

IT 10 012

Examensarbete 15 hp
April 2010

Querying N-triples from an extensible
functional DBMS

Martynas Mickevicius

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Querying N-triples from an extensible functional
DBMS

Martynas Mickevicius

The goal of this project is to provide an N-triple wrapper for the extensible DBMS
Amos II. This enables search and filter through the N-Triple streams using the
AmosQL query language to return relevant triples back as a result stream.
To implement this wrapper, first N-triples streams are parsed using the Bison/Flex
parser generator. The parsed triples are streamed to Amos II using its foreign
function interface. The query processing kernel of Amos II then enables general
queries to N-triple data sources. The report includes a performance evaluation for
the wrapper.

Tryckt av: Reprocentralen ITC
IT 10 012
Examinator: Anders Jansson
Ämnesgranskare: Tore Risch
Handledare: Silvia Stefanova

5

1. Introduction ... 7

2. Background .. 7

2.1. Resource Description Framework .. 7

2.1.1. URIs ... 8

2.1.2. Literals.. 8

2.1.3. Blank node ... 8

2.1.4. N-Triples file format .. 8

2.2. Database Management Systems ... 9

2.3. Amos II ... 9

2.4. Bison/Flex .. 10

3. The N-Triple wrapper .. 10

3.1. The parser ... 10

3.2. RDF types and functions .. 12

3.3. Encoders and decoders ... 12

4. Implementation .. 13

4.1. RDFResource objects ... 13

4.1.1. Internal structure .. 13

4.1.2. Registering custom type to Amos II 14

4.1.3. Internal functions ... 15

4.1.4. Creating RDFResource object ... 15

4.1.5. Printing ... 16

4.2. Encoders and decoders ... 17

4.3. External AmosQL functions... 18

4.4. External ALisp functions ... 20

4.5. The lexer ... 20

4.6. The parser ... 20

5. Evaluation .. 21

5.1. Conformance .. 21

5.2. Performance .. 21

6. Summary and conclusions ... 21

7. Examples ... 22

8. References ... 22

9. Table of figures.. 23

7

1. Introduction

Due to the always decreasing costs of managing distributed systems and

continuously increasing speed of interconnectivity computer systems have

become highly heterogeneous. However from the user point of view there is

still a need to access and search different kinds of data. These problems can

be solved by using a mediator, which is a system to enable combined search

in different kinds of data sources.

There are very many different kinds of data models and standards for one

database system to cope with. To alleviate this, the World Wide Web

Consortium has introduced a new set of data representation languages called

the Semantic web [2]. These languages are based on new standard called

Resource Description Framework (RDF) that enables to link data of different

kinds.

In this work the functional DBMS Amos II [1] is extended with a wrapper

interface to allow database queries to streams of RDF triples represented in

the N-Triples [4] format. The overall result of the implemented wrapper is a

function that takes a stream as a parameter and returns a stream of objects

which can be further manipulated in the system. The wrapper also includes

primitives to create and access object properties.

2. Background

The following technologies are involved in this project:

 Resource Description Framework

 Database Management Systems

 Amos II

 Bison/Flex parser generator

2.1. Resource Description Framework

Resource Description Framework (RDF) is a method to model any kind of

information. It is based on modeling data and relationships between data

entities as graphs. RDF has quite a few serialization formats, such as XML

and Notation 3 (N3) [3]. A subset of the latter, the N-Triples format [4] is the

one being used in this project work. It has some advantages over the other

formats, such as being human readable and having minimal overhead.

An N-Triples data file consists of a set of triples. N-Triples represent the

same data relationships as RDF statements do. For example, the following

three N-Triples define three RDF statements:

8

<http://www.w3.org/> <http://purl.org/creator> "Dave" .

<http://www.w3.org/> <http://purl.org/creator> "Art" .

<http://www.w3.org/> <http://purl.org/publisher> <http://www.w3.org/> .

These RDF statements can also be expressed using the more complex RDF-

XML format [12]:

<rdf:RDF xmlns:rdf=http://www.w3.org/1999/02/22-rdf-syntax-ns#

 xmlns:dc="http://purl.org/">

 <rdf:Description rdf:about="http://www.w3.org/">

 <dc:creator>Art</dc:creator>

 <dc:creator>Dave</dc:creator>

 <dc:publisher rdf:resource="http://www.w3.org/"/>

 </rdf:Description>

</rdf:RDF>

The triples are defined using three kinds of resources: URIs, literals and

blank nodes. They are represented in files using different notations.

2.1.1. URIs

A uniform resource identifier, URI, represents an identifier of globally

unique resource on the web, e.g. a URL or an image. It is enclosed in less than

(<) and greater than (>) signs, e.g.:

<http://example.org/resource1>

2.1.2. Literals

A literal is used to represent values such as numbers or dates by means of a

lexical representation. They are specified enclosed in double quotes (“),

optionally followed by type or language definitions, e.g.:

"chat1"^^<http://example.org/datatype1>

"chat2"@en-us

Note that a literal string is followed by a double caret sign (^^) and another

URI resource representing the datatype.

2.1.3. Blank node

A blank node is an internal node which is not identified by a universal URI

and is not literal. It starts with an underscore and a colon (_:) and then is

followed by its name.

_:anon

2.1.4. N-Triples file format

The RDF statements in an N-Triples file are defined as triples of resources,

for example:

<http://www.w3.org/> <http://purl.org/creator> "Dave" .

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://example.org/resource1

9

Each RDF statement consists of subject, predicate, and object. The subject

is the resource that is being described. It can be a URI or a blank node. The

predicate defines the property for the subject. It is always a URI. The object is

referred as a property value for the subject. It can be either of three kinds of

resources. This gives a total combination of six kinds of triples. In the N-

triples format each triple is followed by dot (.) and an end-of-line character.

Triple can be one of the following:

URI URI URI .

URI URI Literal .

URI URI Blank .

Blank URI URI .

Blank URI Literal .

Blank URI Node .

This specifies the complete grammar of N-Triples as Extended Backus-

Naur Form (EBNF) Grammar [6].

This project implements a parser for RDF triples in the N-Triples format

using this grammar.

2.2. Database Management Systems

A database management system (DBMS) is a set of programs which are

responsible for storage, management, and retrieval of data from a database. A

DBMS accepts queries for data from an external application program and

delivers matching data back to the application. The most common query

language is SQL.

A data model is the kind of data types used to model data in a DBMS. The

most common data model is the relational model where data is represented as

tables consisting of rows and attributes (columns). These tables can be

connected to each other by matching attribute values.

This project enables processing of database queries of N-Triples files.

2.3. Amos II

Amos II is an extensible DBMS that uses a functional data model which

model data in terms of types, functions, and objects. Amos II has a functional

query language called ALisp.

Functions in Amos II define properties of objects. There are five different

kinds of functions: stored, derived, foreign, procedure and overloaded. A

stored function in Amos II correspond to a table in a relational database

system. It provides attributes stored on objects. A derived function is

analoguos to view in a relational database system. It is defined as a query over

other functions. Amos II is easily extendable using foreign functions. Foreign

10

functions are implemented in some external programming language e.g. C,

Java, or Lisp and then registered to be used in AmosQL queries.

Functions in Amos II can be multi-directional, which allow them to be

used as a normal function; taking parameters and returning result, or do the

inverse – take a result and find parameters that correspond to the given result.

In this project the foreign function interface is used to enable AmosQL

queries to N-Triple files.

2.4. Bison/Flex

To transform plain text to data structures, the parser Bison [7] and lexical

analyzer Flex [8] are used in this project. Flex is a tool for generating very

fast lexical analyzers which tokenize given text using regular expressions.

Tokens can be used directly or given to a parser. The general parser generator

Bison is used in this project to generate an N-triple parser.

Flex provides rules in a form of regular expressions and associated C code

that is executed when the expression matches a parsed text string. Bison needs

an annotated context-free grammar that describes what tokens can be

expected from the lexical analyzer together with semantic rules expressed as

regular C code executed when a rule is satisfied. Flex regular expressions and

Bison rules are compiled into regular C code, which is hardly human readable

but very efficient.

3. The N-Triple wrapper

In this project Amos II is extended to query N-triples data sources. External

functions send N-triples data directly to Amos II one by one as stream. The

received triples are then available to search or filter using the AmosQL query

language.

Amos II includes an embedded Lisp system called ALisp interpreter [5]. It

is a subset of CommonLisp. In this work ALisp is used for testing and

verification.

The wrapper program is written in C to obtain the best possible

performance. It has two main logical parts: the parser is responsible to extract

RDF resources from streams, and functions are used to create and manipulate

different kinds of RDF resources.

3.1. The parser

The parser is divided into three parts (Figure 1): lexer, parser, and filter of

data emitted to the Amos II kernel.

11

Figure 1. Architecture of wrapper

To allow the Amos II system to access and manipulate RDF data, a new

data type RDFResource is introduced. This type represents any resource

found in N-Triple streams and files. The wrapper also has functions to create,

manipulate and delete objects of type RDFResource.

The simplest task for a wrapper is to count the number of triples in a file.

This could be done by the following AmosQL query:

count(ntriples("nt/w3.nt"));

The foreign function ntriples(Charstring name) has only one

parameter, which is a name of a file containing N-Triples data. This function

converts the RDF triples in an N-Triple file to a stream of tuples containing

three RDFResource objects.

 The function first opens the specified file and executes the parser function

repeatedly. The main job of a parser is to combine given tokens to more

complex grammatical structures. The parser calls the yylex() C function to get

the next tokens from the input stream. The lexer reads stream character by

character trying to match any given regular expression rule. When it succeeds,

it executes the C code associated with each lexer rule to identify text tokens

returned to the parser.

Figure 2. One line tokenized by the lexer. Grey boxes indicate tokens needed for the parser.

After every received token, the parser checks if read tokens can be

combined to create a new RDFResource object. It does so by checking the

given Bison grammar rules. When a group of three RDFResource objects is

created a triple is emitted to the Amos II kernel in a form of a tuple of three

RDFResource objects. The parser then frees memory and starts again to look

for new tokens.

AmosQL is used to filter relevant result from N-triple streams

The parser emits tokenized data to the Amos II kernel

Data in a stream or a file is tokenized by the lexer

anon http://example.com _: < > literal “ “

12

3.2. RDF types and functions

In order to provide a simple abstraction layer and to simplify manipulation

of RDF resources, a type hierarchy is introduced into the wrapper program.

The most important issue is that an RDF literal can have many data types

(Figure 3) and for each data type there are a number of specific functions

(operators). For example if an RDF resource represents a number basic

arithmetic functions would be applicable directly on the RDFResource object.

Other requirements occur when, e.g. a literal represents a time of day or a

date.

Figure 3. RDFResource type hierarchy.

A type hierarchy is important in this situation because the data abstraction

and functions provide flexible abstractions and makes the wrapper easy to use

and understand.

3.3. Encoders and decoders

It is very important to integrate the wrapper into the Amos II system as

seamless as possible which means reusing Amos II kernel functions for built-

in types.

An RDF literal can represent many kinds of objects. If a literal represents a

number then all the arithmetic functions should be available to use with that

literal. In order to do so, a literal representing a number must be encoded into

a binary internal Amos II representation representing a number from the

external format, which is a plain string. A function that is used to convert an

external string representation of the data to an internal Amos II object is

called encoder.

It is also possible in Amos II queries to create new RDF literals

representing e.g. numbers converted into corresponing RDFResource

representation. Whenever such a resource is exported to outside of the system

it needs to be converted to the external string representation. A function that is

used to convert an internal Amos II object to the corresponding external string

representaion is called a decoder.

Time Date Number

Literal Blank Node URI

RDFResource

13

4. Implementation

4.1. RDFResource objects

The Amos II system has its own main-memory storage manager called

AStorage [9] where every physical object is accessed by a handle. There are

C functions and macros provided to manipulate these handles. A reference

count garbage collector takes care of deallocating physical objects when they

are no longer used. When a physical object is created, its reference counter is

initialized to 0. If an object is assigned to (referenced from) some memory

location its reference count is increased. If an object is no longer referenced

from some location the reference counter is decreased. Only when the

reference counter reaches zero, the object is physically deallocated from the

database memory.

4.1.1. Internal structure

AStorage also allows creating custom types. In order to store data from N-

Triples streams the new type RDFResource is defined. This type is the base

type for all other child types representing different kinds of RDF resources.

Each RDFResource object will represent a URI, a literal, or a blank node. A

tuple of RDFResource objects is created from every row of an N-Triples

stream.

Custom objects are represented in AStorage using C structures. There is a

global type table managed by AStorage which saves relationships between

types and their functions. In order to introduce new type, a custom C structure

needs to be created to store custom data. Deallocation and printing functions

for custom type also need to be provided.

The following C structure represents RDFResource objects and is called

rdfrcell. The structure fields are used by both the system and users to store

RDFResource data.

struct rdfrcell // Template for storage type RDFRESOURCE

{

 objtags tags; // System tags

 int kind; // URI reference: 0

 // literal: 1

 // blank node: 2

 // larger values mean different

 // objects expressed as literals

 oidtype datatype; // datatype for typed literals

 oidtype decoded; // data in external format (string)

 oidtype encoded; // data in internal format (object)

14

 char lang[1]; // language, if any

};

The first field is used by the AStorage manager and is never available for a

user.

The second field kind stores an integer which determines the kind of the

RDF resources stored in the object. The following values are valid:

 0 – URI reference

 1 – literal

 2 – blank node

 3 – number decoded from literal

 4 – date decoded from literal

 5 – time decoded from literal

The third field datatype is used only for typed literals. In such case this

field holds a handle referencing to another RDFResource object, which

defines the type of the typed literal. If the object is not a typed literal, then this

field is initialized to the value nil. Untyped literals are regarded as strings.

The fourth field decoded holds the decoded string value in the external

format. The external format is string representation of a data object. For

example all integer, float, and decimal numbers will be decoded to a string in

a way that en encoder can reconstruct the internal object. More sophisticated

objects, such as those storing dates or times will be decoded to special

patterns in the N-Triples format.

The fifth field encoded holds data encoded into the internal format. If the

encoder function is not present for the required type, then this field will

contain the same object as the decoded field.

The last field lang holds language information. This field is only relevant to

literals which have a language defined. In all other cases, this field would

hold just an empty string.

4.1.2. Registering custom type to Amos II

After the above structure is defined, the new type needs to be registered to

the Amos II system by calling following C function:

rdfresource = a_definetype("rdfr", dealloc_rdfr, print_rdfr);

The first parameter of the a_definetype function is the internal name of

the new type. The second and third parameters are deallocation and printing

functions. The returned integer is an internal identifier of the new type. It is

needed for knowing whether given object is of RDFResource type.

After defining the type in C it also needs to be defined in ALisp in order to

map an Amos II type named RDFResource to the internal name used in C

(here rdfr). This is done using the ALisp function createliteraltype. The first

parameter is a string which defines what type name is going to be used in

AmosQL. The second one is an optional type being a parent of the new

15

defined type in the type hierarchy of Amos II. The third parameter is a symbol

holding the internal type name registered with the C function a_definetype.

The last parameter is the name of a function which returns the Amos II data

type for a given structure.

(createliteraltype 'RDFResource '(Object) 'rdfr nil 'rdfr-

typefn)

4.1.3. Internal functions

There are additional functions that can be added to the global type table.

Two such functions are hash and compare functions.

typefns[rdfresource].hashfn = rdfr_hash;

typefns[rdfresource].comparefn = rdfr_compare;

The hash function is used to get a unique hash key for every RDFResource

object. If two objects store the same value, the hash function applied to these

objects returns the same values.

The compare function is used to compare two RDFResource objects. It

takes two objects as parameters and returns -1, 0 or 1 if first RDFResource

object is less, equal, or greater than second.

Amos II also supports reading and creating objects from files. For this

purpose a reader function is defined. It takes parameters specified in internal

system format and creates an RDFResource object. The reader function must

also be registered to Amos II system using type_reader_function

function.

type_reader_function("RDFR", read_rdfr);

This registration function takes two parameters. The first one is a type tag

of a linearized object. The second parameter is C reader function for the

particular tag.

4.1.4. Creating RDFResource object

 After the reader function has been registered, new RDFResource objects

are created by reading a string such as:

#[RDFR 1 “literal string” “en-us” nil]

The custom type tag for rdfr is followed by a type identifier. Afterwards

follows the actual data of the new RDFResource object. If the object is a

string and has a language defined, then the language string comes after the

data. The last parameter is the RDF datatype. It is a URI reference specified in

the same notation as the reader function understands. This way of creating

new object uses reader function which was registered previously.

There are also AmosQL and ALisp functions defined to create new

RDFResource objects. These functions take exactly the same parameters as a

reader function.

16

AmosQL: rdfr(1, “literal string”, “en-us”, nil);

ALisp: (rdfr-make 1 “literal string” “en-us” nil)

When creating new objects data can be specified either as string

representation or by providing object in specific format. For example, these

two functions will create identical objects.

rdfr(3, “22.2”, “”, nil); // both encoded to internal real

rdfr(3, 22.2, “”, nil);

The difference is that when executing first ‘stringified’ function call, the

encoder function will be executed in order to encode the string representation

to the internal format. By contrast, when executing the second function call,

the decoder will be executed to generate the string representation of the

passed object. The string representation will be later used when printing the

data.

Internal objects can also be used to create literal RDFResource objects of

kind 1. In such cases the datatype must be present in order to determine which

encoder/decoder should be called.

set :datatype = rdfr(0, “http://www.w3.org/2001/XMLSchema#float”,

“”, nil);

rdfr(1, “22.2”, “”, :datatype); // valid

rdfr(1, 22.2, “”, :datatype); // valid

rdfr(1, 22.2, “”, nil); // invalid, generates error

rdfr(1, “22.2”, “”, nil); // valid, but will not be

encoded to internal object

Because the rdfr() function is multi-directional, it is very easy to get all

the necessary data from the RDFResource object using the same function.

Also there are additional functions provided to accomplish the same task.

4.1.5. Printing

Whenever an RDFResource object is printed, such a formatting is used so

that the internal reader function could read it. When printing the data, the

decoded field in the internal object structure is used.

There may be times when lists of several triples need to be printed out in

N-Triples format. In such case ALisp function rdf-print should be used.

(rdf-print my-triple-list “output.txt”)

The first argument is a list of triples. A triple is just a simple list containing

three RDFResource objects. This function uses other ALisp functions to break

down the list of triples to RDFResource objects and then prints them one by

one according to N-triple formats using an external function defined in the

wrapper.

17

The textual representaion of two RDFResource objects may differ. For

example one can represent the same floating point number in many variants:

"25.43E2"^^<http://www.w3.org/2001/XMLSchema#float>

"254.3E1"^^<http://www.w3.org/2001/XMLSchema#float>

When an RDFResource object is read from the file, it is encoded to a

unique internal format. Many different string representations will encode to

the same internal object, thus making the numbers above equal.

4.2. Encoders and decoders

In order to integrate the wrapper as seamless as possible, literal types are

encoded into internal Amos II objects. This approach allows to use all the

built in Amos II functions for the custom types.

To allow easy addition of new types a type map table is used. This table

contains an RDF datatype URI represented as a string and a kind value

together with pointers to encoder and decoder functions. One can easy find

required encoder and decoder functions by the kind and the datatype.

The type table is an array of following C struct.

struct rdfr_type

{

 int kind;

 oidtype (*encodefn)(oidtype);

 oidtype (*decodefn)(oidtype);

 char *dt_uri;

};

The first field in the struct rdfr_type holds the identifier for the kind of

an object for which the encoder and decoder is associated. The last field

dt_uri, which is a C string, corresponds to the datatype. Either of these

fields depending what data is available will be used to match encoder and

decoder to the given object.

The second and third fields are pointers to the encoder and decoder

functions. The encoder function has to accept an object containing string

representation of data, encode it to an internal Amos II object, and return a

handle to that object. The decoder function has to do the opposite, i.e. to

accept handle to an object and return a handle to string containing the string

representation of a given object.

The index of the type table map array is only used internally to distinguish

between different combinations of kind, encoder/decoder functions and

datatypes.

18

Following is the table that provides encoder and decoder functions for URIs

and literals with float and date datatypes.

rdfr_type_t rdfr_type_table[RDFR_TYPES_COUNT] =

{

 {0, e_uri, d_uri, NULL},

 {3, e_fl, d_fl, "http://www.w3.org/2001/XMLSchema#float"},

 {4, e_dt, d_dt, "http://www.w3.org/2001/XMLSchema#date}

};

For example, when creating new RDFResource object like this:

rdfr(3, “22.2”, “”, nil);

the datatype is not needed. The type map table will be searched for the kind

which is 3. Then e_dt function will be executed to encode string

representation of number to internal object REAL.

The introduction of a new type to the type map table basically means

writing encoder and decoder functions for the new type and adding them to

the type map table. This makes the desing easily extensible.

Encoded object is also used for comparison and hashing. Numbers cannot

be hashed or compared using their string representations. The same number

can have many different string representations.

Another advantage of the type map table is that it allows to dynamically

call special routines whenever a new RDFResource is created. For example

specifing encoder and decoder functions for a URI kind means that these

functions will be executed whenever new URI is created. In such case one can

easily implement a hierarchial type structure with the base type of URI. Every

such custom created element should be appropriately initialized in decoder or

encoder functions by setting its decoded, encoded and kind values.

4.3. External AmosQL functions

There are C functions defined to create and manipulate RDFResource

objects. These functions are also defined as external Amos II functions [10]

implemented in C. Every such external function must be registered to Amos II

system using a_extimpl() C function, which takes a new function name to be

used in AmosQL as a first parameter and a C function definition as a second

parameter.

a_extimpl("rdfr-data", rdfr_data_fn);

Registered external functions also need to be defined in AmosQL before

usage. This is achieved using regular AmosQL syntax in a script for defining

19

new functions and adding special implementation specification which says

that this new function is external:

create function rdfr_data(RDFResource n)->Object as foreign

"rdfr-data";

The foreign function ntriples(Charstring filename) is the main

function used to parse N-Triples streams and emit RDFResources to Amis II.

First the C implementation has to know the actual parameters passed to the

function. The parameters are retrieved using special functions provided by the

foreign function interface. In order to get a string passed as the first parameter

the a_arg function call should be used:
oidtype a_arg(a_callcontext cxt, int num)

Then ntriples function calls NTRparse() which is a parser generated C

function. When this function has done executing three global variables

RDFResource1, RDFResource2 and RDFResource3 will point to the RDF

resources extracted from the triple.

Finally the function ntriples emits RDFResource objects into the Amos

II system.

a_bind(cxt, 2, RDFResource1);

a_bind(cxt, 3, RDFResource2);

a_bind(cxt, 4, RDFResource3);

a_result(cxt);

A result tuple is available in the Amos II system for further processing as

soon as it has been emitted, before the foreign function is done executing.

All external functions to be used in AmosQL are defined in an initializing

AmosQL script file. Some of the functions are special, multi-directional

functions. The defined multi-directional function rdfr is used either to create

new RDFResource objects using the data given as parameters or to extract

data from a given RDFResource object.

create function rdfr(Integer kind, Object data, Charstring

lang, Object datatype)->

 RDFResource n as multidirectional

 ("bbbbf" foreign "rdfrbbbbf")

 ("ffffb" foreign "rdfrffffb");

The special signature bbbbf means that if the first four parameters are

known (bound) and the last parameter (the result) is to be computed (free),

then the foreign function in C with the name rdfrbbbbf should be called. If

four parameters are unknown and the result is known (ffffb), then the foreign

function in C with the name rdfrffffb is called.

20

4.4. External ALisp functions

ALisp functions can also be defined as external functions implemented in

C. Such external ALisp functions are registered using the C function

extfunctionN(), which takes takes a new function name to be used in ALisp as

a first parameter and a C function definition as a second parameter. The N

specifies how many arguments the registered function is going to take.

extfunction1("rdfr-data", rdfr_data_alisp_fn);

There are several external ALisp functions defined in the wrapper. Most of

them provide the same functionality as the corresponding AmosQL foreign

functions. Alisp foreign functions are often used in a testing and developing

environments due to the ability to write scripts, which can be very powerful.

The testing script which tests the integrity of the wrapper and the Amos II

system is written in ALisp. This script can be easily extended to cover and

test more wrapper functionality as the wrapper gets more complicated.

4.5. The lexer

The Flex lexer tokenizes given input by regular expression rules. It looks

for patterns which represent data needed for the parser. These patterns are:

 strings representing URI‘s

 strings representing literals

 strings representing names of anonymous nodes

All of the above strings start and end with a special characters mentioned in

section 2.1. If any of these characters are found, a signal is sent to the parser

by returning a value representing which character has just been found. If any

of mentioned strings are found, they are copied into a global buffer, which is a

global array and is shared among the lexer and the parser.

The lexer also utilises states. States are needed because different types of

strings can contain different kinds of characters. If a character is found which

is a start of a one kind of string, then the lexer enters into the defined state and

scans only for a characters from a specified set. When a character which

denotes the end of a string is found, the lexer enters into its initial state.

4.6. The parser

The parser calls the lexer function as long as it doesn‘t report end of file.

The lexer function returns values that represent the tokens that have been

found. Whenever the parser has all the data representing a resource it creates

an RDFResource object. The newly created object is stored until three of the

RDFResource objects are created forming a triple. The triple is emitted to the

Amos II kernel and the memory is freed afterwards.

21

5. Evaluation

There N-Triples wrapper should conform to the N-Triples stream format

with good performance.

5.1. Conformance

The N-Triples wrapper successfully parsed the test file from official RDF

tests page [11]. Therefore, if a given file contains correct N-Triples, the parser

will successfully parse it.

The wrapper is also able to output a given triple stream to an output stream,

for example a regular file.

The output files were compared with the input files to verify that reading

and printing of RDF triples are compatible. All the tests were automatically

performed by test scripts. These scripts can be executed whenever something

has been changed in Amos II or in the wrapper itself to test if the N-Triples

wrapper is still compatible with the Amos II system.

5.2. Performance

The N-Triples wrapper has good performance. It parses 120 000 triples in

11 seconds, i.e. about 11 000 triples per second. Tests indicate that average

data read speed is 1.13 megabytes per second. This test was performed on a

computer with Intel Pentium(R) processor running at 2.0 GHz.

6. Summary and conclusions

The N-triples wrapper provides a query interface to RDF linked data. It

makes possible to query any data source producing data in N-triples format. It

is for the user to decide and explore opportunities that the Semantic Web

provides when using this wrapper.

The N-Triples project has evolved from being just a simple N-Triples

parser to a flexible and scalable RDF utility. The wrapper offers seamless

integration with Amos II by encoding data into internal system formats. It

allows not only to parse and search N-Triple streams, but also to create own

RDF resource data types and output them as streams.

The project can be continued by providing compatibility for new literal

data types. This can be easily achieved by expanding the type mapping table.

The project can also be a reference for upcoming projects as an example of

how external AmosQL and ALisp interfaces can be used. It also provides

quite a few examples how AStorage system is used with custom objects.

22

7. Examples

The wrapper can be used in many situations. To select the subject

RDFResource object from a file of N-Triples the following query could be

used:

select v[2] from Vector v

 where v in ntriples("nt/w3.nt");

The data of any RDFResource object can also be accessed in the same

query while reading a file. In order to do so, one has to use functions defined

in the wrapper which allow to access different kind of properties of

RDFResource objects, for example:

select rdfr_data(o)

 from RDFResource s, RDFResource p, RDFResource o

 where <s, p, o> = ntriples("nt/test.nt");

RDFResource objects can be created not only from streams. The following

example demosntrates also the multi-directional function capabilities.

select data + data

 from Integer kind,

 Real data,

 Charstring lang,

 Object datatype

 where rdfr(kind, data, lang, datatype) =

 rdfr(1, "22.2", "",

 rdfr(0, "http://www.w3.org/2001/XMLSchema#decimal", "", "")

);

Such a query would return 44.4. Notice how the string value was decoded

to a number and the plus operation was executed not on the string

representation but on the internal object, thus returning correct result.

8. References

1. Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour

Katchaounov, Tore Risch, Martin Sköld, Erik Zeitler. Amos II Release

12 User's Manual. [Online] November 3, 2009.

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html.

2. World Wide Web Consortium. Sematic Web. [Online]

http://www.w3.org/standards/semanticweb/.

3. Tim Berners-Lee. Notation3 (N3) A readible RDF syntax. [Online]

http://www.w3.org/DesignIssues/Notation3.

http://www.w3.org/standards/semanticweb/
http://www.w3.org/DesignIssues/Notation3

23

4. Dave Beckett, Art Barstow. N-Triples. [Online]

http://www.w3.org/2001/sw/RDFCore/ntriples/

5. Tore Risch. ALisp v2 User’s Guide. [Online] September 27, 2009.

http://user.it.uu.se/~torer/publ/alisp2.pdf.

6. World Wide Web Consortium. RDF Test Cases. [Online] February 10,

2004. http://www.w3.org/TR/rdf-testcases/#ntrip_grammar.

7. Free Software Foundation, Inc.,. Bison - GNU parser generator. [Online]

http://www.gnu.org/software/bison/.

8. The Flex Project. flex: The Fast Lexical Analyzer. [Online]

http://flex.sourceforge.net/.

9. Tore Risch. AStorage a main-memory storage manager. [Online]

September 3, 2009. http://user.it.uu.se/~torer/publ/aStorage.pdf.

10. Tore Risch. Amos II External Interfaces. [Online] May 31, 2007.

http://user.it.uu.se/~torer/publ/external.pdf.

11. World Wide Web Consortium. Test file with a variety of legal N-

Triples. [Online] October 6, 2003. http://www.w3.org/2000/10/rdf-

tests/rdfcore/ntriples/test.nt.

12. World Wide Web Consortium. RDF/XML Syntax Specification

(Revised). [Online] February 10, 2004. http://www.w3.org/TR/REC-rdf-

syntax/

9. Table of figures

Figure 1. Architecture of wrapper ... 11

Figure 2. One line tokenized by the lexer. Grey boxes indicate tokens

needed for the parser. .. 11

Figure 3. RDFResource type hierarchy. .. 12

http://www.w3.org/2000/10/rdf-tests/rdfcore/ntriples/test.nt
http://www.w3.org/2000/10/rdf-tests/rdfcore/ntriples/test.nt

