
Design and Modelling of a
Parallel Data Server

for Telecom Applications

Mikael Ronström

Ericsson Utveckling AB

Ericsson Utveckling AB 1997, All Rights Reserved

- I -

Acknowledgements

The reason that this thesis is written is the inspiration from the Lord and it would not
have been possible to conclude without a constant flow of inspiration from the Lord.
The inspired teachings of the Church of Jesus Christ of Latter-Day Saints have
helped me find a balance in life between family, church activities and research work.
The constant support of my wife Marianne and her love made it worthwhile to per-
form this work.

I am grateful to Ericsson Telecom AB and Ericsson Utveckling AB and especially
then to my department manager Göran Ahlforn who also had the vision of the future
importance of databases in the telecom network as well as to my section managers
Martin Hänström, Jan Gunnelin and Hans Alberg and my department manager Klaus
Wildling, for the time I was granted to do this work. Also to NUTEK for the eco-
nomic support that made this possible. A large part of this work was performed with-
in the RACE MONET and RACE MONETII projects during 1992-1995.

I am grateful to my advisor Professor Tore Risch at the Department of Computer and
Information Science at Linköping University and also to Professor Anders Martin-
Löf at the Mathematical Statistics-institution at the University of Stockholm.

Others who have provided help and inspiration in this work that deserve mentioning
are Svein-Olaf Hvasshovd, Oddvar Risnes and Øystein Torbjørnsen at TeleNor Re-
search in Trondheim, Lars Gauffin at the Royal Institute of Technology in Stock-
holm and Mats Olstedt and Thomas Muth at Ericsson. The different DBMS design
teams at Ericsson have provided ideas that have been helpful.

The master thesis students I have worked with as part of this research, Micael Lars-
son, Shahid Malik, Daniel Johansson, Houshang Shirvanpour, Massoud Mowla,
Björn Avnborg, Patrik Johansson, Arne Eriksson, Joakim Larsson, Ataullah Da-
baghi, Gustaf Andersson, and Christer Buskas are also worthy of mention. Also Dan-
iel Högberg and Andreas Hersen have contributed to parts of this research. David Ja-
kobsson made valuable contribution to the structure of the tuple storage. Also I have
had help of a number of practising students in 1995 and 1996.

Finally an acknowledgement to my mother who helped me take my first steps into
this life and my father who taught me to reach for the stars and never be satisfied until
I reach them. I am also grateful to my sister, Ann-Charlotte Oden who made the il-
lustration on the cover, and to all of my family both living and dead to whom I ded-
icate this work.

- II -

Abstract

Telecom databases are databases used in the operation of the telecom network and
as parts of applications in the telecom network. The first telecom databases were
Service Control Points (SCP) in Intelligent Networks. These provided mostly
number translations for various services, such as Freephone. Also databases that
keep track of the mobile phones (Home Location Registers, HLR) for mobile tele-
communications were early starters. SCPs and HLRs are now becoming the plat-
forms for service execution of telecommunication services. Other telecom databases
are used for management of the network, especially for real-time charging informa-
tion. Many information servers, such as Web Servers, Cache Servers, Mail Servers,
File Servers are also becoming part of the telecom databases.

These servers have in common that they all have to answer massive amounts of rath-
er simple queries, that they have to be very reliable, and that they have requirements
on short response times. Some of them also need large storage and some needs to
send large amounts of data to the users.

Given the requirements of telecom applications an architecture of a Parallel Data
Server has been developed. This architecture contains new ideas on a replication ar-
chitecture, two-phase commit protocols, and an extension of the nWAL concept
writing into two or more main memories instead of writing to disk at commit. The
two-phase commit protocol has been integrated with a protocol that supports net-
work redundancy (replication between clusters).

Some ideas are also described on linear hashing and B-trees, and a data structure for
tuple storage that provides efficient logging. It is shown how the data server can han-
dle all types of reconfiguration and recovery activities with the system on-line. Fi-
nally advanced support of on-line schema change has been developed. This includes
support of splitting and merging tables without any service interruption.

Together these ideas represent an architecture of a Parallel Data Server that provides
non-stop operation. The distribution is transparent to the application and this will be
important when designing load control algorithms of the applications using the data
server. This Parallel Data Server opens up a new usage area for databases. Telecom
applications have traditionally been seen as an area of proprietary solutions. Given
the achieved performance, reliability and response time of the data server presented
in this thesis it should be possible to use databases in many new telecom applica-
tions.

- -

Acknowledgements ... I

Abstract .. II

 I: Introduction .. 1

1 Introduction .. 2

1.1 Research Method ... 2
1.2 Application Study .. 2
1.3 Requirements on Architecture of Telecom Databases 3

1.3.1 Reliability .. 3
1.3.2 Performance .. 3
1.3.3 Delays ... 3
1.3.4 Storage Types ... 3
1.3.5 Object Orientation ... 4
1.3.6 Triggers ... 4
1.3.7 Indexing .. 4
1.3.8 Persistent Locks .. 5
1.3.9 Counters ... 5

1.3.10 Complex Queries .. 5
1.3.11 Create-Only Tables ... 5

1.4 Major Features of Parallel Telecom Data Server 5
1.5 Technical Study ... 6
1.6 Summary of Contributions .. 8
1.7 System Design ... 9
1.8 Thesis Outline .. 9

 II: Applications of Telecom Databases 12

2 Applications and their Characteristics 13

2.1 Telecom Applications ... 13
2.1.1 Service Network .. 14
2.1.2 Information Network .. 18
2.1.3 Charging Network ... 19

2.2 Mobile Telecommunications .. 19
2.2.1 Conceptual Schema of UMTS .. 21
2.2.2 UMTS Procedures .. 22
2.2.3 Session Management ... 24
2.2.4 User Registration Management .. 27
2.2.5 Attach/Detach .. 28
2.2.6 Call Handling .. 28
2.2.7 Handover .. 30
2.2.8 Location Update .. 30
2.2.9 Advice-of-Charge .. 31

2.2.10 Service Profile Management ... 31
2.2.11 UMTS Characteristics .. 31
2.2.12 Conclusion .. 33

2.3 News-on-demand ... 34
2.3.1 News-on-demand Characteristics .. 36

2.4 Multimedia Email ... 39
2.4.1 Multimedia Email Characteristics ... 41

- -

2.5 Event Data Services .. 44
2.5.1 UMTS Event Records ... 45
2.5.2 News-on-demand Event Records .. 46
2.5.3 Email Event Records .. 46
2.5.4 Characteristics of the Event Data Service .. 46

2.6 Genealogy Application ... 49
2.6.1 Conceptual Schema ... 51
2.6.2 Traffic Model .. 53
2.6.3 Transactions types .. 53

2.7 Reliability and Availability in Telecom Databases 56
2.7.1 Definitions ... 56
2.7.2 Empirical Studies .. 56
2.7.3 Module Failure Rates ... 57
2.7.4 Hardware Approaches .. 58
2.7.5 Software Approaches ... 58
2.7.6 Transaction Availability .. 59
2.7.7 Conclusion .. 59

2.8 Conclusions on Architecture of Telecom Databases 60

3 Telecom Database Benchmarks .. 63

3.1 Formal Benchmark Definitions ... 63
3.2 UMTS Benchmark .. 65

3.2.1 Data Definition ... 65
3.2.2 Full-scale Benchmark Definition ... 68
3.2.3 Simple UMTS Benchmark Definition .. 68

3.3 Table Look-up Benchmark ... 69
3.3.1 Data Definition ... 69
3.3.2 Full-scale Benchmark Definition ... 69
3.3.3 Small-scale Benchmark Definition .. 70

3.4 News-on-demand Benchmark .. 70
3.4.1 Data Definition ... 70
3.4.2 Benchmark Definition ... 71

3.5 Email Server Benchmark .. 71
3.5.1 Data Definition ... 72
3.5.2 Full-scale Benchmark Definition ... 73
3.5.3 Simple Email Benchmark Definition ... 74

3.6 Charging DataBase Benchmark .. 74
3.6.1 Data Definition ... 74
3.6.2 Full-scale Benchmark Definition ... 76
3.6.3 Small-scale Benchmark Definition .. 78

3.7 Telecom Database Benchmark ... 78
3.8 Conclusion of Part 2 .. 78
3.9 Further work .. 78

 III: Architecture of a Parallel Data Server 79

4 Basic Architectural Decisions ... 82

4.1 Parallel Database Architectures .. 82
4.1.1 Shared memory ... 82
4.1.2 Shared disk .. 83
4.1.3 Shared nothing .. 83

- -

4.1.4 Hybrid Architectures ... 84
4.1.5 Conclusion .. 84

4.2 Client-Server Technology ... 85
4.2.1 Conclusion .. 86

4.3 Server Architecture .. 87
4.4 Session Database .. 89
4.5 Network Redundancy ... 90
4.6 Interface Types .. 90

4.6.1 Interface of the Data Server .. 91
4.6.2 Interface of the Query Server .. 91
4.6.3 Interface of the Internal Network .. 91
4.6.4 Interface to External Networks .. 92
4.6.5 Interface of the Application Servers ... 93
4.6.6 Interface of the Management Servers ... 93

4.7 Transaction Concepts .. 93
4.7.1 Flat Transactions ... 93
4.7.2 Flat Transaction with Savepoints .. 94
4.7.3 Distributed Transactions .. 94
4.7.4 Replica Handling in Distributed Transactions 94
4.7.5 Conclusion .. 95

4.8 Theory of Concurrency Control ... 95
4.8.1 Transaction Dependencies .. 96
4.8.2 Locking Theory .. 97
4.8.3 Degrees of Isolation .. 98
4.8.4 Other Isolation Concepts ... 99
4.8.5 Conclusion .. 99

4.9 Log handling .. 99
4.9.1 Log Information .. 101
4.9.2 Log Handling in Distributed Systems ... 102
4.9.3 Conclusion .. 103

4.10 Two-Phase Commit ... 103
4.10.1 Transfer-of-Commit ... 104
4.10.2 Read-Only Commit Optimisation .. 104
4.10.3 Linear Commit Optimisation .. 104
4.10.4 Non-blocking Commit Coordinator ... 104
4.10.5 Conclusion .. 105

4.11 Archive Copy Production .. 106

5 System Architecture of the Parallel Data Server 107

5.1 Replication Structure ... 107
5.1.1 Local replication structure .. 107
5.1.2 Global replication structure .. 110
5.1.3 Local Fragment states .. 111
5.1.4 Related Work ... 113
5.1.5 Conclusions .. 113

5.2 Reconfiguration and Recovery Protocols and the Relation Between Them
114
5.2.1 Information in a Parallel Database ... 114
5.2.2 Replication of Information .. 115
5.2.3 Handling of Node Failures ... 116
5.2.4 Handling System Failures .. 116

- -

5.2.5 Handling of Add Node .. 117
5.2.6 Handling of Drop Node ... 117
5.2.7 Handling of Time-out Events ... 117
5.2.8 Handling of Overload Events .. 118
5.2.9 Handling of Schema Changes .. 119

5.2.10 Other Protocols .. 119
5.3 Schema Definition .. 119

5.3.1 Tuple Keys ... 119
5.3.2 Schema entities ... 120
5.3.3 Fragmentation of Tables .. 120

5.4 Distributed Indexes .. 121
5.4.1 Secondary Indexes ... 121
5.4.2 Related Work ... 123

6 User Transaction Protocols .. 124

6.1 Normal Commit Phase handling ... 124
6.1.1 TPC-B transaction ... 125
6.1.2 Simple Write Optimisations ... 126

6.2 Handling Node Failures in Commit Phase ... 127
6.2.1 Failure of a Data Node ... 127
6.2.2 Failure of the Transaction Coordinator .. 128
6.2.3 Special Error Situations .. 129

6.3 Handling Prepare-to-Commit Requests from Application 130
6.4 Referential Integrity and Secondary Indexes 131

6.4.1 Update of Secondary Index ... 133
6.4.2 Referential Constraint ... 133
6.4.3 Related Work ... 134

6.5 Read Queries ... 134
6.5.1 Simple Read Transactions .. 134
6.5.2 Read-Only Transactions .. 135

6.6 Related Work .. 135
6.7 Conclusion ... 135

7 On-line Recovery and Reorganisation Protocols 137

7.1 Basic Protocols .. 137
7.1.1 I-am-alive Protocol .. 137
7.1.2 State Transition Protocol .. 138
7.1.3 Node Fail Protocol .. 139
7.1.4 Copy Fragment Protocol .. 139
7.1.5 Create Global Checkpoint Protocol .. 140

7.2 Replica Handling Protocols ... 141
7.2.1 Promote Backup Replica to Primary Replica 141
7.2.2 Create Backup replica .. 142
7.2.3 Create a Stand-by Replica .. 142
7.2.4 Switch Primary Replica and Backup Replica 143

7.3 Start Node Protocol ... 143
7.3.1 Create Dictionary Information ... 143
7.3.2 Create Distribution Information ... 143

7.4 Join/Split Fragment .. 144
7.4.1 Split Algorithm .. 145
7.4.2 Join Algorithm .. 145
7.4.3 Split/Join Coordinator ... 146

- -

7.4.4 Node Failures during Split/Join Process ... 146
7.5 Related Work .. 146

8 Protocols to Implement Global Replication 148

8.1 Protocol between Telecom Databases .. 148
8.2 Adaption of Transaction Protocols for Global Replication 149

8.2.1 Commit Phase in Primary System .. 150
8.2.2 Transaction Handling in Backup System .. 152
8.2.3 Conclusions .. 152

8.3 Handling Processor Node Failures Using Global Replication .. 153
8.3.1 Handling Node Failures in Backup System .. 153
8.3.2 Handling Failure of Transaction Coordinator in Backup System 154
8.3.3 Failure of Primary Replica in Primary System 154
8.3.4 Failure of Primary Replica in Backup System 155
8.3.5 Failure of Primary Replica in Primary and Backup System 155

8.4 Global Recovery Protocols .. 155
8.4.1 Restart Backup System from Primary System 155
8.4.2 Promote Backup System to Primary System 156
8.4.3 Switch Primary System and Backup System 156

8.5 Related Work .. 157

9 Crash Recovery Protocols ... 158

9.1 System Restart .. 159
9.1.1 Find Global Checkpoint to Restart from .. 159
9.1.2 Restore Schema Information .. 159
9.1.3 Restore Fragment Information .. 160
9.1.4 Use of Schema Information during Crash Recovery 163
9.1.5 Archive Copies .. 163

9.2 Restarting a Fragment ... 163
9.2.1 Handling the Logical Fragment REDO Log .. 165
9.2.2 Creating Backup Replica from Stand-by Replica by Restarting Fragment 166

9.3 Production of a Local Checkpoint ... 166
9.3.1 Local Logging Method .. 167
9.3.2 nWAL Method .. 168
9.3.3 Primary Log Node Failure .. 168
9.3.4 Backup Log Node Failure .. 169
9.3.5 Global System Checkpoint .. 169

9.4 Related Work .. 169

10 Schema Changes .. 171

10.1 Concepts of Schema Changes .. 171
10.1.1 Soft/Hard Schema Changes .. 171
10.1.2 Simple/Complex Schema Change ... 172
10.1.3 Simple/Complex Conversion Function .. 173
10.1.4 Summary .. 173

10.2 Handling of Schema Changes ... 173
10.2.1 Schema Version .. 173
10.2.2 Reading Schema Information by User Transactions 174
10.2.3 Execution of Simple Schema Change ... 174

10.3 Simple Schema Changes ... 175
10.3.1 Table Operations ... 175
10.3.2 Attribute Operations .. 176

- -

10.3.3 Index Operations ... 176
10.3.4 Foreign Key Operations ... 176

10.4 Complex Schema Changes ... 176
10.4.1 General Approach ... 177
10.4.2 Change Attributes ... 179
10.4.3 Add Index ... 179
10.4.4 Horisontal Split Table ... 180
10.4.5 Vertical Split Table .. 182
10.4.6 Horisontal Merge of Tables ... 184
10.4.7 Vertical Merge of Tables .. 185

10.5 Schema Changes in the Backup System ... 186
10.5.1 Schema Information in the Backup System .. 186
10.5.2 Log Channel of Schema Information ... 186
10.5.3 Simple Schema Changes .. 187
10.5.4 Complex Schema Changes ... 187

10.6 Remarks .. 187
10.7 Related Work .. 188
10.8 Conclusion ... 189

11 A new variant of LH*, LH3 .. 190

11.1 Handling of Hash Value Bits ... 191
11.2 Data Structure of LH3 ... 192
11.3 Copy Fragment Protocol ... 194

11.3.1 Alternative Solutions ... 194
11.3.2 Algorithm Descriptions ... 195

11.4 Detailed Data Description ... 197
11.4.1 Container Data .. 197
11.4.2 Element Data ... 198
11.4.3 Page Memory Handling .. 199
11.4.4 Element Split between Containers ... 201
11.4.5 Overflow Handling ... 201

11.5 Split and Join Handling .. 201
11.5.1 Local Bucket Split and Join ... 201
11.5.2 Fragment Split and Join ... 202

11.6 Lock Handling ... 202
11.7 Secondary Indexes .. 202

11.7.1 Unique Secondary Index .. 202
11.7.2 Non-unique Secondary Index .. 202

11.8 Handling of Physiological UNDO Log ... 202
11.9 Conclusion ... 203

12 A Compressed and Distributed B+tree, HTTP-tree 204

12.1 Compressed B+tree for Long Names ... 204
12.1.1 Searching the HTTP-tree ... 207

12.2 Memory Handling .. 209
12.3 Split/Merge of B+tree Fragments .. 209
12.4 Copy B+tree Fragment .. 209
12.5 Node Data Structure ... 210
12.6 Handling of Physiological UNDO Log ... 211
12.7 Related Work .. 211

- -

12.8 Conclusion ... 211

13 Data Structure for Tuple Storage .. 212

13.1 Recovery Support in Tuple Storage .. 212
13.1.1 Copy of Tuple Parts .. 213

13.2 Data Structure within a Tuple ... 214
13.2.1 Structure of a Tuple Header .. 215
13.2.2 Support of Various Data Types in a Tuple .. 216

13.3 Page Structure ... 218
13.3.1 Page Identifiers .. 218

13.4 Disk-based Attributes and Main Memory based Attributes 219
13.5 Handling of the UNDO Log .. 219

13.5.1 Changes of Tuple Structures .. 220
13.6 Special Handling of Very Large Attributes ... 221
13.7 Related Work .. 222
13.8 Conclusion ... 222

14 Modelling of a Parallel Data Server 224

14.1 Computer Architecture Used in Performance Modelling 224
14.2 Performance Comparisons .. 224
14.3 Performance of On-line Recovery .. 227
14.4 Performance of Crash Recovery ... 228
14.5 Conclusion ... 229

 IV: Conclusions and Future Work .. 230

15 Summary ... 231

15.1 Related Work .. 231
15.2 Achievements of This Thesis .. 233

15.2.1 Part 2 ... 233
15.2.2 Part 3 ... 234

15.3 Future Work ... 235

Abbreviations ... 237

Glossary ... 239

References ... 240

- 1 -

 I: Introduction

Ericsson Utveckling AB 1997, All Rights Reserved

- 2 -

1 Introduction

The aim of this research is to study the DBMS of telecom databases. Many times in
the text of the thesis, this DBMS will be referred to as the telecom database.

The definition of telecom databases in this thesis is: Data storage nodes used for op-
eration of the telecom network or used in applications that are part of the telecom
network.

1.1 Research Method

When the research for this thesis started it had a very general objective: Find ways
to build efficient database servers for current and future telecom applications. It
should be efficient at storing, searching and reading data. It was not decided where
the focus of the research would be.

To find a research focus two work items were started. The first was an application
study; this was beneficial to understand the requirements of telecom databases. The
second was a technical study to understand where the current systems have their ma-
jor bottlenecks.

As a result of these studies the actual research work was performed. This started with
development of the essential algorithms needed in databases with very high reliabil-
ity. During the development of these algorithms a platform was also developed. Af-
ter developing most of the essential algorithms a system architecture was developed.

Currently a platform is being developed based on the system architecture and most
of the algorithms developed in this thesis.

1.2 Application Study

A large part of the application study was performed by participating in a RACE
project called MONET. This project had the objective to perform pre-standard re-
search on how to build third generation systems (UMTS). The main use of databases
in the project was in Service Control Points that handles services, locations and au-
thentication of users.

Studies were also performed on future real-time charging applications and future In-
formation services. In this area it was more difficult to acquire estimates on the use
of databases. The reason is the uncertainty of what future applications will be. The
idea that was used then was to perform “guestimates” based on that use of future in-
formation services will reflect current use of mail, TV, newspapers, radio and so
forth.

- 3 -

It was evident during the application study that requirements on very high reliability
and response times in the order of 1-20 ms was needed.

The application study was also converted into a set of benchmarks that will reflect a
number of important telecom applications.

1.3 Requirements on Architecture of Telecom Databases

From the study of various applications of telecom databases we can draw certain
conclusions about the requirements on a telecom database.

1.3.1 Reliability

The availability class of the telecom databases should be 6. This means that the un-
availability must be less than 30 seconds per year. This means that no planned down-
time of the system is allowed.

1.3.2 Performance

Typical future performance requirements on telecom databases are 10-20,000 re-
quests per second. Most of these requests are either write or read a single record.
Many applications also need network redundancy to handle earthquakes and other
catastrophes.

1.3.3 Delays

A short delay of read operations is particularly crucial, but also write operations must
have a short delays. Typical future delay requirements are 5-15 ms [Ronstrom93].

The impact of the delay requirement is that disk writes can not be used in the trans-
actions. This means that the availability requirements must be handled in some other
way. In this thesis we will study a method where several main memories are used to
ensure high availability. The probability of two processor nodes failing at the same
time is very small. General power failures can be handled by using battery backups
to ensure that log information can be sent to disk before the battery runs out of ener-
gy.

1.3.4 Storage Types

Most of the data studied can be kept in main memory. There are also applications
with great needs of larger data sets and these will need disks and might even need
some form of data juke-box. Disk storage is needed for the documents in the news-
on-demand application, the email bodies with attached files, and the set of scanned

- 4 -

objects in the genealogy application. These are all examples of BLOBs. It is further-
more necessary to store event records on disk. This is actually the only exception in
the applications of small tuples that need to be stored on disk. If BLOBs are attributes
then obviously it must be possible to separate attributes that are stored in main mem-
ory from attributes that are stored on disk in a table. Another solution could be that
BLOBs are stored in a special BLOB table that is stored on disk.

Main memory data can also be found in the email server, the genealogy application
and the news-on-demand application. In these cases they are used to store control
structures, indexes and descriptive information about BLOBs.

A requirement in the charging database is the possibility to insert a tuple into main
memory and then specifying that it should move to disk at some later time, either by
a timer or by specific request. This could also be achieved by an insert into a main
memory table, followed by a delete and an insert into a disk table.

1.3.5 Object Orientation

From the charging database and genealogy database we can draw conclusions that
many of the requirements on object-oriented databases are very relevant. We need
the possibility to perform queries on tables that contains several types of objects
based on a common base class. We also need methods as first class attributes. The
genealogy database needs many of the complex data structures provided by the ob-
ject-oriented model. The primary keys of a table can be both an application key, like
a telephone number, or an object identifier.

1.3.6 Triggers

Almost all applications have a need of being informed when relevant events take
place in the database. This means that a good support of a trigger mechanism should
be included. To simplify application development there should also be good support
for referential integrity constraints that should be automatically maintained.

1.3.7 Indexing

A good support of indexes is needed, especially indexes for various telecom address-
es, http-addresses, file names and so on. Both primary indexes and secondary index-
es are needed.

- 5 -

1.3.8 Persistent Locks

From another study of an application of a telecom database, a Cache Server for
WWW[JOH97], some requirements for persistent locks were found. The problem is
that sometimes the application needs to lock tuples for longer time than the transac-
tion. This means that the database must be able to handle locks on tuples which are
not involved in transactions. These locks must also be persistent over crashes.

1.3.9 Counters

The Cache Server also needs to maintain persistent counters and this is most likely
also needed by many of the other applications. It is important that these counters are
not handled by the normal concurrency control protocol. This would create a hot-
spot which would degrade performance.

1.3.10 Complex Queries

The support of complex queries is not found to be among the most important aspects.
The charging database does, however, require some of this. The charging database
has the benefit of not being continously updated, thereby concurrency control for
large queries is not a problem.

1.3.11 Create-Only Tables

It can also be noted that many disk-based applications are create-only applications.
Deletes can occur but then usually whole tables or large parts of a table are deleted
at a time. This can be used to simplify recovery and transaction handling for these
applications.

1.4 Major Features of Parallel Telecom Data Server

The requirements lead to the following significant features of a Telecom Database:

1) Scalability

Telecommunication systems are sometimes very small (e.g. 10-300 users) and some-
times very large (several million users). A database for telecommunication applica-
tions must therefore be scalable both upwards and downwards. Scalability down-
wards is achieved by portability to various platforms. This is not covered in this the-
sis but is the aim of the distributed and real-time run-time system described in

- 6 -

[Ronstrom97], [Ronstrom97a]. Since the data server described in this thesis can be
implemented on a portable run-time system, the data server is as portable as the run-
time system is.

2) Security against different kinds of catastrophes

In times of catastrophes such as earthquakes, storms and so forth it is actually even
more important that the telecommunication network does not fail. Therefore a data-
base system for telecommunication applications should be secure against different
kinds of catastrophes.

3) Very high availability

A telecommunication network must be always available. A lost telephone call can
sometimes be a very serious matter. Databases are often centralised and it is even
more crucial for them to have a very high level of availability.

4) Very high reliability

Transactions which have been committed must not be lost. A transaction could be
very critical to the operator and must not be lost. Also users of the telecom network
are not likely to accept that the system forgets transactions.

5) Load Regulation and Overload Control

All telecom networks are built with the assumption that not all subscribers are active
at the same time. This means that overload situations can always occur. It is impor-
tant that databases also have a scheme to handle overload situations. This is not cov-
ered in this thesis and is an item for future work.

6) Openness

This will not be discussed in this thesis but is certainly a very important requirement.
It is necessary to be able to reuse code, tools, platforms, and so forth developed by
others to enable quick development of new services.

1.5 Technical Study

The technical study consisted of finding the bottlenecks in the computer and com-
munication systems, and to find solutions of how to overcome them. Bottlenecks
may occur anywhere in the design of a system. They can occur in some software
parts where code can be unoptimised and data usage can be such that utilisation of
cache memories is bad. There can even be problems with instruction caches where

- 7 -

the instructions of the DBMS do not fit well in the cache memories. The operating
system can also become a bottleneck if it is used in the wrong way. E.g. the overhead
to switch processes, disk I/O handling and communication handling can easily be-
come the main source of performance bottlenecks. Actually in a DBMS executing
TPC-B and TPC-C benchmarks, it has been shown that they spend 40-50% of their
time executing in the operating system [FLAN96]. Yet other bottlenecks can occur
in the electronic systems packaging, which could be due to insufficient number of
I/O pins in a package, or because of too high delays in communications on a Printed
Wiring Board.

To find solutions to these problems it is necessary to study software optimisations,
data structures using cache memories in a careful manner and ways to achieve better
usage of instruction caches. How to avoid excessive usage of the operating system
is another important feature.

All these parts were studied initially in this research. The conclusion was that the ma-
jor bottlenecks are found in:

1) Excessive usage of the operating system for communication between processes in
the operating system.

2) Excessive usage of communication protocols implemented in operating system
software.

3) Excessive usage of disk I/O implemented in operating system software.

4) Bad behaviour of instruction caches[CVET96].

5) Bad behaviour of data caches[CVET96].

6) Excessive use of disk writes in update transactions.

An interesting observation is that most of the major problems were not found in the
DBMSs. The major bottlenecks were found in the heavy use of operating system
services. These operating systems were not designed with databases as the prime ap-
plication. This is not a new result, it was also found in [Stonebraker81].

A result of this observation was that a platform development was started. This is not
reported in this thesis [Ronstrom97a], [Ronstrom97]. The main idea in this platform
development is to build a platform for the database such that the database could be
developed using a modular structure without interfering with the operating system
any more than absolutely needed. This platform development solves the problems of
items 1), 2), and 4), while 3) is not attacked. There are currently no products that pro-
vide the possibility to handle 3).

- 8 -

Bottleneck 5) have been covered by development of two new index structures and
development of a data structure for tuple storage which is reported in this thesis. Bot-
tleneck 2) and 6) have been covered by development of a new two-phase commit
protocol. The solution to bottleneck 2) has inspired the development of the stand-by
replica which is reported in this thesis.

The requirements on very high reliability using DBMSs in the application study
found a number of open research areas. The reliability support in the DBMS was an
important research item which is covered in this thesis.

The requirement on response time found in the application study have also been han-
dled by the platform development.

The hardware development and in particular the processor development is progress-
ing with rapid speed. This was not a bottleneck and thus was not included in the re-
search. This area was mainly studied to find parameters of future performance mod-
elling of telecom databases. Also the hardware development have an effect on the
software design and therefore it is also important to study this area.

1.6 Summary of Contributions

The major results are the following:

l A new data structure in pages that makes it possible to avoid log-
ging the logical UNDO parts without sacrificing any flexibility in
writing pages to disk. It uses the fact that an action-consistent
checkpoint is produced and thus a copy of changed parts can be
saved in the tuple storage as UNDO information.

l For reliability even in extreme situations a two-level replication
scheme was developed. The first level of replication is between
machines that are located in physical vicinity of each other. The
second level is used between systems that are located at a large dis-
tance from each other. [KING91] provided much input to this
work. The major new work here is to integrate the algorithms in
[KING91] into a new two-phase commit algorithm in an efficient
manner. The proposed handling of replication and consistency
within a system and between systems is very flexible and can
sometimes even differ on an attribute level.

l Another example which is covered in this thesis is the algorithm
used for on-line schema changes. This algorithm makes it possible

- 9 -

to split and merge tables both horisontally and vertically without
stopping the system. These changes are also maintained with two
levels of replication. It is also shown how these changes can occur
even in presence of of foreign keys on the tables that are
split/merged.

l A new indexing technique, LH3, has been developed that extends
earlier work in scalable data structures, especially LH [Litwin80],
LH* [Litwin93a] and LH*LH [KARL96]. LH* and LH*LH are
distributed data structures which have been modified to exist in an
environment with replication and transactions. Also a new com-
pressed and distributed B+tree has been developed.

l The assumption of cheap communication cost achieved by new
technological development has consequences on the system archi-
tecture and therefore a set of new ideas have been developed in this
thesis on transaction protocols and replication strategies.

The research presented in this thesis focuses on the development of a reliable distrib-
uted DBMS. Much of this research is based on earlier research in distributed data-
bases and has extended a number of ideas from research at NTH in Trondheim
(Svein-Olaf Hvasshovd, Prof. Bratbergsengen among others). nWAL is an algorithm
developed in Trondheim that has been used as an inspiration in developing a new
transaction protocol. nWAL removes the need to flush the log buffer to disk at com-
mit, thereby making it possible to handle very many updates per second.

1.7 System Design

The next step after this thesis is to use the ideas presented here in a design. This work
has already started and is presented in [Ronstrom97a]. The design consists of plat-
form development, AXE Virtual Machine, and development of NDB Cluster, a par-
allel data server for telecom applications.

1.8 Thesis Outline

Chapter 2 describes a set of telecom applications and their use of databases. It also
includes a study of reliability and availability requirements.

Chapter 3 contains a set of benchmarks which has been developed based on the ap-
plication descriptions in chapter 2.

- 10 -

Chapter 4 contains an explanation of basic concepts which have been used to make
the architecturial decisions that underly the algorithms developed in this thesis. An
example of such a architecturial decision is to use a hybrid shared-nothing model. It
includes explanations of how databases can be used for more applications than cur-
rently.

Chapter 5 describes the system architecture. This includes a description of the repli-
cation structure, a description of all protocols used in the database and how they re-
late to each other and a discussion on what schema entities are handled. It includes
a new result in the area of replication structure. A stand-by replica is introduced to
be able to handle multiple failures cheaply.

Chapter 6 describes a new two-phase commit protocol and protocols for handling
reads, updates of indexes and so forth.

Chapter 7 describes a number of protocols needed for on-line recovery and reorgan-
isation of the database. It includes automatic creation of new replicas after node fail-
ures and automatic fragment split/merge when nodes are added/removed. Many ide-
as are based on [CHAMB92].

Chapter 8 describes how to support network redundancy in conjunction with the new
two-phase commit protocol. It is based on ideas from [KING91].

Chapter 9 describes the crash recovery protocols.

Chapter 10 describes how to handle on-line schema changes. It introduces soft sche-
ma change which previously only have been reported in conjunction with software
change. It also extends the possibilities of on-line schema changes to handle split and
merge of tables. Most results in this section are new.

Chapter 11 describes an extension of LH [Litwin80], LH* [Litwin93a] and LH*LH

[KARL96], the LH3 index. It is shown how this index is integrated with the handling
of replicas and also how it provides very few cache misses in accessing the index da-
ta.

Chapter 12 describes a new compressed and distributed B+tree, the HTTP-tree. It is
useful for storing indexes of file names, http-addresses, telephone numbers and so
forth. It is based on ideas developed in [Bayer77]. The method is favourable with
processors that have the capability to process hundreds of instructions in the same
time as accessing a buffer in main memory.

- 11 -

Chapter 13 describes the data structure used by the tuple storage. The tuple storage
is based on pages to enable one structure that both handles main memory and disk
data. Main memory data does however have much faster access to its pages through
a very fast page index. It is shown how ideas from main-memory databases can be
used to avoid the use of a logical UNDO-log.

Chapter 14 reports simulations on the new two-phase commit protocol and the new
replica structure. The parameters used in these simulations were based on an early
design effort for NDB Cluster [Ronstrom97a].

Chapter 15 reports the conclusions, the related work and future work.

- 12 -

 II: Applications of Telecom Databases

The aim of this part is to understand the requirements that future applications put on telecom data-
bases. To find this information it is necessary to investigate the possible applications and their use.
It is also necessary to make some predictions on how services are used, as well as how often and
in what manner. From this investigation the load on the telecom databases can be deduced. This
knowledge is of great value when designing the telecom database and also when analysing the per-
formance of the design.

The characteristics of some of the applications described in this part are studied. Traffic models
are derived and based on the traffic models, the flow of requests to the telecom databases are esti-
mated. From this, requirements on telecom databases are found. Based on these findings we also
go on to define a suit of benchmarks for telecom databases.

The major difficulty in finding requirements on the information services is that these are new ap-
plications. Of course, email, for example, has been around for a long time. It is, however, not used
so much by private persons and also email will be used to transfer much more multimedia files in
the future. Therefore many of the requirements on these services must be drawn from extrapola-
tions of the way we currently use similar services, such as ordinary mail, newspapers, television
news and radio news.

Ericsson Utveckling AB 1997, All Rights Reserved

- 13 -

2 Applications and their Characteristics

The application that will be studied in this thesis are future mobile telecom services and new infor-
mation services. Both of those services need introduction of on-line billing services. This is neces-
sary to enable payment in an electronic world, also to be informed of the price of services, in real-
time. The services of telecom databases will be described; for some services we will also describe
their database behaviour and the conceptual schema of the application and some more details on
how it works. By doing this we will better understand how the database should be structured, which
data types that it needs to support and what types of interaction it should be optimised for.

2.1 Telecom Applications

As a first step towards finding the characteristics of the application we will look at the network
architecture that the telecom databases will be a part of. In Figure 2-1 a generic network architec-
ture of a future telecom network is shown. There must be an access network; this can be an access
network for fixed terminals or an access network for mobile terminals. The access network struc-
ture can be very complex in itself, which is not an issue in this thesis. There is also a Communica-
tion network that connects the various access networks together. This is also highly complex; there
could be different types of transport networks, based on PDH (Plesichronous Digital Hiearchy),
SDH (Synchronous Digital Hierarchy) or any other transport network. On top of the transport net-
work there could be an ATM network, circuit-switched connections, an IP network and many other
packet-switched networks and circuit-switched networks. In this communication network there are
routing servers to assist in routing, there are also name servers to translate between addresses in
the various networks. The name servers can also be used to translate between logical names and
physical names inside a network.

The service network assists in providing communication services to the end-users. This service
network is a logical network. This means that it contains a number of nodes that are connected
through the communication network. Basically all nodes in this network are telecom databases.
There are email servers, SCPs (Service Control Points), HLRs (Home Location Registers) and di-
rectory servers. The Charging Network is very similar to this network, it contains a special type of
telecom databases, providing charging services and event data services. These services are used by
other nodes in the telecom network and by various external systems (e.g. network planning, market
research).

The Information Servers will be connected, either directly through the communication network or
through an access network. Those nodes provide information services using the communication
services of the telecom network.

In Figure 2-2 an example of a Physical Network Architecture is provided, though it does not show
all details of the access network and the transport network. The user can be connected either
through a mobile terminal or through a fixed terminal. Local Info Server represents an Info Server
provided as part of the network operators services to subscribers. This service could include email,
personal homepages on WWW, a storage function to store personal files and many other applica-
tions that could be provided by a network operator. For mobile users, it is likely that this Server is
situated in connection with the HLR. The Local Info Servers could, however, be placed anywhere
in the network and furthermore it is not necessary that the service is provided by a network opera-
tor. In Figure 2-2 a gateway between the ATM and the IP network is also shown. There is a routing
and name server that support this gateway function.

- 14 -

2.1.1 Service Network

There are many telecom databases that will be used to provide services for the network; the most
common service comprises various kinds of address translation services. Another important type
of service are directory services, where it is possible to translate a user name to a user address, also
directories of the available services in the telecom network; this will be an essential service in an
information network.

2.1.1.1 Number Portability

In most networks the telephone numbers of fixed telephones are connected with a particular local
exchange, this has made it easy to route the calls since there is a mapping from the number to the
physical location of the telephone. This does, however, create several problems, the operator meets
problems whenever it becomes necessary to change the network configuration, the customer also
has to change number when he permanently moves away from the area of his local exchange. It
also prevents the subscribers from keeping their numbers when they change operator.

To solve this problem many operators are going to make the numbers portable. In EU this will be
a requirement on the operators from 2003. This means that the number is no longer connected to
the physical location of the subscriber. It could, however, still contain some directions as to where
the subscriber resides, such as country code or area code. In UPT, one option for numbering
schemes is a global number, in this scheme there is not even a country code.

Figure 2-1
Generic
Network
Architecture

AAU

NT

DIREmail HomeService

Local Transit Local

BS

Base

Communication
Network

Service
Network

Charging Data Network

Info
Info
Net-
work

Info
Net-
work

Fixed
Access

Mobile
Access
Network

NetworkRoute
Server

Name
Server

Server

Server

Charging
Data
Base

Charging
Data
Base

Charging
Data
Base

Info
Server

Location
Register

Control
Point

Station
Controller

Exchange/ Exchange/ Exchange/
IP Router IP Router IP Router

Ericsson
Utveckling
AB
1997,
All Rights
Reserved

- 15 -

To make this possible, some scheme involving number translation is needed. To use the same rout-
ing principles in the telecom network as at present, it is still necessary to have numbers tied to phys-
ical locations. These numbers are then only used for routing in the network, the diallable number
is the portable number. At some point this number is then translated to a number used in the net-
work for routing. There are many proposals on how to implement this in the network, most of them
using some kind of intelligent network solution, where the local exchange sends a translation re-
quest to a SCP (Service Control Point) where the number is translated. This is the same technique
as is used today for freephone services (800-numbers in US).

This particular service uses the telecom database mostly for reading, the request are simple table
look-ups. There is however a high number of them; it is necessary to translate both the calling
number and the called number; therefore each telephone call consists of two requests to the telecom
database. The number of updates is small; it is only necessary to update when the operator changes
the structure in the network, and when the subscriber permanently moves so that it is necessary to
change his routing number. The requirements on reliability are high, the function is necessary for
the network to operate.

The conceptual schema of this service is simple, it basically contains a few numbers. There is only
one table where those numbers are stored and the queries used translate from one number to anoth-
er, which could look like this:

SELECT NETWORK_NUMBER
FROM NUMBER_TABLE
WHERE USER_NUMBER = user_number;

BS

NT

BSC/
AAU

AAU

LE/MSC
ATM

Transit
ATM

International
ATM

Local
Info
Server

IP
Router

Info
Server

News
Server

SCP/
HLR

Routing
and Name
Server

Charging
DataBase

Local
Info
Server

Figure 2-2 Example of a
Physical Network Architecture

- 16 -

Two new index structures have been developed in this thesis that are useful for this particular que-
ry. One of them is optimised for speed and uses a hash-based structure. The other is optimised for
memory usage and uses a compressed B-tree structure.

2.1.1.2 Routing Server

Currently most routing decisions are taken in the control processor of the switches and routers.
This has been necessary since it is a very common operation and it also requires information that
is up-to-date about network performance. This has required the use of distributed routing algo-
rithms. When the capabilities of the telecom databases increase, it becomes possible to also put
some of the routing control in telecom databases; this database could, of course, also be a part of
the switch or router.

This requires that the telecom database is updated frequently on the network performance. Then
the switches and routers ask the routing server for information on how to route the calls and the
messages, which can be performed on a call-by-call basis or on a periodic basis.

In Internet there exist specific routing protocols; these specify that each router have a routing table.
A router normally use routing protocols that inform neighbours of what destinations it can serve
for the moment. This updating is performed each 30 seconds.

In a routing server there are two common actions. The first is to make a routing decision; this could
involve a number of retrievals of records from the routing table. The second is to periodically up-
date the routing table with new information. Since these two actions can occur concurrently, there
is also a need to examine concurrency control. It should be possible to make routing decisions even
when the routing table is updated and therefore some version-based scheme is needed. One could
either simply keep two copies and switch between them at each routing table update, another so-
lution is to make sure that reading can always be performed on a consistent copy of the routing
table, which can be implemented using a multi-version concurrency scheme.

This service requires extensive use of both updates and reads. The updates in the routing server do
not need to be as reliable as in most other cases. Routing data is not perfectly consistent since each
routing server performs its updates independently of the other routing servers. Also each routing
server can find each IP-address on Internet and thereby erroneous routing decisions are quickly re-
covered by other routers.

2.1.1.3 Name Server

The name server functionality is used in translating between logical addresses and physical ad-
dresses (as in the Number Portability case); it is also used in translating from an address in one net-
work to an address in another network. As an example a user could have one telephone number,
an email-address, an IP-address and an ATM-address. When passing through gateways between
networks it is necessary to translate the addresses.

An example of translating from logical to physical addresses could be translation from a URN-ad-
dress, that is an address on WWW that is a logical address, which needs to be translated to an URL-
address. The URL-address specifies the physical location of where the message is directed (e.g. to
fetch a file in a specific directory, in a specific machine, using WWW).

An example of translating between different networks is when an IP-message is sent on the ATM-
network. There the IP destination address is used to find the ATM destination address, which could
either be the final destination or another gateway node.

- 17 -

This service uses the telecom database mostly for simple table look-ups where the number of up-
dates is very small compared to the number of reads. The requirements on reliability are, however,
very high since the network does not operate without this function.

This conceptual schema, too, is very simple, with one table for each type of translation necessary,
the queries could look like this:

SELECT ATM_ADDRESS
FROM ATM_IP_TABLE
WHERE IP_ADDRESS = ip_address;

or like this for WWW address translation:

SELECT URL_ADRESS
FROM URL_URN_TABLE
WHERE URN_ADDRESS = urn_address;

2.1.1.4 Intelligent Network Services

Intelligent Network development started with the use of 800-numbers in USA. Companies needed
more flexible billing strategies when calling their offices; and the routing had to be more flexible.
One type of requirement was to route the calls to different offices dependent on the time. All these
requirement led to the development of Intelligent Network Services. Most of these services are
based on the idea of translating numbers and redirecting the charging. However some functions
also involve other functionality, such as Televoting. There have also been many studies, experi-
ments and implementations on providing supplementary services (e.g. Call Waiting, Call Redirec-
tion), using intelligent network techniques.

In Figure 2-3 an example architecture of Intelligent Networks is shown; the SSP (Service Switch-
ing Point) is triggered when an action is performed that needs interrogation of the SCP (Service
Control Point). The SSP interrogates the SCP and takes action upon delivery of the response from
the SCP. The SCP can be co-located with the SSP (SSCP), can be an adjunct processor to the SSP
(ACP) and various other scenarios are possible. The SSP can be part of any type of switch, in most
implementations it is part of a transit or international switch. It can also be located in a local ex-
change.

The use of the telecom database in this case is diverse; there are both transactions that update the
telecom database and services that read various data. It is similar to the usage reported on mobile
telecommunications. The study on mobile telecommunications also used a network where the in-
frastructure is based on intelligent network concepts. The use of this application is, however, not

LE/SSP LE/SSPTE/SSP

SCPFigure 2-3 An example of an
Intelligent Network Architecture

- 18 -

a mass service in the same way as the other services presented here, so this type of service will not
be considered any further. If a telecom database can handle the other applications investigated in
this thesis, then it should also be able to handle this application.

2.1.1.5 Directory Service

This service can be used directly by an end-user or by another network node. It translates names
recognisable by an end-user into network addresses.

An example could be to translate from “Joe Shannon” into his telephone number. If interacting
with an end-user, it is not necessary that the name is unique; the directory service can provide all
the records that match the description. If used by network nodes the name must be unique however,
since the network node does not have any intelligence to select from the possible persons.

This service is also mainly a table look-up function, only a little bit more complex table look-up
since it is not always unique. The requirement on reliability of this service is dependent on how
important this service is to the operator and the users. This service is not absolutely necessary for
the network to continue its operation. Therefore a lower reliability of the system is sufficient.

This service will not be further studied in this thesis as it is not envisioned to become a mass serv-
ice. This would require that people call by name, rather than by number and such an evolution is
not foreseen. However it will still be used often by many people. Slightly more complex queries
could also be used by the directory services. As an example similarity searches and searches on
partial names could be performed. This is of great value when only partial information about a sub-
scriber is known and also when spelling errors have occurred.

2.1.1.6 Mobile Telecommunications

The mobile telecom network needs telecom databases to handle both the location of users and mo-
bile telephones and also the services of the users. The requirements here will be very tough and are
therefore studied in greater detail later in this thesis.

2.1.1.7 Characteristics of the Telecom Applications in the Service Network

The characteristic of a Number Portability service is that it should handle about 4-5 table lookups
per user per hour. This requirement is easier to handle than the requirements from mobile telecom-
munications and is therefore not considered further. The requirements on the name server are very
much dependent on the network architecture, the size of the messages, the bandwidth and so forth.
Basically the more table lookups a database can do, the better. Therefore we do not specify any
particular requirements for this type of application.

2.1.2 Information Network

In 1994 the usage of Internet based on World Wide Web (WWW) exploded and also the usage of
email, ftp and various other Internet services are quickly increasing. The network is, however, lim-
ited in bandwidth and there are bottlenecks in many places. It is possible to transfer very large files
over this network but the bottlenecks in the network still preclude the usage of video, HIFI-sound
and other broadband services on a large scale. To design a network that can handle the load of mil-
lions, possibly billions, of concurrent users that need both text, sound, video, pictures of various
qualities, it is necessary to analyse both the need of network nodes, the network links and network

- 19 -

switches. Therefore it is necessary that the usage is modelled in some sense. The aim in this thesis
is to find requirements on a general information server that contain data objects of sizes up to about
1 GByte. Objects of greater size are mostly long video sequences and other specialised applications
such as virtual reality. It is assumed that these are solved by specialised servers that can handle
many continous streams of information, while the server that we focus on in this thesis requires
fast access to small and medium-sized objects used by many concurrent users.

Since the global information system is a distributed system, it will not be seen from the user that
there exist different types of servers. These different servers could even be parts of one general
multimedia server, since general servers are in themselves distributed systems. So one part of the
system could be a number of signal processors, another part could be a number of data servers, an-
other part could contain video servers, another part could contain query servers and yet another part
could contain application servers.

In this thesis three applications will be analysed in greater detail. The first is a general email-server,
the second is a News-on-demand server for a very large newspaper and the last one is a genealogy
application. It is believed that the other applications will have smaller requirements on throughput
compared to those server applications. The email application is a mass service and must also pro-
vide large storage volumes. News-on-demand is also a mass service; it needs a higher bandwidth
since the objects that will be fetched will be much larger than email objects. The storage of the
News-on-demand service can, however, use caching to a much larger extent than the email service
can do, since pages of the newspaper will be read by many users. The genealogy database is a serv-
ice with very high requirements on the storage volume since it needs to store scanned images with
very high resolution. A genealogist will also need to look at many such images in one session. The
genealogy service also provides an interesting application of a global information application. In
this application millions of people can work concurrently on a similar problem, to find their ances-
tors. Since many have common ancestors, a global database can be used to spread information on
research results immediately to all other genealogists.

2.1.3 Charging Network

Charging is something needed by all telecom applications and the requirements on charging appli-
cations are tougher than before due to the many events in the telecom network and also due to the
fact that much more of the billing has to be performed immediately after usage of a service and not
several months after as has previously been the case. This is studied in greater detail later in this
thesis.

2.2 Mobile Telecommunications

The first Mobile Telecommunication systems were developed a long time ago. The first systems
that generated a mass market were, however, the analog systems. These systems are generally
called first generation systems. Examples of these are NMT (Nordic standard), TACS (English
standard) and AMPS (American standard). These still exist and in some countries still form a sub-
stantial part of the market.

The second generation system development was started when the first generation system was be-
ginning to catch a mass market. Second generation systems were digital and made better use of
frequencies and also tried to achieve a better sound quality. The better use of frequencies and also
the smaller size of the cells made it possible to sell second generation systems to an even larger

- 20 -

market. This market is still expanding very quickly. There are three major systems in the second
generation. These are GSM (European standard), D-AMPS (American standard) and PDC (Japa-
nese standard).

In parallel with the development of second generation systems, new systems were also developed
for use in houses and in urban areas and in the vicinity of a person’s home. A large number of such
systems were developed; the major system that survived in this market is DECT (European stand-
ard) and PHS (Japanese standard).

Already in 1987 a project was defined in the RACE-program (Research on Advanced Communi-
cations) in EU to define UMTS (Universal Mobile Telecommunications Systems). The aim of this
project was to study third generation mobile telecommunication networks. An essential part of this
study was to look at integration of the B-ISDN network and the mobile network. In the RACE II-
program (1992-1995) a follow-up project was performed.

In this phase the reality of an exploding second generation system (e.g. GSM) changed the sur-
rounding world. In 1993-1995 also WWW took giant steps into defining the next generation broad-
band applications. Therefore third generation mobile systems must be based on the second gener-
ation mobile systems and the network must be able to interwork with Internet. Therefore many of
the initial aims will be very difficult to reach. However, many of the studies performed in the
RACE-programs can also be used to develop the second generation systems and so a standardisa-
tion of UMTS is proceeding with the aim of having systems available in 2002-2003.

The explosion of the second generation systems and the development of DECT and PHS which has
also attracted a large market have driven the development of generation 2.5. In the USA this de-
velopment led to PCS that was started recently. In this generation the existing systems are further
developed for higher bandwidth, better use of radio resources by even more efficient use of fre-
quency and even smaller cells. Also packet switched data is an important issue in this generation.
Integration of second generation systems and DECT and PHS is also likely to occur in this gener-
ation.

In this thesis Mobile Telecommunications are studied from a future perspective with as many users
as in the current fixed network and also lower prices and therefore also much higher usage than in
current systems. The telecom databases found in this application are used to keep track of users
and mobile telephones. It also provides a platform for many network based services; it will also
provide an interface to intelligent terminals and thereby make it possible to implement terminal-
based services. The databases will store information on these services, location information and
directory information. This information is rather compact and possible to store in main memory.
Most procedures require rapid responses; in [MONET075] a delay (without queueing) of 1-10 ms
(dependent on query type) in telecom databases gave a delay of 0.6 s in the fixed network for call
set-up in simulations (on top of this there is a delay in the access network). Therefore telecom da-
tabase response time must be in the order of 5-50 ms in a loaded system. The toughest delay re-
quirements are however on retrievals; these are used in call set-up while most other procedures are
not as delay sensitive. Therefore 20-200 ms delay time on updates can be acceptable.

Network studies were performed in this work and were based on an estimation that 50% of the us-
ers will be mobile users. These users will be charged as for calls from fixed phones and therefore
their usage is similar to the fixed network and traffic models were derived from mathematical mod-
els on movement of people in cities. These results were reported mainly in [MONET075]. Other
deliverables in the RACE-program also took some of these issues into consideration. In

- 21 -

[Ronstrom93] the same basic assumptions were used. The network architecture used was, howev-
er, an architecture based on an evolved second generation mobile telecommunication network. In
[MICL94], later results from the RACE-program were used and a message service was also includ-
ed in the study, and these results were used to derive results on loads on nodes and links.

The results in this thesis were derived from an analysis of research in a third generation system.
These figures are, however, also applicable in evolved second generation systems. The main dif-
ference with current systems is the assumption on the traffic model where mobile phones are used
in a similar manner to current fixed phones, the assumption that more functions are moved to the
telecom databases and also that there are more communication services in the future systems.

The main differences between current second generation systems and third generation systems will
be the bandwidth and also that the type of calls will be more diverse. Data communication calls,
fax calls and message service calls will be much more common in third generation systems than in
current second generation systems where speech connections are the dominating feature.

2.2.1 Conceptual Schema of UMTS

In Figure 2-4 a conceptual schema of the UMTS system is described[MONET061]. Of course in a
real system, the schema must be supplied with much more details. This schema does, however,
mention the basic entities and their relationships.

There is a set of identifiers and numbers that is used in a UMTS network. SPI is a Service Provider
Identity, identifying the Service Provider. ICSI is the International Charged Subscriber Identity:
this is the identity of the subscriber, the entity that pays the bill and has the business relationship
with the Service Provider. IMUI is the International Mobile User Identifier, which identifies a cer-
tain UMTS user, the IMUN is the International Mobile User Number, which is the diallable
number of the UMTS user. SI is the Service Identity of the registered service. A terminal address
is composed of DI, which is a domain identifier (identifies the network operator) and TMTI, which

Service Provider Data
SPI
Provided Services
Offered Services
Agreements
Barred Subscribers

Subscriber Profile Data
ICSI
Subscribed Services
MaxNumberOfUsers
MaxNumberOfTerminals

User Data
IMUI
IMUN
User Profile
User Keys

Session Data

IMUI
IMUN
Use keys.visited

Terminal Data
DI+TMTI
LAI
Terminal Status
Terminal Keys

Registration Data
IMUN+SI
IMUI
MRN
DI+TMTI
User Status
User Profile.visited

Routing Data
IMUN+SI
MRN
User Status

1

1

1

1

1

N

1

1

N
N

N

N

Figure 2-4 UMTS Conceptual
Schema

- 22 -

is the Temporary Mobile Terminal Identifier, a temporary identifier of the terminal in this partic-
ular network. LAI is the Location Area Identifier, which identifies a location area used at paging
of the terminal. Then we have the MRN, which is the Mobile Roaming Number, which is used for
routing purposes, to set-up the connection to the exchange where the user currently resides.

Service Provider Data consists of the information on the Service Provider that is needed for exe-
cution of UMTS Procedures. This consists of the services offered to home users, services offered
to visiting users, agreements with other operators and a list of barred subscribers. Subscriber Pro-
file Data consists of the information on the subscription that is relevant to execution of UMTS pro-
cedures, this includes a list of the services subscribed to (at the home operator) and maximum
number of users and terminals. User Data contains information on a specific user, his service pro-
file and his authentication and encryption keys. Each user can then have a number of registrations,
one for each service the user has registered for. The registration is connected to a specific terminal.
The terminal data also contains terminal status and some keys for security procedures. It is neces-
sary to have Routing Data connected to the registration to be able to find the Terminal to which the
user has registered. When a user is active he also has sessions connected to it. There could be sev-
eral simultaneous sessions, but there is only one session per service provider, which means that
each UMTS database contains no more than one session record per user.

The data in the UMTS network is distributed in databases of the home operator and databases of
the visited operator. There are various ways to handle this distribution. A likely way is that the
home database stores the Service Provider Data, Subscriber Data and User Data. Routing Data is
also needed in the home network to be able to route the call to an exchange in the network the user
is visiting. The Session Data, Registration Data and Terminal Data are always created in the visited
network; parts of the Registration Data will also be stored in the home network. Parts of the User
Data can be transferred to the visited network to make the execution of the UMTS procedures more
efficient.

More information on the UMTS conceptual schema and distribution of data in the UMTS network
can be found in [MONET061], [MONET075], [MONET108], [MONET109].

2.2.2 UMTS Procedures

The procedures used in an UMTS network will be presented. For each procedure, the impact on
the telecom database will be analysed and the queries generated will be shown. Many of these pro-
cedures are general and necessary also in another mobile network and most of them also in a fixed
network. The information flows of the procedures are based on [MONET099]; in this document
these information flows have been mapped to a physical architecture.

The major differences of these information flows compared to information flows of current sys-
tems is the use of sessions in all communications between the system and the user, the separation
of terminal and the user (as in UPT, Universal Personal Telecommunications) and many more
services. Finally the telecom database is more involved in the call set-up process where it is in-
volved in both the originating and the terminating part of the call set-up.

The network architecture used in the information flows is shown in Figure 2-5. The SCP (Service
Control Point) and SDP (Service Data Point) are normally collocated; they are chosen as separate
entities in this presentation, since databases are the focus of this thesis. The interface to the SDP
could therefore be an internal interface in the SCP or a network interface. In this way we can derive
the number of requests that the SCP database must handle internally.

- 23 -

The DIR is a node defined in RACE MONET, it is used to keep track of which database the user
data resides in. One of the major reasons for this architecture is to avoid the UMTS number is
pointing to a physical network node as this would make changes in the database structure in the
network more cumbersome. In this presentation we will not show the actions of the DIR node. The
information flows we show, will also work without DIR nodes. The DIR nodes are basically simple
table look-up databases, where a user number is mapped to a database address.

All the procedures have more than one possible information flow. For example, a user registration
has a different information flow when invoked from a visited network, compared to when it is in-
voked from the home network. Taking this into account in the calculation of transaction flows in
the network would necessitate a detailed mobility model and also that all possible information
flows are studied. Such a mobility model was used in [MICL94] and [Ronstrom93]. In this thesis
we only show one version of each information flow. This keeps the presentation short and avoids
using an unsure mobility model. The information flows chosen should be representative of the
most common cases.

All retrieve, update, create and delete operations in the information flows use a unique primary key
to access the data, if not otherwise mentioned. This means that retrievals can appear thus:

SELECT ATTRIBUTES
FROM TABLE
WHERE PRIMARY_KEY = primary_key;

Update, create and delete are performed in a similar way. In some procedures several requests can
be part of the same transaction. In this section we do not discuss how charging information is gen-
erated, this is discussed in section 2.5 below.

SCPSCP

LE

TX

LE LELE

TXTX

SCP

SDP SDPSDP

DIR

BSSBSSBSSBSS

GW

Service network

Access network
Communication network

BSC

BTS
Mobile
terminal

Mobile
terminal

BSS

Core
network

Figure 2-5 Network Architecture used
in Information Flows

BTS

- 24 -

2.2.3 Session Management

Sessions are used to ensure a secure communication. Before a user is allowed to use any network
resource, a session must be set-up. The major reason for sessions is to authenticate the user and the
terminal. This authentication ensures that the user is allowed to use UMTS services and also makes
it more difficult to use stolen UMTS equipment. Another part of the session set-up is to exchange
encryption keys, which are used in the air interface to make sure no one can interfere or listen to
messages and conversations.

Since terminals in UMTS do not have identifiers, there are also terminal sessions. The terminal re-
ceive a temporary identifier during a terminal session. Services that do not relate to a user can be
performed (e.g. attach) during a terminal session. If a user is involved in the service, the terminal
session must be upgraded to a user session. Sessions can be initiated either by the network (e.g. at
a terminating call) or by the user (e.g. at an originating call). We assume a terminal session exists
for longer period than a user session, therefore we assume that the normal case is that there exists
a terminal session during execution of the UMTS procedures.

A session can be used for several communications. This means that sessions are established before
calls can be made. However a session can be established for a longer time than the duration of a
call. Therefore, if a user makes several calls in a row, these can all be part of the same session. User
sessions are normally released a specified time after service completion.

2.2.3.1 System-Originated User Session Set-up

In Figure 2-6 the information flow of a system-originated user session set-up is shown. In the in-
formation flows, we have not shown the flow that would occur if special payment methods were
used.

First the database is checked to see if there are any sessions already available (SESS_PAR). Then
the database is used to find the user number, given the user identifier (CONV_UI). Then the ter-
minal and the user is authenticated (TERM_AUTH): for terminal authentication an encryption key
is needed (RETR_ENC_PAR) from a security database and for user authentication an encryption
key and authentication key are needed from the security database too (SEC_M3). Finally the ses-
sion data is stored in the database (SESS_STORE).

If there already exists a terminal session, then it is not necessary to authenticate the terminal and it
is possible to proceed with user authentication immediately. As can be seen, there are five requests
to the database, two of which are directed for the security database. Four of these requests are re-
trievals and one of them is a create request. The retrieval of encryption data for terminal authenti-
cation is removed if a terminal session already existed. Also the retrieval of session parameters and
retrieval of the UMTS number can be combined into one retrieval request to the database. There-
fore there are two retrievals and one create request in this procedure.

2.2.3.2 User-originated User Session Set-up

In Figure 2-7 a user-originated user session set-up is shown. The major difference, apart from who
initiated the session, is that it is not necessary to retrieve any encryption key and it is not necessary
to convert the identifier to a number. Therefore there are two retrievals and one create in this pro-
cedure. If the user invokes a service when he has a terminal session which needs a user session,

- 25 -

then an upgrading of the terminal session to a user session is performed. The information flow for
this procedure is very similar to a user-originated user session, the requests to the database are the
same.

SETUP_SESSreq
(AT,TMTI,IMUI)

SESS_PARreq(IMUI)

CONV_UIreq(IMUI)

SDP

AT - Access Type, type of session
TMTI - Temporary Mobile Terminal Identifier

SESS_PARconf(parameters)

CONV_UIconf(IMUN)TERM_AUTHreq(TMTI)
RETR_ENC_PARreq(TMTI)

RETR_ENC_PARconf(parameters)

TERM_AUTHconf(status)
SETUP_SESSind(IMUN)

SETUP_SESSconf(status)

USER_AUTHreq(AT) SEC_M3req(IMUI)
SEC_M3conf(security parameters)

USER_AUTHconf(status) SESS_STOREreq(IMUI, parameters)

SESS_STOREconf()SETUP_SESSconf(status)

Figure 2-6 System-Originated User Session Set-up

BSS SCP

IMUI - International Mobile User Identifier
IMUN = International Mobile User Number

SETUP_SESSreq
(AT,TMTI,IMUI,IMUN)

SESS_PARreq(IMUI)

BSS SCP SDP

SESS_PARconf(parameters)

SETUP_SESSconf(status)

USER_AUTHreq(AT)
SEC_M3req(IMUI)

SEC_M3conf(security parameters)

USER_AUTHconf(status) SESS_STOREreq(IMUI, parameters)

SESS_STOREconf()

Figure 2-7 User-Originated User Session Set-up

USER_INFOind(IMUI)

USER_INFOconf(status)

- 26 -

2.2.3.3 System-originated Terminal Session Set-up

In Figure 2-8 an information flow of a system-originated terminal session set-up is shown. In this
procedure the terminal is authenticated (RETR_AUTH_PAR) and a new encryption key is stored
in the security database (STORE_ENC_PAR) and a new TMTI is assigned (TMTI_UPD). This
message also creates a new terminal record. The assignment could be performed with a retrieval
and an update in a transaction. This comprises two retrievals, two updates and one create request
to the database.

2.2.3.4 User-originated Terminal Session Set-up

In Figure 2-9 a user-originated terminal session set-up is shown: the terminal is authenticated using
an encryption key retrieved from the security database (RETR_ENC_PAR) and finally the new
TMTI is assigned by the database (TMTI_UPD). This message also creates a new terminal record.
Thereby there is one retrieval, one create and one assignment in this message. Thus there are two
retrievals, one create and one update to the database in this procedure.

2.2.3.5 Session Release

Finally sessions are released, the information flow for a user session release is shown in Figure 2-
9, where the session object is deleted from the database (SESS_REL). A system-originated session
release is performed the same way, only the initiator is different. There is one delete operation in
this procedure to perform in the database. When releasing a terminal session the terminal number
is also deassigned, which involves one update.

SETUP_SESSreq(AT,TMTI)

BSS SCP SDP

EK - Encryption Key, AK = Authentication Key, nTMTI = new TMTI

TERM_AUTHreq(AT,TMTI) RETR_AUTH_PARreq(TMTI)

RETR_AUTH_PARconf(AK)

TERM_AUTHconf(status) TMTI_UPDreq(TMTI)

TMTI_UPDconf(nTMTI)

SETUP_SESSconf(nTMTI, par.,status)

Figure 2-8 System-Originated Terminal Session Set-up

SETUP_SESSind()
SETUP_SESSconf(status)

STORE_ENC_PARreq(TMTI,EK)

STORE_ENC_PARconf(status)

TMTI_UPDind(TMTI)

TMTI_UPDconf(nTMTI)

- 27 -

2.2.4 User Registration Management

User Registration is performed when a user wants to assign a specific communication service (e.g.
voice, fax) to a specific terminal. There could be several users registered on the same terminal.
Registration is only necessary to be able to receive calls at the terminal. Outgoing calls are per-
formed as part of a session and registration is therefore not needed for outgoing calls. Registration
is performed in a session. There could be more than one registration of a user for different services.

The registration procedure (see Figure 2-11) is one of the more complex procedures in a mobile
network. First it is necessary to fetch parts of the service profile of the user to make sure that he is
allowed to register for this service (PROF_DATA). If the user is registering in a visited network,
then the profile must be fetched from the home network, so there is one retrieval in the visited net-
work and a retrieval in the home network to fetch the requested data. Secondly the new registration
must be created. This could involve three steps, creation of the new registration (CREATE_REG),
deletion of the old registration (DEL_REG) and creating the routing information in the home net-
work (UPD_ROUT). This procedure has some consistency requirements; these have been studied
in [MONET108]. They are not included in the procedure shown here.

In the traffic model we will assume that each registration is new and that there is no deletion of the
old registration is necessary. In the information flow we do, however, show the full scenario where
the old registration is also deleted. Thus there are two retrievals and two creates in a user registra-
tion. The user deregistration is simpler, it deletes the registration (DEL_REG) and deletes the rout-

SETUP_SESSreq(AT,TMTI)

BSS SCP SDP

TERM_AUTHreq(AT,TMTI)
RETR_ENC_PARreq(TMTI)

RETR_ENC_PARconf(EK)
TERM_AUTHconf(status) TMTI_UPDreq(TMTI)

TMTI_UPDconf(nTMTI)
SETUP_SESSconf
(nTMTI, parameters, status)

Figure 2-9 User-Originated Terminal Session Set-up

BSS SCP SDP

Figure 2-10 User-Originated Session Release

CANCELreq()

DESTROY_KEYreq()

DESTROY_KEYconf()

SESS_RELreq(IMUI, parameters)

SESS_RELconf()CANCELconf()

- 28 -

ing information in the home network (DEL_ROUT). In Figure 2-11 we have used SDP-SDP mes-
sages between domains. These messages will most likely pass through the SCP-SCP interface in
the UMTS standard.

2.2.5 Attach/Detach

Attach is used to attach a terminal to the network and detach is used to detach the terminal from
the network (e.g. at power-off). When this procedure is executed an update request is sent to the
database changing the attach/detach attribute of the terminal profile (UPD_TERM), as seen in Fig-
ure 2-12.

2.2.6 Call Handling

Call Handling is used to set-up, release and modify calls. Call modification is similar to call set-up
in what database accesses are needed and therefore we only discuss call set-up and call release.
Call release is easy, as this does not involve the database at all. In a Call set-up (see Figure 2-13)
there are two retrievals in both the originating side and the terminating side, which means four re-
trievals for one call set-up. The first retrieval is performed to check the user profile if the requested
service can be used at this time (PROF_DATA). The second access to the database retrieves the

NEW VISITED HOME

LE SCPSCP SDPSDP LE BSSBSS

PROF_DATAreq(IMUN,SI,userServProf)

PROF_DATAconf(IMUN,SI,userServProfVal)
PROF_DATAconf(IMUN,SI,userServProfData)

PROF_DATAreq(IMUN,SI,userServProf)

REGreq(IMUI,SI)

CREATE_REGreq(IMUN,SI,TMTI,MTA,userServProfData)

UPD_ROUTreq(IMUN,SI,MRN)

UPD_ROUTconf()

BSS SDP

DEL_REGreq(IMUN,SI)
DEL_REGconf()

CREATE_REGconf()REGconf()

DEREGreq(IMUI,SI)
DEL_REGreq(IMUN,SI,regData)

DEL_ROUTreq(IMUN,SI,routData)
DEL_ROUTconf()

DEL_REGconf()DEREGconf()

MRN - Mobile Roaming Number, MTA - Mobile Terminal Address
SI - Service Identifier, SPI - Service Provider Identifier

PREV VISITED

Figure 2-11 User Registration /User Deregistration

- 29 -

current location of the user (LOC_USER). The originating network needs this information to set-
up the call to the right network and the terminating user needs more detailed location information
to page the user.

SCPLEBSS SDP

ATTACHreq(TMTI) UPD_TERMreq(TMTI)
UPDconf()ATTACHconf()

DETACHreq(TMTI) UPD_TERMreq(TMTI)
UPD_TERMconf()DETACHconf()

Figure 2-12 Attach/Detach

LE SCPSCP SDPSDP LE BSS SDPBSS

ORIGINATING TERMINATING HOME

LOC_USERconf(tIMUN,SI,MRN)

CALLreq(parameters)

LOC_USERconf(TMTI,LAI)
LOC_USERreq(TMTI)

PROF_DATAreq(tIMUN,SI, userServProf)

PROF_DATAreq(oIMUN,SI,userServProf)
PROF_DATAconf(oIMUN,SI,userServProfData)
LOC_USERreq(tIMUN,SI)

PROCESSconf(parameters)
SETUPreq(parameters)

PROCESSreq(parameters)

PROCESSreq(parameters)

PROF_DATAconf(tIMUN, TMTI, userServProfData)

PAGINGconf(TMTI,BSI)

PROCESSconf(parameters)

PAGINGreq(TMTI)

SETUPreq()
SETUPconf()SETUPconf()

CALLconf()

BSI - Base Station Identifier, oIMUI - originating International Mobile User Identifier
oIMUN - originating International Mobile User Number, tIMUI - terminating
International Mobile User Identifier
tIMUN - terminating International Mobile User Number, LAI - Location Area Identifier

Session Set-Up

Figure 2-13 Call Set-Up

- 30 -

2.2.7 Handover

Handover is performed to change from one radio base station to another; the new base station could
be located under a new exchange. It could even be located in a new network. A handover could
also be performed internally in a base station between channels in the base station. The database is
normally not involved in the handover procedures. Only when a handover is transferring the call
to another network is it necessary to access to the security database twice; One to retrieve keys and
one to update the keys.

2.2.8 Location Update

Location Updates are performed as the terminal is moving in the network or moves to a new net-
work. By tracking the user’s movement with location updates, the user can be called although he
is mobile. A Location Update that changes network is called Domain Update in UMTS. This also
involves moving the registrations from the old network to the new network. A Location Update
updates the Location Area information in the database (UPD_LOC) (see Figure 2-14).

A Domain Update means that a user is moving from one network operator’s domain to another. As
part of this move, all his registrations in the old network must be moved to the new network. This
procedure is similar to a user registration. The registration is, however, retrieved from the old do-
main and it is necessary to delete the registration in the old domain. Some authentication procedure
and assignment of a temporary terminal identifier must also be performed. This is only necessary,
however, for the first user on a terminal that performs a Domain Update. We assume this is per-
formed by a terminal session set-up before performing the Domain Update. Finally the location
data is updated to reflect the new location. If we assume that there is only one registration of the
user on the terminal, there will be one retrieval, two updates, one create and one delete during the
Domain Update.

SCPLEBSS SDP

UPDATEreq(TMTI,nLAI)
UPD_LOCreq(TMTI, nLAI)
UPD_LOCconf()UPDATEconf()

nLAI - new Location Area Identifier, nTMTI - new Temporary Mobile Terminal Identifier
Figure 2-14 Location Update

- 31 -

2.2.9 Advice-of-Charge

In Figure 2-15 an Advice-of-Charge information flow is shown, it involves one retrieval of tariff
information from the home database (TARIFF) and one retrieval of usage information from the
visited database (UM). This retrieval is a scan operation and generates more than one record in the
reply and so is slightly more complex than the other retrieval operations of the UMTS database.

2.2.10 Service Profile Management

The user can interrogate and update his service profile with user procedures. Before he gets this
access to interrogate and update the database, the network checks that this request is allowed ac-
cording to the service profile of the user. After this the user can interrogate and update the database
according to what is possible according to his service profile. This will then involve one retrieval
and a number of user supplied retrievals and updates. Normally there will only be a few accesses
by the user when he manages his service profile. Here one access is assumed per service profile
management action.

2.2.11 UMTS Characteristics

The most important issue in determining the characteristics of telecom databases used in mobile
telecommunication systems is the traffic model. To find the requirements on a specific telecom da-
tabase, one must also estimate the number of users per database. Current mobile systems have a
traffic model which is affected by the high price of mobile communications. In third generation
mobile systems the price of communicating with a mobile will most likely be similar to the price
of communicating with a fixed terminal today. Therefore calling rates can be estimated by looking
at the calling rate in current wireline networks. The calling rate in these networks are 2.8 calls per
hour per user (includes both originating and terminating calls) [LATA]. Since the terminals will
be mobile and since so many more services are offered through the telecom network, it is estimated
that the calling rate will even increase. There will also be call modifications during multimedia
calls that will increase the rate of call handling even more. It is estimated to be 4.0 calls and call
modifications per hour. We split this into 2.0 originating calls per hour and 2.0 terminating calls
per hour per user. This figure is valid during the busy hours of the day.

LE SCPSCP SDPSDP LE BSSBSS

ORIGINATING HOME

AOCconf(CI,SI,IMUI,moneyUnit)

TARIFFreq(IMUI,SI)
TARIFFconf(IMUI,SI,charData)

UMconf(CI,usageRec)
UMreq(CI)

AOCreq(CI,SI,IMUI)

CI - Call Identifier

UMreq(CI)
UMconf(CI,usageRec)

Figure 2-15 Advice-of-Charge

- 32 -

User session handling must be performed before each UMTS procedure. There could however be
instances where one user session is used for several calls and other interactions with the network.
Since user sessions are not used in any current network, this figure must be estimated. We estimate
it to be 3.0 per hour per user. It is also necessary to have terminal sessions. These sessions can be
active for a longer time, and we estimate that there are 1.0 sessions per user per hour.

User registration is also a new procedure and there are no measurements that can be used in esti-
mating the registration rate. It seems probable, however, that users will register a few times a day.
Therefore we estimate that there are 0.5 registrations per user during the busy hour and the same
number of deregistrations. Attach and detach we estimate to be 0.3 per user during the busy hour.

The number of location updates is dependent on the mobility model. This model depends on many
parameters, such as size of location areas, mobility of users and so on. Also the busy hour for lo-
cation updates does not coincide with the busy hour for calls. Therefore the busy hour figure should
not be used, but rather a smaller figure should be used. The rate varies between 0.3 and 2.5 depend-
ing on the conditions in [LWB93]. A figure of 2.26 and 2.63 per user per hour is found in a calcu-
lation in [MONET109]. We estimate 2.0 per hour per user and of those we estimate that 20% are
changing domain (i.e. changing to another operator’s network). This gives 1.6 location updates per
hour per user and 0.4 domain updates per hour per user. Finally inter-domain handover is most
likely to be very uncommon. We use the figure 0.12 erlang and multiply this by 0.4. It seems likely
that domain switches are as likely during calls as otherwise. This gives 0.05 inter-domain hando-
vers

The users will also perform service management. It is estimated to rise compared to today, due to
many more services. The rate is estimated at 1.0 per hour per user, equally divided between inter-
rogate, register, erase, activate and deactivate service. Advice-of-Charge is handled in the section
on Event Data Services and is not considered in this section.

The number of users per telecom database depends on how many users there are in the network
and the policy of the operator. These databases are essential for operation of the network and there-
fore most operators will require that the system continues to function even if telecom databases are
down. This requires network redundancy, that is, another telecom database is always ready to take
over if one goes down. So the minimum number of telecom databases in a network is two. This
means that theoretically an operator could have 10-20 million users in one telecom database. How-
ever even with redundancy, there could be errors that cause the system to fail. Therefore it seems
that 1-2 million users is a more appropriate figure. In this way the large operators can also build
their systems with more intelligent backup strategies, where several nodes assist in taking over,
when a telecom database fails. In our estimates we are therefore using 2 million users per telecom
database. From this discussion we reach the figures shown in Table 2-1.

Table 2-1 UMTS Procedure Rates

Procedure Events/user/hour Total Events /
second

Relative Rates
(%)

Originating Call Set - Up 2.0 1111 12.0

Terminating Call Set-up 2.0 1111 12.0

Inter-Domain Handover 0.05 28 0.0

Location Update 1.6 889 9.6

- 33 -

Now by using the figures in Table 2-1 and the information flows from the preceding section we
derive the number of retrievals, updates, creates and deletes in the database (see Table 2-2). From
these figures it can be seen that modify queries will put a substantial load on the UMTS database,
since a modify query is much more complex to execute compared to a read query, which will be
seen in forthcoming sections.

2.2.12 Conclusion

From the description of the interaction between the SCP (Service Control Point) and the SDP
(Service Data Point) it is obvious that there is a rather large amount of interaction between the da-
tabase and the application for each application message received. The reason is that the database
is also used to store session information about the telephone call, and also security information.
Thereby the requirements on performance and low delays grow even further compared to the re-
quirements by second generation mobile networks.

Domain Update 0.4 222 2.4

User Registration 0.5 278 3.0

User De-Registration 0.5 278 3.0

Attach 0.3 167 1.8

Detach 0.3 167 1.8

System-Originated User Session Set - Up 1.5 833 9.0

User-Originated User Session Set - Up 1.5 833 9.0

System-Originated Terminal Session Set - Up 0.5 278 3.0

User-Originated Terminal Session Set - Up 0.5 278 3.0

Session Release 4.0 2222 24.0

Interrogate Services 0.2 111 1.2

Register Service 0.2 111 1.2

Erase Service 0.2 111 1.2

Activate Service 0.2 111 1.2

Deactivate Service 0.2 111 1.2

Total 16.65 9250 100

Table 2-2 UMTS Database Accesses

Procedure Events/user/hour Total Events /
second

Relative Rates
(%)

Retrieval 18.65 10361 53.6

Update 4.95 2750 14.2

Create 5.6 3111 16.1

Delete 5.6 3111 16.1

Total 34.8 19333 100

Table 2-1 UMTS Procedure Rates

- 34 -

It is even possible to visualise a database which contains the actual state of the telephone call. This
state variable would need to be updated several times per call. This would create new possibilities
in creating services for telecommunications. Active database features could be used to implement
most of the telecommunication services.

2.3 News-on-demand

The current WWW-service is envisioned to be similar to how a future multimedia newspaper will
look like. It will be possible to read text with images, look at video sequences and have access to
large information databases where in-depth explanations can be found for the interested reader.
Access to this service could be provided from home computers, TVs, Personal Digital Assistants
or some other display terminal new or old. The access could be through fixed terminals or through
mobile terminals. Through the News-on-demand service people can have access to the latest news
from wherever they are. They will have access to the in-depth stories at the same time, if they need
the background to the headline news, or any other news.

New standards are being developed for multimedia documents with capabilities to contain links to
text, images and other documents as well as links to documents with real-time requirements on the
presentation of the documents such as audio and video documents. One such standard is HyTime,
which is based on SGML (Standard Graphic Markup Language). The documents that use this
standards are highly structured. A multimedia document represented in SGML/HyTime is a hier-
archical tree of objects. It contains a number of structured objects which consist of other structured
objects and can also contain leaf objects. The leaf objects are monomedia objects, such as text, au-
dio, images and video objects.

A News-on-demand system consists of two distinct parts. The first part is the news production fa-
cility and the second part is the news presentation facility. In the news production facility the jour-
nalists are editing their documents and providing links to other information. Experts in presentation
facilities help in developing the multimedia documents so that real-time properties and proper
Quality-of-Service are provided. In this part the databases should be flexible, and performance re-
quirements are high and reliability requirements are high. The system could, however, be taken
down for service at times and the workload consists more of a few large task rather than many
small ones. Therefore the requirements on telecom databases are not applicable in this environ-
ment.

The multimedia documents are created in the news presentation facility by a management node that
retrieves the document from the news production facility and stores them in the news presentation
facility. After this the documents are read-only documents; new versions can be added and indexes
can be added and removed from the documents. The main task here is to answer user queries, and
the database must be optimised for these queries. This architecture is shown in Figure 2-16.

The most common query is that a user wants to view a multimedia document. This query could of
course be such that the whole document is fetched all at once. This means that all video, text, im-
ages and audio sequences as well as all the features of the document is retrieved as one very large
object. This would be too inflexible and require that information is replicated in many places.
Therefore it is foreseen that the query is performed in two steps, where the first step fetches the
document description, its synchronisation requirements and all the objects that are part of this doc-
ument. The second part fetches the parts of the documents, using the document requirements on
synchronisation and presentation. This means that many of the objects that are fetched from the

- 35 -

database contain an internal structure. The news presentation facility has many similar require-
ments to the other telecom databases, that is very high performance, very high reliability and also
large storage requirements. In [Vittal94], [Vittal95] the conceptual schema of the news-on-demand
application has been more extensively studied.

The user of course only specifies the document he wishes to view, and splitting this query into
many small queries is performed by the application server. This application server could be a part
of the user terminal or part of the network server that handles the user request.

From this we find a simple conceptual schema of the News-on-demand database (Figure 2-17). It
contains document objects. These objects contain a set of attributes that describes the document,
such as author, date of creation, subject, title, abstract, key words and so forth. It does also contain
lists of references to objects connected to the document. The document description itself is also
stored as an attribute (basically a Binary Large Object attribute, BLOB). Finally the document ob-
ject also contains Quality-of-Service parameters. For text-based documents, the document descrip-
tion contains the text object of the document. The database also contains file objects such as image
objects, video objects, text objects and audio objects. These objects contain the actual objects in
some format, often compressed, such as MPEG, JPEG, GIF, TIFF or any other format. It also con-
tains a set of attributes that describes the object. The descriptive attributes are used when the user
issues searches of information. When links are followed, the link specifies the name of the docu-
ment to fetch.

In Figure 2-18 an example of a multimedia document is shown. The document description would
describe the placement of the text object and the image objects, it would contain the text object and
references to the image objects. The text would contain the text represented in SGML (or any other
standard format); this text would then also contain the links to the documents that describe Queen

Information
Sources

Information
Sources

Information
Sources

News
Production
Facility

News
Presentation
Facility

User

User

User

User

SGML/HyTime
SGML/
HyTimeTelecom Database

Figure 2-16 News-on-demand Systems

Figure 2-17 News-on-demand
Conceptual Schema in News
Presentation Facility

Document Data
Name (Key)
Format
QoS parameters

File Data
Name (Key)
Format
Descriptive attributes

Descriptive attributes File

M N

Document

- 36 -

Elisabeth II and Australia. The image, showing Australia and the boat, could also contain links to
the same documents as the text. The second image also contains links to a video presentation of
the same news and an audio presentation of the same news.

In this example, the document description also contains the text object; it also contains the links to
the other objects, both the links from the text objects and the image objects. The document could
be retrieved by queries that appear thus:

SELECT DOCUMENT, FORMAT, QoSParam
FROM DOCUMENT_TABLE
WHERE NAME = document_name;

The Document_Format attribute specifies in what format the document description is stored. The
client would then process the Document description and issue two queries for the two image ob-
jects, these could appear thus:

SELECT FILE, FORMAT
FROM FILE_TABLE
WHERE NAME = image_name;

2.3.1 News-on-demand Characteristics

Since no trials of a news-on-demand service exist on a large scale, most of the characteristics are
arrived at by making estimates based on user behaviour with current technologies.The character-
istics of this application are similar to when reading news on paper, watching television news and
also similar to reading WWW-pages. News-on-demand is really an interactive use of newspapers,
radio news and television news using something similar to WWW as a user interface. Therefore
the figures below are based on “guestimates” and are not based on any scientific reports. It is, how-
ever, considered valid to perform this anyway since a “guestimate” is better than no estimate at all.

A user is likely to spend fifteen minutes at a time using the news-on-demand service, in the evening
a longer time. He will also watch some video clips and sometimes also some audio clips. The video
and audio clips are normally thirty seconds to five minutes long. It is likely that many users will

Queen Elisabeth II in Sydney

The cruiser Queen Elisabeth II landed today in Sydney, for a three
day-visit of Australia. The ship was met by thousands of interested
people that wanted to see this large cruiser, it is one of the few ships
that carry only passengers, going between continents. She will next
go to Canada.

Video Clip Audio Clip

Text portion of Document.

Image portion of Document.

Figure 2-18 Example of
an Multimedia Document

Linked Objects

Linked Objects to same
subject with other media

- 37 -

scan through news documents to watch for interesting news particular to the user’s interests; then
he will use video clips for in-depth information and information where video is the best presenta-
tion media.

When reading a newspaper most readers are likely to scan through most of the pages in the news-
paper. By doing this they read about twenty to thirty pages in fifteen minutes. It is likely that the
documents displayed in a user terminal are somewhat smaller than newspaper pages and so there
will be about fifty interactions between the user and the user terminal during fifteen minutes. In
addition now the user can also watch video clips of the news. It is likely that video clips will be
more heavily used during the evening.

Many users interact with the news-on-demand service in the morning, after work and during the
evening. During the evening the interaction could be a little longer, possibly half an hour. Now of
course not everybody interacts so heavily, so we estimate that a normal user who has registered for
use of the news-on-demand service interacts half an hour per day. This activity is then spread out,
25% in the morning, 25% after work and 50% in the evening. During the morning and after work
he is likely to use a mobile device and he is likely to be using the news-on-demand service like
reading a newspaper. In the evening the user is more likely to use a fixed terminal at home where
he will watch more video clips. He will not be as interactive as during the morning and after work.

This half an hour is normally divided into four sessions. Most of these sessions will be in the “busy
hour” in the morning, after work and at the evening. Thus we estimate that 0.8 sessions are started
per user per hour in the busy hour.

The size of the documents and their images will vary largely; the document description and text of
a document is mostly rather small, around 2 kByte. The images are likely to be between 10-200
kByte. A normal document is estimated at 2 kByte with two figures with a mean size of 50 kByte
each. The user terminal could of course make requests for larger chunks than one document at a
time. This would decrease the number of requests to the telecom database. It would, however, in-
crease the bandwidth need since the user does not normally reuse any cached information and there
would be information prefetched that would not be used, thereby bandwidth is wasted. Whether
bandwidth or the possibility to handle user requests is the bottleneck in the future is not known. It
is likely that for mobile terminals low bandwidth is more essential. With fixed terminals the band-
width is likely to be less of an issue.

Two models are introduced (Table 2-3), the mobile model and the fixed model. The mobile model
assumes a user who is connected through a mobile device. The user mostly reads documents and
is very interactive with the news-on-demand service. The user always interacts with the telecom
database in each request to save bandwidth and avoid unnecessary file transfers. The number of
video clips is small in this model and the video clips used have a lower quality, to save bandwidth,
than those that are used in the fixed model. We assume that video clips are transmitted at 128
kbit/sec in the mobile model. The reader watches two and a half minute of video clips in a fifteen
minute session.

- 38 -

The fixed model is where the user is connected through a fixed terminal, most likely connected to
his television set. The number of video clips is much higher and there is less interactivity. The vid-
eo clips are transmitted at 2 Mbit/sec in this model and the user spends twenty minutes out of thirty
minutes watching video clips.

From these models we can derive that the mobile model puts heavy requirements on response times
in the telecom database. It also puts high requirements on message processing capability. The need
for bandwidth is, however, much less than in the fixed model. The fixed model requirements is
similar to the requirements on a video server. There is less interactivity (although higher than in a
video server) and bandwidth requirements are twenty times higher than in the mobile model. We
derive the figures stated in Table 2-4. It is obviously a very tough requirement to handle the video
bandwidth in the fixed model.

From this discussion it is easy to see that the news reader will have very high requirements on re-
sponse times. If the response time is more than half a second the user is likely to be bothered. For
video clips the user is likely to accept a little longer delay, 1-2 seconds before start-up. Therefore
the response time of the telecom database must be less than 100 ms since there are delays in the
network and in the user terminal, too.

A conclusion regarding the mobile model is that bandwidth-on-demand will be required. The band-
width must be up to 2 Mbit/sec to be able to transmit documents of 100 kByte size in half a second.
This is what the requirements on UMTS were originally and it should be possible to achieve this
bandwidth, at least where the radio cells are small enough (in densely populated areas).

The information in a News-on-demand database can be cached from another information server.
This affects the load that the various information servers have to handle, but not the query mix.

Table 2-3 News-on-demand characteristics

Busy hour behaviour Mobile Model Fixed Model

User sessions 0.8/h 0.8/h

User interactions 20/h 10/h

Telecom Database interactions 60/h 30/h

Non-video bandwidth per user 2 MByte/h 1 MByte/h

Video bandwidth per user 1 MByte/h 60 MByte/h

Video clips 0.5/h 2.0/h

Table 2-4 News-on-Demand Database Characteristics

Procedure Events/user/hour,
Bandwidth/user/hour

Total Events / second
Total Bandwidth/sec

Retrievals Document Table, Fixed Model 10 5556

Retrievals File Table, Fixed Model 20 11111

Bandwidth Requirement, Fixed Model 61 MByte 33.9 GByte/sec

Retrievals Document Table, Mobile Model 20 11111

Retrievals File Table, Mobile Model 40 22222

Bandwidth Requirement, Mobile Model 61 MByte 1.67 GByte/sec

- 39 -

It is likely that most of the news read by users is today’s news. Therefore the benchmark focuses
on browsing through today’s news. A normal newspaper is from fifty to one hundred pages long,
since it will also be combined with television news and radio news. There will also be an hour of
video clips and an hour audio clips. It is likely that the newspaper will become bigger and have
more resources available than currently and so the size of today’s news-on-demand. It will proba-
bly be a bit bigger than normal newspapers and television news.

From this short discussion we “guestimate” a model with the daily news-on-demand consisting of
1,000 articles (documents), 30 video clips and 30 audio clips.

The articles consists of one document part and from zero up to ten images. The size of the docu-
ment part is between 200-300 bytes up to several kBytes while the mean is 10 kByte. The images
vary in size from 1 kB up to several hundred kBytes. The mean is 50 kByte and the mean number
of images is 2. The audio and video clips are between thirty seconds and five minutes long and the
mean time is two minutes. The video clips are stored both in a form such that both 128 kbit/sec and
2 Mbit/sec transfer rates are supported. The audio clips are stored in a form such that the transfer
rate is 64 kbit/sec.

From these figures an interesting conclusion can be drawn. Although the transfer rate from the tel-
ecom database is high, the storage need is rather small; the document part consists of 110 MByte,
the video part of 58 MByte plus 900 MByte, and the audio part 29 MByte. In total a storage need
of 1.1 GByte, which clearly fits in the main memory of the telecom database.

In a real news-on-demand database there should of course also be connections to video archives,
document archives and various other information sources. These information sources would of
course require a much higher storage volume. These could, however, be a part of another telecom
database in a distributed information network.

2.4 Multimedia Email

Most people at work already use electronic mail systems. It helps people stay in contact, even when
a person is difficult to reach on the phone. It also provides a way to share information, by sending
documents of various types. With the explosion of Internet in recent years this service is also heav-
ily used by private persons. It can solve the communication problem of small organisations, with
a limited budget, where it can be very difficult to inform everybody (e.g. about a change in sched-
ule) using current techniques. Using email, a broadcast mail to a mail group, can be used to inform
everybody, easily and efficiently. For small organisations and home users, it is necessary that serv-
ers are available, which can be subscribed to. It is very expensive to have a server always connected
to the Internet that can send and receive emails. This is only affordable for large organisations.
Large organisations can also have problems sometimes, e.g. when their servers fail, when a soft-
ware change is needed and so forth. Therefore, there is definitely a large market for Multimedia
email for service providers and network operators. The network operators or service provider then
supplies an email server which is reliable and can store large pieces of information. It can then be
accessed whenever the user wants to read, create, delete or send emails.

The email service requires high reliability. No user is likely to accept that his emails get lost. It is
also crucial that the email service always works, even in a catastrophic situation.

- 40 -

When building up a database of emails it is necessary to have a table of the various emails that exist
in the database. In this table the receiver, the sender, the title of the email, the time it was received
and an identifier of the email is stored. Also a user-defined category is part of the email object.
Each email is an object in this table. The object also contains a list of objects attached to the email
and the properties of these attached objects. The attachments could be text files, HyTime docu-
ments, video files, the properties of these attached objects are stored as part of the attached object,
see Figure 2-19.

The major usage of an email service are:

● Display the email titles in a user-defined email folder

● Display an email and a list of its attachments

● Create a new email

● Delete an email

● Show an attachment (e.g. play a video, display text)

● Send and receive emails

From these usage it is easy to find the query functionality that an email server should be optimised
for. The first query that displays the emails of a specified folder is normally used when connecting
to the email service, in SQL this query could look like this:

SELECT SENDER, TITLE, RECEIVE_TIME, EMAIL_ID
FROM EMAIL_TABLE
WHERE RECEIVER = user FOLDER = folder;

The response to this message contains a set of all emails of the specified category that the user has
in his mailbox. The second query that is used when reading an email consists of two parts. The first
part retrieves the email and checks whether there are any attachments:

SELECT EMAIL_BODY, EMAIL_PROPERTY, ATTACHMENTS
FROM EMAIL_TABLE
WHERE EMAIL_ID = email_id;

If there are attachments another query retrieves the properties of the attachments:

EMAIL Data
Email ID
Title
Attachment
Sender

Figure 2-19 Multimedia Email Conceptual Schema

ATTACH Data
Attachment ID
Email ID
Name
Format

Receiver
Received time
Email Body
Format
Category

Size
Attached File

Size

1 N

- 41 -

SELECT ATTACH_ID, ATTACH_PROPERTY, ATTACH_NAME
FROM ATTACH_TABLE
WHERE EMAIL_ID = email_id;

The response to these queries contains the email body with its properties and a set of attachment
properties, their id and name.

The third query is used when sending and receiving emails. In these procedures the email and its
attachments are created. This is accomplished by a create transaction that could appear thus:

START TRANSACTION;

INSERT INTO EMAIL_TABLE
WHERE EMAIL_BODY = email_body, FORMAT = format,
SENDER = sender, RECEIVER = receiver, TITLE = title, FORMAT = email_format
CATEGORY = category, SIZE = size, ATTACHMENT = attachment;

INSERT INTO ATTACH_TABLE (one for each attachment)
WHERE EMAIL_ID = email_id, FORMAT = attach_format,
NAME = attach_name, ATTACHED_FILE = attach_file;

COMMIT TRANSACTION;

To delete an email is easy, one simply deletes the email from the email table and the attachments
from the attachment table. This could appear thus:

START TRANSACTION;
DELETE FROM EMAIL_TABLE
WHERE EMAIL_ID = email_id;
DELETE FROM ATTACH_TABLE
WHERE EMAIL_ID = email_id;
COMMIT TRANSACTION;

When showing an attachment, the attached file is needed; this is fetched with a query that could
appear thus:

SELECT ATTACH_FILE
FROM ATTACH_TABLE
WHERE ATTACH_ID = attach_id;

Finally sending and receiving emails is performed by the email server using some network proto-
col, such as extended SMTP (Simple Mail Transfer Protocol). During the receiving activity, emails
are created. When sending an email, the email and all its attachments are fetched from the database
and sent to the receiving site.

The description of the email service is based on personal use of a normal email-tool and the as-
sumption that future email services will be very similar to current email-tools.

2.4.1 Multimedia Email Characteristics

Email is a service that is heavily used today and is likely to be even more heavily used in the future.
The major problem is that the use of email is heavily dependent on the user’s maturity in using
computers in his work and also on culture in user behaviour. In [Pax94a] there is, however, a study

- 42 -

of the development of Internet use. In this report it is found that the usage of email in wide area
connections is increasing 30% per year per person; in 1994 there were about three email wide-area
connections per day per user and the report also shows that the size of the email is growing. The
mean size of emails was around 2 kByte in 1994. If this growth trend continues, we will reach 12
mails per day in 2002 and additionally the report did not include local email connections, thereby
increasing email usage even more. From this it is easy to see that it is more or less impossible to
predict the future behaviour of users of email. Our presentation is rather based on a model where
the users behave as today with ordinary mail, supplemented by the possibility to use email for fast
communication when a person is not reachable.

A large part of the current mail system is used to distribute advertisements for various products.
Much of the email traffic today is also generated by email reflectors and from email-lists. Thereby
it is fairly certain that a major part of the email traffic will be broadcast traffic. From this it is easy
to see that normal users will receive many more emails than they send themselves. However email
will also be used for person-to-person communication where currently answering machines, voice-
mail, short message services (mobiles) and faxes are mostly used. The Multimedia email service
is likely to include those services where voice messages, fax messages, text messages and even vid-
eo messages are all a part of the email service.

There are two usages of emails that are common today: the first is to transfer small text messages,
the other is to transfer files as attachments. The size of the text messages is likely to be rather con-
stant; the size and the number of files transferred using Multimedia email is, however, likely to in-
crease for a long time ahead as voice messages, file transfers, video messages and fax messages
becomes a more common type of usage of the email service.

The use of email is such that the user will perform email sessions now and then, where he will
check what email he has received and send emails. These sessions will occur several times a day
mostly; we “guestimate” that in the mean there will be 0.5 email sessions per user per hour in the
busy hour. Business users always use communication services more than private persons, in this
thesis we do not distinguish between them, we treat the community as one entity.

A person is likely to receive something like twenty emails per day and send about five emails. In
the busy hour this would be 2.0 emails received and 0.5 emails sent, that is one email is sent nor-
mally during a user session and four emails are received. From this we derive the figures in Table
2-5.

Table 2-5 Multimedia Email Procedure Rates

Procedure Events/user/hour Total Events /
second

Relative Rates
(%)

Connect Email session 0.5 278 10

Read an Email 2.0 1111 40

Send an Email 0.5 278 10

Receive an Email 2.0 1111 40

Delete an Email 2.0 1111 40

Total 7.0 3889 100

- 43 -

The reason that more emails are deleted than are sent is that it is possible to broadcast emails; when
sending an email, this is also reflected in that there are many more deletions of emails than there
are creation of emails.

When connecting an email session a scan of the email table is performed so that the email titles are
displayed to the user. When reading an email, the email body is read and a scan of the attachment
table is performed if there are any attachments. Sending an email involves creating an email and
its attachments, then sending it through a communication channel to the receivers. Receiving an
email creates an email and its attachments in the database and deleting emails deletes both the
email from the email table, as well as the attachments from the attachment table.

The current size of emails is about 2kByte [Pax94b]. Since this will grow slowly and also voice-
mail, fax-mail and other file transfers are likely to increase, we estimate the mean size of email
messages to be 20 kByte. The number of email messages that is stored in a user’s mailbox is likely
to be highly dependent on the user. Most likely the user will pay extra for a larger storage capacity
of his mailbox. We “guestimate” that the normal user will have fifty messages stored in his mail-
box. From these estimates we derive the figures in Table 2-6. The total is based on the same
number of users as in the UMTS database, that is, 2 million users.

To derive the access rates on the database for the email service, it is also necessary to estimate the
number of attachments that there are to an email. We “guestimate” that there are attachments to
40% of the emails and most of the time there is only one but the mean number of attachments we
estimate at 0.5 per email. From this we derive the figures in Table 2-7.

Table 2-6 Multimedia Email Bandwidth and Storage

2 Million users Per User Total

Input Bandwidth 10 kByte/h 5.6 MByte/sec

Output Bandwidth 40 kByte/h 22.2 MByte/sec

Storage Volume 1 MByte 2 TByte

Table 2-7 Multimedia Email Database Accesses

Events/user/hour Total Events/sec Relative Rates(%)

Retrieve email 2.0 1111 18.1

Retrieve attachments 1.0 556 9.1

Scan email table 0.5 278 4.5

Scan attachment table 0.8 444 7.2

Create email 2.5 1389 22.6

Create attachment 1.25 694 11.3

Delete email 2.0 1111 18.1

Delete attachment 1.0 556 9.1

Total 11.05 6139 100

- 44 -

2.5 Event Data Services

In all applications mentioned so far it is necessary to bill the services. Current billing procedures
used by most telecom operators provide a bill at some predefined time. In the future information
network it must also be possible to pay when the service is used, in the same way as is done in
shops. It should also be possible to tell the system that now I want to pay the bill, in the same way
as at restaurants. It must also be possible to pay with electronic cash, to pay with credit cards or
any other method of paying. To make this possible, it is necessary to audit what the users are doing
in the network. This information must also be immediately available to the billing system, so that
on-line billing becomes possible.

This information can also be used to get information on network usage and in many other ways. It
is therefore necessary to regulate what information can be legally gathered and what information
the users must provide to use the network. It will be used by systems for market research, network
planning, operation and maintenance and by regulatory organisations.

The information gathered is defined in event records which are created in the nodes where the
event is happening. The event records are then sent to a Charging DataBase that collects all usage
records and also transfers them to all parties that need access to them. This database can then both
be used to transfer the records, but the records are also stored and therefore database queries can
also be issued on the stored records. This particular database does not update the information in the
database, information can only be added. At times, however, old event records are deleted and pos-
sibly saved in some archive. The Charging DataBase is then another telecom database, so the pres-
entation here will focus on the requirements of the Charging DataBase.

The flow of information in Figure 2-20 is in accordance with CCITT Recommendation X.742,
where the accounting process consists of three processes:

i) A number of usage metering functions, where these functions generate the event records.

ii) A charging process that formats, distributes and collects event records together to form service
records and tariffed service records.

iii) A billing process that uses the information provided by the charging process to create the bills.

UM-FE

Usage
metering

Network entity

UM-FE
Network entity

UM-FE
Network entity

Charging
DataBase grouped

event record

Event record,
info usage

Event record,
in-call 1

Event record,
out-of-call

Figure 2-20 Charging
Process

Billing
System

Market
Research

Network
Planning

Operation and

Event
Records
Storage

Distribution and Query
Function

Maintenance

Data
Generation

Data
Aggregation

Data Formatting
Data Correlation
Data Distribution

Regulatory
Reporting

- 45 -

This architecture was adopted in the RACE MONET project and it seems like a good candidate for
the accounting process in third generation mobile systems. A very similar process has also been
adopted in DAVIC 1.1 (Digital Audio-Visual Council) where a standard for video-on-demand and
other information services has been developed.

In Figure 2-21 a detailed description of the charging process for UMTS as proposed by RACE
MONET is shown. The events are collected in the visited network; they are then sorted and for-
matted before they are transferred to the home operators charging process. At the home operator,
the records are associated to user events and stored as service records. Then these records are used
together with tariff data to create tariffed service records. These records can then be transferred to
the billing process of the home operator.

2.5.1 UMTS Event Records

In [MONET053] the following events have been identified:

● Mobile originated call record, generated when a call has been terminated at
the originating side.

● Mobile terminated call record, generated when a call has terminated at the ter-
minating side.

● Bearer usage record, which specify the bearer resources that have been used
by a call.

● Emergency call record.

● Feature usage record, is used for metering UMTS procedures such as registra-
tion, deregistration, session management, location and domain updating.

● Supplementary Service record, is used when supplementary services are in-
voked during a call, such as call waiting.

Association

USAGE
METERING

CHARGING

usage record

tariffing
and

storing

Collection

BILLING

tariffing

INTER
ADMINIS-
TRATION

CHARGING

storing

sorting

INTER
ADMINIS-
TRATION

ACCOUNING

Association

USAGE
METERING

CHARGING

tariffing
and

storing

Collection

BILLING

tariffing

INTER
ADMINIS-
TRATION

CHARGING

storing

sorting

INTER
ADMINIS-
TRATION

ACCOUNING

modified
usage record

bill

service records

tariffed service
records

usage record
Home operator
charging database

Visited operator
charging database

usage record

Figure 2-21 UMTS Charging and AccountingSubscriber

- 46 -

● Value-added service record, is used when value-added services are invoked
during the call, such as a directory service.

● UPT service record, used when a UPT user was involved in a UMTS call.

● Management service record, used when the user invoked a service manage-
ment function.

● IN service record, used when the call used IN services, such as a freephone
call.

● Handover record, used at handover. Not all handovers are metered however,
as this would be too much information. Therefore the operator must decide
which handovers should be metered.

● Incoming/outgoing gateway record, used when coming into a new network or
leaving a network.

The event records should contain a reference to the user and the subscriber of the event. Events that
are part of a call or another type of service should have a call identity or service invocation identity
so that they can be grouped into service records. There should also be a reference to the network
entity that generated the record. A list of possible parameters is given in [MONET053].

2.5.2 News-on-demand Event Records

The events in the News-on-demand application seem rather simple to specify. The news provider
would like to know which documents the readers are interested in and therefore each time a docu-
ment is fetched a usage record is created. Also when performing searches in the database, an event
record should also be created. All event records are part of a user service, e.g. reading the newspa-
per. There is one such service record created per user session.

2.5.3 Email Event Records

Email events that definitely should be recorded are when emails are sent and received. It is also
likely that each interaction with the email server also should generate an event record. Exactly
which events to record is the decision of the operator. It is likely that creating and sending emails
is one service and that connecting to the email server is another service that generates service
records based on what has been performed during the email session.

2.5.4 Characteristics of the Event Data Service

We will analyse the flow of event records for the UMTS application, the news-on-demand and the
Multimedia email application. The UMTS application generates an event record each time a
UMTS procedure is invoked. Also event records are generated that specify the use of network re-
sources, supplementary services, emergency calls, UPT services, IN services and value-added
services. Also call release generates an event record that specifies the duration and the stop time
of the call. For news-on-demand and Multimedia email we assume that all user accesses to the

- 47 -

server generates an event record. The usage models of the previous sections are used in deriving
the characteristics of the Charging Database. The extra information we need in the UMTS case is
shown in Table 2-8.

There is a process in the Charging Database that correlates the usage and service records according
to various needs. All records pertaining to a call, a UMTS session, an email session or a news-on-
demand session are brought together and stored as one service record. These records are then
stored in the Charging Database so that external systems can perform queries on the usage infor-
mation.

There is another process that formats usage records and service records for various needs. These
formatted records are then distributed to external systems that have requested to be on the distri-
bution list of these records.

The grouping of event records is triggered by events that specify that a service has been completed.
As part of this process, a tariff is also applied on the service record, thereby producing a tariffed
service record. This record can then be used for both on-line and off-line billing.

The formatting is performed as records are produced and then the formatted records are distributed.
We assume that each event record, each service record and each tariffed service record produced
is formatted once and distributed to external systems.

One way to avoid large query transactions each time a user wants to calculate his bill or get an ad-
vice-of-charge is to calculate the bill incrementally, this means that it is updated each time a set of
service records have been produced. In the following we will assume that this is performed by the
application. It could also be performed by having triggers in the database.

There are four types of transactions in a Charging Database. The first type is storage of event
records. Some of these transactions trigger another type of transaction. This transaction formats
event records and distributes the formatted records, groups event records and updates billing infor-
mation (and possibly other information requested by the application) for a user. The charging proc-
ess and the relation between these two transaction types are shown in Figure 2-22.

There is a problem when event records are stored. These are likely to be sent to disk and erased
from main memory eventually. Since there could be a long time interval between the first event
records and the end of a user session, these event records might have been sent to disk when the
user session or call is finished. To avoid this the event records are stored in two tables. The first
table represents the original, which is stored on disk eventually. Actually the records are not likely
to be read any sooner, so they can be sent to disk as soon as possible. The second table contains
similar information and is stored in main memory. This record is deleted as soon as the charging
process is finished. This makes sure that the queries from the charging process are always per-

Table 2-8 UMTS Procedure Rates

Procedure Events/user/hour Total Events /
second

Network Resource Usage 6.0 3333

UPT Service 0.5 278

Advice-of-Charge 1.0 556

Supplementary/Value added Services 1.0 556

- 48 -

formed on main memory data. The same procedure is also used with service records if it is neces-
sary to save them for a later process. In our estimates we do, however, assume that the grouping
transaction and the formatting transactions are all part of the same transaction and thereby there is
no need to save them in the database. The information can be held in the local variables of the ap-
plication.

The fourth type of transaction issues queries to calculate the bill and perform advice-of-charge.
This transaction is a simple read of the user record since the information is produced as part of the
charging process. The fifth type is an uncommon type of transaction that queries the user records,
tariff records, event records, service records and tariffed service records. This is used by manage-
ment systems to perform data mining on the Charging Database for various purposes.

Delete transactions occur, but occur more on a regular basis. Normally records are kept for about
three months and then they are deleted. Therefore we will not provide any characteristics on dele-
tions, only on retrievals, updates and creations. All updates are also on the User Records Table, the
event records are inserted and sometimes retrieved and finally deleted.

The updates on the User Records Table are normally performed by applying a function on the tu-
ple. If the database supports sending methods, then a method is sent to the database with the proper
input. Otherwise a retrieve followed by an update is performed.

To calculate the characteristics of the charging database we need to analyse what happens in the
above-mentioned transactions. All events lead to the creation of two records of which one is delet-
ed when the user session or call is ended. Each time a user session, service or call is ended a service
record and a tariffed service record are created. Also the event records table in main memory is
scanned for all event records belonging to the user session, service or call. Then an update of the
user table is performed and a retrieve of tariff information is performed. This gives one retrieval,
one scan, one update and two create operations at the end of user sessions, services and calls. If
there is only one event record for a service, then no scan operation is needed.

Reception of Event
Record from usage
metering function

Event
Records
Tables

Store

Service
Records
TablesUser

Records
Table

Group Event Records
into Service Records
Create Tariffed Service
Records

Tariffed
Service
Records
Tables

Retrieve

Store

Store

Tariff
Records
Table Retrieve

Retrieve
Update

Retrieve

Retrieve

Retrieve
Format Event Records,
Service Records and
Tariffed Service
Records and Distribute
to external systems

Figure 2-22 Charging
Processes and usage of
Telecom Database

- 49 -

For the UMTS application the following actions triggers the end of session actions: Call Release,
Inter-Domain Handover, Location Update, Domain Update, User Registration, User Deregistra-
tion, Attach, Detach, Interrogate Service, Register Service, Erase Service, Activate Service, Deac-
tivate Service, UPT Service and Supplementary Services. All except call release only contain one
event record.

The derived characteristics of the UMTS, news-on-demand and Multimedia email Charging Data-
base are shown in Table 2-9.

2.6 Genealogy Application

A genealogy application uses historical records to trace our ancestors and their families. There is
an immense amount of historical records to search. Currently this is done by reading the historical
records directly or by reading a microfilmed copy of the record. This means that the genealogist
needs to visit an archive or a place where he can read microfilms to do the genealogy. Also it is
difficult to trace what other genealogists have found, when searching the records. The forthcoming
storage and database technology will revolutionise this tedious research.

There are six groups of objects in this application. The first group comprises the historical records
that have been scanned, either directly or from a microfilm. This group also contains refinements
of those objects where computers have been used to make the images clearer, to increase the sharp-
ness, brightness and the contrast, possibly also adding colours to make the text more visible. This
means that there could be several versions of the scanned objects. It is not desirable that it should
be possible to delete these objects, especially not the original scanned objects.

This represents an immense storage volume. Already today there exist millions of microfilms of
historical records, each containing about one-thousand images normally of A3-format. One such
image needs around 1 MB of storage in compressed form. The image needs to have very high res-
olution since it represents hand-written text. This text is sometimes very difficult to read, and there-
fore it is necessary that the parts of the image can be magnified to make it more readable.

Also very many records have not yet been microfilmed. This object class will therefore constantly
increase in storage volume, both to store new originals and new copies. Already from the start this
will therefore need petabyte, that is thousands of terabytes or millions of gigabytes or billions of
megabytes. This will then increase as more and more records are added to this historical database.

The next class of objects are the catalog objects. These objects specify the historical records, and
what they represent. This is where the researcher goes when he wants to see what historical records
exist in the area of his ancestors.

Table 2-9 Charging Database characteristics

Application
(2 million users)

Retrievals/sec Scans/sec Updates/sec Deletes/sec Main
Memory

Creates/ sec

Disk Cre-
ates/sec

UMTS 8694 2222 8139 14806 14806 31083

News-on-demand 444 444 444 11111 11111 12100

Multimedia email 556 278 556 3889 3889 5000

Total 9694 2944 9139 29806 29806 48183

- 50 -

The third class of objects are transcriptions of the scanned objects. This means that a person or a
computer program has read the text and made a note of what was written. There are also many ver-
sions of the transcribed objects. Each transcription can exist in many versions; first the original,
where one simply tries to read character by character what is written; another version could be
where older words have been translated into modern words; yet another version could be where the
whole text has been translated into modern language and of course there could be translations to
other languages as well. Also there could of course be many transcriptions of the same text. These
need not be the same since mistakes could be made, especially when the text is difficult to read.

The fourth class of objects comprises the application objects which represent the information that
is actually sought. In genealogy this means information about births, christenings, marriages,
deaths and burials, as well as other information that can be used to link persons together into fam-
ilies. There could also be several versions of these objects, representing the findings of different
genealogists. Of course the above information could be used for many other applications apart
from genealogy. One such application is historical research. Other applications have other require-
ments on the application objects. In this section we will however focus on the genealogy applica-
tion.

The fifth class of objects comprises link objects which are used to link all the information together.
A transcribed object needs to be linked to the original and possibly also to the version from which
the transcription was made. Application objects needs to be linked to all sources (scanned objects
as well as transcribed objects and even other application objects).

Now a scanned object normally represents a page (or two) in a historical record. This page consists
of a number of information objects. In a book of births there are information objects on the pages
that represent births (or christenings). In a book of marriages there are information objects on the
pages that represent marriages. In a tax record, the information objects on the pages represent taxes
paid (or to be paid). Each of these information objects can now be mapped onto scanned objects.
This mapping is represented by the set of scanned objects the information is located in and the area
of these scanned objects that the information object consists of. Now this information object can
now be linked to various objects. It can be linked to transcriptions of the information object, appli-
cation objects connected to the information object.

As an example, a birth record is normally a short item, where the name of the child, the birthplace,
the name of the father and mother is given. Sometimes there is more information and sometimes
there is less information. Now when this birth record is transcribed, a transcription object is created
and when somebody finds that this is a relative, he makes an application object, where data about
this person is collected and information about his parents, spouses and children can be found. This
application object can now be linked to the information object. From this information object, the
transcribed objects can be found and from the application object there can also be links to other
information objects that is used in collecting the data about this person and his family connections.

The sixth type of object comprises name translation objects. These are necessary to provide trans-
lation to standardised names. In historical records it is not uncommon that the same name can be
spelled in many ways. An example is Margareta that can be spelled in at least the following ways
in Swedish records: Margareta, Margaretha, Marget, Margeth, Maret, Mareth, Mareta, Maretha,
Margreta, Margretha, Marit, Marith, Märet, Märeth, Margit, Margith. All these spellings represent
the same name and can even be used in different records to represent the same person. The different

- 51 -

versions of names can differ in different geographical areas. Also provided in the name translation
object could be information on the usage of that name, where it is common, history of the name
and so forth. The different objects are shown in Figure 2-23.

When a genealogists works on these objects, there are many different ways to use the information.
The scanned objects are used to derive new information which is fetched one object at a time, the
transcribed objects and the application objects are often searched for the sought information.

There are many interesting challenges in this application for telecom databases. It represents an ap-
plication with a vast need of storage. Current technology cannot satisfy the requirement; possibly
around 2005 these requirements can be met at the right price level. It also represents an application
where one needs object-oriented technology to represent the information, relational database tech-
nology for efficient searches, deductive database technology to assist those who are not specialists
in genealogy to also use this technology efficiently. There is also a need for fuzzy queries since
names were not standardised. Also solutions in Multidatabase technology are needed to enable
queries with similar sources where all sources do not contain the same information and where the
same information is represented in different formats. It also represents an interesting application,
where millions of people can work on the same application, using a distributed database that is glo-
bal. It also needs a versioning system; this database will mostly grow, information can possibly be
marked invalid, however very seldom entirely deleted.

2.6.1 Conceptual Schema

In Figure 2-24 a description of the conceptual schema of the Genealogy application is given. The
scanned objects have relations to the catalog objects, a number of scanned objects represents the
information covered by a catalog object. Each scanned object is a page of a catalog object. Copies
of the original scanned objects have a relation to their original object. The scanned objects consist
of a number of information objects; these are represented by a link object and transcribed objects.
A typical information object could be information about a birth, death or marriage. There could
also be information on court cases, taxes, letters and many other types of information objects.
These information objects are normally short and fit into one page. Sometimes however they span
several pages, such as a court case.

Catalog
Objects

Scanned
Objects

Transcribed
Objects

Application
Objects

Figure 2-23 Object Classes

Link
Objects

Name
Translation
Objects

- 52 -

The link object contains information about where on the pages that the information objects can be
found as seen in Figure 2-25. The link object specifies which part of the page that is covered by
the linked object. This could be specified by the x and y coordinates of the upper left corner and
the length on the x-axis and the length of the y-axis.

The information objects can be transcribed into text objects that are machine readable and can be
used in search queries. This translation process can also be supported by software that helps in in-
terpreting the handwritten text. This is, however, an application issue not dealt by the database. The

Scanned Object

Scan Object
Quality
Descriptive info

Copy of

M

1
Belongs
to

Page no

M

1

Catalog Object
Country
State
County
Region
Source Type
Time Period
Descriptive info

Link ObjectBelongs
to

M N

Position at page(s)
(x,y coordinates)

Information Type

Transcribed Object

Event Date
Information Type

Transcribes

Application Object
Sourced
from

Sourced
from

Sourced
from

M
M

MN

N
N

Specific Trans-
scription Object
Specific
Attributes

Specific App-
lication Object
Specific
Attributes

Name Translation
Object

Original Name
Standard Name
Country
State
County
Region

Figure 2-24 Conceptual Schema of Genealogy Application

Other info

Scanned Object

16 jun 1665 birth of
Jon Jonsson, father Jon
Hansson in Sandarve

Link Object

Transcribed Object

Name: Jon Jonsson
Date: 16 jun 1665
Event Type: Birth
Father: Jon Hansson
Mother: -
Region: Sandarve
County: Fardhem

Birth Record of Fardhem
in Gotland, Sweden

State: Gotland
Country: Sweden

Handwritten text
Figure 2-25 Example of relations between Scanned
Objects, Linked Objects and Transcribed Objects

(x1,y1), x-len, y-len

- 53 -

transcribed objects and the scanned objects are then used as sources to find the information to store
in the application objects. A more detailed description of the relations between the application ob-
jects are found in Figure 2-26. The basic application object is an object describing a person. A per-
son has many relations; There are marriage relations, and there are relations to parents and their
are relations to children. Other relations such as foster parents, adoptive parents and so forth are
also possible. Names in transcribed objects and application objects are often given in the form that
they were written in an original document. Many names with similar spellings represent the same
name. Therefore there are name translation objects that translate the original names to a standard-
ised name.

2.6.2 Traffic Model

To analyse the behaviour of this application we need to make guesses on the traffic model. The
traffic model is based on user behaviour and how many users that are active with different activi-
ties. Most likely very many people will be interested in browsing the data given that the data is
accessible to all people. There is, however, a more limited set of people who are updating the data
and providing new research results. These people use much more time than the people who only
browse the data and thereby there will be a high percentage of the currently active who are updating
the data.

2.6.3 Transactions types

In this part we will describe the most common transaction types and provide “guestimates” on how
often they will be performed on a world-wide basis.

2.6.3.1 Insert Original Scanned Object

This transaction is performed by scanning the original object, which could be either a microfilm or
the original record itself. This activity is performed centrally by a set of scanners (most likely rather
expensive) that perform scans during normal working hours. An estimate could be that 500,000
films are scanned each year. This would require a number of years for converting the films and

Person Object

Birth_Data
Birth_Sources
Death_Data
Death_Sources
Descriptive info
Application Specific
Information

Father

Mother

Relation to

Married to

1

N 1

N

Relation Type
Relation Info

Marriage_Data
Marriage_Sources
Descriptive Info
Application Specific
Information

Figure 2-26 Conceptual Schema of Application Object

- 54 -

after this the activity would most likely slow down as only original records are scanned. This sug-
gests about 2,000 films per day and about 200 films per busy hour. This means that there will be
200,000/3.600 transactions per second (assuming 1000 pages per film) which means 56 transac-
tions per second. Each transaction inserts one large object.

2.6.3.2 Insert Derived Scanned Object

This activity can be performed by anybody with a powerful computer that can improve the clarity
of the original scanned object. It is likely that at least three to five different versions of each
scanned object are needed to make sure that the text is as readable as possible. Thereby the rate
should be four times as high as the insertion of original scanned objects. This leads to a transaction
rate of 222 transactions per second. The transaction is the same as the insert original scanned ob-
ject.

2.6.3.3 Insert Transcribed Object

Inserting a transcribed object is an activity performed by interested genealogists who normally per-
form the work in areas of their own research. Transcribing objects in an area helps the genealogical
research of this area to take great steps forward. In Kalmar, Sweden, an association of genealogists
has been established. One of the main purposes is to transcribe genealogical records from Kalmar.
The association has been active for ten years and has now collected more than two and half million
records of births, marriages, deaths and “husförhörslängder” (records from a yearly activity where
all people were written down with birth data, marriage data, death data and data on ability to read,
ability to read scriptures and so forth). Such books were written, covering a period of 5-25 years
in most of Sweden from the early 1700s. Other records that are on the list are records describing
the heritage of dead people, law books and so forth. Tax records were written each year from 1620s
until our days.

The active genealogists who perform the transcription are about 100-200 people. Each of these per-
sons then transcribe about 1,000-3,000 records each year. This represents about 30-100 hours of
work per year per person. If a global association existed where the data becomes available to all
immediately after transcription, then it is likely that many more would gain an interest in transcrib-
ing records. Thereby many thousands of people are likely to gain an interest only in Sweden and
millions in the whole world. Thereby it should be possible to transcribe billions of records each
year on a world-wide basis. Since people perform the research in their free time, the busy hour is
likely to be in the evening. About 10-20 million records per day could be achieved at times and this
would create a load in the busy hour of about 4 million records. This gives about 1,000 transactions
per second on a world-wide basis.

A transaction that inserts a transcribed object has many more database requests than the insertion
of the transcribed object itself. The standard name-table is used to update fields with standard
names. These fields are not absolutely necessary since they represent a replication of information.
It is likely that reads of the transcription tables are much more common and then it is probably a
good idea to store standard names in the transcribed objects. This means about five read accesses
to a standard name-table. The links between the scanned object and the transcribed object also need
to be inserted. This is either an insert or an update of links depending on the implementation of the
links.

- 55 -

2.6.3.4 Check Transcribed Objects

Transcribed objects are checked to determine which of several copies is correct and the correct
transcribed object is inserted in another table. This table should have links to the objects that were
used in the check. About half as many as the insertions of transcribed objects are likely to appear.
This means 500 transactions per second. This transaction then consists of reading the checked ob-
jects (normally two) and then inserting the correctly transcribed object.

2.6.3.5 Search Transcribed Objects

Searches of transcribed objects are normally scans of objects that are of a particular type and in a
specific region. Normally a few thousand objects are scanned and of those about five to ten objects
are returned on average.

This should be a rather common transaction. It is mostly used by people performing research and
not only browsing the genealogical database. It is very difficult to guess how many searches are
performed. It is likely that at least as many searches as inserts are made and probably even more.
We “guestimate” that 2,500 searches per second are performed on a world-wide basis and that on
average 10,000 records are scanned. This is in the busy hour.

2.6.3.6 Write Application Object

To insert or update a new application object means in this case to insert/update information about
a person in a genealogy or a marriage between two persons already inserted. When an application
object is inserted/updated a number of links must be ensured. There should be links to parents,
links to source objects. Source objects could be other application objects, transcribed objects and
scanned objects. This means that an insert/update of an application object normally also causes the
insertion of a number of link objects and also the reading of a number of linked objects.

Understanding the number of insertions is very difficult. Most of this work is performed by re-
searchers but also browsers are likely to create their own copy of the application object where they
write down added information that they think is valuable to them.

We “guestimate” the figure to be 3,000 per second on a world-wide basis in the busy hour.

2.6.3.7 Search Application Objects

Searches of applications are likely to be very useful; most likely they are, however, not so common.
They are used when no knowledge about a person is known. Then a search could be performed.
We estimate that 200 searches per second, on a world-wide basis in the busy hour, are performed.
Each search is likely to scan about 50,000 objects.

2.6.3.8 Following a link

The most common operation is to follow some of the links that have been set up by a write trans-
action. It is likely that browsers in particular will use this technique to find information on their
ancestors. Links followed will be both to scanned objects, catalog objects, transcribed objects and
application objects.

A guess is that these represent some 20,000 read operations per second, on a world-wide basis in
the busy hour. These transaction read one object and we estimate that about 5,000 of these are ac-
cesses to scanned objects.

- 56 -

2.7 Reliability and Availability in Telecom Databases

As seen from the presentation of the applications, reliability and availability are very important. In
this section we will present the definitions of some terms, some empirical studies of failures and
finally a number of approaches to provide good reliability and availability. Much of the material
in this section is covered in greater detail in [Gray93] and [Tor95].

2.7.1 Definitions

A common measurement of the reliability of a system is the mean time between failures (MTTF);
a common measure of the maintainability of a system is the mean time to repair (MTTR). Now
using these two measures we can define the availability as the measure:

So availability is the probability that the system is available. Since we require a very high level of
availability, it is more common to discuss unavailability. [GS91] defines seven availability classes
(Table 2-10).

The availability requirements on telecom databases is between availability class 5 and 6. Some tel-
ecom databases will need availability class 6 and some can handle availability class 5. Another re-
quirements is that there should be no catastrophic failures, such as a service not being available for
weeks or months.

2.7.2 Empirical Studies

There are several causes of failures. The major contributors to failures are hardware failures, soft-
ware failures, operator failures, maintenance failures, environmental failures. The main contributor
to software failures is errors in the design. Hardware failures can be caused by errors in the design,
errors in handling the hardware, environmental causes and hardware can also fail due to its age.
Operator and maintenance failures are almost always based on human failures. These could, how-
ever, be caused by erroneous operator and maintenance manuals. Humans could also cause failures
through strikes, sabotage and so forth. These are classified as environmental faults. Some environ-
mental faults and some hardware faults are caused by disturbances by nature, such as earthquakes,
radiation and so forth.

Table 2-10 System Availability Classes

System Type Unavailability
(min/year)

Availability
(in percent)

Availability Class

Unmanaged 50,000 90 1

Managed 5,000 99 2

Well-managed 500 99.9 3

Fault-tolerant 50 99.99 4

High availability 5 99.999 5

Very high availability 0.5 99.9999 6

Ultra-availability 0.05 99.99999 7

Availability
MTTF

MTTF MTTR+
---------------------------------------=

- 57 -

From [Gray93] one can see that the number of failures due to hardware and maintenance is de-
creasing. This is due to improved hardware and thereby a lesser need of maintenance. Software
failures are, however, increasing, the other failure types are rather constant.

From both [Gray93] and [Tor95] it is evident that a good design of the telecom database is not
enough. It is also necessary that the maintenance personnel are well trained, all changes should be
carefully planned and changes should not be performed if not necessary. There should also be se-
curity precautions against sabotage. There should be a stable environment for the hardware through
air conditioning and uninterruptable power supply and sites should also be available that can take-
over at a major failure of a system (network redundancy). There must also be plans on what to do
when disasters occur. Off-line backups should be stored in several safe places and stand-by sys-
tems could also be available to take over in case of disasters. In this thesis we will not pursue these
issues further, we will mainly focus on what can be performed by a proper design.

To increase availability, the design should focus highly on automatic recovery and maintenance
procedures. The recovery procedures should be automatic and not involve any operator interaction.
Maintenance procedures should be supported by tools, so that the maintenance procedures are test-
ed properly. These tools should also check for operator errors and should be very simple to use.
All maintenance procedures must be performable with the system on-line.

2.7.3 Module Failure Rates

Module failure rates are applicable to hardware and software. Production software normally has
between 0.1 to 10 design faults per 1,000 lines of code. Hardware such as disks, boards, connectors
and cables normally have an MTTF of at least 20 years if properly designed. The lifetime of these
products is, however, shorter and so these figures are based on there being a continous replacement
of old hardware. There is also a high failure rate of new hardware; therefore one should run the
new hardware in the factory before delivering it to the customer. The failure rates increase if oper-
ating temperature is too high; other factors that can increase the failure rate is shocks, vibrations,
thermal changes and mechanical stress.

Hardware faults can be classified into soft faults and hard faults. Soft faults are temporary faults
that cause an error and then the failure disappears. Examples of these are when a processor by mis-
take interprets a 0 as a 1 and then after this error it behaves correctly again. These failures do not
need repair afterwards. A hard fault does, however, not disappear and the module must be repaired.

Software faults can be classified in two ways. The first classification separates between heisenbugs
and bohrbugs. The difference is that bohrbugs show up each time the code is executed. The heisen-
bugs only show up at specific occasions when special conditions occur. Most faults in production
software are heisenbugs, the reason is of course that careful testing removes most of the bohrbugs.
The second classification classifies heisenbugs into virulent bugs and benign bugs. Benign bugs
are bugs that only occur once and then never come back. Virulent bugs have a tendency to come
back, again and again. This classification is based on most software failures in a production system
being caused by a few virulent faults. The other faults that cause failures do so only rarely and are
called benign faults.

The remaining software faults in production software are extremely hard to remove. Studies even
show that after some time of fixing bugs, the mean number of bugs might increase as more bug
fixes are introduced. The reason is that when introducing a bug fix, a number of new bugs can eas-

- 58 -

ily arise. The conclusion drawn from these facts is that it is not possible with current methods to
avoid software errors. It is possible, however, to mask most of the software errors. This can then
be accomplished by making sure that a single software failure does not hamper the availability of
the system. Since heisenbugs only occur under special conditions, these bugs should not hit all
processor nodes simultaneously, as the state of processor nodes is not very synchronised.

2.7.4 Hardware Approaches

In the past hardware was the main cause of failures, therefore many advanced approaches to hard-
ware redundancy exist. The most common variant is that the hardware is doubled or tripled. Tripled
hardware has the benefit that there can be a voting scheme, so that two correct hardware modules
can identify one faulty module. From what we have found above, software faults are the dominat-
ing reason for failures. This means that there redundancy has to be provided by the software. This
is solved in a DBMS by replicating the data. Thereby no hardware redundancy is needed since the
DBMS puts the data on several independent processor nodes.

We conclude that there is no need for hardware redundancy. What could be needed are, however,
failfast modules. When a hardware module does not function correctly, it should immediately re-
port this as a failure. This means that the software can trust the hardware to function correctly.

There is still a need for hardware redundancy, however, for the communication network. This com-
munication network can then be tripled or doubled.

2.7.5 Software Approaches

There are several approaches to availability through software approaches. One approach some-
times used is called n-version programming. This means that a specific function in the system is
solved by several design teams independently. At execution the result of these functions is com-
pared. If they agree, everything is ok, otherwise there is a problem. This approach has several prob-
lems. First, it is very difficult to detect which version of the function was correct. It is also very
difficult to recover the version that failed. Another problem is that most faults arise where the com-
plexity of the function is. This means that the really complex parts might be erroneous in all ver-
sions. This is similar to an examination in school; the hard problems are often solved correctly only
by a few and sometimes even by none.

Another approach is to use transactions, so that if a fault is detected, the transaction is rolled back
and the system continues operating. The reasoning is that the fault was a heisenbug and most likely
also a benign bug and therefore the fault is only reported, no major investigation of the fault is per-
formed.

One approach that is commonly used in high availability systems is to have system pairs. This
means that all data in the primary system is replicated at a backup system. This means that the
backup system is always ready to take over if the primary system fails. This approach can then be
used both internally in a system to provide high availability of the system; it can also be performed
at a network level to achieve availability from even more fault situations, such as environmental
faults, maintenance faults and operator faults.

- 59 -

Another approach is called defensive programming, basically the programmer does not trust any
input, he performs integrity checks of his internal data structures. This checking of internal data
structures can either be performed while executing the normal functions or it can be executed by
specific programs that only execute to check for consistency of the data structures. These programs
are called auditors or salvagers.

Most of these approaches can be combined in a system.

2.7.6 Transaction Availability

Availability of Databases actually handles two issues. The first issue is how available the system
is for execution of transactions. The second issue is how often committed transactions are lost. We
will call the availability of the system to execute transactions Transaction Processing Availability.
The measure of this is the probability of the system to abort a transaction due to an internal data-
base failure. The probability of losing committed transactions will be called Transaction Process-
ing Reliability. Clearly it is desirable that Transaction Processing Reliability should be higher than
the Transaction Processing Availability.

In our database replication approach we will develop a method that increases Transaction Process-
ing Reliability in a cheap way through the use of a special log server (stand-by node).

2.7.7 Conclusion

It is obvious from the requirements that the telecom database should have replication of data in the
system. Since hardware fault tolerance is not enough, this replication must be handled by the soft-
ware. This replication must also exist between systems, to ensure that catastrophic failures do not
stop the system easily.

As much as possible of the maintenance, recovery and operator procedures should be automated
to minimise the chances of human failures. This means that recovery procedures should be auto-
matic, and operator and maintenance procedures should be supported by advanced tools. These
should be easy to use and well tested. The maintenance organisation must also be carefully man-
aged such that human failures are minimised.

Now since redundancy must be maintained by the software and there are also automatic recovery
procedures, there is no need for highly available processor nodes. There could be a need for failfast
processor nodes. The most common way to provide this is to have doubled hardware and have a
comparator that checks whether they perform equally. If not, the processor node should immedi-
ately stop and go into a failed mode.

Even this doubled hardware can be questioned for many systems. If a hardware failure hits the sys-
tem, it is likely that it will quickly show up in such a way that the software discovers the failure.
When compared to the probability of software failures, such as heisenbugs that can cause similar
problems, this probability should be small.

Therefore our conclusion is that the telecom database should have replicated data, both internally
and on a network level. The communication hardware must be hardware fault tolerant using dou-
bled or tripled hardware. The processor node can have hardware that fails immediately after an er-
ror occurs. For our applications this should, however, not be necessary. To improve the MTTF
there should also be so-called salvagers executed as part of the software. These should check data

- 60 -

structures for inconsistencies and they should also calculate checksums for various data and check
that the checksum is correct so that one quickly finds faults caused by software and hardware
faults. Processor nodes could also be restarted to remove latent faults in data structures.

In this thesis we do not investigate the fault tolerance of disks. There are many technologies pro-
viding fault tolerant disks, such as various RAID-architectures.

2.8 Conclusions on Architecture of Telecom Databases

From the study of various applications of telecom databases we can draw certain conclusions about
the requirements on the telecom database. Most of the data studied should be kept in main memory.
There are also applications with great needs of larger data sets (email server, genealogy databases,
charging database) and these will need disks and might even need some form of data juke-box.

Typical future performance requirements on telecom databases are 10,000 requests per second.
Most of these requests are either write a record or read a record. Many applications also need net-
work redundancy to handle earthquakes and other catastrophes. A short delay of read operations is
particularly crucial, but also write operations must have a short delay. Typical future delay require-
ments are 5-15 ms [Ronstrom93].

The impact of the delay requirement is that disk writes can not be used in the transactions. This
means that availability requirements must be handled in another way. In this thesis we will study
a method where several main memories are used to ensure high availability. The probability of two
processor nodes failing at the same time is very small. General power failures can be handled by
using battery backups to ensure that log information can be sent to disk before the battery runs out
of energy.

Disk storage is needed for the documents in the news-on-demand application, the email bodies and
the attachment files, and the set of scanned objects in the genealogy application. These are all ex-
amples of BLOBs. It is also necessary to store event records on disk. This is actually the only ex-
ception in the applications, of small tuples that need to be stored on disk. If BLOBs are attributes
then obviously it must be possible to separate attributes that are stored in main memory and at-
tributes that are stored on disk in a table. Another solution could be that BLOBs are stored in a
special BLOB table that is stored on disk.

Main memory data can also be found in the email server, the genealogy application and the news-
on-demand application. In these cases they are used to store control structures, indexes and de-
scriptive information about BLOBs.

A requirement in the charging database was the possibility to insert a tuple into main memory and
then specifying that it should move to disk at some later time, either by a timer or by specific re-
quest. This could also be achieved by an insert into a main memory table, followed by a delete and
an insert into a disk table.

Reliability requirements were studied in the previous section. From the charging database and ge-
nealogy database we can draw conclusions that many of the requirements on object-oriented data-
bases are very relevant. We need inheritance when defining tables and need to be able to put que-
ries on the supertables. We also need methods as first class attributes. The genealogy database does
needs many of the complex data structures provided by the object-oriented model. A pure object-
oriented database is, however, not desirable as this would mean that all classes would need to store

- 61 -

an object id. Some tables, however, only need two attributes with indexes on both and providing
an object id would create an unnecessary and large memory overhead. Therefore a mixture of tech-
niques from relational databases and object-oriented databases is desirable.

Almost all applications have a need of being informed when relevant events take place in the da-
tabase. This means that a good support of trigger mechanism should be included. To simplify ap-
plication development there should also be good support for reference constraints that should be
automatically maintained after declaration.

Naturally a good support of indexes is needed, especially indexes for various telecom addresses,
http-addresses, file names and so on. Both primary indexes and secondary indexes are needed
(unique and non-unique).

From another study of an application of a telecom database, a Cache Server for WWW[JOH97],
some new requirements were found. This requirement was also found after discussion with an ex-
perienced developer of database applications. The problem is that sometimes the application needs
to lock tuples for longer time than the transaction. This means that the database must be able to
handle locks on tuples which are not involved in transactions. These locks must also be persistent
over crashes.

The Cache Server also needs to maintain persistent counters and this is most likely also needed by
many of the other applications. It is important that these counters are not handled by the normal
concurrency control protocol. This would create a hot-spot which would degrade performance.

The support of join queries is not found to be among the most important aspects. The charging da-
tabase does, however, require some of this. The charging database has the benefit of not being up-
dated, thereby concurrency control for large queries is not a problem.

It can also be noted that many disk-based applications are create-only applications. Deletes can oc-
cur but then usually whole tables or large parts of a table are deleted at a time. This can be used to
simplify recovery and transaction handling for these applications.

So the most important features of a parallel data server for telecom applications are the following:

1) Scalability

Telecommunication systems are sometimes very small (e.g. 10-300 users) and sometimes very
large (several million users). A database for telecommunication applications must therefore be
scalable both upwards and downwards. Scalability downwards is achieved by portability to various
platforms. This is not covered in this thesis but is the aim of the distributed real-time run-time sys-
tem described in [Ronstrom97]. Since the data server described in this thesis can be implemented
on a portable run-time system, the data server is as portable as the run-time system is.

2) Security against different kinds of catastrophes

In times of catastrophes such as earthquakes, storms and so forth it is actually even more important
that the telecommunication network does not fail. Therefore a database system for telecommuni-
cation applications should be secure against different kinds of catastrophes.

3) Very high availability

- 62 -

A telecommunication network must be available always. A lost telephone call can sometimes be a
very serious matter. Databases are often centralised and it is even more crucial for them have a very
high level of availability.

4) Very high reliability

Transactions which have been committed must not be lost. A transaction could represent an in-
come to the operator and must not be lost. Also users of the telecom network are not likely to accept
that the system does not act as they have told it to do in some way.

5) Load Regulation and Overload Control

All telecom networks are built with the assumption that not all subscribers are active at the same
time. This means that overload situations can always occur. It is important that databases also have
a scheme to handle overload situations. This is not covered in this thesis and is an item for future
work.

6) Openness

This will not be discussed in this thesis but is certainly a very important requirement. It is necessary
to be able to reuse code, tools, platforms, and so forth developed by others to enable quick devel-
opment of new services.

- 63 -

3 Telecom Database Benchmarks

To be able to develop a high-performance telecom database, it is necessary to have a set of appro-
priate benchmarks. With these benchmarks, design decisions can be evaluated and bottlenecks can
be found. It also serves as a base for performance models of future designs, both analytical models
and simulation models. These new benchmarks do not remove the need for using other benchmarks
as well. Therefore benchmarks such as TPC-B, TPC-C, OO7 and other database benchmarks are
also valid in the discussion of telecom database benchmarks.

3.1 Formal Benchmark Definitions

If an execution of a telecom database benchmark is to be officially recognised, one should follow
some formal rules as set out in this section. If benchmark results are reported that do not conform
to these rules, the rules not conformed to should be explicitly stated.

All Telecom Database Benchmarks are executed using the model as seen in Figure 3-1. It is as-
sumed that the communication between the request generator is through a LAN (Local Area Net-
work). A WAN (Wide-Area Network) is also allowed and figures for LAN and WAN can be sep-
arately reported. There are no particular requirements on the communication hardware. Typically
the communication hardware could be Memory Channel, SCI (Scalable Coherent Interface), Myri-
net, ATM or any other communication hardware.

The delay between successive requests to the Data Servers should have an exponential probability
distribution. This distribution can be achieved by using the following function:

Here mean is the mean time between requests that is desired during the test, erand48() is a random
function (part of the C library) that delivers a result random number between 0 and 1 and log(x) is
the natural logarithm function. After deciding to generate a request, it is necessary to decide what
type of request to use. This is also performed by a random function. After applying
(int)floor(100*erand48()), where floor is a function in the C library that gives the largest integer
which is smaller than the argument, one simply uses this as input to a table of 100 values, each

Data
Server
1

Data
Server
n

Communication
Hardware

Request
Generator
1

Request
Generator
m Figure 3-1 Benchmark Set-up

delay mean erand48()()log⋅–=

- 64 -

value representing one percent of the requests. Each such value in the table corresponds to a re-
quest. If 14% of the requests are to be of a specific kind, there should then be 14 values in this table
specifying how to use this function.

It is allowed to pack a number of requests together into a larger packet or use a stored procedure
that handles a number of requests instead of a single request at a time. This is, however, only al-
lowed given that one generates requests according to the above and that the measured delay in-
cludes the time waiting for a number of messages that are packed together into a larger packet. The
delay requirement must still be met, given these premises.

The requirements on the Data Server interface are not specific. It is assumed that some kinds of
stored procedures are used in the Data Server. The Request Generator is responsible for the meas-
urement of response delays and the measurement of the performance of the benchmark. For all
benchmarks, all parts of Clause 2 of the TPC Benchmarks must be fulfilled [Gray91]. It is accept-
able in these tests to use smaller tables than normally used in the TPC Benchmark. These tests ver-
ify that the database that is benchmarked satisfies requirements on atomicity of transactions, con-
sistency of transactions, concurrency of requirements and that the system is durable and thereby
recoverable.

The partitioning rules of Clause 5.2 in the TPC Benchmarks are also to be used. This rule allows
horisontal fragmentation of tables but does not allow vertical fragmentation of tables. Clause 6 of
the TPC Benchmarks holds, except Clause 6.3 which is overridden by the response time require-
ments as defined in the various telecom database benchmark definitions. Clause 6.1 defines the
term measurement interval. Clause 6.2 defines the term response time and clause 6.4 defines how
to compute the transactions per second of the benchmark. Clause 6.5 and 6.6 gives some additional
requirements on reported results. Clause 7 of the TPC Benchmark also holds, and this clause de-
fines steady state and the duration of the tests.

All benchmarks require replication within a system. There is no special requirements on system
downtime, however to be a possible telecom database it must be possible to change software, hard-
ware, run-time system, operating system without interruption of service. This replication should
be 2-safe, that is both replicas should be updated within the local transaction. If only 1-safe is sup-
ported by the system, the achieved performance figures should be multiplied by a factor of 0.9 as
a way to show the cost of a less reliable system.

All benchmark results can be reported with two different models of network redundancy. The first
is a system without network redundancy, the other two cases also involve network redundancy.
This means that all update transactions are executed both on the primary telecom database and also
on a backup telecom database. These two telecom databases should be locatable with a geographic
distance of at least 500 km between them. This means that the delay of communication between
the systems must be the same as if they were placed at a distance of more than 500 km. There are
two types of update mechanism possible in this scenario. The first uses 1-safe transactions. This
means that the updates are sent to the backup telecom database after the transaction has been com-
mitted on the primary telecom database and also after reporting this to the client (in this case the
request generator). The second is called 2-safe; in this case both the primary telecom database and
the backup telecom database are updated as part of the transaction, except when one of the telecom
database nodes has failed (which is not allowed during the benchmark).

- 65 -

A final important issue is that the system under test will contain both the Request Generators and
the Data Servers. This makes it possible to use any architecture of the data server. Some databases
are always placed in the same process as the application. It is, however, not allowed to take advan-
tage of locality in any way in the Request Generators. All the Request Generators must perform
exactly the same algorithm and it is not allowed to ensure that accesses will always be to the Data
Server in the same processor node.

3.2 UMTS Benchmark

To develop a benchmark for UMTS it is necessary to define the tables that are most often accessed
and the operations performed on these tables. In developing this benchmark we will use the result
from the preceding sections.

3.2.1 Data Definition

The UMTS user has data in two places, in his home database and in the database he currently visits.
In his home database, see Figure 3-2, the full service profile resides. Also routing data that is used
to find where he currently visits and the current registrations of the user.

In the visited database, see Figure 3-3, all the current registrations, terminal data and session data
are stored. There is also a table that is used for assignment of temporary mobile identifiers. We
have redefined the UMTS model somewhat so that there is always a session record, during session
set-up and session release this record is updated with session status.

To derive a proper benchmark it is necessary to make a realistic set of database tables, the size of
those tables, the necessary keys on the tables and the access rate of different tables using the vari-
ous keys. Therefore in Table 3-1 it is shown which tables are used during the various procedures.
Now it is should be noted here that the benchmark only involves the normal actions taken during
these procedures. If specific supplementary services are invoked, these would most likely use an-
other set of tables that store data used for more complex queries.

Table 3-1 Table Usage during UMTS procedures

Procedure Home Regis-
tration Table

Visited Reg-
istration Ta-

ble

Routing Ta-
ble

Session
Table

Terminal
Table

Assign Ta-
ble

Routing Table
IMUN+SI (Key)
IMUI
MRN
User Status

Figure 3-2 UMTS Table
Home Database

Registration Table
IMUN+SI (Key)
IMUI
User Profile.visited

Session Table

IMUI (Key)
IMUN (Alt. Key)
Use keys.visited

Terminal Table
DI+TMTI (Key)
LAI
Terminal Status
Terminal Keys

Registration Table
IMUN+SI (Key)
IMUI
MRN
DI+TMTI
User Status
User Profile.visited Figure 3-3 UMTS Table Visited Database

Assign Table

TMTI (Key)
Assigned

- 66 -

The next step in developing a benchmark is to assess the size of the tables. The size of these tables
is dependent on the number of users and terminals. The size estimates are based on educated guess-
es. However, errors in these should not impact the validity of the UMTS benchmark as much as
errors in access rates would.

Another important aspect of the benchmark is the size of the keys. The length of international tel-
ephone numbers is up to 15 numbers. A compacted representation of this is possible in eight bytes.
Therefore the session table key and the assign table key is eight bytes. The other tables have mixed
keys and the size of these is then sixteen bytes.

The visited registration table and the routing table contains one record for each active registration
a user has, and we assume the mean of this number is two. The home registration table contains a
record for all types of registrations a user can have, and we assume the mean of this number is five.
The session table contains one record per user. The terminal table contains one record per terminal
in the network and we estimate that there is one terminal per user on average. Thus there is one
record per user in the terminal table. Finally the assign table should contain enough terminal iden-
tifiers for most situations and therefore we assume it contains ten records per user.

The size of the registration tables should be somewhat bigger than the rest of the tables. We esti-
mate the size of the home registration table to be 500 bytes per record and the visited registration
table to be 200 bytes. The other records we estimate to be 100 bytes, except the records in the As-
sign Table which are estimated to be 20 bytes.

User originated User Ses-
sion Set-up

2R, 1U

System Originated User
Session Set-up

1R, 1U 1R

User Originated Terminal
Session Set-up

1R, 1C 1R, 1U

System Originated Termi-
nal Session Set-up

1R, 1U, 1C 1R, 1U

User Session Release 1U

Terminal Session Release 1D 1U

User Registration 1R 1C 1C 1R

User Deregistration 1D 1D 1

Attach 1U

Detach 1U

Service Management 1R

Call Handling 2R 1R 1R

Location Update 1U

Domain Update 1R 1C, 1D 1U 1U

Table 3-1 Table Usage during UMTS procedures

- 67 -

This gives 3,500 bytes per user, which is a reasonable estimate for a UMTS database. It is likely
that other information is also stored in the database, such as various services, tariff data and so
forth. We do not incorporate this into this benchmark since this information would not affect the
validity of the benchmark. With 2 million users in the UMTS database the table definitions in Table
3-2 are derived.

Using Table 2-2 and Table 3-2 we derive the request rates shown in Table 3-3.

.

Table 3-2 Table Definitions of UMTS Application

Table Name
Record Size

(including key)
Number of

Records in Table
Key Size

Home Registration Table 500 Bytes 10 Million 16 Bytes

Visited Registration Table 200 Bytes 4 Million 16 Bytes

Routing Table 100 Bytes 4 Million 16 Bytes

Terminal Table 100 Bytes 2 Million 16 Bytes

Session Table 100 Bytes 2 Million 8 Bytes

Assign Table 20 Bytes 20 Million 8 Bytes

Table 3-3 Request rates of UMTS Application

Table Request Type
Size of Attributes used

(exclusive of key)
Percentage of

requests

Routing Table Read 20 Bytes 7%

Routing Table Update 20 Bytes 1%

Routing Table Create 50 Bytes 1%

Routing Table Delete Not applicable 1%

Home Registration Table Read 200 Bytes 3%

Visited Registration Table Read 100 Bytes 14%

Visited Registration Table Create 150 Bytes 3%

Visited Registration Table Delete Not applicable 3%

Session Table Read 50 Bytes 14%

Session Table Update 50 Bytes 16%

- 68 -

3.2.2 Full-scale Benchmark Definition

In a full-scale UMTS benchmark we use the figures on table sizes derived in the previous section.
The number of users are two million users in the database so the total size of the database is 7
GByte of data. On top of this there is also about 1 GByte of data needed for the index data struc-
tures. Given replication and overhead of various kinds on top of this the required memory size of
a benchmark system is in the order of at least 20-25 GByte.

The Request definition of the UMTS Benchmark is given in Table 3-3 and the Table definitions
are given in Table 3-2. The request definition table is based on the results shown in Table 2-1 and
Table 2-2. A requirement is that the response time on retrievals from the database must be less than
15 ms and the response time on other queries (update, create and delete) must be below 200 ms.
This requirement must be fulfilled by 99% of the queries during the benchmark test.

3.2.3 Simple UMTS Benchmark Definition

When defining a benchmark simplicity is also important. We also define a simple benchmark
where there are only two tables. The first table is 100 bytes with an 8-byte key size and the second
table is 200 bytes in size and has a 16-byte key size. The first table is a merge of the session and
the assign table. The second table is a merge of the rest.

The benchmark is defined by Table 3-4 and Table 3-3

.

Terminal Table Read 50 Byte 14%

Terminal Table Update 50 Byte 8%

Terminal Table Create 50 Byte 3%

Terminal Table Delete Not applicable 3%

Assign Table Read 10 Byte 3%

Assign Table Update 10 Byte 6%

Table 3-4 Table Definitions in Simple UMTS Benchmark

Table Name
Record Size

(including key)
Number of

Records in Table
Key Size

Large Table 200 Bytes 1,000,000 16 Bytes

Session Table 100 Bytes 2,000,000 8 Bytes

Table 3-3 Request rates of UMTS Application

Table Request Type
Size of Attributes used

(exclusive of key)
Percentage of

requests

- 69 -

.

3.3 Table Look-up Benchmark

Number Portability, Name Server and Directory Services are all examples of table lookup appli-
cations. The basic functionality is to translate from a number or an address to another number or
address. We define here a very simple benchmark: we define two tables, both with two attributes.

3.3.1 Data Definition

The first table has two attributes that are 8 bytes large, the second has two attributes that are 64
bytes (a character array). There will be equally many requests for both tables. Both attributes must
be indexed, so that it is possible to translate the number or address in both direction. That is, it must
be possible to translate from logical to physical and also from physical to logical, see Figure 3-4.

3.3.2 Full-scale Benchmark Definition

The benchmark parameters are defined in Table 3-6 and Table 3-6.

Table 3-5 Request rates of Simple UMTS Benchmark

Table Request Type
Size of Attributes used

(exclusive of key)
Percentage of

requests

Large Table Read 100 Bytes 38%

Large Table Update 50 Bytes 9%

Large Table Create 100 Bytes 7%

Large Table Delete Not applicable 7%

Small Table Read 50 Bytes 17%

Small Table Update 50 Bytes 22%

Table 3-6 Request Definition of Table Lookup Benchmark

Table Key Requested Attribute Percentage of requests

Address Translation Physical Address Logical Address 25%

Address Translation Logical Address Physical Address 25%

Name Translation Physical name Logical name 25%

Address Translation (8 bytes attr.)
Physical Address (key)
Logical Address (key)

Name Translation (64 bytes attr.)
Physical Name (key)
Logical Name (key)

Figure 3-4 Table Lookup Tables

- 70 -

Another requirement is that the response time on retrievals from the database must be less than 10
ms. The 8-byte addresses should be representative of a representation of telephone numbers and
the 64-byte names should be representative of addresses on Internet (e.g. URL-addresses).

The result will be reported in the number of users that the database can handle according to the
given premises and number of requests per second handled.

3.3.3 Small-scale Benchmark Definition

A small scale benchmark for this can also be defined. In this benchmark 100,000 records in each
table is sufficient and there is no specific requirements on availability and reliability.

3.4 News-on-demand Benchmark

The news-on-demand benchmark is a benchmark of a service to read the news on electronic media.
The basic assumption is that most people read the news in this manner and that their behaviour is
similar to the behaviour of how a person reads newspapers and watches the news on TV at present.

3.4.1 Data Definition

There are only two tables in this benchmark, the Document Table and the File Table, see Figure 3-
5. Both of these consist of a set of Descriptive attributes, the format definition, a key and the infor-
mation in a large object. The descriptive attributes, the key, and the format definition in the Doc-
ument Table are assumed to be 1 kByte in size; in the File Table it is smaller, 400 bytes.

Name Translation Logical name Physical name 25%

Table 3-7 Table Definitions of Table Lookup Benchmark

Table Name
Record Size

(including keys)
Number of

Records in Table

Key Size of
Primary

Key

Key Size of
Alternate

Key

Address Translation 16 Byte 2 Million 8 Bytes 8 Bytes

Name Translation 128 Byte 2 Million 64 Bytes 64 Bytes

Table 3-6 Request Definition of Table Lookup Benchmark

Table Key Requested Attribute Percentage of requests

Figure 3-5 News-on-demand
Tables

Document Table
Name (Key)
Format
QoS parameters

File Table
Name (Key)
Format
Descriptive attributes

Descriptive attributes File

M N

Document

- 71 -

The database consists of 1,000 documents in the document table, 300 of size 5 kBytes, 400 of size
10 kBytes and 300 of size 15 kBytes. There are 2,000 files in the file table, 600 of size 25 kBytes,
800 of size 50 kBytes and 600 of size 75 kBytes. There are also 60 video files in the file table, 30
based on the mobile model with 128 kbit/sec and 30 based on the fixed model with 2 Mbit/sec. Of
these 30 video objects, 7 are 30 seconds, 18 are 2 minutes and 5 are 5 minutes in length. The con-
tents of the database are shown in Table 3-8.

3.4.2 Benchmark Definition

The request rates of the news-on-demand benchmark are shown in Table 3-9 and the database def-
inition in Table 3-8. A retrieval chooses any of the documents, files and videos at random with an
equal probability. The delay requirement is that documents and files must be sent within 100 ms.
Videos can be retrieved in chunks of any size. The first chunk must, however, arrive within 100
ms and also the chunks must arrive faster than 128 kbit/sec for the Mobile Model and 2 Mbit/sec
for the Fixed Model.

3.5 Email Server Benchmark

The email server benchmark is a benchmark for a future multimedia email service based on the
description in the previous section.

Table 3-8 Database Definition of News-on-Demand Benchmark

Number of
Documents

Size
Number
of Files

Size

Number of
Videos
(Mobile
Model)

Size

Number of
Videos
(Fixed
Model)

Size

300 5 kB 600 25 kB 7 480 kB 7 7.5 MB

400 10 kB 800 50 kB 18 1.92 MB 18 30 MB

300 15 kB 600 75 kB 5 4.8 MB 5 75 MB

Table 3-9 Request rates in the News-on-demand Benchmark

Request Type Mobile Model Fixed Model

Retrieve Document 32.5% 27%

Retrieve File 65% 53%

Retrieve Video 2.5% 20%

- 72 -

3.5.1 Data Definition

There are two tables in the email server benchmark, one contains the emails and the other contains
the attachment, see Figure 3-5. The size of the attributes in the email table is 200 bytes plus the size
of the email body, the attributes in the attachment table is 100 bytes plus the attached file.

According to [Pax94b], the size of the emails has a distribution that is bimodal, one of the mode
for text messages and the other mode for file transfers. The size of the email body is then distrib-
uted according to the first mode and the attachment files are distributed according to second mode.
The size of the first mode has a mean of 1 kByte that is distributed according to a log-normal dis-
tribution. To simplify the benchmark the size of the email body should be 500 bytes with 30%
probability, 1 kByte with 55% probability, and 2 kBytes with 15% probability. Also the attach-
ments are distributed according to a log-normal distribution, where the mean of this distribution is
40 kBytes. To simplify the benchmark the attachments are 20 kBytes with probability of 20%, 40
kBytes with probability of 60% and 60 kBytes with probability of 20%. The probability of no at-
tachment is 60%, the probability of one attachment is 30%, and the probability of two attachments
is 10%. We assume in the benchmark that there are never more than two attachments. These figures
are shown in table format in Table 3-10 and Table 3-11.

Table 3-10 Definition of an Email Body

Email Size Percentage of emails Number of Attachments

500 Bytes 30% 0

1 kByte 55% 1

2 kBytes 15% 2

Table 3-11 Definition of an Email Attachment

% of Attachments Attachment Size Percentage of Attachments

60% 20 kBytes 20%

EMAIL Table
Email ID (Key)
Title
Attachment
Sender

Figure 3-6 Multimedia
Email Tables

ATTACH Table
Attachment ID (Key)
Email ID
Name
Format

Receiver (Secondary Key)
Received time
Email Body
Format
Category

Size
Attached File

Size

- 73 -

3.5.2 Full-scale Benchmark Definition

Before the Email Server Benchmark is executed, the database should be built. This building data-
base process should run 100 million create email transactions. These transactions will create both
the email and its attachments according to Table 3-10. There will be a total of 2 million users in
the system, giving a total of 1 TByte data in the email database after the building process. The re-
ceiver of each of these emails should be chosen at random After the database building the bench-
mark can start executing.

There are two types of events that should occur in the email benchmark. The first is that a user con-
nects to the email server to check his emails. This event is represented by the control flow given in
Figure 3-7. The second event is a create email transaction. Reading and Deleting emails means that
the email body, its properties, references to its attachments and also the attachments are read and
deleted. Scanning the email table means that the email table is scanned. 100 bytes per email of the
user is returned to the application, 20% of the events are connect email sessions and 80% of the
events are create email transactions as given in Table 2-1.

The connect email session contains three different types of transactions. The connect email session
starts by picking a user, and then the email table is scanned to find the emails of that particular user.
The request generator then selects a number of emails for reading, where 8% of the emails will be
read. The emails that are picked are those with the most recent timestamp. The read transactions
are delayed with an exponential distribution. There will be exponentially distributed time between
each read email transaction with 15 seconds as the mean value. After the last read transaction a
create email transaction is issued after an exponentially distributed delay with a mean of 15 sec-
onds and finally, after another exponentially distributed delay of 15 seconds, a number of delete
transaction are executed. In these transactions 75% of the read emails are deleted and also 2% of
the emails with the oldest timestamp are deleted. Thus 10% of the original emails will have been
deleted. Rounding should be to the closest integer and upwards if between two integers. The con-
trol flow of the session is shown in Figure 3-7.

The figure 75% is supported by investigations of marketing through normal mail. 75% of all mar-
keting papers through normal mail are thrashed immediately.

30% 40 kBytes 60%

10% 60 kBytes 20%

Table 3-12 Request Definition of Email Benchmark
Procedure Percentage of

events

Connect Email Session 20%

Create Email Transaction 80%

Total 100

Table 3-11 Definition of an Email Attachment

% of Attachments Attachment Size Percentage of Attachments

- 74 -

The create email transaction is independent of the connect email sessions and creates an email for
a random user.

The response time must always be below 200 ms for the read transactions and for the first scan of
the email table for at least 99% of the requests. There are no specific delay requirements on the
delete and the create transaction.

3.5.3 Simple Email Benchmark Definition

A simple benchmark of this application should decrease the mean size of attachments to 2 kByte
and also decrease the number of users to 100,000 users.

3.6 Charging DataBase Benchmark

A common benchmark is defined for charging databases, this includes UMTS, New-on-demand
and Multimedia Email characteristics.

3.6.1 Data Definition

The data definition of the charging database is more complex than the other applications. One way
would be to simply have one table for each event. This would be sufficient if queries mainly asked
for records from one event type. Since most queries request all usage records that belong to a spe-
cific subscriber, this would create a vast need of join queries in the system. If these queries are op-
timised for this particular type of query this might be acceptable. Another way to model the system

Choose a user at
random

Scan emails of user
(100 Bytes per email)

Select the 8% most recent
emails
Set no_emails

Test node activity

Database request

Test node activity

Delay exp(15 seconds)

Read email

no_emails--

no_emails=0

Test node activity

Test node activity

Test node activity

Database request

No

Delay exp(15 seconds)Test node
activity

Create email
Database
request

Select the 2% least recent
emails plus 75% of the
previously selected
emails

Yes

Set no_emails

Delay exp(15 seconds)

Delete email

no_emails--

no_emails=0

Yes

No

End Session

Test node
activity

Test node
activity

Test node
activity

Test node
activity

Test node
activity

Database
request

Figure 3-7 Control Flow of
an Email Session

- 75 -

is where there are two superobjects, the usage object and the tariff object. There is also a user table
that contains attributes that are derived from the event records, which is updated as part of the
transactions that insert event records. Now there are subclasses of those objects for each event type
and each tariff type. The system needs to be optimised to perform queries on the superobjects. The
response to these queries should be attributes both from the superobject and from the subobjects.

To simplify benchmark development and definition of the benchmark we will, however, only use
four normal tables, the event table, the main memory event table, the tariff table and the user table
as shown in Figure 3-8. Functional requirements can be checked by checking the abilities of the
databases that are benchmarked.

The event table in the benchmark represents the following tables as described by the application
description: the event table, the service transaction table and the tariffed service transaction table.
This is the table that contains the massive amount of records that represents the disk tables in this
benchmark. It is assumed that it contains five billion records of size 200 bytes at the start of the
benchmark. Then during the benchmark new records are gathered.

Since an operator normally needs to store records for three months, the actual data storage should
be much bigger. This would, however, not change any critical part of the benchmark and therefore
we do not require more than five billion records from the start.

The event table in main memory contains the most important attributes of the event table and has
a record length of 100 bytes. The attributes in this table are retained between the generation of an
event record and the time that the event group is finished. The mean time between creation and
deletion is two minutes. This means that the number of records in the table should be three and a
half million after which a balance of creation and deletion is reached so that this will be the normal
amount of records. The tariff table contains tariff information and there are 100,000 records of 1
kByte in size. Finally the user table contains one record per user of 500 Bytes and it is assumed
that we have 2 million users in this benchmark. The tables have simple keys of 8 bytes which nor-
mally contain a telephone number.

Table 3-13 Table Definition of Charging Database Benchmark

Table Record Size Number of Records Key Size

Event Table 200 Bytes 5,000,000,000 8 Bytes

Tariff TableEvent Table
Event ID (Key)
Event Type ID
Time

Subscriber ID (Key)
Tariff Type ID

User ID

Figure 3-8 Charging Database Data Definition

Tariff ID

Event Group ID

User Table

User ID (Key)
Subscriber ID (Foreign Key)
Current Bill
Other derived attributes

Event Table

Event ID (Key)
Event Type ID
Time
User ID
Event Group ID

Descriptive
attributes

Descriptive
attributes

Tariff Descriptive
attributes

(Main Memory)

- 76 -

3.6.2 Full-scale Benchmark Definition

There are four types of transactions in the system. The first receives event records, creates an event
record and an event record in main memory. The second type of transaction is used when a session
or call is ended. It scans the event records in main memory, creates three new event records, deletes
the retrieved record from the event table in main memory, retrieves data from the tariff table and
finally updates the user table. The third transaction is used when only one event records represents
a charging event. This is similar to the second type of transaction, except that scan and delete of
event records in main memory are not necessary. The fourth type of transaction retrieves data from
the user table to calculate a bill.

3.6.2.1 Definition of Transaction Type 1

This transaction contains two inserts into the event table and the event table in main memory. 75%
of the transactions are of type 1.

3.6.2.2 Definition of Transaction Type 2

The second transaction type is somewhat more complex: it generates three new event records, it
also retrieves tariff information and updates the user table. It also scans the event table in main
memory for events belonging to the same charging event. The scan retrieves all records in the table
with the event group ID equal to a given entity. The type 1 transaction should create the records

Event Table
(Main Memory

100 Bytes 3,500,000 8 Bytes

Tariff Table 1 kByte 100,000 8 Bytes

User Table 500 Bytes 2,000,000 8 Bytes

Table 3-14 Type 1 Transaction (75%)

Table used in Query Operation Size of Data in Query Query repetitions

Event Table Insert 200 1

Event Table
(Main Memory)

Insert 100 1

Table 3-13 Table Definition of Charging Database Benchmark

Table Record Size Number of Records Key Size

- 77 -

and the event group ID should be chosen in such a way that 7.5 user records are retrieved on aver-
age. Then finally all the retrieved records should be deleted. This transaction type represents 10%
of the transactions in the benchmark.

3.6.2.3 Definition of Transaction Type 3

This benchmark is simpler than type 2 with the same requests except that scan and delete are re-
moved. This transaction type represents 10% of the transactions in the benchmark.

3.6.2.4 Definition of Transaction Type 4

This represents the simplest transaction. It merely reads the user table and then it is finished. It rep-
resents 5% of the transactions in the benchmark.

Table 3-15 Type 2 Transaction (10%)

Table used in Query Operation Size of Data in Query Query repetitions

Event Table Insert 200 Bytes 3

Event Table
(Main Memory)

Delete Not applicable 7.5

Tariff Table Retrieve 250 Bytes 1

User Table Update 100 Bytes 1

Event Table
(Main Memory)

Scan 100 Bytes 1

Table 3-16 Type 3 Transaction (10%)

Table used in Query Operation Size of Data in Query Query repetitions

Event Table Insert 200 Bytes 3

Tariff Table Retrieve 250 Bytes 1

User Table Update 100 Bytes 1

Table 3-17 Type 4 Transaction (5%)

Table used in Query Operation Size of Data in Query Query repetitions

User Table Retrieve 500 Bytes 1

- 78 -

3.6.3 Small-scale Benchmark Definition

A small-scale benchmark only needs to store 10 GBytes of disk data and 145 MBytes of data in
main memory from the start of the benchmark as defined in Table 3-18.

3.7 Telecom Database Benchmark

A telecom database benchmark is defined as the logarithmic mean of the number of users that a
particular telecom database can handle in the benchmarks defined here together with the following
benchmark set; TPC-B, TPC-C, OO7. These benchmarks must, however, also be executed with
data replication for high availability.

3.8 Conclusion of Part 2

The telecom database applications have been analysed and it is seen that there are four common
sets of basic operations. The first set is simple operations towards a main memory database. This
could be to read, write, create or delete objects. The second set is simple operations on disk data-
bases, mostly create operations. The third set of operations is to read, write, create or delete a set
of files and possibly send them to a set of destinations. The fourth set comprises complex manage-
ment queries issued towards the disk database. There is also a set of uncommon operations related
to management of the system such as restart, reload, software change, hardware change, concep-
tual schema changes and other management operations.

This means that the system can basically be divided into four parts. One part handles transactions,
recovery, logging and trigger management. Then there are three parts that handle different types
of storage. The first handles main memory database objects, the second handles disk database ob-
jects and the third handles a transactional file system.

3.9 Further work

The benchmark definitions needs to be refined, and management operations should also be includ-
ed in the benchmarks. The benchmarks need to be tested and executed to be able to refine them and
more studies of telecom applications on a more detailed level regarding data structures is needed.
This would give more input to the impact of constraint definitions and indexes on the telecom da-
tabases and this can then also be input to refined benchmarks.

Table 3-18 Table Definition of Small-Scale Charging Database Benchmark

Table Record Size Number of Records Key Size

Event Table 200 Bytes 50,000,000 8 Bytes

Event Table
(Main Memory

100 Bytes 350,000 8 Bytes

Tariff Table 1 kBytes 10,000 8 Bytes

User Table 500 Bytes 200,000 8 Bytes

- 79 -

 III: Architecture of a Parallel Data Server

Part Description
This part describes the basic concepts and architectures of a DBMS used for telecom applications.
It provides an understanding of the basic decisions on concepts and architectures of a telecom da-
tabase. The software architecture of the parallel data server is described in some detail.

The algorithms and protocols developed in this thesis are designed for a hybrid shared nothing ar-
chitecture. This is important since the failure of one node does not disturb other nodes and thereby
a reliable system can be built.

The architecture of the parallel data server is designed for systems where the database is used to
store most of the semi-permanent data (data which has a long life and change rather seldomly) and
context data(context information saved between communications with the user or other systems).
This means that even session data can be stored in the database. This puts heavy requirements on
performance and response times of the database. New communication technology SCI (Scalable
Coherent Interface) [DOLPH96] and Memory Channel [GILL96] in combination with building the
database on top of a real-time virtual machine make this possible [Ronstrom97].

The first step in describing the software architecture is to describe the replication of the system.
Actually two levels of replication are introduced with one level internally in a parallel data server
and one level between parallel data servers. This is called network redundancy. Secondary indexes
and tuple keys are also described in this preparatory section.

In Figure 1 below the replication architecture is shown. Most replicated systems use primary and
a backup replica. In this thesis we have introduced a stand-by replica. The stand-by replica does
only contain a log. The stand-by replica is involved in the transactions. This means that even if the
primary and the backup replicas have failed, no committed transactions have been lost since the
stand-by replica contains a log of the transaction. This is very useful in systems with a large
number of nodes.

Ericsson Utveckling AB 1997, All Rights Reserved

Data Log Data Log Log

Primary Backup
Replica Replica

Stand-by
Replica

Figure 1 Replication Architecture

- 80 -

Designing a distributed database with support of two levels of replication is complicated and re-
quires the use of many different kinds of protocols. The support of stand-by replicas and the use of
logging in several main memories instead of flushing the log to disk also creates requirements on
adaptions of the protocols and a set of new protocols. Before describing all these protocols we will
describe why these protocols are needed and how the protocols are related to each other.

Since we normally have three replicas in a transaction it becomes important to decrease the need
of communication. Therefore linear commit is used between the replicas. It would, however, be a
serious degradation of response times if linear commit were also used between the fragments in-
volved in the transaction. Thereby a new two-phase commit protocol has been developed which
combines a normal two-phase commit protocol with linear commit as shown in Figure 2 below.

This is described in a chapter which also covers more details of the two-phase commit protocol,
read queries and handling of secondary indexes and foreign keys.

The next step is to describe the protocols needed for on-line recovery and reorganisation. By on-
line recovery we mean that when a processor node fails, the system tries to achieve the same rep-
lication as before the failure through a set of replication protocols. On-line reorganisation includes
a set of protocols that change fragmentation and replication after adding or dropping processor
nodes. These protocols also enable a better load regulation of the system.

To achieve a non-stop system it is necessary to be able to change the schema without any service
interruption. This involves being able to maintain complex relationships between tables even when
tables are split and merged. A solution to these requirements is presented. The basic idea is to per-
form complex schema changes in three steps. A first step that creates the new tables and attributes
together with a set of foreign keys, special attributes, and triggers which are needed to perform the
schema change. By use of a SAGA-table the complex schema changes are also recoverable and
consistent between primary and backup systems.

We will also present the adaptions to the two-phase commit protocols and the necessary new pro-
tocols needed to support network redundancy.

All systems can crash and therefore it is also necessary to be able to start a system after a crash. A
crash here means that all processor nodes of a system have failed and there is no backup system
that can take over. The information for crash recovery must be created during normal operation.
This involves logging and checkpointing.

P

B1

B2

P

B1

S1

P

B1

S1

TC

Commit

Com
m

itt
ed

P

B1

S1

Pr
ep

ar
e

Prepared

Prepare Commit

Figure 2 New Two-phase Commit protocol

- 81 -

Finally two sections are dedicated to describing two new indexes, the LH3 and a distributed and
compressed B+tree, the Http-tree. It is shown how these indexes play an important part in some of

the on-line recovery protocols. The LH3 is optimised for fast execution (time optimised) and the
Http-tree is optimised for low memory requirements (space optimised).

- 82 -

4 Basic Architectural Decisions

This section first gives an overview of some important issues in the design of a parallel DBMS. It
also presents the basic architectural decisions that underlie the design of the telecom database. This
includes parallel database architectures, how to use a client-server architecture efficiently, how to
use the database for session data (context data), the interface types of the data server, transaction
concepts, handling of replication, concurrency control, use of logs in the data server, two-phase
commit protocols, and how to produce archive copies.

4.1 Parallel Database Architectures

In the literature a number of different architectures for parallel databases are described. These are
the shared memory, shared disk and shared nothing, and there are also hybrid ones. A description
of these architectures will be given and some conclusions of what best meets the requirements of
telecom databases. See [deWitt92] for an overview on parallel database systems.

4.1.1 Shared memory

Shared memory is an architecture where the processors share a common memory and a number of
disks as seen in Figure 4-1. Due to the development of processors this solution is quite infeasible
without cache memories in the processors. This creates a need of a cache coherence protocol on
the interconnection network. This is a common architecture that is supported by all major suppliers
of DBMSs. Servers using this architecture are delivered by all major hardware suppliers such as
Sun, Digital, IBM and so forth.

The advantage of a shared memory structure is that it is easy to balance the load. It is also easy to
port a DBMS from single-processor implementations since all the data is common as in a single
processor. Interquery parallelism is very easy to obtain. Intra-query parallelism needs some new
algorithms but is still relatively simple.

Shared memory architectures have several disadvantages. One is that it has a limited extensibility.
This is because the processors all use the same memory structures. Therefore it can be seen that
some of the semaphores used to serialize access to memory will become bottlenecks when the
number of nodes increases above 20-40 [Valduriez93]. Another problem is that to achieve fault-
tolerance, memory and disks need to be replicated. However the most difficult problem to over-
come, to achieve good reliability, is that one processor node with a software error can corrupt data
in the whole system.

The conclusion is that shared memory architectures are an easy way to extend current DBMSs with
parallelism to a limited extent. It is, however, not a good solution to systems with very high re-
quirements on fault-tolerance and high performance.

Figure 4-1 Shared Memory Architecture

Interconnection Network

Disk DiskMain
Memory

Main
Memory

ProcessorProcessor

- 83 -

4.1.2 Shared disk

Shared disk is an approach where each processor has its own main memory and this is not acces-
sible from other nodes as seen in Figure 4-2. The disks are however common, so any processor can
access any disk.

The major difference with shared disk compared to shared memory is that the main memory is pri-
vate so that a faulty processor does not have the possibility to write in another processor’s memory.
This solves the major availability problem with the shared memory architecture. It does, however,
introduce a complex coherence problem with the disk buffers.

Since there are not any shared memory structures, the shared disk architecture scales better than a
shared memory architecture. Its shared disks do however limit the scalability to around 100 proc-
essor nodes [Valduriez93]. To achieve good availability it is essential that disks are doubled and
possibly even tripled.

The conclusion is that a shared disk architecture can handle the requirements on fault-tolerance and
in most cases also the performance requirements. It has an advantage on load balancing but has
greater complexity in administering the disk buffers. It is also complicated to achieve software
changes where structures on disks are changed.

4.1.3 Shared nothing

Shared nothing means that any processor can access its own disks and its own memory and com-
munication between nodes is only through message passing as seen in Figure 4-3. This means that
the system can be viewed as a homogenous distributed database system. So research on distributed
database systems can be reused for shared nothing architectures.

Since no data structures are shared, there is no data contention that will stop the scalability. How-
ever data can only be found where it is replicated and so there will be contention for processor re-
sources that limits the scalability instead. It can, however, scale up to thousands of processors at
least by using load balancing and multiple replicas of data [Valduriez93].

Figure 4-2 Shared Disk Architecture

Main
Memory

Main
Memory

Processor Processor

Interconnection Network

Disk Disk

Figure 4-3 Shared Nothing Architecture

Interconnection Network

Main
Memory

Main
Memory

Processor ProcessorDisk Disk

Processor
Node

Processor
Node

- 84 -

Availability is very good since the failure of one processor node should not affect any other proc-
essor node apart from erroneous messages which mostly should be found by error checking at re-
ception of messages.

A shared nothing architecture contains many complex functions. The shared nothing architecture
provides many possibilities to improve availability. All of these require software solutions. Some
of these will be presented later in this paper.

The conclusion is that a shared nothing architecture provides most possibilities to improve availa-
bility and scalability. It is not necessarily the easiest to implement, however.

4.1.4 Hybrid Architectures

There are many ways to combine shared memory, shared disk and shared nothing architectures.
The most interesting one that will be used in this thesis is to combine shared memory and shared
nothing by having a cluster of processor nodes where each processor node has a shared memory
architecture. In the computer architecture world this shared memory architecture is called symmet-
ric multiprocessing and is a common method to increase performance of workstations. Since the
shared memory architecture is used inside a processor node, there is no problem of availability.
Scalability is also solved by the shared nothing architecture. The shared memory structure does,
however, make every processor node very powerful and therefore not very many processor nodes
are necessary. Therefore scalability is improved compared to a shared nothing architecture. Hard-
ware that is configurated as shown in Figure 4-3 is sometimes called workstation clusters.

Requirements on high performance, scalability, very high fault tolerance and short response times
makes it necessary to communicate very quickly between each processor node. This is accom-
plished with new communication techniques, such as SCI [Dolph96] and Memory Channel
[GILL96].

Many database vendors have a hybrid shared-nothing model to achieve reliability. These are nor-
mally systems with a primary node and a backup node. Each of the nodes is a multi-processor node.

The disks could actually be physically shared. However, each processor node must have its own
set of files. Thereby the disks are logically separated although there is a physical sharing of disks.

4.1.5 Conclusion

A shared memory architecture can be accomplished by using the same computer architecture as the
shared disk and shared nothing architectures by having a cache coherency protocol on the inter-
connection network. Whether such an architecture is shared memory, shared disk or shared nothing
is dependent on the software structure. If software in all processors can access all the data in the

Figure 4-4 Hybrid Shared Nothing Architecture

Interconnection Network

Main
Memory

Main
Memory

Processor
n1

Processor
n2

Disk Disk
Processor
2

Processor
1

Processor
2

Processor
1

Processor
Node

Processor
Node

- 85 -

machine, then it is a shared memory architecture. If software cannot gain access to all memories
but to all disks, then the architecture is shared disks and if memories and disks can be accessed only
locally, then it is a shared nothing architecture.

In this thesis the shared nothing model will be used. Each system may, however, be a symmetric
multiprocessor machine (shared memory architecture). The reason for choosing this architecture
is based on the need of high performance, scalability, and very high fault tolerance in telecommu-
nication systems. To build such a system it is desirable that there are clean interfaces between mod-
ules and no other interaction other than through message passing. This also implies that each node
has its own operating system and thus a distributed operating system is not desirable.

The reason for having multiple processors on each system is also based on the fact that the replac-
able unit in a system is a board. The technology makes it possible to build many processors on a
single board. Teradata’s P-90 (potential successor of DBC/1012) uses as an example four proces-
sors on a board with shared memory [Carino92]. Intel’s standard high-volume server, SHV, is a
more recent example, where four PentiumPro-processors are placed on one board with a common
memory. Another example of such a high-performance server is the Ultra Server 2 (a two-proces-
sor server).

It would be possible to use the shared disk architecture also. The scalability would not be as good
and other solutions of availability would be necessary.

4.2 Client-Server Technology

There are a number of reasons why client-server technology is used. One such reason is to provide
specialised services that many applications use. There are many examples of this such as file serv-
ers, printer servers, email servers, database servers. The servers provide the clients with the possi-
bility to be mobile, and the clients can be heterogeneous since the communication between clients
and servers is performed through messages. Other issues such as security, cost-efficiency and or-
ganisational benefits are also important. In this section we will concentrate on the database servers.
In [Tor95] the following guidelines for client-server design are proposed:

1. The server interface should be general and independent of the application.

2. The client-server communication protocols should adhere to international standards,
both on the transport level and the application level, and support heterogeneous clients.

3. Communications should be insensitive to delays. The data volume sent should be low.

4. As much as possible of the processing should be done on the client side to achieve high
server throughput and low latency.

5. It should be easy to use and program

Now point 3 in this analysis is less important due to technical breakthroughs in technology, such
as SCI (Scalable Coherent Interface) [DOLPH96] where communication costs between systems
have decreased so much that it might even be cheaper than internal communication between proc-
esses in an operating system. In designing a telecom database the clients are also servers, i.e. ap-
plication servers such as email servers, web servers and so forth. Therefore point 4 need not be of
great importance in the division between database server and application server.

- 86 -

In Figure 4-5 a few common ways to separate the functionality between the client computer and
the computer of the database server is shown.

The A scenario is common in object-oriented DBMSs with long transactions where objects are
checked out when needed and checked in when work on them is completed. This scenario could
be used to access data in a telecom switch. The telecom switch needs fast access to data and uses
a cached copy of the data and updates are propagated to the database server. Other applications
could also access the data; these applications use the data through the DBMS. If there are many
small update transactions then there will be heavy communication costs in this scenario.

The B scenario is what standards such as ISO SQL and RDA are trying to accomplish. There is a
clear separation between the client computers that handle the application and the computers that
handle the DBMS.

Scenario C is a solution where one tries to minimise the communication between client and server
by performing some processing of the data in the server. In this thesis we will distinguish between
stored procedures and methods. Stored procedures can operate on any data in the database through
a procedural language. The C interface is useful when stored procedures that perform some algo-
rithms on data are needed. By implementing this language though an interpreter in the database
server the clients cannot crash the database server by writing erroneous stored procedures. TPC-B
needs this functionality for good performance and also the charging server could make use of such
stored procedures.

The D scenario is where there is no separation of client-server, where application and DBMS func-
tionality is not separated. This is mostly used in proprietary systems.

4.2.1 Conclusion

If we analyse these scenarios from a reliability point of view, one can see that the C scenario with
support of stored procedures through an interpreter in the database server is the most promising
scenario. Most of the database queries will, however, still use the B scenario and perform the work
in the application server.

A major benefit is that programming errors in the application have a very small impact on the re-
liability of the database server. Therefore the reliability of the database server is likely to be very
high since most of the code in the database server should be thoroughly tested.

DBMS DBMS
DBMS

DBMS

Application

Communication Communication Communication

Application Application

Application

Client

Server

Figure 4-5 Client-Server
Separation of Functionality

A B C

DBMS

Communication

Application

D

- 87 -

From a capacity point of view these scenarios should have similar performance characteristics. Ac-
tually the chosen scenario has some benefits in that the database server has full control over all
processor resources, cache memory resources, memory resources and I/O resources. This could be
used to gain an advantage in performance, too.

If we analyse the scenarios with soft real-time performance in mind, one can see that scenario D
will give the best real-time behaviour. This is possible since all processing of a job is performed in
one processor. With priority scheduling, jobs with high priority can be very quickly taken care of.
In the other cases there is communication between processors and processes, this means that a job
is split into several tasks where each task has to be queued before execution. Since the tasks do not
have the same execution time, there will be a greater variance in the in the delay of a job. It will
also be more difficult to do priority sheduling since a job consists of many tasks. This problem is
alleviated to some extent by the rapid development of processors, communications and memories.
The delay of executing a job is rapidly decreasing, thereby making it easier to meet the real-time
requirements. Furthermore the telecom applications only have soft real-time requirements. This
means that too long delays can be acceptable as long as they do not occur often.

It should be possible to distinguish read-only transactions from update transactions. This makes it
possible to optimise these transactions. Scenario B also has the benefit that the transaction coordi-
nator is aware of which records and attributes are updated already when sending the update re-
quests. Thereby execution of triggers and updates of secondary indexes and foreign keys can be
performed in parallel with the actual update.

Scenario C is very useful when storing complex data types that are not supported by the DBMS.
These data can then be stored as BLOBs where searches in the data are performed by a user-pro-
vided function that can execute in the database server.

4.3 Server Architecture

A study of our applications shows that most applications used by the applications need a very sim-
ple query interface. There are, however, some management applications that need a more complex
query interface. We can therefore divide the database server into two parts which we call the data
server and the query server. The data server is where the data is stored; it has a simple interface
that can be used by both applications and the query server. The query server contains logic to per-
form complex queries using the data server interface. The query server can also act as a gateway
to other data sources, and there could be several data sources in a system. The query server should
be accessible through standardised protocols to enable an open management platform. This layer-
ing is similar to the design of most DBMSs where a storage manager handles the storage of data,
recovery, concurrency and simple search functionality. The data server corresponds to a distributed
storage manager. The query server then contains functionality to handle complex queries such as
joins and various other advanced queries.

By this separation of functionality we decrease the complexity of the data server even more and
from this we should gain even higher reliability. The layering of the various servers is shown in
Figure 4-6. The figure shows that the interface of the data server handles all accesses to the data.
The application can gain access to data either directly through the data server or send the query to

- 88 -

the query server that then accesses the data server. There can also be network protocols that access
data using application protocols, query server protocol or directly access the data server. The man-
agement server can use any of the protocols mentioned.

The protocols of the telecom database are the protocols that are supported by the telecom database.
From Figure 4-6 we can see that these are the application protocols, the query server protocol and
the data server protocol.

From this discussion we derive the architecture shown in Figure 4-7, where there are clusters of
data servers, query servers, application servers and management servers. The set of application
servers is of course very wide, there are servers to support various communication protocols, var-
ious communication services and so forth. These various application servers is not an issue in this
thesis, where we will mainly concentrate on how to build a parallel data server to support telecom
applications.

Applications

Query Server

Data Server

Telecom Database Protocols

Figure 4-6Telecom Database Parts

Management Server

Data

Parallel Data Server

Parallel Query Server Parallel Application Server

Parallel Management Server

High-Performance
Communication Network

Ericsson Utveckling AB 1996, All Rights Reserved

Telecom
Network

Commun ica t i on
Gateway

Figure 4-7 Client-Server
Architecture

- 89 -

Another major benefit that the architecture in Figure 4-7 provides is that the only server that con-
tains data is the data server. The other servers only contain uncommitted data (transient data) and
logic. There are also application and management servers that contain hardware such as commu-
nication links; these are not considered in this thesis.

This is accomplished when the application, query and management server uses the data server to
store all permanent data. Thus there is not much need to have hardware redundancy in these serv-
ers. The data server can also be implemented without using hardware redundancy as was shown in
Section 2.7. This means that there is no need for computers with hardware redundancy, which
means that one can use ordinary server computers and interconnect them with a reliable commu-
nication network. This provides a very good price/performance ratio for telecom databases.

4.4 Session Database

An important feature for load balancing is to be able to always choose the least loaded server to
serve the client requests. To achieve this all the servers must have access to the same information.
This can be accomplished by storing the session information in the database. If an application has
a session with a client, then all session data is stored in the data server when the application waits
for the next client action. This means that the next time a client request arrives as part of this session
any server can be chosen to serve this request. The data server is then used as a context database
as shown in Figure 4-8 below.

Many telecom systems are configured as shown in Figure 4-9 below. If the communication servers
do not need to keep any information on which application server that contains the session data, then
less reliability is needed in those parts of the system. The communication server can always choose
the least loaded application server. This architecture puts heavy requirements on the data server in
terms of response times and performance.

Supporting this type of architecture is an essential part of the design of the parallel data server de-
scribed in this thesis.

Client Server S1

Server S2

Request/Response

Request/Response

Context
Database

Read/
Write

Figure 4-8 Context Database

- 90 -

4.5 Network Redundancy

From the discussion in the previous section on reliability it can be deduced that the reliability pro-
vided through a parallel data server is not always sufficient. It is also necessary to provide redun-
dancy to be able to handle environmental faults and operational faults. An example is an earth-
quake that destroys a parallel data server.

To survive this type of fault it is also necessary to provide redundancy on a network level. Thereby
the parallel data server must also support network redundancy where reliable data is stored at sev-
eral telecom databases as seen in Figure 4-10.

The solution of network redundancy can also be adopted with small changes to act as a replication
mechanism that can be used by applications. An example of such an application is mirroring of
Web servers.

4.6 Interface Types

There are two dimensions of interfaces. The first dimension is the application interface, which is
where the actual database interface is defined. The second dimension is the network interface,
which contains a specification of the interface used to send and retrieve the application messages.

Communication
Servers

Application
Servers

Data
Servers

Figure 4-9 Common System Architecture

Data
Server
n1

Data
Server
2

Data
Server
1

Data
Server
n2

Data
Server
2

Data
Server
1

Application
Server
1

Application
Server
2

Application
Server
m1

Application
Server
1

Application
Server
2

Application
Server
m2

Telecom Database 1 Telecom Database 2

Figure 4-10
Network Redundancy

- 91 -

The database interface also has two dimensions. The first dimension defines the protocol to use the
Data Server. This is a rather simple interface with possibilities to read, insert, update and delete
data. It also contains functionality to define new data tables in the database. The second dimension
is the interface of the Query Server. In this interface functionality is placed to support complex que-
ries and also to support standard interfaces.

Also the network interface has two dimensions. The first dimension is the interface of the internal
network using communication that is optimised for local communication. The second dimension
is the interface of the external network for communication in wide-area networks which does sup-
port communication through well adopted standards in a local environment.

4.6.1 Interface of the Data Server

The Data Server is the place where the actual data is stored. It supports high levels of reliability
and must support applications with high requirements on performance. It must be possible to use
this interface for general applications, such as the interface of the Query Server. It must also be
possible to use it for applications with a few common queries. Therefore one can either use a ge-
neric interface to the data server or use a fast path interface in the data server. The fast path inter-
face is an invocation of a stored procedure that is optimised for a particular application. It is also a
generic interface that uses identities instead of names on the tables and attributes. It is possible to
also support execution of programs in the data server through the interface to the data server. This
is implemented by having an interpreter in the data server.

As the Data Server is a distributed architecture, the definition of the application specific interfaces
that must be available in all nodes that may use this interface. The stored procedures must also in-
teract with the distributed nature of the DBMS and the distribution of data within the data server.

4.6.2 Interface of the Query Server

The Query Server is where complex queries are executed to serve the management servers and the
application servers. The reasons for using the query server can be many. The first is to use the ad-
vanced functionalities of the query server, such as support of complex triggers and complex que-
ries. It could also provide an interface that makes the database server look like a relational DBMS,
object DBMS, knowledge DBMS or any other type of DBMS. Lastly the purpose could be to pro-
vide a standardised interface to the applications, such as SQL, ODBC, OMG or any other standard.
These various uses of the Query Server are shown in Figure 4-12.

4.6.3 Interface of the Internal Network

The interface of the internal network is optimised for local communication. To give efficient sup-
port for this, the interface uses a distributed shared memory to implement message passing be-
tween processor nodes. The advantages of this scheme is that messages sent internally in the tele-
com database need not go through the operating system. Any type of communication with the op-

Data

Server

Generic Interface (Read, Update,
Delete, Insert, transactions etc.)

Fast Path Interface
(Fast Path Generic Interface, Stored Procedures)

Figure 4-11 Data Server Interfaces

- 92 -

erating system involves a kernel trap which has a high price tag. It also often involves one or
several context switches to operating system processes. It also often involves copying the data be-
tween user space and kernel space and could also involve copying of data within the kernel space.
It also almost always involves use of standardised protocols such as TCP/IP. Furthermore, the im-
plementation of these protocols within the operating system is normally performed by calculating
a checksum using software. This costs a lot of performance.

When a distributed shared memory is available between the processor nodes, the communication
network as such handles the error situations in hardware. The communication is performed in the
application process and thereby no context switches or kernel traps are needed. Examples of such
interfaces are SCI (Scalable Coherent Interface) [Dolph96] and Memory Channel [GILL96]. The
interface of the internal network interface is visualised in Figure 4-13.

Since the interface of the internal network also supports distributed shared memory this can be put
to use. It is useful for applications that request very large data structures from the data server to
avoid passing this through the message passing interface. This can be performed instead by pro-
viding a pointer to the memory space where the object resides. This memory space is normally
locked for use of other processor nodes, but can be opened at request for passing large data struc-
tures, such as BLOBs (Binary Large OBjects, e.g. a file). These objects can then be transferred with
mechanisms that have higher bandwidth than can be achieved using messages.

4.6.4 Interface to External Networks

The telecom database must also provide an interface to the external world. This interface must con-
form to the international standards on WAN networks (wide-area networks), such as TCP/IP for
communication in Internet applications, CCITT no. 7 in communication between telecom applica-
tions and other standards such as X.25 and so forth. These protocols are carried by protocols for
wide-area communication with support for high bandwidths, such as ATM (Asynchronous Trans-
fer Mode), SDH (Synchronous Digital Hierarchy). There are many issues involved in this that will
not be discussed in this thesis.

The interface to the external networks is handled in a communication gateway as shown in Figure
4-7. This gateway function could either exist in all or some of the processor nodes, and it could
also be implemented as a separate function with specialised hardware.

Data Server

Query Server

Generic Interface Stored Procedures

KnowledgeBase ObjectBase SQL ODBC OMG

Figure 4-12 Interface
 for the Query Server

Communication
Buffers in
Shared Memory

Main Memory

BLOB

Protected Area
Parts can be opened

Figure 4-13 Internal Network
Interface in Processor Node

Processor Node

- 93 -

4.6.5 Interface of the Application Servers

The interface of the Application Servers is the most common way to access the telecom database.
This interface represents functions used by the application such as get html-file, update location of
mobile terminal, insert event record and so forth. This interface is implemented on top of external
network interfaces.

Common application protocols are HTTP (Hypertext Transfer Protocol) using TCP/IP, SMTP us-
ing TCP/IP, MAP (Mobile Application Part) using CCITT no.7, INAP (IN Application Part) using
CCITT no.7 and so forth. Examples of protocol stacks of these application protocols are shown in
Figure 4-14.

MTP (Message Transfer Protocol) is the lower layers of the CCITT no. 7 protocols. SCCP is an
add-on to MTP to provide logical network addresses. MTP uses physical network addresses.
TCAP is a transaction oriented add-on to SCCP that provides transaction protocol services to the
application protocols. AAL 5 is an adaption layer on top of ATM that is used for transporting data
packets on top of ATM. IP (Internet Protocol) is an internetworking protocol used on Internet. TCP
(Transmission Control Protocol) is a transaction protocol service on top of IP. HTTP is the protocol
used by the World Wide Web and SMTP is the protocol used for emails. Instead of TCP, UDP (Us-
er Datagram Protocol) can sometimes be used. UDP does not provide secure delivery and should
mainly be used for small datagrams where TCP is seen as overkill.

4.6.6 Interface of the Management Servers

Management applications of the telecom database are also accessed through interfaces, where one
common interface used in telecom applications is the Q.3 interface. The Q.3 interface has the pos-
sibility to read, update, insert and delete data objects, and events can also be reported. There is no
transaction protocol in the Q.3 interface.

4.7 Transaction Concepts

The transaction concept is a very powerful concept that is heavily used in many applications. Many
extensions to the basic transaction concept are possible. The applications that we do consider are,
however, not of this type and therefore this presentation only presents some basic transaction types.

4.7.1 Flat Transactions

The most used type of transaction is sometimes called a flat transaction. A flat transaction is an
atomic unit, either all of the processing is performed or none of it. A flat transaction should have
the ACID properties (ACID = Atomic, Consistent, Isolated and Durable).

MTP Layer 1

MTP Layer 2
MTP Layer 3
SCCP
TCAP

MAP

MTP Layer 1

MTP Layer 2
MTP Layer 3
SCCP
TCAP

INAP

ATM Layer 1

AAL 5
IP
TCP
HTTP

ATM Layer 1

AAL 5
IP
TCP
SMTP

Figure 4-14 Application Protocol Stacks

- 94 -

The atomic property says that either all actions of the transaction are performed or none. The con-
sistent property makes sure that after a roll-back of a transaction, all data structures are kept con-
sistent. The consistent property also assumes that all transactional modifications by an application
are consistent with the properties of the database. The isolation property gives the transaction pro-
gram the view that it is the only program that accesses the database. The most common isolation
property is serialisability. A set of serialisable transactions executed in parallel has the same be-
haviour as the same transactions would have had if executed in some serial order. This means that
it is not possible to see any intermediate states within a transaction from another transaction. The
durable property means that when a transaction is committed, the actions of the transaction are du-
rable, even in the case of system failures. Losing data from committed transactions is a very serious
failure. It can make the whole database inconsistent. Therefore the normal action, if this happens,
is to restart the system from an archive copy.

4.7.2 Flat Transaction with Savepoints

For most transactions in our applications with flat transactions are sufficient. Some management
transactions could, however, use savepoints which are internal to a transaction and cannot be seen
by other transactions. The idea is that the transaction can be rolled back not only to the start of a
transaction, but also to a savepoint. This can be advantageous for large transactions and complex
transactions where one needs to roll back to some previous state of the transaction. A good example
of such an application is a travel booking system. One could also have persistent savepoints, such
that a system can be restarted with a live transaction, but this becomes rather complex to support.

4.7.3 Distributed Transactions

Since in our assumptions a telecom database is a distributed system, it is necessary to update more
than one processor node, even in a flat transaction. This means that we need distributed transac-
tions. The most common way to proceed is to use the two-phase-commit protocol. This protocol is
part of several transaction standards; a description of this protocol can be found in [BHG87].

It is necessary to both use optimised versions of the two-phase-commit protocol and also versions
of the protocol with higher reliability against blocking. The major reliability problem with the two-
phase-commit protocol is when the coordinator fails. This can leave the transaction in an unknown
state, which means that all resources of the transaction must be kept until the coordinator has re-
started. This is clearly not desired, and therefore we shall in all situations have means to choose a
new coordinator in case the coordinator fails. This coordinator must then retrieve sufficient knowl-
edge of the transaction to decide whether the transactions should commit or abort. Also it is nec-
essary to use an optimised version of the two-phase commit protocol to decrease the load on the
system at the cost of a slightly higher delay.

This transaction protocol is an important contribution of this thesis which is described in chapter
6. It will also be shown how to integrate the two-phase-commit protocol with network redundancy,
where copies of the data also reside on another telecom database.

4.7.4 Replica Handling in Distributed Transactions

The two-phase-commit protocol was developed for coordination of transactions, consisting of up-
dates to data residing at more than one processor node. To update replicas of the same data as part
of the transaction also requires a method of maintaining the copies. One common way to handle

- 95 -

the copies is the read-one-write-all-available (ROWAA) method. This means that if a read is to be
performed, only one of the copies is used, and at update all available copies are updated. Other
methods that are used are based on reading and writing quorums of copies, which is used in sys-
tems of nodes, where each node has low availability. In [HELAL96] most of these methods are
presented.

There is also a distinction as to whether the copies are updated inside the transaction or as soon as
possible afterwards. Updates inside the transaction are called 2-safe and as soon as possible is
called 1-safe.

4.7.5 Conclusion

The conclusion from this section is that normal flat transactions will be sufficient for the applica-
tions. Since we are building a parallel data server it is necessary to use distributed transactions. The
transaction protocol is an important issue that needs further study in this thesis to achieve a balance
between quick responses and low communication overhead. Since the processor nodes seldom fail,
the ROWAA method is used for updating the replicas of the data.

4.8 Theory of Concurrency Control

Concurrency Control is needed to isolate transaction programs from each other, those that execute
in parallel. [BHG87], [PAPA86] and [Gray93] contain deeper studies of Concurrency Control. In
databases this means that several users will be able to access the database simultaneously and still
view their respective execution as the only one currently active in the database. Two important
laws of concurrency control are important to follow for all implementation [Gray93]:

1) Concurrent Execution of Application Programs should not cause them to malfunction.

2) Concurrent Execution of Application Programs should not have lower throughput or much high-
er response times than serial execution of Application Programs.

Many resources have been spent researching various ways to achieve concurrency in databases.
The methods developed can basically be divided in two dimensions. The first dimension is that
there are locking methods and there are timestamp methods. Locking methods works by locking
the records at some point in the transaction so that other transactions do not have the possibility to
access the records until the records are unlocked. Timestamp methods ensure a serialisable execu-
tion of a transaction by ensuring that updates to records always follow an increasing timestamp.
The other dimension is whether the method is pessimistic or optimistic. Pessimistic methods main-
ly achieve serialisable execution by waiting for the resources before accessing the records. Opti-
mistic methods access the records directly and validate that the execution was correct at the end of
the transaction. If the execution was incorrect, the transaction is aborted. Pessimistic methods can
also abort in some cases, mainly due to deadlock situations.

Although so much research has been performed, almost all implementations use locking methods
that are pessimistic. The few exceptions to this rule mainly use optimistic locking methods. The
most common method is to use strict two-phase locking as will be described below. One of the rea-
son for this is that the concurrency control method highly affects the other algorithms in a DBMS.
Locking methods are often easier to integrate with logging, recovery and distributed transactions.
Pessimistic methods also make development of distributed replication and recovery algorithms
more straightforward.

- 96 -

If the applications discussed in a previous part of this thesis use locking on record level, no prob-
lems are foreseen with hot spots. Possible hot spots that could occur are of course if counters are
used. If these are used heavily in an application, then alternative concurrency control methods have
to be considered for these data [BERN93]. Performance of pessimistic locking is no problem since
the locks are integrated with the index structure. The extra cost of locking is thereby almost neg-
lible.

In this thesis we will therefore concentrate on pessimistic locking methods and their behaviour in
replicated databases.

There are two ways to allocate locks, The first method is to allocate all locks at the start of the trans-
action, which is called static allocation of locks. This can be useful in systems where it is known
early on which records are included in a transaction. Since in most systems this is not the case, the
more common method is dynamic allocation of locks, in which case a record is locked when it is
known that it is going to be used in a transaction. In pessimistic locking methods, this means that
the record is locked immediately before the record is used the first time in the transaction. The fol-
lowing presentation will assume that dynamic allocation of locks is performed.

4.8.1 Transaction Dependencies

The actions performed in a DBMS are actually few. First there are database actions READ, UP-
DATE, DELETE, and INSERT. These can be categorised as READ and WRITE actions. One
could also support INCREMENT and DECREMENT as database actions, which would then be a
third category DELTA [BERN93]. There are also actions of the transactions BEGIN, PREPARE,
COMMIT and ROLLBACK. In Figure 4-15 the various depencies between transactions are
shown, where delta operations behave as writes in relation to reads and writes.

4.8.1.1 The Three Bad Dependencies

There are three dependencies that one must avoid to have an isolated system. The first is Lost Up-
date, which occurs when a transaction reads an object and later uses the read to update the same
object. If another transaction had the possibility to write the object between the read and write, then
this write will be lost since it is overwritten by the first transaction. Hence the write by the second
transaction is lost.

The second bad dependency comes when a first transaction writes an object and later writes it again
(e.g at Rollback), if a second transaction reads the first write, it reads something that was never
committed and thereby it reads a dirty object.

T1-R
T1-R
T1-W
T1-W

T2-R
T2-W
T2-R
T2-W

T1-D T2-D

Figure 4-15 Transaction
Dependencies

T1-R T2-W T1-W
Figure 4-16 Lost Update

- 97 -

The third bad dependency occurs when a transaction reads the same object twice and another trans-
action writes the object between those reads. This is called unrepeatable reads, the two reads of the
first transaction do not deliver the same result.

Now it can be shown that if these three dependencies are avoided, then the execution of transac-
tions is isolated.

4.8.2 Locking Theory

If transactions are to execute isolated, they must follow some rules. The objective of these rules is
to ensure that an execution of a number of transactions in parallel can be serialised. As we already
saw in the previous section, there are three bad dependencies that need to be avoided to accomplish
this. Since we opted for pessimistic locking, this means that a lock must be held before any actions
can be taken on database objects. There are Shared Locks (for READ), Exclusive Lock (for
WRITE) and delta locks (for DELTA) [Hvasshovd92]. In Table 4-1 the compatibility matrix of
these locks is shown.

Now we proceed with some definitions:

Definition 1: A transaction is well formed if all its read, write, delta and unlock actions are covered
by locks and if each lock action is eventually followed by a corresponding unlock action.

Definition 2: A transaction is two-phase if all lock actions precede the unlock actions. This means
that the transaction has two phases, a growing phase when the locks are acquired and a shrinking
phase when locks are released.

Now an important locking theorem can be proved [Gray93][BHG87]:

Locking theorem: If all transactions are well formed and two-phase, then all transactions will be
isolated from each other, and the history can be serialised.

Table 4-1Lock Compatibility Matrix

Compatibility Shared Exclusive Delta

Shared Compatible Conflict Conflict

Exclusive Conflict Conflict Conflict

Delta Conflict Conflict Compatible

T1-W T2-R T1-W
Figure 4-17 Dirty Read

T1-R T2-W T1-R
Figure 4-18 Unrepeatable Read

- 98 -

The proof of this theorem is based on showing that the dependency graph of the transactions does
not contain any cycles if transactions are well formed and two-phase. If there is a cycle in the de-
pendency graph, then a transaction is executed both before and after another transaction, hence the
history is not serialisable.

An interesting extension of the strict two-phase locking scheme in telecom databases is to use mul-
tiple versions of the data. These old versions would then only be used by transactions that read data.
These transactions could either be large query transactions or simple read transactions. By reading
the old version of the data, they ensure that there are no concurrency problems. A read transaction
will always find data to read. This will be further elaborated in the next section.

4.8.3 Degrees of Isolation

One problem with strict two-phase locking is that an application can read a large part of the data-
base thereby making these parts of the database inaccessible for write transactions. This is not de-
sirable in databases used by many users. Also many applications do not need full serialisation -
lower degrees of isolation are sufficient. Therefore four levels of isolation have been defined, de-
grees 0, 1, 2 and 3.

Degree 0: A degree 0 transaction does not overwrite another transaction’s dirty data, if the other
transactions are of degree 1 and higher.

Degree 1: These transactions do not have any lost updates.

Degree 2: These transactions do not have any lost updates and no dirty reads.

Degree 3: This is full isolation as provided by strict two-phase locking.

This leads to the following locking protocols:

A degree 0-transaction only locks data that it writes and releases this write lock as soon as it is fin-
ished with the write. A degree 1-transaction also only locks data before writing. It does, however,
keep the lock until commit time. A degree 2-transaction sets write locks properly, and it also ac-
quires read locks before reading. It does, however, release the read locks immediately after reading
the data. Finally a degree 3-transaction does not release the read locks until the transaction is com-
mitted.

This means that degree 2-transactions provide all the benefits except repeatable reads, and this is
seldom necessary in large query transactions and definitely not in small transactions. Therefore this
transaction degree is of interest. Degree 1-transactions can read uncommitted data and this should
be avoided. Degree 2-transactions can get even higher concurrency by reading the old version of
the data if the data is write locked.

If a degree 2-transaction reads an object and later updates this object, then it should not release the
read lock directly after reading. If the read lock is released immediately, then a lost update can oc-
cur and this means that the transaction can only be of degree 0.

T1 T4

T2 T3

Figure 4-19 Dependency Graph
with Cycle

- 99 -

4.8.4 Other Isolation Concepts

An issue is whether to lock at tuple level or to lock at page-level. In most of the applications the
update activity is performed either on new objects or by users updating their own data. Thereby
tuple locking will decrease the contention for locks. Using page locking would increase the con-
tention considerably with respect to the frequency of the update activity in some applications. An-
other issue is that locking pages do not fit well with the distribution of data, there would be many
complications due to locking of pages. Therefore locking is performed on tuples.

Another issue is whether to support delta locks where add and subtract are supported by the locking
protocol. There are, however, not very many uses of add and subtract in the applications we have
investigated and therefore it has been decided to avoid the complexities that delta locks introduce.

Statistical attributes is a case where delta locks can be useful. It is, however, also possible to solve
the problem with statistical attributes by other means.

4.8.5 Conclusion

The conclusion is to use ordinary pessimistic lock methods, strict two-phase locking. Reading data
could, however, be performed with some kind of time-stamp if needed to increase concurrency of
reads. It is also desirable in some telecom applications to avoid any unnecessary waiting. Then
reading an old consistent version of data can be acceptable if it means that no waiting for locks is
introduced.

4.9 Log handling

The reason for using logs is the need for atomic and durable transactions (there could be other rea-
sons as well, which are not discussed in this thesis). If a transaction is updating several data objects
atomically, then simply overwriting the old data is not enough. There are several methods to
achieve durable and atomic transactions. Almost all methods are based on the use of a log. There
are, however, methods that perform the updates so that all updates can be performed as one atomic
write operation. This is called shadowing, which has performance problems [Gray81] and logs can
also be useful in system crashes, when it is needed to recover an old version of the database.

The use of log records involves two parts, the REDO part and the UNDO part. The REDO part is
used at recovery if the update on the data object was not yet reflected on durable media (e.g. disks).
The UNDO part is used if the data object was written and later a decision to abort the transaction
was taken.

Old
State

New
State

Old
State

New
State

Old
State

New
State

DO

UNDO

REDO

Log Record

Log Record

Log Record Figure 4-20 DO-UNDO-REDO protocol

- 100 -

There are four methods to use the REDO and UNDO part, the UNDO/REDO algorithm, the No
UNDO/REDO algorithm, the UNDO/No REDO algorithm and the No UNDO/No REDO algo-
rithm (shadowing) [Gray93].

The UNDO/REDO algorithm is the most flexible algorithm in which pages can be written to du-
rable storage at any time, both uncommitted data and stale data can be found in the data pages. The
WAL (Write-Ahead Log) rule must be obeyed, however. It states that before a dirty page is written
to disk, all log records that belong to the dirty writes must be flushed to disk. The log can then be
used to recover an up-to-date version of the data objects.

The UNDO/No REDO algorithm requires that all updates are reflected on the durable data pages
before commit. Thereby all pages that contain updates by the transaction must be flushed to dura-
ble media before commit.

The No UNDO/REDO algorithm requires that the data page in the durable media never contains
any uncommitted data. Thereby dirty pages must never be flushed to disk.

The No UNDO/No REDO algorithm requires that the pages on disk only contain committed up-
dates and these must also be up-to-date. This means that dirty pages are not flushed to disk until
committed. When a transaction commits the pages must be written as one atomic transaction. Post-
gres [Sullivan92] uses this scheme by having versions of the tuples in the pages. This means that
both the last committed value and new uncommitted values are found on the disk pages. Another
technique used is the shadow technique used by System R [Gray81]. [BHG87] describes these var-
iants of logging in more detail.

In disk databases the UNDO/REDO algorithm is most commonly used. In main memory databases
it is common to use the No UNDO/REDO ([DALI94], [DBN94], [DBS91]) since in main memory
one can easily have a working record during the transaction and then at commit simply install this
as the up-to-date version. The REDO part is, however, still needed since main memory is not a du-
rable medium and also to enable crash recovery where an old version of the database needs to be
installed. The No UNDO/REDO algorithm has the benefit that the log records become smaller
which improves the performance of the database since logging is a substantial part of the load on
the database.

In most implementation of logs a LSN (log sequence number) is used. This number is basically a
primary key to the log record. With the UNDO/REDO algorithm there must be references to the
next log record to UNDO when a transaction is aborted. This reference must be part of each log
record. In No UNDO/REDO it is necessary at least to know where to start reading the log at recov-
ery, so there needs to be an order of the log records and it must be possible to find points in the log.
These points could however be start of a log file rather than LSN if these are not used. A log which
only contains REDO information is always started from the recovery start point and read until end-
of-log or any other marker in the log is found.

If delta locks are used, the LSN can be used to give idempotent log records, the log record is then
applied only if Tuple(LSN) < LogRecord(LSN). If semantically rich locking schemes are not used,
the read, update, insert and delete operations are idempotent in themselves.

- 101 -

A log is basically an append-only file that grows all the time. Since files cannot grow eternally the
implementation is mostly done by using a set of files, when one file is full, the log moves to the
next file. The LSN usually consists of a concatenation of file number and byte address in the file
that the log record is placed in.

When using the UNDO/REDO algorithm in combination with LSNs, it is necessary to also intro-
duce CLR (Compensation Log Records) [Hvasshovd96] to be able to get an always increasing
LSN number on the records (or pages); the CLR is used to log UNDO of an update. CLRs are not
needed in the No UNDO/REDO algorithm since UNDO by using log records is never performed.

Also to avoid being forced to REDO the log since the beginning of the log there must be check-
points where the system knows that all transactions before the checkpoint have been installed in
the data pages. This means that at a restart, it is only necessary to perform the REDO of the log
from the checkpoint, while all other log records have already been installed in the data pages.

There are three ways to achieve checkpoints; transaction consistent checkpoints, action consistent
checkpoints and fuzzy checkpoints. Transaction consistent checkpoints means that the checkpoint
on disk contains only committed updates. Action consistent checkpoints means that data on disk
contains uncommitted updates but all database operations are completed. This means that the data
on disk is consistent even though there still remain uncommitted updates. Fuzzy checkpoints have
no guarantees on consistency and also contain uncommitted updates.

Normal implementation of both transaction consistent and action consistent requires that all up-
dates to the data pages are postponed for the duration of the checkpoint, but this is clearly undesir-
able in a highly available system. Therefore fuzzy checkpoints are used.

However, action consistent checkpoints and transaction consistent checkpoints can be achieved by
using a combination of fuzzy checkpoints and logging of physical page updates. This is performed
in INFORMIX-OnLine Dynamic Server [Informix94] and in Dali [DALI97].

Fuzzy checkpoints are created by first writing a checkpoint log record, then writing one data page
at a time to disk; this means that when all data pages have been written to disk, all transactions
preceding the checkpoint log record have been flushed to disk. If a crash occurs during the check-
pointing, the system has to start from the last checkpoint log record of a completed checkpoint.

4.9.1 Log Information

The REDO and UNDO information specifies an update in the database, and this information can
be of different types [Gray93].

Old
State

New
State

Old
State

New
State

UNDO

REDO

Log Record

Log Record

Figure 4-21 Idempotence of Log Operations

- 102 -

One type is called physical logging, which means that the updates of the data structures internally
in the DBMS are logged. This basically means that updates of pages are logged. This means that
one logical update operation could result in many updates of the pages and thereby many log
records. This is a simple method that requires a large amount of log information.

Another type is logical logging. In this scenario only the logical update is logged and no informa-
tion on updates of the pages are logged. This creates problems with atomicity, as a database update
contains a number of updates on pages rather than a single update. It is very difficult to create an
atomic update of all the pages with good performance.

The third type is a mixture of the two previous which is called physiological logging. In this sce-
nario the log information is logical within pages but physical to pages. Thereby the log records de-
scribe the logical operations on the pages that were updated.

4.9.2 Log Handling in Distributed Systems

In a Distributed Database several new problems and new possibilities occur that needs to be han-
dled. One method to decrease the load on the disks using the UNDO/REDO algorithm is to use
nWAL (neighbour WAL) [Hvasshovd96]. This means that by updating the log in two main mem-
ories, the log is as safe as it would have been on disk. This means that writing to disk is only nec-
essary when the log pages are full.

When using No UNDO/REDO the normal two-phase commit protocol is sufficient to ensure reli-
able data storage. If the data is replicated it will then be updated in several main memories to ensure
that the update is not lost.

Another issue that comes up is the requirement on automatic recovery at node failures. This boils
down to being able to move and copy fragments between processor nodes. This means that log
records created in one processor node must also be able to recover another processor node. This
means that the log records must be Location and Replication Independent [Hvasshovd96].

To accomplish this, the log records must be logical and this involves problems. The problem is that
using logical log records the checkpointing process must be action consistent and this was unde-
sirable. To overcome this problem, the log is divided into local logs which are physiological and
the fragment logs which are logical. The local log contains a log of updates to pages, which are
local to the node. The fragment log contains the updates on the database records. Thereby the local
log can be used to create the action consistent state needed to execute the logical fragment log. This
is shown in Figure 4-22.

Node LogNode Log Copy

Fragment Log Fragment

Fragment Log Fragment

Node LogNode Log Copy

Fragment Log Fragment

Fragment Log Fragment

Figure 4-22 Location and Replication Independent Log Records

- 103 -

There is yet one more problem to handle: fragments can be split and they can be joined, and the
fragment logs must handle this, too. This can be solved by putting a split log record in a fragment
log when the fragment and similarly a join log record is put in the fragment log when the fragment
is joined.

4.9.3 Conclusion

The conclusion is that it is necessary to use Location and Replication Independent Log Records of
all updates to the database. The internal updates on pages are logged in a local log.

Previous implementations of this concept have used local logs in combination with an UNDO/RE-
DO log [Informix94][Dali97][Tor96]. We will, however, use No UNDO/REDO through the use
of new ideas on tuple storage. By using No UNDO/REDO without semantically rich locking
schemes, the updates are also idempotent and thereby updates can be performed several times on
a record without risk of inconsistency. This simplifies the recovery algorithms.

4.10 Two-Phase Commit

A well-known method to achieve distributed transactions is the two-phase commit. The two-phase
commit consists of three phases, of which two are concerned with committing the transaction. In
the first phase, the updates of the transaction are performed. The second phase asks all participants
to prepare their part of the transaction for commit and reply with yes if it was possible. This yes is
also a promise to commit the transaction if told to do so. If all participants voted yes, the third phase
commits the transaction otherwise the transaction is aborted. The protocol actions is shown in Fig-
ure 4-23.

The participants in the transaction can actually have a number of sub-participants that are control-
led by them without the knowledge of the coordinator. The coordinator and participants can be or-
ganised in a hierarchical scheme as seen in Figure 4-24.

Coordinator Participant
Actions(e.g. START, Update)

Prepare Local Prepare
Write Prepare Record

Vote (yes = propose commit, no = abort)Write Deci-
sion to Log

Commit/Rollback Local Commit work
Write Completion Record
to Log (Lazy)
Send Ack when durable

AcknowledgeWrite Comp-
letion Record
to Log

to Log (Force)

(Lazy)

(Force)

Figure 4-23 Two-phase Commit protocol

Root
Coordinator

Participant Coordinator/
Participant

Participant Participant

Session/Branch

Figure 4-24 Hierarchical Two-phase Commit

- 104 -

Now we will proceed to show some optimisations and extensions of the two-phase commit proto-
col that are useful in a reliable telecom database.

4.10.1 Transfer-of-Commit

The first issue is the possibility to transfer the commit decision. This is very useful in situations
where the client is unreliable and the server is reliable. Clearly it is not desirable that a user with
his home PC should be able to be commit coordinator using a telecom database. This would clearly
produce undesirable reliability characteristics of the telecom database.

4.10.2 Read-Only Commit Optimisation

When transactions are read-only, no prepare phase is needed. Only the commit phase is needed to
release the locks and also read-only participants in read/write transactions can use this optimisa-
tion.

4.10.3 Linear Commit Optimisation

Performing the full two-phase commit protocol contains many messages. An optimisation which
decreases the number of messages involved in a two-phase commit is the linear commit [BHG87].
This gives a higher delay to decrease the communication costs of the transaction. Even with the
optimised communication schemes used in this thesis, it is still desirable to decrease the commu-
nication cost. The linear commit optimisation performs a transfer-commit to the next participant
by sending the prepare message all the way until the final participant receives the prepare message.
He notes that he is the last on the chain, commits the transaction and sends the commit decision
back to the other participants (see Figure 4-25). There is also a complete phase in this protocol,
which could be piggy-backed on other messages in the telecom database.

4.10.4 Non-blocking Commit Coordinator

The final extension of the two-phase commit protocol that we need is to avoid the reliance on one
commit coordinator. This could lead to all participants being blocked until the coordinator can be
restarted and the locks must therefore be kept for a long time which decreases the system availa-
bility. To avoid this, a backup coordinator is always used in all transactions as shown in Figure 4-
26.

In this scheme, no decision is taken until both the primary and the backup coordinator has recorded
the decision. If the primary coordinator fails, then the backup coordinator can take over immedi-
ately since no commit decision is taken without informing the backup coordinator. If both coordi-
nators fail, we do, however, get into a blocked situation again since no coordinator knows the status
of the transaction.

Prepare
1

Prepare
2

Prepare
3

CommitCommitCommit
456

Figure 4-25 Linear Commit Optimisation

- 105 -

4.10.5 Conclusion

Since our design relies on high availability the transaction should not be blocked easily. In the nor-
mal two-phase commit protocol a transaction is blocked when the transaction coordinator fails.
This is clearly not acceptable. One approach would be to use a non-blocking commit coordinator.
This is the approach taken in ClustRa [ClustRa95]. This would create a performance overhead that
is not desirable. We choose another method where a system coordinator becomes the new transac-
tion coordinator after failure of the transaction coordinator as described in [CHAMB92]. The new
transaction coordinator creates the status of the transaction by asking all processor nodes to supply
information on all transactions where the transaction coordinator has failed. If any node knows of
a commit decision, then the transaction is committed. If any participant has not been prepared, then
the transaction is aborted. If all transactions have prepared but no participant has committed, then
the status of the transaction is unknown. If the data server is coordinating the transaction, then the
transaction can be aborted in this situation except in rare cases. When the data server is a partici-
pant in a transaction distributed over several systems, then the transaction cannot be aborted in this
unknown state.

Using a traditional two-phase commit protocol has the benefit of a low delay. Using a linear com-
mit has the benefit of a smaller communication overhead with a larger delay. Our replication struc-
ture normally involves three replicas of each data written, and there could also be several fragments
involved in each transaction. TPC-B is a typical example of such a transaction [Gray91]. Thereby
using linear commit would sometimes increase the delay too much. Using a normal two-phase
commit protocol would be advantageous from a delay point of view but increases the number of
messages from 24 to 48 in the TPC-B transaction using three fragment replicas. Our solution is a
mixture of the normal two-phase commit protocol and the linear commit protocol. Internally be-
tween the replicas in a fragment, linear commit is used. Between the fragments we do, however,
use a normal two-phase commit protocol. This gives an extra delay but decreases the number of
messages from 48 to 32 in the TPC-B transaction. In simple transactions this involves only one
fragment and the commit protocol degenerates into the linear commit protocol. In this case some
optimisations can be performed to further decrease the number of messages.

Prepare
Ack
Prepare
Prepared
Commit
Ack
Commit
Committed
Completed
Ack

Primary
Coordinator

Backup
Coordinator Participants

Figure 4-26 Non-Blocking Commit Coordinator

- 106 -

4.11 Archive Copy Production

To create an archive copy, it is necessary to be able to recreate a consistent state of a distributed
database. To perform this it is necessary to have a point in time from where it can be decided for
each transaction whether it happened before or after this time. We will call this time a global check-
point. This checkpoint will be transaction consistent.

One way to do this is to simply broadcast a stop message to cease all commit processing and then
insert a checkpoint in all logs and then the commit processing can continue as usual. The new glo-
bal checkpoint can be written to disk in a lazy manner to assure that the system only stops commit
processing a very short time. Then an archive copy that is transaction consistent can be created by
reading the database from a checkpoint preceding the global checkpoint to restore and apply all log
records with a smaller global checkpoint than the global checkpoint to restore.

More sophisticated methods that have a smaller impact on the delay of transactions can be invented
[DBN94]. In systems with up to about fifty processor nodes the delay of creation of a global check-
point can be done within less than one millisecond and this should be sufficient since it does not
seriously impact real-time behaviour. Such a figure assumes that a real-time run-time system is
used with the use of priorities.

- 107 -

5 System Architecture of the Parallel Data Server

In this section of the thesis the system architecture will be described. This encompasses description
of replication structures of the data, the various protocols needed and their relationships. Handling
of keys, schema, fragmentation and secondary indexes.

5.1 Replication Structure

In this section we will describe the replication structure. There is replication on two levels where
the first is internal in the system and the second is between systems. We will first show the repli-
cation method internal in the system.

In our models we will assume that mean time to failure (MTTF) of a processor node is 4 months
due to software failures and that other failures decrease the MTTF to 3 months. The repair time is
one hour (MTTR). The MTTF is based on a report from Japan discussed in [Gray93] and the
MTTR is based on a structure where recovery is done by a copying process from the primary node
to the new backup node.

5.1.1 Local replication structure

The ideas of this section have been developed in discussions with Shahid Malik and more details
on error handling is found in [MALIK97].

As in most distributed databases the replication objects are fragments of a table. A fragment con-
tains a subset of the table. The fragmentation function is further described in Section 5.3.3. In this
section we presume that a fragmentation has been performed and that it is possible to deduce where
the replicas of a fragment reside and of which type they are.

The most common method of replicating information is to use a primary node and a hot stand-by
node. We will call the hot stand-by node a backup node in this article. This provides very reliable
operation. The probability of both the primary and the backup node failing at the same time is very
small.

If both the primary and the backup node fails for any fragment, then committed transactions could
be lost if a write to disk of the log is not involved in the commit process. Then the consistency of
the whole system is jeopardized causing a shutdown of the system. Thereby the system fails in this
case if two nodes fail at the same time. Assuming the above MTTF and MTTR we calculate the

probability of a shutdown of the system in an hour to be (n2-n)/22002 (2200 = number of hours in
3 months), where n is the number of processor nodes in the system. If a shutdown causes the system
to be unavailable for two hours then a shutdown of the system can be acceptable at most once per
20 years of system operation. This means that if n is greater than six the reliability requirements
can no longer be met.

To avoid the problems with reliability requirements a scenario could be to write all transactions to
disk at commit time when only a primary is alive. This will however lead to that those transactions
will suffer a long delay and also the performance will be impacted at failures.

This means that using the primary and backup strategy, it is not always possible to fulfil both the
delay requirements and the reliability requirements. It is likely that the reliability requirements are
more important and therefore the probability of a transaction not meeting the delay requirements
becomes n/2200*(2/n) = 1/1100. The factor 2/n comes from the fact that not all transactions are

- 108 -

affected by a node crash. Only those transactions which try to access a fragment which had either
the primary or the backup on the failed node. If transactions consist of several operations then the
probability of missing the delay requirements increases even more.

To write to disk during the commit process also creates a performance overhead. The overhead of
writing a disk block is similar to the execution of database requests in processor nodes. This over-
head, too, only comes at a time when a node has failed, and in this case the primary node already
has an overhead to assist in creating the new backup node.

One solution to this problem is to use two backup nodes. This creates an increase in the price of
the system which is not always acceptable. All the memory needs to be triplicated in this case.

Our solution to this problem is to introduce a third type of replica, the stand-by replica, we will
call the owner of this replica the stand-by node. The stand-by node participates in all transactions,
but only logs the transactions. A similar idea was used in [RRDF93]. The difference was that log
records were sent to the stand-by node after committing the transaction. This type of replication is
referred to as 1-safe. In our case the stand-by node is involved in the two-phase commit protocol,
and this type of replication is referred to as 2-safe.

The stand-by node only stores the log records of the transactions. These log records are sent to disk
as soon as possible without causing a performance overhead. Thereby only a small log buffer is
needed in main memory. Also the processing in the stand-by node is very small and therefore it
does not cause any large performance overhead. This conclusion relies on the assumption that
communication between processor nodes is cheap. This has not always been the case. TCP/IP mes-
sages on Ethernet has a cost in the same order as the execution of the database requests. New tech-
nology, such as SCI [DOLPH96] and MemoryChannel [GILL96], has made it possible to send
messages by using a shared memory between processor nodes. This decreases the load of commu-
nication by a factor of 10 and sometimes even down to a factor of 1000. Thereby communication
costs are not such a severe performance problem any more.

The replication structure used is shown in the figure below.

The benefit of the stand-by node is that even when the primary and all backup nodes have crashed,
the stand-by node ensures that the system is still available. Some fragments in the data server have
become unavailable but the system is still available. The stand-by node can then be used to restart
a new primary node. The stand-by node needs access to an archive copy in addition to its log
records to restart a new primary node. To restart primary and backup nodes is a costly process that

Data Log Data Log Log

Primary Backup
Replica Replica

Stand-by
Replica

Figure 5-1Local Replication Architecture

- 109 -

involves creating an up-to-date replica of the data. This creation process could take up to an hour
if the size of the database is large. To start a stand-by node is rather easy and can be performed in
a few seconds.

Another option is also to use a primary node together with a stand-by node. This provides a good
reliability although the availability is rather low.

The replica in the primary node will be called primary replica. All updates start in the primary rep-
lica, and the write locks are first granted there. When the primary replica fails, a new primary rep-
lica must be assigned to take over to be able to continue processing transactions. The primary rep-
lica is involved in all read operations that are part of updating transactions. As will be shown in
8.2.1.1, within a system all replicas are involved in read operations of updating transactions when
there is also replication on the global level.

The replicas in the backup nodes are called backup replicas. The backup replica is always up-to-
date and is part of all update transactions where the fragment is involved. This replica, too, contains
locks on the data. The reason is that the backup replica can be used for special read operations. It
can handle read with commit, where only one tuple is read with degree 3. It can also handle read-
only transactions of degree 2. This means that all reads on the backup replica only hold the lock on
a tuple while reading it, and when the tuple has been read the lock is released. Thereby deadlock
situations are never introduced due to reading the backup replica. It does also simplify handling of
failures of backup nodes. The backup node does not contain any unique data, such as read locks,
and therefore failure of the backup node is easy to handle. Being able to perform simple reads at
the backup node introduces a possibility for load regulation as we have seen that most telecom ap-
plications contain many simple read transactions.

In Figure 5-2 a conceptual model of the distribution of fragments within a telecom database is
shown. All replicas, the primary replica, the backup replicas and the stand-by replicas within a tel-
ecom database are 2-safe, that is they all participate in the two-phase commit protocol.

N1N5 Local
Fragment

Local
Fragment
Copy

Distributed
Index

Tuple

N3

N2

N8

N7

N4
SD

N6

belongs_tois_part_of

is_part_of

is_pa
rt_of

is_index_to

Cardinalities:
N1 = Number of PDs
N2 = Number of BDs
N3 = Number of SDs
N4 = Number of fragments in distributed index
N5 = Number of local fragments in global fragment
N6 = Number of tuples in local fragment
N7 = Number of tuple in global fragment
N8 = Number of distributed indexes in global fragment

Rules (invariants):
N1 = 1
N4, N5 > 0
N3 = 0 for distributed index

User defined relations:
PD = The Processor Node that stores the primary replica of the local fragment (Primary Data Node).
BD = The Processor Nodes that stores the backup replicas of the local fragment (Backup Data Node).
SD = The Processor Nodes that store the stand-by replicas of the local fragment (Stand-by Data Node).

PD

BD

Global
Fragment

Local
Index

is_part_of

is_part_of

PRN

Figure 5-2Conceptual Model of Local Distribution

Fragment
Log
Records

is_part_of

contains

PRN = Processor Node

- 110 -

A local fragment could be either a primary replica, a backup replica or a stand-by replica. A local
fragment itself is part of either a global fragment or a distributed secondary index. As seen in Fig-
ure 5-3 a global fragment is part of a table or a stored view or a globally distributed index. From
this we deduce that the architecture should use two fragmentation functions. The first fragmenta-
tion function fragments the table between the telecom databases and the next fragmentation func-
tion fragments the global fragment within a telecom database. Since a local fragment is a part of a
global fragment, the global fragmentation function must ensure that tuples in a local fragment are
not part of more than one global fragment. In this thesis the local and global fragmentation are the
same, which means that there is a one-to-one mapping between global and local fragments. This is
not a requirement but a simplification used in this thesis which should not be of any great impact
as long as the global replication protocol is not standardised. If two telecom databases developed
by different vendors are to cooperate, it is likely that they would not use the same fragmentation
scheme.

5.1.2 Global replication structure

Between telecom databases we are mainly concerned in providing safety against catastrophic sit-
uations, although the methods we develop can also be used in globally distributed databases. To
support catastrophic situations with one extra copy is usually sufficient. This copy should be pos-
sible to start as soon as possible and we do not use stand-by replicas in this case. The primary rep-
lica on system level is stored in the primary system.

This backup replica on system level is stored in the backup system, and it can use a combination
of 1-safe and 2-safe transactions. The decision is based on which data is involved in the transaction.
The decision as to which data is 1-safe and 2-safe is decided by the application developer. The de-
cision is on an attribute level, where updates involving attributes that must be 2-safe means that the
whole transaction must be 2-safe. If no such attributes are involved the transaction can execute as
1-safe. Some applications might also need an off-line replica stored in an off-line system that re-
ceives all transactions as 1-safe. They could also receive the transactions in a delayed manner.
Therefore we will discuss three types of global replicas, the primary replica, the backup replica,
and the off-line replica.

N2N6 Global
Fragment

TDB

Global
Index

Tuple

N1

N4

N8

N9

N5 PS

BS

N7

belongs_tois_part_of

is_part_of

is_part_of

is_index_to

Cardinalities:
N1 = Number of PSs (Primary Systems)
N2 = Number of BSs (Backup Systems)
N3 = Number of OSs (Off-line Systems)
N4 = Number of global indexes on table
N5 = Number of global fragments in global index
N6 = Number of global fragments in table
N7 = Number of tuples in global fragment
N8 = Number of tuples in table
N9 = Number of tables in database

Rules (invariants):
N1 = 1
N5, N6 > 0

User defined relations:
PS = The TDB that stores the Primary replica of the Global Fragment (Primary System).
BS = The TDBs that stores the backup replicas of the Global Fragment (Backup System).
OS = The TDBs that stores the off-line replicas of the Global Fragment (Off-line System).

Table or
Stored
View

Figure 5-3Conceptual Model of Global Distribution

OS
N3

TDB = Telecom Database

- 111 -

5.1.3 Local Fragment states

To better understand the reliability and availability features of our model the state diagram of a lo-
cal fragment is shown in Figure 5-4. The state that must be avoided is the unrecoverable state. If
this state is reached then committed transactions might be lost and thereby the consistency of the
whole database is unsure. Thus the system must be shut down and restarted from a checkpoint that
is transaction consistent. The restart procedure will be described later in the thesis. All other states
are recoverable and no shutdown of the system is necessary.

The fragment can either be available for user queries (accessible) or not. If there is a primary rep-
lica the fragment is in the accessible state, otherwise it is in the inaccessible state. Every time a
node fails, the state of the fragment goes to one of the unsafe states. Since node failures often are
correlated, all nodes should immediately force the log to disk at failure situations and also force
the log to disk at commit for a certain period of time after the node failure. When one node has
completed the force of the log to disk, the state reaches one of the safe states. If there is only a pri-
mary replica and no other replicas, the fragment is in the unprotected state, otherwise it is in the
protected state. In the unprotected state the log is always forced to disk at commit since there is
only one node that has a copy. When being in one of the accessible and safe states the recovery
procedure can start and the state goes to Behind, which means that a recovery process is ongoing.

 Fragment
 State

 Recoverable

 by

Unrecoverable

 Accessible Inaccessible

No-Active Active-Backup

 Stand-by
 Unsafe

No-Stand- Stand-by

 Safe

 Unprotected

 Up-To-
 Date Active-Backup

 safe
Active-Backup
unsafe

 Not-Up- Switch
 To-Date

 Unprotected-
 Unsafe

 Unprotected-
 Safe

 Not-Up-To-
 Date-Safe

 Not-Up-To-
 Date-Unsafe

4
5

7
8

9 10

11 12 13

14

 Behind

 Protected

 Behind-
 Protected

 Behind-
 Unprotected

1

3 6

 2

Figure 5-4State Diagram of a Local Fragment

- 112 -

If there is no primary replica but there is a backup replica, the fragment is in the Active Backup
state. Then when reaching a safe state, the backup replica can be promoted to primary replica and
the recovery process can start.

If neither a primary replica nor a backup replica is available, then if a stand-by replica is available
the fragment reaches the No-Active state. When it has reached the safe state here the recovery proc-
ess can start by using a protocol to promote a stand-by replica to a primary replica. This protocol
can only be used at a node which contains an archive copy of the fragment saved on disk. If the
stand-by node does not contain this, it waits until some processor node that contains an archive
copy is restarted. Then the restarted node can use the same protocol to promote the archive copy
to primary replica by using the archive copy and the log that was saved in the stand-by replica.

In the unusual case that the stand-by node also fails when in the Stand-by Safe state, then the state
becomes No Stand-by. In this state there is no primary replica, no backup replica and no stand-by
replica. However, information is available on disk to start up a new primary replica without losing
any committed transactions. Thereby the system can continue operating although this fragment is
unavailable.

In Figure 5-5 an example of a local distribution is shown. An important issue in the replication
structure is how to handle failures. Our approach is that as soon as failures occur, the system itself
should reconfigure itself. If node 3 fails in Figure 5-5 the fragments F1, F2 and F3 are left with one
less backup replica, thereby reaching the Not-Up-to-Date-Unsafe state. An I-am-alive protocol
which will be described in section 7.1.1 finds out that node 3 has failed and the system coordinator
distributes this information. Node 1 is the primary configurator of F1 and will decide how the new
distribution of replicas will be. Assume that it decides to create a new backup replica at node 5,
then a new backup replica is created at node 5 using the copy fragment protocol described in sec-
tion 7.1.4. If node 1 also fails before the backup replica at node 5 has been created this recovery
process is lost and the fragment reaches the state Active-Backup unsafe. The backup configurator
of F1 is promoted to primary configurator and decides how the new distribution of replicas will be.
It does promote its own replica to primary replica.

 F1 P

F2 B
 F3 S

Node 1

Node 2

Node 3

 Node 4
Node 5

 F2 P

F1 B

F3 P F3 B

F1 B

F2 B

F2 S

F1 S

F3 B

Primary node
for F1

Stand-by node
for F1

Backup
nodes for
 F1

Figure 5-5Example of
Fragment Distribution

Primary
Configurator for
F1

Backup
Configurator for
F-1,

- 113 -

If there is replication also at the global level, then the state machine of the local fragments must be
connected to the state machine of the global fragment they belong to.

When the local fragment state goes to Unrecoverable, then the system is no longer usable. If this
state is reached and there is a backup system, then the backup system must take over since the pri-
mary system is going to be shut down and restarted. If the backup system goes to Unrecoverable,
then the backup system must be restarted.

All other Inaccessible states in the primary system, Active Backup and No-Active states, do not
affect the state of the global fragment, since these are only temporary malfunctionings that can be
solved by aborting the transactions.

The state No Stand-by is not allowed at the backup system. When there is not even a stand-by node
in the backup system, the backup system cannot participate in the transactions committed at the
primary system. Thereby the backup system becomes Unrecoverable if it goes to the state No
Stand-by.

5.1.4 Related Work

Most of the replicated databases uses a primary and hot stand-by architecture. The updates are first
performed at the primary node and then either 1-safe or 2-safe or a mixture of 1-safe and 2-safe is
used to update the hot stand-by node. The hot stand-by node is then ready to take over processing
when the primary node fails. Examples of such systems are Tandem Remote Duplicate Database
Facility [Tandem91], Sybase Replication Server [Sybase95], CA-Open Ingres/Replicator
[Ingres93], Informix-OnLine Dynamic Server [Informix94] and ClustRa [ClustRa95]. Most sys-
tems that support shared nothing also support some kind of fragmentation. Shared disk architec-
tures usually only support replication of a site and thereby only support a two-node system. Each
node could then of course be a powerful symmetric multiprocessing node (e.g. Sun Enterprise serv-
er).

Using a stand-by server for storage of log records can be found in IBM Remote Site Recovery
[RSR95] and Remote Recovery Data Facility [RRDF93]. The stand-by server gets the log records
in a 1-safe fashion. The idea is to raise fault tolerance in already installed IBM systems.

5.1.5 Conclusions

There are no products or research prototypes known to the writer of the thesis, where a system us-
ing primary/hot stand-by architecture has been combined with a 2-safe stand-by server to save the
log records. The stand-by server is a very cheap way of achieving higher reliability of the system.
It does not involve any great processing overhead and the main memory overhead is neglible.
These benefits are gained although a 2-safe stand-by server is used due to the cheap cluster com-
munication used by the run-time system and also optimisations in the two-phase commit protocol
as described in section 6.1.

The replication structure described in this thesis avoids system failures as long as not all replicas
fail within a very short time (about 100 ms). This can be supported by other database management
systems, but only at the cost of forcing the log to disk at each commit. In this system no disk op-
erations are needed during write transactions.

- 114 -

Since the normal read/write operations do not involve disk operations, the traffic to the disks is not
so serious. Also since communication is cheap the communication overhead is small. This means
that a very reliable system can be built using small and cheap modules with standard hardware. If
a high performance system is needed, the nodes can instead be multiprocessor nodes with high-
performance processors. Those multiprocessor nodes should mainly be one-board multiprocessor
nodes since these nodes gives the best price/performance ratio. Even single processor systems can
be used. In this case the disk is used for all commits and thereby some reliability and performance
is sacrificed. A minimum reliable system is using two nodes and a minimum system with very high
reliability should be using a minimum of four nodes.

5.2 Reconfiguration and Recovery Protocols and the Relation Between Them

The protocols in the parallel data server have complex relationships. We will start the description
of these relationships by describing what types of information that is needed in a parallel database
and how we choose to replicate this information. Then all protocols described later are simply var-
ious methods to change and recover this information.

A parallel database differs from a centralised database in that it must be able to continue operation
even in the presence of node failures. All the protocols in a parallel database must have a well de-
fined action in the presence of simple and complex scenarios of node failures. This is the most se-
rious complication in building a parallel database which is very reliable.

Other actions that reliable parallel databases must handle concurrently with user transactions are:
adding new nodes, dropping nodes and updating schema information. They must also be able to
react on load changes and change the distribution of data as a means to regulate the load. Other
means of regulating the load must also be supported. On top of this the underlying run-time system
must be able to handle software changes, fault tracing and memory management and still provide
real-time services to the applications.

5.2.1 Information in a Parallel Database

First a little thought on the basic idea of a database. The idea is to store application information in
a separate entity that handles the data so that the application need not worry about data structures,
safe storage, recovery and complex transaction handling. It also provides advanced search facilities
to the data. However the basic idea is to insert, update, delete and retrieve application information
using transactions.

5.2.1.1 Information Structure in a Parallel Database

To be able to find the application information after storing it, the information must be structured.
The application information is structured in tuples. These tuples are organised into tables. The ta-
bles are defined by a set of attributes. To find the data one must usually also have an index on the
tuples. The simple concept of tuples, tables, indexes and attributes is the basis of databases.

The database must contain a definition of the tables and their attributes and indexes. Since this in-
formation can also change, it must be treated with care too. We refer to this information as schema
information. Modern databases have included a lot of application support in addition to the simple
concept of tables, indexes and attributes. Tables can have relationships to each other in their defi-
nition through inheritance and attributes can be complex. Also the database can provide alternative
views on data; these can even be materialised and kept up-to-date with the original information.

- 115 -

Referential constraints and other constraints can be maintained. Finally triggers that react on data-
base operations are often supported by database management systems. The reaction could either
perform another database operation, but it could also be to inform applications on database events.

All this complex set of additional information about the database is maintained by the database
management system. This additional information is also a part of the schema information. The
schema information must also be updated through transactions so that changes of the schema in-
formation can occur concurrently with user transactions.

In a parallel database the tables can be fragmented to enable storage in more than one node. These
fragments can also be replicated. To maintain this information we also need information about the
nodes in our system. This information is updated through the use of special transactions. We call
this distribution information since it represents the knowledge of the distribution in the system.

All these three types of information must be handled by the system and be recovered in failure sit-
uations. Figure 5-6 gives a hint of the order of usage of the information. The schema information
must always be accessed first in user transactions. The distribution information is needed to find
the data and must be checked before accessing the application information.

5.2.2 Replication of Information

The replication of information is another important part of the architecture of a parallel database.
All the above three types of information are replicated in some manner. Schema information is
needed in all nodes that handle application requests. Schema information is very often read, actu-
ally in every transaction. It is updated only rarely. Thereby we decide that schema information is
fully replicated in all nodes of the parallel database. Distribution information is also read in every
transaction and is updated seldom compared to the number of times that it is read. Therefore we
decide that also distribution information is replicated in all processor nodes of the system. The rep-
lication of application information and index information was covered in section 5.1 and 5.4.

Replication of application information is also performed between systems. Distribution informa-
tion is unique for each system and is therefore not replicated between systems. Schema information
contains different parts. Table and attribute information must be the same in the replicated systems,
too. Other schema information is, however, not necessarily replicated, and it can be unique in a
system. The existence of a secondary index in the primary system does not necessitate a secondary
index in the backup system and vice versa. The schema information that controls the execution of
the transaction is the schema information in the primary system. The backup system only needs to
know the changes on table and attribute information to act properly. The backup system must how-
ever replicate most of the schema information in the primary system to be able to take over as the
primary system.

Application Information

Distribution Information

Schema Information
Figure 5-6Information in a Parallel
Database

- 116 -

5.2.3 Handling of Node Failures

The recovery protocols include a protocol to find out which nodes are alive. Earlier studies of dis-
tributed databases have concluded that node failures must also be serialisable in the transactions
[BHG87], therefore a state transition protocol is needed to ensure that node failures are serialisable.

A node failure does affect the reliability of a system. It causes a set of fragment replicas to be un-
available. The idea of the data server is to automatically start a copy process of those fragments
that have lost replicas. All protocols in the data server must have methods to handle node failures,
since they can always occur and must always be handled properly. As mentioned above the failure
of a node can be made into a serialisable event, which makes it a lot easier to handle them in a prop-
er way. In Figure 5-7 all actions that can be started by a node failure is shown. Node failures are
discovered by the I-am-alive protocol.

Promotion of backup to primary is used when the primary replica of a fragment fails. Creation of
backup replica is used when a backup replica fails and creation of a stand-by replica is used when
a stand-by replica fails. Restarting a fragment is used when all primary and backup replicas have
failed, and it uses a stand-by replica and a local checkpoint to restart the fragment. System restart
is needed when committed transactions have been lost, which happens when the state Unrecover-
able is reached as described in section 5.1.3. The failure of a node may cause a number of transac-
tions to lose their transaction coordinator. There is a protocol to start up a new transaction coordi-
nator for these transactions by retrieving transaction information from the participants that are still
alive. The failure of a node could cause the failure of a replica of a local log. This log is replicated
on another node that could fail. If this happens, a new log node must be started.

If the system is involved in replicating between systems, then a node failure could cause a log chan-
nel between the systems to be lost. Then the system communication must be restarted.

The decision to start these protocols is distributed on three logical entities. Fragments are recov-
ered by the owner of the primary replica or the replica that will be promoted to a primary replica.
One node in the system is assigned as coordinator, which becomes the new transaction coordinator
of those transactions that have lost their transaction coordinator. This node also checks if a system
restart is needed. Finally the new log node is started by the owner of the log.

5.2.4 Handling System Failures

If a system restart is needed, the system restarts from an old but consistent global checkpoint. If
the system is a backup system, it is dropped as a backup system and restarted by using information
from the primary system together with its own information. If the system is a primary system the
backup system should take over as primary system and the crashed system should be restarted as
a backup system.

I-am-alive Node Failure

System
Restart Create Stand-by

Replica
Create Backup
Replica

Promote Backup
to Primary

Restart
Fragment

New Transaction
Coordinator

Start Log Node

Figure 5-7Protocols started by Node Failure Restart System
Communication

- 117 -

5.2.5 Handling of Add Node

A new node can be added as a result of a node restart or by the operator placing a new node in the
system. The major issue here is to start the new node. To start a node it must first create the distri-
bution information and schema information since this information is fully replicated in all nodes
of the system. A node is not fully started until this information has been created. If an operator has
placed a new node in the system, then some fragments should eventually be split to use the new
node in the most efficient manner. This split is delayed until a proper time to avoid overload situ-
ations. A new node helps other nodes when fragment replicas are moved to this node. This move
is performed by first creating new replicas in the added node and then dropping replicas in other
nodes.

5.2.6 Handling of Drop Node

Drop Node is similar to a node failure. Drop Node is, however, an operator initiated event and is
therefore a controlled node failure. This means that before the node is allowed to stop, the system
must ensure that all fragments are replicated, according to the table definition, in the remaining
nodes of the system. This is performed by moving the replicas to other nodes. Also Drop node
means that there are fewer nodes in the system and thereby some fragments should be joined. It is
not necessary to have a fragmentation that is much greater than the number of nodes in the system.
Join fragment is performed at a time when suitable to avoid overload situations. To be able to join
fragments is not an essential requirement. Too many fragments in the system only create some
memory overhead.

5.2.7 Handling of Time-out Events

All activities to save information for crash recovery are performed at certain time intervals. These
activities are therefore started by a time-out event. The I-am-alive protocol is also started by a time-
out. There are two basic activities performed to prepare for crash recovery. The first creates global
checkpoints. This checkpoint is transaction consistent and represents a point from which the sys-
tem can be restarted. All transactions are tagged with a global checkpoint identity. Thereby one

System
Restart

Promote Backup
System to
Primary System

Restart Backup
System from
Primary System

Figure 5-8Protocols started after a System
Restart when Network Redundancy is used

Add Node

Start Node Split Fragment

Create Distribution
Information

Create Dictionary
Information

Move Fragment
Replicas

Figure 5-9Protocols started after
Add Node

Create
Replica

Switch Primary
and Backup

Create Backup
Replica

Create Stand-by
Replica

Drop
Replica

- 118 -

can ensure that all transactions up to the global checkpoint are included in a restart and no transac-
tion after the global checkpoint is reflected in the restarted database. The actual information used
in a crash recovery is found in local checkpoints performed at each node with certain time intervals
together with the information saved in the fragment logs.

After a transaction is completed, a check is performed to see whether the global system checkpoint
can be increased. When a transaction is completed all log records have been saved on disk. When
all transactions belonging to a global checkpoint have completed, this global checkpoint can be re-
covered at restart. The global system checkpoint is the newest global checkpoint from which the
system can be restarted.

5.2.8 Handling of Overload Events

Another event that can cause the start of recovery protocols are overload situations. There are a set
of load regulations that can be performed in the parallel database. To protect a highly loaded node
one can ensure that the overloaded node does not become transaction coordinator. Another step is
to ensure that simple read transactions are not performed at that node if not necessary. Another step
that can be taken is to switch roles between primary and backup replicas. Primary replicas do more
processing since they handle all read operations of update transactions and the primary node also
executes methods. Therefore moving primary replicas from an overloaded node is a step that de-
creases the load on the node. If none of the previous steps has been able to prevent an overload
situation, a final step is to abort some transactions that need to access data in overloaded nodes.

If a node is often overloaded, then long-term actions can be taken that moves fragments to other
nodes. This action is preferably performed when a low load situation has been reached (if it oc-
curs). If no low load situation occurs, the long-term actions have to be performed to ensure that
more traffic can be handled after the change.

Drop Node

Join Fragment

Move Fragment
Replicas

Figure 5-10Protocols started after Drop

Create
Replica

Switch Primary
and Backup

Create Backup
Replica

Create Stand-by
Replica

Drop
Replica

Time-outI-am-alive

Start Local
Checkpoint

End Local
Checkpoint

Create Global
Checkpoint

Figure 5-11Protocols started by Time-out
Events

Overload Event Move Fragment
Replicas

Figure 5-12Protocols started after
Overload Event

Create new
Replica

Switch Primary
and Backup

Create Backup
Replica

Create Stand-by
Replica

Drop old
Replica

Switch Primary
and Backup

- 119 -

5.2.9 Handling of Schema Changes

Schema changes can require a number of special protocols. The set of possible schema changes is
actually very large and in this thesis we do not try to cover all possible schema changes. We will
study adding and dropping tables, attributes, indexes and foreign keys. Complex changes of at-
tributes in a table will also be studied. Finally splitting and merging tables will be studied. These
schema changes should cover a large part of the common ones.

When two levels of replication are used, the schema changes must also be performed in the backup
system in a proper way. This will also be studied for the above set of schema changes.

5.2.10 Other Protocols

A protocol that is normally not used but could be used for specific purposes is to switch between
the primary system and a backup system. This protocol can be started explicitly if the operator
wishes to replace a telecom database with a newly installed one. This new telecom database could
even be developed by a different vendor and the switch protocol is then used to switch between the
old and the new system. The switch could also be used in situations where it is necessary to change
the load situation on a long-term basis.

5.3 Schema Definition

A number of facts about the schema definitions need to be specified. These concern primary and
secondary keys to tables, fragmentation of tables, methods as first class attributes, stored proce-
dures, views, constraints and triggers.

5.3.1 Tuple Keys

In relational databases a primary key is used to get access to a record. A primary key should be
unique and is normally related in some way to the application information. In object databases nor-
mally an object identifier is used as primary key to a class. The object identifier is generated by the
database management system when an object is created. Our investigation of applications in chap-
ter 2 showed that both these types of primary keys are needed. We will call these two key types
tuple keys in this thesis. We will call object identifiers tuple identifiers since we have used the word
tuple to define the records or objects of the database.

When accessing a tuple in the database the tuple key is used. Without the tuple key the tuple cannot
be found in any other way then by scanning the table. If the fragmentation is not based on the tuple
key, then it is also necessary to have the attributes on which the fragmentation is based available
as part of the query for direct access to the tuple. Fragmentation on the tuple key is performed by

using the hash-based LH3 structure as shown in chapter 11. Fragmentation on other attributes also
uses a hash function. The attributes used by the hash function are called fragmentation attributes.

Without this attribute the query has to search in all possible processor nodes for the tuple. The rea-
son that accessing the record goes through the tuple key is that the tuples can move. Within a proc-
essor node it can move between pages, but can also move between processor nodes and even be-
tween telecom databases. Therefore it is not possible to use any type of key that is associated with
physical storage information. Also the log records needs to contain the tuple key.

- 120 -

At the processor node there must then be a local index that maps the tuple key to a physical key.
This index could be dependent on the fragmentation function as in LH*LH [KARL96]. Since all
accesses to the tuple must go through this index, it is natural to also place the locks on the tuple in
the index.

If the query does not specify the tuple key or the fragmentation attributes, it would be beneficial to
have a secondary index. The secondary index then maps attributes that are part of the query to the
tuple key and the fragmentation attributes that can be used for direct access of the tuple.

We will have two types of tuple identifiers. One is only unique within a system and is therefore
shorter. It is eight bytes. Two bytes are used as the table identifier of the tuple and the other forty-
eight bits contain a unique number normally assigned in a sequential manner.

The other tuple identifier is globally unique. It is sixteen bytes long. Of these sixteen bytes, thirty-
two bits are used for a table identity. Sixty-four bits contain a sequential number assigned by the
system that assigned the object. The other thirty-two bits consist of a country code and a network
code. These thirty-two bits are used to deduce who was responsible for creating the object. When
indexes are built for those tuple identifiers, it is likely that only the sequential number is needed in
the elements of the index.

5.3.2 Schema entities

When defining tables a number of attributes and their types are specified. Stored procedure repre-
sent programs that can access any tuple in any table of the database. They are executed in the trans-
action coordinator by use of a compiled program or by an interpreter. Stored procedures decrease
the communication between the application and the database. In the TPC-B benchmark the full
transaction can be a stored procedure. Then only one request and one response is needed between
the application and the database.

5.3.3 Fragmentation of Tables

To enable a scalable system, the tables should be fragmented. Various types of fragmentation can
be used, horisontal fragmentation and vertical fragmentation. Vertical fragmentation is sometimes
used in distributed databases that are built out of a number of autonomous databases. In the parallel
data server the fragmentation is used to enable parallel execution of database queries on a table.
Thereby it is more natural to use horisontal fragmentation. Vertical fragmentation could be used if
there are attributes that can become hot-spots. Vertical fragmentation can also be used for security
reasons. This can be handled by the application by defining two tables and defining the original
table as a view on these two tables. Even more than two tables could be used. Since we use tuple
locking, there is more concurrency using this vertical fragmentation.

With horisontal fragmentation there are several ways to derive the fragmentation. As mentioned
above two methods are used. The normal case in the parallel data server will be to use the tuple

key in the LH3 structure to derive the fragmentation. In this case the fragmentation is performed
automatically by the DBMS as declared by the user.

- 121 -

In some cases the fragmentation is based on fragmentation attributes which is not the tuple key.
For example the receiver of emails is the natural fragmentation attribute in an email table. In this
way all emails of a particular user can be clustered together and easily found when looking for all
of them. More advanced methods to fragment tuples could be used but are not discussed in this
thesis.

The fragmentation of a table can either be FULL, meaning that there will be at least one and usually
several fragments per node. The fragmentation can also be MEDIUM with a percentage. In this
case only a percentage of the nodes are used to store fragments of the table. Both those fragmen-

tation methods will then use LH3 structure to derive the fragmentation.

If distribution transparency is not desired, the fragmentation can be declared as SINGLE. This
means that the table is not fragmented at all. If SINGLE is specified, one could also specify the
desired nodes in which the table should be stored. The system will try to use these nodes if possible
although other nodes can be used if node failures and overload situations cause things to change.

A final possibility is to specify the number of fragments using the LH3 structure. In this case, too,
it should be possible to specify the desired nodes of the fragments.

5.4 Distributed Indexes

There are two types of distributed indexes needed, primary indexes and secondary indexes. The
primary index is used to access the tuples and the secondary indexes translate from a secondary

key to a tuple key. Primary indexes are always on the tuple key. In our case we assume that LH3

is always used. Sometimes only the local part of LH3 is used if fragmentation is not based on the
tuple key.

The normal procedure in databases is that secondary indexes and the tables are placed on the same
processor nodes. In a distributed database there are some problems in using this method if the sec-
ondary key does not contain the fragmentation attributes. It is then only possible to find the proc-
essor node where the index resides using a broadcast to all processor nodes. Therefore secondary
indexes are handled in a similar way to how tables are handled, where the fragmentation attributes
are always the secondary key attributes.

Secondary indexes are stored as a special type of table with its own fragmentation that is independ-
ent of the table. The only exception is secondary indexes on the fragmentation key. In this case the
database strives to collocate the fragments of the secondary index and the fragments of the table.
This means that when the entry in the secondary index has been found, the tuples are also found in
the same node.

5.4.1 Secondary Indexes

Three types of secondary indexes are possible:

• The first is a unique index which maps the attributes of the unique key to the tuple
key. It is a one-to-one mapping between the value of the unique key and the value
of the tuple key.

• The second type is an index that given the tuple key provides the fragmentation at-
tributes. This is a normal unique secondary index except that it maps from tuple key

- 122 -

to the sought attribute instead of the opposite.

• The third type is a non-unique index where the attributes of the index maps to a set
of tuple keys.

A secondary index is basically treated as a normal table, also regarding fragmentation. The index
fragments do not contain any stand-by replicas. It is more natural to recreate the index after failures
in this case. Even backup replicas of secondary indexes are not always needed. Most indexes are
local to a parallel data server, although it should be possible to have them global as well.

In some databases secondary indexes can be used to lock ranges of keys and also to provide scan-
ning of tables with consistency degree 3. In our case to be able to lock to broadly has a negative
impact on real-time delays in the database. Also none of the applications has any real need to lock
ranges of keys, and therefore locks are only possible to hold on specific key values. It is possible
to lock a non-existent tuple, but it is not possible to lock a range of key values. Thereby there must
be a specific lock record with the key value of each locked tuple. The locks are gained using the
tuple key always and are therefore located in the same processor node as the tuple itself.

There are three index operations that we are interested in, Fetch, Insert and Delete. Fetch Next is
also possible, but only Fetch Next of degree 2 is supported so there is no assurance that there is no
other value in the range inserted during the scan. Fetch reads the index to find the tuple key. Insert
is performed after retrieving a lock on the tuple in the primary replica and so is the delete operation.
When insert in the secondary index is performed the secondary index tuple is locked until the trans-
action is committed and also deleted secondary index tuples are locked until the transaction is com-
mitted. Thereby readers will find all possible key values including uncommitted such. When the
lock is released the tuple may have been deleted and this must be checked by the read operation.

When a transaction reads a secondary index tuple it does so with a short-term lock. After reading
it, the lock is released. This is done to avoid deadlocks if another transaction needs to update the
index and holds a lock on the tuple. When the reader uses the tuple key to find a tuple, the tuple
may have changed since reading the secondary index and the tuple might no longer fulfil the search
condition. Thereby the tuple must be checked after gaining a lock on the tuple, to ensure that the
secondary index attributes are still the same. If they are not the same, the transaction releases the
lock on the tuple and retries the action on the secondary index or fetches the next.

Updates of secondary indexes are further described in section 6.4.1.

5.4.1.1 Solving Deadlock Problems in Secondary Indexes

There is a problem with deadlocks as mentioned earlier when using secondary indexes. The reason
for this is that there are locks on both tuples and on the indexes. However readers of the index start
by acquiring a read lock on an entry in the secondary index and then try to acquire a lock on the
referred tuple. Those transactions that update the secondary index do so by first acquiring a lock
on the tuple and then acquiring write locks on the secondary index. Obviously a deadlock can occur
between readers and writers of the secondary index. These deadlocks can also become common
and should therefore be avoided rather than discovered by some time-out function.

The problem as mentioned was that the order of locking differs. The secondary index is only a copy
of the tuples in the table and it is therefore natural to decide that the owner of the lock on the tuple
should have higher priority than the owner of the lock on the secondary index. Therefore no change

- 123 -

is necessary in the behaviour of write transactions, the write transactions knows that if a lock is
held on the secondary index, it will be released shortly and will not participate in a deadlock with
the tuple lock.

The reader can now perform this back-out function in two ways. The first is to lock the data and
then try to lock the tuple. If the read lock on the tuple is acquired, then continue as normal, and if
a write lock is held by another transaction, then put the lock request on queue and at the same time
release the lock on the secondary index. When the lock is released and acquired by the reader it is
necessary to check that the tuple still fulfils the search condition; the tuple might have changed due
to the actions of the write transaction.

The second possibility is to acquire a short-term lock on the secondary index and after reading the
secondary index releasing the lock and trying to acquire a read lock on the tuple. The same argu-
ment as in the first method is also valid here; the tuple must be checked that the search condition
is still true when the lock on the tuple has been acquired. If the search condition is no longer true,
a new search of the secondary index is performed.

The second method is chosen since it releases the lock on the secondary index immediately. Thus
it is not necessary to release this lock at commit of the transaction and only tuple locks need to be
released as part of the commit.

5.4.2 Related Work

Distributed indexes have been used in many distributed databases (e.g. NonStopSQL and DB2
[Mohan92]). The method of avoiding deadlocks is new to the knowledge of the author of the thesis.
The method of accessing tuples only through a primary key is used in NonStopSQL where both
tables and indexes can be partitioned.

- 124 -

6 User Transaction Protocols

An important part of the recovery handling is the commit phase protocol. This must be efficient to
achieve high performance since it is a part of all write transactions. It must also be designed to
avoid blocking in almost all situations (it can be proved that totally non-blocking commit protocols
are not even possible to design [Skeen83]). At the same time it must also be designed to handle
real-time requirements.

There are two variants of the commit phase protocols that must be handled separately.

- The first variant is when the application transfer the commit decision to the data server. This
should be the normal situation since the data server is likely to be more reliable than the applica-
tion.

- The second variant is when the application coordinates the commit phase. The reason could be
that several systems are involved in the transaction. In this case the application sends a prepare
message to the data server and later a commit or abort message. Since a positive response to a pre-
pare message is a promise to commit if so decided, the data server must ensure that it can commit
even in the presence of node failures.

We will start by describing the commit phase as started by a commit message from the application
that transfers the commit decision to the data server. Then later we will show the adaptions of this
protocol to handle a prepare message from the application. We will also show how read queries are
handled.

The transaction protocol developed in this chapter is one important result presented in this thesis.
It is a combination of a normal two-phase commit and a linear commit protocol. It has benefits for
performance and delay of transactions. As will be shown it also simplifies the design of recovery
protocols where no disk writes are used. In chapter 8 we will also show how it can be very nicely
integrated with a second level of replication (network redundancy).

6.1 Normal Commit Phase handling

In Figure 6-1 the normal messages sent in the commit phase in one fragment is shown. This is the
basic component of the two-phase commit protocol used in this thesis. The major reason for send-
ing the commit messages in the opposite order is to ensure that the primary data node receives the
message last. Thereby the primary data node is prepared to send the log records to the backup sys-
tem since it knows that all the backup and stand-by nodes have heard the commit decision. The
primary data node can also release the locks already in the commit phase for the same reason.

The primary always locks the tuple first and basically the backup nodes would not need to lock any
tuples. However, to enable a fast take-over and to enable simple reads of the backup, the backup
nodes will also lock the data. The reason for starting the prepare messages in the primary data node
is that prepare and update are often put together. The update message will go to the primary data
node since this node receives the lock requests first. The complete message can basically go in any
order; the reason for sending them in a linear fashion is to decrease the number of messages.

The complete messages are normally piggy-backed on other messages, such as start, prepare and
commit. The only extra delay incurred because of this is that backup and stand-by nodes have to
wait longer for the lock release message. This means that simple read messages can be delayed
somewhat longer in some cases. The simple read transactions often read the latest committed ver-

- 125 -

sion and then no waiting is incurred due to waiting for lock release. To send the complete messages
as special messages would incur a substantial performance overhead. To speed up lock release
processing for the other simple read transactions is not enough reason to send special complete
messages.

If the backup nodes receive a new operation on an object which is locked, committed but not com-
pleted, then the backup can safely release the lock of the committed tuple since the primary obvi-
ously has released its lock. Thereby no extra waiting due to uncompleted transactions is necessary.

6.1.1 TPC-B transaction

TPC-B is an example of a transaction that involves several tables and thereby several fragments
[Gray91]. There are four fragments involved in each TPC-B transaction. These transactions are
handled by using the commit phase protocol in parallel in each of the fragments. This means that
we have a normal two-phase commit protocol between the fragments and that we have a linear
commit optimisation inside a fragment between the replicas as seen in Figure 6-2.

The use of linear commit within a fragment substantially decreases the number of messages. The
above described mechanism gives 2*f*(c+1) messages in the prepare and commit phase, f is
number of fragments and c is number of replicas per fragment. This gives 32 messages for a TPC-
B transaction with three replicas per fragment. Using a normal two-phase commit protocol would
give 4*f*c messages, 48 messages. Using a linear commit would give 2*f*c messages, 24 messag-
es.

If decreasing the number of messages is the only measure of interest, then obviously a linear com-
mit optimisation is preferable. The linear commit does, however, give a delay of 2*f*c (=24 here)
messages sent serially. The normal two-phase commit gives a delay of the maximum of four mes-

TC S1 B1 P

Commit Commit Commit
Committed

Complete

CompleteCompleted

Figure 6-1Commit Phase

Complete

Prepare
PreparePreparePrepared

Application
Request

Application
Response

P

B1

B2

P

B1

S1

P

B1

S1

TC

Commit

Com
m

itt
ed

P

B1

S1

Pr
ep

ar
e

Prepared

Figure 6-2Commit Phase Protocol in TPC-B transaction

Prepare Commit

- 126 -

sages with f*c (=12 here) such executing in parallel. Our variant leads to a delay of the maximum
of 2*(c+1) (=8 here) messages with f (=4 here) such executing in parallel. Clearly our variant
achieves a balanced effort between short delay and high throughput.

6.1.2 Simple Write Optimisations

In a simple write transaction there are optimisations that can be performed so that the distribution
cost of the transaction is diminished. When optimising these simple write transactions a normal
linear commit is basically achieved. A simple write transaction refers to transactions that only
write one tuple. It could also refer to a number of writes to the same fragment. From the applica-
tions we studied it was observed that this is a common transaction type and therefore important to
optimise. These optimisations are performed without changing the basic ideas in the commit phase
protocol. It is a matter of moving the transaction coordinator role.

As can be seen in Figure 6-1 there are 2*(c+1) messages in the prepare and commit phase. If we
enable the transaction coordinator to migrate, it is possible to decrease the number of messages.
The first step is that the communication between the last node in the prepare chain and the trans-
action coordinator can be removed. This means that the message to the last node says “prepare and
commit”. Thereby two messages can be removed. The message flow of this is shown in Figure 6-3.

This produces 2*c messages in the prepare and commit phase. After this optimisation there are no
more optimisations to perform in the two-phase commit protocol. However, locality of transaction
coordinator can be used to decrease the number of messages even more. If the transaction coordi-
nator is placed in the same node as the primary replica, then two more messages are removed from
the message chain. This leaves 2*(c-1) messages in the prepare and commit phase as seen in Figure
6-4.

In our system architecture we have opted for separation of application nodes and database nodes,
which is an architecture that relies on an efficient communication mechanism. This means that in
all message flows described above there is also one request message from the application and one
response message to the application. If this efficient communication mechanism is not available,
then the system would most likely need to collocate the application and the database and also it is

TC S1 B1 P

Commit Commit&Complete
Complete

Completed

Figure 6-3Optimised Commit Phase

Complete

Prepare
PreparePrepare&Commit

Application Request

Application Response

Completed

S1 B1 P/TC

Commit Commit&Complete

Completed

Figure 6-4Optimised Commit
Phase with locality of Primary
Replica and Transaction
Coordinator

Complete

PreparePrepare&Commit
Application

Application
Request

Response

- 127 -

likely that only two replicas would be used. In this scenario a very optimised commit phase is
achieved where two messages are all that is needed in the prepare and commit phase as seen in Fig-
ure 6-5.

This optimisation method could also be used with several fragments, but the savings would not be
substantial since the savings can only be applied for one fragment. The other fragments have the
same cost as before. Also when transactions use several fragments distributed on many processors,
there is more information in the transaction coordinator. Thus it is not so easy to move the trans-
action coordinator. In the simple write scenario each replica contains all information of all writes
and thereby the role of the transaction coordinator can easily be taken by each of the replica.

6.2 Handling Node Failures in Commit Phase

The first action of a node failure is to ensure that all nodes know that the node has failed. Then the
recovery processing is started so that the desired replication is achieved again as soon as possible.
These actions have been discussed previously and are discussed in section 7.1.4 on protocols to
copy fragments. The second action is how to handle the active transactions when a node fails. This
will be studied in this section.

We will study two cases of node failures in transactions. The first is where a participant in the trans-
action has failed and the second where the transaction coordinator has failed.

6.2.1 Failure of a Data Node

The major problem in this case is that the failure of data nodes breaks the linear sending of the pre-
pare, commit and complete phases. Thereby the message will never come back to the transaction
coordinator if no action is taken. It is assumed that the full responsibility of the failure situations
is on the transaction coordinator if the data nodes fail. The data nodes do not take any actions on
time-out or similarly. This simplifies failure processing since there is only one source of actions
on failures.

When a node failure is reported, the transaction coordinator must check all active transactions to
ensure that they are not stopped due to node failures. This is performed by scanning the active
transactions. If a transaction is waiting for other nodes, these nodes are checked to detect if any
failure has occurred with them. If failures have occurred, the action is to restart the phase that the
transaction has already started. The messages will still be sent in the same order with the failed
node excluded. Thereby there is no risk that messages arrive at the nodes in any other order than
the normal linear order. If a transaction receives a message that it has already received, it simply
ignores the message and passes it to the next node. To find those transactions that need to restart
phases, the transaction table is scanned. However multiple node failures could occur and also new
node failures could occur during the scan process. This is handled as shown in Figure 6-6 where
node failures are marked as to where the scan process was currently when the node failed.

B Application/P/TC

Commit&Complete
Completed

Figure 6-5Optimised Commit Phase with
locality of Primary Replica, Transaction
Coordinator and Application

Prepare&Commit

- 128 -

All failures of data nodes are handled in this fashion except failure of the primary data node in the
prepare phase. In this case it is already obvious that the transaction will be aborted and this phase
is started instead of a new prepare phase.

When the optimisations for simple writes are used, the same algorithm is used by the original trans-
action controller. This means that a longer chain of messages will occur. Failures should, however,
not be so common.

6.2.2 Failure of the Transaction Coordinator

When the transaction coordinator fails, the transaction will be stopped until a new transaction co-
ordinator has taken over this role and finalised the transaction. The new transaction coordinator
will be the system coordinator. When a node receives a report of a node failure, it starts two scans.
It scans the transaction table as described above. It also starts a scan of all transactions which the
node is participant in. During the scan of the transaction participant table, each transaction is
checked to see if the transaction coordinator has failed. If the transaction coordinator of this trans-
action has failed, the node sends a report on the transaction to the new transaction coordinator. This
report contains transaction status, fragment identities involved, which role this node had in each of
the fragments, and if the transaction is a simple write transaction. The scan process uses the same
marker method as described in Figure 7-5. When the scan process is completed, the node sends a
scan complete message to the new transaction coordinator. When the new transaction coordinator
has received all transaction information and has received scan complete from all nodes alive, then
it has all the necessary information to make decisions on the transactions.

The decision will be to abort a transaction if no node reports that it has heard a commit decision.
As described below there is one exception to this rule when there is a whole fragment is lost. In
this case the transactions are blocked if all nodes have reached the prepared state. If any node has
heard a commit decision, it decides to commit the transaction. The abort and commit message and
also the complete messages are sent in the usual linear fashion within a fragment. If the new trans-
action coordinator also fails before it has finished its work, another coordinator is automatically
chosen and this new coordinator performs exactly the same actions. In this way this method con-
tinues until all nodes have failed or until the system finds itself in an inconsistent state and decides
to perform a shutdown of the system.

Mark Node 8 Failed

Mark Node 3 Failed

Mark Node 5 Failed

First lap
Check
Node 8

First lap
Check
Node 8
and Node 3
First lap
Check Node 8
Node 3
and Node 5

Second lap
Check Node 3
and Node 5

Second lap
Check Node 5

SCAN COMPLETED

TRANSACTION TABLE
Figure 6-6Scan Transaction Table in Transaction Coordinator

- 129 -

Using optimisations of simple writes, a failure of the original transaction coordinator does also use
this functionality.

6.2.3 Special Error Situations

The actions taken by a processor node on behalf of a transaction can survive a node crash only if
the information is written to disk. Therefore if all nodes fail that contain copies of a fragment, with-
out writing committed information to disk, the fragment is inconsistent and the system must be shut
down and restarted from a global checkpoint by using local checkpoint information, local logs, and
fragment logs. The two-phase commit protocol, however, forces the log to disk when a processor
node fails and some time after this failure. Also when there is only one replica of a fragment, the
log must be forced to disk before committing the transaction. Thereby there could be situations
when all nodes that contain copies of a fragment fail and the system is still operational.

One approach in the situation where all participants are prepared is to simply abort the transaction
and leave it at that. This is called presumed abort [Mohan83]. There are problems with this ap-
proach in our database if locks on backup replicas are released in the commit phase. Let us assume
that a backup node has heard the commit decision, releases the locks and proceeds with new trans-
actions. The backup node can process simple read transactions. Now assume we get the situation
in Figure 6-7, where we can obviously get an inconsistency due to releasing the locks on the back-
up data nodes too early. By ensuring that the primary node releases locks before the backup nodes
and also ensuring that all nodes with replicas of the fragment have got the commit message before
the locks are released, the problems with inconsistencies due to this problem are avoided.

The solution is that the commit message does not mean that the backup and stand-by nodes release
the locks. They release the locks when the complete message arrives instead or when the primary
node requests a new transaction on locked data. If this happens, the primary node must have re-
leased its lock and thereby the locks can also be released in the backup and stand-by nodes.

There is still, however, one more problem with the method of aborting if all alive nodes are pre-
pared and none aborted or committed. This problem arises when all replicas of a fragment crashes
after releasing locks and the transaction is still aborted. In addition the system did not crash. An
example of events that lead to such a situation is shown in Figure 6-8. The problem is that all rep-
licas of a fragment are lost where the transaction was committed and even logged on disk. Then a

TC BD1 BD2 PD
TC = Transaction Coordinator
PD = Primary Data Node
BD = Backup Data Node
SD = Stand-by Data Node

tTC sends
Commit
to BD1

BD2
fails

BD1
Commits
and
Releases
the locks

TC
fails

BD1
executes
new
simple
read
transaction

BD1
fails

PD and
new
coordinator
aborts the
transaction

Figure 6-7Aborted results displayed causing inconsistencies

- 130 -

new transaction coordinator decides to abort the transaction. Thereby we conclude that if a whole
fragment is lost, the transaction should not be allowed to abort in this unsure situation. In this par-
ticular situation the transaction must be blocked.

There is still a problem with this scenario. How does the new transaction coordinator know that
there is a whole fragment missing from the transaction? To be able to get this information the new
transaction coordinator must know about all involved fragments, and this would cause an increase
in the message sizes sent during the transaction. This increase is not really justified for such a small
benefit. Therefore it is better to block all transactions that are unsure if there is a fragment that is
totally lost after a node crash. One special transaction, the simple write transactions, can however
be unblocked with a small effort. In these transactions the fragment id is sent anyway as part of the
messages and there is only one bit needed that specifies that this is a simple write transaction. Thus
those transactions are never blocked. If the whole fragment is lost, then obviously no node will
have heard about the transaction since all nodes are lost.

6.3 Handling Prepare-to-Commit Requests from Application

When the application sends a prepare request to the data server it creates a number of problems.
The first problem is that the failure of a transaction coordinator is not a reason to restart a system.
This would be necessary if the algorithm described above is used. The problem is that when all
participants have prepared, the transaction must not be aborted or committed until the application
sends its decision to the data server. Thus the above algorithm must be changed so that when all
fragments involved in the transaction are prepared and none committed, then the transaction must
wait until the application has requested abort or commit. This algorithm is used by the new trans-
action coordinator after failure of the transaction coordinator.

If all fragments are available after the failure of the transaction coordinator, the new transaction
coordinator can check that all involved fragments and their replicas have reported on transaction
state. If any fragment is unavailable, this fragment has saved a transaction state on disk before fail-
ing since the system is still operational. If any fragment replica has received commit, then the new
transaction coordinator will commit the transaction. If any fragment has not yet been prepared, the
transaction can safely be aborted and this can be reported to the application. If all fragments are
prepared, the new transaction coordinator waits for the decision of the application. When the abort
or commit arrives, it is executed on all fragments. This is performed even in the situation when a
fragment is not available. It is assumed that if the application decides to commit, then it must have

PD/1BD/1

BD/2

PD/2

TC

t
TC sends
Commit
to BD/1

TC
fails

BD/1
commits

PD/1
commits
and
releases
the locks

PD/1
participates
in new
transaction
that commits

BD/1
fails

PD/1
fails

BD/2
and PD/2
decides
to abort
the first
transactionFigure 6-8Cascading abort in multi-fragment transaction

- 131 -

heard prepare from the old transaction coordinator before its failure. Reporting of prepared-to-
commit to an application can only be performed if the new transaction coordinator knows that all
involved fragments have reported the status of the transaction.

Another problem is that failures of the primary replica in this state are not allowed to crash the sys-
tem. This means that all nodes must have complete information on which tuples that are locked by
this transaction, even the stand-by replica. This means that all read requests in these transactions
must be performed at all nodes (actually only the read lock needs to be set at backup and stand-by
replicas). Otherwise the read locks would be lost when the primary replica fails and other transac-
tions could cause serialisability errors. Also the stand-by node must set locks on all update opera-
tions performed.

There is yet another problem, this relates to the schema information. The locks on schema infor-
mation are only set in the transaction coordinator. In the previous algorithm these locks were al-
ways released before the commit message was sent to the other nodes. Thereby failure of the trans-
action coordinator did not cause any problems with concurrency on schema information. Actually
the problem only relates to hard schema changes since these need not be serialised with user trans-
actions. A soft schema change allows both versions to execute concurrently and presents therefore
no problem in this case.

A failure of the transaction coordinator causes all locks on the schema information to be lost for
this transaction. Now in this situation no new locks will be requested of the transaction. Also sche-
ma information is not updated and therefore an abort does not necessitate a rollback of schema in-
formation. Thereby the two-phase locking rule is actually adhered to even in the failure case.

What could remain a problem is if anyone is removing tables, indexes or attributes involved in the
query before the commit has been performed on this transaction. Removing views, constraints, ref-
erential constraints, triggers, stored procedures and so forth should not cause any problems since
they have been used already by the transaction when it has reached the prepare phase. Thereby re-
moval or additions of such schema information can be done and it is serialised with this transaction.
Also adding of new tables, indexes and attributes causes no problem since they could not have been
involved in the transaction.

The solution to this problem is that hard schema changes that need to remove tables and attributes
must wait until all prepared transactions in the failed transaction coordinator have committed or
aborted.

6.4 Referential Integrity and Secondary Indexes

There are various constraints that can be used. One type of constraint is that attribute values must
be within a specified domain. This constraint can be checked by the transaction coordinator at re-
ception of an update or insert message. Another constraint is the unique constraint, which can be
ensured by having a unique index on the attributes that should be unique; if the values of these at-
tributes are already in the index, the transaction must be aborted.

Foreign keys are used to implement referential constraints. If a tuple is inserted that contains a for-
eign key, it must be ensured that the referred tuple exists. This is accomplished by reading the re-
ferred tuple and gaining a read lock on the tuple to ensure that it does not disappear while executing
the transaction. If a tuple is deleted and there are references to the tuple, there might be some action

- 132 -

to be performed on the referencing tuples. The action is specified in the declaration of the table.
Some possible declarations are Cascade on Delete, Set NULL on Delete, Set Default value on De-
lete and No Action.

The deleting transaction should then gain exclusive locks on all tuples referring to the deleted tu-
ple. To do this there must be a secondary index on each foreign key; these indexes can then be used
to find all tuples that refer to the tuple to be deleted.

We use a strategy where the inserting transaction will try to acquire a lock on the referred tuple
before acquiring locks on the index of the foreign key. This means that a deleting transaction can
safely get references to all tuples that refer to the tuple. A deadlock could occur if a tuple updates
the foreign key to refer to a tuple that is deleted. This situation can only be solved by normal dead-
lock handling where one of the transactions is aborted. The delete transaction should first acquire
a write lock on the tuple to be deleted before searching the secondary indexes on the foreign keys.

Referential constraints can cause situations where a foreign key refers to more than one table.
These foreign keys normally use a tuple identifier as foreign key. To find this tuple there must be
a table identifier in the foreign key. Therefore tuple identifiers contains a table identifier.

There are a number of possible ways to handle indexes, constraints, and referential constraints to-
gether with the replication in our data server. One possibility would be to let the primary replica
perform all checks on attribute constraints, referential constraints, updates of indexes and so forth.
This would mean that the primary replica would become sub-coordinator of a set of operations
within the transaction. This is the solution that produces the minimum number of messages. It does,
however, increase the size of the messages since it is necessary to transfer the schema information.
Of course schema information is also available in the node of the primary replica. To access sche-
ma information in this node causes problems with concurrency control of schema information.
Also it would be necessary to handle failures of the primary replica with special protocols. This
would complicate the recovery protocols.

Another option would be to send the operations to the primary replica. When the primary replica
discovers a need for updating an index, performing constraint checks and so forth, then it sends
this information to the transaction coordinator. This increases the number of messages. It does,
however, not require special handling of failures of the primary replica. It does not solve the prob-
lems of concurrency control of schema information.

A third solution is to let the transaction coordinator control all activities of advanced database fa-
cilities. It does so by sending requests to the primary replica to get information on whether index
updates are needed, whether referential constraint checks are needed and so forth. In this manner
the transaction coordinator is in full control of all activities in the transaction and can start the ac-
tivities in parallel. Since only the transaction coordinator needs to check the schema information,
we do not have any difficulties with concurrency in this solution. The only drawback in this solu-
tion is that more messages might be sent than in the other solutions. Since our data server uses an
efficient communication scheme, we decide that this is not a serious problem. The centralised de-
sign of the advanced database facilities simplifies the design and we can use rather simple algo-
rithms to perform complex tasks.

We will show the chosen method with some examples.

- 133 -

6.4.1 Update of Secondary Index

When executing an update, insert or delete operation the schema information is checked to see if
the operation influences any secondary indexes. To be able to perform the index updates, the at-
tributes of the secondary index must be read. It is also necessary to set a write lock on the tuple at
the same time. This is necessary to avoid deadlock situations as described in a previous section.
The update of the tuple and the reading of the tuple is requested in the same message. After reading
the index attributes, the index updates (could be both insert and delete) can be performed in paral-
lel. In Figure 6-9 the flow of messages is shown until the first update messages. The messages fol-
lowing are not shown, they are similar to the TPC-B transaction shown above.

6.4.2 Referential Constraint

The example we show here is how to delete a tuple with a number of references to it. The attributes
that refer to the tuple being deleted should in this example be set to NULL.

The first step is to delete the tuple. This ensures that the tuple is locked and that no transaction will
be able to create new references to the tuple. The tuple is locked with a delete lock to indicate that
the operation will try to delete the tuple. A dummy read is used in the same message to create a
quick acknowledge of the lock operation. Then the indexes of the foreign keys are scanned to find
all tuples that referred to this tuple.

To ensure that no deadlocks are introduced, a transaction that is inserting a tuple that contains a
foreign key will start by trying to get a lock on the referred tuple before inserting anything into the
index of the foreign key. If a transaction updates the foreign key attribute of an existing tuple, the
transaction will also first try to lock the referred tuple. If it finds the tuple locked for deletion it
knows that a deadlock will occur by using schema information. Thereby it will abort its transaction
to ensure that no deadlock occurs.

This means that when a lock on the tuple has been acquired, there is no risk of running into dead-
locks when requesting all entries in the index of the foreign key. When the referring tuple keys
have been returned, the SET NULL operations and the deletion of all entries in the index of the
foreign key can be performed in parallel.

TC
Update(Commit)

Update+Read(P,I)

Insert(NewKey,TupKey,P)
Delete(OldKey,TupKey,P)

PD(Tuple) PD(NewKey) PD(OldKey)

Figure 6-9Example of an
Index Update

P = Prepare
I = Index Attributes

TC
Delete(Commit)

Delete+Read(P)

Scan()
Delete(P)

Update(Set NULL,P)

PD(FKindex) PD(Tuple) PD(RefKey)

Figure 6-10Example of a
Referential Constraint

P = Prepare

- 134 -

6.4.3 Related Work

Handling of referential integrity and secondary indexes is standard information found in most text-
books on databases. The new information in this thesis is how to integrate constraint handling in a
parallel database. This is often referred to as a complex problem. The solution in this thesis relies
on the fact that communication is cheap. This avoids the need of complex solutions to avoid com-
munication. [ÖZSU91] treats both centralised and distributed handling of constraints.

6.5 Read Queries

Before describing the recovery protocols we will describe the protocols to handle read queries.
Most read queries are simple read queries in our benchmarks with only one tuple read in the trans-
action. These transactions are handled with some extra optimisations. Also read-only transactions
can be somewhat simplified. Also shown is the use of secondary indexes in read queries. Read
transactions that are part of updating transactions read the primary replica. In some situations these
read queries also need to set locks in all other replicas.

6.5.1 Simple Read Transactions

Transactions that only involve a simple read operation using the tuple key are very simple. If the
operations only involve 2-safe data, then either the Primary System or any of the Backup Systems
can be accessed, otherwise the Primary System is accessed. In the chosen system either the primary
copy or the backup copy is accessed, otherwise the primary copy is accessed. Using 1-safe data in
the Backup System could only be done at the risk of reading inconsistent data since there are no
guarantees on the consistency of 1-safe data until a recovery procedure has propagated all updates
of transactions to the Backup System. Read queries are not logged but they use locking and there-
fore the only part of the two-phase commit protocol needed is the commit phase in which the locks
are released. Simple read queries performs this immediately after reading the tuple. This means
that the coordinator can transfer the commit responsibility to the node where the data is read.
Thereby this node can send the data directly to the requesting application as seen in Figure 6-11.
The worst thing that can happen is that the message is lost due to some failure. This would be dis-
covered by the application from a time-out. At time-out the message can then be resent.

If the simple read query goes through a distributed index, the query is a little bit more complex. In
this case the index must be a unique index, otherwise it would be a scan transaction.

In Figure 8-12 the normal case of reading a tuple through a secondary index is shown. In this case
the tuple is found at the node where it was supposed to be and the unique attributes of the tuple
were still correct when reading the tuple.

Application Coordinator
Primary Node/
Backup Node

READreq
READreq

READconf

Figure 6-11Messages in Simple Read Query

- 135 -

The possibility exists, however, that the tuple is deleted when coming to the primary node or the
unique attribute has changed. In this case the READreq is simply sent once more to the unique in-
dex and retried. If the unique index says not found, then a not found message is sent to the appli-
cation. All these messages transfer the control of the message to the receiver so that error cases
have to be handled by a time-out in the application node, followed by a resend.

6.5.2 Read-Only Transactions

This covers transactions that consist of several read requests either through a secondary index or
through the tuple key and also covers scan queries. The major difference between a set of read que-
ries compared to the simple read query is that the coordinator does not transfer the control. Hence
the coordinator is contacted from the Data Node to ensure that the coordinator can release the locks
at commit time. At commit time the locks are all released by using a linear commit optimisation
and without a prepare phase since no updates are involved. If the coordinator fails, the system co-
ordinator will take over as coordinator of this transaction as described above.

6.6 Related Work

Many reports have been written on various commit phase protocols. The most important protocol
is the two-phase commit protocol, variants of this protocol include linear commit protocol
[Gray79], non-blocking two-phase commit protocol [Gray93], presumed abort [Mohan83], pre-
sumed commit [Mohan83]. A number of these variants were described in section 4.10.

6.7 Conclusion

In this chapter a new version of the two-phase commit protocol has been developed. It uses a linear
commit protocol between the replicas of a fragment, and it uses a normal distributed two-phase
commit protocols between different fragments involved in a transaction. It also uses the presumed
abort protocol with certain restrictions on total failures of fragments and on releasing of locks in
backup and stand-by nodes. Finally a new transaction coordinator is automatically assigned when
the transaction coordinator fails as in [CHAMB92]. The change of direction used in a linear com-
mit protocol is used in our case to ensure that the primary replica receives the commit decision last.
Then the primary replica knows that the transaction is safely committed and can release the locks.
Later we will also show how this can be used to provide network redundancy as well.

The use of a linear commit protocol within a fragment not only provides better performance, but it
also simplifies many of the recovery protocols since the number of possible states to handle is re-
duced.

Application Coordinator
Primary Node/
Backup Node

READreq
READreq

READconf

Unique index

READreq

Figure 6-12Messages
 in Simple Read Query
with unique index,
normal case

- 136 -

This protocol tries to achieve a high reliability of the two-phase commit protocol, soft real-time
and high performance. All of these are conflicting requirements but the mixture of variants of the
two-phase commit protocols achieves a balanced solution to all these requirements in a system
where communication is cheap and where messages are executed by the run-time system with soft
real-time.

- 137 -

7 On-line Recovery and Reorganisation Protocols

In this section we will describe the protocols that handle recovery after node failures where there
still remains operational primary or backup replicas. Another important item is how to reorganise
the fragments when the database grows. To support these protocols a number of basic protocols
are needed.

7.1 Basic Protocols

The basic protocols need to find the failed nodes and to handle the transaction that changes the dis-
tribution information. All on-line recovery protocols use a copy fragment protocol to send the frag-
ments to the new replicas.

7.1.1 I-am-alive Protocol

The reason for having an I-am-alive protocol is to ascertain that nodes with errors are quickly
found and that the rest of the nodes reach a consensus on which nodes are up and running. The idea
is that no node can enter this trusted set of nodes without confirming to two other nodes in this
trusted set that it is up and running. To be kept in the trusted set, each node must within a certain
time interval report to its neighbours that it is alive.

If these two neighbour nodes agree that the node is not up, they can start a Node Failure transaction.
If two nodes agree that a new node is ready to enter the trusted set, they can start an Add Node
transaction. An Add Node and Drop Node transaction can also be started by the operator.

The reason for informing two nodes is to raise the level of security in making the right decision.
Erroneous decisions could otherwise be based on temporary faults on nodes, links or even software
faults in the error detection. There is of course still some possibility of error but it should be small-
er.

The idea of this protocol is to arrange the nodes in a doubly linked list. The idea is that each nodes
send I-am-alive to both its neighbours in the linked list. If an error occurs, this is then discovered
by the neighbours. This is shown in Figure 7-1.

When a node does not receive any I-am-alive message within a predefined number of time inter-
vals, the node sends a NodeFailReport to the coordinator node (the first node in the linked list). If
the failed node is the coordinator, it chooses the next node in the linked list as the new coordinator
and sends the NodeFailReport to this node instead. This message also acts as an indication to the
receiver that it has been appointed as the new coordinator. When the coordinator receives the No-
deFailReport from both neighbours of a failed node, it initiates the Node Fail Protocol.

Figure 7-1I-am-alive Protocol

1 k-1 k k+1 n

- 138 -

The node that discovers the failed node keeps this information until a new active decision has been
activated where the failed node has been dropped. In this way subsequent failures of coordinators
and so forth will not lead to incorrect active sets being activated. If a coordinator proposes a new
set of active nodes where the failed node is still active, the node will report this to the coordinator.
The coordinator must then either remove the failed node or the node reporting the failed node. If a
node reports failures that other nodes do not discover, then the node reporting the failure is dropped
from the set of active nodes by the coordinator.

The I-am-alive protocol should be executed at a higher priority level than user messages to ensure
a bounded delay time of discovering failed nodes.

7.1.2 State Transition Protocol

The state transition protocol is used to change the state of the set of active nodes, to change the set
of copies of a fragment. They all use the same type of protocol as shown in Figure 7-2.

The idea of this protocol is that when the Ready for new decision message is received at the nodes
in the system, then commit processing is not processed until the Activate new decision message is
received. This means that the state change is inserted at a serialisable time since all commits before
the Ready for new decision message have occurred before the state change and all commits after
this message have occurred after the state change. This means that all transactions should have ex-
ecuted as if the state at commit time was the state all the time. If nodes fail during the transaction
processing, then if none was a primary replica, the transaction can be committed without the failed
node and if new nodes are added to a fragment during transaction processing, these nodes must be
inserted into the transaction before the transaction can be committed.

The reason that failures of backup nodes do not cause any need for aborting the transaction is the
transaction protocol. Since the primary is always accessed first, the method uses primary copy
locking. Thereby no information is lost when the backup fails. Only simple read transactions could
be lost at the backup node. These simple read transactions are restarted at time-out if no reply has
arrived.

All state transition protocols should execute on a higher priority than user messages to ensure a
bounded delay of the state transition protocols.

A number of state transitions do not need to stop commit processing after the prepare message. An
example is when a fragment has been copied to its new replica. It is not necessary to prepare this
since the replica is already involved in all transactions. It is only necessary to inform all nodes so
that they agree on that this node is now up-to-date and can be used as primary in failure situations.

Node 1 Node 2.... Node n

Ready for new
decision All nodes receive and store the decision

Ack Ack
Ack

Activate new
decision All nodes start commit processing

 Broadcasts

Broadcasts

Configurator

Ack

Figure 7-2State
Transition Protocol

All nodes stop commit processing

- 139 -

7.1.3 Node Fail Protocol

The Node Fail Protocol executes as a state transition protocol, where the state it updates is the set
of nodes currently active. The protocol is initiated by the system coordinator after receiving infor-
mation from two nodes that a node has failed according to the I-am-alive protocol. The system co-
ordinator also takes over the role of transaction coordinator for those transactions where the failed
node was transaction coordinator. Each node that receives the fail message then replies with the
state of each transaction it was involved in where the failed node was transaction coordinator.

The node fail protocol should execute on a higher priority than user messages to ensure that the
node fail protocol has a bounded delay time. This means that some user messages that is sent by
the failed node may be in the message buffers when the node fail protocol is executed. The easiest
solution to this problem is that the run-time system removes all those messages when receiving
Ready for new decision and then ensuring that messages arriving from the failed node are not ac-
cepted until the node is restarted again. I-am-alive messages from the failed node should, however,
be accepted at all times to ensure that it can be decided when the failed node has recovered.

Since it is possible with network partitions we ensure that this can never happen by keeping within
certain rules of when a node fail protocol can be executed. If a majority of the nodes in the previous
active set of active nodes remains in the set of active nodes in the new decision, then the new de-
cision can be activated by the state transition protocol.

If half of the nodes or a majority of the nodes have failed according to the system coordinator, then
the node fail protocol cannot be executed. If this happens, all nodes in the set of nodes still active
are told to stop commit processing. The decision on what to do with the set of nodes must then be
taken by an operator. Until the operator inserts the proper command, the commit processing is sus-
pended. Another solution could be to shut down the system and then restart it again.

7.1.4 Copy Fragment Protocol

A new backup replica is created by the primary node after executing a state transition protocol
where the system is informed of the new copy. The basic idea of the copy fragment protocol is rath-
er simple. The sending node sends the fragment, tuple by tuple until the last is sent. When the last
tuple is sent, a new state transition protocol is executed to inform the system of that the new copy
now is up-to-date. The receiving node receives all write transactions. If the affected tuple has ar-
rived already, it applies the write transaction to the tuple. If the tuple has not arrived it ignores the
write but participates in all phases of the two-phase commit protocol. This is shown in Figure 7-3.
Insert operations are always processed in the new copy.

New Backup NodePrimary Node
Arrived Tuples

Not Arrived TuplesUpdateUpdate Prepare Prepare

PreparePrepare

Figure 7-3Handling of Write Transactions in New Backup Node

Ignore Update

- 140 -

The complexity of the protocol is shown in Figure 7-4. The basic problem is that transactions pro-
ceed to execute in parallel with the copy fragment protocol, thereby four algorithms are needed to
accomplish the protocol: one algorithm that handles the copy process in the primary node, one al-
gorithm that handles the transactions in the primary node, one algorithm that handles the receive
process, and finally one algorithm that handles the transactions in the new backup node. Since the
copy fragment protocol is highly integrated with the distributed data structures, its description will
be given in Chapters 11 and 12 where these distributed data structures are presented.

There are two steps in declaring the new replica up-to-date. The first step is reported when the cop-
ying process is finished and the new replica contains all tuples. Before the new replica can be de-
clared as recoverable, it must also perform a local checkpoint. This means that if the node fails after
declaring itself up-to-date but not yet recoverable, it is not useful in a total failure situation. The
reason is that it is only after the first local checkpoint that the replica is stably stored on disk.

7.1.5 Create Global Checkpoint Protocol

The idea of a global checkpoint is to create a checkpoint that is transaction consistent. All trans-
actions and the log records belonging to those transactions are marked with an identity of the global
checkpoint they belong to. This can be used in restart situations to recover from total failures. It is
also useful in starting stand-by nodes. A stand-by node is started when it has received all log
records belonging to a global checkpoint and all thereafter and is also participating in current trans-
actions. The global checkpoints are also used in restarting fragments that have failed. Global
checkpoints are not necessary in the copy fragment protocol since this protocol is integrated with
normal transaction processing.

A global checkpoint is generated by simply executing a state transition protocol where the coordi-
nator assigns the new global checkpoint identity. More complex protocols could be developed but
this simple protocol is seen as enough in this context. The bounded delay time achieved by execut-
ing at a higher priority should keep the delay time down to 0.5-1.0 ms which should be acceptable
for most applications. This short delay is dependent on using a database system executing on a real-
time run-time system.

When the prepare message is received, all commit processing in the transaction coordinator is
stopped and a global checkpoint record is inserted in all fragment logs. Also the global checkpoint
ID is updated with the new value. When the activate message arrives, commit processing can start
again and all subsequent commits use the new global checkpoint ID. All log records belonging to
this global checkpoint ID will be after the log record describing the global checkpoint.

Copy Node

Locks
+
Indexes
+
Tuples

Copy
Process

Transaction
Processes

Receiving Node

Locks
+
Indexes
+
Tuples

Receive
Process

Transaction
Processes

Figure 7-4Algorithms in Copy Fragment Protocol

- 141 -

Only commit processing in the transaction coordinator is stalled. Operations executed before
reaching the commit point in the transaction coordinator can continue and also operations that have
passed the commit point in the transaction coordinator.

Also schema information needs to be a part of this transaction consistent checkpoint. It will be
shown in Chapter 9 that it is needed to read two version numbers, one that describes the current
schema version and one that describes the last completed schema version.

7.2 Replica Handling Protocols

The replica handling protocols are needed to make new copies when a copy has failed. They are
also needed to change the state of replicas. Backup and primary can switch roles and backup rep-
licas can be promoted to primary replicas. After failure of all primary and backup replicas a stand-
by replica can be recovered and promoted to primary replica. The following protocols are per-
formed by the primary node and the nodes that will be promoted to primary node of the fragment.
The idea of these protocols is to ensure that fragments are again replicated as desired after a node
failure.

For each fragment of which the processor node is primary node, the following action is taken:
1) Decide which nodes should receive a backup replica
2) Execute a state transition protocol with the new decision
3) Execute the copy fragment protocol
4) Mark the new decisions as active (drop old decisions)

In parallel with this a check of stand-by replicas is performed by the same node:

1) Decide which nodes should receive a stand-by replica
2) Execute a create stand-by replica protocol

When the primary node has failed, the following actions are taken by the node to become primary
node:
1) Execute a state transition protocol that promotes a backup node to primary node and marks the
new decision as active (drop old decisions, even if other backup copies were starting, since the pri-
mary node failed that kept the information of the copy fragment protocol), the actions in this state
transition protocol are further described below.
2) Execute the actions described above as primary node.

To find what actions a specific node should perform after a node failure, the nodes must scan their
fragment distribution table. Since several failures can occur during this scan process, it is necessary
to put a marker when starting the scan process after a failure, so that the end of the scan process
can be found. When a failure occurs during a scan process, the scan continues from where it was
and a marker is put at this spot in the fragment distribution table.

7.2.1 Promote Backup Replica to Primary Replica

This transaction is executed when the primary replica fails. All transactions that have not been pre-
pared yet must be aborted since the primary replica failed. For those transactions where the commit
has been transferred to the data server, prepared but not committed transactions can also be abort-
ed. This is performed in the normal commit phase of the transaction when it will check whether

- 142 -

the primary node is still alive. Thereby the request to promote from backup replica to primary rep-
lica can be immediately acknowledged and the promotion to primary replica is completed as soon
as the Activate new decision message is received.

This simple logic is possible since the only possible difference between the states of the primary
and the backup replica is the state of active transactions and also the set of locks that are acquired
in the primary replica and the backup replica. If all active transactions are aborted, then all these
transient states are set to aborted and all locks are released and the primary and backup replica do
not differ at all.

If the global replication protocol is used, then all reads (excepts simple read transactions) set locks
on all nodes. No important information is lost when the primary replica fails. Thus it is not neces-
sary to abort transactions that have not yet committed.

7.2.2 Create Backup replica

There are no specific actions to take when creating a backup replica; it is sufficient to execute the
copy fragment protocol.

7.2.3 Create a Stand-by Replica

When nodes fail, the system starts to force the log to disk at commit. Also in systems with only one
replica of a fragment the log records are forced at commit in this fragment. To avoid having to force
the log to disk at commit, the system can create a new stand-by replica to raise the reliability level
again so that the log need not be forced to disk any more.

A stand-by replica is valid from a certain global checkpoint. To ensure that it is clearly defined
which log records are produced before the creation of the new stand-by and which were created
after, a new global checkpoint is started simultaneously with the create stand-by protocol. The new
stand-by replica is then immediately valid from this global checkpoint. The primary can then send
older log records so that the new stand-by replica can be used in restart situations. To do this it must
have all log records from the global system checkpoint.

Mark Node 3 Failed

Mark Node 7 Failed

Mark Node 2 Failed

First lap
Check
Node 3

First lap
Check
Node 3
and Node 7
First lap
Check Node 3
Node 7
and Node 2

Second lap
Check Node 7
and Node 2

Second lap
Check Node 2

SCAN COMPLETED

TRANSACTION TABLE
Figure 7-5Scan Fragment Distribution Table

- 143 -

If the new global checkpoint number is n+1, then all log records belonging to global checkpoint n
and earlier must be shipped before the new stand-by replica is up-to-date for use at total recovery.
When the primary replica discovers that all these log records have been sent, it informs all the
nodes that the new stand-by replica is now useful from the global system checkpoint.

7.2.4 Switch Primary Replica and Backup Replica

In this case both the primary node and the backup nodes are active. After receiving this decision,
no new operations to the fragment are started and no new phases of the two-phase commit protocol
are initiated. All active operations must execute until they are finished and likewise must the trans-
action phases do. When all operations on the fragment have halted, the primary replica and the
backup replica must be set in the same lock state. Lock information must be transferred so that the
new primary node contain the same locks as the old primary node. When this is finished, the new
state can be installed and the Ready for new decision can be acknowledged and as soon as the Ac-
tivate new decision is received the switch has been performed and all operations can continue. Sim-
ple read operations can still proceed during the switch process. These have the same behaviour in-
dependently of whether they are read at the primary or at a backup node.

7.3 Start Node Protocol

When a node is started or restarted after a failure, some dictionary and distribution information is
likely to be invalid. Before the node can participate in user transactions, it must therefore create
dictionary and distribution information which is valid. There are two cases when starting a node.
Either it is the first node started after failure of all nodes or other nodes have started already.

If several nodes start after a complete failure then one should be selected to start first. Then this
node is used to start the other nodes in parallel. This is slightly slower but simplifies the start node
protocol and such a recovery after complete failure should be very uncommon.

7.3.1 Create Dictionary Information

The dictionary contains a set of system-defined tables, these tables are seldom updated. The sim-
plest path to create the information is then to assign another node to copy its data to after locking
all dictionary information. When starting the first node the dictionary information is recovered dur-
ing the recovery process from disk files.

More complex procedures could be designed to allow concurrency of dictionary updates during the
start of a new node. These are not so difficult to design but seem an unnecessary complexity bur-
den. A simple idea to use would then be to the keep a log of all updates during the copy process.
After completion of copy process the log is also executed and then a lock on dictionary information
is set and any remaining log records are executed on the new node and after this the locks on dic-
tionary information are released.

If the node assigned to copy the information fails during the copy process, then a new node is as-
signed to copy the information from scratch. Also here it is possible to do better if a more complex
start node protocol is used.

7.3.2 Create Distribution Information

When starting the first node the distribution information is very simple, as there is one alive node
and no fragment is assigned to this node.

- 144 -

When new nodes are added to an already existing system the only change of distribution informa-
tion is that there is a new node added. In this case it is not possible to lock all distribution informa-
tion during the copy process. Doing so would mean that node failures were not allowed and this
cannot be certain. Also repairing after node failures is more important than starting new nodes us-
ing a simple protocol.

What we do is then a variant of the copy fragment protocol that was shown in section 7.1.4. We
start by performing a state transition protocol to inform all other nodes of a new node that is to be
started. After this transaction the new node will be involved in the I-am-alive protocol and will be
a part of all updates to the distribution information.

The next step is to start copying the information. First node information, then table information and
finally fragment information. To avoid complex problems this protocol is executed at the same
time as the create dictionary information. This means that no dictionary updates are possible and
thereby no tables are created, changed or dropped during the copy process. Thus we do not need
to consider updates of table information.

Updates of node information could of course occur at any time, but the size of node information is
such that we assume this copy as an atomic event. The node information is copied in one chunk. If
updates to this information occur before the chunk, the update is acknowledged and ignored at the
new node. If it occurs after copying the chunk the update is performed as usual. Fragment infor-
mation is shipped one fragment at a time. Split Fragment and Join Fragment transactions are not
allowed during the copy process. Thereby the fragments remain the same during the copy process
and only updates to fragment information is necessary to consider.

When updates to fragments are performed, the new node performs the update if the fragment has
arrived; otherwise it ignores the update and only acknowledges the update. It will receive the up-
date when the information about the fragment is shipped. When a prepare transition message ar-
rives the fragment record is locked so that it cannot be shipped. The lock is released when the ac-
tivate transition message arrives.

7.4 Join/Split Fragment

Join and split fragment are actions that can be handled by the copy fragment protocol in conjunc-
tion with algorithms local to a node. The split/join algorithms are dependent on the use of distrib-
uted linear hashing and a distributed B+tree. The splitting/joining of a fragment can be a process
that consumes much resources. If a fragment splits, the index must be split, the fragment file must
be split and the tuples must be shipped to another processor node. Disk fragments can contain many
GBytes of data and should therefore not be moved very often. Main memory fragments contain up
to a number of hundred MBytes of data and can be moved more often, but even they should be
moved with caution.

One reason to split a fragment is to divide the fragment into more processor nodes. Now a telecom
database only adds nodes as a management activity, and thereby splits occur as a result of adding
more nodes to the system. If nodes are removed from the system, joins could occur to decrease the
number of fragments in the system.

- 145 -

Another reason to split and join fragments is to perform load balancing. Most of the time load bal-
ancing can be handled by moving fragment replicas and by switching roles between primary and
backup replicas. Also the transaction coordinator role can be removed from loaded nodes. These
are however mostly short term solutions to the load problem. Joining and splitting a fragment can
be performed as a more long term solution to a load balancing problem.

The conclusion is thus that join/split fragmentation is an activity that can be performed when the
system is not highly loaded. The join/split activity can almost always be postponed until a time
when the system is moderately loaded or even during low load. The join/split fragmentation must
be performed on-line since telecom databases must always be on-line.

7.4.1 Split Algorithm

The split algorithm is a rather long process, it consists of a number of steps, most of them involving
the use of the previously described on-line recovery protocols. A number of algorithms local to
nodes are also used.

The idea used here is that when a fragment is created, it is always prepared for a split operation.
Thereby a split operation can reuse work done by on-line recovery. Thereby if a fragment replica
has been created since the last split, it is prepared for the split operation. If there are fragment rep-
licas that have not been prepared for the split, then these replicas must be moved before the split
can take place.

The split algorithm consists of the following steps:

1) If the primary replica is not prepared, a backup replica is created. When finished, the roles of a
backup replica and the primary replica are switched. After this switch the old primary replica can
be dropped. If there are backup nodes not yet prepared, then perform the same algorithm here, i.e.
create a new backup replica and when finished drop the old backup replica. Stand-by replicas do
not need to be split before the actual split is performed.

2) The software should be prepared to handle requests concurrently that use the old fragmentation
and new requests that use the new fragmentation. When all replicas have been prepared for the
split, then the distribution information in all nodes is updated to reflect the split. Until local check-
points have been produced for the split fragments, the distribution information should keep infor-
mation that the split was performed previously and is not stably saved on disk yet.

7.4.2 Join Algorithm

The join algorithm is similar to the split algorithm. One of the merging fragments is assigned to be
the moving fragment. This fragment is moved so that it is collocated with the other fragment in
each replica. The fragments are locally merged already during the copy process. Finally the join
decision is broadcasted to all other nodes using a state transition protocol. It consists of the follow-
ing steps:

1) Create a new backup replica of the moving fragment. This replica is collocated with the primary
replica of the remaining fragment.

2) Switch so that the new backup replica of the moving fragment becomes primary replica of the
moving fragment.

3) Delete the old primary replica of the moving fragment.

- 146 -

4) Create a new backup replica of the moving fragment. It is collocated with a backup replica of
the remaining fragment.

5) Delete an old backup replica of the moving fragment. If there are more backup replicas then per-
form step 4) and 5) again until all backup replicas have been moved.

6) Create new stand-by replicas of all stand-by replicas in the moving fragment. These are collo-
cated with the stand-by replicas of the remaining fragment.

7) The last step is to inform all nodes in the system of the join of these fragments. The software
must be prepared to handle requests both from before the join and after the join concurrently.

7.4.3 Split/Join Coordinator

Since the split/join process is a long task, obviously there are many possible error situations during
the process. The system coordinator must handle the starting and ending of each of the steps de-
scribed above. The state of the split/join process is reported to all nodes as part of the state transi-
tion protocols executed during the process. The system coordinator also handles the load situation
and is therefore capable of assigning the proper node to receive the moving fragment even in situ-
ations where nodes fail.

7.4.4 Node Failures during Split/Join Process

If an error occurs during the split/join process, the process stops. It is not restarted until all the in-
volved fragments have fully recovered from the failures that occurred.

This means that when executing some of the steps above, the steps could have been performed al-
ready. If so, they are simply acknowledged immediately as finished and the next step can be start-
ed. Thereby the activities during the disrupted split/join process can be reused as much as possible.

7.5 Related Work

The I-am-alive protocol is an old concept and is realised in [ClustRa95] and also in many other
products. It is sometimes called a heartbeat function. There is even an operating system interface
to I-am-alive protocols when using Digital workstations using Memory Channel. The I-am-alive
protocol in this thesis has added an extra ring in the I-am-alive protocol. This is to make sure that
a failing node does not start deleting its neighbour from the alive set.

In [Skeen85] a state transition protocol is used to update a copy status table which contained infor-
mation on the distribution of copies and the status of the copies. It also contains a description of a
node fail protocol and some protocols describing how to handle node failures. [CHAMB92] de-
scribes state transition protocols, scanning of fragment distribution tables, and handling of node
failures. In an appendix to [CHAMB92] a proof is also given that the method of dynamically dis-
tributing data produces a correct behaviour. The method in [CHAMB92] performs a system restart
when all replicas of a fragment fail and does only support access through a primary key. This thesis
contains new information in Chapter 11 and 12 on how to perform the copy fragment protocol in
conjunction with a derivative of linear hashing and a compressed B+tree.

[CHAMB92] uses an on-line recovery of fragments where the fragment is scanned and the trans-
actions are updating all fragments. It does, however, lock the full fragment and then transfers it.
Our approach is to transfer one tuple at a time while using the same general idea. The general idea

- 147 -

to scan the process while user transactions update both the new and the old fragment is used in
many of our algorithms. It can be applied for schema changes and also to perform a scan of table
and receive a result which is consistent without locking the entire table.

The concept of splitting and joining fragments has been discussed in [Hvasshovd96]. No details
are given on how the split and join are performed. Also this split and join process is used has to
handle node failures rather than handling growing and shrinking database systems. Other work
considered how to perform on-line split and merge of fragments where the fragmentation algo-
rithm is more static [Tandem96][Sybase96]. No details on the Sybase method were given. The split
is performed without actually moving the data. This is possible if the data is clustered on the frag-
mentation attribute. In our case this is not possible since the fragmentation is performed by a hash-
ing algorithm. It is possible to prepare for one or two splits but eventually a split where data is
moved is necessary. The Tandem approach used the log, the new fragment was created by a scan
process and a number of scans of the log. Then an outage was required during the actual change of
fragmentation. Our approach avoids this by handling requests before the split and requests after the
split concurrently. We have a soft split fragment process. Thereby the outage in our approach is
almost neglible. There is also much work on splitting fragments using LH*-variants. One such re-
port is [KARL96]. These reports do, however, not consider transactions. Another report [Litwin96]
considers a replication scheme but does not consider transactions and the replication is also static
and cannot change in case of failures.

Not many research reports, if any, discuss protocols to create schema and distribution information
in starting nodes. They are a necessary part of the design of a parallel database but are normally
not reported in research articles.

- 148 -

8 Protocols to Implement Global Replication

This section describes the second level of replication protocols and how they can be used together
with the local replication protocols to ensure a higher level of reliability. The idea is that replicas
of the telecom database should exist on other telecom databases. The telecom database is then rep-
licated as a whole. It is not possible to have different replication on different fragments on this lev-
el. The telecom database must be replicated as a whole. The replicas at the backup system them-
selves may, however, and even should be fragmented. This chapter also makes a detailed account
of failure situations and how they are handled.

8.1 Protocol between Telecom Databases

The transaction is first executed at the primary system and then later executed on the backup sys-
tem, so the backup system must contain all data that is within the transaction. The basis of this pro-
tocol is the protocol developed in [KING91] that has been extended with more details on how to
interface the global replication protocol with the local replication protocols used in this thesis.

The fragmentation at the backup system can be used so that fragments of the global replica can
actually be placed on different telecom databases. Also the primary systems can be viewed as a
part of a globally distributed database. Another view of the primary system and the backup system
is shown in Figure 8-1. The kick-off nodes send the log records of a certain fragment to the backup
system and these log records are received by a kick-off node in the backup system. Using the ter-
minology in [KING91] the kick-off nodes are the host nodes. In [KING91] there is also a set of
store nodes, and these correspond to the data nodes in Figure 8-1. They contain the actual data of
each fragment.

The basic idea in [KING91] is that each transaction uses a serialisability protocol (e.g. two-phase
locking) to access the data in the primary system. Each transaction is executed until completed in
the primary system before contacting the backup system. When a commit decision has been
reached, the primary system assigns a ticket to the transaction in each of the global fragments. Then
the messages are propagated to the backup system where the tickets are used to retrieve locks in
the same serialisability order. The data resources in the primary system are held either until the

Data
Node

K-O
F2

K-O
F2

PS1

BS1

K-O
F1

K-O
Fm

K-O
F1

K-O
Fm

BSn

K-O
F3

K-O
F3

PSx

BS2

Figure 8-1Global Replication Architecture

K-O = Kick-off Node

Data
Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

Data
NodeData

Nodes

- 149 -

ticket has been assigned or until the backup system has completed its transaction and acknowl-
edged the transaction. The first case becomes 1-safe and the second case 2-safe. These protocols
can be chosen per transaction.

The idea is that the application describes which attributes of a table that need to be updated in a 2-
safe manner. If any such attribute is updated in the transaction, the transaction should be 2-safe.

All operations in the primary system are assigned a ticket number and a log record is generated
that is later sent to the backup system. Even read operations belonging to transactions that perform
updates must be part of these log records, the reason for this is shown in [KING91] and a brief ex-
planation is also given in Section 8.2.1.1. Pure read transactions, however, do not need to be sent
to the backup system since they do not change the state of the database.

The transaction in the backup system must be handled by a two-phase commit protocol since it is
a distributed transaction. This is necessary to synchronise the updates on different fragments in the
backup system. As shown in Figure 8-1 several backup systems can be involved in the transaction.

The fragmentation at global replication level and local replication level may be different. If they
are different, the kick-off nodes in the primary system must take care of assigning the tickets used
by each transaction. The kick-off nodes in the backup system must take care of the locking protocol
in the backup system. In our model the fragmentation at the primary system and backup system
will be the same. The fragmentation is decided by the primary system. This means that fragment
splits and fragment joins must also be handled in the network interface.

If global replication protocols are ever standardised, it is likely that local fragmentation at the pri-
mary system and the backup system differ. The protocols that we develop in this thesis, however,
only specify the fragmentation algorithm in the global replication protocol. Other systems could
use these protocols and implement another fragmentation algorithm locally. We will, however, de-
scribe how it is implemented when they are the same since this implementation becomes more ef-
ficient.

8.2 Adaption of Transaction Protocols for Global Replication

In our model as shown in the previous section, the data nodes are a set of nodes that store primary,
backup and stand-by replicas of the fragment. In Figure 8-5 it is shown how the global replication
architecture and local replication architecture interact. The idea is that the local replicas are ordered
as in the local replication protocol. The primary replica acts as the kick-off node in the primary
system. The assignment of tickets is also performed by the primary replica. This is necessary since
all nodes must have information on the ticket number if the primary replica fails. The kick-off node
in the backup system is normally the primary node, but in some rare cases it could be another rep-
lica type. This is possible since the backup system is not used for reads thereby if a fragment only
has a stand-by replica, and the fragment can continue to participate in transactions of the primary
system. The backup system should however strive to have a primary replica of each fragment so
that take-over processing is fast.

As mentioned above the message to the backup system is sent after the commit decision. This
means that the backup system must commit. It is not allowed to vote no and abort the transaction.
This is certainly true in the 1-safe case and is used also in the 2-safe case to enable flexible use of

- 150 -

1-safe and 2-safe. To make sure that the commit is safely stored, the commit decision is first sent
to the stand-by and backup replicas. The primary replica is the last node to receive the commit mes-
sage. This means that the locks on the tuples are held until the message is sent to the backup system.

8.2.1 Commit Phase in Primary System

The commit phase is an extension of the commit phase described in section 6.1. The idea is very
simple. When the commit decision reaches the primary replica, then it gathers the log records for
this fragment in the transaction and sends them off to the backup system. If 1-safe is used, the com-
mit phase continues as soon as the commit message have reached the primary replica as seen in
Figure 8-3. The commit phase is concluded without waiting for the backup system. The completion
phase does, however, not finish until the backup system has acknowledged the execution of the
transaction.

If 2-safe processing of the transaction is used, the commit phase also waits for the backup system
as seen in Figure 8-4. In Figure 8-5 the messages in the backup system are also shown.

P

B1

B2

P

S1

P

B1

B2

S1

S1

P

B1

S1

S2

P
Kick-off
Nodes

Data
Nodes

B2

B1

P

P

P

S1

P

B1

P

S1

P
Kick-off
Nodes

Data
Nodes

Primary
System

Backup
System

Figure 8-2Global Replication Architecture in Conjunction with the
Local Replication Architecture

Replicas in Fragment P = Primary Replica
B = Backup Replica
S = Stand-by Replica

TC S1 B1 P

Commit Commit Commit
Committed

Complete

CompleteCompleted

Figure 8-31-safe Commit Phase in Primary System

Complete

Prepare
PreparePreparePrepared

BS

BS Log Message

BS Acknowledge

Application
Request

Application
Response

TC = Transaction Coordinator BS = Backup System

- 151 -

This is the simple adaption needed of the two-phase commit protocol described in the previous sec-
tion. All the optimisations are still usable and with multiple fragments involved in the transaction,
the protocol described here is used in all fragments. Each fragment has its own log channel to the
backup system.

8.2.1.1 Considerations for Lock Handling

As mentioned in [KING91] the read operations of write transactions must also be logged. The rea-
son is that the protocol aims to restart a consistent backup system even if there are lost transactions.
If a particular transaction is lost that performed some updates based on reading another tuple, then
no transaction that updated the read tuple must survive the crash. If such a transaction did survive
the crash, the consistency of the backup system is not ensured when restarted.

Only read operations of write transactions performed as 1-safe need be logged. 2-safe transactions
are certain to survive the crash at the backup system if they were completed in the primary system.

This means that read operations need to be executed in all replicas. The actual reading of the object
is only needed in the primary replica, but all the replicas must keep track of which objects have
been read. If the primary replica fails and the log message has not yet been sent to the backup sys-
tem, then the backup and stand-by replica must be able to send the log message of the transaction
to the backup system. This is needed since the primary system decides to commit and then sends
the message to the backup system. Failure of the primary replica in this situation does not mean
that the transaction can abort, therefore the backup and stand-by must be able to take over all
processing and using global replication as in [KING91], which involves keeping track of read op-
erations.

The backup and stand-by replica must also keep locks on all tuples to ensure that serialisability is
not endangered. If the primary replica fails, the locks on tuples must still be kept. Therefore the
backup and stand-by replica also keep all locks on all tuples.

8.2.1.2 Ticket Assignment

Since the primary replica is the last node to receive the commit decision, the ticket assignment must
be performed in the prepare phase. Otherwise a separate ticket sending phase would be needed be-
fore the backup system can be contacted. This means that the primary replica assigns a ticket
number already in the prepare phase, before committing the transaction. This could introduce bub-
bles in the ticket numbering if transactions were aborted and no report of this reaches the backup
system. Therefore the aborted ticket numbers are reported to the backup system.

TC S1 B1 P

Commit Commit Commit

Committed
Complete

CompleteCompleted
Figure 8-42-safe Commit Phase in Primary System

Complete

Prepare
PreparePreparePrepared

BS

BS Log Message
BS Acknowledge

Application
Request

Application
Response

- 152 -

8.2.2 Transaction Handling in Backup System

The transaction handling in the backup system is a normal two-phase commit protocol as described
in [KING91]. The two-phase commit phase protocol as described in the previous section is adjust-
ed to handle also transactions in the backup system. When receiving the message from the primary
system, the backup system understands this as a number of operations and a prepare message. It
starts a combined update and prepare phase going from the primary to the last replica in the chain.
Finally the message is sent to the transaction coordinator. The transaction coordinator then sends
the commit message to the last replica in the chain and the commit decision is then propagated to
the primary replica and then the acknowledgement is sent from the backup system to the primary
system.

8.2.2.1 Assigning Transaction Coordinator

An issue that was left open in [KING91] was how to assign the transaction coordinator in the back-
up system. Our solution is to use the primary replica in the chain for simple writes to enable the
optimisations as described in the previous section.

With transactions that involve the use of several fragments another algorithm is used. The primary
system decides which node should be transaction coordinator. It does however only assign it log-
ically. It assigns a logical node id (e.g. 2 bytes) at random or in a round-robin fashion. This number
is translated into a real node id in the backup system.

The translation table is handled as a fully replicated data structure within the backup system. The
logical node id and the global checkpoint identity is used to find the transaction coordinator. There-
by the backup system can change the mapping to perform local load regulation without involving
the primary system. By involving the global checkpoint identity the change can be performed in
the system without the need of a complex algorithm. All fragments know the global checkpoint
identity of the transaction and will thereby all choose the same transaction coordinator. If this co-
ordinator fails, it is handled as if the transaction coordinator had failed as described previously.

8.2.3 Conclusions

In Figure 8-5 the message sent in the commit phase in the primary system and in the backup system
is shown with a transaction where three fragments are involved.

These ideas can also be used to build global databases. It is however an important restriction that
the backup system must contain all data contained in the primary system. The primary system
might also be distributed as in Figure 8-1. The delay aspect is also important to consider if building
global databases. It is likely that it is necessary to place the primary as close as possible to those
who are changing the data. In some applications it might even be very difficult to use this scheme.

Telecommunication applications are very often connected to some part of the world. Subscriber
data should be placed in the same part of the world in which the subscriber lives. Genealogical data
for Sweden is mostly used by swedish genealogists. Thereby this architecture can most often be
used to create global databases for a newspaper, genealogy, subscriber data and so forth.

- 153 -

8.3 Handling Processor Node Failures Using Global Replication

Global replication introduces a new complexity in handling the connection between the primary
system and the backup system. This connection is set-up between the primary replicas in the pri-
mary and backup system. Failures of these primary replicas must be handled to assure correct be-
haviour.

The backup system handles transaction in a different way compared to the primary system. The
primary system has the ability to abort transactions when failures occur. This is not allowed in the
backup system. Failure to commit a transaction in the backup system leads to failure of the backup
system, not only the transaction. Therefore transactions must be ensured commitment in the back-
up system. This means that handling node failures in the commit phase is a little bit different in the
backup system compared to the primary system.

8.3.1 Handling Node Failures in Backup System

If all nodes containing a replica of a fragment fails in the backup system, the backup system fails
to participate in transactions. Therefore the backup system must be declared failed in such a case.
This means that some of the problems with node failures (see Section 6.2.3) in the backup system
disappear. In the primary system it was necessary to delay releasing locks in backup and stand-by
nodes until the primary node committed. The reason was the possibility of reading backup data
with simple reads and the possibility of total failure of a fragment. Neither of those restrictions ap-
ply in the backup system. Therefore locks can be released already in the commit phase in the back-
up and stand-by nodes. In the actual design this feature is probably not used. The same solution as
in the primary system is most likely used since the higher concurrency cannot be used anyway.

P

B1

B2

P

B1

S1

S1

P

B1

S1

B2

B1

P P

S1

Primary
System

Backup
System

Figure 8-5Commit Phase in Globally Replicated Architecture
TC

TC

Commit

Prepared
Commit

Com
m

itt
ed

Prepare Commit

- 154 -

To lower the possibility of failure of backup systems, a new stand-by node is started if a replica of
a fragment fails. The creation of stand-by copies is somewhat different in the backup system. This
is due to the global checkpoints being taken in the primary system. The stand-by node is then first
started from the lowest global checkpoint which has not yet been received in the backup system.

Complete failures of all fragment replicas are not handled in the backup system. The backup sys-
tem must be restarted anyway in the case of a total fragment failure. Therefore it is not necessary
to flush the log to disk in error situations.

8.3.2 Handling Failure of Transaction Coordinator in Backup System

The handling of a transaction coordinator that failed is similar to the handling in the primary sys-
tem. The coordinator still takes over and performs the same actions. The difference is how to han-
dle the committing and aborting of transactions. In the primary system it is allowed to commit
transactions. This is not allowed in the backup system. Aborting a transaction in the backup system
can only be performed when the primary system has failed. If the backup system aborts a transac-
tion known to be committed in the primary system, then the backup system is declared failed.
Thereby in uncertain situations, the backup system must wait until the required messages arrive
from the primary system.

8.3.3 Failure of Primary Replica in Primary System

When the primary replica fails, the new primary replica must take over the communication with
the primary node in the backup system. To be started, the new primary replica must also find a tick-
et number that is certain to be bigger than what can have been sent to the backup system and which
is not already known to have been assigned by the failed primary replica. The new primary replica
knows of some transactions that have been sent to the backup system although not yet completed.
These are taken care of by the normal handling of failures in the primary system. The new primary
replica also knows of transactions that have not yet been prepared in the new replica. These will
definitely be aborted due to failure of primary replica. Therefore it does not matter whether the
failed primary replica actually had assigned already a ticket number to this transaction. The trans-
action can be safely discarded from the list of possible owners of ticket numbers.

The problematic messages are those that have passed the new primary replica to be committed
(these passed when the new primary replica still was a backup replica) and where there has been
no message stating that the backup system has received the message. These transactions are in an
unknown state. There are several possible options on what could have happened.

a) The message might not have been sent at all.

b) The message can have been sent, but not acknowledged.

c) The message can have been sent and even been acknowledged.

To find out about these unknown transactions, the new primary replica asks the primary node in
the backup system about its state on the ticket numbers. It asks particularly for all ticket numbers
higher or equal to the minimum of the unknown ticket numbers.

- 155 -

During the time the primary system waits for the reply, the primary system has started to process
requests again. The new primary replica then sends the following information to the primary node
in the backup system (in priority order):

1) New committed transactions

2) Aborted ticket numbers, from highest to lowest ticket number

3) Old committed transactions from highest to lowest ticket number

The idea is to use the time waiting for the backup system to respond and still to avoid as much as
possible resending messages already received by the backup system. If 2) and 3) are not performed,
then there is no possibility for duplicate messages in the backup system which could be beneficial
as a simplification of the design.

When the response is received from the backup system, the states of all ticket numbers are known.
The new primary replica sends the information about the tickets in the following priority order:

1) Aborted transactions from highest to lowest ticket number (that was
unknown in the backup system)

2) Old committed transactions from lowest to highest ticket number

3) New committed transactions as they arrive

8.3.4 Failure of Primary Replica in Backup System

When a new primary node in the backup system has been assigned, it sends a take-over message
to the primary system. This message actually contains the same information as the response by the
primary node in the backup system after failure of primary replica in primary system. The handling
of the take-over message is the same as handling of the response given previously.

8.3.5 Failure of Primary Replica in Primary and Backup System

This case is handled in the same way as the handling of failures of the primary replica in the backup
system.

8.4 Global Recovery Protocols

The recovery protocols needed are protocols to restart a system as the backup system when a pri-
mary system is alive. A protocol is also needed to promote the backup system to the primary sys-
tem when the primary system has failed and also a protocol to switch the roles of the primary sys-
tem and the backup system. To ensure that there is one view on which systems are alive and which
are not, there should also be an I-am-alive protocol even at network level.

8.4.1 Restart Backup System from Primary System

The idea of this protocol is rather simple. The idea is to scan all the fragments and send one tuple
at a time to the backup system. Each fragment is, however, performed independently of others and
thereby there is a parallel activity in all fragments. The restart is finished when all fragments at the
backup system are declared as up-to-date. A fragment is declared as up-to-date when all scan trans-
actions of the entire fragment have been acknowledged (see [KING91]). The scan process is per-

- 156 -

formed by using the same algorithm as the copy fragment protocol. The major difference here is
that there is no receiver in the system. The read lock can thereby be released as soon as the message
has been sent to the backup system. The details of the behaviour of this protocol are shown in the

section describing LH3. All tuples read and sent must be tagged with a ticket also to ensure that
concurrent transactions can be performed.

If the sending system fails before the restart is completed, then the restart was unsuccessful and
there are no procedures to continue. If no other system contains a backup copy, the database has
crashed and must be restarted from an archive copy.

8.4.2 Promote Backup System to Primary System

The process used for the backup system to take over after failure of primary system follows
[KING91]. Since locks of write transactions are serialisable to the order in the primary system,
those transactions that cannot be committed must abort. When all active transactions have commit-
ted or aborted, the backup system is ready to take over as primary system.

8.4.3 Switch Primary System and Backup System

A controlled switch between primary and backup system can occur when it is necessary to bring
down the primary system for some reason. It could be that the primary system is to be replaced, a
major software replacement is to be performed or something else. The switching between primary
and backup replicas within a telecom database is performed by stopping all operations and then
proceeding with the transactions with the new constellation. This is possible since it is not neces-
sary to move the transaction coordinator. When switching systems the coordinator of the transac-
tions must be moved to the new system. This seems plausible. It doe, however, seem overkill to
create a very complex take-over protocol to perform this type of switch-over 1 second faster than
otherwise. This should be a very uncommon action and is therefore allowed to be more costly when
it is executed.

The conclusion is, therefore, that a switch is performed by taking the following steps:

1) Prepare Backup System such that all fragments have a primary replica
2) Start a Global State Transition Protocol that switches the roles of the primary and backup sys-
tems, when the prepare message arrives no new transactions are accepted
3) Wait until all active transactions have been executed on both primary and backup system
4) Set Backup System as Primary System and Primary System as Backup System
5) Start accepting new transactions at the new Primary System
6) Activate the new global state such that transactions can be started again

This simplifies the design of the switch since there are no active transactions when the switch is
performed. Thereby it is easy to create a distinct time when the switch was performed. It is not nec-
essary to send any states of the primary system to the backup system. It is likely that this type of
switch-over will take a few seconds, which should be acceptable if it only happens rarely.

This protocol can be used to replace a system also when the system is not using global replication.
Such a replacement starts by starting the new system as backup system first, then the switch is per-
formed and finally the old primary system is taken out of action. To avoid a lengthy switch due to

- 157 -

long transactions it should be ensured that no long transactions are occurring during the switch. If
by mistake there are transactions that are running a long time, these transactions should be aborted
during the switch, after some time-out.

8.5 Related Work

The major sources on providing network redundancy or global replication to secure against crashes
due to earthquakes, for example, is [KING91][POLY94]. The ideas in [KING91] were very appro-
priate in this architecture and has therefore been used without any major rework. The next chapter
of this thesis will describe how to handle simple and complex schema changes also in relation to a
system using global replication.

The main new result in this chapter is the integration of network redundancy into our new two-
phase commit protocol where no writes to disk are performed. Also how to handle node failures
that are involved in the communication between the primary system and the backup system have
been discussed.

- 158 -

9 Crash Recovery Protocols

If a fragment replica fails and there is still other active fragment replicas alive (i.e. primary or back-
up replicas) then it is possible to recover fragments using the on-line recovery protocols. However
if all fragment replicas fail, then it is necessary to restart the fragment using information saved on
permanent storage (e.g. disks).

If all fragments fail, a system shutdown might also occur. A system restart is handled by perform-
ing some initial load of schema information and then restarting the fragments independently of
each other. As soon as a fragment is recovered, the system can start accept transactions using this
fragment.

To be able to perform a restart of the system or a fragment we need to store information during
normal transaction processing that makes this possible. The information needed will be described
and we will also describe how to use this information to restart a fragment in different failure cases.

One item needed to restart a fragment is the fragment log. In previous chapters the fragment log
was referred to as the log. Now that we go into more detail about crash recovery, we will also find
the need of a local log. Thereby we use the name fragment log to differentiate between those two
logs. This log saves all operations on the fragment, as well as information on transaction outcome.
This log is logical since it is necessary that it is location and replication independent. This inde-
pendence makes it possible to use a log produced at one node to restart another node. This is a basic
requirement to be able to use the idea with stand-by nodes as described earlier. Thereby we can
restart a node by using a local checkpoint and a fragment log which resides on another node.

Since the log saves only the logical information of the operations, these log records can only be
used in a database with indexes, tuple information, and transaction information which is consistent
and available. This means that before the fragment logs can be applied we must produce an action
consistent database. This means that the database reflects a state where no action is active; trans-
actions can, however, be alive.

This requirement can be fulfilled by stopping the database while creating an action consistent
checkpoint. This means that the real-time requirements of the telecom database would not be met.
Hence this solution is not used. Instead a fuzzy checkpoint method is used. Fuzzy checkpoints do,
however, not produce action consistent checkpoints. Hence we need to add another log that is used
together with the fuzzy checkpoint to produce an action consistent checkpoint. This log makes it
possible to put the data structures in an action consistent state, and thus this is not a log of logical
database operations. It is a log of actions on the internal data structures of the database. The data-
base is organised in pages and the log saves the actions on these pages. To avoid the need of log-
ging management activities we use a form of physiological logging [Gray93] where we specify in
a logical manner actions on a specific database page.

The production of the fuzzy checkpoint and the log is performed locally in a node and we will call
the log activity local logging. The files saved on disk are normally to be used by the same node; if
nodes can access a common disk subsystem, these files could also be used by another node to re-
start the fragment. The telecom database still uses shared nothing so while operating on database
pages these are always internal to the processor node. At recovery these files could, however, be
taken over by another node if the hardware of the system supports this.

- 159 -

This section will start by describing how restart information can be found. To restart it is necessary
to restore schema information, fragment information and restore fragments.

9.1 System Restart

A system restart is performed on our method by first assigning the global checkpoint to restore.
Then schema information is restored to find which tables should be recovered. Using distribution
information to find all fragments of the tables to restore and recover information for each fragment.
Then each fragment is recovered and the system is prepared to start when distribution information
have been built for the restarted system.

9.1.1 Find Global Checkpoint to Restart from

The first step in a system restart is to decide from which point in time the restart is performed. In
our case this means deciding which global checkpoint to restore. If the failure occurred such that
the system restart was ordered by alive nodes, these alive nodes know which is the latest global
checkpoint that can be restored. If the system restart happens after a total failure where all nodes
failed, it could be difficult to decide which is the latest global checkpoint that can be restored since
nodes can have failed in any manner. It is difficult to find this information in a restart situation if
not all nodes are available. We assume that there are two options to solve this. Either the operator
makes the decision based on error reports that the operator received during the total failure. Oth-
erwise the latest global checkpoint among the nodes to restart is found and used as the global
checkpoint to restore. [Skeen85] contains a description of a solution to the problem of restarting
from a proper checkpoint.

9.1.2 Restore Schema Information

The first step in the recovery process is to find the tables and indexes that were used at the global
checkpoint to be restored by crash recovery. This includes all tables and indexes defined in the
schema version that was current during the global checkpoint to restore. This version must be
checkpointed when creating a global checkpoint. The older versions of the schema are not needed
since at crash recovery there is obviously no active transaction that uses older schema versions.
Thereby only the current schema version needs to be restored. Since all nodes have access to this
schema information, all nodes can recover this information in parallel.

This information is found in files describing a checkpoint of schema information and files contain-
ing a log of all schema changes performed after the checkpoint as seen in the figure below.

There are two exceptions that needs special care. One situation is when a table or index is part of
the global checkpoint to restore but there are no local checkpoints to start the restoration from. In
this case the table (or index) is created but no local checkpoint was produced before the crash.
Hence an empty table (or index) is created instead of using information in a local checkpoint. Then
the log records of the fragments are executed on this empty table (or index).

File Containing:
Checkpoint of
all Schema
Information

Files Containing:
Log of all
Schema Changes

Figure 9-1Files needed to restore
Schema Information

- 160 -

Another case is when a table has local checkpoints but is not part of the global checkpoint to re-
store. In this case the table was dropped before the global checkpoint. This table can then be ig-
nored in the crash recovery.

The Saga Table, described in the next chapter, is used by complex schema changes. It contains
information on schema information that should be removed at crash recovery since the complex
schema change did not finish before the crash. Thereby a number of tables, indexes, foreign keys
and attributes could be dropped before crash recovery starts. If needed one could define entries in
the Saga Table that defines how to continue the processing of a complex schema change. In this
case these entries are performed after crash recovery and before the system is started again. In this
case also the final schema change needed must be specified.

9.1.2.1 Schema Checkpoint

To be able to restart the system the schema information must be checkpointed. This schema check-
point can easily be synchronised with the global checkpoints. The schema checkpoint should con-
tain the schema information on the current version at the time of the global checkpoint. This can
simply be written to disk as a background process after the global checkpoint.

It is likely that it is more efficient to do a complete write of the schema information only occasion-
ally and then only write log records describing each transaction that changes the schema. The
checkpoint of the schema information should then contain a reference to a file with complete sche-
ma information and a reference to the log file(s). Then at restart, information that was dropped be-
fore the last completed version can be dropped.

Schema checkpoints should be performed by all nodes to enable all nodes to do a system restart.
If the system uses a physically shared disk subsystem, then this could be avoided by those nodes
using the same version of the database software.

9.1.3 Restore Fragment Information

After restoring the schema information it is known which tables and indexes should be part of the
crash recovery. Then the next step is to find the fragmentation of each table and to find the infor-
mation needed to restart the system. Each node should have access to fragment information needed
by crash recovery. However only one node that acts as coordinator of the crash recovery will use
this information to restart the system. This coordinator decides which nodes will restore which
fragments. The actual method to restore a fragment will be described in section 9.2.

The node to restart the system must have access to a file that contains descriptions of all fragments.
For each fragment the following items must be stored:
1) Table identifier
2) Fragment identifier
3) Nodes of replicas and which global checkpoint they have completed
4) Local checkpoints and which global checkpoint that were completed before the local checkpoint
5) For each local checkpoint information about the backup log node is needed (see section 9.3.2)

The information in this file is created by checkpointing the distribution information.

The node that restarts the system will then choose for each fragment a node to restore a primary
replica of each fragment. It will inform this node about which local checkpoint to use and which
global checkpoint to restore. This node must contain the following information:

- 161 -

1) Files of the local checkpoint
2) Files of the fragment logs from the global checkpoint before the local checkpoint up to the global
checkpoint to restore
3) Files of the local UNDO log

The description below states what information items are needed to be able to restart a system given
the restored schema information. This information is typically found in a set of files with prede-
fined names. These files then contain references to other files that contain the actual information
needed for the system restart, such as the database pages, fragment logs and local UNDO logs. We
will also provide a less formal textual description of this information below.

SET OF Table Descriptions {
 Table Reference,
 Table Name,
 Table Properties,
 SET OF Fragment Descriptors {
 Fragment Reference,
 Fragment Properties,
 Primary Node {
 Node Reference,
 Completed Global Checkpoint,
 SET OF Local Checkpoints {
 Local Checkpoint Reference,
 Properties of Local Checkpoint,
 Global Checkpoint completed before Local checkpoint
 IF This Node = Primary Node THEN
 SET OF Description of File for the Local Checkpoint
 SET OF Description of File for the local UNDO log
 Node Reference of Backup Log Node,
 ENDIF
 },
 IF This Node = Primary Node THEN
 SET OF Description of File for the Fragment Logs
 ENDIF
 },
 SET OF Backup Nodes {
 Node Reference,
 Completed Global Checkpoint,
 SET OF Local Checkpoints {
 Local Checkpoint Reference
 Properties of Local Checkpoint,
 Global Checkpoint completed before Local checkpoint,
 IF This Node = the Backup Node THEN
 SET OF Description of File for the Local Checkpoint,
 SET OF Description of File for the local UNDO log,
 Node Reference of Backup Log Node,
 ENDIF

- 162 -

 },
 IF This Node = Primary Node THEN
 SET OF Description of File for the Fragment Log,
 ENDIF
 }
 SET OF Stand-by Nodes {
 Completed Global Checkpoint,
 IF This Node = the Stand-by Node THEN
 SET OF Description of File for the Fragment Log,
 ENDIF
 },
 SET OF Backup Logs {
 IF This Node = Backup Log Node THEN
 Reference of Local Checkpoint,
 Primary Log Node Reference,
 SET OF Description of File for the local UNDO log
 ENDIF
 }
 }
}
If the node does not contain enough fragment logs and/or local UNDO logs, the node controlling
the restart will inform the primary node of which nodes contain this information.

First of all the fragment information must specify how each table is fragmented. Then for each
fragment there are three entities that need to be found. The first are the local checkpoints of a frag-
ment. How many such are kept per processor node is defined by the database administrator, one or
two could be a normal figure. It is also desirable to have access to physiological UNDO-log
records. These log records are used to restore database pages to a consistent state. They can be
saved in more than one main memory to avoid forcing the log to disk at each page write. Thereby
in some crash situations it is necessary to have access to the UNDO-log in the processor node of
backup local log. Finally we need access to the fragment log.

To find the local checkpoints of a fragment the table identity and the fragment identity is provided.
Then a set of local checkpoints are found with the information about the processor node that cre-
ated the local checkpoint, the identity of the local checkpoint, and the last global checkpoint fin-
ished before the local checkpoint. Through this information all files of the local checkpoint can be
retrieved.

To find the UNDO-log files of a fragment the table identity and the fragment identity is provided.
Then a set of UNDO-log files are found with information about the identity of the local checkpoint,
the processor node that created the local checkpoint and the processor node that saved the UNDO-
log file. This information can be used to find the files.

To find the files of the fragment log the table identity and the fragment identity is provided. Then
a set of files with fragment logs are found with information that specifies the processor node that
created the file, the starting global checkpoint of the file and last global checkpoint of the file. All
log records belonging to a global checkpoint of a fragment replica are saved in the same file.

- 163 -

9.1.4 Use of Schema Information during Crash Recovery

All logical log records are marked with a version number of the schema. The only schema infor-
mation that is needed during recovery is information on tables, attributes and indexes. However,
the recovery is performed per fragment and a fragment is part of either a table or a secondary index.
Thereby it is not possible for log entries to use a table not defined. If the table was dropped, then
its fragment would not be restarted as mentioned above. Thereby only schema information regard-
ing attributes need to be handled.

The attributes are specified in the log records by an attribute identity. In the schema information it
is known which attributes are used at the global checkpoint to restore. It is also known at which
schema version these attributes were created. If an attribute identity is found in a log record that
needs to update an attribute that has not yet been created, then obviously the attribute used in the
log record will be dropped before the global checkpoint to restore. Thereby these attributes are ig-
nored in the log records.

From this analysis we find that the only attributes needed to define in the storage are those that are
defined in the current schema version of the global checkpoint to restore.

In a local checkpoint we know which schema versions were active when it was created. We can
thus deduce which attributes of the local checkpoint should be dropped and also which attributes
need to be added since the attributes were added after the local checkpoint. As we will show later,
there can be several schema versions concurrently available. The local checkpoint specifies the last
completed schema version at the time of the local checkpoint and the current schema version at the
time of the local checkpoint. Those attribute that were created after the current schema version of
the local checkpoint need to be added. Those attributes with the same attribute identity as these
new attributes have obviously been dropped and the attributes with attribute identities that are not
among the currently defined attributes have also been dropped since the local checkpoint.

9.1.5 Archive Copies

When schema information, fragment information and the information to restore fragments are
written to an off-line media such as tapes, an archive copy is produced. The files in an archive copy
can be used in exactly the same structure as described above. Reference to a processor node is,
however, only treated as a reference to a directory in the archive copy. The archive copy, too, only
needs to contain one copy of each information entity.

A system restart from an archive copy is similar to a restart from information on disks. The only
difference is that the information is read from an off-line media and then copied to the various
nodes that should receive copies and then the restart can be performed as a normal system restart.

9.2 Restarting a Fragment

Restarting a fragment is a part of a system restart. It is also used when all replicas have failed but
some replica survived at least long enough to flush the fragment log to disk. Hence the system is
still operational even though the fragment is inaccessible. In this situation the fragment can be re-
started without losing any committed data.

- 164 -

It can also be used by a stand-by node to become a backup node. This could be useful if the frag-
ment is very large and disk-based. The stand-by node must have access to the data pages of a back-
up node and the UNDO log of same node. It must also be able to use this data, i.e. it has to support
the same version of the data structures and the log structure as the backup node.

In Figure 9-2 the restart handling of a fragment is shown. The simple idea is basically to start with
a physiological UNDO to get an action consistent checkpoint, to UNDO all operations active at the
checkpoint, and then to apply the logical REDO log for the fragment. As mentioned previously the
local checkpoint is action consistent. The local checkpoint also contains the set of locked tuples at
the checkpoint. To simplify the recovery we will UNDO those operations before executing the
fragment log.

We must, however, take care of the independence of local and global checkpoints. It must be en-
sured that the global checkpoint is older than the local checkpoint.

The restart of a fragment after a total failure of the fragment is performed by the following algo-
rithm:

1) Install transaction information from local checkpoint

2) Install local checkpoint which is action consistent

It consists of the following steps:

• Execute the Local UNDO-log from the end to the start checkpoint marker. If a page
accessed in the execution of the local log is not in the main memory, read it from
disk.

• If it is a main memory based fragment, read all unaccessed pages from disk into
main memory.

3) UNDO all active transactions before starting the execution of the REDO log. In our case this is
performed by aid of the list of all tuples involved in transactions. Thereby no locks are set when
starting the execution of the REDO log.

4) Execute the REDO fragment log from the last global checkpoint before the production of the
local checkpoint. The log must be executed until the end of the log if a fragment is restarted and
until the global checkpoint to be restored if the system is restarted.

The recovery of different fragments is independent of each of the others. As soon as a fragment has
been recovered, it is possible to start processing requests that only access recovered fragments.

UNDO Local Log End of
Local Log

Start Local
Checkpoint

REDO Fragment Log End of
Fragment Log

Start Global
Checkpoint

Figure 9-2Fragment Restart Handling

UNDO operations active at local checkpoint

- 165 -

9.2.1 Handling the Logical Fragment REDO Log

The fragment logs are not synchronised with each other. The fragment logs produced on the pri-
mary, backup and stand-by need not even be equally ordered. They are, however, equivalent in
terms of serialisability. This means that the fragment log does not contain a marker exactly where
the local checkpoint was produced. This would be possible in the fragment log generated at the
same processor node as the local checkpoint is produced. This is not enough, as it must be possible
to use the fragment log of the stand-by replica to restart a fragment. Hence it becomes necessary
to start processing of the fragment log at some point in the log that is sure to be before the produc-
tion of the local checkpoint.

This point is placed at a global checkpoint. Each global checkpoint has a well defined point in the
fragment log and it is possible to find out which global checkpoints were the last produced before
the production of the local checkpoint.

To certify that this scheme actually works we must also check that executing the log records pro-
duced before the production of the local checkpoint does not harm the consistency of the system.
To do this we need to analyse all possible events that can occur. The log record could have been
produced before or after the local checkpoint and the tuple existed or not when executing the log
record. We need to perform this event analysis for updates, inserts and deletes.

1) Insert log record, tuple exists:
Can only happen before local checkpoint => Ignore log record. Insert could only set old values that
will later be overwritten by later log records or it could set the value which was set at the time of
the local checkpoint.

2) Insert log record, tuple does not exist:
This could happen before or after local checkpoint. If the insert is performed before the local
checkpoint, then the tuple will be deleted by a log record executed before the local checkpoint, and
the insert can safely be performed. There is no possibility to distinguish between this case and the
case where the log record is after the local checkpoint.

3) Delete log record, tuple does not exist:
Can only happen before local checkpoint => Ignore log record, this has the same behaviour as a
deletion of the tuple.

4) Delete log record, tuple exists:
If it is before the checkpoint, the deletion will obviously remove a tuple that should be in the data-
base. There is, however, no way to know this when executing the log record since there is no
knowledge of whether it executes before or after local checkpoint. Hence the deletion must be per-
formed. The tuple will certainly be inserted again by a later log record before the local checkpoint.
Otherwise the tuple would not have been in the local checkpoint.

5) Update log record, tuple exists:
There is no way to know whether it was executed before or after the local checkpoint => Perform
update. If the update sets an older value than in the local checkpoint, the new value will certainly
be set by a later log record.

6) Update log record, tuple do not exist:
Can only happen before local checkpoint => Ignore log record. This must be followed by a delete
log record before the local checkpoint, hence the log record can safely be ignored.

- 166 -

The conclusion is that the fragment log records must be executed as normal log records. The only
special actions needed are when strange situations occur, i.e. deletions of already deleted tuples,
inserts of already inserted tuples, and updates of non-existing tuples. These strange events can only
occur due to executing log records before the local checkpoint. These log records can simply be
ignored since it is known that they execute before the local checkpoint was produced. The other
log records are executed normally and as shown above their action will still produce a consistent
database.

9.2.2 Creating Backup Replica from Stand-by Replica by Restarting Fragment

The scheme above can be used but special consideration is needed when upgrading from stand-by
node to backup node. The reason for this is that transactions are ongoing when this upgrading is
performed. First the stand-by replica ensures that it has executed all committed transactions in the
fragment log.

The next step is to start executing the ongoing operations. An abort, commit or a new operation on
the same tuple in this transaction could arrive during execution of the operation. Then this event
must be queued up until the execution is completed. It must actually wait until all operations of this
transaction are completed.

When execution of all transactions has started, new transactions are also queued up until all previ-
ous transactions are completed. When the previous transactions have been finished the queued op-
erations can be started. The last step is to inform all nodes of this state change.

9.3 Production of a Local Checkpoint

To produce a local checkpoint it is necessary to produce a snapshot (action consistent) of the data-
base objects (see Figure 9-3). As mentioned above this is accomplished by producing a fuzzy
checkpoint in conjunction with physiological logging during the checkpoint production. The phys-
iological log can either be an UNDO log or a REDO log. Using a REDO log means that the check-
pointed pages must not be overwritten between the checkpoints. This means that a directory is
needed that specifies where pages can be found. Using a main memory database, it is possible to
change this by having two copies of the data.

Using an UNDO log means that we can still use in-place updating. It has been verified in many
products, prototypes and research articles that in-place updating is the superior method [Gray81].
The reason is that otherwise the directory of pages must be written each time a page is written,
causing a serious degradation of performance.

Thus the solution is to use an UNDO log. The consequence of this is that it is necessary to use WAL
(Write-Ahead Log). This means that before a page is written to disk, the UNDO log records must
be stored safely.

Index
Pages

Tuple
PagesTuple References

Tuples involved
in Transactions

Figure 9-3Database Objects in Action Consistent Local Checkpoint

- 167 -

The production of local checkpoints are performed per fragment, which means that only a portion
of the pages in the processor node is needed. All pages that contains data of the fragment must par-
ticipate in the local checkpoint production. Even pages where information on other fragments is
stored as well. The following algorithm is used to produce the local checkpoint:

1) All operations on the fragment are stopped. Those that are active execute until they are complet-
ed. No new operations are allowed to start. When all active operations are completed a start check-
point is written in the local UNDO-log. This includes information on tuples locked by active trans-

actions and the directory of the LH3 index structure. When information has been saved the opera-
tions can start processing again. Also production of log records are started.

Those operations which are hanging on a lock and have not yet started should not be started before
the local checkpoint. This ensures that the complete fragment will not suffer from a deadlock due
to a deadlock situation involving a tuple in the fragment.

It is possible to allow read operations to continue during the stop. If this is allowed it is necessary
to ensure that the set of locks covered by the checkpoint is consistent.

2) Start fuzzy checkpoint process. This means that one page at a time is locked. The UNDO log
records are flushed and then the page is written to disk. When the page has been written, the page
is unlocked. Main-memory based data that have several versions of the pages on disk do not need
to flush the log records before writing the pages to disk. For them it is enough that they are flushed
before the checkpoint is finished.

Before the page is written to disk and after the start of the local checkpoint, all activities on the
page are logged in the local log. The information in the UNDO log records is dependent on the
structures stored in the pages. After writing the log records, the local logging is stopped if the page
is main-memory based (it will be described later why).

3) When all pages have been written to disk the local checkpoint is completed. An end checkpoint
log record is written. The UNDO-log files are sent to disk and all other files involved in the local
checkpoint. When it is certain that all information are stored on disk, the other nodes are informed
of the completion. This is a part of the distribution information.

9.3.1 Local Logging Method

Disk-based pages are normally stored on disk and only when accessed for reading and writing are
they kept in a main memory buffer. This means that the pages in the main memory buffer are al-
lowed to be written to disk at any time, not only at checkpoints. Since in-place updating is used,
the checkpointed pages can thereby be overwritten after a checkpoint. This means that UNDO log-
ging must be performed all the time, not only in the checkpointing process.

Main memory based pages are only written to disk at checkpoints. They are always stored in main
memory pages.

If there are two versions of the main memory pages on disk, the page writes of a checkpoint do not
destroy the previous checkpoint. Thereby it is possible avoid a lot of UNDO logging. The UNDO
logging is only needed between the start of the checkpoint process and the actual writing of the
dirty page. Pages that are clean at the start of the checkpoint process are preferably taken care of
immediately since these do not need to be written to disk in the checkpoint. When the checkpoint
is finished, the pages are written to the other version of the database. This is shown in Figure 9-4.

- 168 -

Main memory databases can have two (or even three) versions on disk without any great overhead
in cost or performance. Therefore the above given method can be used.

9.3.2 nWAL Method

As described in a previous section of the thesis the system can be optimised by using nWAL. The
idea of WAL is to avoid crash situations where a page has been written to disk but there is no in-
formation on how to UNDO changes on the page. This is important in the case where only one ver-
sion of the pages exists on disk. If there are several versions of the pages on disk, then this is not
needed. Then log records can be written to disk asynchronously to the page writes. Disk based data
normally only have one version on disk and hence WAL is needed for the UNDO log records in
our method of crash recovery.

nWAL means that instead of forcing the log to disk, the log is sent to a backup node and saved in
main memory at that node. We call this backup node the Backup Log Node, the owner of the data
we call the Primary Log Node. When the log is saved in two nodes, the log is defined as stored
safely. Obviously writing the log records to disk would produce a lot of flushes of disk pages, the
actual information that needs to be forced to disk is most of the time very small. Thereby using
another node as safe storage would decrease the amount of information to flush and also speeds up
the process since neighbour nodes are closer than a local disk (using modern communication tech-
niques).

We therefore opt for the nWAL method of the local log of disk-based data. The fragment log is
handled by the two-phase commit protocol in the system. Thereby we need to ensure that the local
log is safely stored in both our own node and in the backup log node before writing main memory
pages to disk. This means that we need to also design algorithms how to handle the failures of the
primary log node and the backup log node.

We need to handle primary log node failures, and backup log node failures. The handling of these
failures must also be publicly available to all nodes so that the consistency of the system is known
to still exist.

9.3.3 Primary Log Node Failure

When the node containing the data fails, the backup log must ensure that the log is saved on disk.
This is started immediately when the report on the primary node failure is received. When the log
has been saved on disk, this is reported to all nodes. Thereby the primary log node can be restarted
even if the backup log node fails as seen in Figure 9-5.

Start
Checkpoint
n

End
Checkpoint
n

Start
Checkpoint
n+1

Page written
during
checkpoint
process

Dirty disk page
written to give
space in main
memory buffer

UNDO logging
always needed

UNDO logging
only needed
for one-version

Switch page
version to
write into

pages

Figure 9-4Optimisation of Local Logging

Version v1 Version v2

- 169 -

9.3.4 Backup Log Node Failure

If the backup log node fails, the primary log node must use WAL (i.e. write the log to its local disk
before the page is written to disk, instead of writing the log to the backup log node) until a new
backup log node has been started. If checkpoint processing is currently ongoing, this processing is
suspended as soon as the active page writes have been concluded. The primary log node also sends
its log to disk as soon as possible. When this is finished and WAL processing has started, the pri-
mary log node reports this to all nodes.

A new backup log node is now started and as soon as this has been accomplished, the WAL
processing can be concluded and nWAL processing starts again as normally. Checkpoint process-
ing can also proceed again after starting the new backup log node.

9.3.5 Global System Checkpoint

An important part of preparation for recovery processing is to know what global checkpoint to re-
start the system from at a total failure. This global checkpoint must have been completed in the
system to be restarted. Therefore the system must keep track of the last global checkpoint that is
finished. A global checkpoint is finished when all transactions belonging to this and previous
checkpoints have been completed and all log records of those transactions have been sent to disk.
When this condition has been fulfilled the system can be certain to be able to restart the system
from this checkpoint even in cases of failure of all nodes.

The system thereby keeps track of the maximum global checkpoint that is finished. When the co-
ordinator decides that a new such maximum global checkpoint exists, the information is provided
to all processor nodes and must be stored safely on disks. This global checkpoint is called the glo-
bal system checkpoint.

When a system is restarted, one has to find this maximum global checkpoint and start the system
from this or an earlier global checkpoint.

Each processor should maintain the oldest transaction that has not yet been fully completed. Each
time a transaction completes, a check is performed to see if any global checkpoints are fully com-
pleted in this processor node.

9.4 Related Work

The method we have described is related to the method described in section 4.9.2. Our contribu-
tions are mainly to provide all the necessary details to show crash recovery works in a situation
with the combination of fuzzy checkpoints, location and replication independent logs, and local
logs. The use of a local UNDO log is new and we also describe its use in some detail. We also show

t

Primary
Log
Node
Fails

Backup Log
Node flush
log to Disk

Backup
Log
Node
Fails

Primary
Log
Node
Starts

Backup
Log
Node
Starts

Primary log node
can be used to recover
after total failure

Figure 9-5Failure scenario

- 170 -

a solution of how global checkpoints can be unsynchronised in various nodes and still the logs can
be location and replication independent. We also show how schema information is used during
crash recovery.

The Informix-OnLine Dynamic Server uses also a similar scheme where an UNDO log is used to
record all changes to database pages and a logical REDO/UNDO log is produced describing the
operations on the database. At recovery the first pass uses the checkpoints and the physical UNDO
log to create an action consistent database. Then a REDO pass followed by an UNDO pass is per-
formed using the logical REDO/UNDO log [Hvasshovd96]. Our method uses the nWAL method
instead and ideas presented in chapter 13 enable us to avoid storing UNDO information in the frag-
ment log.

[Sullivan92] reports on a scheme used by Postgres where instead of using a log the database stores
all versions of the tuples. It assumes the existence of persistent RAM memory to avoid frequent
disk I/Os.

Our approach furthermore uses a local checkpoint and a global checkpoint process. These process-
es are not synchronised. No approach reported previously has used such a checkpointing to the
knowledge of the author. It is reported in this thesis how log records before a local checkpoint do
not destroy the consistency of the database in the crash recovery. Certain precautions are needed
and these are reported here.

- 171 -

10 Schema Changes

This section will discuss how schema change operations can be performed without any major in-
terference with user operations. A great variety of schema change operations are possible. We will
describe some of them here.

In the literature there is a distinction between schema evolution and change propagation [PET95].
Schema evolution defines which schema changes are allowed and change propagation handles the
propagation of those changes to the existing database information. This chapter deals with change
propagation. Most of the research literature has focused on the problem of schema evolution

Our schema contains tables, indexes and attributes. Changes to these affect the local data storage
and must therefore be prepared before the actual schema change transaction can be performed. The
attributes can be methods which can be read-only or both readable and updatable. If the method is
readable and updatable, then a separate method for reading and another for updating is needed. A
method can only operate on attributes in the tuple which the method is a part of.

The schema also contains attribute constraints. Removing an attribute constraint is a pure update
to the schema. Adding an attribute constraint means that all tuples in the table need to be checked
and changed in accordance with the attribute constraints. This is not covered in this thesis. Table
constraints in real-time database can be very difficult to handle. If the sum of all salaries of em-
ployees is not allowed to increase above a limit, the sum must be kept in a tuple (otherwise it has
to be updated for every update in the table). This tuple would be a hot-spot which would endanger
the availability of the data in the table. Adding table constraints is not covered in this thesis. Sche-
ma updates of triggers is not covered in this thesis. However, triggers are used as part of the solu-
tion to implement the schema changes. Adding a simple trigger and removing a simple trigger can
be done by simply updating the schema information. However, complex trigger changes cause
more problems. Neither views is covered in this thesis. Referential constraints do require a set of
changes to the schema information that will be described.

Those tables that use a tuple identifier as tuple key are affected by the structure of the tuple iden-
tifier. In our case we include a table identifier in the tuple identifier. This makes it easy to follow
a link to a new object. If it did not include the table identifier, then we would need a secondary
index on tuple identifiers to find the table identifier of the tuple. The inclusion of a table identifier
affects schema changes that change table structures, such as split and merge of tables.

We will also show how schema changes are propagated to a backup system when global replication
is used.

10.1 Concepts of Schema Changes

In this section some concepts of schema changes will be introduced.

10.1.1 Soft/Hard Schema Changes

There are two possible ways to update the schema. The first is a soft schema change. In this case
the old transactions are executed using the old schema and new transactions are started using the
new schema. The old and the new transactions can execute concurrently. In this case the concur-
rency problem using schema information is smaller.

- 172 -

The other option is hard schema change. In this case the transactions on the old schema is execut-
ed until all have finished. During this time no transactions that are affected by the schema change
can start. Then the schema is changed and new transactions are started using the new schema.

Most schema changes can be performed using the soft method. There are some changes that are
incompatible with each other where the hard method must be used. As an example assume that the
old schema contains one attribute with hours worked and another attribute with payment per hour.
If the new schema replaces this information with an attribute of the total payment, this attribute is
the product of the previous attributes. Obviously updates of the total payment cannot be converted
into updates on the total time and payment per hour. Hence a hard schema change is needed.

Almost all changes in the schema information can be specified as adding or dropping schema en-
tities. Tables, attributes, attribute methods, attribute constraints, table constraints, secondary in-
dexes, foreign keys, views and stored procedures can all be added and dropped. Most changes can
be specified as a number of adds and drops. These changes can obviously use soft schema change.
Adding something does not conflict with earlier transactions that were not allowed to use it. Drop-
ping something does not cause conflicts either. Earlier transactions can safely use the entities
dropped as long as they still exist, new transactions will not be bothered by this. This means that
changes to schemas are not serialised. Transactions that use old schema information can be com-
mitted after transactions that use new schema information. As shown this does not cause any prob-
lems, and only hard schema changes need serialisation.

Some changes cause logical conflicts, as shown above. The problem here is when changes are
specified that use a function to map from the previous entities. If the inverse of this function does
not exist, transactions before and after the change cannot execute concurrently. A definite border
must exist between transactions before and after the change. This is implemented by hard schema
changes. All transactions using the changed entities must be finished before the schema change can
be performed. This problem is the same problem that exists for updates through views.

10.1.2 Simple/Complex Schema Change

Another dimension of schema changes are whether they are simple or complex. A simple schema
change can be executed as one transaction. Most simple schema changes only involves schema in-
formation. In this section we will always refer to simple schema changes as schema changes which
only involve changes to schema information. Complex schema changes are long-running transac-
tions. To execute a complex schema change as one transaction would block update operations for
a long time. Most telecom applications require constant availability of data for updates. A typical
example is HLR in mobile systems, these nodes keep track of mobile phones. Thus they need to
be updated very often when the mobile phones move around. Hence we need to implement com-
plex schema changes as a set of small transactions that together form a long-running transactions.
A similar approach to on-line reorganisation was used in [Salzberg92].

Complex schema changes are a good example of a long-running transaction. We will use the con-
cept of SAGAs [Garcia87] to control those long-running transactions. Complex schema changes
fit very well into the SAGA model. The idea is to run the long-running transaction as a set of trans-
action. To rollback the long-running transaction a set of UNDO-transactions are performed. All
schema changes are either of the type ADD or DROP something. This provides an UNDO-trans-
action for all schema changes.

- 173 -

The complex schema changes always incorporates adding a new schema entity which depends on
the data in the tables of the old schema. To UNDO such a long-running transaction the new schema
entity is dropped again. This could sometimes involve yet another long-running UNDO-transac-
tion.

An important part of our solution to the problem with schema change is to use triggers along with
the many small transactions. [Dayal90] describes in general how triggers and transactions can be
combined to form long-running transactions. Our contribution in this thesis is to apply this to the
problem of complex schema changes.

10.1.3 Simple/Complex Conversion Function

Yet another dimension of the problem with schema changes is whether the conversion functions
are simple or complex. This definition was introduced in [Ferrandina95]. A simple conversion
function only uses local information in the tuple being accessed to create the converted data. Com-
plex conversion function can also use information from other tuples to create the converted data.

Our method of performing complex schema changes allows both simple and complex conversion
functions.

10.1.4 Summary

There are at least three dimensions of schema changes, soft/hard schema changes, simple/complex
schema changes, simple/complex conversion functions. Simple schema changes which only in-
volves changes to schema information do not use any conversion function at all and they are al-
ways soft schema changes.

Complex schema changes always involve changes to a number of tuples. These changes require a
conversion function. The conversion function is, in our case, implemented both by transactions that
scan the tables and by the triggers that ensure that the new schema entities contain the correct data.
These conversion functions can be both simple and complex.

Whether a schema change is soft or hard depends on the conversion functions. If the conversion
functions are invertible, then the schema change is soft. Otherwise it is hard.

10.2 Handling of Schema Changes

In this section we will describe some important items needed in performing schema changes.

10.2.1 Schema Version

Since concurrent transactions can use different schema versions the system must be able to handle
more than one schema version. Each transaction uses a specific schema version and each schema
change creates a new schema version. This version number must be tagged on all log records of
the system and also provides a natural path to ensure that schema changes also occur on the backup
system in the same order.

The version number is handled by the system coordinator. Only this node can increment the ver-
sion number. If this node fails, a new system coordinator is assigned. The new coordinator must
first check which the maximum known version number is and ensure that all nodes are consistent
with each other. Then the new coordinator can start executing transactions to change the schema.

- 174 -

Using version numbers in this manner creates a bottleneck. This bottleneck should not cause any
problems. Still tens or hundreds of schema changes can be performed per second. It is likely that
even in the busiest period, the number of schema changes per minute should not exceed ten. Hence
this bottleneck is not serious at all.

Actually there can only be one active schema change per table at the time. When a schema change
starts changing a table definition, no other transaction can start changing the table definition con-
currently. This is true also during the execution of a complex schema change (see Section 10.4).
This means that a logical lock must be acquired on all tables involved in the schema change during
the whole execution of the schema change.

10.2.2 Reading Schema Information by User Transactions

The user transactions read schema information in several stages and new versions can be created
during this process. The user transaction should, however, continue to use the same schema version
in all stages. The user transaction sets locks on all used schema entities. This ensures that hard
schema changes are not started until all transactions that use the changed entities are finished.

If the transaction tries to access a schema entity that has been locked by a hard schema change, then
the transaction will not be able to read all schema information using the same schema version in
all stages. Thereby the transaction should be aborted. If desired and if possible the transaction can
be restarted immediately afterwards.

Soft schema changes are used from the moment that the locks are released and the version counter
has been incremented. The new schema are only used by new transactions. Old transactions will
continue to use old schema versions.

10.2.3 Execution of Simple Schema Change

A simple schema change is performed similar to a two-phase commit. The first phase is a prepare
phase where all actions in the schema change is distributed to all nodes. All software entities are
prepared to handle new tables, attributes and indexes in this phase. This involves preparing all in-
itial fragments of new tables and indexes. It involves allocating storage for all fragments and ini-
tialising the storage. New attributes are prepared, these are handled as dynamic attributes that do
not exist if NULL. Hence no storage allocation is needed for new attributes until an attribute value
is set on the new attribute in the tuple. Attributes that are methods need to have their software load-
ed and linked into the database software in all nodes.

System
Coordinator Schema

Databases

Prepare New Schema
Entities Save Schema Change

and “Prepared” to Disk

Commit Schema ChangeRetrieve new
Version Number Save “Committed” on Disk

Update Version Number
Wait until old transactions completed

Remove schema entities no longer used

Wait for all Clean up

Save “Completed” on Disk

Start

Lock Schema if Hard Schema Change

Figure 10-1Transaction
Changing the Schema

- 175 -

The first phase is also a prepare phase in a two-phase commit scheme, where locks on all entities
of the schema to change are set. If the change is soft, then those locks are immediately acquired. If
the schema change is hard, then the locks are not acquired until all transactions have released their
locks on the schema information. When the locks have been acquired in all nodes then the schema
information is updated. The update of the schema information is also logged to disk before sending
the acknowledgement of the prepare message. Thereby it is easy to discover which schema version
is the current one at restart. After acquiring the locks, logging to disk and performing the updates
an acknowledge is sent to the system coordinator.

When the locks have been acquired, no transaction can start if it is a hard schema change. Also all
transactions using the old schema must have been completed.

If a soft schema change is performed, then transactions can continue to execute using the old or the
new schema information. Old and new transactions can execute concurrently.

The second phase is the commit phase. It starts when all nodes have acknowledged that locks are
acquired and schema information have been updated. The first step of this phase is to acquire a ver-
sion number of the schema change in the system coordinator. When this has been acquired, the
commit together with the version number is sent to all nodes.

When the log message that describes the commit of the schema change has been flushed to disk in
the nodes, the locks can be released and operations can start again. The version number is updated
in the nodes before releasing the locks. Each node ensures that the schema versions are installed in
the order prescribed by the version number.

The commit is not acknowledged until all transactions using old schema numbers are completed.
This ensures that the system coordinator knows that the old schema is no longer used when it re-
ceives the commit from all nodes.

The third phase is a clean up phase, similar to the complete phase in two-phase commit; it starts
when all nodes have acknowledged the commit phase. A clean up message is sent to all nodes. Ta-
bles, attributes and indexes that are no longer used are removed from all software entities. When
all nodes have acknowledged this phase, then the transaction to change the schema is completed.

10.3 Simple Schema Changes

We will start by describing the simple schema changes that add and drop tables, attributes, foreign
keys, and drop indexes. Without these operations it is difficult to maintain a database system.

10.3.1 Table Operations

Adding a table can be easily performed by preparing the fragments of the table and then performing
the schema change. Old transactions will not know about the table and new transactions will and
so there is no concurrency problem. The same reasoning holds for adding a view. Of course some
attributes of the table should also be defined in the schema change.

Dropping a table is slightly more complex. This change can be performed in a soft manner. Of
course the updates of the old transactions will be dropped when the table is dropped. New transac-
tions will not be able to access the table any more. The same reasoning holds for dropping views.

- 176 -

10.3.2 Attribute Operations

Adding an attribute is also a simple operation that can be performed with a soft schema change. It
could be slightly more complex to prepare it, however. If the attribute can be NULL, then it can
easily be added. For this to be true, it is necessary to prepare all tuples with a number of unused
NULL bits that can be used by new attributes on the tuple. These attributes will always specify
NULL until the attribute is defined. Similar treatment could be used to add an attribute with default
value as a simple schema change.

If it should be set to a value which is a function of old attributes, then a complex schema change is
needed to add an attribute to all tuples of all fragments of the table. The schema change is not per-
formed until all preparations are completed. Adding a method as a new attribute can also be per-
formed easily by preparing all nodes to handle the method. We only consider methods that operate
on one tuple here.

Dropping an attribute can be performed with a soft schema change. No preparations are necessary.
The dropped attributes remain in the tuples until the tuples are reorganised. This can be performed
either as a local process or as a part of a copy fragment protocol. The copy fragment protocol only
transfers those attributes that are still used.

10.3.3 Index Operations

Dropping an index is a simple schema change that can be performed as a soft schema change. Often
dropping an index means that a number of stored query execution plans must also be recompiled.
This can be performed within the same schema change transaction. Doing it within the schema
change ensures that real-time capabilities for user transactions are kept since the recompiling is
done without any user waiting. Transactions to change the schema will of course take longer time.
This is not a time-critical operation if user transactions are allowed during the schema change.

10.3.4 Foreign Key Operations

Adding a foreign key is made by adding attributes in the foreign table, an index on those attributes
and adding the foreign key. These additions should be performed as one transaction to change the
schema information. Then normal user transactions can perform any scan operations that are need-
ed to make use of the foreign key. If the foreign keys needs to be set than the method to perform
complex schema changes should be used.

The foreign key is represented by a set of attributes in the foreign table, and a special trigger on the
referred table. Also an index on those attributes is normally kept to ensure that consistency checks
and actions can be performed efficiently. When a foreign key is dropped this entails dropping the
special trigger, the index and the attributes of the foreign key in one transaction that changes the
schema.

Changing a foreign key means that the operation on deletion of the referred tuple is changed, which
is performed as a soft schema change.

10.4 Complex Schema Changes

The next set of schema changes are complex and require that the change is performed as a set of
schema changes and a set of user transactions. These are needed by most databases at times and
are often performed by using user transactions written especially for the particular change needed.

- 177 -

Here we describe a general approach that can handle very complex schema changes as changes of
attributes, adding a secondary index, splitting a table, merging a table and adding foreign keys. The
split/merge can be performed both horisontally on tuples and vertically on attributes. Also complex
combinations of schema changes can be used together. This thesis does not investigate any side
effects these combinations can cause.

10.4.1 General Approach

All complex schema changes below use the same five phases.

The first phase is a schema change that adds a number of attributes, tables, foreign keys, triggers
and indexes. It also adds a number of triggers and foreign keys needed to ensure that the new at-
tributes, tables and indexes will be up-to-date when the second phase is finished. It does also add
a number of triggers and foreign keys to ensure that a soft schema change is possible.

The second phase performs a scan processes on a number of tables. When this phase is finished
both the new and the old tables and attributes are consistent. Thereby transactions on the new sche-
ma can start as soon as this phase is completed.

The third phase makes it possible to execute transactions on both old and new schema if the change
is soft. Hard schema changes can only use test transactions which do not use schema parts that are
not compatible. This phase contains a possible security check on the new schema. If the new trans-
actions behave well, then the schema change will be committed. If there are many errors with the
new schema, then the schema change will be aborted. This security check can be performed by
only executing test transactions or by only executing a small percentage of the transactions using
the new schema. After executing the test transactions to completion, a decision is taken whether to
abort or commit the schema change.

A schema change is a management activity handled by some database administrator. The database
administrator should also be responsible in handling these tests of the new schema. In telecommu-
nications there is usually some personnel responsible for operation and maintenance who has this
role.

If the decision is to abort the schema change, then all new tables, attributes, foreign keys and trig-
gers are removed and the old schema is kept. No more transactions on the new schema are allowed.
If the decision is to commit the schema change, then all transactions will start to use the new sche-
ma. The currently executing old transactions are executed until they are finished. Transactions
started from here use the new schema.

When the old transactions are completed, then the last phase removes the triggers needed by the
scan processes, removes any attributes used by the change process and also removes attributes, ta-
bles, indexes and foreign keys from the old schema that are not part of the new schema. The control
flow of a complex schema change is shown in the figure below.

Phase 3 is different for hard schema changes. It waits until old transactions are completed. No
transactions are started during this wait. After this the schema is changed to use the new schema
and then transactions can be started. These transactions can only use the new schema. There is no
possibility to restore the old schema other than through a system restart.

- 178 -

The complex schema changes are examples of long-running transactions. Only when all of those
transactions have been performed is the complex schema change actually finished. To be able to
abort a complex schema change the system must maintain UNDO-information. This is necessary
if the decision is to abort the schema change and is also necessary if the primary system fails during
the change. Then the complex schema change should be aborted. Sometimes work is also needed
after completion of the schema change in a clean up phase. REDO-information is needed to ensure
that this work is actually performed even in cases of failures. The REDO/UNDO-information must
be maintained across transactions and must therefore be stored in a reliable manner. We use a spe-
cial Saga Table to store the REDO/UNDO-information. The Saga Table is also replicated in the
backup system if global replication is used. We will show the use of the Saga Table in the schema
changes below.

Normally UNDO entries are inserted in the Saga Table during phase one, REDO entries are insert-
ed in phase four and the entries are deleted in phase five.

Since changing the schema also affects the applications on top of the database, the schema changes
must to some extent be synchronised with software changes. One natural path to take then is to per-
form the software change in parallel with the schema change. Then new transactions using the new
schema are generated by the new software. The decision to continue the schema change is then af-
fected by the quality of the new software.

Another option is to ensure that the schema change is backwards compatible. This means that all
transactions using the old schema can still continue. In this case the old transactions will operate
on a view of the database schema instead of directly on the tables of the database.

Using soft schema changes must be combined with a check that avoids circular triggers. Otherwise
the update on the original table will trigger an update on the new table. This update will in its turn
trigger another update on the original table. This must be avoided by keeping track of who origi-
nated the update.

Create new tables, attributes, foreign keys and triggers

Scan Old Schema to update new Schema entities

Run a set of test transactions on new schema

Is New
Schema
OK? Remove New Schema entities

No

All transactions use New Schema
Old transactions execute until
completed

Remove Old Schema entities

Figure 10-2Complex Schema Change

Phase 1:

Phase 2:

Phase 3:

Phase 5:

Phase 4:

Phase 5:

Yes

- 179 -

10.4.2 Change Attributes

In this case it depends on type of change whether the change is soft or hard. We will here consider
only changes that occur within one table. There are two situations to consider:

i) Adding a new attribute that is derived from old attributes.

ii) Changing attributes by adding some new attributes and at the same time dropping old attributes.

We will show how to perform a change of attributes and adding a derived attribute can be solved
in a similar way.

Phase 1: The first step is to add the new attributes and also to add a method that operates on the old
attributes to update the new attributes. A trigger is installed that on update of the old attributes also
performs an update of the new attributes through the added method. A soft schema change is pos-
sible if the inverse of the method to derive the new attributes exists. If this method exists then it is
added together with a trigger that updates the old attributes through the inverse method when new
attributes are changed.

This is performed as one transaction that changes the schema information. In this transaction the
Saga Table is also updated with the UNDO-information.

Phase 2: Scan all tuples and update new attributes through the added methods. During these oper-
ations the triggers are active. Each update of a tuple by the scan process is treated as a normal user
transaction.

Phase 3: After scanning all tuples in all fragments of the table, the new attributes will exist in all
tuples of the table. Here the method has two directions dependent on if the change is hard or soft.
If an inverse method exists, then old and new transactions can execute on the same tuple in any
order without causing problems, hence the schema change can be soft. In this case the old attributes
could even be kept if the methods and their triggers are kept. If no inverse method exists, then the
schema change must be hard.

The conclusion of this complex schema change is performed as described in the previous section.

10.4.3 Add Index

Adding a secondary index on an already existing table uses only three phases since the index is
new and not used by any old transactions. Thereby as soon as the scan process is completed the
schema can be updated. Creating a secondary index on an empty table is compressed into one
phase.

Phase 1: This phase informs all nodes of the new secondary index through a schema change. In this
phase the secondary index has the state specifying that it is in the building phase. In this state the
secondary index cannot be read.

A special attribute is added to the table that describes whether a tuple has updated the secondary
index yet. If the attribute is defined, the tuple has updated the secondary index and, if not defined,
it has not. A trigger on the table is specified. When a transaction updates the tuple, the secondary
index should be updated if the special attribute is defined. The trigger should be specified such that
inserts always update the secondary index and define this attribute. An entry is inserted into the
Saga Table that specifies the removal of the special attribute, removal of the trigger and removal
of the index in case of aborting the transaction to add an index.

- 180 -

Phase 2: This phase performs the actual creation. This process is actually not started until all old
transactions have completed to ensure that no transaction update the index attribute during the scan
process without the trigger being fired. In this process all tuples are scanned and an entry in the
secondary index is created if the special attribute was not defined.

Phase 3: When the scan processes have been completed, the schema is updated to reflect that the
secondary index is now also readable. This schema change is also soft. The entry in the Saga Table
is removed and so is the special attribute that was defined in phase one. A normal secondary index
has a special trigger on updates of the attributes of the secondary index.

Error handling is simple, if any node fails during the scan process it simply restarts the scan. The
special attribute will specify whether the change on the secondary index was performed. If less re-
covery is needed and instead a faster creation process, then the special attribute could be specified
as volatile (meaning that it is not involved in any recovery operations, opposite to durable). This
means that any failures would necessitate a restart of the creation of the secondary index.

There is no problem in this algorithm if the index is over several tables. Then all tables are scanned
and the same failure handling can be used.

10.4.4 Horisontal Split Table

There are two types of splits possible, the first splits a table horisontally and separates the tuples
into a number of tables dependent on some condition. The second splits the table such that each
tuple is split, the table is vertically split. We will study both the operations to split a table.

The attributes of the new tables could be the same as before the split or combined with other chang-
es that add or drop attributes. Each tuple is sent to one and only one of the new tables. The split is
complicated by foreign keys and secondary indexes. Also updates during the scan process could
change the tuple to belong to another of the new tables. This must be treated in the preparation
phases by triggers. The split is performed in the normal five phases.

Phase 1: In this phase the new tables are created but they are not usable by normal user transactions.
Secondary indexes on the new tables are added. If there are foreign keys in foreign tables that refer
to the original table, these foreign keys must be updated to reflect the split. This is performed by
adding a new foreign key on the foreign tables which should have the same characteristics as the
old foreign key. The original table is also equipped with a foreign key that refers to the tuple that
has been created in the new tables. This foreign key specifies that the tuple in the new table shall
be deleted when the tuple in the old table is deleted. In Figure 10-3 the new schema entities and
their usage is shown. At the start of the split process all new attributes are NULL, the new second-
ary indexes are empty and the new tables are empty. Also the index of the new foreign key is empty
since all foreign keys are equal to NULL at the start.

In this phase also four types of triggers are introduced. These triggers ensure that the foreign keys,
secondary indexes and the new tables are consistent after the scan process.

The first trigger is executed when foreign keys in the foreign tables are updated. When a foreign
key is updated, the referred tuple is checked to also be able to update the new foreign key. If the
new foreign key on the original table contains a NULL value, then the scan process has not reached
this tuple and no special action is needed. Otherwise the value of the foreign key in the original
table is copied to the new foreign key in the foreign table.

- 181 -

The second trigger is executed when the new foreign key in the original table is updated. This up-
date means that all new foreign keys in the foreign tables should also be updated. The tuple key of
the original tuple is used to find those foreign keys that needs to be updated. This trigger is invoked
by the scan process, by inserts and also updates that changes the new table of a tuple.

The third trigger ensures that updates to the table are also performed on the new tables. This means
that when updating the original table, the update is also sent to the affected new table. The trans-
action coordinator must sometimes first read the original table to deduce which of the new tables
are affected by the write operation. These reads should set a write lock to ensure proper concurren-
cy when parallel updates are started on secondary indexes, new tables, foreign keys and so forth.
The updates of the new table also updates the secondary indexes of the new table. The trigger
should be specified such that inserts also inserts into the new table and updates the foreign key of
the original table.

In some cases the update actually affects two new tables when an update of a tuple moves the tuple
to another new table. An example could be that the table is split on the salary attribute. Persons
with salary above 100,000 will be in table New2 and those below 100,000 will be in table New1.
If a person receives a salray increase from 90,000 to 110,00 his record will be moved from New1
to New2.

In this case the update leads to an update of the original table, a delete in one new table, and an
insert in another new table as shown in Figure 10-4 (only primary node is shown in the figure, the
replication is not important in this problem). Also the new foreign key in the original table needs
to be updated to reflect that the tuple has moved to another new table.

Sec.
Index

Sec.
Index

Sec.
Index

FK
Indexes

Sec. Index = Index on Secondary Key
FK Index = Index on Foreign Key

Foreign Table

NF OF
OF = Old Foreign Key
NF = New Foreign Key

FS
FS = Foreign Key to New Tables Original

Table
New
Table I

New
Table II

Figure 10-3Horisontal Split of a Table

TC

P(Orig)P(New1) P(New2)

R(W) Update
Delete Insert

Other replicas Other replicas Other replicas

R(W) = Read, set Write Lock

Figure 10-4Update that changes
table identity of tuple in new tables

P(x) = Primary node of x

- 182 -

Finally the fourth trigger is used by transactions using the new tables. These updates must also be
propagated to the original table. This is performed by using the foreign key in the new table that
refers to the original tuple in the original table. Inserts into the new table should also be performed
in the original table.

All of these changes are made as one transaction to change the schema information and an entry in
the Saga Table is also created that represents the UNDO-information. The schema change is soft.
This information specifies the attributes, tables, foreign keys and secondary indexes that should be
removed if the complex schema change is aborted.

Phase 2: When the triggers, the new indexes and the new foreign keys have been inserted, then the
scan processes can start. It scans the original table and inserts the tuples into the new tables. When
a tuple is read from the original table and inserted into the new table, then the foreign key in the
original table is updated to reflect the connection between the original tuple and the new tuple. If
the new foreign key of the original table was not NULL, then some transaction has already per-
formed the work needed by the scan process and the transaction need not be performed. The update
of the new foreign key in the original table fires the trigger that updates new foreign keys in foreign
tables. Secondary indexes of the new tables are also updated when tuples are inserted, updated and
deleted in the new tables.

When the scan process is completed, the new tables exist, the new foreign keys are updated to re-
flect the new tables, and secondary indexes on the new tables exist. The triggers will ensure that
the original table and the new tables are kept consistent. Now the completion of the schema change
follows the description in section 10.4.1.

Error handling is such that if any of the primary replicas fails during the scan processes, then the
scan process is restarted. The foreign keys in the original table ensures that it is not necessary to
REDO work performed before the node failure.

In some cases it might be desirable that the original secondary index should be kept on all the re-
sulting tables instead of creating a new for each new table. This does not create any special prob-
lems; this secondary index must, however, be created as the others since the entries will refer to
several tables. This index will then be a multi-table index where each entry contains the tuple key
plus a table identifier.

10.4.5 Vertical Split Table

A vertical split is actually simpler than a horisontal split. Foreign keys that now refer to the table
should refer to only one of the tables. This table should keep its table identifier and then there are
no problems with foreign tables. Hence it is not necessary to create this table, it is only necessary
to remove some attributes at the end of the complex schema change.

The next case that caused problems was secondary indexes. When a table is split the secondary
index normally follows only one of the new tables. Hence it is only necessary to update the table
identifier of the secondary index or of the entries in the secondary index. An easy conversion of
the table identifier is thereby needed. If several tables need the same secondary index, then another
secondary index with the same attributes is created that can follow the other table.

If this approach is not feasible it is also possible with a more complex schema change using the
same basic ideas with triggers, transaction and use of foreign keys.

- 183 -

The work is performed in the normal five phases as described in section 10.4.1.

Phase 1: The new tables and their attributes are added to the schema information. A foreign key is
also needed for each of the new tables. These are set to NULL to start with. When the value is not
NULL then the new tuple has been created.

A trigger is needed to ensure that updates on the original table are also reflected in the new tables.
If the foreign keys in the original table is NULL, then no update is needed in the new tables since
the tuple has not been created yet. If a foreign key exists, then all updates on the original table must
also be reflected in the new tables. At insertion the new tables are also updated and the foreign keys
are updated through the trigger. The foreign key must also be defined to delete the new tuples when
the tuple in the old table is deleted.

A similar trigger and foreign key is also placed in the new table to ensure that transactions using
the new table also update the original table.

A complication is possible if the original table contains tuples that create duplicates in the new ta-
ble. In this case updates of the new table must update all tuples which refer to the new tuple.

If a transaction on the original table updates attributes such that the new tuple is also affected, this
must be done with care. If others refer to the same tuple, then the tuple cannot be deleted, only the
reference to the tuple is removed. Thus the update creates a new tuple in the new table. This tuple
might however already exist and, if so, only a reference to this tuple is created.

An entry in the Saga Table is created that ensures that the added attributes, foreign keys, tables and
indexes are removed if the schema change is not to be performed.

Phase 2: This phase contains a scan of the old table that creates the tuple copies in the new tables
and updates the foreign keys in the old table. When inserting into new tables during the scan proc-
ess, the tuple might already exist in the new table. The reason for the split could be that a third nor-
mal form of the tables is needed and then replicated information is removed from the new tables
as shown in Figure 10-5. Thus inserts that find duplicates should not insert any tuple in the new
tables. They should only update the foreign key to refer to the duplicate tuple. Hence duplicates
are removed in the scan process.

The last phase performs the actual schema change to be used by user transactions as described in
section 10.4.1.

NFA B C D A B C

1 4 5
1 2 3

1 2 3
1 2 3
1 4 6
1 5 8

1 2 3
1 4 6
1 5 8

NULL

New TableSplit Table = Original Table

NF = New Foreign Key on Split Table

Figure 10-5Vertical Split of Table

NN

NN = New Foreign Key on New Table

Indexes Not Shown in this figure

- 184 -

10.4.6 Horisontal Merge of Tables

Merging a number of tables horisontally is similar to a horisontal split. The major complexity
comes from the fact that two tuples from the original tables might have an identical tuple key. This
problem occurs when the tuple key is a primary key. When the tuple key is a tuple identifier it con-
tains a table identifier. Thus two tuples in two different tables cannot be equal.

Thereby it can be necessary to include some extra information in the tuple key in the new table.
The description assumes that this problem exists. If the tuple key from the original tables is usable
without risk of duplication (i.e. using a tuple identifier), then the problem is simpler. In this case
the tuple key of the original tables and the new table also functions as a foreign key between the
original tables and the new table. Those foreign keys that refer to only one of the original tables
need only a change of the table identifier that the foreign key refers to. If they refer to both and the
foreign key includes some table identifier, then this needs to be removed or changed during the
merge as described below.

Phase 1: The new table is created with its secondary indexes and its attributes. A foreign key to the
original tables is needed. The original tables need a foreign key to the new table. Foreign tables
referring to the original tables must also be equipped with a new foreign key that refers to the new
table.

A trigger is set on the original tables such that updates on them are also propagated to the new table
if the foreign key of the original table is not NULL. Insert transactions always update both the orig-
inal table and the new table through this trigger to simplify the scan process.

A trigger is also set on updates of the foreign key attribute in the foreign tables. This trigger follows
the updated foreign key to the original table and reads the new foreign key to update the new for-
eign key in the foreign table.

A trigger is set on updates of the new table to ensure that the original table is kept consistent with
the new table.

Sec.
Index

Sec.
Index

Sec.
Index

FK
Indexes

Sec. Index = Index on Secondary Key
FK Index = Index on Foreign Key

Foreign Table

NF OF
OF = Old Foreign Key
NF = New Foreign Key

FS

FS = Foreign Key to New Tables

New
Table

Original
Table I

Original
Table II

Figure 10-6Horisontal Merge of Tables

- 185 -

As usual an entry in the Saga Table is also created that provides UNDO-information to remove all
new foreign keys, tables, indexes and attributes.

Phase 2: The old tables are scanned and the tuples are copied to the new table if the foreign key is
not NULL.

Then the normal completion is performed as described in section 10.4.1.

10.4.7 Vertical Merge of Tables

A vertical merge of a number of tables can be seen as adding a number of attributes to an already
existing table, called Merge Table, and derive the attribute values from an old table, called Origi-
nating Table. The Originating Table can then either be dropped after the merge or kept. To perform
the merge the tables must either have the same tuple key or the Merge Table must have a foreign
key to the Originating Table. The situation with a common tuple key can actually be seen as a spe-
cial case of a foreign key. This solution also works if there are more than one Originating Table.

Foreign keys to the Merge Table need not be handled at all since the table remains and the tuples
still have the same tuple key. Foreign keys to the Originating Table can be handled in several ways.
If the Originating Table is not dropped after the merge, then no action at all is needed. If the Orig-
inating Table is dropped, then also the foreign keys might be dropped. The foreign keys could also
be moved to the Merge Table. In the description below we assume that the Originating Table is
kept and that no action is needed on foreign keys referring to this table.

The merge is performed in the three phases since the change only installs new attributes and does
not remove any attributes. Thereby as soon as the scan process is completed, new transactions can
start using the new attributes.

Phase 1: Add the new attributes to the Merge Table. Also, a similar attribute as used in adding an
index is used. This attribute is NULL if the tuple has been copied from the old table, otherwise it
is NOT NULL without any specific value. A trigger on updates of the Originating Table is speci-
fied. Updates of the Originating Table thereby affect all tuples in the Merge Table that refer to the
updated tuple. During such an update also the attribute which specifies whether the copy has been
performed is set. Deletion of a tuple in the Originating Table should set new attribute values to
NULL in all the tuples that referred to the deleted tuple.

Phase 2: The Merge Table is scanned and in each tuple the new attributes are updated by using the
foreign key to access the Originating Table. Each tuple update is one transaction.

FKA B C D A B C

1 4 5
1 4 7

1 2 3
- - -
- - -
- - -

1 2 3
1 4 6
1 5 8

Merge Table

New attributes of Merge Table

1 4 5
1 4 7

Originating Table

A,B,C,D = Attributes on Merge Table

FK = Existing Foreign Key
to the Originating Table

Figure 10-7Vertical Merge of Tables

- 186 -

Phase 3: When the scan is completed, the schema change can be performed. The schema change
can be made soft. The schema change includes dropping if necessary Originating Table, dropping
the triggers of phase one and so forth. It also includes deleting the entry in the Saga Table.

10.5 Schema Changes in the Backup System

The only schema changes that actually affect the backup system are changes to tables and at-
tributes. These affect the backup system since new attributes must be represented in the storage
structures and new tables must be handled both with a number of new log channels and new storage
structures. The rest of the schema changes are only necessary for updating the schema information.
The schema information is not used to perform any checks in the backup system, if not requested
to do so by the application. These checks are performed by the primary system. It is, however, nec-
essary to ensure that updates to schema information are serialised with updates to the application
information.

10.5.1 Schema Information in the Backup System

It is actually desirable to have two types of schema information in the backup system. Activated
schema information and deactivated schema information. Deactivated schema information is acti-
vated in case the backup system is promoted to primary system. Actually activated schema infor-
mation could also be marked to indicate that it is only used in a backup system. This type of schema
information is deactivated when the backup system is promoted to primary system.

An example of deactivated schema information could be all types of constraints that are performed
in the primary system and not deemed necessary to perform in the backup system as well. A ma-
terialised view that represents statistics used by management systems is an example of information
that could be marked as only active for the backup system. The idea is to move processing power
from the primary system to the backup system. Care must, however, be taken here since the backup
system is not allowed to abort transactions in failure cases. The only possibility to affect the pri-
mary system is to report failures that cause the promotion of the backup system to primary system.

The primary system could also contain schema information that is not replicated in the backup sys-
tem. An example of this is the special attribute used when creating a secondary index. Secondary
indexes are independent of each other in different systems. Each system defines its own set of in-
dexes. Normally they would have the same because of requirements by the application. But from
a database point of view it is not necessary for them to be equal.

10.5.2 Log Channel of Schema Information

To send transactions to the backup system a log channel is needed for all fragments. We define the
schema information as one fragment. The version number is then used as the ticket number. All
write transactions, including their read operations should be sent in this log channel too.

Instead each transaction specifies which schema version it has read. The log records also specify
the attributes used. All log records are sent in a log channel that specifies the fragment and the table
of the log records, hence the tables used are defined. Using the schema version and the attribute
identity the actual attribute to update can be derived. The problem is that attribute identifiers can
be reused after deletion of an attribute. Since log records only contain attribute identity and no at-
tribute name the schema version must also be specified to deduce which attributes is to be updated.

- 187 -

Actually by ensuring that attribute identities cannot be reused until the previous user of the attribute
identity is dropped the only schema information needed is the information that specifies how at-
tributes are stored.

10.5.3 Simple Schema Changes

The schema changes that are important in the backup system are those adding/dropping tables and
attributes. These affect the execution in the backup system. The other operations that affect schema
information are only performed to replicate schema information so that the backup system can be
used as primary system if needed. Much of this information is deactivated in the backup system
until promotion to primary system.

When a table is added, all fragments need to set up a log channel. After this log records can start
to be shipped to the backup system. Actually these log channels should be set up in phase one, in
the preparatory phase of the schema change.

Dropping of a table and its log channels is not performed until all transactions using it have com-
pleted in all systems.

Attributes are added as part of the preparatory phase and then when the transaction that changes
the schema is committed the transaction is sent in the log channel of the schema information.

Information about dropping of an attribute is sent on the log channel of the schema information.
The actual dropping of the attribute is not performed until the clean up phase. When all software
entities and all backup systems have reported the removal of the attribute, then the attribute identity
can be reused.

10.5.4 Complex Schema Changes

Complex changes use the Saga Table; the Saga Table is part of the schema information and is also
replicated in the backup system. The Saga Table is used at promotion to primary system to UNDO
all changes that were not completed.

10.6 Remarks

The complex schema changes have one drawback and that is consumption of computation resourc-
es such as memory and processing resources. To avoid this is very difficult. One possible method
could be to change one fragment of a table at a time during the complex schema change. This can
only be used if both the old and the new schema can be used with only one copy of the data. Often
this is the case. Of course this also makes the change more complicated and it has impact on many
more low-level details of the database software.

Another method is to install extra hardware when a schema change is needed. Thus it is not neces-
sary to dimension the system for schema changes. Equipment can be temporarily used when per-
forming schema changes. To achieve this it must be possible to perform on-line reorganisation of
the system without disturbance.

A DBMS which uses the methods described in thesis should have a very efficient implementation
of triggers.

- 188 -

10.7 Related Work

Most research articles on schema changes are dealing with schema evolution in object-oriented da-
tabases (e.g. [PET95]).

The concept of soft schema change has not been found in any paper by the author of this thesis. It
is common to treat updates to schema information as a normal transaction. This means that only
one schema version can be active at a time, thus a hard schema change is achieved. A similar con-
cept, soft software change, is found in [NILS92]. Software changes which involves changes of data
structures are very similar in nature to schema changes. Thus many ideas can be reused in the area
of schema changes.

In [Salzberg92] a number of small transactions are used to change the Record ID of tuples. If the
Record ID contains a physical page ID, then it becomes very difficult to reorganise the database.
By using a transaction per record it was possible to perform changes of Record ID in a seamless
fashion. [Dayal90] describes in general how triggers and transactions can be combined to perform
long-running transactions. In this thesis we have applied those approaches to solve the problem
with complex schema changes, i.e. schema changes which require a database reorganisation.

[Mohan92a] uses a different method to create indexes in an on-line system. They use a log-based
approach. Triggers combined with transactions and log-based approaches are two techniques that
are the most common techniques to perform on-line reorganisations. In this thesis we have almost
exclusively used triggers and transactions. The reason is its simplicity. The solutions becomes very
elegant and easy to understand.

Combining soft schema changes with network redundancy is even more a new area. In [KING91]
it is briefly mentioned that schema changes will use a separate log channel between the primary
system and the backup system. It is implicit in this paper that only hard schema changes are used
since a normal transaction is used to update schema information.

Our method have used the SAGA concept [Garcia87] to handle schema changes in conjunction
with system crashes and network redundancy. A SAGA table is used to find UNDO and REDO-
information of ongoing complex schema changes after a crash of a system. UNDO of complex
schema changes can often be performed by simply dropping the tables and attributes that were cre-
ated in the first phase. Thus UNDO of complex schema changes is considerably simpler than the
general SAGAs.

[Ferrandina95] describes the implementation of schema changes in O2. Some complex schema
changes can be handled by using a combination of user-defined conversion functions and migra-
tion functions. The schema change is performed in a different order than in this thesis. It begins by
performing the schema change. The actual change of the objects is performed when an object ac-
tually access an object. The possibility to perform soft schema changes is not mentioned and it is
therefore assumed that only hard schema changes are supported. In our method the conversion
functions are applied before the data becomes accessible to the applications. This provides the pos-
sibility to execute test transactions before the schema change is generally accessible to all applica-
tions. Our method also briefly describes how schema change is integrated with software change.

[Lerner90][Lerner94] treats complex schema changes. It develops a special-purpose language that
specifies the propagation of data from the old schema to the new schema. In [Clamen94] a distinc-
tion is made between change propagation through conversion and through emulation. Conversion

- 189 -

actually converts the old objects into new objects and emulation provides the new or old schema
through an interface that converts to the proper schema. The method in this thesis makes it possible
to use both of those approaches. If software can be changed simultaneously with the schema, then
a conversion is most appropriate. If old software needs to function even after changes, then emu-
lation is more appropriate. Emulation in this approach would mean that the old schema (or new
schema) is provided through views, methods and stored procedures.

[Kim88] treats versions of schemas. Our approach provides the possibility to use several schema
versions concurrently. In this respect it is similar to [Kim88]. [Kim88] does, however, only treat
simple schema changes (adding/removing attributes, adding/removing classes/superclasses/sub-
lasses). There is no discussion on conversion functions in [Kim88].

Most databases support simple schema changes that add/remove tables, attributes and methods.

DBS is a semi-relational database used in AXE [DBS91]. It supports on-line hard schema changes
which are rather complex. It also does so by providing a special-purpose language, FUSQL, that
reads data from the old schema and transfers it to the new schema.

Very few reports have been written concerning how to perform complex schema changes without
stopping the system. Many reports have dealt with the managerial problems in maintaining sche-
mas and which schema evolutions that are allowed. Most of the work on on-line schema changes
has been performed in implementations where this is essential and these systems are rarely report-
ed in the literature.

The solution in this section has received inspiration from work in software change management.
Similar ideas to these can be found in [NILS92].

This section contains results rarely reported of very complex schema changes. There are many
items that need to be developed further, such as a complete check of all possible schema evolutions
if they can be supported. It should be possible to specify the algorithms in this section in a rather
simple fashion since they only deal with changes on tables, attributes, foreign keys and indexes.
The resulting implementation of the algorithms can then be left to the system.

Creating indexes on-line is discussed in a number of reports [IBM96][Zou96][Hvasshovd96] and
many more. Some of those approaches handle the creation of an index without any outage. Our
approach does so by using the concept derived from [CHAMB92] with some minor modifications.

10.8 Conclusion

A number of protocols to change schemas have been developed. It is seen that the same general
approach can handle very complex schema changes. This approach therefore has a good chance of
being usable for any type of schema change. This solution has been derived by making use of a set
of related simple schema changes together with a set of scan processes that create the new tables,
attributes, indexes and foreign keys according to the new schema.

There are many more possible changes that could be made. An important issue to consider is when
combining these different schema changes in the same schema change transaction. There might be
side-effects in these combinations that are not easily predicted. Therefore there are many open re-
search issues in this area.

- 190 -

11 A new variant of LH*, LH3

In this section we will describe LH3, an extension of LH*LH as described in [KARL96]. LH*LH
is an extension of LH* described in [Litwin93a] and LH* is a distributed version of LH [Litwin80].
The main difference is the treatment of the local linear hashing function. Hence this idea could also

be used to improve the data structure of linear hashing. Extensions of the original idea on LH3 has
been developed in cooperation with Ataullah Dabaghi who has reported more details of the imple-

mentation of LH3 in [ATTA98].

The data structure could also be extended with storage of tuples in the index. Using that approach
it would be possible to find tuples with one disk read. Our main focus is, however, to decrease the
number of cache misses when using an index in main memory. Accessing storage structures is very
likely to cause a cache miss at the first access. The cost of cache misses are equivalent to the cost
of hundreds of assembler instructions without cache misses in next generation processors. Thus it
is important to decrease the number of cache misses as well as the number of disk I/Os.

Before describing the extension of LH*LH we will briefly describe LH, LH* and LH*LH. LH is
a hash algorithm which provides a dynamic growth and decline without any hiccups. This is
achieved by performing the growth in small steps rather than as one big step. A hash function is
used on a key which provides a hash value. This hash value should now be mapped to a bucket. If
the number of buckets is 390, then we could use the following algorithm to determine the bucket.

A bitwise AND of the hash value and 255 (28-1), is performed. Hence we only keep the eight least
significant bits of the hash value.

If the resulting value was equal to or greater than 390-256, then the resulting value is used as the
bucket number. If the resulting value is smaller than 390-256, then we perform a new bitwise AND

with 511 (29-1 = 0x000001FF) and the hash value. This value is used as the bucket number.

Each time a key is added, we increase a counter by one and each time we remove a key we decrease
the same counter by one. When the counter goes over a certain threshold, then the next bucket is
split and when the counter goes below a certain threshold two buckets are merged.

In the example above bucket number 390-256 = 134 is the next bucket to be split. If a merge occurs
instead then bucket 133 and 389 are merged.

A split of a bucket occurs by calculating a hash value on each key in the bucket, then performing
a bitwise AND of the hash value and 256 (0x00000100). Those keys that then get the value 0 are
kept in this bucket and the others are moved to bucket number 390.

The major extension of LH* compared to LH is that a bucket is a processor node instead of a local
data structure (e.g. a page). LH* also involves more advanced schemes to perform the splits and
how the clients can know the parameters of the LH* algorithm. These features of LH* have not
been used in this thesis since all splits of fragments are performed as an atomic action.

LH*LH extends LH* by also using a LH scheme internally in the processor node. The same hash
value is still used and it is necessary to be careful in how to use the hash value bits. They are used

in the same way as in LH3; the extension of LH3 over LH*LH is to use a static number of bits of
the hash value to find an even more direct hit of the element.

- 191 -

11.1 Handling of Hash Value Bits

In Figure 11-1 it is shown how the bits of the hash value are used in the LH3 variant. As the name
suggests, the hash value is used in three steps. The first step is to access the LH* bits. These bits
specify the fragment identifier of the tuple. By using the distribution information this can be used
to find all replicas of the fragment.

Normal LH* uses a static distribution. Thus there is a simple function that translates the LH* bits
into a node address. The requirements on reliability means that the possibility to dynamically move

fragments must be available. Thereby in LH3 the LH* bits are used as a fragment identifier. The
fragment identifier is used as an index into a table. From this table all replicas of the fragment can
be found as shown in Figure 11-2.

The next step is to use the LH bits. These are used as a pointer in a simple directory as shown in
Figure 11-2. The directory is a simple array of page identifiers.

The page index is used to find the correct buffer on the correct page by a predefined calculation.
The page index has a fixed number of bits. As an example assume that the page index is 6 bits and
the page size is 8 kByte. The page index of 6 bits means that 64 buckets are stored in each page.

Bucket splits and merges are performed as with a normal linear hashing function where the LH bits
and the page index together form the bits of the local linear hashing function.

The number of bits for the page index is fixed at creation of the table. It should be fixed to a large
value as the number of tuples in the table will be large. Otherwise six is a good figure which always
allocates a page of 8 kByte at a time when more memory is needed. The number of LH bits dynam-
ically grows and shrinks without affecting the number of LH* bits. This is the reason why these
bits reside on the left side of the LH* bits. LH* bits can also grow and shrink. When the number
of LH* bits grows, the number of LH bits decreases. Actually when an LH* split occurs, one bit
from the LH bits is transferred from the LH bits to the LH* bits.

k bits

Page index

i bits

LH* bits

j bits

LH bits

32/64-i-j-k bits

32/64 bits Hash value

Not used bits

Figure 11-1Use of Hash value bits

LH* bits Fragment Table

Backup Node

Stand-by Node

Directory
PageID

Index PagesLH bits

Page index

Primary Node

Buffer

Buffer

Figure 11-2Use of Hash Value bits in LH3

- 192 -

What will happen at a split is simply that all pages with an even LH bit number will stay and the
pages with an odd LH bit number will be moved to the new storage node. Thus it is easy to see how
easy it is to split a fragment. It is simply a matter of splitting the directory.

From this approach we can see that finding the correct bucket does not entail searches in any large
data structures. Only if the number of fragments grows very large can this become a problem.
When the local index is searched, the directory is accessed. The directory is only a few kByte at
most and should normally be found in the cache memory. The access to the pages is likely to entail
a cache miss. In this case prefetching can be performed to ensure that the full bucket is fetched from
main memory. Thereby only one cache miss is needed to access the index. Of course many more
data structures are needed to find the proper directory and page and so forth. Details of these data
structures have been jointly developed with Ataullah Dabaghi and are found in [ATTA97]. How-
ever these, too, access small data structures that are often used and should normally be found in the
cache memory.

11.2 Data Structure of LH3

Ordinary linear hashing used a directory to find a linked list of disk pages. No special handling of
the internal structure of the pages was described [Litwin80]. In [Larson88] an implementation of
linear hashing for main memory was developed. It used a data structure as shown in Figure 11-3.
The lowest bits of the linear hashing value are used as a pointer in the segment table and the higher
bits are used as a pointer in the directory table. Then the elements are traversed and the key is com-
pared to the searched key. This is obviously a very fast method to find data in main memory as
long as the linked list does not become too long.

Directory Segment

Segment

Segment

Element Element Element

Element Element Element

Element

Element Element Element

Element Element

Figure 11-3Data Structure of Linear Hashing
in main memory as shown in [Larson88]

- 193 -

By analysing the data structures using a cached computer architecture, we find that the directory
should be in the cache most of the time. The segments are, however, less likely to be found in the
caches since there are many segments in each hash table. In a large table consisting of 100,000
records there are about 100 segments of 1 kByte each. This means that there could easily be several
MBytes of segments in one processor node with GBytes of memory. The elements are not likely
to be found in the cache memory and so each element access is likely to cause a cache miss. There-
by the performance of this search is hampered by a number of cache misses that will cost perform-
ance in modern processor architectures.

To solve the problem with a cache miss for each element access we put a number of elements into
a container. This container can then be more suitable in size to the size of cache lines. The problem
with the possible cahe cmiss on segment access is solved by the page index part of the linear hash
value. Each bucket has a predefined place in a page which can easily be calculated. One could de-
scribe this solution as a method where the elements are actually placed in the segment. The data
structure becomes somewhat more complex but executes faster. The resulting data structure is
shown in Figure 11-4.

By analysing this data structure we see that the directory structure is still likely to be found in the
cache memory. The accesses to the containers are likely to be cache misses. Since the probability
of a cache miss is so high, one could also use containers that are larger than cache lines. Then the
full container is prefetched from main memory to the cache memory to ensure that there is only
one cache miss per container access. Thus the number of cache misses using this data structures
has been substantially decreased compared to the normal data structure.

The use of containers with a fixed size can easily lead to a waste of memory. The reason of that is
that many containers will contain zero or only one element and thus waste a lot of memory. To
counter this problem each container of fixed size can have two containers. One container in the
beginning and one at the end. This is described in more detail in section 11.4.3.

A side benefit is that we also get a data structure that is usable for disk access as well. It is even
possible to pursue this idea and also integrate the tuples into this structure. This would, however,
increase the size of the elements so that the point of using containers is lost. Also almost all indexes
except the charging database can store all indexes in main memory. Hence it is better to let the in-
dex structure be such that it is very fast to access an element. Then the access of the tuples should
also be very fast with at most one cache miss, see chapter 13.

Directory
Container

Head

ContainerElement ElementHead

Container
Element Element

Element Element Next
Head

Container
Element Element

Element Element Next
Head

Figure 11-4New Data Structure of Linear Hashing

PageID

Index PageLH bits

Page index

- 194 -

A negative effect of this algorithm is that when a bucket is split, it creates more work. In the pre-
vious approach it was enough to relink the elements. The number of cache misses is, however, less
in our method even when splitting. More computing resources are used but these are cheap in next
generation processors as long as no cache misses occur.

11.3 Copy Fragment Protocol

Before we study the details of the data structures we will describe the copy fragment protocol. This
creates some requirements on the data structures of the containers and the elements.

The fragment is created by the primary replica node after executing a state transition protocol
where the system is informed of the new copy. The basic idea of the algorithm to copy a fragment
is rather simple. The sending node sends the fragment, tuple by tuple until the last is sent. When
the last is sent, a new state transition protocol is executed to inform the system of a new copy with
data.

The receiving node receives all write transactions after the state transition protocol has been exe-
cuted. If the tuple has already arrived when a write transaction is performed, it applies the write
transaction to the tuple and if the tuple has not arrived, it ignores the write but sends acknowledge-
ments in all phases of the two-phase commit protocol. Insert operations are always performed in
the new replica. The idea of this protocol is a modification and an extension of the Dynamic Data
Distribution protocol described in [CHAMB92] and the LH*LH bucket transfer protocol described
in [KARL96].

If any of the sender and the receiver node fails during the copy process, the whole copy process is
aborted and must be restarted with new sender and/or receiver nodes.

11.3.1 Alternative Solutions

Another possible solution to the copy fragment protocol is that it is handled by the primary replica
all the time until the copy has been created. This simplifies the action taken by the receiver node
during the copy process. The tricky part is for the primary replica to hand over control of the new
copy to the system. This is performed by a state transition protocol and after performing this, the
new copy is involved in all committed actions after that. The problem is that if a transaction is com-
mitted before the state transition protocol is executed and does not reach the primary replica before
the state transition protocol is completed, then if the primary replica fails before this commit mes-
sage arrives the new copy will never be informed of the commit message. Therefore the new copy
must be able to find out where the coordinator of the transaction is, if the primary replica fails. It
must also be able to find the coordinator before the coordinator flushes the transaction state to the
log. If this happened, it would mean that the data must be locked until the log can be searched to
find the transaction state.

Another solution is that the primary replica can inform the coordinator of the new copy in the pre-
pare phase. This is only necessary at the end of the copy process; when the state transition protocol
is started all outstanding transactions must have added or will add the new copy during the prepare
phase.

- 195 -

11.3.2 Algorithm Descriptions

We show here how to achieve this protocol using our new data structure LH3. The idea is that the

fragment consists of a number of buckets in the LH3 algorithm. One bucket at a time is transferred.
One simple way to proceed would then be to simply lock the bucket and all records within it. Then
after the locks are granted, the tuples are transferred. This creates a simple way to move the
records, yet not locking the whole table.

We will however opt for an even more fine-grain algorithm where one tuple at a time is transferred
and where the copy process will never cause any deadlocks. Deadlocks can occur if a whole bucket
is to be locked since there could be other transactions trying to lock several of the tuples within the
bucket.

During the copy process splits and merges of buckets must be controlled. If the scan process starts
from the first bucket and proceeds to the last, then it is not allowed to merge buckets during the
copy process. The reason is that a merge moves elements to a bucket that is earlier in the list of
buckets as seen in the figure below.

This problem can be overcome by keeping all elements that move backwards in a special list and
thereby ensuring that the tuples that these elements refer to are moved to the new replica. Splits do
not have any problems since elements are always moved to the last bucket.

The receiver does not need to bother about splits and merges. The sender specifies how many buck-
ets it has at the start of the transfer and their fill level. It could also notify the receiver if changes
occur during the transfer. The receiver then sets up the proper number of buckets in his hash table
at the start of the copy process. When all tuples have been received by the receiver, it can again
split or merge a proper amount of buckets to get the proper fill level of the buckets. After this the
split and merge can proceed according to a normal linear hash function.

There are four algorithms that are necessary for this protocol. At both the sender and the receiver,
there must be an algorithm to handle the copy process and an algorithm that handles the write trans-
actions that occur during the copy process. These algorithms are shown below.

Before the loop that transfers the bucket starts there must also be a set-up phase. This phase in-
volves setting up the receiver so that he can understand the messages bearing the tuples when they
arrive. This is necessary if the tuples are transferred as an array of bytes. Then the descriptive in-
formation must be transferred in the set-up phase.

SENDER NODE: SCAN ALGORITHM

Perform set-up between sender and receiver

State Transition Protocol: Create new copy;

0
1
2

n

Copy Process Merge moves element to
earlier buckets

Figure 11-5Problem with merge during Copy Process

- 196 -

Set State of Fragment to ‘Moving’;

Set Tuple state of all tuples to “Not moved”;

WHILE (MORE BUCKETS) DO

 WHILE (MORE TUPLES IN BUCKET) DO

 Acquire Simple Read Lock on Tuple;

 WHEN Lock Granted DO

 IF Tuple State = ‘Not Moved’ THEN

 Read and Send Tuple;

 WAIT FOR Acknowledge from Receiver Node;

 Set Tuple State “Moved”;

 END IF;

 Release Lock;

 END WHENDO;

 END WHILEDO;

 END WHILEDO;

Set State of Fragment to ‘Not Moving’;

State Transition Protocol: New copy created;

RECEIVER NODE: COPY FRAGMENT ALGORITHM

Start when State Transition Protocol: Create new copy discovered

End when State Transition Protocol: New copy created discovered

WHEN (Tuple Received from Sender Node) DO

 IF (Tuple NOT Exist) THEN

 Acquire Exclusive lock;

 Insert Tuple;

 Release Lock;

 ENDIF

 Send Acknowledge to Sender Node;

END WHENDO

The major problem during the copy process is inserts. To ensure that these tuples are not missed
we use the simple method of always performing them in the receiver node. Thereby there is no risk
that the scan process in the sender misses any tuples. To avoid unnecessary work in the copy proc-
ess the sender also makes a “best effort” to ensure that inserted tuples are not transferred. As shown
above the receiver will check for duplicate tuples and thereby sending a tuple already existing in
the receiver is no catastrophe.

- 197 -

The sender node checks the list of nodes involved in the operation to find out if the receiving node
is involved in the transaction. The receiving node could be involved without the sender node know-
ing it due to the commit protocol. As mentioned above there is no harm done in this case. The send-
er will then transfer the tuple in the scan process, which will be discovered by the receiver node as
a duplicate.

SENDER NODE: WRITE TRANSACTION ALGORITHM

IF Insert AND Receiving Node is involved in transaction THEN

 Set Tuple State = ‘Moved’;

ELSE

 Perform Normal Operation;

ENDIF

The receiver node performs all insert operations. It also performs all read/update/delete operations
where the tuple exist since it has arrived previously. Operations on tuples that does not exist since
they have not yet arrived are handled as if they were successful and reported as such to the trans-
action controller. It can ignore these operations since they will be reflected in the tuple when it ar-
rives. This is possible since each tuple copy is a mini-transaction which locks the tuple before mov-
ing it. Thus the copy process is serialised with normal transactions.

RECEIVER NODE: WRITE TRANSACTION ALGORITHM

IF Insert THEN

 Perform Normal Insert;

ELSE IF (Tuple exists) AND (Update OR Delete) THEN

 Perform normal write transaction;

ELSE IF (Tuple not exists) AND (Update or Delete) THEN

 Ignore Writes, send positive acknowledgements in all two-phase commit messages;

END IF

11.4 Detailed Data Description

Now that we have described the algorithm to copy a fragment we are prepared to describe the de-
tails of the data in the containers and in the elements.

11.4.1 Container Data

To better understand the details of the container we will describe its data structure in more detail.
The header contains four information items. It contains the length of the container to allow for var-
iable container length. The maximum size of the container is 256 Bytes with a 6-bit container
length since space is always allocated in at least 4 byte chunks. The header has an indicator that
specifies if the next container is on the same page or on an overflow page. If the container is on
another page, then the next pointer contains a page index and a page reference. This means that 2
GBytes of pages can be accessed with this next pointer. If this is not enough in the future, the next
pointer could also be a pointer into a table of page references. This table is specific for each frag-

- 198 -

ment. In this case each fragment can address up to 2 GBytes of overflow pages. If even this is not
enough, then the header must be extended to be 8 bytes instead of 4 bytes. Another option is also
to use a larger page size of the overflow pages.

The container must have an indicator of whether there are more containers in this bucket. To indi-
cate that it is the last container is achieved by setting the bit for next pointer on the same page and
the bit for last container. This method is used to save bits in the container header. The reference to
an overflow page ID is mapped through a table to a physical page ID. This makes it possible to
have location and replication independent index. In a system restart several fragments which were
created in different nodes can be created in the same node.

Then there are a number of elements in the container.

Overflow pages are simple to handle since each page has its own next pointer. Thus one overflow
page can be used at a time. To simplify recovery there should, however, be one overflow page per
fragment. Otherwise the fragment cannot be recovered until all overflow pages have been recov-
ered.

11.4.2 Element Data

The element data structure is shown in Figure 11-7. To ensure a small overhead we use a cameolont
data structure. If the tuple is not locked, then there is no need of a transaction pointer and thereby
the full 32 bit header can be used for hash value, lock mode, tuple status, lock status, local key
length and tuple key length. When the tuple is locked, then a transaction pointer is needed. Also to
enable fast searching through the hash table we need to keep the local and the tuple key length even
when the tuple is locked. To make place for a transaction pointer we simply move the hash value,
the tuple status and the lock mode to the transaction record. Thereby we get 23 bits to use as a trans-
action pointer which should be more than enough. The transaction pointer is used to find the trans-
action record of the lock owner and the lock queue is found from the transaction record.

Container
Length
6 bits

Element
1

ElementOverflow
Page ID
18 bits

Figure 11-6Container Data Structure assuming 8 kByte Pages

n
1 bit = 0

Next Pointer
on same Page

Container
Length
6 bits

Element
1

ElementNext
Pointer
7 bits

n
1 bit = 1

Next Pointer
on same Page

Page
Index
7 bits

Last
Container
1 bit

Unused

17 bits

Tuple
Status
4 bit

Lock
Status
1 bits

Hash
Value
19 bits

Local
Key

Tuple
Key

Figure 11-7Element Data Structure

Tuple Key
Length
4 bits

Local Key
Length
4 bits

Transaction
Pointer
23 bits

Lock
Status
1 bits

Local
Key

Tuple
Key

Tuple Key
Length
4 bits

Local Key
Length
4 bits

Lock Status =
Unlocked

Lock Status =
Locked

Transaction Record
Lock
Mode

Hash
Value

Tuple
Status

- 199 -

The tuple status is used by the copy fragment protocol to indicate whether the tuple has moved or
not. To ensure that more than one concurrent copy process can proceed simultaneously we have
four bits. Thereby four concurrent copy processes can be handled simultaneously. Each copy proc-
ess can also handle sending the fragment to more than one node.

The lock status contains information on whether the tuple is locked and, if locked, the lock mode
specifies the type of lock. The local key length contains the length of the local key. The local key
is the reference used to find the tuple within this machine. It contains a page identifier and a page
index, the size of the local key is mostly 4 but needs to be 8 bytes with very large database tables.
If the index is used as a secondary index or if the index is the table, then the local key is the sought
attribute. The tuple key length contains the length of the tuple key. Both these lengths are counted
in number of words of 4 bytes. If the size is zero, this means that the first word of the key is the
length of the key. Thereby keys of any length can be handled although short keys are handled very
efficiently in terms of storage overhead.

The hash value is also placed in the element, the reason being to speed up split and merge process-
ing. This optimisation of linear hashing was suggested in [PETT95]. Since storing the full hash val-
ue for this purpose creates a large memory overhead, we are only storing a window of nineteen bits
of the hash value. This should be enough for most purposes. The k bits and the minimum number
of LH* bits (e.g. 3 bits for 8 fragments) are never needed by the split processing. Also most frag-
ments use a minimum number of entries in the directory table. This should be 8 bits even in the
minimum case. Then the 19 bits can be used to grow the hash table 524288 times before the hash
value window is missed. Thereby the window should only be missed when using 64-bit hash values
and after a tremendous growth of the index.

If the window gets misplaced, the window can be moved. This is performed by first setting the
fragment status so that the window of the hash value bits are not used. This means that the hash
value needs to be computed during split and merge processing. Also the fragment record describes
the new window. This is used by insert operations when storing elements.

Then a background process starts to move the window. One bucket at a time is processed and the
window is changed by computing the hash value and storing the new window. This can be per-
formed even if the element is locked since it does not interfere with transaction processing.

When the background process has completed, the status of the fragment is updated again and the
new window of the hash value can be used by split and merge processing.

11.4.3 Page Memory Handling

Not all buckets in a hash table are of the same size and we are preallocating storage for all buckets.
This makes it necessary to be careful with the memory area of the pages. At allocation of a new
page for storage of buckets, all buckets are assigned to their positions and at least 4 bytes for the

k bits

Page index

i bits

LH* bits

j bits

LH bits

32/64-i-j-k bits

Unused bits

Figure 11-8Use of Hash Value Window for Split/Merge Processing
19 bits

Bits used by
Split/Merge Processing

- 200 -

container header will always be there. When elements are inserted, the access manager tries to al-
locate more memory consecutively up to a limit. If this is successful, the size of the container sim-
ply grows by the allocated amount.

The limit is the space between consecutive containers. This spacing should be dependent on the
cache line size of the computer. In current computers the cache line size is mostly 64 bytes and this
would be a suitable spacing. Most processors (e.g. UltraSparc-II and Alpha 21164) can handle at
least two outstanding cache misses simultaneously and hence we can use 128 bytes instead in cur-
rent systems. In future generations the cache line size will increase and then the spacing can also
increase. It is, however, not appropriate to increase it so that the processing time becomes larger
than the cache miss time. Thereby the spacing should be carefully tuned in each generation. There
is also a need to have a header area in each page; this has the advantage that we also get an overflow
area. Thereby the spacing should be slightly smaller than 128 bytes.

With 16-byte key size, as is the most common in the benchmarks defined, a normal element size
will be 24 bytes with a 4-byte local key. Thereby the size of zero elements is only the first four
bytes, the size of one element would be 28 bytes, two elements 52 bytes, three elements 76 bytes,
four elements 100 bytes and five elements 124 bytes. Using 8-byte keys we would have seven keys
in 112 bytes. Using 4 byte keys we would have ten keys in 124 bytes and using 12-byte keys we
would have six keys in 124 bytes.

From this discussion we derive that 124 bytes is a suitable spacing. This allows room for a 8 byte
header of the page and an overflow area consisting of two 124-byte buffers.

Each 124-byte buffer can contain two containers. One container grows from the beginning, re-
ferred to as the left container, and the other one grows from the end of the buffer, referred to as the
right container. The right containers are used for overflow containers. When a buffer has a contain-
er in both ends, it is no longer on any free list. The free space within the buffer is handled locally
by the two containers.

When a page is allocated, there is a free list of the two 124 byte free buffers and another free list
with the right containers. When one of the two overflow buffers are allocated, its right side is
moved to the free list of the right containers.

When the left container grows over the high limit, then the right container is removed from the free
list. The left container can then grow all the way up to 124 bytes. The limit should be about 60
bytes.When the left container grows below the low limit the right side of the container is put back
on the free list. The page data structure is shown in Figure 11-9.

The page data structure gives us two different containers. The left container grows to the right and
the right container grows to the left. They look the same but grow in different directions.

The page size can easily be extended to larger sizes. If the size is 32 kBytes then there will be 256
containers, 8 free containers and a page header of 32 bytes. When the cache line size grows, the
buffer size can also grow. Another almost perfect fit comes when using a buffer size of 244 bytes.
In this case with 4-byte tuple keys there will be 20 keys in each container, with 8 byte tuple keys
there will be 15 keys in each container, with 12-byte keys there will 12 keys in each container, with
16 byte keys there will be 10 keys in each container and in all cases there is a perfect fit.

- 201 -

11.4.4 Element Split between Containers

The buckets are organised in a linked list of containers as described above. An important reflection
is that an element can cross the boundary of two or more containers. This makes it easier to handle
large keys in this data structure. With small keys in the table it could, however, be an option to
avoid this element split. Catering for the element split will always cost a little bit in performance
and is therefore a suitable parameter of the hash table.

No marker indicating that a container begins in the middle of an element is necessary. The reason
is that all processing starts at the first container and proceeds to the next. During this processing
the context can be held in local variables so that no markers are needed.

11.4.5 Overflow Handling

The overflow pages are arranged in the same manner as the original pages. An overflow page can
be used by any page since the container has a page reference in the next pointer. To simplify re-
covery it is, however, desirable that an overflow page is only used by one fragment. This makes
overflow handling rather simple since one overflow page at a time is allocated.

11.5 Split and Join Handling

11.5.1 Local Bucket Split and Join

Instead of using a maximum load factor with the number of elements in the fragment, the element
sizes are used as the maximum load factor. With a load factor of 85% this gives 105 bytes per buck-
et as the maximum load factor. When more than 105 bytes have been added, a bucket split is ini-
tiated and when the load have decreased with 105 bytes a bucket join is initiated.

When a bucket is split using Larson’s method [Larson88], it is only necessary to rearrange the
pointers. Thereby the amount of instructions to perform this action should be small. The number
of cache misses can, however, be substantial since it is necessary to access many different memory
areas. With the new method, the elements that are moved during the split must be copied to the

Head
4 byte 124 byte

Page Header 8 bytes
Head
4 byte 124 byte

Head
4 byte 124 byte

1

2

64

124 byte1

8 kByte Page Size

Figure 11-9Page Data Structure
Free Buffers

Static Bucket Buffers

2 124 byte

LimitLimit
HighLow

- 202 -

new container. The bucket that is split must be compressed also. This means that the new method
uses more instructions than Larsons method. However, most of these instructions are performed in
a small number of cache lines and thus only a few cache misses should occur.

11.5.2 Fragment Split and Join

Splitting a fragment is very easy with this model. It is simply a matter of splitting the directory. All
directory entries that end in a zero bit stay in the same directory in a new position and those ending
with a one bit move to the new directory. Even with a very large data structure consisting of 2.000
page references (16 MB if one page per reference, 1 GByte if 64 pages per reference), this split
only affects the original directory of size 8 kBytes and the new directory of size 4 kBytes. The proc-
ess is a simple copy process and is therefore performed in less than 100 microseconds. The hash
table must then remember that it has been split until the split information has been sent to all nodes
in the distributed database.

11.6 Lock Handling

Since the lock data structure is combined with the index structure, it is essential that all accesses
to the tuples go through the index of the tuple key. Locks on tuples stored on disk can also be han-
dled in this manner by ensuring that disk pages are not removed from main memory until all locks
on the page are released. Otherwise the same data structure could be used, where only the locked
tuples are in a main memory index as in a normal lock data structure [Gray93].

11.7 Secondary Indexes

11.7.1 Unique Secondary Index

When this structure is used as unique secondary index, the only difference is that the tuple key is
the secondary key and the local key is the sought tuple key.

11.7.2 Non-unique Secondary Index

There are two options here, either the index is used only as a non-unique secondary index or it is
used as a non-unique primary index. If it is used as a non-unique index then the major difference
is that there can be several elements with the same key. There are different ways to handle this.
Either as above with a list of all elements, otherwise there could be a search structure within each
bucket.

If the index is used as the primary access to the tuples, the index is used as a normal index of the

tuple key. The difference is that tuple key specified in LH3 consists of both the tuple key of the
table and a secondary key. It is necessary to provide both the tuple key and the secondary key to
be able to find a tuple.

11.8 Handling of Physiological UNDO Log

As shown in chapter 9 it is necessary to have a physiological UNDO log in connection with a fuzzy
checkpoint to be able to create an action-consistent checkpoint that can be used by a logical frag-
ment log. This must be supported by all index structures in the data server.

- 203 -

When the system crashes, all ongoing transactions are aborted. Thereby when the system restarts
no locks on tuples should be set. The information stored in our index structures is basically a map-
ping from a key to a local key in connection with lock information of the key.

The actions that need to be logged are then inserts of a key in a container, deletion of a key from a
container, locking a key in a container, deleting an overflow container, creating an overflow con-
tainer, allocating an overflow page, deallocating an overflow page, moving elements between con-
tainers (at split and merge), and when elements are updated (e.g. when the local key is updated).

Unlocking a key is not necessary to log since this is mandatory after a crash. If a key is unlocked,
the lock key entry can be removed from the UNDO log. To ensure that all locks are removed at
restart the locks at the time of the checkpoint are logged in the UNDO log. The last item in the
UNDO log of a checkpoint should also specify the size of the directory at the time of the check-
point and also the size of the directory of the overflow pages. Accesses to overflow pages go
through a directory to ensure that checkpoints are location independent.

11.9 Conclusion

This structure of linear hashing is especially suitable for computers with cache memory where a
cache miss is equivalent to a large number of executed processor instructions. It also fits small key
sizes, 4-16 byte keys as is mostly used in benchmarks developed here and other benchmarks used.
It also reflects most real life applications where there is normally a rather short key. It is, however,
also good for use with larger keys. Variable sized keys are also supported.

However, indexes for, for instance, http-addresses and file names are better provided by other in-
dex types. Http-addresses are preferably handled by a B-tree structure with compression as will be
shown in Chapter 12. The B-tree structure with compression also results in a much smaller storage
space and this linear hashing structure is then used for fast access and the B-tree structure can be
used for small storage overhead.

Indexes of telephone numbers use this structure if speed is the most important and use the com-
pressed B-tree structure if memory space is more important.

The optional parts of the hash table are stored in a record describing the hash table. This record is
accessed during all types of accesses. The number of these records is fairly small, so these accesses
should not incur very many cache misses.

This linear hashing method is used for all types of tuple keys, that is primary keys and tuple iden-
tifiers. If a primary key is very long, then a tuple identifier should be assigned as tuple key instead.
The primary key can then be a secondary key of a unique index instead. This index can then use
another index if needed. A typical example of this is the news-on-demand application where doc-
uments are accessed by document name. This is not a good tuple key; this should then be a unique
secondary index instead. Unique secondary indexes can use this linear hashing method. Non-
unique secondary key indexes can use this method with the adaptation described above.

- 204 -

12 A Compressed and Distributed B+tree, HTTP-tree

There is also a need for ordered data structures in the applications, B+trees being a popular variant
of this. We will use a distributed variant of the B+trees where the root page is fully replicated in
all processor nodes of the database. Since the root page is fully replicated, it is possible to find the
processor node immediately. The root page changes when B+tree fragments join or split and when
B+tree fragments move. Those changes are handled by a state transition protocol.

Using an ordered index means that it becomes possible to compress the keys for certain keys, such
as http-addresses, file names, timestamps, telephone numbers and so forth. We will therefore show
how to accomplish such a compressed distributed B+tree. The ideas on compression are, of course,
also valid in a local B+tree.

The distributed B+tree can be used for all types of secondary indexes. Using it for tuple keys will
not be studied in this thesis. The data structures described below are useful both as a unique sec-
ondary index and as a non-unique secondary index.

The ideas in this chapter are a development of the prefix B-trees [Bayer77][Gray93]. It has been
developed with some extensions to make it useful.

It is important to note is that nodes are used in this chapter to describe a part of a page. It is a node
in the B-tree. This is in contrast to the other chapters where node has been used as a short form of
processor node.

12.1 Compressed B+tree for Long Names

This index uses the fact that names that are organised in an alphabetical order often do not differ
very much between neighbours in the list. This can be used to compress the data structure by a fac-
tor of five or more. This could also speed up processing since the data structure will use less mem-
ory and thereby have a better hit rate in the cache memory.

The starting point of this structure is to use a normal B+tree structure. Instead of storing the full
name of each entry, only the difference from the previous entry is stored. The index maps the name
to a tuple key (or local key if it is used as a tuple key index). This tuple key can then be used as a
file handle when using the data server to implement scalable file systems. An example of the com-
pression algorithm is provided here:

START =http://www.ericsson.se/ndb/compbtree/description.html
2) http://www.ericsson.se/ndb/compbtree/nodedescription.html
3) http://www.ericsson.se/ndb/compbtree/system_arch.pdf
4) http://www.ericsson.se/ndb/compbtree/system_arch.ps

To describe this with the compressed algorithm we need a start value, this is equal to START. Then
2), 3) and 4) are described as:

2) Equality at end (1 bit), 4 bit minus and plus (1 bit), difference information exists (1 bit), exten-
sion = .html (5 bits), -0 (4 bits), +4 (4 bits), Last 11 equal (8 bits), “node” (4 bytes)
3) Not equal at end (1 bit), 4 bit minus and plus (1 bit), difference information exists (1 bit), exten-
sion = .pdf (5 bits), -15 (4 bits), +11 (4 bits), “system_arch” (11 bytes)
4) Not equal at end (1 bit), 4 bit minus and plus (1 bit), difference information does not exist, ex-
tension = .ps (5 bits)

- 205 -

A total of 21 bytes for 2), 3) and 4) instead of 158 bytes originally. The amount of compression is,
of course, dependent on the naming style and so forth. A substantial compression is, however, like-
ly in most cases. The B+tree is organised as a normal B+tree with a number of pages organised in
a hierarchical structure. Within the pages there is also a B+tree structure to find a key within the
page. Here nodes of smaller size than pages are used instead (e.g. 128 bytes). Within a node a se-
quential search is performed using this compression algorithm. This means that there are three
types of nodes. The first type are top and intermediate level nodes within the page, these are used
to find the leaf level nodes within a page. The leaf-level nodes are either leaf-level nodes of a top
or intermediate level page or a leaf-level node of a leaf level page. The data structure of these three
types of nodes are shown in Figure 12-1.

The header type contains three bits: the first bit specifies whether there is any byte that counts how
many bytes are equal at the end of the word, the second bit specifies whether 4 bits or 8 bits are
used for minus and plus information and finally the third bit specifies whether there is any differ-
ence in information at all. Thus in some cases the descriptive information becomes one single byte
in some cases. As an example, an index on telephone numbers will have as extensions
0,1,2,3,4,5,6,7,8,9,00 and some other common ends of telephone numbers. Then a list of telephone
numbers will mostly contain only 1 byte per telephone number.

Header
Type
3 bit

Extension
Type
5 bits

Minus (y)
Previous
4/8 bits

Plus (x)
Previous
4/8 bits

Equality
at end
0/8 bits

Difference
Information
x Bytes

Right Node
Pointer
1 Byte

Left Node
Pointer
1 Byte

Header
Type
3 bit

Extension
Type
5 bits

Minus (y)
Previous
4/8 bits

Plus (x)
Previous
4/8 bits

Equality
at end
0/8 bits

Difference
Information
x Bytes

Right Page
Pointer
4/8 Byte

Left Page
Pointer
4/8 Byte

Header
Type
3 bit

Extension
Type
5 bits

Minus (y)
Previous
4/8 bits

Plus (x)
Previous
4/8 bits

Equality
at end
0/8 bits

Difference
Information
x Bytes

Transaction
Pointer

Lock
Status
1 bit

Tuple
Status
3 bits

Tuple Key
Length
4 bits

Tuple
Key

Intermediate and Top Level Nodes

Leaf Level Nodes in Top Level and Intermediate Level Pages

Leaf Level Nodes in
Leaf Level Pages

Figure 12-1The Three Different
Element Data Structures

Lock
Status =
Unlocked

Lock
Status =
Locked

Lock
Status
1 bits

Transaction Record
Tuple Key
Length

Tuple
Key

Tuple
Status

Lock
Mode

- 206 -

In the table below the different uses of the header information is shown.

The information at the bottom of the tree is similar to what is found in the LH3 data structure. There
is a tuple status used when moving the B+tree-fragments, a tuple key length and a tuple key and
finally a lock status. When the information is locked, a transaction record pointer is put there and
the tuple key, the tuple key length, the tuple status (used to indicate moved or not moved during
fragment split) and the lock mode are temporarily saved in the transaction record.

An alternative solution is to place the lock information in another data structure which allows more
room for the tuple key length. If the copy fragment protocol transfers a bucket at a time, then there
is no need for any tuple status either. Then finally, if the tuple key length is static for a B+tree, we
only need the tuple key stored in the element.

If we need to make an index for mapping telephone numbers to an identifier specifying in which
country and state the owner of the number resides (2 bytes), then there would be about 3-4 bytes
per entry in this index. Even with all telephone numbers on earth, the index would fit in 3-4 GByte
of memory.

An index for a city of 1 million subscribers would only need 1 byte of identifier per telephone
number. Thereby 2-3 bytes * 1 million = 2-3 MByte of storage for the full index. This will fit in
the cache memory of a high-end computer.

Table 12-1Possible ways of using the header information

Equality
 at the
end

Difference
information

exists

4 bit or 8
bit used

for minus
and plus

Minus Plus

Number
 of

equals
at the
end

Extension
 type

Difference
Information

0 0 Not used Not
there

Not
there

Not
there

0-31 Not there

0 1 0 (4 bit) 0-15 0-15 Not
there

0-31 Upto 15
bytes

0 1 1 (8 bit) 0-255 0-255 Not
there

0-31 Upto 255
bytes

1 0 Not used Not
there

Not
there

0-255 0-31 Not there

1 1 0 (4 bit) 0-15 0-15 0-255 0-31 Upto 15
bytes

1 1 1 (8 bit) 0-255 0-255 0-255 0-31 Upto 255

- 207 -

12.1.1 Searching the HTTP-tree

A search starts from a root page and proceeds downwards. Since only difference in information is
stored in the entries in the B+tree, it is necessary to have a start value at all levels of the search. By
using the start value and the difference in information, the real key stored is found. At the root node
in the root page the start value is NULL. As a search is always from the top to the bottom it is not
necessary to store start information at all. The search will always be able to calculate the start value
at all levels. It is likely that management of the HTTP-tree is easier if start values are stored at least
for each page. This requires further study into the details of the HTTP-tree.

As seen in Figure 12-2 the searched key is then compared to key1 and if smaller than or equal to
key1 it follows the left pointer, otherwise it follows compares against the next key, if smaller than
or equal to this key it will follow pointer1. The start value of the node that pointer1 points to is then
key1 since all keys are greater than key1 in this node. In this manner one proceeds down the nodes
in a page.

When one moves to a new page, this page has the start value of the root node in the page as if one
had proceeded down the tree without respect to pages. This means that the start value of a page is
not the leftmost item, the start value is rather the value which all keys are greater than, as seen in
the figure below.

As can be seen from this analysis, the start value is implicitly known all the time when a search in
the index is performed. Therefore no storage of start values is needed on behalf of searches.

When splits of nodes occur and when pages are split then the left node/page has the same start val-
ue as the node/page split. The right node/page receives the start value which is equal to the right-
most key in the left node/page. This value is then inserted in the level above the split level.

Since we are using a B+tree structure, nodes/keys can also be shipped between nodes/pages. In this
case the rightmost key of the remaining node/page is also used to update the level above the ship
level.

Left
Pointer

Key Pointer
1

Key Right
Pointer

Left
Pointer

Key Pointer
11

Key Right
Pointer

1 n

11 1n

Root Node, all keys

Keys that fulfil Key1 < Key <= Key2

Left
Pointer

Key Pointer
101

Key Right
Pointer101 10x

Left
Pointer

Key Pointer
1n1

Key Right
Pointer1n1 1nm

Keys that fulfil Key1 < Key <= Key11 Keys that fulfil Key1n < Key <= Key2

START=NULL

START = Key1

START = Key1 START = Key1n

Figure 12-2Assignment of START values during search in Compressed B+tree

- 208 -

Finally an index can also be used in scan operations. In this the operation start from the bottom of
the tree at the leftmost node. This has the start value NULL. The start value of any element is the
entry before and thereby scans can keep track of the start value.

When elements are inserted and deleted, the entry to the right must always be updated since the
difference to the left neighbour has changed. Inserted records are inserted by using the start value
as calculated during the search. If the last key of a node/page is deleted, then the start value of the
next node/page is updated which affects both the first element in the node/page and the parent
node/page. Thus both those needs to be updated

The B+tree uses pointers in both directions to ensure that the fill level is high enough. When a page
is split anyway, the page which is split only ships one node to the new page. The reason is to im-
prove real-time performance when a split of all pages up to the root level occurs. Each time an
overflow of the page then occurs, it will move another node over to the new page. Thereby the split
activity is spread over a longer time for better real-time behaviour.

Since the index becomes very compact, it will better fit in main memory. If the index is used to
map a global telephone number into a country code only about 4-5 bytes per number is needed and
thereby all numbers on the earth (about 1 billion) can fit in 4-5 GBytes.

Left
Pointer

Key Pointer Key Right
Pointer

Left
Pointer

Key Pointer Key Right
Pointer

Root Node, Leaf Page

Key Element Key

START=Key1

Left
Pointer

Key Pointer
1

Key Right
Pointer1 n Intermediate Page

Intermediate Node

Leaf NodeElement

A

START=KEY A B

START=KEY A C

LEAF PAGE Keys that fulfil KEY1<KEY<=KEY2 in this page

Figure 12-3Assignment of START Values to Pages

Page Full
Split needed After the split

Figure 12-4Split Process of Pages

- 209 -

12.2 Memory Handling

Since the architecture should perform well in cached computer architectures, the nodes should be
of a size that fits well with the size of cache lines. Thereby a node size of 128 bytes is appropriate
(see reasoning in section 11.4.3). When the size of the node after an insert exceeds 128 bytes then
it causes a split or a shipping of elements to a neighbour node. If a large key is inserted that is larger
than 128 bytes, two or more nodes of size 128 bytes are used. Since normally the size of the ele-
ments should be rather small, this scheme should be good enough.

12.3 Split/Merge of B+tree Fragments

The split is performed by first performing a proper split of the root page of the B+tree-fragment.
A part of the B+tree is replicated in all processor nodes containing a reference to the B+tree; this
part includes the root page. Then two new pages are allocated as root pages. The two root pages
are assigned as B+tree-fragments internally in the processor node. Also a new root page that refers
to the split pages is created. After this split the processor node can now accept requests to search
both with the old non-split fragment and with both the split fragments. When all replicas of the
B+tree-fragment have performed the split, the split is performed on a distributed level through a
state transition protocol. Since both old and new fragment identifiers can be used, there is no par-
ticular requirement on stopping traffic during the state transition protocol. When all operations us-
ing the old fragment identifiers have completed, the created root page can be removed and the two
B+tree-fragments are now independent fragments. Thus a move of the fragments can be performed
if needed.

A merge is performed in another order. First the B+tree-fragments to be merged are moved to the
same processor node for all replicas. Then a local merge is performed followed by an operation to
update the distributed information.

12.4 Copy B+tree Fragment

When it is necessary to copy a fragment of the B+tree, this must as before be performed simultan-
eously with a lot of transactions that update the B+tree fragment. Since it is only necessary to move
keys and not tuples here, it is possible to use coarser locking than with the linear hashing protocol.
We will therefore copy one leaf level node at a time to the new fragment copy.

By starting the copy process in the lowest node, it is possible to easily find out whether a key has
been received in the new fragment or not. If the key is between the start and end value, the key has
been copied, otherwise not.

At the receiver the upper levels of the B+tree are created by building an independent B+tree struc-
ture. The received nodes are only seen as new keys to be inserted in the B+tree. The major differ-
ence from normal inserts is that those inserts will always be inserted at the end of the B+tree.

As in the previous copy fragment protocol, the sender of the fragment is the primary copy owner.
In many cases this is the only copy of the fragment. Since the indexes are copies of some attributes
in the table, the index can be created from the tuples in the table. Thereby reliability of the index
is not as critical as with the tuples. Therefore it is not necessary to support stand-by copies with
indexes, only support of backup copies is needed.

- 210 -

As before there are four algorithms needed, one to scan the fragment at the receiver, one to receive
these scanned nodes and one algorithm at the sender and the receiver to handle operations on the
index while copying the fragment.

SCAN ALGORITHM AT SENDER:

Inform all of copy process starting through state transition protocol

START: WHILE NOT END OF FRAGMENT

Set Read Lock on Next Leaf Level Node;

WHEN Read Lock on node Acquired THEN

Read Node and Send Node;

WHEN Ack from Receiver THEN

Release Lock on node

GOTO START:

END: Copy Fragment Finished

The locking of a node needs to be done carefully since otherwise deadlocks can easily occur. If a
transaction owns a lock in a node it should be allowed to acquire new locks; other transactions
should only be allowed to set read locks. One problem that could occur is that nodes are split and
that keys are shipped to neighbour nodes/pages. This is solved by only using a next pointer in those
situations. Thereby splits always create new nodes to the right. Thus if one is trying to lock a node,
a split of this node will never create a new node to the left. If this was possible, this new node could
be missed in the copy process. Splits that occur in a part already copied create no problems since
the inserts that triggered the split will be performed independently at the receiving node as part of
the transaction. Problems with merging are easily solved by not allowing any merges to occur dur-
ing the copy process. Page splitting and merging do not affect nodes and cause therefore no prob-
lems during the scan.

The algorithm at the receiver to receive the node is very simple. It inserts the new node and updates
the upper levels of the B+tree fragment; in particular it will update the root node to reflect the new
end of fragment.

Operations at the sending node continue as usual, they only need to check the node status to ensure
that it is not read locked when inserting and deleting.

Operations at the receiver node are performed as usual if they are between the start and end key of
the B+tree fragment; if not the operation is acknowledged but not performed.

Operations on indexes are performed starting at the primary as with normal tuple operations.

12.5 Node Data Structure

From the above discussion it is obvious that each node needs to have a status bit and a next pointer.
The lock status bit is only useful for leaf level nodes.

- 211 -

12.6 Handling of Physiological UNDO Log

The UNDO log in the http-tree is similar to handling of the LH3. The difference is that instead of
containers we have nodes.

12.7 Related Work

[Bayer77][Gray93] reports work on prefix B-trees and suffix B-trees. This B+tree implementation
is an extension of prefix B-trees. It has been extended by having a B-tree structure also within pag-
es. This is very important to achieve the usefulness gained by prefix B-trees. Searching a whole
page sequentially using prefix B-trees will simply not be a good idea. By implementing nodes
within a page with the size adapted to cache lines only a node needs to be searched. Since modern
processors are extremely fast at processing when working within the cache, this structure will be
very useful. Also extensions have been added that use common endings which are common in
Http-addresses and file names. Also, commonalities between neighbours at the end can be handled.
The prefix method is used on all levels in the B+tree. Mainly the leaf level benefits but also certain
commonalities such as “http://www” can be removed on higher levels.

12.8 Conclusion

A new compressed distributed B+tree has been described that will be very useful in developing
secondary indexes for long names, telephone numbers, timestamps and so forth. This is useful
when implementing a distributed file system using a parallel data server. The secondary index can
then be used to translate the file name to a file handle and the file handle can then be used to get
direct access to the file and its attributes.

- 212 -

13 Data Structure for Tuple Storage

The ideas described in this section have been developed in cooperation with David Jacobsson and
Joakim Larsson. The details of the data structures are found in [LARS97].

The aim of this chapter is to describe how the design of the tuple storage is made. This includes:

1) Use of copies of tuple parts to avoid the need of a logical UNDO log.

The use of an action-consistent checkpoint provides the opportunity to remove the need of a logical
UNDO log by using copies of the tuple parts as “UNDO log records”

2) Data structure of tuples.

A B-tree structure is used for the tuples to enable very flexible tuple structures.

3) Details on handling of pages.

4) Use of the UNDO log for tuple storage.

5) Handling of very large attributes.

Ideas from [Lehman89] are shown how to integrate in the tuple storage to support very large at-
tributes.

13.1 Recovery Support in Tuple Storage

Our recovery model provides facilities for advanced data structures for the tuple storage. It also
provides the possibility to avoid saving logical UNDO information in the log. Since we are using
a logical fragment log, it is necessary to have some UNDO information to ensure that data struc-
tures are consistent when the fragment log is executed. Only a small physiological UNDO log is
needed in connection with the logical fragment log which is a REDO log.

In most main-memory databases it is common to use a REDO-only log [DALI97], [DBS91],
[DBN94]. When a record is updated, a copy of the record is created. The copy is destroyed when
the update is committed. This is possible since most main-memory databases use a transaction-
consistent checkpoint. Thereby all data structures are intact after recovery. A common procedure
for achieving the transaction-consistent checkpoint is to copy all committed records to disk pages.
The data structures on disk do not necessarily look the same as the data structures used within main
memory.

In disk databases it is most common to use fuzzy checkpoints [ARIES92]. This means that after
recovery the internal data structures are not consistent. Thus the reference to the tuple copy might
be pointing to the wrong place. Only references within a page can be trusted. Hence most disk-
based databases use a UNDO/REDO logging scheme [ARIES92], [Hvasshovd96], [Informix94].
A possibility exists to use REDO-only log for disk-based databases. This requires that no uncom-
mitted data is written to disk. This is undesirable since the buffer manager cannot choose to write
pages to disk in a flexible way.

Our recovery scheme provides an action-consistent checkpoint. This was necessary to provide sup-
port of a logical fragment log. This was implemented by performing fuzzy checkpoints in conjunc-
tion with a physical UNDO-log. The physical UNDO-log makes it possible to restore all data struc-
tures that were present at the checkpoint time. The aim is to keep the UNDO log which is sent to
disk as small as possible.

- 213 -

The use of action-consistent checkpoints has interesting implications on the data structures used
for tuple storage. An implication is that we can also trust references between pages in the database.
The reason for this is that we create a consistent copy of all the pages in the database. All pages
have the value which they had at the time of the checkpoint. Also, action-consistent implies that
no actions were ongoing and thereby there are no problems due to tuples being in the middle of an
update. That we can trust references between pages implies two things:

• The same scheme used in main-memory based databases can also be used in disk-
based databases. Thus we can have a REDO-only log and still have allow the buffer
manager to write pages to disk in a flexible manner. It also implies that a new copy
of changed parts of the tuple are stored in the database pages.

• The storage structure of a tuple can span many pages. Hence we can allow a totally
flexible data structure of the tuple.

13.1.1 Copy of Tuple Parts

The various applications put different requirements on our tuples. Many applications in telecom-
munications use rather large records with many attributes. Many times the applications use a data
model which is highly optimised for performance. Also, it is always desirable to build data struc-
tures which do not contain unnecessary known limitations. Thus we desire a very flexible data
structure which also performs well in the simple cases.

This flexible structure does also means that we can avoid creating very large copies of tuples which
only update small parts of the tuple. Only the affected parts need to be copied.

Our decision is then to store tuples in a data structure as shown in Figure 13-1.

As shown in this figure the copy of the tuple header contains all the necessary UNDO information.
In this case only the tuple header was updated and thus no copies of the three tuple clusters are
needed in this transaction. As soon as the transaction is completed, the copy of the tuple header can
be removed. This scheme also provides simple means for querying old versions of the tuples. In
this case one keeps the copies until it is certain that they are not needed by any querying transac-
tion.

An optimisation of this scheme is to allocate the copies in a small number of pages and use the
same pages all the time. This means that accesses to those pages are likely to hit in some cache
level. It also means that the references to the copies will use very little memory space.

Copy of
Tuple
Header

Tuple
Header

Attribute
Cluster 1

Attribute
Cluster 2 Attribute

Cluster 3

Page 1 Page 2 Page 3 Page n

Figure 13-1Data Structure of Tuples

- 214 -

The concept of using a B+-tree structure for tuple storage makes it possible to have arbitrarily large
tuples. In Figure 13-2 the general structure of a tuple is shown. All the entities can contain part of
the data of the tuple.

13.2 Data Structure within a Tuple

Internally within a tuple two basic organisations are possible [Gray93]. The first structure as shown
in Figure 13-3 uses fixed positions of attributes. This means that an additional data structure is
needed that specifies these fixed positions. Of course, attributes with variable length need special
treatment in this scenario.

The second structure is shown in Figure 13-4. In this case each tuple contains a directory. Each
attribute has a fixed position within this directory and each entry in the directory points to the at-
tribute within the tuple. This means that no extra data structure is needed to show where the at-
tributes are stored.

TH

TH
TIC TICAC

AC

AC

ACACAC
TH

AC

Other or-
ganisations

Figure 13-2General Structure of a Tuple

TH = Tuple Header
TIC = Tuple Index Cluster
AC = Attribute Cluster

Header
Attribute in Fixed Position

Figure 13-3Tuple Structure with Attributes in Fixed Positions

Header
No. of attributes Attribute

Pointer

Figure 13-4Tuple Structure with attributes in flexible positions

- 215 -

The flexibility of the second data structure does, however, have a severe cost in memory space and
also it introduces a possible second cache miss in reading the directory. Thus we will study more
closely the scheme where attributes are given a fixed position.

13.2.1 Structure of a Tuple Header

To show an example of the tuple header is organised we will briefly describe its various fields. We
will describe it in a pseudo-language.

TuplerHeaderType = {

HeaderType Int8, /* The Type of the Header */

SizeOfNULLAttributeField Int8, /* How many words are used to store
NULL bits */

SizeOfAttributeFieldInTupleHeader Int8,

/* How many words are used to store Attribute Fields in the Tuple
Header */

NumberOfReferencesInTupleHeader Int8,

/* How many references to other Tuple Index Clusters or Attribute
Clusters are there in the Tuple Header */

TupleCopyReferenceType Int2, /* What type of Reference is used to
the copy of the Tuple Header */

TupleCopyReference Reference ReferenceType

/* The reference to the copy of the Tuple Header, used during up-
dates of the Tuple */

DynamicAttributeReferenceType Int2 /* Type of Reference to the Dy-
namic Attributes */

DynamicAttributeReference ReferenceType, /* The reference to the
dynamic attributes, this is an optional attribute */

SET OF {

NULLBitWord Int32, /* A word consisting of 32 NULL bits, optional
attribute */

},

SET OF { SEQUENCE OF {

FirstAttributeOffset Int32, /* Offset of start word in Tuple Struc-
ture for the cluster referenced */

ClusterReferenceType Int2, /* Type of Reference to the referred
cluster */

ClusterReference ReferenceType /* The Reference to the referred
Cluster */

}},

- 216 -

SET OF {

AttributeWord Int32 /* The Attribute Field in the Tuple Header */

}}

The other clusters and headers discussed in this chapter have similar structures. The most common
tuple structures will have a very simple structure. A common tuple in the benchmarks is a tuple
with a fixed size of 100 bytes. If it contains any attribute that can be NULL, there are three words
of header information, reference to a copy of the tuple header and NULL bits. Then comes the 100
bytes of Attribute information. This means that the Tuple Header becomes 112 bytes and the over-
head per tuple is 12 bytes. It is possible to decrease the overhead even more.

The basic idea of all tuple headers, tuple clusters, and attribute clusters is to use a cameolont data
structure. Given the type the data structure is known. Thus the only common information in the
data structure is the first byte that specifies the type.

13.2.2 Support of Various Data Types in a Tuple

There are many different data types that can be foreseen in a database. First there are fixed size
attributes with various lengths (e.g. 1, 2, 4, 8, 16, 32, 64 and 128 bits). Then there are fixed arrays
of fixed size attributes and there are arrays of fixed size attributes where the array is of variable
length.

The fixed size attribute could be of different types as well. It could be an unsigned integer, signed
integer, floating point number, decimal number, datetime, character and so forth. This type does
only has a meaning to the database if operations are performed on those attributes. If they are sim-
ply stored and retrieved, the database does not really care about the attribute type.

The only complication of these data types are the variable arrays (~BLOB’s). This type of attribute
is needed to store multimedia objects as was shown in many of the applications described in this
thesis.

These arrays cannot be put in a fixed start and end position. To allow for many of these we provide
only a reference in the fixed part of the tuple. This reference has a fixed position in the tuple and
the actual variable attribute is in the dynamic part of the tuple. Using a structure as in Figure 13-4
will cause problems when the size of the array are increasing/decreasing. It will be necessary to
reallocate all data after the attribute when the size is increasing/decreasing. Instead we opt for a
reference to a separate data structure for this particular variable array element. This structure reuses
the same structure as a tuple as shown in Figure 13-5.

Those attributes described can be either NULL-able or NOT NULL-attributes. If they can be
NULL, one bit is assigned as the NULL bit in the Tuple. However, even if they are NULL, they
will take up space in the fixed area.

A table could be used to store attributes for classes in an object-oriented database. One example of
this could be that a table is used to store the base class and all inherited classes. All classes should
then have a common tuple key which is normally an object identifier (tuple identifier in our termi-
nology). If this scenario is used, then different tuples in the same table will contain different at-
tributes. Hence it is not a good idea to put all attributes in the fixed area. This would waste memory

- 217 -

space. Our solution to this is to provide support for dynamic attributes. This attribute can be a part
of the tuple but need not be. All these attributes are put in a special dynamic part of the tuple. One
such application that needs this functionality is the charging server described in Section 2.5.

The dynamic part of the tuple is referenced from the tuple header. The dynamic part is handled as
a separate tuple basically. It has the same structure as the tuple with Tuple Header, Tuple Index
Cluster and Attribute Clusters. Within these there could also be references to Variable Attribute
Arrays. The difference is that the size of the fixed part is given in the dynamic part. The start of the
dynamic part is a directory where each existing attribute has a pair installed. The pair shows the
attribute identifier and the pointer within the fixed area. The structure is shown in Figure 13-6. The
Dynamic Attribute Header and below is treated in the same manner as a tuple.

Another type of structure that is also useful in representing unstructured information is to use un-
typed information. This is very useful in providing support for storage of home-pages which are
unstructured. Another example is a table that stores transcribed records from a genealogical record.
Since different genealogical records store information in different ways, it is useful to have the
records specify the structure instead of the schema. It basically means that much of the schema in-
formation is integrated in the tuple. In [LOREL95] more information on the use of semistructured
data can be found. By providing the possibility that an attribute could refer to a dynamic attribute
directory, we can store very flexible tuples.

VAH
VAH

VAIC VAICVAC

VAC
VAC

VACVACVAC

VAH

VAC

Figure 13-5General Structure of Variable Array Attributes

VAH = Variable Array attribute Header
VAIC = Variable Array attribute Index Cluster
VAC = Variable array Attribute Cluster Other

Organisations

Tuple Header

Dynamic Attribute Directory

Dynamic Attribute Header

Figure 13-6Handling of Dynamic Attributes

- 218 -

Actually one could also foresee that there will be special data structures and search structures that
cannot be foreseen at the time when the database is implemented. To provide support of extensi-
bility, the database should be equipped with a procedural language. Since this language should not
need to know the structure of tuples, an interpreting language is very suitable for this task.

13.3 Page Structure

The structure of pages are another important item in designing a database with the above architec-
ture. As the description of the applications have shown, the most common type of table is a table
with many tuples where each tuple is rather small and consists mainly of fixed size attributes.
Thereby it is important to optimise access for these although supporting a general data structure.

A tuple structure is accessed by a pair consisting of a page identifier and a page index. To allow
for reorganisation of the pages the page index is not a direct pointer to the data; it is rather a pointer
to a page directory [Gray93]. However to allow for fast access to tuple header we have two indexes
on a page. One contains an index with pointers to tuple structures and the second directory contains
tuple headers. The size of tuple headers depends on the table. A table of size 100 bytes should have
a tuple header where all 100 bytes fit. A table with larger tuple sizes could use 128 bytes as a proper
size of the tuple header.

Which directory to use is shown by the last bit of the page index.

13.3.1 Page Identifiers

To find a page is also an issue. In a disk-based database it is not known which pages reside in main
memory. Thereby a flexible data structure is needed to find out if page is in main memory. The
most common is to use a hash table. This is one of the reasons why a disk-based database is slower
if used as a main memory database. Each page access requires a search in a hash table.

Since we need to support both disk-based data and main memory based data we need different so-
lutions on disk-based pages compared to main memory based pages. Disk-based pages uses a hash
based structure as is normal. Main memory pages cannot use a page identifier that refers to a mem-
ory page. The reason is that we want the checkpoint to be location independent. This means that a
node could restart a fragment from a checkpoint created by another node. Thus the same physical
page can have been used by two fragments whose checkpoints were created at different nodes.

Tuple Header

Page Directory of Tuple Headers

Page Directory of Tuple Structures

Figure 13-7Page Structure

- 219 -

Hence we need a logical page identifier also for main memory pages. We assume that pages are
allocated to fragments in this discussion. This must then be translated into a physical page identi-
fier.

This mapping can be performed by a data structure similar to a B-tree. It consists of a mapping
table with start and end of intervals of logical page identifiers. Then the base address of this interval
specifies the number of the start page in the logical page interval. A small such table with four en-
tries should cater for most needs since often the needed allocation size is known. However, at least
two cases can complicate things. The first is if the memory is fragmented. Then it might not be
possible to allocate such large chunks and a few smaller chunks must be allocated instead. The sec-
ond problem is if the DBMS does not know the size to be allocated properly and starts allocating
too small chunks. To avoid these problems giving any major impact the data structure is organised
as a B-tree. Thus even a fragmented memory can be supported with good performance. The map-
ping table is shown in Figure 13-8.

13.4 Disk-based Attributes and Main Memory based Attributes

The database can support both disk-based data and main memory based data. The selection of what
data to put on disk and which data to put in main memory can be very flexible since the tuple struc-
ture can be very flexible. A page must be either disk-based or main memory based as our algo-
rithms are performed. However, the choice can be on attribute level. A typical example where this
is needed is the table to store files. The attribute which stores the file (a variable array of 8 bits)
should be disk-based while some of the descriptive attributes might be better suited for storage in
main memory.

This was useful in the News-on-Demand application, the Multimedia email application, and in the
genealogy application as seen in Chapter 2.

13.5 Handling of the UNDO Log

As described in chapter 9 it is necessary to create a physiological UNDO log so that the logical
fragment redo log can execute on a consistent data structure. This UNDO log is used together with
a local checkpoint to create an action consistent checkpoint. This checkpoint must include both the
tuple structures and the index structures. The UNDO log of the index structures was described in
chapter 11.

0 127
128 255
256 383
384

1480

2374
3024

Start End Base Type

Leaf

Leaf

Leaf
Ptr1023

511
512 767
768 895
896

4820

5482
7566
9024

Start End Base Type

Leaf

Leaf

Leaf
Leaf1023

384

Figure 13-8Mapping Logical Page Identifiers to Physical
Page Identifiers for Main Memory Pages

E.g. Logical Page ID = 158 => Physical Page ID = 2404
E.g. Logical Page ID = 552 => Physical Page ID = 5522

- 220 -

The local checkpoint is used to execute the fragment redo log. This means that all committed up-
dates after the local checkpoint is going to be performed by executing the fragment redo log. Also
during crash recovery the data is not read. Thereby it is not necessary that the UNDO log restores
the attribute values that were present when the local checkpoint was taken. It is only necessary to
restore the data structure that was present when the local checkpoint was taken. This means that
the size of the UNDO log can be diminished. This is especially interesting for disk-based data since
these data need to use the UNDO log all the time.

Attribute values changed by transactions that abort shall be handled in a different manner. For
these operations the UNDO log must restore the attribute values since there is no UNDO part of
the fragment log.

To actually release all memory connected to a deleted tuple can be a long operation. Therefore one
should write into the start checkpoint record a reference to all tuples that are currently deallocated.
Otherwise the tuple storage might lose the memory of those tuples after a crash.

13.5.1 Changes of Tuple Structures

The various operations update, create and delete all change the data structure of tuples. However,
this change is divided into the update phase and the commit phase (or the abort phase). Also up-
dates of attributes of fixed size differ from the updates of attributes with variable size. We will go
through these one by one:

1) Update Attribute of fixed size (or variable size without change of size) =>
- Create Tuple copy of updated parts of the tuple
- Change Attribute values

2) Commit Update Attribute of fixed size (or variable size without change of size) =>
- Delete Tuple copy of updated parts of the tuple

3) Abort Update Attribute of fixed size (or variable size without change of size) =>
- Copy Data from Tuple copy to Tuple original
- Delete Tuple copy of updated parts of the tuple

4) Update Attribute of variable size (increasing size) =>
- Create Tuple copy of updated parts of the tuple
- Allocate new parts to the tuple
- Update reference to new parts of the tuple

5) Commit Update Attribute of variable size (increasing size) =>
- Delete Tuple copy of updated parts of the tuple

6) Abort Update Attribute of variable size (increasing size) =>
- Copy Data from Tuple copy to Tuple original
- Deallocate new parts of the tuple
- Delete Tuple copy of updated parts of the tuple

7) Insert
- Allocate all parts of the tuple
- Write into attribute values

8) Commit Insert
- Do nothing

- 221 -

9) Abort Insert
- Deallocate all parts of the tuples

10) Delete
- Do nothing

11) Commit Delete
- Mark Tuple as Deleted
- Deallocate all parts of the tuple
- Unmark Tuple when all memory of the tuple has been released

12) Abort Delete
- Do nothing

As shown above it is not necessary to log updates of committed attribute values in the UNDO log.
All changes of data structures and changes of references between data structures must be logged.
This means that create tuple copy, delete tuple copy, allocate new parts of a tuple, deallocate parts
of a tuple, and update reference to new parts of the tuple must be logged in the UNDO log. Marking
and unmarking of the tuple as deleted needs to be logged in the UNDO log. Also deallocation of
the deleted tuples must be logged.

Attribute values of aborted operations must be logged to ensure that the UNDO log can restore the
committed values. This means that creation of tuple copies must also log the attribute values in the
UNDO log. Also when copying tuple copies to the original it is necessary to write this into the
UNDO log.

It is possible to decrease the size of the UNDO log even more, however. After performing the ac-
tion create tuple copy and delete tuple copy belonging to the same operation nothing has changed
in the data structure. Thus we have two possibilities to log those in a correct manner. Either log
both of them or none. The same applies to create tuple copy and copy tuple copy to original tuple.

It is important when deleting entries from the UNDO log that it is performed in the correct order.
The last added tuple part in an operation must be the first removed from the UNDO log.

The same reasoning holds true for allocate new parts of a tuple and deallocate parts of a tuple after
aborting a transaction.

This means that normally only committed insert, delete operations, and update operations that
change the size of variable attributes will be stored in the UNDO log.

Allocation and deallocation of blocks should also be logged in the UNDO log.

13.6 Special Handling of Very Large Attributes

The method we have described is capable of handling all types of data in a dynamic manner. It is,
however, optimised for tuples which are not extremely large. The problem with very large at-
tributes that reside on disk is that it is necessary to write those large blocks both into the fragment
log and into the data pages. Sometimes data has to be written to the UNDO log as well.
[Lehman89] reports an interesting solution to this problem:

- 222 -

For very large attributes the data part is located in a special region of the data pages. The references
to these pages are located in a region which is handled according to the above scheme. The data
pages are handled according to a shadow page scheme. Thus updates are not allowed to ovewrite
the old values. Updates are always placed in a new area.

By using this scheme only a single write is needed. This write to disk must be performed before
the transaction commits.

13.7 Related Work

[Gray93] contains a thorough description of common techniques used to store tuples in disk-based
databases. In [Garcia92] an overview of main memory based databases shows that most of them
use main memory data structures with a heavy use of pointers. It is also common to allow the ap-
plication to access data directly in main memory [DALI97]. In our case we have a distributed da-
tabase and the database and the application are not likely to reside on the same processor node.
Hence it is better to use the database through an API as with disk-based databases.

[Informix94] describes a solution to a similar problem where a logical REDO/UNDO log was used
in connection with a physical UNDO log. [Hvasshovd96] describes a scheme with a logical RE-
DO/UNDO log in connection with a log that handles local events such as block splits and so forth.

No reports on using REDO-only log techniques with disk-based databases are known to the author.
This is a new result of this thesis. Using B-tree structures for storing very large tuples are reported
in [Gray93]. In [Lehman92] the choice of main memory or disk based is performed per table.
[Sullivan92] reports the data structure used by POSTGRES. They use a structure where old copies
of the attributes are kept in storage to provide queries on old versions. Instead of using an action
consistent checkpoint they assume the use of force-at-commit (by using stable main memory).
Thereby no log at all is needed.

13.8 Conclusion

The major achievement in this chapter is the development of a tuple structure which removes the
need of storing UNDO information in the log. It also shows a very flexible structure of tuples.
These structures are not assumed to be new but are rarely reported in the database literature.

Log-Based
Pages

Shadow-based
Pages

Tuple Header

Attribute
Cluster

Attribute
Cluster

Figure 13-9Handling
of Very Large Attributes

- 223 -

However, the connection of these advanced data structures with the particular log strategy that is
presented in this thesis is a step forward in designing a DBMS. It achieves very small volumes of
the log compared to other strategies.

- 224 -

14 Modelling of a Parallel Data Server

In this section we will make some performance analysis of various ideas in the architecture of the
Parallel Data Server. This is necessary in order to understand when the different features developed
can be used. We will start by describing a computer architecture on which the performance mod-
elling is based. Then we will analyse performance of the replication structure using stand-by
nodes; we will analyse the new transaction protocol. We will also analyse the recovery perform-
ance in various situations. Both after a total crash and after failures of nodes such that on-line re-
covery can be performed.

The performance figures are based on early estimates on a prototype developed at Ericsson
Utveckling AB; some figures are based on descriptions of Sun systems [SUN95]. Using these fig-
ures simulation has been performed to understand the interworking of various features.

14.1 Computer Architecture Used in Performance Modelling

The estimates in this chapter are based on execution times during usage of a cluster of Ultra 2 Serv-
ers equipped with two UltraSparc-I processors at 200 MHz. Each server contains two 2.1 GByte
disks (recent releases of Ultra 2 Servers use 4.2 GByte disks and can have two UltraSparc-II proc-
essors at 300 MHz)

In [SUN95] a 2.1 GByte disk is said to have maximum data rate of 4 MBytes/sec. A new disk from
Seagate reports average sustained data rates of 7.9 MBytes/sec with maximum data rate of almost
15 MBytes/sec [http.//www.seagate.com/]. It is also shown in [SUN95] that the actual data rate is
very much dependent on the size of the buffers sent to the disk. With 8 kByte buffers only 432
kBytes/sec with a slightly faster disk. With 56 kByte buffers the data rate goes up to 1864
kBytes/sec. This is the largest size of the buffers that can be handled with Solaris [SUN95].

During recovery large buffers can be read from disk since all files are large sequential files. There
are three types of files read during recovery. Data buffers, fragment logs, and the local logs. All
these are read sequentially during recovery. Hence we can assume that with some knowledge of
how to set parameters in Solaris it should be possible to reach 6 MBytes/sec on each disk during
recovery.

If the database is used entirely for main-memory based data then the activities that are performed
to disk are writing checkpoints (which writes data buffers), writing to fragment logs, and writing
to local logs. Thus we can also here assume that 6 MBytes/sec can be reached. Disk-based data is,
however, read and written continuously with a random pattern. Hence the data rate to the disk goes
down. However, certain applications such as the charging server are create only and only use data
for searches. Thus these disk accesses also become sequential.

Since we have two disks we can assume that we have a data rate of 12 MB/sec available.

14.2 Performance Comparisons

Some crude estimates on performance of the data server can be made to deduce the overhead of a
stand-by replica and deduce decreased overhead in error cases. These estimates are based on a pro-
totype developed at AXE Research & Development based on this thesis. The prototype is still in
an early phase and the figures are therefore crude. In the figures we estimate the cost of sending a
message at 10 microseconds. This is based on achievable figures using SCI and Memory Channel
with a simple message interface. In [OMANG97] a report on implementation of message passing

- 225 -

using SCI and Memory Channel is given. Even current versions of the hardware can achieve down
to 8.9 microseconds delay of messages up to 63 bytes in size. This is actually the delay for the read-
er to receive the message. The sending processor node can continue with other activities even soon-
er than this. The execution time to receive a message is almost neglible since the message is read
from local memory.

The figures relate to an execution of a simple write transaction that updates one record using a pri-
mary node, a backup node and a stand-by node. The complete phase is ignored in this discussion.
It is handled as part of the background processing. The load on the transaction coordinator is 50
microseconds in the prepare phase, 20 microseconds in the commit phase and 20 microseconds
when completing the commit phase and sending the response to the application. The load on the
primary and backup node is 100 microseconds in the prepare phase and 50 microseconds in the
commit phase. The stand-by node uses about 20 microseconds in the prepare and commit phases.
This results in a total of 540 microseconds including execution time of messages. Of these 40 mi-
croseconds are executed by the stand-by node. The overhead caused by the stand-by node is thus
10% for write transactions. Read queries are not affected at all by the stand-by node. The complete
phase has been ignored in those performance comparisons.

These figures can also help us in estimating the delay in various scenarios. In this scenario we also
need to consider read queries. We estimate the load to be 50 microseconds on the transaction co-
ordinator and 100 microseconds on the primary node. In total 170 microseconds with communica-
tion costs added.

The mixture used here is 47% write transactions and 53% read transactions based on the UMTS
benchmark. We assume here a simple model with a load of 75% in the processor nodes.

We have performed simulations based on those figures. These simulations measure the impact of
stand-by nodes on the delay time and also, the impact on load and delays of using the new two-
phase-commit protocol.

50 µs 100 µs 100 µs 30 µs

20 µs 50 µs 50 µs 30 µs

20 µs

10µs

10µs

10µs

10µs

10µs

10µs

10µs

10µs

10µs

Figure 14-1Costs Divided on the Participating Processor Nodes in a
Normal Write Transaction

Transaction
Coordinator

Primary
Node

Backup
Node

Stand-by
Node

50 µs 100 µs10µs 10µs 10µs
Application

Transaction
Coordinator

Primary
Node

Application
ServerServer

Figure 14-2Costs in a Simple Read Transaction

- 226 -

The simulation model consists of a set of 16 servers. It is assumed that communication bandwidth
is not a bottleneck.

In the table below simulations using a stand-by node is shown. It is obvious from these figures that
using a stand-by node does not affect the response time in any particularly negative way. We can
also deduce that the new two-phase commit protocol gains about 6% in better performance by add-
ing 0.3 ms delay to write transactions. This trade-off should certainly be acceptable.

In the table below figures when not using a stand-by node are shown. The performance gain by the
new two-phase commit protocol is slightly higher. The delay does not go up more than 0.2 ms for
write transactions in this scenario. The extra cost of using stand-by nodes is 13%.

Table 14-1

New 2PC
75% load

Normal 2PC
75% load

Normal 2PC
Same load as

when New 2PC

Mean Delay of Read 414 437 512

Reads/sec 15405 14562 15405

Mean delay of Write 1662 1297 1544

Writes/sec 17372 16421 17372

99.9% confidence interval
of Read Delay

1086 1184 1424

99.9% confidence interval
of Write Delay

3543 3124 3776

Table 1:

New 2PC
75% load

Normal 2PC
75% load

Normal 2PC
Same load as

when New 2PC

Mean Delay of Read 441 452 550

Reads/sec 17424 16352 17424

Mean delay of Write 1459 1267 1569

Writes/sec 19648 18440 19648

99.9% confidence interval
of Read Delay

1182 1226 1555

99.9% confidence interval
of Write Delay

3355 3118 4014

- 227 -

From this discussion we derive that if the customer is willing to pay for 13% extra capacity he can
increase the reliability of the system and avoid having problems with the delay requirements in fail-
ure situations. The choice should, however, be the customer’s and hence the replication of tables
should be configurable in the interface of the data server.

It is likely that the stand-by replicas will be used in very large configurations where the probability
of two replicas failing simultaneously rises.

The comparison of the normal two-phase commit protocol and the linear two-phase commit pro-
tocol shows that the delay is normally smaller with the normal two-phase commit protocol. The
conclusion is that the performance benefit of our version of the two-phase commit protocol does
not cause any problems with the delay requirements.

Another benefit of our version of the two-phase commit protocol is that it simplifies handling of
recovery. Since the messages arrive to the replicas in order, there are fewer possible states in which
the failures can occur. This simplifies handling of node failures. As shown in chapter 8 it also sim-
plifies integration of network redundancy in the two-phase commit protocol.

14.3 Performance of On-line Recovery

Performing On-line Recovery where a new backup replica is created is very similar to performing
an insert operation. The main difference is that a great deal of protocol overhead can be avoided.
Hence we assume that each tuple can be read and sent from the primary replica in 50 microseconds.
The same time is assumed for reception of the tuple. This means that two nodes can recover about
2 MBytes/sec if they are both entirely working on recovery (~200 bytes per record). However, in
a working system this is not possible. We assume that there exists a pool of processor nodes that
are ready to use when a processor node fails. Thus the role of the primary replica is divided among
the survivors. The processor of the new backup replicas are devoted to restarting the new backup
replicas.

With larger tuples it is possible to transport more than 2 MBytes/sec since the overhead per tuple
is a major part of the cost.

If a machine contains 1.5 Gbytes data, then the time for recovery will be at least 12 minutes. Since
the new backup replica will also be involved in transactions when it starts the new backup replicas,
the time is longer. We estimate that it will take about 20 minutes to recover after a processor node
failure.

This figure makes it obvious that using stand-by nodes is often worthwhile to avoid the risk of a
system crash during this time.

Primary
Replica

New
Backup
Replica

Insert

Figure 14-3On-line Recovery Model

50 µs
50 µs

- 228 -

14.4 Performance of Crash Recovery

In a complete restart after a crash it is necessary to read the entire database from disk and apply the
logs. As described in section 9.2 the restart consists of three phases. The first phase reads all pages
belonging to a fragment from the disk. This data was produced by a local checkpoint, therefore no
data in this disk copy is older than the time between local checkpoints. The next step is to execute
the local UNDO log from the most recent entry backwards until the time of the local checkpoint.
The third step is then to execute the fragment log from a global checkpoint which was concluded
before the local checkpoint was produced.

The major consumer of resources is to read the database fragment from disk. Using the computer
architecture described above we have two disks that can perform reads in parallel.

Using the UMTS benchmark with 8 processor nodes we will have about 1.5 GBytes of data to re-
store in each processor node. This will take a little more than 2 minutes with 12 MBytes/sec of disk
bandwidth. A possibility for shortening the time of crash recovery is to have more than two disks
per processor node.

We assume here that only a primary replica is created in the first phase of crash recovery. After
that production of a backup replica can start as soon as the primary replica is recovered. This has
the benefit that the system can be restarted quicker.

The time to perform a local checkpoint is the same as the time to recover all data since it involves
writing all data pages to disk. There is no use in trying to detect which pages are dirty or not. Since
writing large buffers to disk is so much more efficient, it is better to write all data to disk at a local
checkpoint. Hence we assume that local checkpoints are taken once every 3 minutes.

The fragment log must be read from the last completed global checkpoint before the last local
checkpoint. Global checkpoints are taken more often than local checkpoints since achieving a glo-
bal checkpoint is a small operation not involving any major work compared to producing a local
checkpoint. Thus we can approximate that we need to read the fragment log since the last local
checkpoint.

In a UMTS database we produced 20,000 transactions/sec and of those a little more than half were
updates. If we assume that each log records consists of 300 bytes of data, then we need to log 3
MB/sec in the total system. This means about 240 MBytes of fragment log to handle during recov-
ery. These are also divided on all processor nodes in the system. The time it takes to read these logs
from disk is obviously almost neglible compared to the 10-12.5 Gbytes of data pages.

Applying the log uses the same mechanisms as performing on-line recovery.

The local logs for main memory data are even smaller than the fragment logs since they are only
written between the start of the checkpoint and the writing of the page to disk. Since one fragment
at a time is checkpointed, this time is only a few seconds which means only approximately 10
MBytes of local logs in the total system.

The time to apply those logs is then assumed to be neglible compared to all other activities during
crash recovery.

- 229 -

14.5 Conclusion

From the discussions on performance of normal operations and recovery operations it can be seen
that the requirements of the UMTS application can be met. The architecture has good possibilities
for being useful for all the other applications, too. More research is needed on performance mod-
elling of the system, particularly for the disk-based applications. Also more research on modelling
of load balancing algorithms is a necessity to be operational in a real-time system such as a telecom
network.

- 230 -

 IV: Conclusions and Future Work

- 231 -

15 Summary

We will here summarize the most important work related to this thesis, summarize the conclusions
and the contributions that this thesis has produced. Also future work in this area will be described.

15.1 Related Work

A number of projects have worked on developing either products or prototypes that have focused
on databases in telecom applications. We will here report these and compare our approaches.

In Trondheim, Norway a team of database researchers has worked on these issues for a long time.
They are now developing a product, ClustRa. This project is reported in [ClustRa95],
[Hvasshovd92], [Hvasshovd96], [Hvasshovd93a], [Hvasshovd93b], [Tor95], [Brat96], [Tor96].
The author has had close contact with this team and has learned much from the ideas developed
here and has extended some of these ideas.

ClustRa uses a primary and hot stand-by (called backup in this thesis) architecture. Both the pri-
mary and hot stand-by are involved in the transactions. The hot stand-by does, however, not update
its data immediately. The log records are shipped to the hot stand-by and are updated in order on
the hot stand-by but with a delay. Only the primary is used for reading, the hot stand-by is merely
used for reliability reasons. The hot stand-by takes over in 300 ms [Tor96] after a failure of the
primary node. When the primary node fails, the log of the hot stand-by is copied to another node
to decrease the risk of system failure [ClustRa95].

The nodes communicate by message passing using ATM, FDDI or Ethernet. The cost of commu-
nication is very high; each message costs 0.8 ms with Sparc 5/85 compared to 0.1 ms using SCI
with Sparc 5/85. The software has been developed with Unix processes with a self-developed
thread package in it.

The parallel data server developed in this thesis also uses a primary and hot stand-by architecture.
It is, however, extended with stand-by replicas. These ensure that not even double faults will crash
the system. Also, backup replicas are updated within the transaction and are thereby immediately
available to take over when the primary node has failed. It is even possible for the backup replica
to take over without aborting any transactions. This is possible if updating transactions also set read
locks in the backup replicas. Since the backup replicas are updated within the transaction, it is also
possible to let simple read transactions access the backup replicas. Since simple read transactions
are very common in telecom applications, this has great benefits in the algorithms for load balanc-
ing.

Major differences are found in the underlying software architecture. The major difference is the
communication where the parallel data server assumes the use of message passing implemented
through shared memory between the nodes (e.g. SCI or Memory Channel). This decreases the
communication costs by a factor of about 10, especially for short messages that are very common
in such applications. Also, the parallel data server uses a run-time system with a concurrent pro-
gramming language which is highly modular and very efficient in all sorts of communication
[Ronstrom97].

[ClustRa95] have reported the mean delay of a simple write transactions to 5.16 ms (ClustRa send
acknowledgement to the application after prepare phase). The simulations in this thesis show that
it should be possible to achieve down to 1.46 ms, even when waiting for the commit phase to com-

- 232 -

plete before sending the acknowledgement. Even adding a stand-by node does not increase the de-
lay more than 1.66 ms. It is, however, difficult to compare simulations based on uncertain values
with real measurements. Furthermore the machines used by the ClustRa measurements were not
as powerful as the one used for the parameters of the simulations.

Delays of simple reads in this architecture are even below 1 ms. This means that even if several
database transactions are performed as part of one application message, the database will not cause
any problems due to the delay.

The performance of ClustRa on simple write transactions was reported to be 2268 transactions per
second on a 16-node cluster using HP 9000/735 99 Mhz workstations interconnected with a 100
Mb/s FDDI network [ClustRa95].

The conclusion is that the use of SCI decreases the delay even more. However, the figures achieved
by ClustRa were excellent. The major difference is, however, that using SCI removes the perform-
ance impact of distribution almost completely. This is clearly visible in that we expect to achieve
32,777 UMTS transactions per second with a 4-node cluster of Ultra 2 Servers (two Ultra Sparc-I
processors at a frequency of 200 Mhz). The major reason that we expect so good performance fig-
ures is the use of SCI in cooperation with a distributed real-time run-time system which is de-
scribed in [Ronstrom97].

Additional features reported in this thesis are the on-line schema changes. In the parallel data serv-
er No UNDO/REDO logging is used in combination with a physiological UNDO scheme of the
data structures. ClustRa and many other distributed databases use UNDO/REDO logging in com-
bination with a local physical log of changes of data structures.

Prototype work and theoretical work at IBM has been of great value for the development of many
ideas for dynamically creating new replicas [CHAMB92]. This work only deals with tuples acces-
sible by a record identifier. It does not handle crash recovery, only on-line recovery. These ideas
have been used in this thesis and extended with secondary indexes, foreign keys and schema
changes. Also ideas from [CHAMB92] and [KARL96] have been further developed to achieve a
copy fragment algorithm where only one tuple at a time is locked and shipped. [CHAMB92] locks
the whole fragment and ships it and [KARL96] ships one bucket at a time.

[FRIED96] reports work on a prototype for Intelligent Network applications. It is optimised for
simple read transactions. The communication is efficient using an IBM SP2 communication switch
between 12 RS/6000 workstations. On top of the communication they use Horus, a group commu-
nication technology. Horus was not optimised for small messages and hence they had to group
many messages together and send a message each 15 ms. They achieved a throughput of 1,670
reads/sec per processor node where a processor node was a RS/6000 with a processor frequency of
66 MHz. Some interesting ideas were used in this work where reads that waited for some time were
simply retried on the other replica.

Our estimated results shows that 6,000 simple read transactions per second per processor node
should be achievable with an Ultra 2 Server. This is achieved without packing messages and with-
out an architecture which is highly optimised for simple reads.

Discovering a failed node took six seconds in [FRIED96], 100 ms in [ClustRa95]. In this work we
assume that we will be able to discover failed nodes in 20-30 ms. [ClustRa95] achieve a take-over
time of 0.3 seconds which is excellent. Our scheme performs the take-over in 1 ms after the failed

- 233 -

node has been discovered. This take-over means that new transactions can start using the new
scheme. Dealing with the transactions that are waiting for the failed node takes somewhat longer.
However, it should not take more than 100 ms in any case.

Updating transactions can then simply wait for the fail message and retry as described in section
6.2.1. Simple read transactions can use the ideas from [FRIED96] but only once, otherwise these
resends would be disastrous in an overload situation. Actually one should check that an overload
situation does not exist to avoid less real work being performed in overload situations.

Another major source of inspiration for this work has been [KING91]. This work has been only
slightly extended with a method of assigning the transaction coordinator in the backup system. The
major work in this thesis has been to show how to integrate the work presented in [KING91] with
the ideas used in the local replication protocols. Also, the work has been extended with on-line
schema changes that also change the schema in the backup system.

Many ideas on distributed databases were developed in the 70’s and the 80’s. [Skeen85] is repre-
sentative of these ideas. It describes a system with support of on-line recovery. It used a scheme
where the log was applied to an old replica residing on disk. It does not handle reconfigurations of
the replicas. In this thesis the scheme from [CHAMB92] is used where all updates are applied in
the recovering fragment and simultaneously a copy process sends all tuples to the new backup rep-
lica. This simplifies the protocol to declare when a new replica is up-to-date. It assumes, however,
that communication is cheap. If the fragment is disk based and very large and the recovering node
has an old copy, then it is a good idea to use the protocol developed in [Skeen85] instead.

An internal database product within Ericsson has also been a major source of inspiration (DBS,
Database Subsystem, used in AXE switches delivered by Ericsson). This database is specialised
for use by applications written for the AXE switch. It uses a preprocessor to the compiler to imple-
ment very efficient read queries. Reading a tuple with five attributes in DBS can be performed in
about 1-2 microseconds if the table is stored within the same module (this query uses a pointer and
does not use an index, which is the normal case in telecom switches).

The work on linear hashing has been based on development of distributed linear hashing [Pram90],
[Litwin93], [KARL96], [Litwin96]. This work has contributed to scalable distributed data struc-
tures. This thesis has extended this work by integrating it into a replicated database with transac-
tions and also by enabling dynamic moving of fragments. Also, an algorithm that enables shipping
one tuple at a time has been developed using LH*. The original data structure of linear hashing
[Litwin80] has also been extended with the use of a double linear hashing internally in the proces-
sor node. This enables the number of cache misses to be normally only one to find an entry in the
linear hashing index.

15.2 Achievements of This Thesis

15.2.1 Part 2

The achievement of this part is that it serves as a vision of what future telecom databases need to
handle in the timeframe 1998-2005. It studies the impact on the network and its databases given
that most people use mobile telephones, use email, read news by use of electronic means and that
all payment is handled by on-line electronic systems. It also presents a study of a genealogy data-
base as an example of an application with requirements on massive data storage and also a very
complex schema which needs to be globally defined.

- 234 -

These studies provide important requirements that can be used in developing next generation da-
tabase management systems. We also provide a new set of benchmarks to be used when developing
these database management systems.

15.2.2 Part 3

One of the achievements of this part is a design that enables division of the telecom database in
various servers. These are the application servers, where the application logic resides. The man-
agement servers where the operation and management of the applications in the telecom database
is handled, which is an interface to the service and information creation environment. The database
server has been divided in two servers, the data server and the query server. One of the reasons for
this is that most applications of telecom databases require one simple query interface and one com-
plex query interface. The complex query interface is used for management operations and also
some application queries. The query server handles the complex query interface by using the sim-
ple query interface of the data server. The data is stored in the data server.

The benefits of making this logical division also a physical division are several. First the data serv-
er is not damaged by malfunctioning applications and other clients, which means that the data serv-
er also has better control over its processor resources. This means that the Data Server can better
handle the real-time requirements that the applications put on it. It can also better control the usage
of memory spaces, cache memories and other essential processor resources. This makes the imple-
mentation of an efficient Data Server a much easier task. This architecture development is possible
due to the development of high-performance communication networks (e.g. SCI) that make it pos-
sible to communicate without intrusion by the operating system. The communication is performed
using a distributed shared memory handled by the hardware of the processor nodes and the SCI
communication network.

By using this architecture the full responsibility of the reliability of the applications can be given
to the parallel data server. Since this server implements reliability by using software methods, it is
not necessary to use any hardware reliability. Normal cheap workstations/PCs can be configured
in clusters to achieve scalable systems with high reliability.

Parallel Data Server

Parallel Query Server Parallel Application Server

Parallel Management Server

High-Performance
Communication Network

Telecom
Network

Commun ica t i on
Gateway

Figure 15-1Client-Server
Architecture

- 235 -

Another achievement is the development of the Replication Algorithm using stand-by nodes. This
development was enabled by the development of main-memory databases and by the development
of nWAL algorithm [Hvasshovd92] and finally by new efficient communication technology (e.g.
SCI). By using a primary and backup nodes that have an up-to-date copy of the database, very high
availability of the database is achieved. By also sending log records to the stand-by nodes an ex-
tremely high reliability of the database is achieved. The stand-by nodes only consume small proc-
essor resources and small main memory resources, thus providing extra reliability at a cheap price.

The replication strategy is also combined with a new variant of the two-phase commit protocol
which combines efficiency with good real-time properties. It is shown how this two-phase commit
protocol can be combined with a protocol for network redundancy as developed in [KING91].

Index structures designed especially to be suitable in modern RISC processors were developed
with index structures suitable for web addresses, file names, tuple identifiers and telephone num-
bers. Both a time-optimised index and a space-optimised one were developed. These keys are the
dominating types of keys in telecom databases. This improves the search time in indexes. This is
an important achievement since searching indexes is the most commonly used action in innermost
parts of the Data Server. It is used in accessing the Dictionary several times and used to access the
data.

The LH*LH data structure developed in [KARL96] has been extended into LH3. It is shown how
to integrate it in a parallel data server with full support of transaction and automatic recovery han-

dling. The LH3 data structure is an integral part of the recovery protocols. A new result in this area
is a method of performing split and join of fragments even when transactions are executing and in
a system where knowledge of fragment distribution is fully replicated.

The Http-tree is a new distributed B+tree that results in a compressed size of indexes with very
large keys, such as http-addresses, file names and so forth. It uses the ordering of a B+tree and the
repeatable directory structures often found in http-addresses and file names to compress the keys
by a large factor. This provides better use of main memory and should also provide more efficient
search algorithms. The efficiency should be better both because of a smaller working set because
of compression and a smaller comparison key since only a delta change is needed to check per key.

The LH3 structure is the most appropriate when performance of the index is most important. The

Http-tree is useful for very large indexes. These indexes might not fit in main memory if LH3 is
used. By using the Http-tree they can fit into main memory and thus the performance is very much
better since disk accesses are avoided.

A final a result in this thesis is the use of a new data structure in pages storing tuple information.
This data structure provides the possibility of using No UNDO/REDO-logging although a totally
flexible scheme of writing pages to disk is used. This is an important result of this research.

15.3 Future Work

This thesis has focused on developing the basic data access functions using a very reliable system.
Much work has been performed on showing to perform many changes without interrupting system
operation. Also basic data structures needed by the applications have been developed.

- 236 -

There are many openings for future work. One is to test the algorithms developed in this thesis in
a real implementation. This provides an opening for testing all the benchmarks developed in this
thesis. Work in this direction has already started as described in [Ronstrom97a]. Also more work
is needed on load balancing of the system. This involves both simulation studies and analytical
models that study the behaviour of the database. Simulations should also be done on the low level
software of the database. This will find the real bottlenecks that lead to cache misses and too much
processing.

Future work is also needed to extend the ideas into active databases. The active components must
be maintained without sacrificing reliability. Examples of work in this area can be found in
[Ceri96], and [STRIP96]. Another extension is to support unstructured data [LOREL95]. The data
structures developed for the buffer manager can be extended to support unstructured data.

- 237 -

Abbreviations
AAL5: ATM Adaption Layer 5
ACID: Atomic, Consistent, Isolation, Durable
AMPS: American Mobile Phone System
ATM: Asynchronous Transfer Mode
AXE: Switch developed by Ericsson
BLOB: Binary Large Object
BSS: Base Station System
CCITT: Global Standardisation organisation
CLR: Compensating Log Record
D-AMPS: Digital AMPS
DAVIC: Organisation for standardising multimedia services
DBS: Database Subsystem, part of AXE
DBMS: Database Management System
DECT: European System for Cordless Terminals
FDDI: Fiber Distributed Data Interface, LAN and WAN network
Ethernet: LAN network
GIF: Format for storing pictures in files
GSM: Groupe Special Mobile (European Mobile Telephone System)
HLR: Home Location Register. A node in a mobile telephone network which contains subscriber
data.
HTTP: Hyper-Text Transfer Protocol
HyTime: Extension of SGML for real-time multimedia documents
IN: Intelligent Network
INAP: Intelligent Network Application Part, runs on top of TCAP
I/O: Input/Output
IP: Internet Protocol
ITU-T: New name on CCITT
JPEG: Compression standard for pictures
LAN: Local Area Network
LE: Local Exchange
LH: Linear Hashing
LH*: Distributed variant of Linear Hashing
LH*LH: Variant of LH* where Linear Hashing also used locally.

LH3: Variant of LH and LH* developed in this thesis.
LSN: Log Sequence Number
MAP: Mobile Application Part, runs on top of TCAP
Memory Channel: Cluster Interconnect developed by Digital
MONET: Research project on UMTS within RACE
MPEG: Compression standard for video
MTP: Link layer and part of network layer in #7-stack
MTBF: Mean Time Between failure
MTTF: Mean Time To failure

- 238 -

MTTR: Mean Time To Repair
NMT: Nordic Mobile Telephone System
nWAL: neighbour WAL
OO7: Object Database Benchmark
PCS: American System for Mobile telecommunication
PDC: Japanese Mobile Telephone System
PDH: Plesichronous Digital Hierarchy
PHS: Japanese System for Cordless Terminals
Q.3: Standard protocol for communication for management services in telecom applications
RACE: European Research projects on telecommunications
RAID: Redundant Disk Arrays
RAM: Random Access Memory
RISC: Reduced Instruction Set Assembler
ROWAA: Read One Write All Available
SCCP: Part of Network Layer in #7-stack
SCI: Scalable Coherent Interface, Cluster Interconnect Standard that uses a shared memory model
SCP: Service Control Point. A physical node in an Intelligent Network.
SDH: Synchronous Digital Hierarchy
SDP: Service Data Point. A physical node in an Intelligent Network.
SGML: Standard Graphic Markup Language
SMTP: Email protocol
SQL: Standard Query Language (for Databases)
TACS: British Mobile Telephone Systems
TCAP: Transaction based protocol on top of #7-stack
TCP/IP: Safe transport protocol on top of IP
TE: Transit Exchange
TIFF: Format for storing documents with pictures in files
TPC-B: Database Benchmark
TPC-C: Database Benchmark
UDP: Unsafe transport protocol on top if IP
UMTS: Universal Mobile Telephone Systems. A third generation mobile telephone system devel-
oped in Europe.
WAL: Write Ahead Log
WAN: Wide Area Network
WWW: World Wide Web
X.25: Network Protocol based on OSI (Open Systems Interconnect)

- 239 -

Glossary

Telecom Database:

A database used for telecom applications

System:

In this thesis a system is defined as a cluster of processor nodes that together acts as a parallel data
server. Two systems can cooperate to provide network redundancy as primary system and backup
system.

Processor Node:

A node that acts as one node in a cluster. Is normally a multi-processor machine (e.g. workstation)

Application:

The system that uses the database and a set of communication services to provide a service to end-
users or other systems.

- 240 -

References
[AND95]T.E. Anderson, D.E. Culler, D.A. Patterson, A Case for NOW (Networks of Worksta-
tions), IEEE Micro, Feb 1995.

[ARIES92]C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, P. Schwarz, ARIES: A Transaction Re-
covery Method Supporting Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging, ACM Transactions on Database Systems, vol. 17, no.1, march 1992, p. 94-162.

[ATTA98]A. Dabaghi, Design of Access Manager in a Network Database, Master Thesis at Uni-
versity of Stockholm, to be completed 1998.

[Bayer77]R. Bayer, K. Unterauer, Prefix B-trees, ACM Trans. on Database Systems, vol 2, no 1,
p. 11-26, 1977.

[BERN93]A.J. Bernstein, P. M. Lewis, Concurrency in Programming and Database Systems,
Jones and Bartlett and Publishers, ISBN 0-86720-205-X.

[Blakey86]M. Blakey, Partially Informed Distributed Databases: Conceptual framework and
knowledge model, Tech.Rep no. 80, Monash University, Australia, Dec 1986.

[BHG87]P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Da-
tabase Systems, Addison-Wesley 1987, ISBN 0-201-10715-5.

[Brat96]S.E. Bratsberg, S-O Hvasshovd, Ø. Torbjørnsen, Location and Replication Independent
Recovery in a Highly Available Database, submitted to VLDB’96.

[Carino92] F. Carino, P. Kostamaa, Exegesis of DBC/1012 and P-90 - industrial supercomputer
database machines, Parallel Architecture and Languages Europe, Paris 1992.

[Ceri96]J. Widom, S. Ceri (editors), Triggers and Rules for Advanced Database Processing, Mor-
gan Kaufmann 1996, ISBN 1-55860-304-2.

[CHAMB92]D.D. Chamberlin, F.B. Schmuck, Dynamic Data Distribution in a Shared-Nothing
Multiprocessor Data Store, (VLDB 1992).

[Clamen94]S.M. Clamen, Schema Evolution and Integration, Distributed and Parallel Databases,
vol 2, no. 1 Jan 1994, ISSN 0926-8782.

[ClustRa95]S.O. Hvasshovd, Ø. Torbjørnsen, S.E. Bratsberg, P. Holager, The ClustRa Telecom
Database: High Availability, High Throughput and Real-Time Response. Proc. 21st VLDB (Very
Large Data Bases), Zurich, Switzerland, Sep 1995.

[Comer79]D. Comer, The Ubiquitos B-Tree, ACM Computing Surveys, June 1979.

[CVET96]Z. Cvetanovic, D. Bhandarkar, Performance Characterisation of the Alpha 21164 Mi-
croprocessor using TP and SPEC workloads, The Second Int’l Symposium on High-Performance
Computer Architecture (HPCA 96), p. 270-280, 3-7 Feb 1996, San Jose, California, IEEE.

[deWitt90] D. de Witt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H-I Hisiao, R. Rasmus-
sen, The Gamma Database Machine Project, IEEE Trans. on Knowledge and Data Eng. vol 2 no
1 March 1990.

[DALI94]H.V. Jagadish, D. Liuwen, R. Rastogi, A. Silberschatz, S. Sudarshan, Dali: A High Per-
formance Main Memory Storage Manager, Proc’ 20th VLDB Conf. Santiago, Chile Aug 1994.

- 241 -

[DALI97]P. Bohannon, D. Liuwen, R. Rastogi, S. Seshadri, A. Silberschatz, S. Sudarshan, The Ar-
chitecture of the Dali Main-Memory Storage Manager, Memoranda from Lucent Technologies,
http://www.bell-labs.com/project/dali/papers.html.

[Dayal90]U. Dayal, M. Hsu, R. Ladin, Organizing Long-Running Activities with Triggers and
Transactions, ACM 089791-365-5/90/0005/0204.

[DBN94]Internal design documents within Ericsson describing a distributed main-memory data-
base.

[DBS91]Internal design documents within Ericsson describing a database implemented in AXE, a
switch developed by Ericsson.

[deWitt92] D. de Witt, J. Gray, Parallel database systems: The future of high performance data-
base systems, Comm. of the ACM, June 1992.

[DOLPH96]The Dolphin SCI Interconnect, White paper, Feb 1996.

[ENG96]D.R. Engebretsen, D.M. Kuchta, R.C. Booth, J.D. Crow, W.G. Nation, Parallel Fiber-
Optic SCI Links, IEEE Micro vol. 16 no. 1, p 20-26, Feb 1996.

[FELT96]E.W. Felten, R.D. Alpert, A. Bilas, M.A. Blumrich, D.W. Clark, S.N. Damianakis, C.
Dubnicki, L. Iftode, K. Li, Early Experience with Message-Passing on the SHRIMP Multicomput-
er, The 23rd Ann. Int’l Symp. on Computer Architecture, p. 296-307.

[Ferrandina95]F. Ferrandina, T. Meyer, R. Zicari, G. Ferran, J. Madec, Schema and Database Ev-
olution in the O2 Object Database System, VLDB 1995, Zurich.

[FLAN96]J.K. Flanagan, B.E. Nelson, G. D. Thompson, Transaction Processing Workloads - A
Comparison to the SPEC Benchmarks using Memory Hierarchy Performance Studies, Proc. of the
Fourth Int’l Workshop on Modelling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS ‘96), p. 152-156.

[FRIED96]R. Friedman, K. Birman, Using Group Communication Technology to Implement a Re-
liable and Scalable Distributed IN Coprocessor, submitted to “TINA” conference.

[Garcia87]H. Garcia-Molina, K. Salem, SAGAS, ACM 0-89791-236-5/87/0005/0249.

[Garcia92]H. Garcia-Molina, K. Salem, Main Memory Database Systems: An Overview, IEEE
Transactions on Knowledge and Data Engineering, vol. 4, no. 6, Dec 1992.

[GILL96]R. B. Gillett, Memory Channel Network for PCI, IEEE Micro vol. 16 no. 1, p. 12-19, Feb
1996.

[GOLD96]G. Goldman, P. Tirumalai, UltraSPARC-II: The Advancement of UltraComputing, Di-
gest of Papers, Compcon Spring ‘96, Feb 1996.

[Gottemukkala92]V. Gottemukkala, T. J. Lehman, Locking and Latching in a Memory-Resident
Database System, VLDB Aug 1992.

[Gray79]J.N. Gray, Notes on Data Base Operating Systems, in Operating Systems: An Advanced
Course, R. Bayer, R.M. Graham, G. Seegmuller (eds.), Springer Verlag, p. 393-481, 1979.

[Gray81]J.N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzulo, I. Traiger,
The Recovery Manager of the System R Database Manager, ACM Computing Surveys 13(2):223-
242, June 1981.

- 242 -

[Gray91]J. Gray, The Benchmark Handbook for Database and Transaction Processing Systems,
Morgan Kaufmann 1991, ISBN 1-55960-159-7.

[Gray93]J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan
Kaufmann 1993.

[GS91]J. Gray, D. P. Siewiorek, High-availability computer systems, IEEE Computer, vol. 24, no.
9, page 39-48, Sep 1991.

[HELAL96]A.A. Helal, A.A. Heddaya, B.B. Bhargava, Replication Techniques in Distributed
Systems, Kluwer 1996, ISBN 0-7923-9800-9.

[Herlihy92]M. Herlihy, J. E. B. Moss, Transactional Memory: Architectural Support for Lock-
Free Data Structures, CRL 92/07, DEC Cambridge Research Lab, Dec 1992.

[Hvasshovd92]S-O Hvasshovd, A Tuple Oriented Recovery Method for a continously available
distributed DBMS on a shared-nothing computer, Ph.D. Thesis, NTH Trondheim, 1992, ISBN 82-
7119-373-2.

[Hvasshovd93a]S-O Hvasshovd, Ø. Torbjørnsen, A Hardware Architecture for a Continously
Available Shared-Nothing Parallel DBMS Based on ATM Technology, SINTEF DELAB STF40
A93119, 10 Oct 1993.

[Hvasshovd93b]S-O Hvasshovd, Ø. Torbjørnsen, A Software Architecture for a Continuosly Avail-
able Shared-Nothing Parallel DBMS Based on ATM Technology, SINTEF DELAB STF40
A93118, 10 Oct 1993.

[Hvasshovd96]S-O Hvasshovd, Recovery in Parallel Database Systems, Vieweg, ISBN 3-528-
05411-5.

[IBM96]G.H. Sockut, B.R. Iyer, A Survey of Online Reorganization in IBM Products and Re-
search, Bulletin of the Technical Committee on Data Engineering, Jun 1996, vol 19, no.2, availa-
ble on Internet.

[Informix94]INFORMIX-OnLine Dynamic Server, Database Server, Informix Software Inc., Dec
1994.

[Ingres93]ASK OpenIngres Replicator User’s Guide. Product documentation REP10-9(9)-16200,
The ASK Group, Inc. Dec 1993.

[Jaga95]H.V. Jagadish, I.S. Mumick, A. Silberschatz, View Maintenance Issues for the Chronicle
Data Model, PODS’95.

[KARL96]J.S. Karlsson, W. Litwin, T. Risch, LH*LH: A Scalable High Performance Data Struc-
ture for Switched Multicomputers, 5th Int’l Conf on Extending Database Technology (EDBT ‘96).

[Kim88]W. Kim, H.-T. Chou, Versions of Schema for Object-Oriented Databases, VLDB 1988,
Los Angeles.

[KING91]R.P. King, N. Halim, H. Garcia-Molina, C.A. Polyzios, Management of a Remote Back-
up Copy for Disaster Recovery, ACM Trans. on Database Systems vol. 16, no. 2, Jun 1991, p. 338-
368.

[LARS97]J. Larsson, Design of Tuple Manager, Master Thesis work at Royal Technical Institute
(KTH) in Stockholm 1997.

- 243 -

[Larson88]P-Å Larson, Dynamic Hash Tables, Communications of the ACM, April 1988.

[LATA]LATA Switching Systems Generic Requirements, Bellcore Technical Reference TR-TSY-
000517, Issue 3, March 1989, Sec. 17, Table 17.6-B: “Traffic Capacity and Environment.”.

[Lehman92]T.J. Lehman, E.J. Shekita, L-F Cabrera, An Evaluation of Starburst’s Memory Resi-
dent Storage Component, IEEE Transactions on Knowledge and Data Engineering, vol. 4, no. 6,
Dec 1992.

[Lehman89]T.J. Lehman, B.G. Lindsay, The Starburst Long Field Manager, VLDB 1989, Amster-
dam.

[Lerner90]B.S. Lerner, A.N. Habermann, Beyond schema evolution to database reorganization,
Proc. ACM OOPSLA/ECOOP ‘90 p. 67-76 Ottawa, Canada, Oct 1990.

[Lerner94]B.S. Lerner, Type Evolution Support for Complex Type Changes, Technical Report
UM-CS-94-71, University of Massachusetts, Amherst, 31 Oct 1994.

[Litwin80]W.Litwin, Linear hashing: a new tool for file and tables addressing, Reprinted from
VLDB-80 in Readings in Database Systems, 2nd ed, M. Stonebraker (ed.), Morgan Kaufmann
1994.

[Litwin93]W. Litwin, M-A Neimat, D. A. Schneider, LH* - Linear Hashing for Distributed Files,
ACM SIGMOD Int’l Conf. on Management of Data, 1993.

[Litwin96]W. Litwin, M-A Neimat, High-Availability LH* Schemes with Mirroring.

[LOREL95]S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener, The Lorel Query Language
for Semistructured Data, Technical Report from Department of Computer Science, Stanford Uni-
versity.

[MALIK97]S. Malik, An Efficient and Reliable Dynamic Data Distribution (ERD3) method, Mas-
ter Thesis work at University of Uppsala 1997.

[MARK96]E.P. Markatos, M.G.H. Katevenis, Telegraphos: High-Performance Networking for
Parallel Processing on Workstation Clusters, The Sec. Int’l Symp. on High-Performance Compu-
ter Architecture, p 144-153, Feb 1996, IEEE.

[MICL94]M. Larsson, Network Aspects in UMTS, Master Thesis work at Ericsson Telecom AB,
1994.

[MMDB92]IEEE Transactions on Knowledge and Data Engineering, vol 4, no. 6, Dec 1992. A
special issue on Main Memory Databases.

[Mohan83]C. Mohan, Efficient Commit Protocols for the Tree of Processes Model of Distributed
Transactions, Proc. 2nd ACM Symp. on Principles of Distributed Computing, p. 76-88, 1983.

[Mohan92]C. Mohan, Supporting Very Large Tables, Proc. 7th Brazilian Symp. on Database Sys-
tems, Porto Alegre, May 1992.

[Mohan92a]C. Mohan, I. Narang, Algorithms for Creating Indexes for Very Large Tables Without
Quiescing Updates, ACM SIGMOD 1992.

[MONET053]R2066/OTE/MF4/DS/P/053/b1, UMTS Charging and accounting algorithms,
RACE MONET deliverable, Dec 1994.

- 244 -

[MONET061]R2066/PTT NL/MF1/DS/P/061/b1, Implementation Aspects of the UMTS Data-
base, RACE MONET deliverable, 30 May 1994.

[MONET075]R2066/ERA/NE2/DS/P/075/b1, Evaluation of Network Architectures and UMTS
Procedures, RACE MONET deliverable, 31 Dec 1994.

[MONET099]R2066/PTT NL/MF/DS/P/099/b2, Baseline Document on Functional Models,
RACE MONET II deliverable, 31 Dec 1995.

[MONET108]R2066/SEL/UNA3/DS/P/108/b1, Distributed database for UMTS and integration
with UPT, RACE MONET II deliverable, 31 Dec 1995.

[MONET109]R2066/SEL/UNA3/DS/P/109/b1, Performance Evaluation of Distributed Process-
ing in UMTS, RACE MONET II deliverable, 31 Dec 1995.

[NILS92]Rikard Nilsson, Ulf Markström, Leif Klöfver, System For Changing Software during
Computer Operation, USA Patent No. 5,410,703, filed 1 Jul 1992.

[OMANG96]K. Omang, B. Parady, A Performance Analysis of UltraSparc Multiprocessors con-
nected by SCI, Internet.

[Pax94a]V. Paxson, Growth trends in Wide-Area TCP Connections, Lawrence Berkeley Labora-
tory.

[Pax94b]V. Paxson, Empirically-Derived Analytic Models of Wide-Area TCP Connections: Ex-
tended Report, Lawrence Berkeley Laboratory.

[PAPA86]C.H. Papadimitrou, The theory of Database Concurrency Control, Computer Science
Press 1986, ISBN 0-88175-027-1.

[PET95]R.J. Peters, M.T. Özsu, Axiomatization of Dynamic Schema Evolution in Objectbases,
11th Int’l Conf on Data Engineering, Mar 1995, p. 156-164.

[Pettersson93]M. Pettersson, Main-Memory Linear Hashing - Some Enhancements of Larson’s Al-
gorithm, University of Linköping, Sweden, March 1993.

[POLY94]C.A. Polyzois, H. Garcia-Molina, Evaluation of Remote Backup Algorithms for Trans-
action-Processing Systems, ACM Transactions on Database Systems, Sep 1994, p 423-449, vol 19,
no. 3.

[Ronstrom93]M. Ronström, Signal explosion due to mobility, Nordiskt Teletrafikseminarium
1993, Aug 1993.

[Ronstrom97]M. Ronström, A Portable and Distributed Real-time Run-time System, Internal Eric-
sson document.

[Ronstrom97a]M. Ronström, The NDB Cluster, A Parallel Data Server for Telecommunications
Applications, Ericsson Review 1997, no. 4

[RRDF93]Remote Recovery Data Facility, Operations Guide, Version 2 Release 1. Technical Re-
port, E-Net Corporation, Nov 1993.

[RSR95]IMS/ESA Administration Guide: System, Version 5, First Edition. Technical Report
SC26-8013-00, IBM, Apr 1995.

[Salzberg92]B. Salzberg, A. Dimock, Principles of Transaction-Based On-Line Reorganization,
VLDB 1992, Vancouver.

- 245 -

[Skeen83]D. Skeen, M. Stonebraker, A Formal Model of Crash Recovery in a Distributed System,
IEEE Trans. Software Engineering, May 1983, p. 219-228.

[Skeen85]D. Skeen, A. Chan, The Reliability Subsystem of a Distributed Database Manager,
Technical Report CCA-85-02, Computer Corporation of America, 1985.

[Stonebraker81]M. Stonebraker, Operating System Support for Database Management, Commu-
nications of the ACM, vol 24, no 7, p: 412-418.

[STRIP95]B. Adelberg, H. Garcia-Molina, J. Widom, The STRIP Rule System For Efficiently
Maintaining Derived Data, Technical Report from Department of Computer Science, Stanford
University.

[Sullivan92]M.P. Sullivan, System Support for Software Fault Tolerance in Highly Available Da-
tabase Management Systems, Ph.D Thesis.

[SUN95]A. Cockcroft, SUN Performance and Tuning, Sun Microsystems, ISBN 0-13-149642-5.

[Sybase95]Replication Server Technical Publications, Sybase Inc, Mar 1995.

[Sybase96]T.K. Rengarajan, L. Dimino, D. Chung, Sybase System 11 Online Capabilities, Bulletin
of the Technical Committee on Data Engineering, Jun 1996, vol 19, no.2, available on Internet.

[Tandem91]J. Guerro, Rdf: An overview. Tandem Systems Review, 7(2), Oct 1991.

[Tandem96]J. Troisi, NonStop SQL/MP Availability and Database Configuration Operations,
Bulletin of the Technical Committee on Data Engineering, Jun 1996, vol 19, no.2, available on In-
ternet.

[Tor95]Ø. Torbjørnsen, Multi-Site Declustering strategies for very high database service availa-
bility, Ph.D. Thesis, University of Trondheim, 1995, ISBN 82-7119-759-2.

[Tor96]Ø. Torbjørnsen, An overview of the ClustRa DBMS, Report from Telenor FoU Trondheim.

[TREMB96]M. Tremblay, J.M. O’Connor, UltraSparc-I: A Four-Issue Processor Supporting
Multimedia, IEEE Micro, vol 16 no 2, p. 42-50, Apr 1996.

[Tuite93]D. Tuite, Cache architectures under pressure to match CPU performance, Computer De-
sign, March 1993.

[Valduriez93] P. Valduriez, Parallel Database Systems: Open problems and new issues, Distrib-
uted and Parallel Databases vol 1 no 2 April 1993, Kluwer.

[Vittal94]C. Vittal, M.T. Özsu, D. Szafron, G. El Medani, The Logical Design of a Multimedia Da-
tabase for a News-on-Demand Application, TR 94-16, The University of Alberta, Dec 1994.

[Vittal95]C. Vittal, An Object-Oriented Multimedia Database System for a News-on-Demand Ap-
plication, Technical Report TR 95-06, The University of Alberta, June 1995.

[ÖZSU91]M.T. Özsu, P. Valduriez, Principles of Distributed Database Systems, Prentice Hall
1991, ISBN 0-13-691643-0.

