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In industrial settings, machines such as trucks, hydraulic pumps, etc. are widely distributed at
different geographic locations where sensors on machines produce large volumes of data. The
data produced is stored locally in autonomous databases called log databases. The collection
of log databases is dynamically changing when new sites are dynamically added or removed
from the federation.

In this application context, an efficient way to search and analyze passed behavior of products
in use is desired. To enable scalable queries over collections of distributed and autonomous
log databases we developed the FLOQ (Fused LOg database Query processor) system, which
provides a global view of the working status of all machines on the sites through a meta-database
integrating the dynamic log database collection. A particular challenge in this scenario is a
scalable way to process numerical queries that identify anomalies by joining data from the meta-
database with data selected from the collection of distributed and autonomous log databases. The
Thesis describes the architecture of FLOQ. In particular different strategies to execute numerical
queries over log database collections are investigated. FLOQ allows both the meta-database and
the log databases to be stored in multiple formats using different kinds of data managers. FLOQ
provides general and extensible mechanisms for efficient processing of queries over different
kinds of distributed data sources.
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1 Introduction 

Modern product development generates high volumes of data during its life 
cycle, from development and manufacturing, through use and maintenance, 
to reengineering and recycling. The ability to represent, search, and analyze 
many different kinds of data generated during a product's life cycle is critical 
for high quality and high availability. Within this context, an important issue 
is scalable approaches to collect, process, and analyze data produced in the 
manufacturing process. 

Recently, there is a rise of manufacturing industry transformation. Re-
search initiatives were developed and applied. The ideas such as Germany’s 
Industry 4.0 [4] [20], China’s Made in China 2025 [21], and US’s Industrial 
Internet [19] are proposed. They share similar ideas of improving productivi-
ty, efficiency, and quality of products.  

This Ph.D. work is from a real-world industrial scenario [30], where ma-
chines such as trucks, hydraulic pumps, cutting tools, etc. are widely distrib-
uted at different geographic locations and where sensors on machines pro-
duce large volumes of data. The data produced at each site describe time 
stamped sensor readings of machine components (e.g. oil temperature and 
pressure) and is stored locally in autonomous databases called log databases. 
The log databases are used to search and analyze abnormal behaviors of the 
monitored machines distributed over many sites. Furthermore, the collection 
of log databases is dynamically changing when new sites are added or re-
moved from the federation.  

In order to search and analyze data from the log databases there is need 
for a meta-database that describes properties of the monitored equipment and 
their log databases, e.g. the machine configurations at the sites, descriptions 
of the installed sensors, measurement tolerances, etc. The meta-database 
provides a global view of the working status of all machines on the sites. It 
represents meta-data integrating the log database collection. A particular 
challenge in this scenario is a scalable way to process queries that join data 
selected from the meta-database with data selected from the collection of log 
databases.  

Abnormal machine behaviors can often be detected by identifying signifi-
cant deviations between measured values stored in log databases and corre-
sponding expected values stored as meta-data. Such deviations can be ex-
pressed as numerical expressions in query conditions identifying when 
measured values are outside the tolerances for a sensor model during a time 
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period. This requires a way to process such numerical query expressions 
over collections of log databases integrated through the meta-database. 

The following research questions are investigated: 
1. The overall research question is: how should the meta-database 

over the federation of log databases be represented and how 
should queries to the federation be expressed and processed? 

2. How can different kinds of data managers be used for representing 
the log databases as well as the meta-database?  

3. How can a cloud-based data repository be used for representing 
the meta-database? 

4. How can queries that join the meta-database with data selected 
from collections of the distributed log databases be executed effi-
ciently? 

5. How can numerical queries to determine anomalies in measure-
ments be executed efficiently over log databases? 

To approach these challenges and answering research question one we 
developed a system, Fused LOg database Query processor (FLOQ), Figure 
1. FLOQ integrates collections of dynamic, distributed, and autonomous log 
databases through a meta-database called the FLOQ ontology. The ontology 
is managed by the FLOQ server. 

 
Figure 1. FLOQ Overview 

The FLOQ ontology describes meta-data and physical properties about in-
dustrial equipment located at different sites. The FLOQ ontology is an appli-
cation independent and can describe different kinds of industrial equipment. 
At each site enumerate 1,2,…,n there is equipment that produces sensor 
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measurement stored in local log databases. The log databases are locally 
maintained at each site and are described by the FLOQ ontology. Also parts 
of the ontology is defined as an external meta-database located at site 0. 
Independent FLOQ site servers encapsulate the back-end data managers to 
process queries at the sites. The user sends queries to the FLOQ server 
searching the log databases. The queries are expressed in terms of the ontol-
ogy. Such a query might include searching and combining data from both the 
meta-database and the log databases. FLOQ uses the ontology to locate the 
log databases involved in answering a query. The queries often analyze data 
in log databases to find anomalies and other properties about the equipment. 
Such queries frequently involve numerical expressions, e.g., to detect devia-
tions between measured and expected sensor readings. 

The FLOQ ontology uses a domain-calculus based functional common 
data model (CDM) [28] to integrate all meta-data. FLOQ allows both the 
meta-database and the log databases to be stored in multiple formats using 
different kinds of data managers. The external data representations are 
mapped to the ontology represented by the CDM. Thus FLOQ provides gen-
eral and extensible mechanisms for efficient processing of queries over dif-
ferent kinds of data sources, such as relational databases or MongoDB [22] 
[25]. This answers research question two. 

In order to make meta-data widely accessible parts of the meta-database 
can also be stored in external data sources, such as Google’s Bigtable [7]. In 
particular, in a world-wide organization the meta-database should be highly 
available and universally accessible from any location. Cloud-based data 
stores such as Bigtable provide high availability, universal access, and scala-
bility. The FLOQ approach allows to map external meta-database represen-
tation to the FLOQ ontology [40]. For example, meta-data can be represent-
ed using either FLOQ’s native CDM, as a relational database, or as cloud-
based data manager such as Google Bigtable. The ability of FLOQ to repre-
sent meta-database using different formats answers research question three. 

FLOQ provides a query processor for efficient, scalable, and distributed 
query execution. A general extensibility mechanism based on plug-ins al-
lows the system to split a query into sub-queries accessing different kinds of 
data sources. Queries to the ontology are decomposed into sub-queries to 
different log databases. We propose two new join strategies, parallel bind-
join (PBJ) and parallel bulk-load join (PBLJ) [42] for parallel execution of 
queries joining meta-data with data from autonomous log databases using 
standard DBMS APIs. This query processing over log database federations 
answers research question four. 

For scalable execution of numerical queries over relational databases 
(RDBs), numerical operators should be pushed into SQL rather than execut-
ing the filters as post-processing outside the RDB; otherwise the query exe-
cution is slowed down, since a lot of data is transported from the RDB serv-
ers and furthermore indexes on the servers are not utilized. The NUMTrans-
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lator algorithm [41] converts numerical expressions in numerical domain 
calculus queries into corresponding SQL expressions. We show that 
NUMTranslator improves substantially the scalability of numerical queries 
based on a benchmark that analyses numerical logs stored in an RDB. This 
answers research question five. 

This Thesis overview is organized as follows. Chapter 2 gives an over-
view of technologies related to FLOQ. Chapter 3 describes the FLOQ ontol-
ogy based on the application scenario motivating the FLOQ approach. Chap-
ter 4 gives an overview of the architecture of FLOQ, including its ability to 
utilize different data managers through its extensibility mechanisms. Chapter 
5 summarizes paper I, II, III, IV, describing technical contributions of each 
paper and my contributions to each paper. Chapter 6 describes conclusions 
and future work. 
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2 Background 

This chapter describes the technical background related to this Thesis pro-
ject. Relational database management systems in general are overviewed 
first. Federated and distributed database systems are then described by their 
architectures and query processing strategies. Furthermore, NoSQL data-
bases, numerical databases, and temporal databases are described. Finally, 
the Amos II system is described, which this Thesis work extends substantial-
ly. 

2.1 Database Management Systems 
A database is a collection of data that can be stored [11]. A database man-
agement system (DBMS) is a software system that enables database creation, 
manipulation, and maintenance. For example, it enables the following: 

• Creating a database with specified schema structure through a Data 
Definition Language (DDL). 

• Manipulating a database, for example, querying, inserting, deleting, 
and updating the data. 

• Multi-user access to a database with different kinds of authentication 
control. 

• Recovery control to restore the database back to a specific time 
point. 

2.1.1 Data Models and Query Languages 
A data model defines the structure and format of data used by a database 
management system. Different DBMSs have different data models. The most 
common data model is the relational data model where the database is rep-
resented as a set of tables.  

The database schema describes the data stored in the database. In the re-
lational data model it describes the names of tables and columns, and data 
types of row attributes (or column values) stored in the database. Each row 
in a table is identified with a key, which is one or several columns uniquely 
identifying a row. A foreign key is one or several attributes in a table refer-
encing the attribute(s) in another table.  
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To be able to combine data from many log databases, FLOQ uses a func-
tional and object-oriented data model [28] to represent meta-data about col-
lections of log databases: the FLOQ ontology described in Chapter 3.  

 Each data model supports some query language. For example, the stand-
ard query language for the relational data model is SQL (Structured Query 
Language). In SQL, queries are issued over tables as predicates constraining 
table rows (tuples). SQL is a declarative language based on a predicate cal-
culus called tuple calculus [8] [11] where variables are bound to tuples 
(rows) in tables and the user specifies how to match and constrain tuples. An 
alternative is domain calculus [8] [11], which is a predicate calculus where 
variables are bound to atomic values, rather than tuples as in tuple calculus. 
Since numerical expressions are easy to formulate using variables bound to 
numbers, queries over numerical expressions are simplified by using domain 
calculus, rather than the tuple calculus used by SQL where all variables are 
bound to tuples.  

The functional data model used in FLOQ uses the domain calculus query 
language AmosQL [28]. 

A common domain calculus language used in the semantic web commu-
nity is SPARQL [33]. SPARQL is a promising domain calculus based query 
language for scientific applications [1] [2]. FLOQ supports both SQL and 
SPARQL as alternative query languages for queries to the FLOQ ontology. 
Both SQL and SPARQL queries are translated by a parser into AmosQL 
queries for further processing. 

Another common domain calculus language is Datalog [11]. Amos II (and 
FLOQ) uses a Datalog dialect, ObjectLog [28], as internal representation of 
queries. The query processor transforms ObjectLog expressions to improve 
performance. 

2.1.2 Query Processing 
For a given query, the DBMS takes care of how to efficiently retrieve the 
information from the database. The query processor of the DBMS trans-
forms the query into an efficient program (execution plan) specifying how to 
retrieve data. Indexing is a commonly technique to improve the query execu-
tion performance over very large databases. For analytical tasks, [26] 
demonstrates that indexing improves query performance. Typical query pro-
cessing steps in a DBMS are shown in Figure 2. 
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Figure 2. Query processing in DBMS 

First, the parser checks the query’s syntactic correctness and checks that 
tables and columns are correctly referenced. The result of parsing and vali-
dation is an intermediate query, usually a logical calculus expression to be 
executed.  The query optimizer takes the intermediate query and produces an 
efficient program called an execution plan among the many feasible execu-
tion plans. Cost-based optimization [12] estimates the cost of executing a 
plan according to some cost model based on knowledge about database sta-
tistics, internal data representations, and search algorithms used in the plan. 
The query optimizer aims to generate an execution plan with minimal cost 
according to the cost model. To estimate the query plan cost, the optimizer 
needs, for example, the approximate number of disk block accesses, central 
processing unit (CPU) usage, etc. The number of disk block accesses is af-
fected by the execution order inside the execution plan. Therefore, valid 
statistics of the database, e.g. number of rows in tables and number of differ-
ent values in columns are very important for the query optimizer to estimate 
the query plan cost. 

Finally, the executor interprets the execution plan and produces the query 
result. 

A central part of FLOQ is novel specialized query processing mecha-
nisms to process numerical queries over collections of distributed log data-
bases described by a common meta-database. Domain calculus query trans-
formations are utilized for transforming domain calculus queries into SQL 
tuple calculus queries. Query fragments are translated into sub-queries ac-
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cessing the log databases and then joined by FLOQ. Special query transfor-
mations are used for processing numerical queries. In the Thesis various 
query processing strategies for this are evaluated. 

2.2 Federated Databases 
A federated database (FDB) [11] is a union of independent and autonomous 
databases. Each database in a federation has a local database schema, called 
local conceptual schema. A central federated database provides a global 
conceptual schema that integrates subsets of the local conceptual schemas to 
enable queries over the integrated database federation, i.e. the global concep-
tual schema implements an ontology represented by a common data model 
(CDM) that enables mapping participating databases representations to the 
CDM and integrates information from the participating databases. To inte-
grate data from different databases, the global conceptual schema needs to 
solve semantic data reconciliation issues on how to combine similar or same 
information represented differently in the different participating databases. 
Since the participant database schemas are designed before the global sche-
ma, the global conceptual schema is designed in a bottom up fashion. The 
global conceptual schema enables query transparency to the user without 
showing the underlying conceptual schemas in the federation. However, it 
can be difficult to define such a global conceptual schema if the number of 
different participating databases is large. Finally, external schemas (views) 
can be defined by users on top of the global conceptual schema. Figure 3 
shows how different schemas relate in a federated database.  

 
Figure 3. Federated Database Schemas 

In FLOQ the log databases are independent and autonomous databases. The 
FLOQ ontology provides a global conceptual schema over the collection of 
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log databases in the federation. The global conceptual schema of FLOQ con-
tains a uniform representation of all the databases storing the logged data. 
One particular problem addressed in FLOQ is that the collection of log data-
bases is dynamic so that new log databases can be added and removed over 
time as new sites are included or removed. In particular, whereas federated 
databases traditionally have been used for integrating a fixed set of existing 
databases, FLOQ’s log database collections are dynamic where log data-
bases at different sites can join or leave the federation. 

Federated DBMSs may include primitives to integrate databases imple-
mented in different kinds of DBMSs, having different data models. For ex-
ample, data from relational databases may need to be integrated with data 
from NoSQL databases [32] and text files. NoSQL data managers such as 
MongoDB [25] often use a data model where data is represented as JSON 
objects. In order to integrate MongoDB with, e.g. relational databases, the 
federated database system needs primitives to transform both the relational 
database model and the MongoDB data model into a CDM used by the fed-
erated DBMS.  

In FLOQ’s case the CDM is an extension of the functional and object-
relational data model used in Amos II [28]. The FLOQ ontology is expressed 
in this CDM and defines meta-data including descriptions of log databases 
using different data models.  

2.3 Distributed Database Systems 
A distributed database (DDB) [11] [37] is a set of database processing nodes 
connected by a computer network. The database processing nodes are often 
geographically distant. The user sees the distributed database as a central 
database, while the database administrator (DBA) is responsible for deciding 
on which nodes different fragments of tables reside. Each table in a distrib-
uted database is partitioned logically, for example, a table can be fragmented 
by rows or columns where each fragment is stored in different distributes 
database nodes, which is called horizontal and vertical fragmentation, re-
spectively. For example, a company-wide table may have different row 
fragments in different sites defined by the DBA. For any fragmentation 
method, a query to a fragmented table must return the same result as if the 
table is stored in a non-distributed database, i.e. the fragmentation scheme 
needs to be transparent in queries.  

To increase query availability tables may be replicated at different sites. 
Data replication is also useful in speeding up query answering by accessing 
data available close to or at the site where queries are issued. Replication 
may however significantly reduce update speed, since distributed transac-
tions might need to be propagated to several of the replicas to enable con-
sistency.  
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Since the data is physically distant in distributed databases, special dis-
tributed query processing strategies are required. Often several distributed 
database processing nodes are involved to answer a query. For example, 
distributed joins ship data from one site to another and to perform the join 
there. Join approaches such as semijoin [11] uses a strategy to first reduce 
the data shipped from a site by projecting the join column and removing 
duplicate values. Then a semijoin between the local data and the shipped 
data is performed. Finally, the semijoin result is sent to the other site for 
performing the final join there. 

FLOQ uses two distributed query processing approaches namely parallel 
bind-join (PBJ) and parallel bulk-load join (PBLJ) to perform queries that 
join meta-data from a common meta-database with the data selected from the 
collections of distributed autonomous log databases. This generalizes the 
central bind-join [14], where data is joined by binding values when access-
ing external data sources.  

2.4 NoSQL Databases 
Not only SQL (NoSQL) databases [32] propose non-relational data models 
to provide availability and scalability of distributed databases. NoSQL data-
bases such as MongoDB are designed to perform simple tasks with high 
scalability [6]. For providing high performance updates, NoSQL databases 
generally sacrifice strong consistency by providing so called eventual con-
sistency compared with the ACID transactions of regular DBMSs.   

NoSQL databases often have limited schemas where attributes in collec-
tions are dynamic, compared to relational databases where tables must have 
all columns specified in the schema before populating the database. For ex-
ample, MongoDB [25] provides dynamic schemas which allows new attrib-
utes for data to be dynamically added to existing databases. It means records 
can be in different schema even in the same collection. This feature enables 
flexible insertions of the data into the database. NoSQL databases cover 
different kind of data store families, such as document stores, graph data-
bases, cloud-based data stores. 

[6] gives an overview of list features on the state-of-the-art NoSQL data-
bases such as MongoDB [25], Cassandra [5], Redis [27], HBase [16], Mem-
cached [24], and CouchDB [9]. However, Cassandra [5], Redis [27], HBase 
[16], Memcached [24], and CouchDB [9] do not provide full secondary in-
dexing, which is essential for scalable performance of numerical queries. 
MongoDB [25] provides both a query language along with primary and sec-
ondary indexing. This is well suited for analyzing persisted logs. 

In this Thesis, FLOQ investigates the approach to store parts of the com-
mon meta-data using Google’s Bigtable cloud-based NoSQL database. Fur-
thermore, FLOQ allows the log databases to be stored in different forms, 
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such as relational databases and MongoDB. A NoSQL database such as 
MongoDB may be useful for typical historical analysis of log data or numer-
ical log analytics where transactional consistency conforming ACID compli-
ance is not required. 

2.5 Numerical and Temporal Databases 
The content of a relation in a relational database can be changed over the 
time by inserting new tuples, deleting existing tuples, or updating existing 
tuples. A regular database maintains a snapshot of the current data. Temporal 
databases [31] are databases that maintain histories of data values over time 
for each table. There are different approaches to store time attributes, such as 
a time instant is stored together with each tuple in a table, or the valid time 
for a tuple is defined by an associated starting time and ending time instant.  
In FLOQs log databases valid time is important for defining during what 
time period a measured value is valid. The FLOQ ontology thus associates a 
valid time interval with each row in a log database table. 

Numerical and scientific databases [29] typically are used to store com-
plex objects such as array data representations. Queries over numerical data-
bases can contain query conditions such as matrix operations, numerical 
computations, etc. Such query conditions can be, for example, a linear equa-
tion or a numerical computation involving numerical operators comparing 
values. Query optimization techniques such as compile time evaluation and 
query rewrites can be applied to improve the scalability of query execution.  

In our applications sensors in equipment located at the sites produce 
measurement values of industrial equipment. The measured values are stored 
in the local log databases for analyzing the abnormal equipment behavior in 
the past. Each measurement has an associated valid time interval. To observe 
equipment abnormalities, queries to FLOQ often involve numerical query 
conditions. To improve query scalability, numerical query conditions are 
pushed down to the log databases. In FLOQ the NUMTranslator algorithm 
[41] utilizes a table driven approach to extract and translate numerical do-
main calculus operators into numerical tuple calculus operators, which are 
translated to SQL expressions executed by a relational DBMS. 

2.6 Overview of Amos II  
Amos II [28] is an extensible main-memory database system which in used 
in our prototype implementation of FLOQ. Amos II provides a functional 
and object-oriented data model where objects, types, and functions are the 
essential concepts. Types classify different kinds of objects stored in the 
database and functions define properties and computations over the objects. 
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FLOQ utilizes the Amos II data model as a common data model (CDM) for 
storing the FLOQ ontology to integrate collections of log databases. 

Each object is an instance of some types and all object instances of a type 
represent the extent of the type. Functions model object properties, relation-
ships between objects, and computation over objects. A function is defined 
by a signature and an implementation. The signature defines the input and 
result parameter types and names. The implementation defines rules how to 
relate inputs and outputs. For example, stored functions are used to represent 
object attributes stored in an Amos II database as a table. Derived functions 
are side-effect free, precompiled, and optimized queries in terms of other 
Amos II functions. Foreign functions enable low-level interfaces for access-
ing external data sources through data manager.  

AmosQL [28] is the domain calculus based query language in Amos II, 
where queries are expressed in terms of functions over variables bound to 
typed objects. The query processor internally represents queries as domain 
calculus ObjectLog [28] expressions, which extends Datalog [11] with types, 
objects, external predicates, and disjunctions. Since Amos II has an extensi-
ble engine (both data manager and query processor), new data types and 
operators defined by some external programming languages (C, Java, or 
Lisp) in new applications can be added to AmosQL. This extensibility al-
lows wrapping different data representations of different kind of data 
sources.  

FLOQ uses the data model of Amos II to represent the FLOQ ontology. 
The extensibility of Amos II is used for accessing different kinds of external 
data sources. In particular relational log databases are accessed through a 
relational data manager interface (DMI) [15], while Google Bigtable data 
stores can be access through another DMI [40]. The latter enables FLOQ to 
store parts of the FLOQ ontology as a cloud database. The MongoDB DMI 
[22] provides query processor and interfaces to MongoDB databases. It ena-
bles log databases managed by MongoDB to be queried through FLOQ. 

To enable distributed query processing, many Amos II instances can be 
set up and communicated using TCP/IP in a federation. In FLOQ, the Amos 
II instances in the federation are called FLOQ site servers and the FLOQ 
server represents the FLOQ ontology and integrates data from a collection of 
FLOQ site servers.  
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The query processing of Amos II is illustrated in Figure 4.  

 
Figure 4. Amos II query processing 

The system first parses the query into an ObjectLog Calculus expression. 
The rewriter applies logical query transformations on ObjectLog expres-
sions. For example, it expands views to expose indexes, eliminates common 
subexpressions, and evaluates expressions at compile time. The cost-based 
optimizer applies optimization algorithms on the transformed ObjectLog 
expression to generate an optimized execution plan in terms of an ObjectLog 
algebra. The ObjectLog algebra interpreter runs the execution plan where 
foreign functions provide user-defined interpretations and access to foreign 
data sources. Native Amos II databases are accessed or queried through local 
main-memory tables and data structures supported by the system, such as 
vectors and dictionaries. 

In FLOQ the Amos II query processor is modified with new rewrite 
mechanisms [40] to automatically split ObjectLog calculus expressions into 
query fragments accessing different kinds of data sources. The mechanism 
rewrites calculus expressions into equivalent ObjectLog expressions to gen-
erate a query execution plan accessing different data sources. Thus queries to 
the FLOQ ontology are decomposed into ObjectLog sub-queries to different 
data sources. 

In our application, queries discovering abnormal machine behaviors often 
involve query include numerical expressions, inequalities, comparisons, etc. 
in query filter. For scalable execution of numerical queries to log databases, 
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the numerical expression should be extracted and translated to push it down 
to the log database. The NUMTranslator algorithm [41] extends the rewrite 
strategy [40] to translate numerical operators in domain calculus queries into 
numerical operators into SQL tuple calculus expressions through system 
tables of FLOQ.  

FLOQ provides a rewrite strategy implementing special query optimiza-
tion strategies [42] to support scalable queries that join meta-data from a 
common meta-database with data selected from a collection of distributed 
autonomous log databases. Two new join strategies for parallel execution of 
queries joining meta-data with data from autonomous log databases using 
standard DBMS APIs are proposed and implemented: parallel bind-join 
(PBJ) and parallel bulk-load join (PBLJ). 

 
 

 24 



3 The FLOQ Ontology 

Recently, there is a rise of manufacturing industry transformation. Research 
initiatives were developed and applied. The ideas such as Germany’s Indus-
try 4.0 [4] [20], China’s Made in China 2025 [21], and US’s Industrial Inter-
net [19] are proposed. They share similar ideas of improving productivity, 
efficiency, and quality of products.  

Within this context, an important issue is scalable approaches to collect, 
process, and analyze data produced in the manufacturing process. For exam-
ple, industrial equipment (machines) with sensors installed on its compo-
nents report the working status by delivering its measured data as data 
streams to some monitoring center where it is analyzed. Such data describe 
time stamped sensor readings of the monitored machines’ components, such 
as the pressure of hydraulic motor pumps, the oil pressure in oil tankers, and 
the temperature of the engines in wheel loaders. These measurements reflect 
how the components function. The data is especially useful for analyzing the 
working status of monitored machine components. Data values outside cer-
tain machine-dependent constraints represent abnormal behavior and are 
therefore identified and used for further analyses. Thus, one way to analyze 
the measured data is to collect and store them for historical analyses. The 
stored measured data is called log data and a database storing such log data 
is called a log database. The data in log databases will be interpreted and 
analyzed to improve the monitored equipment’s reliability. Since the sensors 
deliver the measured data as data streams, a Data Stream Management Sys-
tem can be used for real-time analyses of the data streams [38]. The scope of 
this Thesis work is focusing on analyzing stored log data rather than real-
time stream data processing.  

In Section 3.1 a common scenario from an industrial setting is presented 
to show the need to analyze historical log data in order to find abnormal 
machine behavior. Log data from embedded sensors is stored in a local log 
database at each site. Based on this scenario, in Section 3.2 the general con-
ceptual schema description of monitored equipment, called the FLOQ ontol-
ogy, is defined. Section 3.3 describes an application scenario log data set.  
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3.1 Industrial Application Scenario  
To improve productivity, efficiency, and quality in manufacturing industry 
data is collected from sensors installed in industrial equipment, which enable 
monitoring and predicting their behavior to support, e.g., preventive mainte-
nance [30]. The computation process provides monitoring, analysis, and 
control with feedback to the manufacturing process. Within this context, an 
important issue is a scalable approach to collect, process, and analyze the 
data produced in the manufacturing process.  

As an example [30], Bosch Rexroth Mellansel AB (Hägglunds) [17] pro-
duce hydraulic drive systems, which are used in different areas of heavy 
industry, such as recycling, material handling, mining, etc. Figure 5 shows a 
wood waste shredder that is smashing wood waste to produce shredded 
wood that can be used, e.g., for animal bedding or as top of soil to improve 
fertility and preserve moisture. It is driven by a hydraulic motor which is 
connected and power supplied with a hydraulic drive unit containing a hy-
draulic pump driven by an electric motor. The hydraulic drive unit includes a 
Spider control system [18], which controls and monitors the hydraulic drive 
unit. The spider control system is a modularized control system that allows 
control of different kind of hydraulic drive systems, such as the one power-
ing the shredder in Figure 5.  

 
Figure 5. A wood waste shredder at Mellansel plant 

The Spider control system contains a unit called, Spider Link, which collects 
the measured data and provides a serial log channels interface for data down-
load. The collected data are in CSV format and can be transferred via USB-
memory or GPRS-link. Figure 6 shows a scenario of data collected from a 
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hydraulic drive unit via a spider link and transferred by a GPRS modem to 
be stored in a log database at the site. 

 
Figure 6. An example of data collection and transportation 

Figure 7 shows parts of the inside of a hydraulic drive unit with an electric 
motor, a hydraulic pump, a heater, a set of filters, etc. To monitor the work-
ing status of the hydraulic drive unit, sensors are installed that continuously 
deliver measured values for the hydraulic drive unit components. While the 
wood waste shredder is working, sensors are continuously generating data 
monitoring the equipment. If measured data is not in the desired range of 
each component it reflects abnormal machine behavior. For example, the 
hydraulic drive unit may stop working because of too high pressure in its 
pump. Then experts need to be brought in to analyze the problem and take 
decisions to avoid an abrupt breakdown.  

 
Figure 7. An inside look of a hydraulic drive unit 
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One particular goal of FLOQ is to improve the efficiency of the industrial 
process, for example by reducing the equipment stopping time and managing 
the maintenance of the machines. This requires analyzing logged sensor 
readings produced by the equipment to check if it is working normally. The 
FLOQ ontology provides a universal view of logged sensor data. This ena-
bles the test engineer to, e.g., analyze collected historical sensor data to see 
how long time the components was previously working under certain condi-
tions. Based on these analyses a prediction regarding a component’s failure 
can be estimated and prepared for solutions for equipment outages to make 
the equipment up and running again. To determine how the equipment has 
previously behaved in a given situation, the measured values of certain com-
ponents need to be compared with its expected values. If the result is not 
within a certain tolerance threshold, it is probably an indication that the 
component did not function as normal.  

In our application scenario, hydraulic drive units are widely distributed 
and used to supply power to hydraulic motors at each site. To analyze the 
collected measured data from a hydraulic drive unit, each site maintains its 
own collected measured data stored in an autonomous log database. Figure 8 
shows such a scenario where spider control systems in the hydraulic drive 
units send measured data through GPRS to a local log database at each site. 
It allows the head office to analyze the working status of the equipment 
through the collection of log databases. 

 
Figure 8. Data collection from distributed equipment at different sites 
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To ensure that collected data is useful and reveal abnormalities, the meas-
ured data needs to be collected at adequate frequencies. The fault detection 
and diagnosis on the collected measured data are also based on other factors, 
such as how the machine is used including operating cycle time, average 
velocity, etc.  

Based on this and similar industrial scenarios [30] the FLOQ ontology 
was defined to represent meta-data about sensor readings from collections of 
log databases. 

3.2 The FLOQ Ontology Definition 
Figure 9 shows basic types and functions representing the FLOQ ontology 
schema for our industrial application scenario. More properties can be added 
to customize the ontology. 

The type MachineModel represents different kinds of machines. It has 
four properties represented as stored functions: a unique machine model 
identifier mm(MachineModel)->Number, a name name(MachineModel)-
>String, a model description descr(MachineModel)->String, and its manu-
facturer manuf(MachineModel)->String.  

 
Figure 9. FLOQ ontology schema 

The type MachineInstallation represents machine configurations at different 
sites. It has a unique machine installation identifier mi(MachineInstallation)-
>Number. The function model(MachineInstallation)->MachineModel identi-
fies the machine model used in an installation and loca-
tion(MachineInstallation)->Site identifies its site.  
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The Site type represents the locations of machines and log databases. It 
has a unique identifier sid(Site)->Number, a name name(Site)->String, and 
an identifier of its log database logdb(Site)->Number. 

The type SensorModel represents sensor models. Sensor models have the 
properties: a unique identifier sm(SensorModel)->Number, a name 
name(SensorModel)->String, a description descr(SensorModel)->String, 
and a manufacturer manuf(SensorModel)->String.  

The type SensorInstallation represents different installations of sensor 
models. It has a unique identifier si(SensorInstallation)->Number and an 
expected measured value ev(SensorInstallation)->Number. The sensor mod-
el of a sensor installation is identified by the function mod-
el(SensorInstallation)->SensorModel, while the machine on which a sensor 
is installed is identified by the function machine(SensorInstallation)-
>MachineInstallation.  

The Measures type represents measurements from sensors installed on 
different machines valid in the time interval [bt,et). Its attributes include the 
begin time bt(Measures)->Time, the end time et(Measures)->Time, and the 
measured value mv(Measures)->Number. The sensor installation where a 
value was measured is identified by the function produced_at(Measures)-
>SensorInstallation.  

Figure 10 shows how the FLOQ ontology is represented as an external re-
lational database schema mapped to the FLOQ ontology.  

 
Figure 10. Meta-database schema 

Each site has its own autonomous log database table Measures(mi, si, bt, et, 
mv) (Figure 11) storing measurements from the sensors installed on the ma-
chines located at the site.  

 

Figure 11. Log table at each site 

The FLOQ view VMeasures (Figure 12) integrates the collection of log da-
tabases. It is logically a union-all of all log tables (Measures) on the different 
sites. In the view the attribute logdb identifies the origin of a tuple in a log 
database. Through the meta-database users can make queries over all log 
tables by joining the meta-data with the view VMeasures. Since the set of 
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log databases is dynamic and accesses many databases it is not feasible to 
define VMeasures as a static view; instead FLOQ processes queries to 
VMeasures by dynamically submitting queries to the log databases and col-
lecting the results. 

 
Figure 12. Integrated view in FLOQ server of  all log tables 

3.3 Application Scenario Log Data Sets 
As test data in this PhD project, in the experiments we populate the meta-
database and the log databases with meta-data and log data from Hägglunds. 
Sensor data was collected from the pump in Figure 7. It contains both nor-
mal and abnormal data. The data was delivered as a set of CSV files where 
each file includes meta-data about the logged data such as unit names, file 
sequence numbers, measured parameter names, sampling rates, etc., as well 
as logged sensor readings having a time stamp ts of each measurement. 
When loading the logged values into a log database, the time stamps are 
transformed into valid time intervals [bt, et) (Figure 11). The data was used 
in papers II, III, and IV. Figure 13 shows a small sample of log data from the 
B-side pump pressure sensor in a time interval. 

 
Figure 13. Sampled measured B-side pump pressures 

There is an initial warm-up time in the figure of 581.1 seconds. After that, 
the pressure value starts to climb up and down. Abnormal situations are de-
tected when the measured value mv is larger than the configured expected 
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value ev. For example, when ev=359.44 it means the tolerance is wide and in 
this case all points are normal. If ev=0 all points become abnormal. 

 
Figure 14. An example of sampled measured data of pressure charge pump 

Figure 14 illustrates an example of a scatter plot of the measured values for 
pressure charge (B-side) of the pump in Figure 7. In this case, the expected 
value is set to 20.0. Here the threshold value is used to indicate absolute or 
relative deviation from the expected value. For example, all points in Figure 
14 become abnormal when ev=0, while all points are normal when ev=20.  
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4 The FLOQ System 

4.1 Architecture 
Figure 15 illustrates the FLOQ architecture. It provides a uniform view of 
measurement data from a collection of log databases located at different 
sites. The user specifies queries to the federation in terms of the FLOQ on-
tology, which is managed by the FLOQ server.  
 

 
Figure 15. FLOQ system architecture                   

To enable processing queries over different kinds of data sources managed 
by different kinds of data managers, FLOQ supports plug-ins of data man-
ager interfaces, DMIs, for each kind of data manager. For example, in Figure 
15 the log databases at site one and three are managed by relational data 
managers, RDBMSs, interfaced using the RDBMS-DMI, while the log data-
base at site two is managed by a MongoDB data manager [25] interfaced 
through the MongoDB-DMI. Furthermore, parts of the FLOQ ontology itself 
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is stored in a relational database at site zero. FLOQ uses the RDBMS-DMI 
to map the meta-data in site zero to the FLOQ ontology.  

To process local queries each site has a FLOQ site server, which is a 
FLOQ system that contains schema mappings between the log database at 
the site and the FLOQ ontology view. There is no site server for site zero 
since the meta-data is mapped directly to the FLOQ ontology and then que-
ried directly from the FLOQ server.  

Processing queries joining meta-data in the FLOQ ontology with data 
from different log databases requires sending sub-queries from the FLOQ 
server to the corresponding FLOQ site servers. FLOQ processes such joins 
by accessing the FLOQ ontology to find the identifiers of the log databases 
that need to be accessed to answer the query. Then sub-queries are generated 
for each data source and sent to the FLOQ site servers encapsulating them. 
The query processor in a FLOQ site server translates a received sub-query 
into a local execution plan that contains calls to its log database through the 
DMI. It sends back to the FLOQ server the result of executing the query as a 
stream of tuples. Parallel processing is provided since the FLOQ site servers 
work independently of each other. The results from many FLOQ site servers 
are asynchronously merged by FLOQ server while emitting the result to the 
user. 

Figure 16 illustrates meta-data about DMIs stored in the FLOQ ontology. 
This DMI meta-data enables FLOQ to process queries over different kinds 
of data managers.  

 
Figure 16. DMI meta-data                   

Data sources registered with FLOQ are represented by instances of type 
Datasource. Each data source has a unique name assigned by the user, and a 
floqid number assigned by FLOQ. The DMI of the system managing a data 
source is obtained by the function data_manager(). Each data manager pro-
vides an interface to execute queries by calling a query function implement-
ed as a foreign FLOQ function. Depending on the capabilities of a data man-
ager its query function can process queries having different query operators 
mapped to corresponding FLOQ functions through the operator mappings.  
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When a new collection in a data source is made accessible to FLOQ the 
user calls a collection importer to import meta-data of a data source using its 
data manager. The collection importer generates a source predicate for each 
accessed data source collection. The source predicate is a derived function 
that retrieves the tuples in the collection. For example, if the data source 
represents a log database the tuples represent the rows of the Measures table 
in Figure 11, while source predicates representing FLOQ meta-data will 
return the corresponding tuples of the meta-database tables in Figure 10. For 
a given query to the FLOQ ontology the extensible query processor gener-
ates query fragments to different sources by rewriting the source predicates.  

The FLOQ ontology stores general meta-information about the locations 
and names of all FLOQ site servers in the federation, while each FLOQ site 
server has its own local schema describing its local data source. Distributed 
FLOQ site servers can be set up communicating using TCP/IP. A FLOQ site 
server joins the federation by registering itself to the FLOQ server by re-
motely calling the collection importer in the FLOQ server for the DMI of the 
site. The collection importer creates a new instance of type Datasource rep-
resenting the site server along with the source predicate representing the 
Measures table of the new site. After the registration the FLOQ ontology has 
all required meta-data about the new FLOQ site server needed to process 
queries accessing the site server. The FLOQ site servers have full query pro-
cessors, which enables processing sub-queries submitted from the FLOQ 
server.  

4.2 FLOQ Query Processor 
The query processor of FLOQ extends the query processor of Amos II in the 
following ways: 
• FLOQ provides novel specialized query processing mechanisms for 

different kinds of DMIs. The mechanism is based on plug-ins called ex-
tractors (named ‘absorbers’ in Paper I, [40]) and finalizers. 

• By developing a DMI for Google App Engine it is possible to store parts 
of the FLOQ ontology in an external cloud-based datastore. (Paper I, 
[40]) 

• A streamed interface to Google App Engine provides queries to Bigtable 
data repositories returning large data volumes. (Paper I, [40]) 

• A table driven approach used by the extractors and finalizers provides 
the NUMTranslator mechanism to translate numerical domain calculus 
operators into numerical SQL tuple calculus operators. (Paper II, [41]) 

• The parallel bind-join (PBJ) provides streamed parallel joins between 
meta-data in the FLOQ ontology and the dynamic set of autonomous, 
distributed log databases utilizing standard DBMS APIs. (Paper III, 
[42]) 
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• The parallel bulk-load join (PBLJ) utilized the bulk load capabilities of a 
site data manager to provide scalable joins between the meta-database 
and the log databases. (Paper III, [42]) 

 
Figure 17. FLOQ query processor extensions of the Amos II query processor                   

Figure 17 illustrates how FLOQ extends the query processing steps of Amos 
II. The extensions are highlighted by the dot-lined rectangles in the figure. 
The following modules are added: 
1. The ObjectLog rewriter of Amos II is extended with an extractor man-

ager that automatically transforms ObjectLog calculus fragments into 
sub-queries accessing the different kinds of data sources. For each DMI 
there is a specialized DMI extractor plugged-into the extractor manager. 
The extractor manager takes an ObjectLog query and, for each source 
predicate referenced in the query, calls the corresponding DMI extractor 
to collect from the query the predicates that can be executed by the site 
server, based on the capabilities of the DMI (paper I, [40]).  

2. After the cost-based optimization the execution plan is passed to the 
finalizer manager. It traverses the optimized ObjectLog algebra expres-
sion to translate algebra fragments into calls to the query function of the 
DMIs used to access queried data sources. As for the extractors, each 
DMI has a specialized DMI finalizer plugged-into the finalizer manager. 
A DMI finalizer transforms into query function calls the fragments of an 
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algebra expression that can be translated based on the query capabilities 
of the DMI’s data manager. For example, for translating numerical Ob-
jectLog algebra expressions to SQL, the NUMTranslator algorithm 
transforms numerical ObjectLog algebra operators into SQL tuple calcu-
lus expressions through the operator mappings table of FLOQ in Figure 
16. The fragments of an ObjectLog algebra expression that cannot be 
translated into query function calls remain in the FLOQ algebra expres-
sion. Thus the rewritten query plan will be an ObjectLog algebra expres-
sion with calls to query functions (paper II, [41]). 

3. To speed up queries combining meta-data with distributed logged sensor 
readings, sub-queries to the log databases should be run in parallel. Two 
join strategies PBJ and PBLJ for parallel execution of queries joining 
meta-data with data from autonomous log databases using standard 
DBMS APIs are proposed and their performance evaluation are analyzed 
(Paper III, [42]). In general, PBLJ performs better than PBJ, details in 
[42]. To implement PBJ and PBLJ, the FLOQ optimizer (Figure 17) was 
developed. It rewrites queries to the VMeasures view (Figure 12) to gen-
erate calls to FLOQ algebra operators, using PBJ or PBLJ to enable 
parallel sub-queries to the log databases. The extractor and finalizer 
plug-ins of a RDBMS or MongoDB (Figure 17) are utilized by the 
FLOQ optimizer to generate corresponding sub-queries to RDBs or 
MongoDB log databases, respectively.   

4. It was investigated of how the state-of-the-art NoSQL DBMS MongoDB 
was suitable as a scalable log database manager. The performance of us-
ing MongoDB to store the Measures tables at a site (Figure 11) was 
compared with using two different relational DBMSs with various con-
figurations. MongoDB was shown to have similar performance as a 
state-of-art RDBMS (Paper IV, [23]). A MongoDB query function inter-
face was developed [22] along with a MongoDB extractor and finalizer 
plug-ins (Figure 17). 
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5 Technical Contributions 

The technical contributions of this Thesis are summarized below, together 
with summaries of the published papers to guide the reader on how the in-
cluded papers relate to the research questions.  

5.1 Paper I 
Zhu, M., Risch, T. (2011) Querying Combined Cloud-Based and Relational 
Databases, The 2011 International Workshop on Data Cloud (D-CLOUD 
2011), at 2011 International Conference on Cloud and Service Computing 
(CSC), Hong Kong, China, December 12-14, 2011, In Proc. CSC 2011, pp. 
330-335. 

5.1.1 Summary   
An increasing amount of data is stored in cloud repositories, which provide 
high availability, accessibility, and scalability. The paper investigates the 
possibility to store and query part of the FLOQ ontology in a cloud based 
storage, Google Bigtable [7]. To interface Bigtable, a DMI for the Google 
App Engine [13] was developed to access FLOQ ontology elements stored in 
a Bigtable repository. To compensate for the limited query capabilities of the 
GQL [34], the query language of Google App Engine, novel specialized 
query processing mechanism based on plug-ins called absorbers (later re-
named to extractors) and finalizers were developed. Furthermore, a streamed 
communication protocol provides queries to Bigtable returning large data 
volumes. 

Paper I answers research question three and partly answers research ques-
tion two. 

I am the primary author of this paper. The other authors contributed to 
discussion and paper writing. 

5.2 Paper II  
Zhu, M., Stefanova, S., Truong, T., Risch, T. (2014) Scalable Numerical 
SPARQL Queries over Relational Databases, 4th International workshop on 
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linked web data management (LWDM 2014) in conjunction with the 
EDBT/ICDT 2014 Joint Conference, Athens, Greece, March 28, 2014, In 
Proc. LWDM 2014, pp. 257-262. 

5.2.1 Summary 
The paper investigates the problem of detecting past machine anomalies by 
querying historical sensor readings stored in a relational database. Typically 
anomaly detection queries include numerical expressions, inequalities, string 
matching, and set membership tests inside query conditions. We call such 
queries numerical queries. For scalable execution of numerical queries, nu-
merical operators should be pushed into SQL rather than executed as post-
processing filters outside the RDB; otherwise the query execution is slowed 
down since a lot of data is transported back from the RDB server before the 
filtering. In addition indexes on the server are not utilized.  

The paper presents the NUMTranslator algorithm, which transforms nu-
merical and other domain calculus operators into corresponding SQL expres-
sions. The experiments show that NUMTranslator substantially improves the 
query performance in particular when the numerical expressions inside query 
conditions are highly selective. The algorithm uses a table driven approach 
to translate numerical domain calculus expressions into corresponding nu-
merical SQL expressions. We compared the performance of the numerical 
queries with and without applying NUMTranslator. We also compared our 
approach with other systems. In the paper the query language SPARQL was 
used rather than SQL, showing the FLOQ can process different query lan-
guages. Only D2RQ [3] could execute numerical SPARQL queries over 
RDBs, but substantially slower, since D2RQ does not employ an approach 
similar to NUMTranslator. 

Paper II answers research question five. 
I am the primary author of this paper, while the other authors contributed 

with discussions and paper writing. Silvia Stefanova helped with related 
work while Thanh Truong contributed with some initial implementation 
work.  

5.3 Paper III 
Zhu, M., Mahmood, K., Risch, T. (2015) Scalable Queries Over Log Data-
base Collections, 30th British International Conference on Databases (BI-
COD 2015), Edinburgh, UK, July 6-8, 2015, In Proc. BICOD 2015, pp. 173-
185. 
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5.3.1 Summary 
Two new join strategies are proposed, parallel bind-join (PBJ) and parallel 
bulk-load join (PBLJ), for parallel execution of queries joining meta-data 
with data from autonomous databases using standard DBMS APIs. A cost 
model is proposed to guide and evaluate the efficiency of the join strategies. 
The performance of the two methods is evaluated using data from a real-
world application [30], where sensor readings are collected from machines at 
distributed sites and joined through the FLOQ meta-database at a central site 
in order to detect unexpected behaviors. For the performance evaluation we 
define typical fundamental queries to detect anomalies and investigate the 
impact of our join strategies guided by the cost model. The experimental 
results validate the cost model. In general, PBLJ performs better than PBJ 
when the number of bindings from the meta-database is increased and the 
number of result tuples is small. 

Paper III answers research question four and partly answers research 
question two. 

I am the primary author of this paper, while the co-authors helped with 
discussions and paper writing. Khalid Mahmood contributed to the cost-
model for join strategies.  

5.4 Paper IV 
Mahmood, K., Risch, T., Zhu, M. (2015) Utilizing a NoSQL Data Store for 
Scalable Log Analysis, 19th International Database Engineering & Applica-
tions Symposium (IDEAS 2015), Yokohama, Japan, July 13-15, 2015, In 
Proc. IDEAS 2015, pp. 49-55. 

5.4.1 Summary 
A potential problem for persisting large volume of data logs with a conven-
tional relational database is that loading massive logs produced at high rates 
is not fast enough due to the strong consistency model and high cost of in-
dexing. As a possible alternative, a modern NoSQL data store, which sacri-
fices transactional consistency to achieve higher performance and scalability, 
can be utilized. In this paper, we investigate to what degree a state-of-the-art 
NoSQL database can achieve high performance persisting and fundamental 
numerical queries to analyze data in log databases. For the evaluation, a state 
of-the-art NoSQL database, MongoDB, is compared with a relational DBMS 
from a major commercial vendor and with a popular open source relational 
DBMS. MongoDB is chosen as it provides both primary and secondary in-
dexing needed for anomaly detection, which is essential for scalable pro-
cessing of queries over large log databases. Our results reveal that relaxing 
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the consistency does not provide substantial performance enhancement for 
any of the systems. For high-performance loading of data logs MongoDB is 
shown to have similar performance as a state-of-the-art relational database, 
while the query performance of the relational database is usually better.  

The main contribution of the paper is a performance evaluation of persist-
ing and analyzing data logs under different consistency configurations, as 
needed by log databases.  

Paper IV partly answers research question two. 
I contributed to discussion, reviewed, and proposed changes in the paper 

writing.   
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6 Conclusions and Future work 

In this Ph.D. project, I started investigating querying data stored in a cloud 
data store with limited query capabilities compared to a regular relational 
database. I developed the BigIntegrator system to enable queries combining 
data from a cloud data store with regular relational databases. The architec-
ture of the system included novel query processing mechanisms based on 
plug-ins called extractors and finalizers, which must be implemented for 
each new data manager. The extensions compensate for limited query capa-
bilities of different data managers. Furthermore, due to the quota limitation 
in transferring data from a cloud data store per request, a streamed commu-
nication interface was implemented to enable queries returning big volume 
of data. 

In order to analyze passed behavior of monitored equipment, sensor read-
ings can be stored in relational databases and analyzed with queries. Howev-
er, queries for machine anomaly detection often involve numerical expres-
sions inside query conditions. The continuation of BigIntegrator, i.e. the 
FLOQ system, is able to process in a scalable way numerical queries that 
analyze logged data stored in collections of different kinds of databases.   

To efficiently process numerical queries over log databases, the 
NUMTranslator algorithm was developed, which extracts and translates 
numerical domain calculus expressions into corresponding numerical SQL 
expressions by using a table driven approach. The approach was evaluated 
on a benchmark scenario in an industrial setting where logged data stored in 
a relational database was analyzed using numerical queries. The experiments 
show that NUMTranslator substantially improves the query performance of 
numerical queries, in particular when the numerical expressions inside query 
conditions are highly selective.  

To process queries over geographically distributed log databases, I devel-
oped two new join strategies, parallel bind-join (PBJ) and parallel bulk-load 
join (PBLJ). For the performance evaluation I defined typical fundamental 
queries and investigated the impact of the join strategies. A cost model was 
used to guide and evaluate the efficiency of the strategies. The experimental 
results validated the cost model. In general, PBLJ performs better than PBJ 
when the number of bindings from the meta-database is increased and the 
returned result is small. 

Finally, it was shown that a NoSQL data store such as MongoDB is a 
suitable alternative to relational databases for storing log databases. Based 
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on this, a MongoDB-DMI [22] was developed to enable FLOQ queries com-
bining logged data stored in MongoDB databases with other data sources.  

As future work, the system should be extended to handle new kinds of da-
ta sources by developing new DMIs, for example, DMIs to call MapReduce 
systems [10] that process large data logs as parallel batch jobs. Furthermore, 
logged data should be combined with streaming data to match on-line data 
from equipment with historical data in log databases in order to identify how 
similar situations were previously handled when anomalies are detected in 
streaming data. To handle expensive analyses over streaming and stale data 
novel parallel query processing strategies such as parasplit [39] can be uti-
lized. 

In the experiments a rather small set of autonomous log databases were 
used. The impact of having a very large number of log databases should be 
further investigated. Different strategies to improve communication over-
heads, e.g. by compression, should be investigated.  

Extensible indexing techniques can be used for improving the perfor-
mance of complex numerical queries over logs [35] [36]. 
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Summary in Swedish 

Modern produktutveckling genererar stora mängder data under alla dess 
olika faser, från utveckling och tillverkning, genom användning och under-
håll, till vidareutveckling och återvinning.  Det är mycket viktigt att kunna 
lagra, söka och analysera de olika slags data som genereras under produkt-
cykeln för att skapa högkvalitativa och tillförlitliga produkter. Det behövs 
även metoder för att samla ihop, bearbeta och analysera producerade data.   

Avhandlingen är baserad på ett reellt industriellt scenario [30] där maski-
ner, t.ex. hjullastare, hydrauliska pumpar, eller skärverktyg är spridda över 
olika anläggningar vid olika geografiska platser och där sensorer på maski-
nerna producerar stora volymer mätvärden. De data som generas vid varje 
anläggning representerar tidsstämplade sensorvärden från olika maskinkom-
ponenter (t.ex. oljetemperatur eller tryck) och lagras i lokala loggdatabaser 
vid anläggningen. Dessutom behövs ett effektivt sätt att övervaka och vali-
dera att övervakad utrustning fungerar som avsett. Loggdatabaserna används 
för att finna och analysera onormalt beteende hos de övervakade maskinerna 
på de geografiskt distribuerade anläggningarna. Samlingen av loggdatabaser 
är vidare dynamisk i den meningen att nya anläggningar tillkommer och 
försvinner över tiden.   

För att kunna analysera och jämföra data från loggdatabaserna behövs en 
övergripande s.k. meta-databas som beskriver egenskaper hos övervakad 
utrustning och dess loggdatabaser, t.ex. olika maskinkonfigurationer vid 
anläggningarna, vilka typer av sensormodeller som är installerade på de 
olika maskinerna och vilka toleranser som är aktuella. Meta-databasen till-
handahåller en global vy av tillståndet hos alla maskiner vid alla anläggning-
ar. Genom meta-databasen kan man ställa frågor som spänner över loggdata-
baserna och identifierar när övervakade maskiner uppträder eller har uppträtt 
onormalt. En speciell utmaning som behandlas i avhandlingen är skalbar 
hantering av frågor som kombinerar data i den övergripande meta-databasen 
med data från de distribuerade loggdatabaserna.  

Ett onormalt beteende hos maskiner kan ofta upptäckas genom att identi-
fiera onormala avvikelser i uppmätta värden som lagrats i loggdatabaserna.  
Sådana avvikelser kan uttryckas som databasfrågor innehållande numeriska 
villkor, exempelvis att sensorvärden avviker utanför toleransmarginalen för 
en viss sensormodell under en viss sammanhängande tidsperiod. Detta krä-
ver att systemet kan utföra numeriska frågor över en mängd av loggdatabaser 
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beskrivna av en meta-databas som innehåller exempelvis dessa toleranser 
och information om aktuella typer av maskiner.  

Följande forskningsfrågeställningar undersöks i avhandlingen: 
1. Den övergripande forskningsfrågan är: Hur representerar man en 

meta-databas som beskriver distribuerad industriell utrustning och 
dess loggdatabaser? 

2. Hur kan olika sorters mjukvara för att hantera databaser användas 
för lagring av både loggdatabaserna och meta-databasen? 

3. Hur kan moln-baserad datalagring användas för att representera 
meta-databasen? 

4. Hur kan systemet effektivt och skalbart utföra frågor som kombine-
rar meta-databasen med data från de distribuerade loggdatabaserna? 

5. Hur kan systemet effektivt utföra numeriska frågor som identifierar 
onormala mätvärden i loggdatabaserna? 

Som en ansats för dessa utmaningar och för att besvara den första forsk-
ningsfrågan har vi utvecklat ett system, FLOQ (Fused Log database Query 
processor) illustrerat i Figur 18. FLOQ integrerar samlingar av dynamiska, 
distribuerade och separata loggdatabaser genom en övergripande meta-
databas som kallas FLOQ-ontologin. FLOQ-ontologin hanteras av ett system 
som kallas FLOQ-servern. 

 
Figur 18. FLOQ-översikt                   

FLOQ-ontologin beskriver meta-data och fysiska egenskaper hos industriell 
utrustning på geografiskt distribuerade anläggningar. FLOQ-ontologin är 
generell och kan beskriva olika sorters industriell utrustning. Varje anlägg-
ning på plats 1, 2, …, n har utrustning som producerar mätvärden från givare 
lagrade i separata loggdatabaser. De olika loggdatabaserna underhålls lokalt 
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per anläggning oberoende av andra databaser. FLOQ-ontologin inkluderar 
beskrivningar av dessa loggdatabaser. Även delar av FLOQ-ontologin kan 
lagras i en extern meta-databas som finns på plats 0. Användaren sänder 
frågor till FLOQ-servern för att söka i loggdatabaserna och i meta-
databasen. Frågorna formuleras i termer av FLOQ-ontologin. De analyserar 
ofta data i loggdatabaserna för att upptäcka onormala avvikelser i lagrade 
mätvärden. Sådana frågor innehåller ofta numeriska villkor, t.ex. för att iden-
tifiera onormalt stora skillnader mellan uppmätta och förväntade givarvär-
den.   

FLOQ-ontologin är representerad i en generell datamodell som kan besk-
riva alla sorters meta-data. Vidare kan både meta-databasen och loggdataba-
serna lagras i olika format m.h.a. olika sorters databashanterare. De olika 
externa datarepresentationerna är avbildade till FLOQ-ontologin. FLOQ 
tillhandahåller en generell och utbyggbar mekanism för effektivt utförande 
av frågor över olika sorters databaser, som t.ex. MySQL eller MongoDB 
[22][25]. Detta ger ett svar på den andra forskningsfrågan. 

För att göra delar av FLOQ-ontologin globalt tillgängligt för världsom-
spännande organisationer tillåter FLOQ att en del av ontologin lagras i en 
extern moln-databas som Googles Bigtable [7]. Sådana moln-databaser till-
handahåller hög universell tillgänglighet och skalbarhet. FLOQ gör det möj-
ligt att avbilda extern datarepresentation i Bigtable eller andra datarepresen-
tationer till FLOQ-ontologin [40]. Meta-data kan såldes lagras antingen di-
rekt i FLOQ-ontologins datamodell, i en relationsdatabas, eller i en moln-
databas som Bigtable. Denna möjlighet av FLOQ att representera ontologin 
på olika sätt besvarar forskningsfråga tre.  

FLOQ tillhandahåller ett delsystem för att effektivt och skalbart utföra da-
tabasfrågor över distribuerade loggdatabaser i termer av FLOQ-ontologin. 
En mekanism för att modulärt plugga in beskrivningar av olika sorters data-
bashanterare gör det möjligt för systemet att automatiskt dela upp en fråga 
till FLOQ-ontologin i separata delfrågor som sänds till de distribuerade 
loggdatabaserna. Två olika strategier förslås för att dela upp frågor som 
kombinerar meta-data i ontologin med data i loggdatabaserna, parallel bind-
join (PBJ) och parallel bulk-load join (PBLJ) [42]. Denna frågebearbetning 
över distribuerade loggdatabassamlingar besvarar forskningsfråga fyra. 

Skalbar bearbetning av numeriska frågor över loggdatabaser represente-
rade som relationsdatabaser (t.ex. MySQL eller Oracle) kräver att numeriska 
villkor i största möjligaste mån utförs som lokala SQL-frågor direkt över de 
olika loggdatabaserna snarare än att data transporteras till FLOQ-servern för 
filtrering där.  NUMTranslator algoritmen [41] konverterar numeriska ut-
tryck i termer av meta-databasmodellen till motsvarade SQL-frågor. I [41] 
visas att NUMTranslator förbättrar prestanda väsentligt baserat på frågor 
som identifierar avvikelser i loggdatabaser lagrade i en relationsdatabas. 
Detta besvarar forskningsfråga fem. 
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tional Databases 
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Abstract— An increasing amount of data is stored in cloud repositories, 
which provide high availability, accessibility, and scalability. However, for 
security reasons enterprises often need to store the core proprietary data in 
their own relational databases, while common data to be widely available 
can be stored in a cloud data repository. For example, the subsidiaries of a 
global enterprise are located in different geographic places where each sub-
sidiary is likely to maintain its own local database. In such a scenario, data 
integration among the local databases and the cloud-based data is inevitable. 
We have developed a system called BigIntegrator to enable general queries 
that combine data in cloud-based data stores with relational databases. We 
present the design and working principle of the system. A scenario of query-
ing data from both kinds of data sources is used as illustration. The system is 
general and extensible to integrate data from different kinds of data sources. 
A particular challenge being addressed is the limited query capabilities of 
cloud data stores. BigIntegrator utilizes knowledge of those limitations to 
produce efficient query execution. 

 
Keywords: cloud data repository; relational database; data integration;  

Bigtable; 

I.   Introduction 
Cloud based repositories such as Google’s Bigtable [1] allow widely acces-
sible distributed data stores to be queried by the query language GQL [7]. 
This is done by web-based applications managed by the Google App Engine 
(GAE) [10]. GAE provides an application environment and query language 
to manage data stored in Google’s cloud. It is easy to write web-based appli-
cations that access and update these cloud-based databases.  

Cloud repositories such as Google’s Bigtable are particularly useful to 
store data that has to be globally available. For example, in industrial set-
tings, machines such as engines, trucks, cutting tools, etc., produce many 
different kinds of data and the machines are often geographically widely 
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distributed and maintained locally. To check that distributed equipment 
works properly, it is crucial to analyze its working status by searching the 
data produced by the equipment. Since the equipment is widely distributed, 
properties about the equipment should be stored in an environment that pro-
vides high availability and universal access, such as a cloud-based data store. 

Relational database systems (RDBMSs) have the limitation that they must 
run in some central server site and therefore require substantial maintenance 
efforts to provide high availability. As an alternative approach, we propose 
to store common data, for instance equipment properties, in a cloud-based 
data store, such as Bigtable. By using such a cloud service the data becomes 
universally available and can easily be maintained. However, the data stored 
in the cloud often needs to be combined with data stored in regular data-
bases. For example, cloud-based data is used for finding the locations of a 
particular machine, while the information about the machines’ operating 
environments is stored in local relational databases. A maintenance engineer 
may wish to make queries combining relational data with the cloud-based 
data. To enable this, there is need for a system supporting queries combining 
cloud-based data and data in relational databases. We have developed such a 
system, BigIntegrator, to transparently process queries combining data 
stored in Bigtable data stores and data stored in relational databases. 

BigIntegrator utilizes a novel query processing mechanism to provide 
easy extension of data integration from different kinds of data sources. The 
mechanism is based on plug-ins called absorbers and finalizers. The limited 
expressiveness of GQL has to be taken into account by BigIntergrator’s que-
ry processor, which is the challenge being addressed by the absorbers and 
finalizers. 

GQL has some similarities with SQL but has very limited query expres-
sions in order to provide for scalable processing. BigIntegrator can process 
queries to such data sources with limited back-end query languages support. 
The absorber and finalizer for Bigtable data sources know the limitations of 
GQL and will pre and post-process those operations that cannot be processed 
by the data sources. For this, BigIntegrator generates integrating execution 
plans containing calls to relational databases, Bigtable data stores, and local 
operators. 

In summary the contributions of our work are: 
• The BigIntegrator system provides query capabilities over combined 

cloud-based and relational databases. 
• A novel query processing mechanism based on plug-ins for absorbers 

and finalizers is developed to allow easy extensions for each new kind of 
data source that provide a restricted query language. 

• A client-server architecture for scalable querying of Bigtable data re-
positories is developed. 
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The rest of the paper is organized as follows: Section II discusses related 
work. Section III illustrates the system by a scenario from an industrial 
equipment point of view. Section IV overviews the BigIntegrator system 
architecture and describes its query processing. Conclusions and future work 
are described in section V. 

II.   Related work 
There are several cloud-based storage systems available, such as Dynamo 
[8], PNUTS [5], and Bigtable [1]. These systems have very limited query 
languages as a compromise for very high scalability. The restricted queries 
do not allow joins and there are restrictions on how to specify the query con-
ditions.  In contrast, the BigIntegrator pushes as much query processing as 
possible to the data sources and compensates the lacking query capability of 
a data source by doing post-query processing with its own query engine. 
Similar approaches can be applied on [8, 5] as well. 

Some cloud-based storage systems such as Cloudy [3] provide rather 
complete SQL capabilities. It offers key-value, SQL, and XQuery interfaces 
to manipulate its cloud data. Microsoft SQL Azure [2] offers full SQL lan-
guage support for its cloud-based relational database. Unlike Cloudy and 
SQL Azure, the purpose of BigIntegrator is to allow joining of data from a 
restricted cloud-based data store such as Bigtable with relational databases, 
by generating execution plans that combine queries sent to the data sources. 

Unlike classical work on mediator/wrapper techniques over conventional 
databases such as [4], BigIntegrator provides data integration between cloud-
based data repositories and relational DBMSs. Furthermore, a novel query 
plug-in mechanism based on absorbers and finalizers is developed to provide 
easy extensions for new kinds of data sources providing restricted query 
languages. 

To conclude, most work on cloud-based databases concentrates on 
providing scalability, availability and consistency as storage services inside a 
cloud. No other system addresses the problem of integrating data from 
cloud-based databases having restricted query languages with relational da-
tabases. We show the extensibility of the system and the advantages of its 
novel query plug-in mechanisms. 

III.   Scenario 
In this section, we present a scenario combining data from Bigtable and a 
local relational database.  An enterprise is responsible for maintaining geo-
graphically widely distributed industrial equipment. Some generally availa-
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ble data about the equipment is stored in a cloud repository, while data about 
local personnel is in relational databases. BigIntegrator enables queries com-
bining these databases. 

The database schema for the cloud based database is shown in Fig. 1 and 
for the relational one in Fig. 2. The cloud table Machine(Model, Name, 
Manufacturer) stores general data about industrial machines such as its 
model identifier, name, and manufacturer. The table Site(SID, Name, Coun-
try, Region) stores information about each site such as site ID, its name, and 
the country and region where it is located. The table MachineInstalla-
tion(MID, Model, SID) stores information about each installation of a ma-
chine at some site, i.e the identifier of the machine, its model, and the identi-
fier of the site where it is located (SID). The attribute Model is foreign key 
from MachineInstallation to Machine and the attribute SID is foreign key 
from MachineInstallation to Site. The tables Machine, Machineinstallation, 
and Site provide globally accessible common data and are therefore stored in 
the cloud.  

A country maintains its local personnel database in the relational database 
in Fig. 2. The table Operator(PID, Name, Skill, Operates) stores the identifi-
er of a machine operator along with his name, specialty, and the machine he 
is currently operating. The attribute Operates is foreign key from the local 
database table Operator to the cloud database table MachineInstallation. Fig. 
3 shows all the tables in this scenario with populated data. 

 

Figure 1. Cloud database schema 

 

Figure 2. Relational database schema 

Operator(PID, Name, Skill, Operates)

Machine(Model, Name, Manufacturer) 
MachineInstallation(MID, Model, SID) 
Site(SID, Name, Country, Region)
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Figure 3. Scenario database schema 

The following is an SQL query to BigIntegrator that combines data from the 
cloud-based tables at a data source named A (the Bigtable data source) and 
the relational database table at data source named B (the country’s local data 
source): 

The query retrieves identities of machines of model “M1” along with the 
operators’ names, where the machines’ manufacturer names starts with “V”, 
the machines are installed in the region “Uppland”, and the site code is equal 
to one. 

Every time a data source is accessed the system automatically generates a 
set of relations called the source predicates representing the collections in-
side the source. The source predicates are references as tables in the SQL 
queries. In the example there are the source predicates Machine_A, Ma-
chineInstallation_A, Site_A, and Operator_B. The name of each collection in 
a source named X is suffixed by “_X”. After the query is executed, BigInte-
grator returns the following query result: 

 Model Name Manufacturer 
1 M1 Volvo 
2 M2 Volvo 
3 M3 Volvo 
4 M4 Volvo 
5 M5 Volvo 

               Machine table 
 
MID Model SID 

1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 1 1 
7 2 2 
8 3 3 
9 4 4 
10 5 5 

      MachineInstallation table

SID Name Country Region 
1 Uppsala Sweden Uppland 
2 Chengdu China Si Chuan 
3 Campinas Brazil Sao Paulo 
4 Chapaevsk Russia Samara 
5 Monki Poland Bialystok 

                              Site table 
 
PID Name Skill Operates 

1 John Operation 1 
2 Oliver Operation 2 
3 Bruce Operation 3 
4 Carl Operation 4 
5 Thomas Operation 5 
6 Jens Operation 6 
7 Lucas Operation 7 
8 Alex Operation 8 
9 Ryan Operation 9 
10 Wes Operation 10 

                  Local table Operator

select i.Mid, o.Name  
from Machine_A m, MachineInstallation_A i, Site_A s, Operator_B o  
where m.Name = ‘M1’ and 
           m.Manufacturer like ‘V%’ and 
           s.Region = ‘Uppland’ and 
           s.Sid = 1 and 
           m.Model = i.Model and 
           i.Sid = s.Sid and 
           i.Mid = o.Operates 
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IV.   System Overview 
The BigIntegrator system architecture is shown in Fig. 4. The system con-
tains two sub-systems: The RDBMS wrapper and the Bigtable wrapper. A 
wrapper needs to be implemented for each kind of data source to be queried 
from the BigIntegrator system. The RDBMS wrapper generates SQL queries 
sent to a back-end RDBMS, while the Bigtable wrapper generates GQL que-
ries to data stored in Bigtable. 

The system receives SQL queries, which are processed to generate a que-
ry execution plan that contains calls to the underlying relational and Bigtable 
databases. The wrapper modules have plug-ins that know how to generate 
queries to each kind of data source. 

Figure 4. BigIntegrator architecture

A. BigIntegrator Wrappers 
Fig. 5 shows the components of a wrapper definition for a BigIntegrator data 
source. 

Figure 5. The wrapper components
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For each new kind of data source the components importer, absorber, final-
izer, and interface function have to be developed. Once a wrapper is defined 
any data source of that kind can be wrapped by creating a source identifier id 
for the source and then calling a system procedure import(id,location), 
which accesses the location and imports system catalog data to the local 
meta-database. When a data source is wrapped it can be used in SQL queries 
and joined with other wrapped data sources. 

Each data source can contain many collections presented to the system as 
source predicates.  The importer creates the source predicates and stores 
them in the local meta-database. Each wrapper has one absorber, which is a 
plug-in that from a user query extracts a subquery, called the access filter. It 
selects data from a particular source predicate, based on the capabilities of 
the source. Each wrapper also has a finalizer, which is a plug-in that trans-
lates each access filter in the plan to an algebra operator called an interface 
function, specific for each kind of source. The interface function sends a 
query to the data source (i.e. a GQL or SQL query). 

B. The BigIntegrator query processor 
The steps of the query processor in BigIntegrator are shown in Fig. 6. 

 
Figure 6. Query processing in BigIntegrator
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The parser translates the SQL query into a parse tree, which the calculus 
generator transforms into a Datalog [6] query. The Datalog query will con-
tain both source predicates and non source predicates (NSPs). The absorber 
manager takes the Datalog query and, for each source predicate referenced 
in the query, calls the corresponding absorber of its wrapper. In order to 
replace the source predicate with an access filter, the absorber collects from 
the query the source predicates and the possible other predicates, based on 
the capabilities of the data source. The query optimizer reorders the access 
filters and other predicates to produce an algebra expression containing calls 
to both access filters and NSP operators. The finalizer manager takes the 
algebra expression and, for each access filter operator referenced in the alge-
bra expression, calls the corresponding finalizer of its wrapper. The finalizer 
transforms the access filters into interface function calls. To access the dif-
ferent data sources, the execution engine interprets the finalized algebra ex-
pression calling the interface functions. 

The example query is transformed by the parser and calculus generator in-
to the following Datalog query: 
Query1(mid, name3) :- 

Machine_A(model,name1,manufacturer) AND 

MachineInstallation_A(mid,model,sid)AND 

Site_A(sid, name2, country, region) AND 

Operator_B(pid,name3,skill,operates)AND 

name1 = ‘M1’ AND 

manufacturer like ‘V%’ AND 

region = ‘Uppland’ AND sid = 1 
The NSPs are in bold phase. Unique variable names are generated when 

needed, e.g. name1, name2 and name3. 
In this example, the GQL absorber for the source predicate Ma-

chine_A(model, name1, manufacturer) will absorb name1 = ‘M1’ since the 
predicate = can be handled by a GQL data source and both predicates share 
the same parameter name1. 

The capabilities of a data source can vary widely, e.g. joins are allowed in 
RDBMS data sources but not in Bigtable data sources. If joins are allowed, 
as in SQL, an access filter is formed as a conjunction of all relational source 
predicates and supported NSPs. If joins are not allowed, as for Bigtable 
sources, each source predicate forms its own access filter based on GQL 
language constraints. 

The access filters are represented as Datalog rules. In the example there 
will be one access filter created for each of the source predicates Machine_A 
(filter F1), MachineInstallation_A (filter F2), Site_A (filter F3), and Opera-
tor_B (filter F4): 
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F1(model,name1,manufacturer):- 
  Machine_A(model,name1,manufacturer) AND  
  name1=’M1’ 

F2(mid,model,sid):- 
  MachineInstallation_A(mid,model,sid)AND 
  sid = 1     

F3(sid,name2,country,region):- 
 Site_A(sid,name2,country,region) AND 
 region =’Uppland’ AND sid =1 

F4(pid,name3,skill,operates):- 
Operator_B(pid, name3, skill, operates)  

Query1(mid,name3):-  
F1(model,name1,manufacturer)AND  
F2(mid,model,sid)AND  
F3(sid,name2,country,region)AND 
F4(pid,name3,skill,operates)AND  
manufacturer like ‘V%’ 

The possible NSPs are placed in all the access filters for which they have 
a shared source predicate parameter. For example, Sid = 1 is placed in both 
F2 and F3. In other word, the NSPs can be absorbed into one or several ac-
cess filters. 

If an NSP cannot be placed in any access filter, it will remain as a sepa-
rate predicate in the query and post-processed by BigIntegrator. In the ex-
ample, Manufacturer like ‘V%’ remains as a separate predicate even though 
it shares variable manufacturer with the GQL access filter F1, since GQL 
does not support like predicates. An absorber contains rules about what 
NSPs can be absorbed into the access filter according to the query capability 
of the data source. GQL queries have the following restrictions [7]: 

 
Accordingly, we define the following heuristic algorithm for the GQL ab-
sorber: 
1. Absorb all equalities having one variable in common with the source 

predicate while the other parameter is known. 

Suppose A, B, and C are attributes names of a table in a GQL data 
source, and x, y, a, and z are constants or strings. Then the following 
where clauses of a GQL query are allowed: 
where A = x 
where A < x 
where A > x and A < y 
where A > x and A < y and B = z 
where A > x and A < y and B = z and C = a etc
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2. Absorb the first inequality having one variable in common with the 
source predicate also having the other parameter known. 

3. If an inequality is absorbed in 2. then also absorb the first inverse ine-
quality for the same variable. 

Unlike GQL, SQL can handle joins. Therefore, the absorber for the 
RDBMS wrapper absorbs several source predicates to produce joins. This is 
not elaborated here. 

The access filters (F1, F2, F3 and F4) and the NSPs that cannot be ab-
sorbed into any access filter, are combined into a conjunctive form and sent 
to the query optimizer for optimization. A greedy query optimization method 
[6] is employed to find an optimized plan fast. 

The finalizer manager takes the optimized algebra expression and, for 
each access filter referenced in the algebra expression, calls the finalizer of 
the access filter’s wrapper. The finalizer translates the access filter into an 
interface function call to the source. 

In the final plan, BigIntegrator’s query execution engine calls the inter-
face functions. An interface function sends the query to a data source for 
execution. For the example query, the finalizer manager finalizes the query 
execution plan shown in Fig. 7. Bind joins [12] in this example combine 
each result tuple of F3 and F5 as the input for F2. 

Figure 7. Example query execution plan
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The execution plan contains several algebra expression with calls to the ap-
ply operator γ [11]. 

The interface function gql is an interface function with the signature: 
gql(Charstring dsn, Charstring query, Tuple params) -> Stream result 
The gql function sends a parameterized GQL query with parameter 

params to the Bigtable data source dsn for execution and returns a stream of 
tuples, result. The “?” in a GQL string is substituted with a corresponding 
parameter value. 

Analogously the interface function sql has the signature: 
sql(Relational ds, Charstring query, Vector params) -> Stream result 
The function sql sends a parameterized SQL query with parameter 

params to RDBMS data source ds for execution and returns a stream of tu-
ples, result. 

In the execution plan the interface function call gql(“A”, "select * from 
Site where Region=? and Sid=?", (Region,Sid))  returns a stream of tuples 
(Sid). The interface function gql(“A”, "select * from Machine where 
Name=?", Name) returns a stream of tuples (Model, Name, Manufacturer). 
The like operator returns the filtered stream of tuples (Model). Each combi-
nation of tuples from (Model, Sid) is input for the interface function call 
gql(“A”, "select * from MachineInstallation where Model=? and Sid=?", 
(Model, Sid)), producing a stream of tuples (Operates), which is fed to the 
interface function call sql(B, "select NAME from OPERATOR where Oper-
ates = ?", Operates), producing the final result. 

The BigIntegrator automatically generates algebra operators for the NSPs 
that can’t be absorbed into any access filter to post-process them by its query 
engine. For example, like(‘V*’, Manufacturer). This compensates for the 
lack of a like function in GQL. 

C. The Bigtable wrapper 

1)    Architecture 
The Bigtable wrapper includes the server and client components shown in 
Fig. 8. 

Figure 8. Bigtable wrapper architecture
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The Bigtable wrapper server is a web application written in Python served 
by GAE. It manages the requests from the Bigtable wrapper client. The http 
protocol is used for the communication between the client and the server. 
The interface function sends a query request to the server, which forwards 
the GQL query to Bigtable using the Python Datastore API [9]. The Bigtable 
wrapper server then sends back the query result to the Bigtable wrapper cli-
ent. 

GAE limits the size of a query result. This is a problem when a GQL que-
ry returns a large result. Another problem is that there is a 30 seconds limit 
on the response time for a request. This is a problem if the server is running 
longer time than the limit or returns a too large result. Therefore the server 
delivers the query results in chunks. This is implemented through the cursor 
facility of the Python Datastore API. Fig. 9 illustrates the Bigtable wrapper 
client and server communication. 

Figure 9. Bigtable wrapper client-server communication

For a given gql interface function call, the client sends the GQL query, the 
cursor information, and the chunk size to the server. The Bigtable wrapper 
server retrieves the chunks one by one by several next requests from the 
Bigtable wrapper client until the entire result is transmitted to the client. To 
be able to separate cursors from different queries the cursor handle is 
shipped back with each result and used in the next calls to move the cursor 
forward. 

2)    The Bigtable wrapper client and server components 
Fig. 10 illustrates the Bigtable wrapper client and server components. 

 
Figure 10: Bigtable wrapper client and server components
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Every web application in GAE has its own application identifier (e.g. 
http://application-id.appspot.com/), which is specified when the application 
is created. A Bigtable wrapper server is a GAE web application and there-
fore has a unique URL. The location (URL) is used by the importer of the 
Bigtable wrapper client to establish an http connection to the Bigtable wrap-
per server. The importer first sends a request to the Bigtable wrapper server 
to collect the meta-data of the Bigtable database. The request handler routes 
the request to the meta-data handler. The retrieved meta-data is sent back to 
the importer by the request handler. The importer stores the meta-data (e.g. 
source predicate definitions) in the client’s meta-database. The request han-
dler passes query requests to the query execution handler, which calls the 
Python Datastore API to execute the GQL query. The query results are then 
sent back to the client through the request handler. 

V.   Conclusions and Future Work 
We presented the BigIntegrator system, which enables SQL queries joining 
data stored in a Bigtable data repository and in local relational databases. A 
novel query processing mechanism based on plug-ins for absorbers and fi-
nalizers implements extensions for each new kind of data source having 
limited query capabilities. We presented the architecture of the system. The 
Bigtable wrapper provides communication between a client computer run-
ning the BigIntegrator engine and a Bigtable wrapper server managed by 
GAE running in a cloud. A communication mechanism provides streamed 
communication between the Bigintegrator system and the Bigtable wrapper 
server. 

As future work, we plan to evaluate the scalability of the system and de-
velop strategies to improve the system’s performance by parallelization. 
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ABSTRACT 
We present an approach for scalable processing of SPARQL queries to RDF 
views of numerical data stored in relational databases (RDBs). Such queries 
include numerical expressions, inequalities, comparisons, etc. inside FIL-
TERs. We call such FILTERs numerical expressions and the queries - nu-
merical SPARQL queries. For scalable execution of numerical SPARQL 
queries over RDBs, numerical operators should be pushed into SQL rather 
than executing the filters as post-processing outside the RDB; otherwise the 
query execution is slowed down, since a lot of data is transported from the 
RDB server and furthermore indexes on the server are not utilized. The 
NUMTranslator algorithm converts numerical expressions in numerical 
SPARQL queries into corresponding SQL expressions. We show that 
NUMTranslator improves substantially the scalability of SPARQL queries 
based on a benchmark that analyses numerical logs stored in an RDB. We 
compared the performance of our approach with the performance of other 
systems processing SPARQL queries to RDF views of RDBs and show that 
NUMTranslator improves substantially the scalability of numerical queries 
compared to the other systems’ approaches. 
 
Keywords 
SPARQL queries; RDF views of relational databases; numerical expres-
sions; query rewrites; query optimization 

1 Introduction 
The Semantic Web provides uniform data representation for integrating data 
from different data sources by using established well-known formats like 
RDF, RDFS, OWL, and the standard query language SPARQL. Semantic 
Web seems promising to integrate and search industrial data [2]. 

Our application scenario is from the industrial domain, where sensors on 
machines such as trucks, pumps, kilns, etc., produce large volumes of log 
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data. Such log data describes measured values of certain components at dif-
ferent times and can be used for analyzing machine behavior. Furthermore, 
the geographic locations of machines are often widely distributed and main-
tained locally in autonomous RDBs called log databases. We are developing 
the FLOQ (Federated LOg database Query) system, which is a system for 
historical analyses over federations of autonomous log databases using 
SPARQL queries. To discover abnormal machine behaviors, a user of FLOQ 
defines SPARQL queries to these log databases. FLOQ processes a 
SPARQL query by first finding the relevant log databases containing the 
desired data, then sending local SPARQL queries to them, and finally col-
lecting the local query results to obtain the final result. 

In this paper we concentrate on scalable historical analyses by SPARQL 
queries of log data stored in a single relational database. Suspected abnormal 
machine behaviors are discovered and analyzed by specifying numerical 
SPARQL queries to an RDF view of the RDB. The queries analyze log data 
through numerical FILTERs containing numerical operators [11]. For exam-
ple, query Q1 retrieves the machine identifiers m for which a sensor has 
measured values mv of measurement class A higher than the expected values 
ev by a threshold value @thA during the time from bt to time et. Here 
<prod> denotes the URI for the RDF view of the RDB. 

 
In FLOQ, SPARQL queries to RDBs are processed by generating a local 
execution plan containing calls to one or several SQL queries sent to a back-
end RDBMS for evaluation. SPARQL queries that cannot be completely 
processed by SQL are instead partially processed by an execution plan inter-
preter in FLOQ. However, in order for the SQL queries to return the minimal 
required data, it is desirable that as much as possible of the SPARQL query 
is translated to SQL [8]. 

In FLOQ numerical SPARQL queries are defined over an automatically 
generated RDF view over an RDB expressed in ObjectLog [6], which is a 
Datalog dialect that supports objects for representing URIs and typed literals 
[9], disjunctive queries for UNION expressions, and foreign predicates to 
represent numerical operators in queries. The SPARQL queries are parsed 
into ObjectLog queries to the RDF view. Internally representing queries in 
ObjectLog permits domain calculus query transformations and optimizations 

Q1: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresA  log:mA_BySensor  ?sensor. 
       ?measuresA  log:mA/bt        ?bt. 
       ?measuresA  log:mA/et        ?et. 
       ?measuresA  log:mA/m         ?m. 
       ?measuresA  log:mA/mv        ?mv. 
       ?sensor     log:sensor/ev    ?ev. 
       FILTER (?mv > (?ev + @thA))         }  
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before generating the execution plan. Calls to tuple calculus SQL query 
strings are made as foreign predicates. Foreign predicates are also used for 
accessing URIs in the execution plan. Doing all processing in the RDB is 
complicated, and requires implementing SPARQL operators not supported 
by SQL as RDB-specific UDFs. We show that ObjectLog query transfor-
mations enable scalable execution by the RDBMS. 

Numerical SPARQL queries contain variables bound to numbers and calls 
to numerical functions and operators. For scalable execution, it is important 
that such numerical expressions are pushed into corresponding SQL expres-
sions and executed on the RDBMS server, which is the subject of this paper. 
The NUMTranslator algorithm converts numerical SPARQL queries into 
SQL queries where numerical expressions are pushed into SQL. For exam-
ple, Q1 is converted into SQL query SQL1, where the numerical expression 
in the SPARQL FILTER is translated into a corresponding SQL expression. 

 
A particular problem is that SPARQL and ObjectLog are domain calculus 
languages where variables can be bound to numbers, while SQL is a tuple 
calculus language where variables have to be bound to tuples in relations.  
The NUMTranslator algorithm translates domain calculus expressions into 
corresponding SQL tuple calculus expressions after having applied domain 
calculus transformation on the ObjectLog representation. 

We show that NUMTranslator improves substantially the query perfor-
mance for numerical SPARQL queries compared to other approaches used 
by other systems. 

In summary the contributions are: 
• We propose a table driven approach to translate numerical domain 

calculus operators into numerical SQL tuple calculus operators.   
• We present the NUMTranslator algorithm that extracts numerical 

ObjectLog expressions and translates them into corresponding 
numerical SQL expressions. 

• We compare the performance of numerical SPARQL queries to 
RDF views of RDBs with and without applying NUMTranslator, 
and show that the algorithm substantially improves the query per-
formance.  

• We compare the performance of our approach with the perfor-
mance of other systems processing SPARQL queries over RDF 
views of RDBs and show substantially better performance. 

SQL1: 
SELECT m.m, bt, et  
FROM MeasuresA m, SENSOR s  
WHERE m.m=s.m AND  
               m.s=s.s    AND  
               m.mv > s.ev + @thA                                           
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The rest of this paper is organized as follows: Section 2 presents a scenar-
io where the approach is applicable. Section 3 overviews the system archi-
tecture. Section 4 describes the NUMTranslator algorithm. Section 5 dis-
cusses performance experiments. Section 6 describes related work. Conclu-
sions and future work are described in section 7. 

2 Motivating Scenario 
We present a common scenario from an industrial setting where it is desira-
ble to analyze historical log data in order to find abnormal machine behavior. 
Log data from embedded sensors is stored in a relational log database. 

Figure 1 shows the schema of the RDB storing log data measured by sen-
sors embedded in machine installations. Table Machine(m, mm) stores meta-
data about each machine installation, i.e. machine identifier and model 
name. The table Sensor(m, s, sm, mc, ev, ad, rd) stores information about 
each sensor installation, i.e. the machine installation m where a sensor s is 
embedded, sensor model name sm, the kind of measurement (measurement 
class) mc, expected sensor value ev, absolute error ad and relative error rd. 
The attribute mc, measurement class is used to identify different kind of 
measurements, e.g. oil pressure, temperature, etc. The tables MeasuresA(m, 
s, bt, et, mv) and MeasuresB(m, s, bt, et, mv)  store log data of kind A and B 
read from sensors s embedded in machine installations m. The begin time bt 
and the ending time et for a sensor reading are also stored, while the meas-
ured value for a certain time stamp is denoted by mv. The columns m, (m, s), 
and (m, s, bt) are primary keys in the tables Machine, Sensor, and 
MeasuresA and MeasuresB, respectively. The column m in tables 
MeasuresA, MeasuresB, and Sensor references the column m in the table 
Machine as foreign key. Furthermore, columns (m, s) in tables MeasuresA 
and MeasuresB reference columns (m, s) in table Sensor as a composite for-
eign key. 

Figure 1. RDB schema for log data

The RDF view of the RDB is illustrated by the RDF graph in Figure 2. 

Machine(m, mm) 
Sensor(m, s, sm, mc, ev, ad, rd) 
MeasuresA(m, s, bt, et, mv) 
MeasuresB(m, s, bt, et, mv)
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Figure 2. RDF graph of the RDF view for the example RDB

Next we define two more typical numerical SPARQL queries to the log da-
tabase, Q2 and Q3, that discover abnormal machine behaviors. Query Q2 
identifies a potential failure by retrieving for machine models M_1, M_2, 
and M_3 those machineid where, during the time interval (bt, et), the meas-
ured value mv was above 75% of the allowed deviation @thA from the ex-
pected value ev. 

 
Query Q3 identifies abnormal behaviors of machines of a measurement class 
based on absolute deviations: when and for which machine identifiers did the 
pressure reading of class B deviate more than @thB from its expected value 
ev? 

mA/mv

mA/bt

mA/et

mA/mmA/s

mB/m

mB/s

mB/bt

mB/et

mB/mv

sensor/ev

sensor/s

sensor/m

machine/mmachine/mm

mB_atMachine

mA_atMachine

mA_bySensor
sensor_ofMachine

mB_bySensor
Sensor

MeasuresB

MeasuresA

Machine

xsd:string xsd:int

xsd:floatxsd:int

xsd:int

....

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

xsd:float

xsd:float

xsd:float

xsd:int xsd:int

Q2: 
SELECT ?machineid ?bt ?et 
FROM <prod> 
WHERE{?measuresA log:mA_bySensor  ?sensor. 
      ?measuresA log:mA/bt        ?bt. 
      ?measuresA log:mA/et        ?et. 
      ?measuresA log:mA/mv        ?mv. 
      ?measuresA log:mA_atMachine ?machineid. 
      ?machineid log:machine/mm   ?mm. 
      FILTER (?mm in ('M_1','M_2','M_3')).  
      ?sensor    log:sensor/ev    ?ev. 
      FILTER (?mv > (?ev + 0.75*@thA))    } 
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3 FLOQ Overview and Query Processing 
Figure 3 illustrates processing of numerical SPARQL queries by FLOQ. 

 
Figure 3. FLOQ query processor

The RDF view over the RDB is automatically generated based on the data-
base schema and ontology mapping tables in FLOQ. The used mappings 
conform to the direct mapping recommended by W3C [10]. 

We define a unique RDFS class for each relational table, except for link 
tables [10] representing set-valued properties as many-to-many relationships. 
In addition, RDF properties are defined for each column in a table. For ex-
ample, the RDFS class with the URI <log:mA> represents the table 
MeasuresA, while <log:mA/bt> and <log:mA/et> represent the columns bt 
and et in MeasuresA, respectively. 

The RDF view is defined in terms of: 

SQL

SPARQL query

FLOQ

RDF view

Query processor

NUMTranslator

RDB

Q3: 
SELECT ?m ?bt ?et 
FROM <prod> 
WHERE {?measuresB  log:mB/bt       ?bt. 
       ?measuresB  log:mB/et       ?et. 
       ?measuresB  log:mB/mv       ?mv. 
       ?measuresB  log:mB_bySensor ?sensor. 
       ?sensor     log:sensor/m    ?m. 
       ?sensor     log:sensor/ev   ?ev. 
       BIND ((?mv-?ev) as ?temp). 
       FILTER (abs(?temp) > @thB)       } 
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• Source predicates R(a1, a2, …, an) that represent the content of 
each referenced relational database table R where the tuple (a1, …, 
an) represents a row in R. 

• URI-constructor predicates that construct URIs to identify rows in 
tables.  

• Mapping tables that map relational schema elements to RDF con-
cepts. 

The complete RDF view definitions can be found in [9]. The query pro-
cessing steps in FLOQ are shown in Figure 4. 

Figure 4. Query processing steps

The SPARQL parser first transforms the SPARQL query into an ObjectLog 
expression where each triple pattern in the query becomes a reference to the 
RDF view of the RDB. Then the ObjectLog transformer generates a simpli-
fied disjunctive normal form (DNF) predicate. The NUMTranslator algo-
rithm performs the extractor and finalizer steps. The extractor collects from 
conjunctions predicates that can be translated to SQL, called access filters. 
The query decomposer then optimizes the query, producing a query execu-
tion plan where access filters are called. The finalizer traverses the execution 
plan to translate the extracted predicates in the access filters into SQL ex-
pressions. When the execution plan is interpreted, the generated SQL state-
ments are sent to the RDB for execution. The non-extracted predicates are 
not translated to SQL and have to be processed outside the RDB by post-
processing operators. For example, such operators are URI-constructors and 
numerical expressions not supported by the SQL engine. 

SQL

SPARQL query

SPARQL parser

RDB

Query Decomposer

Finalizer

Extractor

ObjectLog transformer

Post-processing
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4 The NUMTranslator Algorithm 
The NUMTranslator uses a table-driven approach to define which SPARQL 
operators to extract and translate into corresponding SQL operators and 
functions. Table 1 defines the SPARQL to SQL operator translations: 

Table 1. SPARQL to SQL operators to translate 

 

In Table 1 there is one row for each SPARQL operator or function (column 
SPARQL) that can be translated into SQL. The column SQL defines the cor-
responding SQL operator or function. A value in the column INFIX is true 
when the corresponding SQL operator is an infix operator op on operands x 
and y, i.e. x op y (e.g. x+y); otherwise it is an SQL function on format 
f(x,y,..). The column FUNCTION is true when the operator is a non-Boolean 
function returning a value. 

4.1 The NUMTranslator extractor 
The extractor is applied on each ObjectLog conjunction in the simplified 
predicate received by the ObjectLog transformer. The extractor collects 
predicates that can be translated to SQL. Such predicates are i) source predi-
cates SPs representing RDB tables, and ii) non-source predicates (NSPs) that 
are defined in Table 1 as translatable to SQL.   

Figure 5 shows the ObjectLog representation of Q1 after it has been trans-
formed by the ObjectLog transformer. 

 

Figure 5. ObjectLog of query Q1

In this case all predicates in Q1 are translatable to SQL since MeasuresA and 
Sensor are SPs, and  > and + are NSPs defined in Table 1. 

The steps of the extractor are the following: 

SPARQL SQL INFIX FUNCTION

> > True False
< < True False
= = True False
!= <> True False
+ + True True
- - True True

ABS ABS False True
UCASE UPPER False True

etc.

Q1(m, bt, et):- 
1  MeasuresA(m, s, bt, et, mv)         and     
2  mv > v36                            and    
3  v36 = ev + @thA                     and 
4  Sensor(m, s, _, _, ev, _, _)         
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1. Initialize a variable Xpreds for the first found SP, denoted R1, in 
the conjunction and bind a variable Rest to the other predicates.  

2. Iteratively extract from Rest the predicates that have some com-
mon variable with some extracted predicate in Xpreds, which are 
either SPs or NSPs defined in Table 1. 

3. Construct an access filter of all extracted predicates in Xpreds 
since those can be fully translated to SQL. 

4. While there are some remaining SP, R2, in Rest, re-initialize 
Xpreds by R2 and Rest by the remaining predicates, and repeat 
steps 2-3. 

5. Finally, construct a conjunction of the access filters and Rest. 
For example, for Q1 the predicates in Xpreds are extracted in the following 
order: 

1. MeasuresA(m, s, bt, et, mv) (line 1), since it is an SP.  
2. >(mv, v36) (line 2) since > is defined in Table 1 and the variable 

mv is common with the extracted MeasuresA. 
3. Sensor(m, s, _, _, ev, _, _) (line 4) since it is an SP having com-

mon variables (m and s) with MeasuresA(). 
4. V36 = ev + @thA (line 3) since + is defined in Table 1 and the 

variable ev is common with the extracted Sensor predicate. 
Then the following conjunctive access filter F1 is formed by the predicates 
in Xpreds: 
   F1(m,s,bt,et,mv,ev):- 
1  MeasuresA(m, s, bt, et, mv)      and 
2  Sensor(m, s, _, _, ev, _, _)     and 
3  v36= ev + @thA                   and 
4  mv > v36 
No non-translatable predicates remain in Rest. 

4.2 Query decomposition 
To optimize the query produced by the extractor, the query decomposer uses 
cost-based optimization [6] to produce an optimized execution plan. Based 
on heuristics and statistic of the queried RDB, execution cost and selectivi-
ties of access filter are estimated. Default cost parameters are used by the 
optimizer to estimate the execution cost and selectivities of predicates if no 
statistic is available. The decomposer will then reorder the access filters and 
the post processed predicates to generate an optimized execution plan. We 
do not further elaborate the query decomposer here. 
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4.3 The NUMTranslator finalizer 
The finalizer translates access filters in the decomposed execution plan into 
calls to an SQL interface operator, sql that sends generated SQL strings to 
the back-end RDB for execution. 

ObjectLog numerical expressions are translated into SQL numerical ex-
pressions by recursively replacing all ObjectLog domain variables that rep-
resent numerical expressions with their bound expressions. For example, the 
variable v36 in line 4 in F1 doesn’t represent a relational column and is re-
placed by its bound expression in line 3, and then the obtained expressions is 
mv > ev + @thA. Thus for Q1 the execution plan P1 becomes the following: 

Figure 6. Execution plan P1 with NUMTranslator

The execution plan contains an algebra expression where the apply operator 
γ fn(..) calls the foreign predicate sql(ds, q, result) implemented in Java. The 
foreign predicate sql sends an SQL query q to the RDBMS data source ds for 
execution and iteratively returns bindings of tuples, result.  

If NUMTranslator had not been applied, all numerical operators would 
have to be post-processed, which would slow down the query execution 
since filtering cannot be made in the database server. 

For example, if NUMTranslator is turned off, for Q1 the following execu-
tion plan P2 is produced that doesn’t contain any numerical SQL operators 
corresponding to numerical SPARQL operators, which are instead post-
processed: 

Figure 7. Execution plan P2 without NUMTranslator

Comparing the two execution plans P1 and P2 it can be seen that the sql 
operator in P2 retrieves much more data than P1, so if NUMTranslator is 
turned off lots of data needs to be filtered out outside the RDB server. Fur-
thermore, the utilization of indexes on the SQL numerical expression by the 

(m, bt, et)

γ sql(ds, "SELECT m.m, bt, et FROM MeasuresA
m, SENSOR s WHERE m.mv > s.ev + @thA AND
m.m=s.m AND m.s=s.s", (m, bt, et))

(v36)

(mv)

(m, bt, et)

(ev)

γ >(mv, v36)

γ +(ev, @thA)

γ sql(ds, "SELECT m.m, m.s, bt, et, mv, ev
FROM MeasuresA m, SENSOR s WHERE m.m=s.m AND
m.s=s.s", (m, s, bt, et, mv, ev))
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back-end database server makes significant performance difference. We 
show in the next section that applying NUMTranslator substantially im-
proves the query performance of numerical SPARQL queries. 

5 Performance Measurements 
We compared the performance for executing the numerical queries Q1, Q2, 
and Q3 in FLOQ with and without applying NUMTranslator. Furthermore, 
we compared the query performance of FLOQ with the query performance 
of D2RQ [1] for Q1, Q2, and Q3, for the same back-end relational database. 
We tried to run the queries with both ontop [7] and Virtuoso [3] as well, but 
none of our numerical SPARQL queries could be run, indicating that those 
systems do not provide full support for processing numerical SPARQL que-
ries. 

All experiments are carried out on a MS SQL Server 2008 R2 installed on 
a server machine with 8 AMD OpteronTM 6128 processors, 2.00 GHz CPU 
and 16GB RAM. The RDB is populated by loading sensor data into the MS 
SQL server. B-tree indexes are created on the columns mm, mv, bt, et, ev, ad, 
and rd to speed up the queries. 

All measurements were taken both for cold and warm runs. The cold runs 
were made immediately after the RDBMS server was started, which implied 
that there were no data cached in the buffer pool and the executed query 
wasn’t optimized by the RDBMS. Thus a measured query execution time for 
a cold run includes the time for i) reading data from disk, ii) SQL query op-
timization on the RDBMS server, iii) communication, and iv) post-
processing of data on the client. The warm runs were made after a query was 
executed once. Since the back-end RDBMS has a statement cache a same 
SQL query executed twice will be optimized the first time it is run. There-
fore, warm executions do not include RDBMS query optimization time. 

The plotted values are mean values of three measurements. The standard 
deviation is less than 10% in all cases. To investigate the SQL query pro-
duced by all the other systems we use the system profiling tool of MS SQL 
server when running a query.  

The following notations are used in the performance diagrams:   
• NUMTranslator: FLOQ with NUMTranslator turned on, i.e. the 

SPARQL numerical expressions are translated into corresponding 
SQL expressions. 

• Naive: FLOQ with NUMTranslator turned off, i.e. the SPARQL 
numerical expressions are not translated into corresponding SQL 
numerical expressions.  

• D2RQ: D2RQ version [0.8.1] configured with the system’s default 
mappings. 
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Figure 8, 9 and 10 show the execution times for both cold and warm runs for 
Q1, Q3, and Q2 while scaling the databases size from 1 GB to 15 GB. 

 
Figure 8. Execution times for Q1

 
Figure 9. Execution times for Q3

Figure 8 and 9 show that NUMTranslator substantially improves the query 
execution scalability compared to Naïve for numerical SPARQL queries like 
Q1 and Q3 with highly selective numerical FILTERs: 0.04% for Q1 and 3% 
for Q3. In these cases pushing the numerical FILTERs to SQL is more prof-
itable than filtering large data amounts on the client. The performance of 
D2RQ is worse than Naïve since D2RQ sends to the RDBMS an SQL query 
that doesn’t contain numerical expressions, and is a much more complex 
query with more joins. Furthermore, Q3 had to be manually changed for 
D2RQ to remove the BIND operator, since otherwise D2RQ wouldn’t return 
correct result.  

Measurement results for Q2 are shown in Figure 10. For Q2 the results 
for NUMTranslator and Naïve are presented in a separate diagram, since 
they are very close. It can be seen on Figure 10 that NUMTranslator doesn’t 
improve the query performance for non-selective queries like Q2 where the 
FILTER selects 43% of the data. In this case pushing the numerical 
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SPARQL filters to be executed to the RDBMS server doesn’t make a signif-
icant difference compared to post-filtering data on the client.  

D2RQ performs worse for Q2 since it doesn’t translate any of the FIL-
TERs and it furthermore generates a very complex SQL query with many 
joins. 

 
Figure 10. Execution times for Q2

In general, the experiments show that NUMTranslator substantially im-
proves the query performance of numerical SPARQL queries where the nu-
merical FILTERs have high selectivity. 

6 Related Work 
Virtuoso RDF Views [3] and D2RQ [1] are other systems that process 
SPARQL queries to RDF views of RDBs. These systems implement compil-
ers that translate SPARQL directly to SQL. By contrast, FLOQ first gener-
ates ObjectLog queries to a declarative RDF view of the RDB, and then 
transforms the SPARQL queries to SQL by logical transformations. 

We didn’t find any publication of how D2RQ compiles numerical 
SPARQL queries into SQL and the documentation for Virtuoso’s SQL gen-
eration is very limited [3]. However, by using the profiling tool of the 
RDBMS and the debug logging of Virtuoso we were able to analyze what 
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queries were actually sent to the RDBMS, showing that neither of those sys-
tems translates numerical SPARQL expressions into corresponding SQL 
expressions. 

The ontop system [7] also enables SPARQL queries to RDF views of 
RDBs by translating SPARQL to Datalog programs, which are rewritten and 
translated to SQL. A difference to ontop is the table driven NUMTranslator 
algorithm, which makes it very easy to extend for new operators. Further-
more, FLOQ generates execution plans containing calls to SQL intermixed 
with expressions interpreted in the client. This enables FLOQ to interpret in 
the client SPARQL operators not available in SQL. In addition NUMTrans-
lator translates the domain calculus SPARQL queries into tuple calculus 
SQL queries by substituting variables with their bound expressions. 

7 Conclusions and Future Work 
We presented the FLOQ system where the NUMTranslator algorithm uses a 
table driven approach to translate numerical domain calculus SPARQL ex-
pressions into corresponding numerical SQL expressions. This enables scal-
able processing of numerical SPARQL queries to RDF views over RDBs. 

The approach was evaluated on a benchmark scenario in an industrial set-
ting where logged data stored in an RDB was analyzed using numerical 
SPARQL queries. We compared the performance of the SPARQL queries 
with and without applying NUMTranslator. The experiments show that 
NUMTranslator substantially improves the query performance of numerical 
SPARQL queries in particular when the numerical expressions inside FIL-
TERs are highly selective. 

We also compared our approach with other systems that translate 
SPARQL queries to SQL. Only D2RQ could execute our queries, but sub-
stantially slower since D2RQ does not employ an approach similar to 
NUMTranslator. 

As our next step, we will investigate numerical SPARQL queries search-
ing large numbers of distributed log databases combined through an ontolo-
gy. Another issue is creating benchmarks based on randomly generating 
SPARQL queries [5]. Furthermore, query processing and mediation strate-
gies over other back-ends than RDBs [4] in our setting should be investigat-
ed. 
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ABSTRACT 
Various business application scenarios need to analyse the working status of 
products, e.g. to discover abnormal machine behaviours from logged sensor 
readings. The geographic locations of machines are often widely distributed 
and have measurements of logged sensor readings stored locally in autono-
mous relational databases, here called log databases, where they can be ana-
lysed through queries. A global meta-database is required to describe ma-
chines, sensors, measurements, etc. Queries to the log databases can be ex-
pressed in terms of these meta-data. FLOQ (Fused LOg database Query pro-
cessor) enables queries searching collections of distributed log databases 
combined through a common meta-database. To speed up queries combining 
meta-data with distributed logged sensor readings, sub-queries to the log 
databases should be run in parallel. We propose two new strategies using 
standard database APIs to join meta-data with data retrieved from distributed 
autonomous log databases. The performance of the strategies is empirically 
compared with a state-of-the-art previous strategy to join autonomous data-
bases. A cost model is used to predict the efficiency of each strategy and 
guide the experiments. We show that the proposed strategies substantially 
improve the query performance when the size of selected meta-data or the 
number of log databases are increased. 

1 INTRODUCTION 
Various business applications need to observe the working status of products 
in order to analyse their proper behaviours. Our application is from a real-
world scenario [11], where machines such as trucks, pumps, kilns, etc. are 
widely distributed at different geographic locations and where sensors on 
machines produce large volumes of data. The data describes time stamped 
sensor readings of machine components (e.g. oil temperature and pressure) 
and can be used to analyse abnormal behaviours of the equipment. In order 
to analyse passed behaviour of monitored equipment, the sensor readings can 
be stored in relational databases and analysed with SQL. In our application 
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area, data is produced and maintained locally at many different sites in au-
tonomous relational DBMSs called log databases. New sites and log data-
bases are dynamically added and removed from the federation. The number 
of sites is potentially large, so it is important that the query processing scales 
with increasing number of sites. A global meta-database enables a global 
view of the working status of all machines on different sites. It stores meta-
data about machines, sensors, sites, etc. 

A particular challenge in our scenario is a scalable way to process queries 
that join meta-data with data selected from the collection of autonomous log 
databases using standard DBMS APIs. This paper proposes two strategies to 
perform such joins, namely parallel bind-join (PBJ) and parallel bulk-load 
join (PBLJ). PBJ generalizes the bind-join (BJ) [4] operator, which is a state-
of-the-art algorithm for joining data from an autonomous external database 
with a central database. One problem with bind-join in our scenario is that 
large numbers of SQL queries will be sent to the log databases for execution, 
one for each parameter combination selected from the meta-database, which 
is slow. Furthermore, whereas bind-join is well suited for joining data from a 
single log database with the meta-database, our application scenario requires 
joining data from many sites. 

With both PBJ and PBLJ, streams of selected meta-data variable bindings 
are distributed to the wrapped log databases and processed there in parallel. 
After the parallel processing the result streams are merged asynchronously 
by FLOQ. 

• With PBJ the streams of bindings selected from the meta-database 
are bind-joined in the distributed wrappers with their encapsulated 
log databases. The bind-joins of different wrapped log databases 
are executed in parallel.  

• With PBLJ the selected bindings are first bulk loaded in parallel 
into a binding table in each log database where a regular join is 
performed between the loaded bindings and the local measure-
ments. 

The strategies are implemented in our prototype system called FLOQ 
(Fused LOg database Query processor). FLOQ provides general query pro-
cessing over collections of autonomous relational log databases residing on 
different sites. The collection of log databases is integrated by FLOQ 
through a meta-database where properties about data in the log databases are 
stored. On each site the log database is encapsulated by a FLOQ wrapper to 
pre- and post-process queries. 

To investigate our strategies, a cost model is proposed to evaluate the ef-
ficiency of each strategy. To evaluate the performance we define fundamen-
tal queries for detecting abnormal sensor readings and investigate the impact 
of our join strategies. A relational DBMS from a major commercial vendor 
is used for storing the log databases. 
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In summary the contributions are: 
• Two join strategies are proposed and compared: parallel bind-join 

and parallel bulk-load join, for parallel execution of queries join-
ing meta-data with data from collections of autonomous databases 
using external DBMS APIs. 

• A cost model is proposed to evaluate the strategies.  
• The conclusions from the cost model are verified experimentally. 

The rest of this paper is organized as follows: Section 2 overviews the FLOQ 
system architecture and presents the scenario and queries used for the per-
formance evaluation. Section 3 presents the join strategies and the cost mod-
el used in the evaluation. Section 4 presents the performance evaluation for 
the join strategies. Section 5 describes related work. Finally, Section 6 con-
cludes and outlines some future work. 

2 FLOQ 
Fig. 1 illustrates the FLOQ architecture. To analyse machine behaviours, the 
user sends queries over the integrated log databases to FLOQ. FLOQ pro-
cesses a query by first querying the meta-database to find the identifiers of 
the queried log databases containing the desired data, then in parallel send-
ing distributed queries to the log databases, and finally collecting and merg-
ing the distributed query results to obtain the final result. Scalable parallel 
processing of queries making joins between a meta-database and many large 
log databases is the subject of this paper. 

 
Figure 1. FLOQ system architecture

Each log database is encapsulated with a FLOQ wrapper called from the 
FLOQ server to process queries over the wrapped log database. A FLOQ 
wrapper contains a full query processor which enables, e.g. local bind-joins 
between a stream of bindings selected from the meta-database and the log 
database. Parallel processing is provided since the FLOQ wrappers work 

Log databases

..............

Query

Meta-database

RDB RDB RDB

FLOQ wrapper FLOQ wrapper FLOQ wrapper

FLOQ server
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independently of each other. Each FLOQ wrapper sends back to the FLOQ 
server the result of executing a query as a stream of tuples. The results from 
many wrappers are asynchronously merged by the FLOQ server while emit-
ting the result to the user. Details of the query processor are described in 
[10], [13,14] and are outside the scope of this paper. 

2.1 The FLOQ schema 
The schema for the FLOQ meta-database is shown in Fig. 2(a). The table 
MachineModel(m, mmn, descr, mmanuf) stores data about machine models, 
i.e. a unique ma-chine model identifier m, along with its name mmn, descrip-
tion descr, and manufacturer mmanuf. The table MachineInstallation(mi, m, 
sid) stores meta-data about each machine installation, i.e. a unique machine 
installation identifier mi, its installed site sid and its machine model identifi-
er m (foreign key). The table SensorModel(sm, sname, smanuf) stores infor-
mation about sensor models, i.e. a unique sensor model identifier sm, the 
sensor model name sname, and its manufacturer smanuf. The table SensorIn-
stallation(si, mi, sm, ev) stores the sensor installation information, i.e. a sen-
sor installation identifier si, the machine installation mi of si, the sensor 
model sm, and the expected measured value ev. The columns m and sid in 
table MachineInstallation are foreign keys in tables MachineModel and Site, 
respectively. The column mi in table SensorInstallation is foreign key to 
MachineInstallation. 

 

Figure 2(a). Meta-database schema

 
Figure 2(b). Log table at each site

 
Figure 2(c). Integrated view in FLOQ server 

The table Site(sid, name, logdb) stores information about the sites where the 
log databases are located: a numeric site identifier sid, its name, and an iden-
tifier of its log database, logdb. A new log database is registered to FLOQ by 
inserting a new row in table Site. Each site presents to FLOQ its log data as a 
temporal local relation Measures(mi, si, bt, et, mv) (Fig. 2(b)) representing 
measurements from the sensors installed on the machines at the site, i.e. 
temporal local-as-view [5] data integration is used. For a machine installa-
tion mi at a particular site the local view presents the measured readings 

MachineModel(m, mmn, descr, mmanuf) 
MachineInstallation(mi, m, sid) 
SensorModel(sm, sname, smanuf) 
SensorInstallation(si, mi, sm, ev) 
Site(sid, name, logdb) 

Measures(mi,si,bt,et,mv)

VMeasures(logdb,mi,si,bt,et,mv) 
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from sensor installation si in the valid time interval [bt,et). The columns mi 
and si in Measures are foreign keys from the corresponding columns in the 
meta-database tables MachineInstallation and SensorInstallation, respective-
ly. 

The view VMeasures (Fig. 2(c)) in FLOQ integrates the collection of log 
databases. It is logically a union-all of the local Measures views at the dif-
ferent sites. In VMeasures the attribute logdb identifies the origin of each 
tuple. Through the meta-database users can make queries over the log data-
bases by joining other meta-data with VMeasures. Since the set of log data-
bases is dynamic it is not feasible to define VMeasures as a static view; in-
stead FLOQ processes queries to VMeasures by dynamically submitting 
SQL queries to the log databases and collecting the results. In the experi-
ments we populate the meta-database and the log databases with data from a 
real-world application [11]. 

2.2 Example Queries 
Q1 in Fig. 3 is a simple query that retrieves unexpected sensor readings. It 
returns machine identifiers mi together with the time intervals [bt,et) when a 
sensor on the machine has measured values mv higher than the expected 
values ev by a threshold parameter th on line 5 marked ‘?’. 

                                                         

Figure 3. Query Q1 Figure 4. Query Q2

Query Q1 is used for the basic scalability experiments. It contains a simple 
numerical expression over the log database view in terms of th. On line 6 
there is a constraint on the selected machine identifiers mi and on line 10 the 
selected sites sid are restricted. The experiments are scaled by varying these 
parameters. The number of log databases is varied by restricting sid, the 
amount of data selected from each log database is varied by th, and the num-
ber of bindings selected from the meta-database is varied by mi.  

Query Q2 in Fig. 4 is similar to Q1, the difference being that it applies an 
aggregate function over Q1, i.e. it computes the number of faulty sensor 
readings. Here only a single value is returned from each log database. The 
purpose of the query is to investigate the join strategies without concerning 
the overhead of transferring substantial amounts of data back to the client. 
 

Q1: 
1  SELECT m.mi, m.bt, m.et 
2  FROM Measures m, Site s, 
3       MachineInstallation mi, 
4       SensorInstallation si  
5  WHERE m.mv > si.ev+? AND  
6        mi.mi > ? AND 
7        si.mi = mi.mi AND 
8        m.si = si.si AND 
9        m.logdb = s.logdb AND 
10       s.sid < ?

Q2:
1  SELECT count(*) 
2  FROM Measures m, Site s, 
3       MachineInstallation mi, 
4       SensorInstallation si  
5  WHERE m.mv > si.ev+? AND  
6        mi.mi > ? AND 
7        si.mi = mi.mi AND 
8        m.si = si.si AND 
9        m.logdb = s.logdb AND 
10       s.sid < ?
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Figure 5. Query Q3 Figure 6. Transformed Q3

Query Q3 in Fig. 5 is an example of a more complex numerical query for 
identifying machine failures. It detects situations where the relative deviation 
of sensor readings from ev is larger than a threshold parameter we denote 
rth. One property of Q3 is that the query optimizer of the used DBMS cannot 
utilize an ordered index on the measured value mv, so the entire local table 
Measures on each site will be scanned entirely. This query thus has a high 
query execution cost for searching the log databases. 

Query Q4 in Fig. 6 is a manually transformed version of Q3 to expose the 
index column mv of Measures table for query optimizer of the DBMS for 
scalable search. Here all parameter occurrences in the query (marked ?) refer 
to the supplied value of rth. FLOQ automatically makes this algebraic trans-
formation by utilizing the algorithm in [12]. The difference between Q3 and 
Q4 shows the trade-off between full scan and index scan in the log databases 
enabled by the rewrite. Q3 is an expensive query compared to Q4. 

3 Join Strategies 
The two strategies, PBJ and PBLJ, for parallel execution of queries joining 
data between the meta-database and the log databases are illustrated in Fig. 7 
and Fig. 8, respectively. With both strategies FLOQ first extracts parameter 
bindings from the meta-database. The result is a stream of tuples is called the 
binding stream B where each tuple (i, v1, v2, …, vp) is a parameter binding. 
The elements v1, v2, …, vp of the binding stream are the values of the free 
variables in the query fragment sent to the log databases. For example, in Q1 
the free variables are (mi, si, ev). Each binding tuple is prefixed with a desti-
nation site, i, identifying where the log database RDBi resides. The parame-
ter binding tuples are joined with measurements in the log databases. Thus 
the binding stream is split into one site binding stream Bi per log database 
RDBi, B =B1 ∪ B2 … ∪ Bn, where n is the number of sites. The destination i 
determines to which site the rest of the tuple, (v1, v2, …, vp), is routed. The 
join strategies are defined as follows: 

 

Q3: 
1 SELECT m.mi, m.bt, m.et 
2 FROM Measures m, Site s, 
3      MachineInstallation mi, 
4      SensorInstallation si  
5 WHERE abs(m.mv-si.ev)/si.ev>? AND  
6       si.mi = mi.mi AND 
7       m.si = si.si AND 
8       m.logdb=s.logdb        

 

Q4:
1 SELECT m.mi, m.bt, m.et 
2 FROM Measures m, Site s,  
3      MachineInstallation mi, 
4      SensorInstallation si 
5 WHERE si.mi = mi.mi AND 
6       m.si = si.si AND 
7       m.logdb = s.logdb AND 
8       ((m.mv>(1+?)*si.ev and si.ev>0) or 
9        (m.mv<(1+?)*si.ev and si.ev<0) or  
10       (m.mv<(1-?)*si.ev and si.ev>0) or 
11       (m.mv>(1-?)*si.ev and si.ev<0)) 
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PBJ, parallel bind-join: PBJ (Fig. 7) is a generalization of bind-join 
[4] to handle parallel execution between a common meta-database and a 
collection of wrapped relational databases RDBi. On each site i the tuples in 
the binding stream Bi received by a FLOQ wrapper is bind joined (BJ) with 
the query σi sent to the database RDBi through parameterized (prepared) 
JDBC calls. The tuples in the result stream Ri from the JDBC calls are then 
streamed back to the FLOQ server, where they are merged asynchronously 
with the result tuples from other sites. With PBJ, a parameterized query is 
executed many times in each wrapped log database, once for each parameter 
binding in Bi. 

 
Figure 7. PBJ Figure 8. PBLJ

PBLJ, parallel bulk-load join: With PBLJ (Fig. 8) each FLOQ wrap-
per first bulk loads the entire binding stream Bi into a binding table in RDBi. 
When all parameter bindings have been loaded, the system submits a single 
SQL query to the log database to join the loaded binding table with σi. As 
for PBJ, the result stream Ri is shipped back to the FLOQ server through the 
wrapper for asynchronous merging. Compared to PBJ, the advantage of this 
approach is that only one query is sent to each log database. It requires the 
extra step of bulk loading in parallel the entire parameter streams into each 
log database, which, however, should be less costly compared to calling 
many prepared SQL statements through JDBC with PBJ. The bulk loading 
facility of the DBMS is utilized for high performance. 

 
BJ, regular bind-join: If there is a single log database, PBJ is analo-
gous to BJ and is a baseline in our evaluations. With BJ one prepared SQL 
query per binding is shipped from the FLOQ wrapper to only one log data-
base, RDB1. 
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3.1 Cost Model for Join Strategies 
The total cost in terms of response times of the proposed join strategies is 
divided between the cost of execution in the FLOQ server ܥி௅ைொ	and the 
maximum site cost ܥ௜. 
௃௢௜௡ܥ                              = ி௅ைொܥ + ௜ܥ})	ݔܽ݉ ∶ ݅ = 1,… , ݊})	 (1) 
The total cost of the FLOQ server execution is approximately divided be-
tween two major components, which are the cost of splitting the binding 
stream ܥ ,ܤ௦, and the cost of merging all result streams ܴ௜, ܥ௠. The cost of 
the FLOQ server execution is independent of any join strategies, i.e.: 
ி௅ைொܥ                                                = ௦ܥ  ௠  (2)ܥ	+
The variables used in analysing cost models are described in Table 1. 

Table 1. Variables used in the cost model 
Variable Description 

ܤ ௌ Cost of splitting the binding streamܥ ி௅ைொ Total execution cost in the FLOQ serverܥ ௜ The relational log database at site iܤܦܴ ߚ ఙഁ Selection Cost for a single bindingܥ ஻௨௟௞௟௢௔ௗ೔ Cost of  bulk loading in RDBiܥ ೔ Cost of  local join at site i⋈ܥ ఙ೔ Cost of  executing σi in RDBiܥ ௜ Total cost at site iܥ ௜ Binding stream to site i ܴ௜ Result stream from site iܤ ௃௢௜௡ Total cost of a joinܥ in the FLOQ server ߚ A single binding from the binding stream ܤ௜ ܥ௠ Cost of merging  result streams ܴ௜ in the FLOQ server ܥ௃஽஻஼  Cost of  JDBC call for a single binding ߪ ߚ௜ The query to RDBi. ܥ஻೔ Cost of  transferring binding stream ܤ௜ to site i ܥோ೔ Cost of  transferring result stream ܴ௜ from site i ܥே௘௧ Network communication overhead cost for a single binding ߚ 

The total site cost ܥ௜ is approximately divided between four major cost com-
ponents: (i) transferring the binding stream ܤ௜	from the FLOQ server to the 
site, ܥ஻೔, (ii) executing σi in the log database, ܥఙ೔, (iii) local join ܥ⋈೔ either in 

RDBi (ܥ⋈೔௅௢௚஽஻ for PBLJ) or in the FLOQ wrapper (	ܥ⋈೔ௐ௥௔௣௣௘௥for PBJ), and 
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(iv) transferring the result stream ܴ௜ to the FLOQ server, ܥோ೔ . Thus the total 
site cost Ci is defined as: 
௜ܥ  = ஻೔ܥ + ఙ೔ܥ + ೔⋈ܥ +  ோ೔    (3)ܥ

By combining equation (1), (2), and (3), the total cost of a distributed join 
becomes: ܥ௃௢௜௡ = ௦ܥ ௠ܥ	+ ஻೔ܥ)	})	ݔܽ݉+ + ఙ೔ܥ + ೔⋈ܥ + (ோ೔ܥ ∶ ݅ = 1,… , ݊})	  (4) 

For each site, the binding stream ܤ௜	is significantly smaller than the number 
of logged measurements in ܴܤܦ௜: 
|௜ܤ|	  ≪ 	  (5)                                                      |(௜ܤܦܴ)ݏ݁ݎݑݏܽ݁ܯ|
For PBJ, the bind-join is performed in each FLOQ wrapper, therefore, the 
cost of a local join	ܥ⋈೔	can be replaced with the cost of a bind-join in the 

wrapper, ܥ⋈೔ௐ௥௔௣௣௘௥. Also the cost of executing the sub-query σi that selects 
data from a log database, ܥఙ೔, is replaced with the BJ selection cost, ܥఙ೔ௐ௥௔௣௣௘௥, in the site cost in (3). 

௜௉஻௃ܥ  = ஻೔௉஻௃ܥ + ఙ೔ௐ௥௔௣௣௘௥ܥ + ೔ௐ௥௔௣௣௘௥⋈ܥ +  ோ೔ (6)ܥ

In PBLJ the joins and selections are combined into one sub-query to each 
RDBi. Therefore, the cost of ܥ⋈೔	and	ܥఙ೔	in the site cost in equation (3) for 
PBLJ can be replaced with the cost of join and selection in the log database 
 :(ఙ೔௅௢௚஽஻ܥ		೔௅௢௚஽஻ and⋈ܥ	)

௜௉஻௅௃ܥ  = ஻೔௉஻௅௃ܥ + ఙ೔௅௢௚஽஻ܥ + ೔௅௢௚஽஻⋈ܥ +  ோ೔                            (7)ܥ

In PBJ, the FLOQ server transfers the binding stream ܤ௜ to a FLOQ wrapper 
through the standard network protocol. Therefore, the cost of transferring 
bindings to each site, ܥ஻೔௉஻௃, is the aggregated network communication over-

head for each binding, ܥே௘௧. 
஻೔௉஻௃ܥ  = |௜ܤ| × |௜ܤ| where	ே௘௧,ܥ ≥ 1                            (8) 

In PBLJ all the bindings Bi are bulk-loaded directly into the log database. 
The cost of sending all bindings to site i,	ܥ஻೔௉஻௅௃,	is the cost of bulk loading 

the bindings, ܥ஻௨௟௞௟௢௔ௗ೔ . 
஻೔௉஻௅௃ܥ  =                                                        (9)	஻௨௟௞௟௢௔ௗ೔ܥ

Obviously, the cost of bulk-loading in PBLJ ܥ஻௨௟௞௟௢௔ௗ೔  is insignificant com-
pared to sending large numbers of bindings to prepared SQL statements in 
PBJ: 
஻௨௟௞௟௢௔ௗ೔ܥ	  		<< 	 |௜ܤ| |௜ܤ|	 where	ே௘௧,ܥ	× ≥ 1; therefore,  

஻೔௉஻௅௃ܥ	  ≤  ஻೔௉஻௃ (10)ܥ	

On the other hand, the selection cost of PBLJ is also low compared to PBJ 
since the cost of selection performed by RDBi is lower than the combined 
cost of selection and JDBC overhead for each binding ߚ of a binding stream	ܤ௜: 
ఙ೔௅௢௚஽஻ܥ	  ≤ 	 |௜ܤ| × ఙഁܥ	) + |௜ܤ|	and	௜ܤ	߳	ߚ	), where	௃஽஻஼ܥ 	≥ 1; therefore: (11) 

ఙ೔௅௢௚஽஻ܥ	  ≤   (12)			ఙ೔ௐ௥௔௣௣௘௥ܥ
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Similarly, a local join in the relational DBMS is efficient compared to the 
join performed in a FLOQ wrapper since query optimization techniques can 
be applied inside a relational DBMS where the overhead JDBC calls are 
eliminated. Thus, 
೔௅௢௚஽஻⋈ܥ			  ≤                                                      (13)			೔ௐ௥௔௣௣௘௥⋈ܥ		

From equation (10), (12), and (13), the total cost at site i for the three com-
ponents, transferring bindings (ܥ஻೔), selection (ܥఙ೔), and join (ܥ⋈೔) are lower 
for PBLJ than for PBJ. The cost ܥோ೔	of transferring the result streams ܴ௜ to 
the FLOQ server is equal for both PBLJ and PBJ, therefore, comparing (6) 
and (7): 
௜௉஻௅௃ܥ	  ≤                                                      (14)			௜௉஻௃ܥ
From equation (1), as the cost of the execution at the FLOQ server ܥி௅ைொ	is 
equal for both PBJ and PBLJ, by combing equation (1) and (14) it can be 
stated that the overall cost of join in PBLJ is lower than PBJ: 
௉஻௅௃ܥ  ≤  ௉஻௃                                                                              (15)ܥ	

3.2 Discussion 
According to equation (15), PBLJ should always outperform PBJ in every 
experiment when	|ܤ௜| ≥ 1. Equation (8) and (11) suggest that PBLJ will 
perform increasingly better than PBJ when scaling the number of bindings |ܤ௜|. It is evident from equation (4) that, independent the chosen join strate-
gy, when the size of the result stream |ܴ௜| is large, the tuple transfer cost 
 ,will be a major dominating component in the cost model. Therefore (ோ೔ܥ)
the performance trade-offs between respective join strategies, are more sig-
nificant when the number of tuples returned from the log database is small. 

To conclude, according to the cost model, the performance evaluation 
should be investigated by (i) varying the number of tuples returned from the 
sites, (ii) scaling the number of sites, and (iii) scaling the number of bindings 
from the meta-database. 

4 Performance Evaluation 
We compared the performance of the join strategies PBJ and PBLJ based on 
the queries Q1, Q2, Q3, and Q4. In our real-world application each log data-
base had more than 250 million measurements from sensor readings, occu-
pying 10GB of raw data. The following scalability experiments were per-
formed on six PCs (with 4 processors and 8GB main memory) running Win-
dows 7 while: (i) scaling the number of result tuples |Ri|; (ii) scaling the 
number of sites, n; and (iii) scaling the number of bindings |Bi|. 
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Scaling the number of result tuples 
Fig. 9(a) shows the execution times of Q1 for the two join strategies over a 
single log database, while scaling the number of result tuples |R| by adjust-
ing th. As expected from equation (12), PBLJ performs better than PBJ. 
Since there is only one site, PBJ is equivalent to BJ. 

 
(a)                                                 (b)

Figure 9. Q1(a) with one log database and (b) with six log databases

Fig. 9(b) compares the performance of Q1 for six log databases while scaling 
|R|. As expected PBLJ scales better than PBJ. However, as more tuples are 
returned from the log databases the network overhead is becoming a major 
dominating factor, making the performance difference of the join strategies 
insignificant. Notice that the number of returned tuples remains the same for 
both strategies; thus the network overhead is equal. However, PBLJ will 
always perform better (even with a small fraction) than PBJ since other 
overhead is larger for PBJ. 

 
(a)                                                 (b)

Figure 10. Execution time for Q3 and Q4 with six log databases 

Fig. 10 compares PBJ and PBLJ for Q3 and Q4 for six log databases. Q3 is 
an example of a slow numerical query requiring a full scan of Measures, 
whereas Q4 is faster since it exposes the index on Measures.mv for query 
Q3. It is evident from Fig. 10 that PBLJ performs better than PBJ for both 
query Q3 and Q4. Fig. 10(b) shows the performance improvement due to 
index utilization compared to sequential scan in Q3. 
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To conclude, PBLJ performs better than PBJ when the number of re-
turned tuples is increased, as also indicated by equation (15) of the cost 
model. 

  
Scaling the number of log databases 
Fig. 11 compares PBJ and PBLJ for Q1 when scaling the number of log da-
tabases. In Fig. 11(a) and Fig. 11(b) the total number of tuples returned from 
a single log database |Ri| is 1K and 295K, respectively. Notice that the total 
number of tuples returned |R| in each figure is multiplied with the fixed |Ri| 
from each log database. 

In Fig. 11(a) |R| is small, so the performance difference between PBJ and 
PBLJ is dominating over the network cost, while in Fig. 11(b) the higher 
network cost makes the difference less significant. 

 

(a) 1k tuples from each database             (b) 295k tuples from each database
Figure 11. Execution time for Q1 varying number of log databases and selectivity 

In summary, the overall performance of PBLJ is always better while scaling 
number of log databases compared to PBJ. 
 
Scaling the number of bindings 
This experiment investigates the performance of PBJ and PBLJ while vary-
ing the number of bindings |Bi| from the meta-database. Fig. 12 shows the 
execution times for Q1 and Q2 for PBJ and PBLJ for a single log database. 

 
                             (a)                                                                (b)
Figure 12. Execution time for Q1 and Q2
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From Fig. 12(a) it is evident that PBLJ performs significantly better while 
scaling |Bi|. The reason is that in PBJ, the FLOQ wrapper is performing |Bi| 
bind-joins, so the overhead of the JDBC calls is multiplied with |Bi|. In all 
experiments the extra time for the bulk loading was less than 50ms irrespec-
tive of number of bindings |Bi|. This makes it insignificant for this small 
number of bindings relative to the size of the log databases. This confirms 
equation (8) and (11) of the cost model that PBJ will not scale compared to 
PBLJ when increasing the number of bindings. The experimental results of 
query Q2 that returns a single tuple per site are shown in Fig. 12(b). The 
reason of the better scalability of PBLJ than for Q1 is because the network 
communication overhead ܥோ೔ in equation (4) is negligible since only one 
tuple is returned from each site. 

In all experiments, the PBLJ join strategy performs better than PBJ, in 
particular while scaling the number of bindings |Bi|. This confirms equation 
(15) in the cost model. The performance improvement is more significant 
when the number of tuples returned from each log database is low. 

5 Related work 
Bind-join was presented in [4] as a method to join data from external data-
bases [7]. We generalized bind-join to process in parallel parameterized que-
ries to dynamic collections of autonomous log databases. Furthermore we 
showed that our bulk-load join method scales better in our setting. 

In Google Fusion Tables [3] left outer joins are used to combine relational 
views of web pages, while [6] uses adaptive methods to join data from ex-
ternal data sources. In [9] the selection of autonomous data sources to join is 
based on market mechanisms. Our case is different because we investigate 
strategies to join meta-data with data from dynamic collections of log data-
bases without joining the data sources themselves. 

Vertical partitioning and indexing of fact tables in monolithic data ware-
houses is investigated in [1]. One can regard our VMeasures view as a hori-
zontally partitioned fact table. A major difference to data warehouse tech-
niques is that we are integrating data from dynamic collections of autono-
mous log databases, rather than scalable processing of queries to data up-
loaded to a central data warehouse. 

In [2] the problem of making views of many autonomous data warehouses 
is investigated. The databases are joined using very large SQL queries join-
ing many external databases. Rather than integrating external databases by 
huge SQL queries, our strategies are based on simple queries over a view 
(VMeasures) of dynamic collections of external databases, i.e. the local-as-
view approach [5]. 
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A classical optimization strategy used in distributed databases [8] is to 
cost different shipping alternatives of data between non-autonomous data 
servers before joining them. By contrast, we investigate using standard 
DBMS APIs (JDBC and bulk load) to make multi-database joins of meta-
data with dynamic sets of autonomous log databases using local-as-view. 

6 Conclusions 
Two join strategies were proposed for parallel execution of queries joining 
meta-data with data from autonomous log databases using standard DBMS 
APIs: parallel bind-join (PBJ) and parallel bulk-load join (PBLJ). For the 
performance evaluation we defined typical fundamental queries and investi-
gated the impact of our join strategies. A cost model was used to guide and 
evaluate the efficiency of the strategies. The experimental results validated 
the cost model. In general, PBLJ performs better than PBJ when the number 
of bindings from the meta-database is increased. 

In the experiments a rather small set of autonomous log databases were 
used. Further investigations should evaluate the impact of having very large 
number of log databases and different strategies to improve communication 
overheads, e.g. by compression. 
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ABSTRACT 
A potential problem for persisting large volume of data logs with a conven-
tional relational database is that loading massive logs produced at high rates 
is not fast enough due to the strong consistency model and high cost of in-
dexing. As a possible alternative, a modern NoSQL data store, which sacri-
fices transactional consistency to achieve higher performance and scalability, 
can be utilized. In this paper, we investigate to what degree a state-of-the-art 
NoSQL database can achieve high performance persisting and fundamental 
analyses of large-scale data logs from real world applications. For the evalu-
ation, a state-of-the-art NoSQL database, MongoDB, is compared with a 
relational DBMS from a major commercial vendor and with a popular open 
source relational DBMS. MongoDB is chosen as it provides both primary 
and secondary indexing compared to other popular NoSQL systems. These 
indexing techniques are essential for scalable processing of queries over 
large scale data logs. To explore the impact of parallelism on query execu-
tion, sharding was investigated for MongoDB. Our results revealed that re-
laxing the consistency did not provide substantial performance enhancement 
in persisting large-scale data logs for any of the systems. However, for high-
performance loading and analysis of data logs, MongoDB is shown to be a 
viable alternative compared to relational databases for queries where the 
choice of an optimal execution plan is not critical. 

 
Categories and Subject Descriptors 
H.2.m [Database Management]: Miscellaneous 
 
General Terms 
Measurement, Performance, Experimentation 
 
Keywords 
NoSQL data stores, large-scale log analysis, log archival, bulk loading, shar-
ding 
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1 INTRODUCTION 
Relational databases can be used for large-scale analysis of data logs from 
industrial applications such as sensor readings [21] [25] [29] and stream logs 
[27] [28]. Persisting large volume of data logs produced at high rate requires 
high performance bulk loading of data into a database before analysis. How-
ever, the loading time for relational databases may be time consuming due to 
full transactional consistency [9] and high cost of indexing [23]. In contrast 
to relational DBMSs, NoSQL databases are designed to perform simple tasks 
with high scalability [5]. For providing high performance updates, NoSQL 
databases generally sacrifice strong consistency by providing so called even-
tual consistency compared with the ACID transactions of regular DBMSs. 
NoSQL databases can be utilized for typical historical analysis of log data or 
numerical log analytics where transactional consistency conforming ACID 
compliance is not required. 

It has been argued in [23] that relational DBMSs can achieve the same 
performance as NoSQL database systems by specifying relaxed consistency 
to eliminate overhead. In [12] it is shown that this overhead is almost equally 
divided between four components for a typical relational DBMS: logging, 
locking, latching, and buffer management. However, we did not find any 
experimental benchmark that investigates how a weaker consistency model 
for relational DBMSs and NoSQL databases can be utilized to enhance per-
formance for persisting and analysis of data logs. Although [10] compares 
the performance of SQL Server and MongoDB [15] for interactive data-as-a-
service based on the YCSB benchmark [6], it does not investigate the per-
formance of the systems for scalable log analysis. A more recent investiga-
tion [13] did not consider the state-of-the-art NoSQL database, MongoDB 
for performance evaluation. None of the papers consider the option for relax-
ing the consistency for both types of systems. 

Unlike NoSQL data stores, relational databases provide advanced query 
languages and optimization technique for scalable analytics. Paper [19] 
demonstrates that indexing is a major factor for providing scalable perfor-
mance, making relational databases having a performance advantage com-
pared to a NoSQL data store without proper indexing to speed up analytical 
tasks. Like relational databases, MongoDB provides a query language as 
well as primary and secondary indexing, which should be well suited for 
analyzing persisted logs. Unlike relational databases and MongoDB, most 
other popular NoSQL data stores [22], Cassandra [2], Redis [20], HBase [1], 
Memcached [7], and CouchDB [3], do not provide full secondary indexing 
and query processing to transparently utilize indexes, which is essential for 
scalable performance of inequality queries. CouchDB has secondary index-
es, but queries have to be written as map-reduce views [5], not transparently 
utilizing indexes. 
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In this paper we compare MongoDB with state-of-the-art relational 
DBMSs to investigate at what degree a state-of-the-art NoSQL database is 
suitable for persisting and analyzing large scale data logs compared with 
relational databases. The performance of MongoDB is compared with a 
commercial DBMS from a major relational vendor, called DB-C, and a pop-
ular open source relational DBMS, called DB-O. 

The performance evaluation covers the bulk loading capacities of the sys-
tems w.r.t. indexing and relaxed consistency. We define three fundamental 
queries for accessing and analyzing persisted logs to investigate the efficien-
cy of query processing and index utilization of the DBMSs. The properties 
of these queries are key selection, range search, and aggregation, which are 
fundamental to the analysis of persisted logs [25] [29]. We utilize data logs 
from a real world application [21] consisting of more than 1 billion sensor 
readings from industrial equipment. 

Furthermore, the impact of MongoDB’s auto-sharding (automatic parti-
tioning) is investigated for persisted log analysis in order to explore whether 
its data partitioning can provide performance advantages for bulk loading 
and query execution. 

In summary, the main contribution of the paper is a performance evalua-
tion of persisting and analyzing data logs under different consistency config-
urations. The paper provides a comparison of the suitability of the two kinds 
of database systems for large-scale log analysis and reveals the trade-offs 
between bulk-loading and different levels of consistency. We discuss the 
cause of the performance differences influenced by how the systems choose 
different indexing strategies under relaxed consistency. The investigations 
provide insights in the issues that future systems should consider when uti-
lizing weaker consistency of back-end storage for persisting and analyzing 
of data logs. 

2 PERFORMANCE EVALUATIONS 
In this section, we present bulk loading strategies and fundamental queries 
for persisted data logs. We first measure the performance in terms of execu-
tion time for different loading strategies by relaxing consistency overhead. 
Then we compare the performance of fundamental queries. For MongoDB, 
we also investigate the impact of auto-sharding on loading and querying. 
Based on inspecting the query execution plans, we discuss the causes of the 
performance differences. 
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2.1 Application Scenario 
The Smart Vortex EU project [21] serves as a real world application context, 
which involves analyzing data logs from industrial equipment. In the scenar-
io, a factory operates some machines and each machine has several sensors 
that measure various physical properties like pressure, power consumption, 
temperature, etc. For each machine, the sensors generate logs of measure-
ments, where each log record has timestamp ts, machine identifier m, sensor 
identifier s, and a measured value mv. Each measured value mv on machine 
m is associated with a valid time interval [bt, et) indicating the begin time 
and end time for mv, computed from the log time stamp ts. The table 
measures (m, s, bt, et, mv) will contain a large volume of log data from many 
sensors on different machines. There is a composite key on (m, s, bt). 

In the performance measurements, the logs are bulk loaded into Mon-
goDB and the two relational DBMSs. Since the incoming sensor streams can 
be very voluminous, it is important that the measurements are bulk-loaded 
fast. After data logs have been loaded into the measures table, the user can 
perform queries to detect anomalies of sensor readings by analyzing values 
of mv. The queries are used in the performance evaluation in order to under-
stand the performance differences for both kinds of systems. 

2.2 Data Set 
The evaluation is made based on measurements from a real-world applica-
tion in the Smart Vortex project [21]. A typical time series formed by a small 
piece of a larger numerical log from the application is plotted in Figure 1. In 
the performance evaluations more than 1 billion log measurements, which 
occupies 60GB of raw data from industrial sensors is used. It is important 
that data loading can keep up with increasing log volume. To investigate 
DBMS performance with growing data volume, increasing sections of the 
data logs were loaded into the databases. 

Figure 1. Pressure measurements of sensor for 1 hour 
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2.3 Consistency Configurations for Bulk Loading 
In relational DBMSs, typical transactional overhead such as logging can be 
turned off and isolation level be relaxed to boost the performance. To inves-
tigate the impact of relaxed consistency levels, we configure the systems as 
in Table 1, which also defines the acronyms for the experiments. The lowest 
isolation level for the relational databases (dirty reads) corresponds to 
unacknowledged write concern in MongoDB, while serializable transactions 
correspond to acknowledged write concern [16]. For MongoDB, we also 
investigate the performance impact of autosharding, which can be combined 
with both consistency levels per shard. MongoDB does not have distributed 
transactions, therefore, synchronized updates of several shards is not sup-
ported. 

Table 1. Consistency configurations for the experiments 

Acronym Name and Consistency Level Properties 
DB-C-S DB-C & strong consistency Logging, serializable  isolation level 
DB-C  DB-C,  & weak  consistency Dirty reads, no logging 
DB-O-S DB-O & strong consistency Logging, serializable isolation level 
DB-O DB-O & weak consistency Dirty reads , no logging  
Mongo-S MongoDB & acknowledged write concern Logging, serializable isolation level 
Mongo MongoDB &  unacknowledged write concern Dirty reads, no logging 
Mongo-AS-S MongoDB  auto-shading & acknowledged 

write concern 
Logging, no distributed transactions, 
serializable isolation  

Mongo-AS  MongoDB auto-shading & unacknowledged 
write concern  

No logging, no distributed transac-
tions, dirty reads 

We evaluated several alternatives of bulk loading by utilizing the different 
levels of consistency configurations. First, the impact of relaxed consistency 
is investigated and then the best consistency option for each system is used 
in all other experiments. 

2.4 Fundamental Queries 
The queries used in the performance evaluation are very fundamental to 
analytics over numerical logs and provide basic building blocks of analytics 
of persisted logs [21] [25] [29]. We made the experimental queries simplistic 
in nature, which is one of the four major criteria of domain specific bench-
marks [11], to demonstrate the credibility of the performance trade-offs for 
the systems. The queries essentially explore the performance and scalability 
of primary and secondary index utilization for growing data logs. The first 
query, key look-up query (Q1), gets a sensor reading for a given timestamp. 
The second query, range query (Q2) detects deviations of sensor readings 
from expected values. The third query, aggregation query (Q3), performs 
aggregation of measurement deviations from persisted logs. 
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2.4.1 The Key Lookup Query, Q1 
The task involves finding measured values mv for a given machine m, sensor 
s, and begin time, bt. The query expressed in SQL and MongoDB’s query 
language [16], respectively, is specified as follows: 

-- SQL                                                           //MongoDB 
SELECT m, s, mv                                       db.measures.find( 
FROM measures                 { m:?, s:?, bt:? }, { m: 1, s: 1 mv: 1}) 
WHERE m =? AND s =? AND bt =?          

In order to provide scalable performance of the query, we need an index on 
the composite key. In all systems we index by defining a composite B-tree 
primary key index on (m, s, bt). This query demonstrates the performance of 
primary key index utilization of the three systems. 

2.4.2 Range Query, Q2 
This query involves finding unexpected sensor readings by observing meas-
ured values mv that deviate from an expected value. Here, the sensor read-
ings with the measured value mv higher than the unexpected value are re-
trieved. Such a query can be expressed in SQL and MongoDB as follows: 

-- SQL                                                           //MongoDB 
SELECT *                                                  db.measures.find( 
FROM measures                        { mv: { $gt: ? } }) 
WHERE mv>?                                             

In order to improve the performance of this query, we need a secondary or-
dered index on value, mv. Query Q2 shows the performance of secondary B-
tree indexing and how well the query optimizer can utilize the index. Since 
the efficiency of a secondary index is highly dependent on the selectivity, the 
query was executed with different query selectivities by providing the ap-
propriate ranges of mv. The correspondence between choice of mv and query 
selectivities for Q2 for the data set is plotted in Figure 2. 

 
Figure 2. Measured value to selectivity mapping                   
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Based on the data illustrated by Figure 2, we execute Q2 for value of mv 
resulting in the selectivities 0.002%, 0.02%, 0.2%, 0.25 %, and 1%, resulting 
around 0.02, .2, 2, 2.5,5 and 10 millions of log records. 

Query Q2 is an example of a very fundamental analytics query that in-
volves inequality comparisons. Complex analytics queries usually involve 
such inequalities and can often be rewritten into inequality queries like Q2, 
as automated in [25]. 

2.4.3 Aggregate Query, Q3 
This query counts the total number of sensor readings having a measurement 
anomaly, using the same inequality as in Q2. Such a query is expressed in 
SQL and MongoDB as follows: 

-- SQL                                                              //MongoDB 
SELECT COUNT(*)                           db.measures.count( { mv: {$gt: ?}}) 
FROM measures  
WHERE mv > ? 

Similar to Q2, this query was executed for different selectivities utilizing a 
secondary index on mv. In difference to Q2, which returns a large volume of 
abnormal sensor readings, Q3 returns a single aggregated value. The query 
has insignificant network communication overhead compared to Q2. 

2.5 Indexing Strategy 
To speed up lookups of sensor readings for a given timestamp, we define a 
composite index on machine id m, sensor id s and begin time bt. For query 
Q2 and Q3, we define an extra secondary index on mv in addition to the 
composite key index. The data is then bulk loaded and the three fundamental 
queries were executed. 

2.6 Benchmark Configuration 
The non-sharding experiments are performed on a computer running Intel® 
CoreTM i7, 3.0GHz CPU with Windows Server 2013 operating system. The 
computer has 16GB of physical memory. 

2.6.1 MongoDB Configuration 
MongoDB version 2.4.8 is used for the performance evaluation. Relational 
tables are represented as collections of binary-JSON (BSON) objects [14] in 
MongoDB. Since the attribute names are stored inside each BSON object, 
short attribute names are used to make the database compact. 

The sharding experiments were run on a cluster of five nodes connected 
by a one Gbit Ethernet switch. Each node had the same hardware configura-
tion as the non-sharding experimental setup. We ran one mongod process 
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managing each shard, one config_db process managing meta-data, and one 
mongos process for the MongoDB coordinator. The client, mongos, and con-
fig_db were run on the same node separate from the shards mongod. 

2.6.2 Relational DBMS Configurations 
The query result cache was turned off for both relational DBMSs. Also 
MongoDB does not utilize any query result cache when executing queries. 

2.6.3 Benchmark Execution 
For each system we measured the bulk-load time for 167, 333, 667, and 
1000 million sensor readings consisting of approximately 10GB, 20GB, 
40GB, and 60GB of data, respectively. The raw data files were stored in 
CSV format where each individual row represents a sensor reading for ma-
chine m, sensor s, begin time bt, end time et, and the measured value mv. 

The bulk loading into the relational DBMSs and MongoDB were per-
formed utilizing their batch commands for bulk loading CSV files. 

The scalabilities of all fundamental queries were evaluated with the larg-
est data set of 1 billion sensor records (60 GB) for all the systems. 

To enable incremental bulk loading of new data into existing tables, the 
indexes should always be predefined in all experiments, rather than building 
them after the bulk loading. Although one might consider the option of bulk 
loading first and then building the index, this will contradict the notion in 
our application scenario, where bulk loading and analyzing streaming logs is 
a continuous process that demands incremental loading of the data into pre-
existing tables. Nevertheless, we also made performance evaluations of 
building the indexes after bulk loading, which is faster compared to incre-
mental bulk loading (Figure 4). 

To provide stable results for bulk loading, we made all the experiment 
starting with empty databases. For each query, we measured the average 
time of three executions. The standard deviations of the measurements were 
less than 1%. 

2.7 Experimental Results 
For investigating the performance of bulk loading and queries for different 
consistency configurations, the following experiments were conducted. 

2.7.1 Performance of Bulk Loading 
In Figure 3, we observe that all systems offer scalable loading performance, 
except DB-O (DB-O and DB-O-S) and sharded MongoDB (Mongo-AS and 
Mongo-AS-S). DB-O scales significantly worse than DB-C and MongoDB 
for bulk-loading, whereas Mongo-AS is faster than DB-O. Both Mongo-AS 
and Mongo-AS-S are much slower compare to DB-C and non-sharded Mon-
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goDB. We speculate that this performance degradation is due to MongoDB’s 
internal re-balancing of data among the shards during bulk-loading. 

Figure 3. The performance of bulk loading with different consistency configurations                   

For bulk loading of large databases, the improvement of weak consistency is 
around 24.8% for DB-C (DB-C vs. DB-C-S), while it is around 26% for 
MongoDB (Mongo vs. Mongo-S). MongoDB with weak consistency per-
forms best compared to other systems. In summary, relaxing transactional 
overhead did not provide substantial performance improvement for any sys-
tem. From now on we always use the faster weak consistency levels in the 
experiments. 

Figure 4. The performance of building indexes before and after bulk loading                   

Figure 4 illustrates the performance degradation for bulk loading one billion 
records incrementally with predefined indexes (Indexed-Before) compared 
with building the indexes after all data are loaded (Indexed-After). For In-
dexed-After, we show the total time of bulk loading and building the indexes. 
Here for the Indexed-After experiment, DB-C performs best. Although all 
systems demonstrate better performance with Indexed-After, this option pre-
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vents incremental bulk loading and is not suitable for incrementally persist-
ing logs. 

2.7.2 Performance of Key Lookup Query (Q1) 
Figure 5 shows the performance of key lookup query Q1 to retrieve a partic-
ular sensor record. As expected, indexing the key provides scalability of Q1 
in all systems, with DB-C being fastest. 

Figure 5. Performance of key lookup query (Q1)                   

2.7.3 Performance of Range Query (Q2) 
Figure 6 shows the performance of query Q2 with both primary and second-
ary indexes defined. The selectivities are varied from 0.002% up to 1.0% for 
1 billion sensor records. Clearly there is a problem with secondary indexes 
for inequality queries in DB-O. Both sharded and non-sharded MongoDB 
and DB-C scale substantially better and is therefore investigated further in 
Figure 7. 

Figure 6. The performance of range query (Q2)                   
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Figure 7. The performance of Q2 for DB-C and MongoDB                   

Figure 7 compares Q2 for DB-C and both sharded and nonsharded Mon-
goDB while varying the selectivities from 0.002% up to 5.0%. The figure 
shows that DB-C switches from scanning the secondary index to full table 
scan when around 0.25% of the rows are selected. This makes DB-C faster 
than all configurations of MongoDB for non-selective queries (selecting 
more than 2.0%), because MongoDB does not switch the execution strategy 
and continues with an index scan for growing selectivities. Mongo-AS is 
clearly slowest for non-selective queries, while the query optimizer of DB-C 
makes it the system with the most stable performance. In the Figure, no per-
formance differences can be observed for selectivities less than 0.2% and 
therefore Table 2 details the performance differences for selectivities up to 
0.2%. 

Table 2. The performance of very selective Q2 for DB-C and MongoDB 

Table 2 shows that for very selective queries (selectivity from 0.002% to 
0.2%) Mongo-AS is the fastest, since a relatively small number of records 
have to be transferred, which results in less network communication over-
head. Sharded MongoDB is fastest only for highly selective queries. 

2.7.4 Performance of Aggregate Query (Q3) 
Figure 8 shows the performance of the aggregate query Q3 where a single 
value is returned. We use the same selectivities of the condition inside the 
aggregate as for Q2. Here it turns out that Mongo-AS performs much better 
compared to the corresponding performance of Q2 in Figure 7, since each 
shard performs a parallel scan and then sends a single result object to the 
coordinator. 
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Figure 8. The performance of the aggregate query (Q3)                   

The performance of DB-O for Q3 is much better than for Q2 in Figure 6, but 
it still scales worse than the other systems. For aggregates over non-selective 
conditions (5%), Mongo-AS scales best, being 1.4 times faster than non-
sharded MongoDB and DBC, respectively. However, five shards provides 
only 40% speedup in our settings. 

Figure 9. The performance of Q3 for smaller selectivities                   

Figure 9 further highlights the performance of Q3 with highly selective con-
ditions, where DB-C is fastest for selective queries, while the performance of 
Mongo-AS is slightly slower due to overhead of coordination among shards. 

Table 3. Qualitative summary of the experimental results 
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The overall results of the performance evaluation are summarized in Table 3, 
where MongoDB is shown to have comparable performance as the state-of-
the-art relational database from a major commercial vendor (DB-C). 

3 RELATED WORK 
Typical TPC benchmarks [24] such as TPC-C, TPC-DS, and TPC-H are 
targeted towards either OLTP or decision support, not for large scale log 
analysis, which often requires scalable persisting and querying over persisted 
logs, the focus of this paper. 

Floratou et al. [10] compared the performance of SQL Server and Mon-
goDB for interactive data-as-a-service queries based on the YCSB bench-
mark [6], showing that SQL Server has significant performance advantages 
over MongoDB. However, the work neither explored the options of relaxing 
consistency overheads nor investigated indexing and query optimization 
issues for scalable execution of persisted data logs. Dede et al. [8] evaluated 
the performance of MongoDB and Hadoop for scientific data analysis, but 
not for scalable log analysis and there was no comparison with relational 
DBMSs. 

Barahmand et al. [4] compared the performance of an SQL solution with 
MongoDB for interactive social networking actions and sessions, which does 
not fit into the context of persisting and analyzing logs. 

Wei et al. [26] utilized MongoDB for storing and analyzing network logs. 
Although they provide queries that analyze network logs, they did not com-
pare the performance with other systems. 

Finally, the performance of online incremental bulk loading with a main-
memory DBMS was investigated in [17] [18]. By contrast, our focus is on 
comparing disk-based NoSQL and relational databases for persisting large-
scale data logs. 

To our best knowledge we did not find any performance evaluation that 
compares MongoDB with relational DBMS in the context of persisting and 
analyzing of numerical logs. 

4 CONCLUSIONS AND DISCUSSIONS 
The conclusions from the evaluation can be divided into three different fac-
tors influencing performance: (i) relaxing consistency, (ii) indexing and que-
ry processing, and (iii) sharding. 

First, we discovered that relaxing the consistency does not provide any 
substantial performance enhancement in querying large scale data logs for 
neither SQL nor NoSQL databases. Although it is shown in [12] that remov-



 
 
14 

ing transactional overhead can improve performance up to 20 times for up-
dates, we discovered that both commercial and open source relational data-
bases provide less than 25% performance improvement for bulk-loading 
with relaxed transaction consistency. In contrast to the aggressive modifica-
tion of the database kernel in [12], a common user will not be able to modify 
the DBMS kernel but has to rely on the options provided by the system. For 
MongoDB, weak consistency configuration of bulk loading provides around 
26% improvement. 

For bulk loading in general, both MongoDB and DB-C scale substantially 
better than DB-O. For the largest data size, bulk loading with non-distributed 
MongoDB and DB-C are more than five times faster than DB-O. Distrib-
uting MongoDB by autosharding is about 4 times slower than non-
distributed MongoDB and DB-C. 

All systems perform well for looking up records matching the key (query 
Q1) by utilizing a primary key index. For the analytical task of range com-
parisons between a non-key attribute and a constant (query Q2), both Mon-
goDB and DB-C scale substantially better than DB-O. A more careful com-
parison of DB-C and MongoDB revealed that DB-C scales better for nonse-
lective queries, while MongoDB is faster for selective ones. The reason is 
that, unlike MongoDB and DB-O, DB-C switches from a non-clustered in-
dex scan to a full table scan when the selectivity is sufficiently low, while 
MongoDB (and DB-O) continues to use an index scan even for non-selective 
queries. 

The aggregation query (query Q3) scales for all systems by utilizing the 
secondary index when computing an aggregated value. Here, sharded Mon-
goDB scales best being around 1.4, 2.4, and 9.5 times faster than non-
sharded MongoDB, DB-C, and DBO, respectively. The reason is that a par-
allel scan without sending lots of results among distributed shards speeds up 
query execution. Therefore, we conclude that, only when an analytics task is 
inherently parallel with insignificant communication/datatransfer among 
parallel nodes, distributed MongoDB (or similar NoSQL data store) is an 
alternative to vertical scaling to speed up the analytics. 

To conclude, non-sharded MongoDB performs significantly better com-
pared to DB-O and has comparable performance with DB-C, making it suit-
able for large scale persisting and analyzing logs. However, DB-C demon-
strates that relational databases can have performance advantages compared 
to both distributed and non-distributed NoSQL databases by having a sophis-
ticated query optimizer. NoSQL databases can also be equipped with more 
sophisticated query optimizers as in state-of-the-art relational DBMSs, 
which will improve query performance. However, some NoSQL databases 
such as MongoDB provide a flexible schemaless paradigm which makes 
query optimization challenging due to the absence of rigid schema and prop-
er data statistics. 
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Finally, although we have discussed the issues of persisting and analysis 
of data logs, our results can be utilized also in other large-scale and data 
intensive application scenarios where bulk loading with relaxed consistency 
and scalable query execution are required. 

For high performance loading and analysis of large-scale data logs, Mon-
goDB is shown to be a viable alternative compared to relational databases. 
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