
IT 09 035

Examensarbete 30 hp
November 2009

Searching Web Feeds from a
Functional Database Management
System

Niklas Gåfvels

Institutionen för informationsteknologi
Department of Information Technology

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Searching Web Feeds from a Functional Database
Management System

Niklas Gåfvels

Web feeds are a popular technique to distribute information about contents of web
pages. RSS and Atom are two standards used to syndicate web contents as web feeds.
This project investigates how to make different kinds of Internet web feeds searchable
by implementing a general wrapper for web feeds in an extensible and functional
DBMS, Amos II. The system, RSS-Amos, makes it possible to search the contents of
any RSS or Atom based web feed using the query language AmosQL. New web feeds
simply have to be declared to the system in order to make them searchable. The
system guarantees that added feeds always are up to date when queries are made.
The wrapper is implemented in Java using the ROME API from java.net. The project
includes an evaluation of the performance of the system. Due to the fact that the
actual data sources are located on the Internet, a cache of read feeds has been
implemented to improve performance. The cache makes queries over 150 times
faster.

Tryckt av: ITC
IT 09 035
Examinator: Anders Jansson
Ämnesgranskare: Tore Risch
Handledare: Tore Risch

 2

1. Introduction .. 3
1 Background .. 3

1.1 Web feeds ... 3
1.1.1 RSS ... 4
1.1.2 Atom ... 8
1.1.3 Mappings between RSS and Atom in RSS-Amos ... 11

1.2 Amos II ... 12
1.2.1 Types .. 12
1.2.2 Functions .. 13

2 The RSS-Amos system ... 15
2.1 Design decisions ... 19

2.1.1 Naive implementation .. 19
2.1.2 Feed caching ... 21
2.1.3 Parallel feed caching .. 29

2.2 Java implementation of the RSS-Amos wrapper ... 31
2.2.1 Motivating choice of interfaces .. 31
2.2.2 Design ... 31
2.2.3 Multi-threaded implementation of parallel feed caching 34

2.3 Performance ... 36
2.3.1 Tests ... 36

2.3.1.1 Optimal feeds per thread .. 36
2.3.1.2 The performance of the ROME library .. 39

2.3.2 Evaluation ... 39
3 Summary and Future work and Discussion .. 44
References .. 46
Appendix A .. 48
Appendix B .. 49
Appendix C .. 51

 3

1. Introduction
The Internet consists of numerous web pages presenting news articles. Two common
goals of web pages are to maximize the amount of information that can be presented on
the display and to reach as large public as possible. Web feeds provide a popular
technology to represents and distribute web pages in a compact format. RSS [1] and Atom
[4] are two standards used when web contents are distributed to reach a wider audience
using web feeds. The web feed format makes it suitable for incorporation in other web
pages, computer software and devices. The distribution of web contents is called
syndication [6]. By syndication of web content it will reach a larger public than just using
the web page alone. An RSS web feed consists of a list of triples of title, summary and a
link to the article. If the reader finds the information interesting the whole story can be
accessed with the provided link. It is common to use software called aggregators [27] that
keep track of multiple feeds. Aggregators automatically inform the reader when there are
updates made on a site. There exist aggregators for all kinds of devices, e.g. mobile
phones and PDAs.

The RSS-Amos system implements a general query facility to search different kinds
of web feeds. It is based upon the Amos II functional database system [18], which can be
extended to query new data sources. A wrapper is an interface between Amos II and a
data source. A wrapper makes it transparent to query the new data source using a query
language. The RSS-Amos implementation includes a wrapper for web feeds. The wrapper
is implemented in Java using available public Java-based libraries for web feed access. A
foreign function in Amos II is a function written in some external language that can be
used in queries. The wrapper mechanism uses foreign functions written in Java and the
ROME [15] library to download and parse the feeds and articles.

 Having the web feeds as data sources makes it possible to query them with Amos II
using AmosQL [1] [4] [6][21] or SQL [8]. Queries can be specified to search and join web
feeds, searching for, e.g. syndicated articles.

RSS-Amos stores in an Amos II database meta-data about known web feeds. The
address of each feed stored in the meta-database is used when articles belonging to the
feed are downloaded.

To increase the performance and limit the need to access the Internet, a cache for
web feeds is implemented in RSS-Amos using main memory tables in Amos II. In an
improved parallel feed caching implementation, Java threads are used to increase the
performance by downloading multiple web feeds in parallel.

1 Background

1.1 Web feeds
Web feeds is a technique to represent the contents of a web page as a "stream" of
information. In Swedish the translation for web feed is ström or flöde. Most larger web
sites use web feeds to inform the human readers about the latest news on their site e.g.
BBC, CNN, Apple, or Google. A web feed contains syndicated web contents meaning that
the web content is going to be spread/distributed outside the original web page. A web
feed consists of a title, a summary of the news, and a link to the web page containing the
full article [1][4][6]. Usually a user subscribes for a feed in order to get updates
automatically. A web feed reader (or just reader) is a program that shows the feed in some
kind of GUI (Graphical User Interface). A web feed makes it possible for a web page to
reach a larger public resulting in a higher hit rate for the web page. The web page showing
the web feed may also get a higher hit rate when readers can get more information and

 4

usage from the page. The feeds can be shown in many formats. You can have a web feed
as a screen saver (the news are rolling over the screen), show the web feed in your web
page, get a pop up in the taskbar when there are new news, read the web feed in your
mobile phone, or use a web feed reader where you can have numerous feeds showing in a
Internet Explorer called aggregators [27].

There exists numerous free RSS search engines on the Internet. Many of them have
focus on searching in blogs but also news feeds, e.g. www.search4rss.com,
www.plazoo.com, www.google.com/reader and www.yourfeeds.com. Many of these search
engines have the same search layout and search capabilities: a textbox, a search button,
and the possibility to filter with a given category.

Web feeds are not suitable for representing all kinds of web pages. A suitable web
page is a page where the contents changes dynamically. The best example is news papers
on the Internet. News papers on the Internet usually post information about new articles as
they arrive to a news paper. A news article usually consists of a title, a summary and a
link to the whole story, which is also the normal way to format feeds [1][4][6].

RSS [1] and Atom [4] are the two different standards used to syndicate web contents
as a web feed.

I have found one example of program importing RSS feeds [1] into relational
databases. The program is called UltimateNews - RSS to database fetch 2.0 and it
periodical reads RSS feeds [1] and stores the information in one of the DBMSs MS SQL,
MySQL, Oracle, or MS Access [28].

In this project all versions of RSS and Atom feeds [1][4] can be imported into Amos
II making it possible to query them using AmosQL [18]. The system automatically makes
sure that feeds used are up to date when they are used in a query.

1.1.1 RSS
RSS is a general format used for representing web feeds. RSS web feeds are called RSS
channels. The following terms are used as synonyms for RSS channel: RSS, RSS feed,
RSS/XML, or RSS/RDF. RSS (Real Simple Syndication, Rich Site Summary, or RDF Site
Summary) has a multicoloured history. The different names are a good example of this.
RSS started with Netscape in 1999 with version 0.90 [1][13][16]. Netscape released
version 0.91 before they decided to stop their development of RSS. Another company
named UserLand Software made their own version of RSS version 0.91 [1][13][16]. There
are some differences between the two versions but the structure is the same, e.g. the XML
element textinput in Netscape’s version is named textInput in the version from UserLand
Software and the way to represent hour of day in Netscape’s version is 0-23 while
UserLand Software’s version uses 1-24 [12]. UserLand Software has released version
0.92, 0.93 and 0.94 before the release of their final version, version 2.0 [1][13]. There
exists a version 1.0 of RSS developed by RSS-DEV Working Group [17]. This group
based their version on the original version from Netscape, version 0.90. However, RSS
Version 1.0 uses RDF (Resource Description Framework) making this version
incompatible with all the versions from UserLand Software. RDF is a standard used to
describe web meta-data [24]. UserLand Software released their final version of RSS as
version 2.0. However, there actually exists two versions of RSS version 2.0 [1][13][16].
The first is the version from UserLand and the second version is from Berkman Center for
Internet & Society at Harvard Law School [1]. In June 2003 Berkman Center [1] got to be
the owner of the RSS specifications. There have been some small changes to the
UserLand Software specifications but the new releases is still called version 2.0.

 5

Table 1: RSS version history

Version Date

0.90 1999‐03‐15

0.91 Netscape 1999‐07‐10

0.91 UserLand 2000‐06‐04

0.92 2000‐12‐25

0.93 2001‐04‐20

0.94 2002‐08

1.0 2000‐08‐14

2.0 UserLand 2002‐09‐18

2.0 Harvard 2003‐07‐15

RSS-Amos uses the specification of RSS version 2.0 from the Berkman Center at

Harvard [1] as template when representing feeds and in the creation of data structures. The
format of Atom [4] is handled by mapping into RSS version 2.0 [1].

 6

Figure 1 shows an example of how an RSS version 2.0 web feed looks in a browser. The
textbox shows the XML code representing the web feed.

Figure 1: Example of an RSS version 2.0 document

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Liftoff News</title>
 <link>http://liftoff.msfc.nasa.gov/</link>
 <description>Liftoff to Space Exploration.</description>
 <language>en-us</language>
 <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>
 <lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT</lastBuildDate>
 <docs>http://blogs.law.harvard.edu/tech/rss</docs>
 <generator>Weblog Editor 2.0</generator>
 <managingEditor>editor@example.com</managingEditor>
 <webMaster>webmaster@example.com</webMaster>
 <item>
 <title>Star City</title>
 <link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
 <description>How do Americans get ready to work with Russians aboard the International
Space Station? They take a crash course in culture, language and protocol at Russia's Star City.</description>
 <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>
 </item>
 <item>
 <description>Sky watchers in Europe, Asia, and parts of Alaska and Canada will
experience a partial eclipse of the
Sun on Saturday, May 31st.</description>
 <pubDate>Fri, 30 May 2003 11:06:42 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/05/30.html#item572</guid>
 </item>
 <item>
 <title>The Engine That Does More</title>
 <link>http://liftoff.msfc.nasa.gov/news/2003/news-VASIMR.asp</link>
 <description>Before man travels to Mars, NASA hopes to design new engines that will let
us fly through the Solar System more quickly. The proposed VASIMR engine would do
that.</description>
 <pubDate>Tue, 27 May 2003 08:37:32 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/05/27.html#item571</guid>
 </item>
 <item>
 <title>Astronauts' Dirty Laundry</title>
 <link>http://liftoff.msfc.nasa.gov/news/2003/news-laundry.asp</link>
 <description>Compared to earlier spacecraft, the International Space Station has many
luxuries, but laundry facilities are not one of them. Instead, astronauts have other
options.</description>
 <pubDate>Tue, 20 May 2003 08:56:02 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/05/20.html#item570</guid>
 </item>
 </channel>
</rss>

 7

RSS version 2.0 is a dialect of XML, which means that it has some special XML-
tags following the XML 1.0 specification [25]. Usually a dialect contains a namespace
defining the elements of the dialect. However, the elements of RSS version 2.0 do not
belong to a namespace. The motivation for this is that the use of a namespace would make
version 2.0 incompatible with earlier versions of RSS. A valid RSS version 2.0 document
must follow the specifications on the Berkman Center site [1]. It is valid to extend the
dialect but then a namespace has to be defined for the new elements and attributes and the
name must be changed.

A channel contains the meta-data about a web feed. In Table 2 you can see all
existing meta-data elements belonging to an RSS channel version 2.0. Required elements
are marked with green/dark colour [1].

Table 2: Meta-data elements of an RSS channel

The three elements rss, title, and description are the only required ones in an RSS

Channel version 2.0. Elements contained in other elements are called sub-elements. A sub-
element represents additional properties belonging to an element, e.g. the image element
have six properties, title, url, link, description, width, and hight, which is stored in sub-
elements.

Required element
Element Description

Rss The attribute version representing the Channel version.
Title The title of the feed e.g. BBC News

Description
A text describing the feed e.g.
Visit BBC News for up-to-the-minute news, breaking news …

Link
The address to this feed or a web page e.g.
http://news.bbc.co.uk/go/rss/-/2/hi/europe/default.stm

Image

A picture/icon showing on the top of the feed e.g.

Language The natural language of the article, e.g. en-gb
Cloud Indicates that it is possible to be notified when a feed is updated.
Copyright Copyright notice, e.g. Copyright: (C) British Broadcasting Corporation

Docs
A link to a document describing the RSS structure e.g.
http://www.bbc.co.uk/syndication/

lastBuildDate
The date and time when the channels was updated last,
e.g. Mon, 02 Mar 2009 18:18:24 GMT

managingEditor The e-mail address to the person responsible for the contents of the channel

pubDate
The date when this channel was published
e.g. Mon, 02 Mar 2009 08:11:12 GMT

Rating PICS rating as an integer

skipDays
The days of the week when there will be no updates
to the channel, e.g. Saturday, Sunday

skipHours The hours of the day when there will be no updates to the channel, e.g. 0-23
webMater E-mail address to the system administrator hosting the channel

Category
One or several categories explaining the type of contents of the channel,
e.g. Business, Europe

Generator The name of the program that created the channel

Ttl

An integer telling how often the channel should be updated by the browser or
reader.
E.g. ttl=15 means that the channel should be read every 15 minutes

textInput A textbox that can be used for adding comments from readers

 8

Table 3: Sub-elements to the meta-data of an RSS channel

Element Sub-elements/attributes
Image title url link description width hight
Cloud domain port path registerProcedure protocol
textInput title description name link

 News/stories/articles are called items in RSS. There is actually no requirement to

have any news in the channel. The real content about each article is stored in item
elements. A channel can have any number of items. Table 4 shows all sub-elements
allowed for items [1]. At least one of the sub-elements title or description needs a value. It
is possible that the whole news/article/story is present in the description element and it is
only the description element that is allowed to contain HTML encoding.

Table 4: Sub-elements belonging to an item of an RSS channel
Element Description
title The title of the article/news
link The address to the site with the full article/news
description A summary of the article/news

author

An email address to the person that wrote the
article/news or the person responsible for the
channel

category
One or more elements describing the category of
the article/news, e.g. Sweden or Economy

comments
A URL to a webpage with comments to the
article/news

enlcosure
Indicates whether there is some media associated
to the item, e.g. a picture or audio file

guid

A string representing a globally unique identifier. It
can be used to identify if an article is new.
This is often the same as the link.

pubDate

The date when the article/news was created.
The format of the date is specified in rfc 822.Fel!
Hittar inte referenskälla..

 source

Indicates whether the information came from
another feed, in which case the address to that is
specified as XML

The following four sub-elements of an item have their own sub-elements:

Table 5: Sub-elements to an RSS item
Element Sub-elements/attributes
category domain (optional)
comments url
enlcosure url length type hight width
source url

1.1.2 Atom
As RSS, Atom is a standard used to syndicate web contents. A web feed created by Atom
is called a feed corresponding to a channel for RSS. The first version of Atom, version
0.3, was created in December 2003. The motivation for this new syndication format was
the fact that the specifications of RSS version 2.0 were frozen to preserve backward
compatibility and modifications to RSS version 2.0 had to be done under another name
[1][6]. Due to these facts a new syndication format named Atom was created. Atom is

 9

implemented without the need of backward compatibility to the multicoloured history of
RSS. Atom has an XML namespace (http://www.w3.org/2005/Atom). With Atom it is
possible to store different kinds of human readable text content in an element, e.g. one
element may contain pure text and another one html and both elements can be parsed
correctly by a reader. Text elements may have a type attribute specifying the type of
contents. In RSS only the description could contain HTML encoding. In 2004, Atom
version 1.0 was released and the specifications of Atom moved into the Internet
Engineering Task Force (IETF) under rfc 4287 [6]. Moving to IETF was a tactical move
to make Atom more attractive than RSS. However, RSS version 2.0 is still the most
popular feed syndication format. Big sites like BBC, CNN, and Apple use RSS version
2.0 [1].

The structure of the meta-data of an Atom feed looks like this.

Table 6: Meta-data elements of an Atom feed
Required element

Element Description

author The author of the feed.

contributor Optional co-worker of the author

category
Defines the category of the element, which is the sub-element
label presented for humans

generator The tool used to create the feed

icon The image representing an icon to the feed

id A unique id for the feed

link

A reference to a web resource with information about the feed

or the address to the feed itself .

logo A picture that is larger then the icon

rights Copyright information about the feed

subtitle The description/subtitle of the feed

title The title of the feed

updated A date construct indicating the last change of the feed

The following elements of an Atom feed have sub-elements.

Table 7: Sub-elements to an Atom feed
Required element

Element Sub-elements/attributes

category term scheme Label

generator uri version

icon uri

id uri

link href rel Type hreflang title length

logo uri

The news/story/article of an Atom feed is called an entry corresponding to an RSS
item. The structure of an Atom entry looks like this.

 10

Table 8 elements of an entry

Required element

Element Description

Author The author of the entry

category The category of the entry, i.e. the label presented for humans

content
A link to the content or the content itself. If the src attribute is

present it means that the contents is provided as a link

contributor Optional co-worked of the author

Id A unique id for the entry

Link A reference to a web resource other than the contents

published The first time the entry was created

Rights Copyright information about the entry

source
If the entry is taken from another feed the metadata about the

original feed is stored here

summary The summary of the contents of the entry

Title The title of the entry

updated The last change of the entry

The following elements of an Atom entry have sub-elements.

Table 9 sub-elements of an entry
Requried element

Element Sub-elements/attributes

Category term scheme label

Content type text src

Id uri

Link href rel type hreflang title length

Source author contributor generator Icon id link logo Rights subtitle title updated

An Atom feed can contain Atom entry elements but this is not required. The full
specification for Atom can be found at http://www.w3.org/2005/Atom.

 11

1.1.3 Mappings between RSS and Atom in RSSAmos

RSS-Amos has a mapping between corresponding elements in RSS and Atom in order to
be able to handle both formats. RSS version 2.0 from Berkman Center [1] is the basic
template/model for the representation of web feeds in the system. The elements in RSS
2.0 are mapped to corresponding functions in RSS-Amos. Table 10 shows the mappings
of the meta-data of the two web feed standards.

Table 10: Meta-data mappings

RSS Atom
title Title
description Subtitle
link Link

image
logo element if present
else the icon element

language

Taken from the xml:lang
element of the XML
document

cloud -
copyright Rights
docs from the XML namespace
lastBuildDate Updated
managingEditor email from author
pubDate Published
rating -
skipDays -
skipHours -

webMaster

email element if present
else the name element if
present, otherwise the uri
attribute from the author
element

category

label element if present,
otherwise the term attribute
from the category element

generator Generator
ttl -
textInput -

The version element is not used in RSS-Amos. The motivation for this is that all

versions are treated as RSS version 2.0. There is no mapping for the elements cloud,
rating, skipDays, skipHours, ttl, or textInput.

The mapping of item and entry looks like this:

 12

Table 11 mapping of an item and entry

RSS Atom
Title Title
Link The href attribute from the link element

description
The summary if present otherwise content
element

author

The sub-element name from author element if
present otherwise from the contributor
element

category The term attribute from the category element
comments -

enlcosure
All links with where sub-elements rel is not
equal to alternate

Guid Id

pubDate
published element if present otherwise the
updated element

source

From author names if present otherwise
either from contributor names if present or
from the rights element

All sub-elements except comments in an entry got a mapping in a item.

1.2 Amos II
Amos II (Active Mediator Object System) [21]is a DBMS with a functional database
model. Amos II is designed to be stored in main memory (MM). Amos II has a functional
query language called AmosQL. Amos II can be used as a standalone DBMS or a server.
It is furthermore possible to search external data sources using the wrapper facilities of
Amos II. The system can be used on Windows and Linux.

The functional database model used in Amos II consists of objects, types, and
functions. The RSS-Amos wrapper represents a web feed as a user defined type named
Feed.

1.2.1 Types
It is possible to create user defined types in Amos II. A user defined type consists of a
name of the type and attributes represented be functions described in the chapter 1.2.2.
Instances of stored types are objects stored in the local database. The command create
type is used when creating stored types. For example, creating a stored type called Person
with the attributes firstname and secondname is done with the command

create type Person properties (firstname Charstring, secondname
Charstring);

An object is represented by a literal or a surrogate. A surrogate is similar to an instance of
a class in C++ or Java, which has to be explicitly created and deleted. A surrogate has an
OID (Object Identifier). A literal is built-in type, e.g. Charstring and Integer.

Amos II has two types of collections, bag and vector. A bag is an un-ordered set of
result tuples or objects. The result from a query in Amos II is represented by a bag of
result tuples [18]. A vector represents a sequence of any object that can be indexed like an
array [18]. A vector can be created using curly brackets e.g. set :myvector =
{8,9,10};. The example created a vector with three elements. The second value (9) can
be accessed using the index 1 i.e. :myvector[1];.

Amos II has another kind of type called mapped type. A mapped type differs from
the user defined type in that instances of a mapped type are not stored in the database, but

 13

are defined through a query. A mapped type provides an object-oriented database view of
data. In RSS-Amos mapped types represent views of objects retrieved from web feeds.
Instances of mapped types must be identified with a unique key, which is given by the
query specifying the mapped type. The specifying query is called a core cluster function
that retrieves the instance of the mapped type. The syntax for creating a mapped type
looks like this [18].

create_mapped_type(Charstring name, Vector keys, Vector attrs,
 Charstring ccfn);

name is the name of the mapped type
keys specifies the unique key for each instance of the mapped type. The
parameter keys is a vector containing the name or names of attributes that
constitutes the unique key.
attrs is the names of all the properties of the mapped type.
ccfn is the name of the core cluster function.

RSS-Amos uses a mapped type called Rssitem to represent articles in
feeds.

 Rssitem will be further explained in Chapter 2.1.

1.2.2 Functions
Functions provide properties and attributes of objects. Functions are instances of the meta-
type named Function. Defining an attribute name for the type Person is done by this
function definition [18].

create function name(Person) -> Charstring as stored;

There are five different kinds of functions: stored, derived, foreign, procedure and
overloaded. In the example above the function kind was stored; it defines attributes stored
on instances of types. Some examples of signatures of stored functions for the type Feed
are:

create function title(Feed) -> Charstring as stored;
create function description(Feed) -> Charstring as stored;
create function link(Feed) -> Charstring as stored;

Queries in AmosQL are expressed in terms of functions using an SQL-like selec-
from-where syntax, for example:

select title(theFeed)
from Feed theFeed
where language(theFeed) = ”en-us”

A stored function is analogous to a table in a relational database or an attribute of a
Java object. In this example the table would be named name containing data of the literal
type Charstring and the table name is related to the type Person.

create function name(Person)->Charstring as stored;

A derived function is a function that is defined in terms of other functions as a
query. A derived function cannot update the database. An example of a derived function
used in RSS-Amos is a function named rss_TimeForUpdate(Charstring src)->Boolean

 14

that computes the time span since the feed was updated. It uses the Amos II built in
functions timespan and now combined with the property lastupdate of Feed.

timespan(Timeval, Timeval) -> <Time, Integer usec>
Compute difference in Time and microseconds between two time values [18].

now() -> Timeval
The current absolute time [18].

A foreign function is a function implemented in an external programming language.

Amos II supports the external programming languages Java, C, C++, and Lisp. Java is the
only external programming language used in this project. The declaration of a foreign
function looks much like the declaration of a stored function. The following example is a
foreign function that depends on a precompiled Java class named StreamDirector. In the
Java class there has to exist a public method called getStream that has two arguments, one
of the type CallContext, and one of the type Tuple. The Java method implementing the
function getStream throws the exception AmosException. The directory containing the
class StreamDirector has to be stored in the CLASSPATH. Here is an example of the Java
method matching this description [19].

public void getStream(CallContext ctx, Tuple tpl) throws AmosException

The foreign function using getStream is declared in Amos II as:

create function rss_GetStream(Charstring)->Bag of
<Charstring,Charstring, Charstring, Charstring, Vector, Charstring,
Charstring, Charstring, Charstring, Vector, Charstring, Vector> as
foreign "JAVA:StreamDirector/getStream";

A stored procedure is a function that can change the state of the database. The body
of the stored procedure can consist of multiple AmosQL statements. In RSS-Amos the id
of a Feed is managed by the code below.

//Create a stored function for storing the next id
create function rss_rssstream_id()->Integer as stored;
set rss_rssstream_id() = 1;

//The stored procedure will change the value of the stored function
//rss_rssstream_id and return
create function rss_get_next_rssstream_id()->Integer as
begin
 declare integer id;
 set id = rss_rssstream_id();
 set rss_rssstream_id() = id + 1;
 result id;
end;

The stored procedure rss_get_next_rssstream_id() is called whenever a new id is needed.

Overloaded functions are functions that have different implementations depending
on the arguments given. Different resolvents of an overloaded function have the same
name but different signatures. A signature consists of the function name and the type of
the arguments. This is an example of two overloaded procedures used in RSS-Amos:

create function rss_AddAndGetStream(Charstring src)->Boolean
create function rss_AddAndGetStream(Charstring src,
 Charstring short_name)->Boolean

 15

A function can be multidirectional. This means that depending on what arguments
are known (bound) different implementations can be called. This is a simple example
from the user´s manual and it shows the usage of binding patterns [18][21][23]:

create function sqroots(Number x)-> Number r
 as multidirectional
 ("bf" foreign 'sqrts' cost {2,2})
 ("fb" foreign 'square' cost {1.2,1});

The example function has one argument and returns a literal. If the argument x is
known (meaning that an argument value is passed when the call is made) the foreign
function sqrts is called. If the r is known, but not x, the inverse foreign function square is
called. If both x and r are known the query optimizer will call the cheapest of sqrts or
square. To decide this, the optimizer is given cost estimates. The query optimizer can
calculate costs for functions that do not use foreign functions, while for foreign functions
the user can specify the estimated cost as in the example. The cost is specified as a vector
with two values. The first value indicates how expensive the call is and the second value is
the fanout. The fanout is the estimated size of the result.

RSS-Amos uses a multidirectional core cluster function where the cost and fanout
may differ depending on the parameters given. For example, one of the binding patterns in
the core cluster function representing the mapped type Rssitem requires the address of the
feed to be bound and the RSS items are computed (i.e. unbound). This binding pattern has
a fanout of 20. The fanout is set to 20 because the average number of articles of a feed is
20 (this is an average value that I have calculated based on 148 different feeds) [21][23].

2 The RSSAmos system
Web feeds are treated as an external data source in RSS-Amos and data extracted from
web feeds can be used in queries as any other data source. Figure 2 illustrates how RSS-
Amos provides query facilities over different web feeds.

Figure 2: High level view of RSS-Amos

This is an example of a query that lists all titles from the articles in the web feed

named bbc:

 16

select title(article)
from Rssitem article
where short_name(feedof(article))="bbc";

RSS-Amos stores meta-data about web feeds. This meta-data is crucial for the
system because it makes web feeds accessible from RSS-Amos queries. The user must
explicitly register each new web feed with RSS-Amos. The meta-data is then
automatically created when a user adds a web feed to the database. For example:

rss_AddAndGetStream(
'http://newsrss.bbc.co.uk/rss/newsonline_world_edition/europe/rss.xml',
'bbc');

RSS-Amos wraps articles from the RSS channels and Atom feeds as a mapped type

called Rssitem. Meta-data about RSS channels and Atom feeds are stored as a type called
Feed. These types can be used in queries.

Figure 3 shows the subsystems in RSS-Amos. The implementation of RSS-Amos
consists of three layers. The top layer is the representations of articles from a web feed as
instances of a mapped type Rssitem. Instances of this type are called RSS items.

Figure 3: RSS-Amos components

 17

The query processor is the general query processor of Amos II [21]. The feed wrapper is
responsible for accessing the Internet and retrieving articles. The articles are downloaded
from the Internet using foreign functions in Java emitting (streaming) tuples back to RSS-
Amos for further query processing. The feed materializer is responsible for managing
retrieved RSS items in the feed cache. The feed cache is used to increase the performance
of querying Rssitems. The feed materializer uses the feed meta-data stored in the database
when RSS items are retrieved. All meta-data is stored in a type called Feed. The feed
materializer passes an address to a feed as an argument to foreign functions in the wrapper
to retrieve the articles of the feed. The address of a retrieved feed is stored in the feed
meta-data. Which feed to use depends on the query. The feed materializer assigns to each
downloaded article a unique identifier, uid. The system checks if the same article is
downloaded twice, in which case the old article is retaitned in the cache. The uid of the
last cached article is stored in the stored function rss_lastid().

The type Rssitem is a mapped type representing articles retrieved from web feeds.
The declaration of the mapped type Rssitem looks like this:

create_mapped_type("Rssitem", {"uid"},
 {"uid", "title", "description", "description_type", "streamsrc",
 "link", "categories", "author", "pubdate", "source", "comments",
 "enclosures", "guid", "foreign_markup"}, "RSSItem_cc");

Here create_mapped_type creates a mapped type named Rssitem that use the core
cluster function RSSItem_cc when retrieving an instance of the type Rssitem. The mapped
type Rssitem includes the same properties as an item in a RSS channel version 2.0.
Additional properties not found in RSS version 2.0 are marked with a star in Table 12.

The system function create_mapped_type will do some useful refactoring. The
refactoring creates functions for every attribute of the mapped type e.g. title(Rssitem)-
>Charstring and description(Rssitem)->Charstring. The implementation of the core
cluster function has varied through the project in order to investigate different
implementation alternatives, which will be explained later.

The core cluster function is a multi-directional function that searches feeds. It will
update the feed cache if the feed has not been updated within a time to live (TTL) , specific
for each feed. The core cluster function maps retrieved tuples into objects of the mapped
type Rssitem. The definition of the core cluster function looks like this:

create function RSSItem_cc()->Bag of
 <Integer uid key, Charstring title, Charstring description,
 Charstring description_type, Charstring streamsrc, Charstring link,
 Vector categories, Charstring author, Charstring pubdate,
 Charstring source, Charstring comments, Vector enclosures,
 Charstring guid,Vector foreign_markup> as multidirectional
 ("bfffffffffffff" select rss_Materialize(uid) cost{1,1})
 ("ffffbfffffffff" select rss_Materialize(streamsrc) cost{1,20})
 ("ffffffffffffff" select rss_MaterializeThread() cost {500,100000});

The core cluster function rssItem_cc is a multidirectional function that calls
different stored procedures to retrieve RSS items for different binding patterns. The stored
procedures update the feed cache when needed.

Table 12 lists the functions defined for type Rssitem.

Table 12: Functions over the mapped type Rssitem
Stored function Type Description
uid* Integer The unique id of an object of type Rssitem.
Title Charstring
description Charstring
description_type* Charstring The sub-element of a description
Streamsrc* Charstring The address to the feed

 18

Link Charstring
categories Vector Specifies one or several multiple categories in pairs of <name,domain>
Author Charstring
Pubdate Charstring
Source Charstring
comments Charstring

enclosures Vector
Specifies one or several enclosures in pairs of <type, url, length, and optional
fields...>

Guid Charstring
feedof* Feed Returns the Feed that the Rssitem belongs to
foreign_markup* Vector Specifies one or several foreign_markups in pairs of <optional fields...>
Stored functions marked with * differ from the elements of the RSS v. 2.0 specification and they are explained
below

 The stored function uid uniquely identifies objects of type Rssitem. These identifiers

are maintained by the system when web feeds are imported.

 The stored function description_type is extracted as an own element from description
to simplify usage.

 The stored function streamsrc is added to keep a link to the feed and it is used when

articles are emitted from the feed wrapper.

 The stored function feedof defines a relationship to the feed that the Rssitem belongs
to.

 The stored function foreign_markup contains additional elements found in RSS items
and Atom entries that do not belong to the original specification, e.g. elements from a
namespace.

The stored type Feed represents the meta-data about web feeds based on the

elements in RSS channel version 2.0. The meta-data is shown in Table 2. Unlike Rssitem
the type Feed is a regular stored type whose extent is stored in the Amos II database.
Some additional properties that are not part of RSS 2.0 but used by the system are added
to the Feed type.

The relationship between the type Feed and the mapped type Rssitem is shown in
Figure 4. Every object of type Rssitem has a corresponding object of type Feed and the
function feedof(Rssitem)->Feed stores the mapping. On the other hand, an object of type
Feed may have several objects of type Rssitem since one feed usually consists of multiple
articles.

Figure 4 Relationship between Feed and Rssitem

 19

A more detailed description of the implementation will be described in the following
chapters.

2.1 Design decisions
Three implementations were made during the development of RSS-Amos: the naive
implementation, feed caching, and parallel feed caching. The different implementations
represent the development cycle. The naive implementation had only the focus to make it
possible to query an RSS channel from Amos II without any performance considerations.
The feed caching implementation had focus on limiting the number of calls to the Internet
by adding to the system a cache of articles. The parallel feed caching implementation
increased the performance further by parallelizing the foreign function responsible of
downloading articles from the Internet to the article cache. Parts of every implementation
are reused in the other implementations.

2.1.1 Naive implementation
This was the first stage of the implementation of RSS-Amos. The focus was to retrieve
articles from a feed located on the Internet without any caching and represent the articles
as instances of the mapped type Rssitem.

This implementation consisted of the type Feed, the mapped type Rssitem, one core
cluster function, one stored procedure, and two foreign functions implemented in Java. As
mentioned objects of type Rssitem represent items from an RSS channel version 2.0 and
objects of type Feed represent the meta-data of an RSS channel version 2.0. Below is the
definition of functions over type Feed used in the naive implementation:

create function title(Feed)->Charstring as stored;
create function description(Feed)->Charstring as stored;
create function link(Feed)->Charstring as stored;
create function language(Feed)->Charstring as stored;
create function categories(Feed)->vector of Charstring as Stored;
create function copyright(Feed)->Charstring as stored;
create function managingEditor(Feed)->Charstring as stored;
create function webmaster(Feed)->Charstring as stored;
create function pubdate(Feed)->Charstring as stored;
create function lastbuilddate(Feed)->Charstring as stored;
create function generator(Feed)->Charstring as stored;
create function docs(Feed)->Charstring as stored;
create function cloud(Feed)->Vector of Charstring as stored;
create function image(Feed)->Vector of Charstring as stored;
create function rating(Feed)->Charstring as stored;
create function skipdays(Feed)->Vector of Charstring as stored;
create function skiphours(Feed)->Vector of Charstring as stored;
create function textinput(Feed)->Vector of Charstring as stored;
create function ttl(Feed)->Integer as stored;
create function rss_GetStream (charstring)->bag of <Charstring,
 Charstring, Charstring, Charstring, Vector, Charstring, Charstring,
 Charstring, Charstring, Vector, Charstring, Vector> as foreign
 "JAVA:StreamDirector/getStream";
create function rss_AddStream(charstring)->boolean as foreign
 "JAVA:StreamDirector/addStream";

The two foreign functions are named rss_GetStream and rss_AddStream. The
foreign function rss_GetStream takes an address to a feed as argument, downloads all
articles and return them as a stream. The foreign function rss_AddStream adds meta-data
about a feed in the database. There is no support for Atom feeds in the naive
implementation. The type Feed implements all elements of RSS version 2.0 except the
element version, which is not represented because only one kind of feed is represented.
The core cluster function consists of a call to a single stored procedure that downloads all
articles for every instance of Feed using the for each statement in AmosQL [18]. For

 20

every Feed instance accessed by the for each loop, the stored procedure calls the foreign
function rss_GetStream responsible for the retrieval of all articles for a given feed [18].
The foreign function rss_AddStream is responsible for retrieving the meta-data of a feed
when a new feed is stored as a new instance of Feed in the RSS-Amos database. There is
no logic in the native implementation to add new RSS channels; everything is handled by
the Java implementation of the foreign function rss_AddStream.

The naive implementation has one large bottleneck. The Internet is accessed each
time a query includes a reference to an RSS item. Accessing the Internet involves steps
that degrade the performance severely. A call to the Internet usually involves a DNS-
lookup, accessing the external network through a number of routers, communicating with
a web server using HTTP, and the parsing of the returned data representing the feed. The
current state of the networks used and the load on the accessed web server will vary on
every call and becomes the bottleneck of the system.

The same definition of type Rssitem in the naive implementation is also used in the
two other implementations. The signature of the core cluster function given in Chapter 2 is
the same in all implementations, while the function bodies are different. Figure 5
illustrates the structure of the type Rssitem. Every attribute is represented as a stored
function with Rssitem as argument type. The result types of the functions can be found in
Table 12. Figure 5 shows stored functions as circles, e.g.:

 create title(Rssitem)->Charstring as stored;

Multi-valued attributes are shown as a circle with two lines. They are implemented using
vectors, e.g.:

 create function foreign_markup(Rssitem)->Vector as stored.

The definition of type Feed, the body of the core cluster function rssItem_cc, and
the Java implementation of the foreign function rss_GetStream are different in the other
implementations and the foreign function rss_AddStream is removed and replaced by
another foreign function.

Figure 5: The type Rssitem used in all implementations

 21

2.1.2 Feed caching
The feed caching implementation of RSS-Amos uses a cache of downloaded articles. The
motivation for the cache was to limit the number of times the Internet was accessed. The
cache consists of a stored function called rss_cache implementing the feed cache in Figure
3. The logic of managing the cache is implemented as a number of stored procedures in
Amos II.

The cache stores all downloaded articles in the system. The cache consists of all the
properties of an Rssitem in Figure 5, except feedof. The cache is represented by the
following stored function:

create function rss_cache(Charstring src) ->
 Bag of <Integer id key, Charstring title,

 Charstring description,
 Charstring description_type, Charstring link,
 Vector of Vector categories, Charstring author,
 Charstring pubdate, Charstring source,
 Charstring comments, Vector of Vector enclosures,
 Charstring guid, Vector of Vector foreign_markup>
 as stored;

create_index("rss_cache", "description", "hash",
 "multiple");

The stored function source in the cache is the address to the feed and computed by

the property stream_src(Rssitem). The stored function description is indexed with a non-
unique hash index. Using an index increases the performance of the cache logic and
queries where the whole description is given in the query [23].

The core cluster function is multi-directional in the feed caching implementation.
Depending on which variable is known (bound) a specific stored procedure is called to do
the actual processing and materialization. Each stored procedure has costs and fanouts
specified [23]. This is the definition of the core cluster function in the feed caching
implementation:

create function rssItem_cc()-> Bag of
 <Integer uid key, Charstring title, Charstring description,
 Charstring description_type, Charstring streamsrc, Charstring link,
 Vector categories, Charstring author, Charstring pubdate,
 Charstring source, Charstring comments, Vector enclosures,
 Charstring guid, Vector foreign_markup>
 as multidirectional
 ("bfffffffffffff" select rss_Materialize(uid) cost{1,1})
 ("ffffbfffffffff" select rss_Materialize(streamsrc) cost{2,20})
 ("ffffffffffffff" select rss_Materialize() cost {500,100000});

The core cluster function used in the feed cache implementation is multi-directional.
The multi directional core cluster function makes it possible to call different functions
depending on the binding pattern, e.g. if the address of the feed is known only one feed is
processed but if no feed address is known all feeds in the system are processed by the
cache logic. Three different resolvents of overloaded function rss_Materialize is used in
the core cluster function for retrieving RSS items. How the retrieval works is illustrated by
Figure 6.

 22

Figure 6: Flow chart for the retrieval of Rssitem objects

When the query optimizer has decided, based on the binding pattern, which

procedure to call, one of the resolvents of rss_Materialize starts the retrieval by
initializing the cache. The initialization of the cache is crucial. The initialization makes
sure that the cache contains articles from the specified feed and that the articles’ time to
live (ttl) has not passed. The stored function ttl(Feed)->Integer specifies how long the
articles of a feed can be considered valid before there is need for an update. To make the
initialization possible two new stored functions was added to the type Feed. The new
stored functions have no direct correspondence in RSS version 2.0 or Atom. The stored
functions are customttl and lastupdate. The stored function lastupdate is updated every
time the feed is read from the Internet making it possible for the system to calculate the
age of articles stored in the cache. The ttl is not a required field in RSS version 2.0 and it
is not present in the Atom specification. If the ttl of a feed is not valid (equal to 0 or not
set) a default value (15 minutes) is stored by the system in customttl(Feed)->Integer. It is
possible for the user to control the update interval by overriding the default setting.

The feed caching implementation has four new stored functions compared to the
naive implementation, named id, short_name, cache, and address. The stored function
id(Feed)->Integer key stores a unique numeric id to identify each Feed instance. The
function short_name(Feed)->Charstring key makes it possible for the user to provide nick
name for feeds, making querying specific feeds easier. The stored function
cache(Feed)-> Bag of <Integer id, Charstring title, Charstring description,
Charstring description_type, Charstring link, Vector of Vector categories, Charstring

 23

author, Charstring pubdate, Charstring source, Charstring comments, Vector of Vector
enclosures, Charstring guid, Vector of Vector foreign_markup > retrieves the contents of
the feed cache for a feed. The stored function address(Feed)-> Charstring key stores the
URL to the feed. The motivation for the function address is that the stored function link
does not always provide the actual URL address of the feed. For example, the feed BBC
Europe has the address
http://newsrss.bbc.co.uk/rss/newsonline_world_edition/europe/rss.xml while the link
element has the value http://news.bbc.co.uk/go/rss/-/2/hi/europe/default.stm

The graphical definition of Feed is shown in Figure 7. In Figure 7 stored functions
are illustrated as circles, e.g. description(Feed)->Charstring. Stored functions
representing multiple values are shown as a circle with two lines. Multiple values are
stored in vectors, e.g. categories(Feed)->Vector of Charstring.

Figure 7 The definition of Feed used in the implementations as a cache

This is the declaration in Amos II of functions over the type Feed in both the feed
caching and the parallel feed caching implementations:

create function id(Feed)->Integer key as stored;
create function short_name(Feed)->Charstring key as stored;
create function title(Feed)->Charstring as stored;
create function description(Feed)->Charstring as stored;
create function link(Feed)->Charstring as stored;
create function address(Feed)->Charstring key as stored;
create function language(Feed)->Charstring as stored;
create function categories(Feed)->vector of charstring as stored;
create function copyright(Feed)->Charstring as stored;
create function managingEditor(Feed)->Charstring as stored;
create function webmaster(Feed)->Charstring as stored;
create function pubdate(Feed)->Charstring as stored;
create function lastbuilddate(Feed)->Charstring as stored;
create function generator(Feed)->Charstring as stored;

 24

create function docs(Feed)->Charstring as stored;
create function cloud_domain(Feed)->Charstring as stored;
create function cloud_path(Feed)->Charstring as stored;
create function cloud_port(Feed)->Charstring as stored;
create function cloud_protocol(Feed)->Charstring as stored;
create function cloud_procedure(Feed)->Charstring as stored;
create function image_description(Feed)->Charstring as stored;
create function image_hight(Feed)->Charstring as stored;
create function image_width(Feed)->Charstring as stored;
create function image_url(Feed)->Charstring as stored;
create function image_link(Feed)->Charstring as stored;
create function image_title(Feed)->Charstring as stored;
create function rating(Feed)->Charstring as stored;
create function skipdays(Feed)->Vector of charstring as stored;
create function skiphours(Feed)->Vector of charstring as stored;
create function textinput_title(Feed)->Charstring as stored;
create function textinput_name(Feed)->Charstring as stored;
create function textinput_description(Feed)->Charstring as stored;
create function textinput_link(Feed)->Charstring as stored;
create function ttl(Feed)->Integer as stored;
create function customttl(Feed)->Integer as stored;
create function lastupdate(Feed)->Timeval as stored;

create function cache(Feed f) -> Bag of
 <Integer id, Charstring title, Charstring description,
 Charstring description_type, Charstring link,
 Vector of Vector categories, Charstring author, Charstring pubdate,
 Charstring source, Charstring comments, Vector of Vector
enclosures,
 Charstring guid, Vector of Vector foreign_markup>
 as select rss_cache(s)
 from charstring s
 where address(f)=s;

With the feed cache in rss_cache, RSS-Amos will not download a web feed every
time an article is used in a query. Connecting and retrieving a feed every time an article is
referenced makes the naive implementation very slow. The cache logic will decide if the
cached version should be used or if an update is needed. If the cache does not contain any
articles for a referenced feed, they will be downloaded from the Internet. If there are
articles stored in the cache, the system checks if it is time for an update or if the cached
articles are still up to date. To decide if the articles are up to date, the time span between
the last update and the current time is compared using the ttl or customttl. RSS-Amos uses
the built in functions timespan and now [18] to do the actual calculation. The following
stored procedure decides if it is time to update a feed. It shows how the built in functions
are used (src is the address of the feed).

create function rssTimeForUpdate(Charstring src)->Boolean as
begin
 /*if lastupdate have a value*/

if count(select lastupdate(stream) from Feed stream where
address(stream)=src) > 0 then
begin
 declare Time timediff, Integer ttl, Integer customttl;
 declare Integer minutestimediff;

 select t, ttl_custom, ttl_minute
 into timediff, customttl, ttl
 from Time t, Integer us, Integer ttl_minute,
 Integer ttl_custom, Feed stream
 where address(stream)=src and
 <t,us> = timespan(lastupdate(stream),now()) and
 ttl_minute=ttl(stream) and
 ttl_custom=customttl(stream);

 /*Calculate the total timespan in minutes*/

 25

 set minutestimediff = hour(timediff)*60 + minute(timediff);
 /*if the custom ttl is set use it*/
 if customttl > 0 then
 begin
 if minutestimediff > (customttl) then
 result true
 else result nil
 end
 else /*no custom ttl*/
 begin
 if minutestimediff > ttl then result true
 else result nil
 end
 end
 else
/*If the src is not stored in Feed or lastupdate is not set always
update*/
 result true
end;

When rssTimeForUpdate returns true, a download of all the articles in the feed is
made by calling the foreign function rss_GetStream. If there already exist articles from
the feed in the cache (this is the often the case) the descriptions from the cache is
compared with the descriptions of the downloaded articles.

 26

Figure 8: Management of the cache

When the update of the cache begins, the stored function lastupdate of the specific

Feed is set to the current time. An article in the cache is considered up to date if the
downloaded article for the specific feed has the same description as the one stored in the
cache. In this case the system marks the cached article as up to date by negating the uid of
the Rssitem object. For example, an article with the unique id 123 will get the id -123 (-
123 is still unique) in the cache. Downloaded articles are added to the cache if the
description does not exist. When all articles are processed old articles have to be removed
and negative ids are restored to their positive values. Figure 9 shows the process of
cleaning the cache after an update.

 27

Figure 9 Cleaning of the cache after an update

It is possible that more than one feed have the same article and probably the same

description. This is supported because the update logic will only process articles with
positive ids. After the described processing the cache is up to date and the queried articles
are returned from the cache.

The feed caching implementation limits the call to the Internet by using the stored
functions ttl and customttl.

Only the feed sources mentioned in the query are cached. When there are no source
address given in the query all feeds stored in the meta-database are accessed, e.g. for the
query:

 count(select from Rssitem r);

Accessing every feed in a query can result in many calls to the foreign function

rss_GetStream to download articles from the Internet. The number of calls to
rss_GetStream depends on the need for updating the feed cache. The update interval
depends on the time since the last update and the values of ttl and customttl. If the system
has not been used for half an hour it is probably the case that all feed caches need an
update. If all known feeds are accessed in a query, the feed caching implementation makes
separate calls to the foreign function rss_GetStream for each feed in sequence. With the
basic cached implementation there are no parallel calls to the foreign function making the
system wait for one call to complete before another call is made.

 28

The cached implementation uses the following implementation of rss_Materialize(),
which downloads all feeds that are in need of an update, updates the cache, and then
returns all articles in the cache.

create function rss_Materialize()->
Bag of <Integer uid, Charstring title, Charstring description,
 Charstring description_type, Charstring streamsrc,
 Charstring link, Vector categories, Charstring author,
 Charstring pubdate, Charstring source, Charstring comments,
 Vector enclosures, Charstring guid, Vector foreign_markup>
 as
begin

/*Make sure that the cache is up to date and filled with missing
streams*/
 for each Feed s
 rss_Initialize_Cache(address(s));

 for each Integer cache_id, Charstring title, Charstring description,
 Charstring description_type, Charstring link, Vector categories,
 Charstring author, Charstring pubdate, Charstring source,
 Charstring comments, Vector enclosures, Charstring guid,
 Vector foreign_markup, Charstring src
 where
 <cache_id, title, description, description_type, link,
 categories, author, pubdate, source, comments, enclosures, guid,
 foreign_markup> = rss_Cache(src)
 begin
 /*If the cache is updating make the id positive*/
 if cache_id < 0 then
 set cache_id = cache_id * (-1);

 set uid = cache_id;

 result <uid, title, description, description_type, src, link,
 categories, author, pubdate, source, comments, enclosures, guid,
 foreign_markup>;

 end;
end;

The definition of Feed is shown in Figure 7. The foreign function rss_AddStream is
in the naive implementation is not used in the cached implementation. It is replaced by the
foreign function addAndGetStream(Vector of charstring)->bag of <Charstring,
Charstring, Charstring, Charstring, Vector, Charstring, Charstring, Charstring,
Charstring, Vector, Charstring, Vector> as foreign
"JAVA:StreamDirector/addAndGetStream"; The foreign function addAndGetStream adds
a new feed to system, exactly as rss_AddStream did. But with addAndGetStream it is
possible to specify the short_name of the feed being added. The address of the feed and
the short name of the feed are passed as a Charstring Vector. The address is stored in the
first position of the Vector that is passed as argument to the foreign function
addAndGetStream. The foreign function addAndGetStream returns all the articles of the
added feed making it not suitable for direct calls by a user. Instead the two new
procedures rss_AddAndGetStream(Charstring src, Charstring short_name)->Boolean and
rss_AddAndGetStream(Charstring src, Charstring short_name)->Boolean should be used
when adding a new feed to the system. The two procedures will call addAndGetStream
and store the returned articles in the cache. The functions addAndGetStream and the two
over loaded procedures named rss_AddAndGetStream are used also with the parallel feed
caching implementation.

 29

2.1.3 Parallel feed caching
As described in the feed caching implementation there is a high probability of the need to
update all the articles in the system when it has not been used for half an hour. The default
cusomttl is set to 15 minutes making all Atom feeds [4] (there exist no ttl in Atom) and all
RSS channels [1] with no ttl specified in need of an update after 15 minutes. The calls to
the foreign function handling the download are made in a sequential fashion in the
previous two implementations. This parallel feed caching implementation uses the cache
implemented in the chapter 2.1.2, the Feed shown in Figure 7 and the Rssitem shown in
Figure 5. The parallel feed caching implementation will try to minimize the number of
foreign functions calls being made and limit the time waiting when accessing the Internet
by replacing the foreign function rss_GetStream (charstring) with rss_GetStreamsThread
(Vector of charstring, Integer) and the procedure rss_Materialize() with
rss_MaterializeThread().

The solution:
 Make only one call to a foreign function rss_GetStreamsThread (Vector of charstring,
Integer) when multiple feeds are referenced.
 Use threads to do downloads of several feeds in parallel.
 Base the number of threads on the number of feeds to download to regulate the
parallelism.

The core cluster function calls the function rss_MaterializeThread()when the
binding pattern does not specify the uid or stream_src of an Rssitem (shown in chapter
2.1.2). This will cause the cache to be initialized for every feed in the system as shown in
Figure 6. Two procedures, rss_Update(Vector of Charstring src)->Integer and
rss_Initialize_CacheThread(Charstring src)->Boolean, are added to be used by the
implementation of rss_MaterializeThread(). The procedure rss_Update(Vector of
Charstring src) has the same logic as the resolvent rss_Update(Charstring src) used in the
feed caching implementation. The difference is that the new procedure calls a new foreign
function rss_GetStreamsThread , which uses threads and takes a vector of feed addresses
to download in parallel instead of just one feed address. rss_Update will retrieve all
articles from feeds in need of an update from the foreign function rss_GetStreamsThread
and update the cache in the same manner as in the feed caching implementation. The
procedure rss_Initialize_CacheThread works the same as the procedure
rss_Initialize_Cache used in the feed caching implementation except that it does not call
the rss_update procedure. rss_Initialize_CacheThread will only determine if the feed
given as parameter should be updated or not.

create function rss_Initialize_CacheThread(Charstring src)->Boolean as
begin

if rss_online() = true then
begin
/*if the cache is empty load from Internet*/
 if notany(rss_Cache(src)) = true then
 result true;
 else if (notany(update_rss_cache(src)) = true) and
 (rss_TimeForUpdate(src) = true) then
/*if there is something in the cache and the cache isn't being updated
and it's time for an update*/
 result true;
 else
 result nil

 30

end
else /*The cache is fine.*/
 result nil
end;

When the update is complete the cache is read and returned. The code below is the
implementation of rss_MaterializeThread().

create function rss_MaterializeThread()-> Bag of <
Integer uid,
Charstring title,
Charstring description,
Charstring description_type,
Charstring streamsrc,
Charstring link,
Vector categories,
Charstring author,
Charstring pubdate,
Charstring source,
Charstring comments,
Vector enclosures,
Charstring guid,
Vector foreign_markup> as
begin

declare Vector of charstring updatesources;
 if rss_online() = true then
begin
 /*Make sure that the cache is up to date and filled with missing
streams*/
 select vectorof(b) into updatesources
 from bag of charstring b

 where b= (select address(s) from Feed s
 where rss_Initialize_CacheThread(address(s))=TRUE);

 if dim(updatesources) != 0 then

 rss_Update(updatesources);
end;

 for each
 Integer cache_id,
 Charstring title,
 Charstring description,
 Charstring description_type,
 Charstring link,
 Vector categories,
 Charstring author,
 Charstring pubdate,
 Charstring source,
 Charstring comments,
 Vector enclosures,
 Charstring guid,
 Vector foreign_markup,
 charstring src
where <cache_id,
 title,
 description,
 description_type,
 link,
 categories,
 author,
 pubdate,
 source,
 comments,
 enclosures,
 guid,
 foreign_markup> = rss_Cache(src)

 begin
 /*If the cache is updating make the id positive*/
 if cache_id < 0 then

 31

 set cache_id = cache_id * (-1);

 set uid = cache_id;

result <uid, title, description, description_type, src, link,
categories, author, pubdate, source, comments, enclosures, guid,
foreign_markup>;

 end;
end;

The foreign function rss_GetStreamsThread(Vector of Charstring src, Integer feeds)

uses threads to do the actual download. The parameter src contains the addresses of the
feeds that are in need of an update. The parameter feeds contains the number of feeds per
thread that the foreign function should use. The call of rss_GetStreamsThread is done by
rss_Update and the value of feeds is read from the stored function called
rss_defaultnrofstreams.

The parallel feed caching implementation changes how the system handles updates
of multiple feeds. The cache logic and the definition of Rssitem and Feed is the same as in
the feed caching implementation described in the chapter 2.1.2.

2.2 Java implementation of the RSS-Amos wrapper
This chapter describes the design patterns used in the Java implementation and how the Java
interface of Amos II [19] and the Rome library [11] is used in RSS-Amos. The foreign
functions rss_GetStreams, rss_GetStreamsThread, and addAndGetStream are implemented in
Java. They are responsible for accessing the Internet retrieving information about feeds and
their articles.

2.2.1 Motivating choice of interfaces
There are a couple of Java libraries concerning feeds. RSSLib4J [20] supports all RSS
versions but not Atom. RSSLib4 is not a living project. The last update of RSSLib4J was in
September 3, 2004 [20].

Informa [14] can read RSS 0.9x, RSS 1.0, RSS 2.0, Atom 0.3 and Atom 1.0.
However, it is still in beta state. Informa’s last release came out in January 2007 as an
alpha 2. I will also consider this a dead project [14].

I consider ROME (RSS and Atom Utilities) [15] to be a living project. Version
1.0RC1 was the current version when I started working on this project. There have been
two releases since then, version 1.0RC2 in January 2009 and version 1.0 in Mars 2009.
Before version 1.0RC1 there had been nine beta releases 0.1-0.9. ROME supports RSS
0.90, RSS 0.91 Netscape, RSS 0.91 Userland, RSS 0.92, RSS 0.93, RSS 0.94, RSS 1.0,
RSS 2.0, Atom 0.3, and Atom 1.0. There is also living subproject of ROME e.g. ROME
Fetcher [10] and OPML for ROME [11]. These subprojects are interesting for the future
work of this project.

2.2.2 Design
The implementation in Java uses the ROME library to manage the parsing of RSS
channels and Atom feeds. ROME depends on J2SE1.4- and JDOM version 1.0. JDOM [1]
[4][7][15] is used by ROME for reading and writing XML. ROME consists of six
packages. The package com.sun.syndication.feed in the ROME library contains the class
WireFeed. The WireFeed class is the parent of the classes Channel and Feed. The
Channel class represents a RSS channel and the Feed class represents Atom feed. ROME
has a general representation of all feed types called SyndFeedImpl. SyndFeedImpl is easier
and the most popular way to work with ROME because the programmer does not need to
handle different feed types. However, creating an instance of a SyndFeedImpl is not

 32

efficient. First a subclass of WireFeed is created, and then the SyndFeedImpl is created
using the instance of Channel or Feed. The performance differences are presented in
chapter 2.3.1.2. The test confirmed that the SyndFeedImpl is slower than the Channel
class resulting in that the SyndFeedImpl is not used in the project.

The Channel and Feed classes can represent all versions of RSS or Atom. The
implementation in ROME uses inheritance to manage different versions, e.g. the class
handling RSS version 0.9 is the parent of the class handling RSS version 0.91. The ROME
library uses modules to handle different elements in feeds. Modules make it possible to
extend ROME to handle new elements. I have not seen a need of implementing new
modules for this project; thus RSS version 2.0 was the template for the project which is
fully supported by ROME. There exists a good example of how to extend ROME in [9].

Design patterns are a common term when talking about object-oriented
development. This part of the report will mention some of these patterns but describing
these patterns in depth is outside this project. I have used the classic book Design Patterns
[3].

I have implemented a class called StreamDirector, which manages the creation of
classes depending on if it is a RSS channel or an Atom feed that is used. All foreign
functions in RSS-Amos point to a function defined in the StreamDirector class. The
StreamDirector acts as the director in the design pattern builder. The director is
responsible for creating objects that can create articles. An article is returned to RSS-
Amos as a Vector. RSS-Amos will parse the returned Vector and represent it as the
mapped type Rssitem in RSS-Amos. Classes that create articles are called builders in the
design patterns builder.

Figure 10 class diagram of the article creation

StreamCreator is an abstract class that acts like a builder in the design pattern

builder. A builder defines the steps needed to build the resulting product. In this case the
products are articles from a web feed and they are represented as the class ReturnVector or
ReturnVectorThread. The class ReturnVectorThread is used by the parallel feed caching
implementation, described in chapter 2.1.3, because there is a need to emit one extra field
back to RSS-Amos identifying the article to a feed. StreamCreator is also acting as the
design pattern Template Method. In this case the StreamCreator defines the order of

 33

extracting the information. The function ExecuteItem is implemented in StreamCreator.
ExecuteItem is responsible of implementing the algorithm of creating articles. In this case
the design patterns concrete builder is represented by RSSStreamCreator and
AtomStreamCreator. Both these classes are responsible for extracting data from a feed
when they are called from the parent class. It is the director that starts the creation of
articles by calling the abstract method ExecuteStream in StreamCreator.

The process of creating an Amos II object of type Feed (the meta-data
representation of a web feed) uses the same design patterns as used when articles are
processed. The same StreamDirector is responsible for creating Feed types as it is
responsible for creating articles. The builder is called StreamTypeCreator and the
concrete builders are called RSSStreamTypeCreator and AtomStreamTypeCreator.

Figure 11 class diagram of the feed creation

The implementation in Java uses two techniques communicating with RSS-Amos,

the fast path interface through the callin interface using a tight connection (adding feeds),
and the callout interface when implementing foreign functions that emits articles back to
RSS-Amos. This means that the Java implementation controls the creation of Feed objects
and the Amos II implementation controls the logic when articles are added [18].

The part of the implementation written in Amos II manages articles as Rssitems. The
download of articles is initiated in the Amos II implementation. When articles are
downloaded and processed they are emitted as a stream of tuples back to the calling
foreign function, e.g. rss_GetStream, and processed by the caching mechanism as
described in the chapters 2.1.2 and 2.1.3. It is the StreamDirector that downloads the feed.
When the feed type is determined a suitable concrete builder is created. The concrete
builders RSSStreamCreator and AtomStreamCreator are responsible of extracting the
information necessary to build an article and fill an instance of ReturnVector or
ReturnVectorThread. The classes ReturnVector and ReturnVectorThread formats the
result in an instance of Tuple before it is emitted back to the foreign functions
rss_GetStream(Charstring) and rss_GetStreamsThread(Vector, Integer). The class
constructor of ReturnVector and ReturnVectorThread takes one argument of type Tuple
representing the vector that is returned. The argument passed to the class constructor is
the tuple in the result position of the parameter structure given by Amos II when the call
was made to the foreign functions rss_GetStream and rss_GetStreamsThread. The

 34

ReturnVector and ReturnVectorThread are expecting a specific structure. If the parameters
in the call from RSS-Amos changes the ReturnVector and ReturnVectorThread will not
return what is expected or throw an exception. This design will return a stream of tuples to
the Amos II implementation. A tuple is emitted as soon it is processed, instead of
returning all tuples when all possessing is done.

The web feed is downloaded and processed using the classes in Figure 11. An
instance of the class Feed is created when all the data and meta-data about the feed its
articles are loaded and formatted. The instance of the class Feed is created by the call
connection.createObject("Feed") (connection is an instance of callin.Connection) that
returns the oid. The second step is to query the Amos II implementation to get a unique id
for the Feed instance. This is done with the call

connection.callFunction(
"rss_get_next_rssstream_id->Integer").getRow().getIntElem(0)

 Data is materialized as an object of type Feed as in this example:

// Oid oidOfInstance and int id already have their values set
Connection con = new Connection("");
Tuple arg = new Tuple(1);
Tuple value = new Tuple(1);
arg.setElem(0, oidOfInstance);
value.setElem(0, id);
con.addFunction(con.getFunction("RSSStream.id->Integer"), arg, value);

The system tries to undo changes if there is an exception during the process of
creating the instance of the Feed. The first step in the process of adding a Feed instance to
RSS-Amos is to get an oid of the new instance. This oid is used in case of the need to
undo the creation by the call connection.deleteObject(oid). A rollback of the transaction
had been another solution but I decided to manage exceptions by deleting the created
object. The last step is to propagate the exception back to Amos II as an AmosException.
All articles of the feed are also emitted back to the feed cache of RSS-Amos when a Feed
is added. All the articles are downloaded when the Feed is created so there is no need to
access the Internet again until the TTL has expired.

The feed materializer of RSS-Amos have two stored procedures that are used when
adding a web feed to the meta-database:

 rss_AddAndGetStream(Charstring src, Charstring short_name)->Boolean and
 rss_AddAndGetStream(Charstring src)->Boolean.
The parameter short_name makes it easier to reference a Feed in queries. Instead of

using the whole HTTP address of the Feed as identification in a query you can assign a
short_name to the URL. The value of the properties short_name and the id is the same if
the short_name is not set in the call. The short_name has to be unique. This is enforced in
RSS-Amos by setting the short_name field to key when the Feed type is defined in the
Amos II implementation. rss_AddAndGetStream uses the foreign function
addAndGetStream(Vector of charstring) to create the Feeds instances and emitting the
articles back to be handled by logic in the feed cache of RSS-Amos. The foreign function
addAndGetStream uses a method implemented in Java with the same name,
addAndGetStream. The foreign function addAndGetStream will add the articles to the
cache as described in chapter 2.1.2.

2.2.3 Multithreaded implementation of parallel feed caching
The parallel feed caching implementation in chapter 2.1.3 described the use of the foreign
function rss_GetStreamsThread that used threads to improve the performance.
rss_GetStreamsThread uses the Java method ExecuteThreadGivenNrOfStreams. This
chapter will describe the details of how the multi threaded implementation works. Classes

 35

from the ROME library are used. The implementation is located in the class
StreamDirector and the method is named ExecuteThreadGivenNrOfStreams. The method
takes as arguments feedaddresses, a Vector containing all feed address, and
feedsperthread, the number of feeds per thread. The implementation uses three threads as
the minimum number of threads (based on the results from the test in chapter 2.3.1.1).
When three threads are used the feeds are spread evenly among the threads. The number
of threads is calculated by using the integer value of dividing feedaddresses with
feedsperthread. If the reminder is not zero the value rounded upwards. The number of
feeds per thread will never be larger then feedsperthread avoiding slow execution times
when one thread will get many feeds to process. Having one thread with m feeds to
download will cause the system to wait until it has downloaded a feed before the feed can
be processed. Table 13 shows an example of the distribution of threads created by the
logic of the java implementation of RSS-Amos. Table 13 shows the number of threads
used and the distribution of feeds per thread when the number of feeds to download
varies. Table 13 shows that the solution is thread centric, e.g. when 41 feeds are used a
fifth thread is created having just one feed. The thread centric solution tries to limit the
time waiting before a feeds is downloaded by doing more parallel downloads.

Table 13 distribution of feeds per thread

Feeds 40 41 42 43 44 45 46 47 48 49 50
Thread #1 10 10 10 10 10 10 10 10 10 10 10
Thread #2 10 10 10 10 10 10 10 10 10 10 10
Thread #3 10 10 10 10 10 10 10 10 10 10 10
Thread #4 10 10 10 10 10 10 10 10 10 10 10
Thread #5 - 1 2 3 4 5 6 7 8 9 10

The method ExecuteThreadGivenNrOfStreams uses instances of a class called

StreamCreatorWorker that extends the Java class Thread. This means that
StreamCreatorWorker has the functionality as a Java thread. StreamCreatorWorker is
responsible of downloading the feeds. The constructor of StreamCreatorWorker takes two
arguments, one array of addresses of feeds and one reference to a Vector. The Vector
references an instance of the class Vector created in ExecuteThreadGivenNrOfStreams.
The Vector class can be accessed by multiple threads. When a feed is downloaded in an
instance of StreamCreatorWorker an instance of WireFeed is created, casted to one of the
classes from the ROME library, Feed or Channel, and then added to the referenced Vector
object. When all feeds are downloaded in a StreamCreatorWorker the execution of the
thread stops. If there is an error while downloading a feed, an instance of the Java class
Object is added to the referenced java object Vector, the reason will be explained later.
The execution process of the method ExecuteThreadGivenNrOfStreams will read the
contents of the Vector instance, looking for feeds to process. If there is no feed to process
the execution will wait for 10ms giving the threads time to complete a download. The
execution is done when all feeds are processed.

As mentioned, a StreamCreatorWorker will add an instance of the class Object to
the referenced Vector when a download has failed. The instance of the class Object will
indicate that something got wrong, but the execution of the other feeds will not be
interrupted. The method ExecuteThreadGivenNrOfStreams counts all feeds that have been
processed and emitted back to RSS-Amos. When an instance of Object is found it is
counted as one processed feed. When the number of processed feeds is the same as the
number of addresses passed as argument the execution of
ExecuteThreadGivenNrOfStreams is done.

The execution of the parallel feed caching implementation is shown in Figure 12
and it can be summarized as follows. Create a number of threads, give them some feeds to

 36

download and start all threads. When the first download is complete the processing of the
feed starts on the main thread and the articles for the feed are emitted back to RSS-Amos.
If there is no feed to process the execution sleeps for 10ms before it checks if there exists
any feeds to process. When all feeds are downloaded and processed the execution is
complete. The optimal case is that there is a new feed to process directly after that the last
article is emitted back, that there is not too much context switching between threads, and
that the CPU usage is at 100%.

Figure 12: The execution process of the multi threaded implementation

2.3 Performance
The performance of RSS-Amos is dependent of the state of the networks used when
communicating with the servers hosting the feeds used by the system and the use of
foreign functions implemented in Java. This chapter will describe the tests made to
improve the performance of RSS-Amos.

2.3.1 Tests
Two tests using the ROME library investigated how to optimize the use of threads that
was introduced in the parallel feed caching implementation of RSS-Amos.

2.3.1.1 Optimal feeds per thread
This test was conducted to determine the optimal number of threads to use when multiple
feeds are downloaded. The idea is to start multiple threads where each thread is
responsible for downloading a number of feeds. There is an overhead using threads
because the operating system has to manage context switching. If too many threads are

 37

used the overhead will have an impact on the performance. If the number of threads is too
few the system has to wait for a download to complete. When deciding the optimal
number of threads I used a test that calculates the time it takes to download a varying
number of feeds registered in the system in parallel and emitting the information back to
Amos II implementation of RSS-Amos. I varied both the number of feeds in the system
and the number of threads used in the Java implementation. When there are more threads
than feeds the threads are created with one feed each to download; e.g. if the system has
two feeds and the test uses five threads, only two threads are created with one feed each.
When there are no threads used in the test the foreign function rss_GetStream is called for
each feed in the system, e.g. if there is 48 feeds in the system 48 calls are made to the
foreign function. I also tried to run the emitting of the downloaded feeds in different
threads but the context switching between threads was heavy so I decided to run all
emitting of the feeds on the main thread.

The test was initialized from RSS-Amos. I prepared an AmosQL script file with the
six test cases no thread, one tread, two threads, tree threads, four threads, and five threads.
Each test case downloaded articles for every feed stored in the database and counted the
number of articles emitted back. The test had RSS-Amos loaded with 2(54), 48(918),
98(1541) and 148(2871) feeds where the total number of articles is presented within
parentheses. Each test case was executed 10 times. The test was conducted on a Sunday
between 18.00 and 19.00. I used an IBM T21 with 800MHz CPU and 256MB RAM
during the tests.

Time to retrieve articles from the Internet

0

10

20

30

40

50

60

Number of feeds

T
im

e
 i

n
 s

e
c

o
n

d
s

Five threads

Four threads

Three threads

Two threads

One thread

No threads

Five threads 0,2653 4,2963 6,6247 17,0099

Four threads 0,2663 4,3353 6,3794 17,77113

Three threads 0,2724 4,3554 7,6678 20,65714

Two threads 0,2983 4,9755 9,640778 24,73789

One thread 0,4066 7,4089 13,1475 45,9049

No threads 0,4907 7,8933 16,2548 48,415

2 48 98 148

Figure 13: Result from test of download performance

 38

The result of the test shows that the use of two or more threads improves the performance.
The difference in execution time increases with the number of feeds to download. I ran the
same test with 10 and 20 threads on the system loaded with 148 feeds resulting in an
average of 16,4032s for 10 threads and 16,636s for 20 threads. It is hard to determine the
exact number of feeds/thread when the difference in time varies in a couple of
milliseconds and the results depend on the performance of the network and the hosting
servers. The result hints that having 10-15 feeds per thread gives good execution times.
When comparing the execution times of the two tests no thread and one thread, the test
with one thread is always faster. The test with one thread was 0,025202s/feed faster then
the test with no threads. The reason for this is that there was only one call to the foreign
function in the test with one thread instead of one call per feed in the test with no thread.
The utilization of the CPU does not show in the diagram but I looked at the task manager
during the tests and it showed a utilization between 35-70% when no thread or one thread
was used, 45-80% when two threads were used and close to 100% when three and up to
20 threads were used.

Test finding optimal feeds/thread

0

2

4

6

8

10

12

14

16

18

20

Nr of feeds/thread

T
im

e
(s

) 48 feeds

98 feeds

148 feeds

48 feeds 4,6794 4,1588 4,2184 4,2614 4,4494 4,2086 4,4516 4,5138 4,2312

98 feeds 7,9616 8,2618 7,2886 8,2034 8,1658 9,041 9,836 7,4582 8,346

148 feeds 16,028 14,35 13,195 13,894 17,912 16,465 15,804 17,423 16,854

3 6 8 10 12 14 16 18 20

Figure 14: Finding optimal feeds/thread

Figure 13 has the number of threads fixed giving a hint of the optimal number of feeds per
thread. Figure 14 shows that it is 8 feeds/thread that is the optimal value. The performance
difference is more obvious when more feeds are used. The values shown in Figure 14 are
average times of downloading all articles in the system six times. My conclusion is that
using three threads is the minimum for a high utilization of the CPU. The results are
specific for my test machine. It is a high probability that other machines with faster CPUs
and more RAM will process the feeds differently then the test machine and thus has a
different optimal number of feeds per thread. The performance of the network and web
servers is crucial, the same test can vary 40% between two runs. To make the system
suitable for a faster CPU fewer feeds per thread should be used. It is possible to change
the number of feeds per thread by changing the value of rss_defautnrstreams() in RSS-

 39

Amos. The default value is 8 feeds per thread. The minimum number of threads can not be
changed and it is set to three.

The performance of the whole implementation including the cache logic will be
discussed in the chapter 2.3.2.

2.3.1.2 The performance of the ROME library
To investigate the performance differences between the class SyndFeedImpl and the class
Channel, mentioned in the chapter 2.2.2, a test was made. The test used an XML file
stored on the hard drive to avoid accessing the Internet. The XML file was a copy of a real
feed from BBC. There were four files in the test, first the original file with 33 articles. The
other files had the articles from the original file repeated to show the performance with
different number of articles. The same test was conducted twice and the average of the
two tests is shown in Figure 15

Figure 15: Test of performance using classes from ROME

The result shows that the Channel class is up to five times faster than SyndFeedImpl.
There is a larger performance difference between the two classes when there are fewer
articles in the feed. This is because there is no performance difference in parsing articles
using a SyndFeedImpl or Channel. The result varies especially in the test with 343
articles. I suspect that this is due to other disc activities. The SyndFeedImpl was therefore
not used in this project.

2.3.2 Evaluation
There have been the different implementations during the project. The implementations
are called naive, feed caching and parallel feed caching. Table 14
indicates the most important functionality implemented in the different implementations.

Table 14 Summary of the different implementations

Functionality/Implementation Naive
Feed
cache

Parallel feed
caching

Uses mapped type x x x
Can download feeds x x x
Can store feeds x x x
Can mutidirectional core cluster x x

 40

function

Uses a feed cache x x
Uses threads x

The result in Figure 13 shows a big difference between using one call to the foreign
function rss_GetStream and the usage of threads and the use of multiple calls to the
foreign function in a single thread as in the naive implementation. In the case of 148 feeds
the parallel feed caching implementation was more then three times faster than the logic
used in the naive and cache implementation.

The naive implementation uses only the mapped type definition and the Java logic
when downloading single feeds. The big bottleneck in the naive implementation was that
all feeds in the system were downloaded every time a query was made and that only one
feed was downloaded in every call to the foreign function rss_GetStream responsible of
downloading a feed and emitting the articles back to Amos II. The results from the test in
Figure 13 shows that in a system with 148 feeds just downloading the articles to RSS-
Amos would take 48s.

The largest bottleneck in the feed caching implementation is the call to the foreign
function RSS_GetStream for each feed that needs an update. The feed caching
implementation has some overhead with the management of the cache. The overhead is
largest when there is a need for an update of a feed.

It is possible to categorize the types of queries against an Rssitem as:

1) Queries with a given feed address (the streamssrc property of feed is used).
E.g. count(select from Rssitem i where streamsrc(i) =
"http://www.sr.se/xml_news/rss/nyheterrss.xml");

2) Queries with no feed address given.
E.g. select description(i) from Rssitem i where like(title(i),
 "*Sweden*");

Queries with a given feed address will have result size (fanout) as the number of
articles belonging to one feed. The average number of articles is close to 20 (148 feeds
had a total of 2871 articles this gives an average of 19.4 articles/feed). When the feed
address is given and it is time for an update, in an implementation using a cache only one
feed has to be downloaded. The overhead in the cache logic will only involve one specific
feed making category one queries the fastest category in both the feed caching and parallel
feed caching implementations. The naive implementation did not use multi-directional
functions resulting in a download of all articles even if the feed source was known.
Another problem with the naive implementation is that a query may need to access the
data source multiple times during the execution of a single query resulting in multiple
calls to the foreign function retrieving the articles as in the query in Table 16.

In the case were a query does not specify an address to a feed all articles from all
registered feeds have to be evaluated. In the naive implementation all feeds are
downloaded. The feed caching and parallel feed caching implementation checks the last
update time and decides if the feed is still up-to-date using the current time, ttl and the
customttl of the feed. If the feed is not up-to-date a download is needed. The feed caching
implementation uses one foreign function call for each feed that is in need of an update.
The parallel feed caching implementation collects all feeds that are in need of an update in
a vector and the makes one call to a foreign function. This foreign function named
RSS_GetStreamsThread uses threads to minimize the delay of downloading multiple
feeds. The ttl and customttl varies between feeds and the lastupdate will probably also

 41

vary. These variations can improve the performance of the implementations using the
cache because all feeds will not be in a need of an update at the same time. However, if
the system has not been used for 30 minutes the probability for an update of all feeds is
high.

As an example, assume that two feeds are registered with the system. The execution
times below are based on a single query and the execution times includes the time to print
the result on the screen.

The following query lists the titles from 52 articles:

select title(article) from Rssitem article;

The time to execute the query on the different implementations is listed in Table 15:

Table 15

 Feed caching Parallel feed caching
Naive No update needed Update needed No update needed Update needed
0,902s 0,111s 1,693s 0,12s 0,831s

The following query lists the tiles from articles belonging to the feed with a short
name bbc:

select title(article) from Rssitem article, rssstream stream
where streamsrc(article)=address(stream) and
 short_name(stream)="bbc";

Table 16 shows the time to execute the query on the different implementations.

Table 16

 Feed caching Parallel feed caching
Naive No update needed Update needed No update needed Update needed

21,506s 0,13s 0,521s 0,14s 0,581s

The results of this example retrieved only the titles from one specific feed. It gives an idea
of how slow the system gets when accessing the data source directly without a cache. The
reason for the slow execution time is that the query results in multiple reads of the same
data source. Multiple reads to the data source using the naive implementation results in
multiple accesses to the Internet, reading and parsing the feed and finally emitting the
result back to RSS-Amos.

The results from this example show that when there is no need for an update the
feed caching (0,111s) and parallel feed caching (0,12s) implementations are over seven
times faster then the naive implementation (0,902s) using the simplest query and over 152
times faster using a slightly more complex query. When there is need for a cache refresh
using the simple query that references two feeds the naive implementation (0,902s) is
faster than the feed caching implementation (1,693s) and the parallel feed caching
implementation is two times faster than the feed caching implementation (0,831s). In this
case the parallel feed caching implementation uses two threads to download the feeds in
parallel.

The naive implementation has another problem than slow execution times. The
number of calls made to the Internet and especially the number of calls made to the same
web server within a short time period will cause downloads to time out. A time out of one
call will throw an AmosException in the wrapper causing a stop of the query being
executed. Tests using RSS-Amos with 148 feeds have shown that a time out will occur

 42

some time between 250s and 550s of execution. Because of the problems with the naive
implementation the rest of this chapter will focus on the performance of only the feed
caching and parallel feed caching implementations.

The feed caching and parallel feed caching implementations use the same logic
when the feed address is known. The parallel feed caching implementation has some
overhead with the management of the threads in the wrapper, which can have impact on
the performance when there are few feeds to download. Figure 16 shows the results using
the feed caching and parallel feed caching implementations including the cache logic with
a query involving all feeds in the system when all feeds needs an update.

Test results shown are averages of five executions. The time for the test was at
10.00 on a Friday. The query used in the test was:

count(select from Rssitem article));

Time to execute query

0

5

10

15

20

25

30

35

40

45

50

Number of feeds

T
im

e
in

 s
ec

o
n

d
s

Cached

Optimized

Cached 0,695 7,8174 16,0968 45,4058

Optimized 0,511 4,4542 7,8532 16,9442

2 48 98 148

Figure 16: Execution time with the feed caching and parallel feed caching

Figure 16 shows that the parallel feed caching implementation is the fastest in all the

tests. The more feeds the larger differences between the two implementations.

Table 17: Comparing feed caching- and parallel feed caching implementation

Table 17 shows how many times faster the parallel feed caching implementation is

compared with the feed caching implementation.
Table 18 compares the results from the test where just the download times are

measured using five threads and the results from the parallel feed caching implementation.

Table 18: Comparing result from Figure 13 and Figure 16
 2 feeds 48 feeds 98 feeds 148 feeds
Download using 5 threads (s) 0,2653 4,2963 6,6247 17,0099

Nr of feeds Times faster
148 2,69

98 2,05
48 1,75
2 1,36

 43

Query using Parallel feed
caching impl. (s) 0,511 4,4542 7,8532 16,9442
Overhead (s) 0,2457 0,1579 1,2285 -0,0657
Overhead (%) 92,6 3,7 18,5 -0,4

The overhead varies a lot. The performance of the network and the load of the web

servers is probably the reason to the rather large differences. One could think, looking on
these results, that the performance difference of the parallel feed caching implementation
is low compared with the use of a stored function. But the performance difference can be
viewed as comparing querying the cache directly as a stored function and a query using
the mapped type to call the parallel implementation, on a system where there is no need of
an update. The following example will compare the parallel implementation of the
mapped type Rssitem with a stored function in Amos II. E.g. in a system with 48 feeds
where there is no need for an update, executing the following two queries Q1 and Q2,
shows that Q1 took 0,02s and Q2 took 0.09s to execute:

Q1: count(select from charstring src, vector v
 where v=rss_cache(src));

Q2: count(select from Rssitem article);

This example shows that the performance difference of the parallel feed caching

implementation is over 400% (0.09s/0.02s) compared to a stored function in Amos II. The
overhead performance difference consists of querying all registered Feeds in the system,
decide if there is a need for an update, reading the cache and then return the result as the
mapped type Rssitem. The time difference between the two queries is 0,07s. 0,07s is not a
long time when comparing it with the download times of feeds from the Internet but it is a
long time for a database.

The ttl of feeds in the system have effect on the performance of the cache. The
distribution of the ttl in the test system using 148 feeds looks like Table 19.

Table 19 the use of ttl

ttl number of Feeds
0 100
5 1
10 17
15 29

240 1

The feeds used consist mostly of RSS channels (the ttl is used by RSS but not in

Atom). Table 19 indicates that over 65 percent of the feeds do not use the ttl. When the ttl
is not used the customttl will be used by the system where the default value is 15 minutes.
The use of the customttl will result in 129 feeds with an update interval of 15 minutes.
This will force the system to update all feeds, except one, if it has not been used in 15
minutes.

My conclusion is that the use of the cache brings an overhead to the system but the
cache is needed. The cache makes the system usable. The parallel feed caching
implementation is the only implementation that fully utilizes the CPU. Figure 13 shows
how much time is spent waiting when there are no threads used compared with the use of
threads doing parallel downloads. RSS-Amos tries to optimize the utilization of the CPU
by ensuring that feed materializer always have a feed to process and at the same time limit
the work done on parallel downloads. Figure 14 shows that the process of parallel
downloads can have negative affect on the performance of emitting articles to the feed

 44

materializer of RSS-Amos. The parallel feed caching implementation can be tweaked for
different systems by changing the number of feeds per thread making the system more
flexible and faster. If the performance is crucial the system should be updated once and
then put in offline mode, which is a configuration in RSS-Amos. Using the system in
offline mode forces the system to read only articles stored in the cache. How to configure
the offline mode is explained in Appendix A.

3 Summary and Future work and Discussion
RSS-Amos makes it possible to query web feeds using the query language AmosQL.
RSS-Amos uses foreign functions to implement the wrapper. The mapped type called
Rssitem represents a view of articles from web feeds and the type Feed represents the
meta-data of the web feeds (i.e. feed channel meta-data). RSS version 2.0 is used as
template for the properties of an Rssitem and Feed. RSS-Amos can handle all versions of
both RSS and Atom. Future versions of RSS and Atom will be supported if the ROME
project adds functionality for these and a new jar file is added to the system running RSS-
Amos. The use of the Java interface to implement foreign functions makes the system
easier to maintain compared with a faster low level language as C. The overhead of the
cache was high when comparing queries made involving a stored function on the local
system, but negligible compared to the execution time when accessing the Internet. The
cache is a key feature that makes RSS-Amos usable. If the cache is not used RSS-Amos
performs very poorly resulting in queries timing out or having execution times over one
minute or more depending on the number of feeds in the system.

The project has answered these questions:
1) What is the most suitable RSS stream formats to access?

RSS version 2.0 has been used as a template when developing the stream
representation in Amos II. All existing stream formats and versions can be represented
in this stream type representation.

2) How can one implement a stream query language interface to an RSS stream?

The possibility to query articles is made possible through the mapped type called
Rssitem. A cache has also been developed in AmosQL making it possible to query a
large number of streams within Amos II.

3) What publically available programs should be used to implement such a streamed
wrapper?
ROME has been chosen as the most suitable library for this project. ROME supports
all stream versions and it is an active project.

4) What are the foreign functions needed for a flexible wrapper?
The wrapper has a multi threaded foreign function named rss_GetStreamsThread
responsible for downloading articles from multiple feeds. A single threaded foreign
function named rss_GetStream is used when downloading articles from a single feed.
The wrapper uses a foreign function named rss_AddStream to make it possible to add
feeds to the system.

5) What is the performance of such a streamed RSS wrapper? How can it be improved?
The performance have been investigated and resulted in the development of the cache
and the parallel feed caching implementation. The performance can be further
improved by the ROME Fetcher [21].

 45

There are two interesting subprojects to ROME, ROME Fetcher and the OPML for

ROME [10][11]. ROME Fetcher can improve the performance of updating the articles.
The ROME Fetcher uses HTTP (Hyper Text Transport Protocol) and the Conditional GET
method [26]. The Conditional GET method determines if there have been any updates of
the web feed without the need of downloading the feed first. Implementing this logic in
RSS-Amos would improve the cache performance in the cases were there have been no
updates made to the feed. OPML (Outline Processor Markup Language) is a protocol used
when information about feeds is communicated between systems [19]. OPML makes it
possible to import or export meta-data about web feeds. This feature would be very
helpful in the process of adding or exporting large numbers of feeds to or from the RSS-
Amos. OPML for ROME can be found under document & files under ROMEs project page
[15]. UserLand Software has also been involved in OPML [19].

 46

References

[1] Berkman Cente Harvard Law: RSS 2.0 at Harvard Law, 2009.
(http://cyber.law.harvard.edu/rss/index.html)

[2] D. Elin and T. Risch: Amos II Java Interfaces, Uppsala University, 2000.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns : elements of

Reusable Object-Oriented Software, Addison Wesley, ISBN 0-201-63361-2, 1994.

[4] IETF M. Nottingham, R. Sayre: The Atom Syndication Format, 2009.

(http://www.ietf.org/rfc/rfc4287.txt)

[5] IETF, STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESAGE; 2009

(http://www.ietf.org/rfc/rfc0822.txt?number=822)

[6] Internet Content Syndication Council: Content Creation and Distribution in an

Expanding Internet Universe: A White paper, May 2008., 2009.
(http://www.internetcontentsyndication.org/downloads/whitepapers/content_creation.pdf)

[7] J. Hunter, JDOM, 2008.

(http://www.jdom.org/index.html)

[8] J. Markus: Translating SQL expressions to Functional Queries in a Mediator Database

System Uppsala Master's Theses in Computing Science 293, ISSN 1100-1836, 2005
(http://user.it.uu.se/~udbl/Theses/MarkusJagerskoghMSc.pdf)

[9] java.net, Rss and atOM utilitiEs (ROME) v0.5 Tutorial, Defining a Custom Module

(bean, parser and generator), 2008.
(http://wiki.java.net/bin/view/Javawsxml/Rome05TutorialSampleModule)

[10] java.net, Rome Fetcher, 2009

(http://wiki.java.net/bin/view/Javawsxml/RomeFetcher)

[11] java.net, ROME : Documents & files, 2009

(https://rome.dev.java.net/servlets/ProjectDocumentList?folderID=5198)

[12] M. Pilgrim, The myth of RSS compatibility, 2008.

(http://diveintomark.org/archives/2004/02/04/incompatible-rss)

[13] M. Pilgrim, What Is RSS, 2008.

(http://www.xml.com/pub/a/2002/12/18/dive-into-xml.html)

[14] N. Schmuck, Informa, 2008.

(http://informa.sourceforge.net/)

[15] Project ROME.

(https://rome.dev.java.net/)

 47

[16] R. Dornfest, RSS: Lightweight Web Syndication, 2008.
(http://www.xml.com/pub/a/2000/07/17/syndication/rss.html)

[17] RSS-DEV Working Group, RDF Site Summary (RSS) 1.0, 2009.

(http://web.resource.org/rss/1.0/spec)

[18] S. Flodin, M. Hansson, V. Josifovski, T. Katchaounov, T. Risch, and M. Sköld: Amos
II Release 11 User's Manual.

[19] Scripting News, Inc, OPML 2.0 draft spec, 2009

(http://www.opml.org/)

[20] sourceforge.net, RSSLib for J, 2008.

(http://sourceforge.net/projects/rsslib4j/)

[21] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed
Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.):
Functional Approach to Data Management - Modeling, Analyzing and Integrating
Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003.

[22] T. Risch, Functional Queries to Wrapped Educational Semantic Web Meta-data, in
P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to Data
Management - Modeling, Analyzing and Integrating Heterogeneous Data, Springer,
ISBN 3-540-00375-4, 2003.

[23] W. Litwin, T. Risch: Main Memory Oriented Optimization of OO Queries using Typed

Datalog with Foreign Predicates, IEEE Transaction on Knowledge and Data Engineering,
Vol. 4, Mo. 6, December 1992.

[24] W3C, Resource Description Framework (RDF), 2008.

(www.w3.org/RDF)

[25] W3C, Extensible Markup Language (XML) 1.0 (Fifth Edition): W3C Recommendation

26 November 2008, 2009.
(http://www.w3.org/TR/REC-xml/)

[26] W3.org, HTTP Method Definitions, 2009

(http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html)

[27] Wikipedia, Aggregator, 2009-05-05

(http://en.wikipedia.org/wiki/Aggregator)

[28] www.fitsch.ch , UltimateNews, 2009

(http://www.softsea.com/review/UltimateNews-RSS-to-database-fetch.html)

 48

Appendix A

Manage RSS-Amos

Install
install.cmd -compiles the java code and installs RSS-Amos

Start
Rssquery.cmd -starts the system
Rssquerystartoffline.cmd -starts the system offline. To put the system online

use the command set rss_online() = true;

Add a feed
The function rss_addandgetstream is used to add a feed and related articles to
the system. By adding a feed the meta-data about the feed is stored in the system
and the articles of the feed are added to the cache. A feed can have a short name
to make it easier to reference it in queries.

Rss_addandgetstream(charstring url)

Rss_addandgetstream(charstring url, charstring shortname)

E.g.

rss_AddAndGetStream(
'http://www.sr.se/xml_news/rss/nyheterrss.xml');

rss_AddAndGetStream('http://newsrss.bbc.co.uk/rss/
newsonline_world_edition/europe/rss.xml', 'bbc');

Online/Offline
If the system is used without a connection to the Internet or if the system should
not be updated.

set rss_online() = true; -The system will update articles if they

are considered old

set rss_online() = false; -The system will use the articles that is

stored in the cache.

Save state
The default name of the database used is RSSAmos.dmp. To save the state of the
database use the following command.

 49

save “RSSAmos.dmp”;

Change the number of feeds per thread
The default value is 8 feeds per thread. This is a good value on a Pentium III
800MHz. If a faster CPU is used then try to change the number to something
less then 8 to increase the performance when the system updates multiple feeds.

 set rss_defautnrstreams() = <integer>;

Start logging of the Java implementation
Change the configuration file log4j.properties located under the src directory
and do a re-installation of the system. Enabling the logging will severely
degrade the performance.
OFF -No logging, the default value.
DEBUG -logs debug information in the file

streamwrapper.log located in the RSS directory

Appendix B

Types

 Rssitem properties

 uid(Rssitem)->Integer as stored;

title(Rssitem)->Charstring as stored;

description(Rssitem)->Charstring as stored;

description_type(Rssitem)->Charstring as stored;

streamsrc(Rssitem)->Charstring as stored;

 link(Rssitem)->Charstring as stored;

categories(Rssitem)->Vector as stored;

{{name, domain}, {name, domain}, …}

author(Rssitem)->Charstring as stored;

pubdate(Rssitem)->Charstring as stored;

source(Rssitem)->Charstring as stored;

comments(Rssitem)->Charstring as stored;

enclosures(Rssitem)->Vector as stored;

{{type, url, length}, {type, url, lengt2}, …}

 50

guid(Rssitem)->Charstring as stored;

foreign_markup(Rssitem)->Vector as stored;

{{unknown elements}, {unknown elements}, …}

feedof(Rssitem)->Feed

 Feed properties

id(Feed)->Integer key as stored;
short_name(Feed)->Charstring key as stored;
title(Feed)->Charstring as stored;
description(Feed)->Charstring as stored;
link(Feed)->Charstring as stored;
address(Feed)->Charstring key as stored;
language(Feed)->Charstring as stored;
categories(Feed)->Vector of Charstring as stored;

{category, category, category, … }

copyright(Feed)->Charstring as stored;
managingEditor(Feed)->Charstring as stored;
webmaster(Feed)->Charstring as stored;
pubdate(Feed)->Charstring as stored;
lastbuilddate(Feed)->Charstring as stored;
generator(Feed)->Charstring as stored;
docs(Feed)->Charstring as stored;
cloud_domain(Feed)->Charstring as stored;
cloud_path(Feed)->Charstring as stored;
cloud_port(Feed)->Charstring as stored;
cloud_protocol(Feed)->Charstring as stored;
cloud_procedure(Feed)->Charstring as stored;
image_description(Feed)->Charstring as stored;
image_hight(Feed)->Charstring as stored;
image_width(Feed)->Charstring as stored;
image_url(Feed)->Charstring as stored;
image_link(Feed)->Charstring as stored;
image_title(Feed)->Charstring as stored;
rating(Feed)->charstring as stored;

skipdays(Feed)->Vector of charstring as stored;

{day1, day2, day3, …}

skiphours(Feed)->Vector of Charstring as stored;

{hour1, hour2, hour3, …}

textinput_title(Feed)->Charstring as stored;
textinput_name(Feed)->Charstring as stored;
textinput_description(Feed)->Charstring as stored;
textinput_link(Feed)->Charstring as stored;
ttl(Feed)->Integer as stored;
customttl(Feed)->Integer as stored;
lastupdate(Feed)->Timeval as stored;

cache(Feed)->bag of Vector;

 51

Appendix C

Examples of queries

count(select from Rssitem i where streamsrc(i)=
"http://www.sr.se/xml_news/rss/nyheterrss.xml");

select description(i) from Rssitem i, rssstream s
where like(title(i), "*Sweden*") and streamsrc(i)=address(s) and
short_name(s)=”bbc”;

select title(article) from Rssitem article
where like(description(article),*Obama*);

select distinct ttl(feedof(i)) from Rssitem i;

