering Environment (KEE) System:
Summary of Release 3.1, Intellicorp Inc. July 1987.

[9] Loborg P., Holmbom P., Sköld M., and Törne A.: A Model for the Execution of Task-
Level Specifications for Intelligent and Flexible Manufacturing Systems,Integrated
Computer-Aided Engineering 1(3) pp. 185-194, John Wiley & Sons, Inc., 1994.

270 The Papers

[10] Loborg P., Risch T., Sköld M., and Törne A., Active Object Oriented Databases in Con-
trol Applications,19th Euromicro Conference of Microprocessing and Microprogram-
ming, vol. 38, 1-5, pp. 255-264, Barcelona, Spain 1993.

[11] Lyngbaek P.: OSQL: A Language for Object Databases, tech. rep. HPL-DTD-91-4,
Hewlett-Packard Company, Jan. 1991.

[12] Risch T.: Monitoring Database Objects,Proc. VLDB conf.Amsterdam 1989.

[13] Risch T. and Sköld M.: Active Rules based on Object Oriented Queries,IEEE Data Eng-
ineering bulletin, Vol. 15, No. 1-4, Dec. 1992, pp. 27-30.

[14] Shipman D. W.: The Functional Data Model and the Data Language DAPLEX,ACM
Transactions on Database Systems, 6(1), March 1981.

[15] Stonebraker M., Hearst M., and Potamianos S.: A Commentary on the POSTGRES
Rules System,SIGMOD RECORD, vol. 18, no. 13, Sept. 1989.

[16] Tombros D., Geppert A., and Dittrich K. R.: SEAMAN: Implementing Process-Cen-
tered Software Development Environments on Top of an Active Database Management
System,Technical Report 95.03, Comp. Science Dept., University of Zürich, Jan. 1995.

[17] Walters J.R. and Nielsen N.R.,Crafting Knowledge-based Systems - Expert Systems
Made Easy/ Realistic, John Wiley & Sons, 1988, pp. 253-284.

[18] Widom J.: The Starburst Rule System: Language Design, Implementation, and Applica-
tions, IEEE Data Engineering, vol. 15, no. 1 - 4, Dec. 1992.

271

15.6 Paper VI

M. Sköld and T. Risch: Using Partial Differencing for Efficient Monitoring of
Deferred Complex Rule Conditions, presented at the 12th International Confer-
ence on Data Engineering (ICDE’96), New Orleans, Louisiana, February 1996.

This paper is incorporated into chapter 6.

272 The Papers

15.7 Paper VII

L. Lin, T. Risch, M. Sköld, and D. Badal: Indexing Values of Time Sequences,
presented at the Fifth International Conference on Information and Knowledge
Management (CIKM’96), Rockville, Maryland, USA, November 12-16, 1996.

273

274 The Papers

Indexing Values of Time Sequences

Ling Lin * , Tore Risch* , Martin Sköld * , Dushan Badal✝

*Department of Computer Science

Linköping University, Sweden

{linli, torri, marsk}@ida.liu.se

✝Department of Computer Science

University of Colorado at Colorado Springs, USA

badal@sunshine.uccs.edu

Abstract

A time sequence is a discrete sequence of values, e.g. temperature measurements,
varying over time. Conventional indexes for time sequences are built on the time
domain and cannot deal withinverse queries on a time sequence (i.e. computing the
times when the values satisfy some conditions). To process an inverse query the
entire time sequence has to be scanned. This paper presents a dynamic indexing tech-
nique on the value domain for large time sequences which can be implemented using
regular ordered indexing techniques (e.g. B-trees). Our index (termedIP-index) dra-
matically improves the query processing time of inverse queries compared to linear
scanning. For periodic time sequences that have a limited range and precision on
their value domain (most time sequences have this property), the IP-index has an
upper bound for insertion time and search time.

1 Intr oduction

In many real-time and temporal database applications the state of a data objecto, var-
ies over discrete time points, forming atime sequence (TS). A time sequence can be
viewed as a state sequenceSi with Si=(ti, vi), wherevi is the value of the data object at
time ti.

There are three basic characteristics of such time sequences:

1. Time sequences areordered, i.e. �����∀ i, j: i > j → ti > tj.

2. Each value vi is functionally dependent on the timeti, but the inverse does not
hold.

3. The valuevi can be 1-dimensional (e.g. for temperatures or voltages), 2-dimen-
sional (e.g. for positions in a plane), or of higher dimensionality. In this paper we
will concentrate on 1-dimensional data. The ideas presented can be extended
to multi-dimensional data as well.

275

Two basic classes of queries on time sequences can be identified:

1. Forward queries, e.g.

• What was the value at time pointt’?

• What was the value range in the time interval [t’, t’’]?

2. Inverse queries, e.g.

• At what time point(s) t was the value equal tov’?

• In what time interval(s) [t’, t’’] was the value larger (smaller) thanv’?

Complex queries can be composed by combining these basic queries.

Fig. 1.1: Illustration of inverse queries

For example, if the data in Fig.1.1 represents a patient’s temperature reading over a
time period, a forward query could be “What was the patient’s temperature at 11:00
yesterday?”, and an inverse query could be “At what time period did the patient have
a temperature higher than 38°C?”. Note that the result of the inverse query is a
sequence of time intervals.

Forward queries can be supported by B+-trees[EWK93], AP-trees[GS93], I-
trees[TMJ94], or by computational methods[F96]. Inverse queries, however, are dif-
ficult to support since there can be more than one time point (time interval) where the
value is equal to (larger than, smaller than)v’. This paper provides an indexing
method to efficiently answer inverse queries onTSs. The index supports efficient
insertions of new states at the end ofTSs.

The intuition behind our index is illustrated in Fig.1.1. The TS is viewed continu-
ously as a sequence of segmentsSgi=[Si, Si+1]. The time points when the value is

equal tov’ in Fig.1.1 are <t’ , t’’ , t’’’>. These time points can be computed (by inter-
polation) if we get all the segmentsSgi that intersect the linev=v’ (i.e., the segments

Sg1, Sg6, Sg10 in Fig.1.1). We propose an index method that retrieves all the inter-
secting segments for a valuev’. This index performs especially well for periodicTSs
with a limited range and precision on the value domain. We have measured its per-
formance in a main-memory database.

t

v

v’

t’ t’’ t’’’

Sg1
Sg6 Sg10

S1

S6

S10

276 The Papers

2 Related Work

Much research has been done on time sequences. Most of it deals with similarity
matches [AFS93][LYC96][SZ96], i.e., finding all similar time sequences (or sub-
sequences) that match a given pattern within some error distance. Indexes
[ALSS95][APWZ95] and query languages [APWZ95] have been developed to
achieve this goal.

Several indexing methods have been proposed for temporal relations
[EWK93][GS93][SOL94][TCGJSS93]. Most of them are intended to support opera-
tions like temporal join, temporal selection, etc., and they mostly assume interval
time stamps rather than time points.

By contrast our goal is to develop an indexing technique to support inverse queries
on TSs. This index can be seen as an index on the value domain rather than on the
time domain. To the best of our knowledge no work has been done in this area.

Our idea is to transform the problem of inverse queries into k-dimensional spatial
search problems, i.e. finding all intervals intersecting a given line. There have been
several indexing methods proposed for k-dimensional spatial search, e.g. k-d trees
[OMS87], R-trees [G84] and SR-Tree [KS91]. Some index trees have also been pro-
posed in computational geometry to deal with interval problems, e.g., Interval Trees
[E79], and Segment Trees [B72]. However, none of the above methods are suitable
for inverse queries onTSs. The reasons are: 1)TSs consist of large sets of intervals
[Si, Si+1] which are dynamically growing, while most spatial data structures assume a
fixed search space. 2) The intervals inTSs have a special property that the end point
of Sgi is the starting point ofSgi+1 (i.e. Si+1). We will show that this property makes
our index algorithm much more simple compared to R-trees. Our index method can
be built upon a regular ordered one-dimensional index such as B-trees, while R-trees
require a complicated algorithm for handling boundary conditions between regions.

Related work can be found in [EWK93] where temporal operations are viewed as

interval intersection problems and where B+-trees are used to index interval time
stamps. Another related study [KS95] views temporal aggregation problems as an
interval overlapping problem and then uses the Segment Tree [B72] to build an index
for computing temporal aggregates.

[SS93] proposes a temporal data model forTSs. It defines fourtypes of TSs according
to what interpolation assumptions are applied, a) Step-wise constant (all values
between [Si, Si+1] are assumed to be equal tovi), b) Continuous (a curve-fitting func-
tion is applied between [Si, Sj]), c) Discrete (missing values cannot be interpolated)
d) User-defined (a user-defined interpolation function is applied). Our index can be
used to answer inverse queries covering all the above cases.

3 The IP-index

We start with the simplest inverse queries onTSs, i.e. “At what time point was the
value equal tov?”, denoted as

F-1(v).

277

A naive way of answering inverse queries is to do curve fitting on theTS to generate

the functionv=F(t), and then solve the equationt=F -1(v). This method is not practi-
cal when theTSs are long and dynamically growing.

Fig. 3.1: An exampleTS and an inverse query

Fig. 3.2: Illustration of the IP-index

We propose a better solution. Each stateSi in theTS is viewed as points in the two-

dimensional planet-v as shown in Fig.3.1. Then each consecutive statesSi, Si+1

constitute a line segmentSgi. Then, if we can find all segmentsSgi that intersect the

line v=v’, we can answer inverse queries. For example, in Fig.3.1, the segments
which intersect the linev=v’ are <Sg2, Sg3>. The answer of the inverse query

F-1(v’) will then be:

• If the “step-wise” constant or “discrete” assumption is applied, thenF-1(v’)=nil ,
since there is no value defined betweenS2, S3 andS3, S4 respectively.

t

v

Sg1

Sg3
Sg2

S1

S2

S3

S4

t’ t’’

v’

t

v

Sg1

Sg3
Sg2

k1

k2

k3

k4

S1

S2

S3

S4

<Sg1, Sg2>

<Sg2>

<Sg2, Sg3>

278 The Papers

• If the “continuous” or “user-defined” assumption is applied, thenF-1(v’)=<t’, t’’ >,
wheret’ andt’’ arecalculated by applying some interpolation function (e.g. linear
interpolation, least square, etc.) on the states around the segmentsSg2 andSg3
respectively.

So, the problem of inverse queries is transformed into the problem of finding all the
intersecting segments for the linev=v’. A naive way to solve the problem is to scan
the entireTS to check if any two consecutive statesSi, Si+1 “contain” v’, i.e. if vi

<v’<vi+1, or vi+1 <v’<vi. Such an algorithm, however, has the complexity ofΘ(N),

whereN is the size of theTS.Below we propose an indexing technique to perform
inverse queries more efficiently.

3.1 The IP-index Definition

If we project each line segmentSgi on thev-axis, we get non-overlapping intervals

I j=[kj, kj+1), where eachkj is adistinct value ofvi (seek1...k4 in Fig.3.2). We can see
that all values that belong to one interval have the same sequence of intersecting seg-
ments (marked to the left in Fig.3.2). Our index associates with each interval [kj,

kj+1) all segmentsSgi that span1 it. It is termed theIP-index. A simple illustration of

the IP-index is shown in Fig.3.2, where we associate each interval [kj, kj+1) with the
sequence of spanning segmentsSgi.

Since the segments are consecutive, each segmentSgi is uniquely identified by its
starting stateSi. We useSi to represent the segmentSgi in the IP-index. We term the
starting states of each segments that intersect the linev=v’ as theanchor-states of v’.
Then, the sequence of intersecting segments can be represented as the sequence of
anchor-states, which is termed theanchor-state sequence. The anchor-state sequence
is a state sequence ordered by time.

Since each interval [kj, kj+1) is uniquely identified by its starting pointkj, we usekj to
represent the interval [kj, kj+1) in the IP-index.

Suppose thatk1<k2<...<kj<... are the ordered distinct values ofvi in the TS. Then
each index entryNi in the IP-index has the form [key, anchors] where

• Ni.key=kj.

• Ni.anchorsis the anchor-state sequence for allv’ such thatv’≥kj andv’<kj+1. It is
also denoted asanchors(kj).

For example, the IP-index for the simpleTS in Fig.3.2 is:

anchors(k1)=<S1, S2>

1. We say a segmentSgi spans an intervalI i when the projection ofSgi on the
v-axis spans the intervalI i, i.e. if Sgi=((ts, vs), (te, ve)) andI i =(va, vb), then

vs≤va andve≥vb.

279

anchors(k2)=<S2>
anchors(k3)=<S2, S3>
anchors(k4)=nil

We should point out that if the interpolation method introduces new extreme points
(and thus introduces extra segments) to the original time sequence, the IP-index
needs to be modified to include the extra segments as well.

3.2 The IP-index Insertion Algorithm

As we mentioned in the introduction, the IP-index supports efficient insertion of new
states at the end ofTSs. Each new state forms a new segment, and this section shows
how to efficiently insert a new segmentSgi into the IP-index.

Suppose that in Fig.3.2 we have inserted statesS1, S2 andS3, and then we want to
insert a new stateS4. This means that we already have three index entries in the IP-
index with keys v1 (=k2), v2 (=k1), v3 (=k4) respectively, and we also have
anchors(k1)=<S1, S2>, anchors(k2)=<S2>, anchors(k4)=nil. To insert the stateS4=(t4,

v4) we need to do the following:

1. The new stateS4 creates a new index entry with the keyv4 (=k3), which divides the

existing interval [k2, k4) into two intervals, [k2, k3) and [k3, k4) (see Fig.3.2).

The segments that span the new interval [k2, k3) are the same as the segments that
spanned the old interval [k2, k4) (which are already present in the IP-index), i.e.,
anchors(k2)=<S2> stays unchanged.

The segments that span the new interval [k3, k4) are the segments that spanned the
old interval [k2, k4) plus the new segmentSg3, i.e.,

anchors(k3)= anchors(k2)+1S3 = <S2>+S3 = <S2, S3>.

2. For all the entries in the IP-index with keys inside the interval [k3, k4) (in Fig.3.2
there happens to be no such key), appendS3 to the end of their associated anchor-
state sequences. This is becauseSg3 spans all the sub-intervals inside the interval
[k3, k4).

The result of the insertion conforms with Fig.3.2.

So, the insertion of a new stateSi=(ti, vi) (i=4 in the above example) into the IP-index
has the following steps:

1. If vi is an existing key in the IP-index, then go to step 4.

2. Search the index entriesNi in the IP-index to find the index entryNL where
NL.key= max{(Ni.key) | ((Ni.key) ≤vi)}.

1. We use ‘+’ to denote adding a new element to the end of a sequence.

280 The Papers

This step finds the existing interval (in the example of Fig.3.2 we haveNL.key=k2

thus the interval is[k2, k4)) which the new key (v4 in the example) lies within.

3. Insert a new index entry withkey=vi andanchors

=NL.anchors.

4. For all index entriesNj whereNj.key lies inside the interval [min(vi-1, vi), max(vi-1,
vi)), append the starting state (Si-1) of the new segment toNj.anchors.

3.3 Implementation

Note that the above insertion algorithm is about how to associate the intersecting seg-
ments with each inserted valuevi. It does not assume any specific implementation.
Actually the IP-index can be implemented by any ordered indexing technique, e.g.,
B-Trees, AVL-Trees[AL62] or 2-3 Trees[C79], and the anchor-state sequence can be
implemented as a sequential data structure (list or array) which supports fast append-
ing.

Fig. 3.3: The AVL-tree implementation of the IP-index in Fig.3.2

To verify our ideas we implemented the IP-index in a main-memory database
[FRS93]. The time sequence was stored in an arrayts, where ts[i]=(ti, vi). We used an
AVL-tree as indexing data structure since it has small re-balancing time. (Notice that
the keysvi do not arrive in order, which means that the tree needs to be re-balanced
during insertion.) Eachindex entry in the above algorithm corresponds to anode in
the AVL-tree. The anchor-state sequence was implemented as a dynamic array of
integers, where each integer is an index of the arrayts.

Fig. 3.3 illustrates the AVL-tree implementation of the IP-index in Fig.3.2.

Before we give the insertion algorithm for the AVL-tree implementation of the IP-
index, we explain the notation and functions that will be used in the algorithm:

k2

k1 k3

k4

<S2>

<S1, S2>

<S2, S3>

nil

(t1, v1) (t2, v2) (t4, v4)(t3, v3)
S1 S2 S3 S4 The array ts

1 2 3 4 The index of ts

The AVL-tree

281

• tree -- the AVL-tree implementing the IP-index.

• ts -- the array storing the time sequence

• Si=(ti, vi) is the arriving state (to be inserted into the IP-index).

• insert_ts(ts, i, Si) -- inserts the stateSi into arrayts where ts[i]=(ti, vi).

• insert_node(tree, vi, anc) -- inserts into the AVL-tree a new node with key=vi,
anchors=anc.

• get_lower(tree, vi): searches the AVL-tree to find the nodeNL where

NL.key= max{ Nj.key | Nj.key ≤ vi, 1≤j≤size(tree)}

This function is used to find the existing interval which needsto be split into
two parts; e.g. in Fig.3.2,get_lower(tree, v4).key=k2. The function returnsnil if
no node is found.

• exist_key(tree, vi): returnstrue if there already exists a node in the IP-index whose
key is equal tovi.

The code for the IP-index implementation using an AVL-tree is as follows:

Insert_ip(tree,ts,ti,vi):

Si=<ti,vi>

insert_ts(ts,i,Si)

/* insert the state into the arraywhich stores the time sequence*/

if not exist_key(tree,vi)

NL=get_lower(tree,vi) (part 1)

if NL=nil

insert_node(tree,vi,nil)

else

insert_node(tree,vi,NL.anchors)

/* insert a new index entry, and copy the anchor state sequence
from the “lower” index entry*/

endif

endif

if i>1

/* if not the first state in the time sequence*/

for each node Nj (part 2)

(1≤j≤size(tree))
where Nj.key lies inside the interval [min(vi-

1,vi),
max(vi-1,vi))

Nj.anchors=Nj.anchors+(i-1)

282 The Papers

/* add the new anchor state to the anchor state sequences of all the
intervals spanned by the new segment*/

end for each

endif

Fig. 3.4: The IP-index insertion algorithm

3.4 Performance vs. Precision of Values

This section discusses the relationship between the performance of the IP-index and
the precision of the values in the time sequence.

The algorithm in Fig.3.4 contains two parts. Algorithm analysis shows that (Part 1)
takesΘ(LogM) time whereM is the total number of index entries in the IP-index,
since they are actually AVL-tree search operations. Furthermore, (Part 2) takes
m*append_time wherem is the number of intervals which are spanned by the new
segment (append_time is the time taken to add the new state to the end of an anchor-
state sequence, which is assumed to be constant since we use a sequential data struc-
ture which supports fast appending).

So, if we limit the parametersM andm, we can reduce the insertion time of the IP-
index. This can be achieved by limiting the precision of the measured values. The
reason is: for a time sequence with range=Rand precision=P in the value domain, the
number of index_entries will be less thanR/P. So, the lower the precision (the larger
the value of P) is, the smaller the value ofM andm will be. Thus, we can reduce the
insertion time by limiting the precision of the values, which will be shown in the per-
formance measurement section.

The above observation is practical since 1) all measured time sequences have a lim-
ited range on value domain, 2) the original precision of the measured data is always
limited due to errors and uncertainty in measurements. For example, when measuring
the temperature of a patient the value range is the temperatures that the human body
can possibly be alive at and at a precision that can represent changes that affect the
well-being of the patients. Therefore, even if the thermometer used for measuring the
temperature of a patient has the precision of 0.001°C, we can still limit the precision
to 0.1°C, which will both improve the performance of the IP-index and still be rea-
sonable for the application.

From the above discussions we can see that the IP-index is not suitable for some unu-
sual time sequences, e.g. periodic time sequences with unlimited precision, or signals
which oscillate with an increasing amplitude over time (these two kinds of time
sequences have unlimited range or precision, which makes theM parameter large). It
is also not suitable for those time sequences with “big jumps” in the values all the
time (this kind of time sequence makes the parameterm large). Fortunately, most
time sequences from real applications do not have these properties.

3.5 The IP-index Search Algorithm

To search the IP-index is to find the index entry which contains the anchor-state
sequence of the valuev’, i.e., to search the index entriesNi in the IP-index to find the

283

index entryNL where

NL.key= max{(Ni.key) | ((Ni.key) ≤ v)́} (1)

ThenNL.anchors contains the anchor-state sequence for the valuev’.

In the exampleTS in Fig. 3.1, the index entryNL for the valuev’ is [k3, anchors]
whereanchors=<S2, S3>. The reason is thatk3 (=v4) is the first key which is “below”
or equal tov’.

The search algorithm is dependent on the implementation of the IP-index. In the
AVL-tree implementation the search algorithm is to search for the node in the AVL-
tree whose key satisfies the above condition. It is well known that the complexity is
Θ(LogM) where M is the total number of nodes in the tree.

As we discussed in the last section, the value of the parameterM is determined by the
precision of the values. The lower the precision is, the smaller the value ofM will be.
So, limiting the precision of values will reduce the search time of the IP-index as
well.

4 Queries

There are several kinds of queries that can be answered efficiently using the IP-index.
Using an example of a patient’s temperature reading, we can answer queries like:

• Query 1: When did the patient have the temperature 37°C?

This query is expressed asF-1(37) and it represents the simplest form of inverse
queries. It only requires searching the IP-index to find the anchor-state sequence
for the value 37 (plus some post-processing if interpolation is needed).

• Query 2: During what time period did the patient have the temperature higher than
37°C?

This query can be expressed asF-1(v>37). We refer this kind of query asinequality
inverse queries. To answer thisquery we first calculate all time points equal
to

F-1(37): These time points form a sequence of time intervals. Then for each time
interval we check if the values inside the interval are greater than37 or not. If so,
then this time interval is returned.

• Query 3: When did the patient have a temperaturearound 37°C?

This query can be expressed asF-1((37-e, 37+e)), whilee is a value which is appli-
cation dependent. This kind of query is useful since many applications need to
know “When was the valueapproximately equal tov’?” rather than “When was the
valueexactlyequal tov’?”.

284 The Papers

Query 3 can be easily computed given that we can compute Query 2. This is
because

F-1((v’, v’’)) = F-1(v >v’) ∩ F-1(v <v’’), where ‘∩’ means ‘interval intersection’
andv’=37-eandv’’=37+e.

• Query 4: When did the patient have two consecutive fevers during 24 hours?

This is used for analysing the symptoms of disease[SZ96]. It is an example of

shape queries onTSs. It can be computed as follows: 1) computeF-1(v>37) (which
are the periods of “fever”), 2) check if there exist two time intervals in the “fever”
periods that have the distanced of 24 hours. (The distance between two time inter-
vals can be defined either as the distance between the starting points of both inter-
vals or as the distance between the mid-points of both intervals.)

5 Performance Measurements

We tested the performance of the IP-index using the AVL-tree implementation in a

main-memory database[FRS93]1.

We measured the insertion time and search time of the IP-index for different kinds of
TSs. The size (number of states) of eachTS was 10000.

1. A simulated periodic sequence, sin(t/100) (t=1...10000) with very high precision,
plotted in Fig.5.1.

2. An application time sequence[JZBSL96] (which is the measurement of pressure in
a fluidized bed) plotted in Fig.5.2.

3. A simulated time sequence with a largely monotonic trend (but not strictly mono-
tonic) plotted in Fig.5.3.

1. All measurements were made on an HP9000/710 with 64 Mbyte of main
memory and running HP/UX.

285

5.1 Insertion for Periodic Time Sequences

In Fig. 5.4 and Fig. 5.5 we show the measured insertion times of the IP-index for the
time sequences shown in Fig. 5.1 and Fig. 5.2 respectively. The insertion times are
measured as the sequences grow.

-6

-4

-2

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F

(t
)

time (t)

Fig. 5.2: Pressure Data

Fig. 5.1: Sinus Data

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F

(t
)

time (t)

286 The Papers

• The curves labelled “Original Value Insert” show the insertion times of the IP-
index. For the pressure data the range=[-6, 10] and the precision=0.001. For the
sinus data the range=[-1, 1] and the precision= 0.000001. We can see that the inser-
tion time increases linearly with the size of the sequence. This is because the preci-
sion is very high which makes the parametersM andm (see section3.4) large.

0

10000

20000

30000

40000

50000

60000

0 1000 2000 3000 4000 5000 6000 7000 8000 900010000

va
lu

e
F

(t
)

time (t)

Fig. 5.3: Monotonic Trend Data

0

5

10

15

20

25

30

35

0 2000 4000 6000 8000 10000

tim
e

t(
n)

 [m
s]

sequence size

Original Value Insert
Limited Precision Insert

Fig. 5.4: Sinus Data Insertion

287

• For the curves labelled “Limited Precision Insert” the precision of the values is lim-
ited to 0.1 for the pressure data and 0.001 for sinus data respectively. We notice that
the insertion time become constant after the total number of index entries has been
inserted into the IP-index. This is because a) the limited precision makes the
number of nodes of the AVL-tree does not grow any more; only the anchor-state
sequence associated with each node grows with the time sequence and b) the lim-
ited precision makes them parameter (number of intervals spanned by the new seg-
ment as discussed at the end of section3.4) have an upper limit, which causes the
insertion time to have an upper limit (See Fig.3.4 (Part 2)).

Our measurements verify that for a periodic time sequence with a limited range and
precision on the value domain, there will be an upper bound on the IP-index insertion
time.

5.2 Search for Periodic Time Sequences

In Fig.5.6 the IP-index search time is compared with linear scanning of the time
sequence to find the anchor-state sequence for some randomly generated valuev’.
The test was done on the simulated periodic sequence with very high precision as
plotted in Fig.5.1. The comparison was measured as the sequence grows. The results
show that the IP-index dramatically improves the performance of inverse queries.
Note that the results are displayed in logarithmic scale since the difference between
the IP-index search time and the linear scanning time is too great to display with lin-
ear scaled axes. (Note that the curve labelled “IP-index Search” in Fig.5.6 is the
same as the one labelled “Original Value Search” in Fig.5.8; they do not look the
same because they are displayed on different scaled axes.)

Fig. 5.8 and Fig.5.7 show the performance of the IP-index search for two periodic
TSs. After every 1000 insertions, we measured the average time to search for the
anchor-state sequence for some randomly generated valuev’. The results show that

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

tim
e

t(
n)

 [m
s]

sequence size

Original Value Insert
Limited Precision Insert

Fig. 5.5: Pressure Data Insertion

288 The Papers

the search time is logarithmic due to the AVL-tree implementation (see the curves
labelled “Original Value Search”). However, when the assumption of “limited range
and precision” is satisfied, the IP-index search time has an upper bound regardless of
the time sequence size (see the curve labelled “Limited Precision Search”). The rea-
son is the same as in the insert case, i.e., the number of nodes (M) of the AVL-tree
does not increase after all index entries are inserted, (only the anchor-state sequences
associated with each node grow) so the search time stays constant toΘ(LogM).

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000

tim
e

t(
n)

 [m
s]

sequence size

Original Value Search
Limited Precision Search

Fig. 5.6: Compare the IP-index with Linear Scanning

Fig. 5.7: Pressure Data Search

0

0.5

1

1.5

2

2.5

3

3.5

0 2000 4000 6000 8000 10000

tim
e

t(
n)

 [m
s]

sequence size

Original Value Search
Limited Precision Search

289

5.3 Time Sequences with Monotonic Trends

In Fig.5.9 we measured the performance of the IP-index for a simulated time
sequence with a largely monotonic trend. We see that both the insertion time and the
search time are approximately logarithmic due to the AVL-tree implementation.
Since in this case we do not have a limited range on the value domain, the “upper
limit” on insertion and search time cannot be achieved.

We also notice that a strictly monotonic time sequence does not need any IP-index.
The reason is that the value domain is then monotonic just as the time domain is,

1

10

100

1000

10000

1000 10000

tim
e

t(
n)

 [m
s]

sequence size

IP-index Search
Scanning Time Sequence

Fig. 5.8: Sinus Data Search

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000

tim
e

t(
n)

 [m
s]

sequence size

AVL-tree Insert
AVL-tree Search

Fig. 5.9: Monotonic Trend Data

290 The Papers

which means that conventional indexes on the time domain can be applied to the
value domain.

6 Conclusions and Future Work

This paper presented the IP-index which is an index on the value domain for time
sequences. We showed how to use the IP-index to supportinversequeries, such as
finding all the time points when the temperature was equal to a given valuev (com-

putingF-1(v)), or to find the time intervals where the values are greater (smaller) than

a given valuev’ (computingF-1(v>v’) or F-1(v<v’)).

The IP-index can be implemented using any ordered index structures, such as B-
trees. The performance measurements showed that the IP-index radically improves
the processing time of inverse queries on time sequences, compared to linearly scan-
ning the sequence (the only alternative without the IP-index). For a periodic time
sequence with a limited range and precision on the value domain, the IP-index inser-
tion and search time have an upper bound regardless of the size of the sequence. Fur-
thermore, by limiting the precision of the values the IP-index insertion and search
timescan be dramatically improved.

In future work we will investigate how to use the IP-index in query optimization. For
example, we can define the cost models for the IP-index and store the cardinality (the
lengths of the anchor-state sequences) in each index entry in order to estimate the

cost ofF-1(v’) when theTS is very long. We can also set a “moving window” on the
anchor-state sequence to discard or archive the old values of theTS when they are not
required any more.

Another improvement is to extend the IP-index for indexing collections ofTSs
[SS93] based on the composite keyo+v (o is the identifier of eachTS).

Another future study will be to generalize the IP-index to n-dimensionalTSs, e.g. to
query the past positions of an aircraft given that theTS is a spatial-temporal trajectory
of the aircraft.

We also need to explore the IP-index for very large time sequences stored on disk.

7 Acknowledgements

The authors would like to acknowledge Olof Johansson for the valuable discussions
which led to the IP-index concept.

References
[AL62] G. M. Adelson-Velskii and E. M. Landis:Doklady Akademia Nauk SSSR, 146,

(1962), pp. 263-266; English translation inSoviet Math, 3, pp. 1259-1263.

[AFS93] R. Agrawal, C. Faloutsos, and A. Swami: Efficient Similarity Search in
Sequence Databases. In Proceedings of the Fourth International Conference on
Foundations of Data Organization and Algorithms, pp. 69-84, Chicago, Oct.
1993.

291

[ALSS95] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim: Fast Similarity Search in the
Presence of Noise, Scaling, and Translation in Time-Series Databases. InPro-
ceedings of the VLDB, Conference,pp. 490-501, 1995.

[APWZ95] R. Agrawal, G. Psaila, D. L. Wimmers, and M. Zaït: Querying Shapes of Histo-
ries. InProceedings of the 21st VLDB Conference,pp. 502-514, 1995.

[B72] J. L. Bently:Algorithms for Klee’s Rectangle Problems, Computer Science
Department, Carnegie-Mellon University, Pittsburgh, 1972.

[BWBJ95] C. Bettini, X. S. Wang, E. Bertino, and S. Jajodia: Semantic Assumptions and
Query Evaluation in Temporal Databases. InProceedings of the SIGMOD Con-
ference,pp. 257-268, May 1995.

[C79] D. Comer: The Ubiquitous B-Tree. InACM Computing Surveys, 11, 2, pp. 121-
137, June 1979.

[E79] H. Edelsbrunner:Dynamic Rectangle Intersection Searching, Institute for Infor-
mation Processing, Rept. 47, Technical University of Graz, Graz, Austria.

[EWK93] R. Elmasri, G. T. J. Wuu, and V. Kouramaijian: The Time Index and the Mono-
tonic B+-tree. In [TCGJSS93], pp. 433-455.

[F96] E. T. Falkenroth: Computational Indexes for Time Series. InProc. of 8th Intl.
Conference on Scientific and Statistical Database Management, pp. 18-23, June
1996, Stockholm, Sweden.

[FRS93] G. Fahl, T. Risch, and M. Sköld: An Architecture for Active Mediators. InPro-
ceedings of the International Workshop on Next Generation Information Tech-
nologies and Systems, pp. 47-53, Haifa, Israel, 1993.

[GS93] H. Gunadhi and A. Segev: Efficient Indexing Methods for Temporal Relations.
In Transactions on Knowledge and Data Engineering, Vol. 5, No. 3, pp. 496-
509, June 1993.

[G84] A. Guttman: R-Trees: A Dynamic Index Structure for Spatial Searching. InPro-
ceedings of the ACM SIGMOD Conference, Boston, MA, June 1984.

[JZBSL96] F. Johnsson, R. C. Zijerveld, C. M. van den Bleek, J. C. Schouten, and B. Leck-
ner:Characterization of Fluidization Regimes in Circulating Fluidized Beds -
time series analysis of pressure fluctuations, Technical Reports, Chalmers Insti-
tute of Technology, Sweden, 1996 (submitted for publication).

[KS95] N. Kline and R. Snodgrass: Computing Temporal Aggregates. InProceedings of
the Data Engineering Conf., pp. 222-231, 1995.

[KS91] C. P. Kolovson and M. Stonebraker: Segment Indexes: Dynamic Indexing Tech-
niques for Multi-Dimensional Interval Data. InProc. ACM SIGMOD Confer-
ence, pp. 138-148, 1991.

[LYC96] C. S. Li, P. S. Yu, and V. Castelli: HierachyScan: A Hierachical Similarity
Search Algorithm for Databases of Long Sequences. In Proceedings of the Data
Engineering Conference, pp. 546-553, Feb. 1996.

[OMS87] K. Ooi, B. McDonell, and R. Sacks-Davis: Spatial kd-tree: Indexing mechanism
for spatial database. InIEEE COMPSAC87, 1987.

[SS93] A. Segev and A. Shoshani: A Temporal Data Model Based on Time Sequences.
In [TCGJSS93], pp. 248-269.

[SZ96] H. Shatkay and S. B. Zdonik: Approximate Queries and Representations for
Large Data Sequences. InProceedings of the Data Engineering Conference,
pp.536-545, Feb. 1996.

[SOL94] H. Shen, B. C. Ooi, and H. Lu: The TP-Index: A Dynamic and Efficient Index-
ing Mechanism for Temporal Databases. InProceedings of the Data Enginee-

292 The Papers

ring Conference,pp. 274-281, 1994.

[TCGJSS93] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (edi-
tors): Temporal Databases, Theory Design and Implementation, The Benjamin/
Cummings Publishing Company, ISBN 0-8053-2413-5, 1993.

[TMJ94] K. Torp, L. Mark, and C. S. Jensen: Efficient Differential Timeslice Computa-
tion, Technical Report, College of Computing, Georgia Institute of Technology,
Georgia, USA, Sept. 1994.

293

294 The Papers

295

Index

A
active database 25
Active Database Management System Manifesto 27
Active Database Management Systems (ADBMS) 2
active rules 2, 25
Amazonia 166
AMOS (Active Mediators Object System) 30
AMOS data model 40
AMOSQL 30, 40
A-RDL 80
Ariel 27, 80
assertion 25
ATM (Asynchronous Transfer Mode) 13
ATM networks 13
authorization control 3
B
bag-oriented semantics 115
B-ISDN 13
C
Chimera 27
Common Gateway Interface (CGI) 179
Common Management Information Protocol (CMIP) 18
Common Object Request Broker Architecture (CORBA) 180
communication protocols 178
compensating transactions 3, 44, 64
composite events 27
Computer Integrated Manufacturing (CIM) 9
conflict resolution 28
coupling modes 25
D
Database Management System (DBMS) 1
DataBlade modules 169
DCOM (Distributed Component Object Model) 182

296 Index

decremental computation 101
DTR (Dynamic Type Resolver) 118
E
ECA(Event-Condition-Action) rules 25
event consumption 27, 154
event expressions 33
event functions 120
event histories 120
event history 27
event log 134
external data 163
F
finite differencing 79
foreign data sources 163
foreign functions 39
FTP (File Transfer Protocol) 179
G
GPS (Global Positioning System) 24
H
Heraclitus 81
HiPAC 25, 79
Home Location Registers (HLRs) 17
HTTP 179
I
IBM/DB2 168
Illustra 169
incremental evaluation 77
Informix 169
instance-oriented rule execution 27
Intelligent Network Services 17
Interim Local Management Interface (ILMI) 18
inverse queries 38, 161
Iris 30, 35
ISAPI (Internet Server Application Interface) 180
ISDN 12
L
logical rollback 90, 94, 101
M
Management Information Base (MIB) 19, 184
mediator 54

297

mobile ATM 14
mobile computing 24
mobile telecommunication networks 14, 17
mobile terminals 14
multiple inheritance 37
N
nervous rule processing 83, 115
NFS (Network File System) 179
NSAPI (Netscape Server Application Programming Interface) 180
O
Object Oriented Database Management Systems (OODBMS) 2
Object Relational Database Management Systems (ORDBMS) 2
ODBC (Open Database Connectivity) 182
Ode 27, 81
OLE DB 181
OPS5 79
Oracle 169
OSQL 35
P
PARADISER 79
partial differencing 77, 79
POSTGRES 26
POTS (Plain Ordinary Telephony Service) 12
primitive events 27
propagation network 134
Q
query optimizer 32, 111
R
RAPID 166
REACH 27, 131
replication servers 166
Rete 79
rule activation 136, 149
S
sagas 3, 64
SAMOS 27, 81
SCI (Scalable Coherent Interface) 182
SDH (Synchronous Digital Hierarchy) 13
Sentinel 81
Service Control Point (SCP) 17

298 Index

SETL 79
set-oriented rule execution 27
set-oriented semantics 38, 115
SNMP (Simple Network Management Protocol) 18, 183
SONET (Synchronous Optical Network) 13
SQL 1
SQL/CLI 181
SQL3 4, 169
Starburst 26
statistical databases 157
stored procedures 3, 36, 167
strict rule processing 83, 115
STRIP 166
Sybase 167
System R 25
T
telecommunication network applications 23
telecommunication network management 18
telecommunication network traffic control 16
telecommunication networks 11
temporal triggers 161
time windows 176
TREAT 80
trigger 25
TriggerMan 166
U
Universal Mobile Telecommunications System (UMTS) 14
V
VCI (Virtual Circuit Identifier) 16
vehicle navigation systems 24
Visited Location Registers (VLRs) 17
W
workflow management systems 64
WS-Iris 30
WWW (the World Wide Web) 23, 179

ccxcix

LaTeX style references for paper VII, not part of thesis!!
AL62

AFS93

ALSS95

APWZ95

B72

BWBJ95

C79

E79

EWK93

F96

FRS93

GS93

G84

JZBSL96

KS95

KS91

LYC96

OMS87

SS93

SZ96

SOL94

TCGJSS93

TMJ94

ccc

