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Abstract

Processing Functional CQL Queries

Robert Kajic

At UDBL (Uppsala DataBase Laboratory) we are developing the DSMS SCSQ
(SuperComputer Stream Query processor) based on the main memory DBMS Amos
II. Amos II is a functional DBMS where data and information are represented as typed
functions. In SCSQ database queries over streams are expressed in the functional
query language SCSQL, a language similar to the object oriented parts of SQL:99 but
extended with parallel stream query facilities.

In this paper we investigate what existing functionality in SCSQ and Amos II can be
utilized to support CQL, a continuous query language developed by the Stanford
STREAM project. SCSQL is extended with functionality required to support CQL.
The extended functional stream query language is called FCQL. To implement FCQL,
SCSQ is extended with new operators that adhere to the semantics of CQL. FCQL is
a functional continuous query language with the same expressive power as CQL.
Furthermore, we show how CQL queries can be translated to FCQL in a systematic
way and by doing so give a template for an automatic CQL-to-FCQL translator. We
also evaluate the completeness of FCQL by translating to FCQL the queries of the
linear road DSMS benchmark as it was expressed in CQL by the Stanford STREAM
project.
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1 Introduction

A data stream management system (DSMS) is similar to a database manage-
ment system (DBMS) with the difference that a DBMS allows searching only
stored data, while a DSMS in addition provides query facilities to search di-
rectly in data streaming from some source. DSMS queries are different from
conventional database queries in, e.g., SQL where a query requests data from
tables stored in the database. The result of a DSMS query can be not only
a set of tuples as in SQL, but also a potentially infinite stream of tuples.
Furthermore, stream queries are continuous queries in that they run until
they are terminated, while conventional queries are executed on demand and
run until all requested data is delivered.

At UDBL (Uppsala DataBase Laboratory) we are developing the DSMS
SCSQ (SuperComputer Stream Query processor) [31, 32, 28] based on the
main memory DBMS Amos II [15, 16, 24, 25]. Amos II is a functional
DBMS where data and information are represented as typed functions. In
SCSQ database queries over streams are expressed in SCSQL [31], a query
language similar to the object oriented parts of SQL:99 but extended with
parallel stream query facilities. SCSQL is an extension with stream and
parallelization primitives of the Amos II query language AmosQL [27].

There are several query languages developed for DSMSs, CQL (Stanford
STREAM) [1, 2, 8], StreamSQL (StreamBase) [21], WaveScript (MIT) [29],
and SCSQL [28]. This project aims to provide CQL support integrated with
SCSQ.

In a previous project [17], we investigated the main properties of CQL,
the extent to which they are implemented by the Stanford STREAM project
and the expressibility of the Linear Road (LR) benchmark using CQL. An
overview and comparison of SQL, CQL, StreamSQL and WaveScript was also
given.

In this project we investigate what existing functionality in SCSQ and
Amos II can be utilized to support CQL. This investigation is to a large
extend based on the results from [17]. In cases where Amos II and SCSQ
are lacking in functionality required to support CQL, SCSQ is extended with
new operators which adhere to the semantics of corresponding STREAM
CQL operators. The result is FCQL, a functional continuous query language
with the same expressive power as CQL. Furthermore, we will show how CQL
queries can be translated to FCQL in a systematic way and by doing so give
a template for an automatic CQL-to-FCQL translator. We also evaluate the
completeness of FCQL by translating the linear road benchmark as it was
expressed in CQL by the Stanford STREAM project [19].
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2 Background

2.1 Data Stream Management Systems

Data stream management systems are presented with the problem of process-
ing continuous, often high-volume, and infinite streams of data. Such data
streams can not be processed using traditional relational operators, which
are defined for finite relations. A common approach taken by several DSMS
systems, in processing data streams, is to form sliding windows upon the
data stream [5, 2, 4]. The sliding window can be thought of as view upon a
stream that, at any point in time, reflects the viewed part of the stream as a
finite relation. As time flows and new tuples arrive, the window moves over
the stream and the content of the relation is changed to reflect the current
view. This continuously changing view is called a continuous relation, and by
being finite it can be processed by relational operators. Continuous relations
are created by windowing operators; those relevant to this project are time,
counting, and partitioned windowing operators.

2.1.1 Windowing Operators

All windowing operators are common in that they specify a window size and
a window slide.

For a time window size and slide are specified in terms of time units.
The sliding window may contain any number of stream tuples as long as
the tuples’ timestamps (all tuples have an associated timestamp) are larger
than the window starting timestamp, and smaller than or equal to its ending
timestamp (startingtimestamp + size). When the window is full, i.e., a new
stream tuple has a timestamp larger than the window ending timestamp, the
window increments its starting timestamp by slide.

For a counting window size and slide are specified as numbers of tuples.
That is, the maximum number of tuples that a counting window may contain
is size. Once full, the window drops slide of its oldest tuples.

For a partitioned window size and slide are also specified as numbers
of tuples, as in the counting window. Unlike counting window, a partition
window will split the stream into sub-streams such that each is uniquely
identified by one or several stream tuple attributes — much like the GROUP
BY operator found in the relational algebra. Each sub-stream will then be
processed by a counting window using the given size and slide. Finally, the
resulting continuous relation is formed by taking the union of all counting
windows.

The partitioned window operator is often used to construct continuous
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relations on which grouping and aggregation can later be meaningfully ap-
plied.

2.2 The Stanford Stream Data Manager

The Stanford Stream Data Manager (STREAM) was a project at Stanford
university with the goal of developing a DSMS capable of handling large
volumes of queries in the presence of multiple and high volume, input streams
and stored relations [8].

The project produced a DSMS prototype and created CQL [17] — a
declarative query language based on an extension of SQL — for expressing
continuous queries on streams. The fully functional prototype is available for
download on the STREAM homepage [20].

One of the main goals of FCQL is to have the same expressive power
as STREAM CQL. That is, all queries expressible in CQL should also be
expressible in FCQL.

2.2.1 CQL

Syntactically CQL is very similar to the SELECT statement of SQL making
it easy to learn and understand for users with previous experience of SQL-like
languages. Furthermore, being a declarative language, it leaves all choices of
how to execute and optimize the query to the DSMS.

A dominating part of the data manipulation of a CQL query is performed
by relation-to-relation operators that operate on continuous relations [2, 1,
30]. This approach was chosen so that well understood relational concepts
could be reused and extended. The operators include many of those normally
found in SQL, such as projection, filtering, aggregation, joining, grouping,
etc.

Additionally, CQL has stream-to-relation and relation-to-stream opera-
tors that convert streams to continuous relations and continuous relations
to streams. Together with the relation-to-relation operators they offer great
flexibility in how data can be manipulated; once a stream-to-relation opera-
tor has been applied to a stream it can be subjected to regular relation-to-
relation operators after which it may be, if necessary, transformed back to a
stream using a relation-to-stream operator.
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STREAM RELATION

Relation-to-Stream

Stream-to-Relation

Relation-to-Relation

Figure 1: Streams are converted to continuous relations using CQLs sliding
window operators. Continuous relations are manipulated using standard
relational operators and can be converted back to streams using one of the
relation-to-stream operators available in CQL.

2.3 Linear Road Benchmark

Congested roads during rush hours are an ever increasing problem in and
around big cities. One method of alleviating this problem is through the use
of variable tolling [3]. Tolls are there based on the time of day and/or the
current traffic situation in each vehicles vicinity (congestion, accidents, etc.)
[7]. The basic idea is to discourage use of highly congested roads and to make
roads with excess capacity more attractive.

The most widely used benchmark for measuring DSMS performance is
the Linear Road (LR) Benchmark (LRB) [6]. LRB simulates a fictional city
with a number L of expressways where tolls are determined through variable
tolling. In LRB, a DSMSs performance, its L-rating, is determined by how
many simultaneous expressways it can handle while producing timely and
correct query results.

In this project the LR benchmark is used to evaluate the completeness of
FCQL. In appendix A, the complete LR benchmark specification, as defined
by the Stanford STREAM project in [19], is translated to FCQL.

2.4 Amos II and AmosQL

Amos II [15, 16, 24, 25] is a distributed mediator system which allows different
data sources to be reconciled through a wrapper-mediator approach. In such
a system wrappers provide access to different data sources through a common
data model while the mediators provide coherent views of the data provided
by the wrappers.

At its core, Amos II is a main memory, object oriented, extensible DBMS
with all the facilities normally found in database management systems. Those
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include a storage manager, a recovery manager, a transaction manager and
a functional, declarative and relationally complete query language called
AmosQL [15, 16, 27]. AmosQL is based on the functional query languages
OSQL [11] and DAPLEX [18]. In AmosQL, queries are specified using the
SELECT — FROM — WHERE syntax similar to SQL.

The basic concepts of the data model of Amos II are objects, types and
functions. Objects are used to represent all entities in the database, both
user-defined objects representing real-world entities and system defined ob-
jects such as numbers, strings and collections of other objects. All objects
are instances of one or more types and types are structured in a supertype/-
subtype hierarchy. Finally, functions describe the properties and semantics
of objects and are used to perform calculations on, and to define relations
between, objects.

Amos II can store local data in its own internal main memory database
and/or provide access to external data sources through its wrappers [26].
Wrappers are available for such varying data sources as Internet search en-
gines [10], music files, CAD systems [13], semantic web metadata [14], other
relational databases, other Amos II systems, etc.

All new FCQL operators are defined as AmosQL functions and thus
FCQL extends AmosQL with continuous query primitives.

2.4.1 External Interfaces

There are external interfaces between Amos II and the programming lan-
guages ANSII C, ALisp, and Java [23]. Through these interfaces Amos II
functionality can be extended; external programs can use the callin interface
to make use of Amos II functionality and furthermore, using the callout in-
terface, foreign AmosQL functions can be implemented in C, ALisp or Java.
Those foreign functions can then be called by other AmosQL functions. In
FCQL, we make use of the callout interfaces to C and ALisp to implement
our new operators.

C The Amos II external C interface is intended to be used when extensions
to the Amos II kernel must be made, or time-critical functionality needs to be
implemented [23]. In FCQL, we defined a new datatype, the stream window,
to represent continuously updated relations [4]. The stream window data
type is used in the implementation of our FCQL operators.

ALisp ALisp is an interpreter for a subset of CommonLisp [9] built on
top of the storage manager of the Amos II database system [22]. When
compared to the external C interface, the ALisp interface is simpler to use
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— mainly because memory management is handled automatically by a built-
in garbage collector. However, the interface to C is faster and preferred for
time-critical code or in cases where external C libraries must be used. Most
of the functionality available in Amos II is implemented in ALisp, the same
is true for FCQL where ALisp was used to implement all new operators.

2.5 SCSQ and SCSQL

SCSQ is a data stream management system built on top of Amos II with
added facilities for querying of large volume, distributed streams through its
high-level, declarative, continuous query language SCSQL [31, 28]. SCSQL is
an extension of AmosQL but extended with parallel stream query facilities.
The system is ported to many different platforms and currently runs in en-
vironments ranging from Windows to a massively parallel, 12000 node, IBM
Bluegene cluster. Through SCSQL, high volume streams from distributed
sources can be filtered, transformed and joined. Currently, SCSQ offers the
highest published performance of the LR benchmark with an L-rating of 64,
greatly outperforming all previously published results [28].

SCSQ was extended with our new stream window datatype and FCQL
operators.

2.6 SQLFront

In [12], an SQL-to-AmosQL translator called SQLFront was developed to
enable Amos II mediation through SQL. Large parts of the SQLFront parser
can be reused in the construction of an automatic CQL-to-FCQL translator.

3 FCQL

In this section we will first give a high-level overview of the FCQL system and
the available operator classes. Later, we will take a closer look and document
each FCQL operator in detail.
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3.1 System Architecture

Amos II

FCQL query

CQL-to-FCQL translator

CQL query

Input

streams

Stream

Stream

Windowing
Continuous

relation

Windowing

Continuous

relation
Continous 

relation join

Continuous
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Projection 

Filtering

Union

Projection 

Filtering

Aggregation

Union

Continuous

relation
Static

relation join

Static

relation

Unwindowing
Stream

Unwindowing
Stream

Output 

stream

Static

relation

future work

future work

Figure 2: FCQL architecture.

Figure 2 shows the architecture of the FCQL system. FCQL extends AmosQL
with continuous query primitives and has access to all facilities available in
Amos II, including its main memory relational database. In the architecture
overview, as part of Amos II, we can see static relations — those are regular
relational tables represented as AmosQL functions.

Currently, continuous queries are specified as FCQL queries. However, it
is planned future work to allow CQL queries and to translate those to FCQL
queries using an automatic CQL-to-FCQL translator.

The FCQL system deals with three different types of data, streams, con-
tinuous relations, and static relations. Any number of streams can be used as
input for the system. Through windowing operators streams are converted
to continuous relations. Continuous relations can be manipulated using re-
lational operators, such as projection, filtering, aggregation, union and join-
ing. In the case of joining, continuous relations can either be joined among
themselves, or a continuous relation can be joined with a static relation im-
plemented as a function in the Amos II database. Continuous relations can
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be transformed back to streams using unwindowing operators. Some sim-
ple operations, such as projection and filtering, can be applied on streams
without intermediate conversion to continuous relations.

3.2 Operator Classes

In FCQL, data operators are implemented as typed functions in the AmosQL
query language. Below, the signature of each operator class is specified.
Most operators are implemented as foreign functions. Furthermore, an extra
AmosQL type Window has been introduced to represent stream windows.

The operators available in FCQL are the same as those available in the
Stanford STREAM implementation of CQL, with one exception. We choose
to implement a fourth class of operators which convert streams-to-streams.
Our rationale is given in 3.2.

In FCQL, tuple streams are represented by the type Stream of Vector.
The type Vector represents a single tuple. Continuously updated relations
are represented by the type Stream of Window. The Window datatype is
closely described in 3.3.4.

Stream of 

Vector

Stream of 

Window

Relation-to-Stream

Stream-to-Relation

Relation-to-RelationStream-to-Stream

Figure 3: FCQL operator classes; stream-to-relation, relation-to-relation,
relation-to-stream and stream-to-stream.

Stream-to-Relation Converts streams (Stream of Vector) to continuous
relations (Stream of Window).

Relation-to-Relation Converts continuous relations (Stream of Window)
to continuous relations (Stream of Window). This set of operators con-
tains the operators usually found in SQL, such as projection, filtering,
aggregation, joining, etc.

Relation-to-Stream Converts continuous relations (Stream of Window) to
streams (Stream of Vector).
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Stream-to-Stream These operators are not available in STREAM CQL.
We choose to implement them as a convenience where it is unnecessary
to convert a stream to a continuous relation for manipulation, and then
immediately convert the relation back to a stream.

3.3 Operator Details

Stream of 

Vector

Stream of 

Window

w_time/4 

w_now/2 

w_tuple/4 

w_partition/5 w_project/2

w_distinct/2

w_filter/2

w_join/2

w_join_amosfn/2

w_union/1

Refining

Joining

w_group_by/4
Aggregation

Windowing

istream/1

dstream/1

rstream/1

Unwindowing

s_union_all/1
Joining

projection (AmosQL)

filtering (AmosQL)

Refining

Figure 4: Detailed FCQL operator overview.

Figure 4 gives a detailed overview of the operators implemented as AmosQL
functions available in FCQL. Stream-to-relation operators are labeled win-
dowing and take streams (Streams of Vectors) as input and output contin-
uous relations (Streams of Windows). They include w time/4 and w now/2
for time windows, w tuple/4 for counting windows, and w partition/5 for
partitioned windows [17].

Relation-to-relation operators take continuous relations (Streams of Win-
dows) as input and output continuous relations (Streams of Windows). They
are divided into three classes of operators; the first class is labeled Refining
and has operators for continuous relation projection and filtering. Those
operators include w project/2, w distinct/2 and w filter/2. The second class
of operators are Joining. They are used to combine continuous relations
with each other or continuous relations with external data sources. Those
operators include w join/2, w join amosfn/2 and w union/1.

The last class of Aggregation operators includes a single operator, w group by/4,
which is used to perform aggregation on continuous relations.

Relation-to-stream operators are labeled unwindowing and take continu-
ous relations (Streams of Windows) as input and output streams (Streams
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CQL FCQL
Windowing Stream → Relation Stream of Vector → Stream of Window
Relational Relation → Relation Stream of Window → Stream of Window
Unwindowing Relation → Stream Stream of Window → Stream of Vector
Streaming — — — — — — Stream of Vector → Stream of Vector

Table 1: How CQL operators relate to FCQL operators. As previously, the
term relation refers to a continuous relation.

of Vectors). They include istream/1, dstream/1 and rstream/1 [17].
Stream-to-stream operators take streams (Streams of Vectors) for input

and output streams (Streams of Vectors). They are divided into two classes;
Refining and Joining. Streams are projected and filtered by existing AmosQL
functionality. Our union all operator is defined by s union all/1.

Table 1 summarizes how all CQL operator classes relate to FCQL oper-
ators.

Starting with section 3.3.4, all FCQL operators will be documented to-
gether with examples showing how each operator corresponds to its STREAM
CQL counterpart. However, to prepare for those examples, we will first
document some common FCQL functionality; namely FCQL schemas and
associative referencing of stream columns.

3.3.1 Schemas

In CQL, queries can be named and later used as sub-queries, corresponding
to views in relational databases. Often this allows us to avoid duplicating
code, and sometimes it even provides additional expressibility — for example
where in-lined sub-queries are impossible.

In order to use a query as a sub-query it must have a schema. The
schema will serve the same purpose as the schema of DBMS tables, defining
the names and types of the query columns and naming views defined as
queries.

In FCQL, a query is defined by an AmosQL query function which ei-
ther produces a stream or a continuously updated relation. The query is
named by the query functions’ name, but the query function does not de-
fine a schema for its output. Instead, each query function is accompanied
by a query metadata function which specifies the query schema by its sig-
nature. These metadata functions have the same name as the function they
accompany, but are additionally prefixed by meta .

We will illustrate with an example. Given a Customer stream with the
following schema:
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Customer(id, name , age , ssn)

Listing 1: Stream of customers.

CQL Using the Stanford STREAM scripting language:

vquery: SELECT name , ssn FROM People WHERE age <18;
vtable: REGISTER STREAM Underage(name char (32), ssn integer );

Listing 2: Simple filtering on the Customer stream using the Stanford
STREAM scripting language.

We can see that in the STREAM scripting language the query consists of
two parts, the first, called vquery defines the actual query, while the second
part, called vtable, defines its schema.

FCQL Using a FCQL metadata function:

create function __meta__Underage () -> <Charstring name , Integer ssn >;
create function Underage () -> Stream of Vector as select istream (...);

Listing 3: Simple filtering on the People stream using FCQL.

In FCQL the query is defined by the Underage() function. The signa-
ture of the meta Underage() metadata function defines the query schema.

meta Underage() has no function body because its signature is sufficient
to store the required metadata, i.e., the column names and types of the Un-
derage stream. We also left out the function body of the Underage() function
to simplify our example. Detailed query definitions are given in 3.3.4.

3.3.2 Column Referencing

Starting with section 3.3.4 we will see that FCQL operators reference ele-
ments of streams tuples by their positional index in a tuple. In other words,
the operators do not expect the name of the column that should be manip-
ulated as in CQL, but the index at which the column is found in the tuples
of a stream or a continuously updated relation.

Since it is often desirable to reference columns associatively, i.e., by name,
we offer three functions which translate a column name to a positional index;
res idx/2, join res idx/2 and join res idx/3.
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res idx(Charstring fn, Charstring field) → Integer index imple-
ments the ’.’ operator in SQL/CQL to reference elements of tuples. The
function takes a FCQL query name fn and the name field of one of the
query’s output fields. Returns the position among the query’s output fields
at which the field can be found in the query, the first field starts at index 0.
If the field can’t be found nil is returned.

Examples Using res idx/2:

create function __meta__Underage () -> <Charstring name , Integer ssn >;

res_idx(’Underage ’, ’name’);
>> 0
res_idx(’Underage ’, ’ssn’);
>> 1
res_idx(’Underage ’, ’age’);
>> NIL

join res idx(Vector fnv, Charstring field) → <Integer fn index, In-
teger col index> is used to reference the fields of a joined continuous
relation as created by w join/2 3.3.5 or w join amosfn/2 3.3.5. It takes a
vector of FCQL query names fnv, where each query is one of the joined con-
tinuous relations. The function determines the first query which contains the
output field, searching fnv in order, and the index at which the output field
name was found. Finally it returns a tuple where the first element fn index
is the index of the container query and the second element col index is the
index of the output field. If the field can’t be found nil is returned.

Examples Using join res idx/2 :

18



create function __meta__Parent () ->
<Charstring name , Integer child_ssn , Integer ssn >;

create function __meta__Underage () ->
<Charstring name , Integer ssn >;

join_res_idx ({’Parent ’, ’Underage ’}, ’name’);
>> <0,0>
join_res_idx ({’Parent ’, ’Underage ’}, ’ssn’);
>> <0,2>
join_res_idx ({’Parent ’, ’Underage ’}, ’child_ssn ’);
>> <0,1>
join_res_idx ({’Parent ’, ’Underage ’}, ’age’);
>> NIL

join res idx(Vector fnv, Charstring fn target, Charstring field) →
<Integer function index, Integer column index> is just like join res idx/2
but specifies with fn target which of the queries in fnv to look in. If the field
can’t be found in the query fn target, nil is returned.

Examples Using join res idx/3 :

create function __meta__Parent () ->
<Charstring name , Integer child_ssn , Integer ssn >;

create function __meta__Underage () -> <Charstring name , Integer ssn >;

join_res_idx ({’Parent ’, ’Underage ’}, ’Parent ’, ’name’);
>> <0,0>
join_res_idx ({’Parent ’, ’Underage ’}, ’Parent ’, ’ssn’);
>> <0,2>
join_res_idx ({’Parent ’, ’Underage ’}, ’Parent ’, ’child_ssn ’);
>> <0,1>
join_res_idx ({’Parent ’, ’Underage ’}, ’Parent ’, ’age’);
>> NIL

join_res_idx ({’Parent ’, ’Underage ’}, ’Underage ’, ’name’);
>> <1,0>
join_res_idx ({’Parent ’, ’Underage ’}, ’Underage ’, ’ssn’);
>> <1,1>
join_res_idx ({’Parent ’, ’Underage ’}, ’Underage ’, ’child_ssn ’);
>> NIL
join_res_idx ({’Parent ’, ’Underage ’}, ’Underage , ’age ’);
>> NIL
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3.3.3 Input Streams

In the following sections all FCQL operators will be documented, and usage
examples given that show how FCQL operators relate to CQL operators.
Throughout those examples the following relations and input streams will be
used:

Transaction(time , transaction_id , sender , receiver , amount );

Listing 4: A stream of bank transactions.

In FCQL, the Transaction stream would be defined in the following way:

create function __meta__Transaction () ->
<Integer name ,
Integer transaction_id ,
Integer sender ,
Integer receiver ,
Integer amount >;

create function Transaction () -> Stream of Vector as select streamof (...);

Listing 5: Transaction stream in FCQL.

The remaining streams are defined analogously.

TransactionVISA(time , transaction_id , sender , receiver , amount );

Listing 6: A stream of VISA transactions.

BalanceQuery(time , query_id , user_id );

Listing 7: A stream of account balance queries.

User(user_id , name);

Listing 8: A static relation of bank account owners.

3.3.4 Stream-to-Relation Operators

As in STREAM CQL, the stream-to-relation operators in FCQL are based
on a sliding window and produce continuously updated relations. Unlike the
STREAM implementation, where all windows have their slide set to 1 [17],
FCQL allows the slide to be defined by the user for all windowing operators.
Furthermore, in STREAM CQL, it is assumed that the first column of each
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tuple is its timestamp. In FCQL, the timestamp column is user defined for
all window operators.

Continuous relations in FCQL are represented by a stream of windows
where each subsequent window holds a new state of the continous relation.
The window datatype is made up from a linked list of tuples and some
metadata as seen in figure 5.

tpl tpl tpl tpl

TailHead

Flags

Size

Time

Figure 5: The window datatype contains a linked list of tuples and keeps
track of the list’s head for removal of tuples, the list’s tail for addition of
tuples, a window size, a window time field used by the time window operator,
and a flags field.

w time(Stream of Vector s, Integer size, Integer slide, Integer ts idx)
→ Stream of Window wstream is our time window construction opera-
tor. It takes a stream of vectors (tuples) s, a window size size, a window slide
slide, and a index ts idx that specifies the column at which a timestamp can
be found in the vectors in s. The function returns a stream of windows where
the timestamp distance from the first to last tuple in each window is at most
size time units large, and where each consequent window has been advanced
slide time units (dropping the oldest tuples from the previous window).

Examples The time window in CQL and FCQL:

SELECT * FROM Transaction [RANGE 10 SECONDS] ;

Listing 9: CQL time window highlighted in green.
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w_time(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’));

Listing 10: FCQL time window.

w now(Stream of Vector s, Integer ts idx) → Stream of Window
wstream is a convenience operator that behaves like w time but has its
size and slide set to 1.

Examples The time window in CQL and FCQL:

SELECT * FROM Transaction [NOW] ;

Listing 11: CQL now window highlighted in green.

w_now(Transaction (), res_idx(’Transaction ’, ’time’));

Listing 12: FCQL now window.

w tuple(Stream of Vector s, Integer size, Integer slide, Integer
ts idx) → Stream of Window wstream is our counting window con-
struction operator. It takes a stream of vectors (tuples) s, a window size size,
a window slide slide and a index ts idx which specifies the column at which
a timestamp can be found in the vectors in s. Unlike w time, where the size
and slide are measured in time units, w tuple treats them as an exact number
of tuples. The operator returns a stream to windows where each window is at
most size tuples large and each consequent window has been slided forward
by slide tuples (dropping the slide oldest tuples from the previous window).

Note that we require a timestamp index ts idx in our counting window
operator. CQL uses a time-driven model while processing tuples [17]. For
windowing operators, including the counting window, this implies that the
output is produced at the end of each timestamp, i.e., when all tuples for
any given timestamp have been seen. When a timestamp is such that there
are more input tuples than can be placed inside the window, without vio-
lating its maximum window size, the window will only keep the most recent
input tuples. Hence, in order for the window operator to determine when a
timestamp ends, it must be aware of the tuple timestamp index.

Examples The counting window in CQL and FCQL:
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SELECT * FROM Transaction [ROWS 10] ;

Listing 13: CQL counting window highlighted in green.

w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’));

Listing 14: FCQL counting window.

w partition(Stream of Vector s, Vector idx, Integer size, Integer
slide, Integer ts idx) → Stream of Window wstream is our parti-
tioned window construction operator. It takes a stream of vectors (tuples)
s, a vector of indexes idx that specify the columns in s on which to perform
partitioning, a window size size, a window slide slide, and an index ts idx
that specifies the column at which a timestamp can be found in the vectors
in s. The timestamp index is required for the same reason as in the counting
window 3.3.4. Just as in w tuple, size and slide are treated as an exact num-
ber of tuples. The operator returns a stream of windows where each window
is constructed by partitioning the stream s on the columns in idx, forming
one counting window for each partition. When one of the partitions is filled,
the tuples of all partitions are unified into one window and it is emitted. The
next window will have all its partitions slided forward by slide.

Examples The partition window in CQL and FCQL:

SELECT * FROM Transaction [PARTITION BY seller ROWS 10] ;

Listing 15: CQL partition window highlighted in green.

w_partition(Transaction (), {res_idx(’Transaction ’, ’seller ’)},
10, 1, res_idx(’Transaction ’, ’time’));

Listing 16: FCQL partition window.

3.3.5 Relation-to-Relation Operators

The largest part of the data manipulation of a CQL query is performed by
relation-to-relation operators [2, 1, 30, 17]. The following relation-to-relation
operators are available in FCQL:
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w project(Vector idx, Stream of Window wstream) → Stream of
Window wstream takes a vector of indexes idx that specify which columns
in the window stream wstream to project. It returns a new stream of win-
dows where only the projected columns remain in the tuples of the windows
in the window stream wstream.

Examples Continuous relation projection in CQL and FCQL:

SELECT time, transaction id, amount
FROM Transaction [ROWS 10];

Listing 17: CQL projection highlighted in green.

w project(

{res idx(’Transaction’, ’time’),

res idx(’Transaction’, ’transaction id’),

res idx(’Transaction’, ’amount’)} ,

w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)));

Listing 18: FCQL projection highlighted in green.

w distinct(Vector idx, Stream of Window wstream) → Stream of
Window wstream takes a vector of indexes idx that specify which columns
to use when forming a uniqueness key for the tuples in the window stream
wstream. The function returns a new window stream where each window is
internally unique. When duplicates are found, the first tuple encountered
will remain and all subsequent tuples discarded.

Examples Distinct operator on continuous relations in CQL and FCQL:

SELECT DISTINCT sender , receiver , amount
FROM Transaction [ROWS 10];

Listing 19: CQL distinct operator highlighted in green.
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w distinct(

{res idx(’Transaction’, ’sender’)} ,

w_project(
{res_idx(’Transaction ’, ’receiver ’),
res_idx(’Transaction ’, ’amount ’)},

w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)));

Listing 20: FCQL distinct operator highlighted in green.

w filter(Stream of Window wstream, Function accept fn)→ Stream
of Window wstream takes a stream wstream of windows and an accept
function accept fn with the signature accept fn(Vector tuple) → Boolean. ac-
cept fn is given tuples from wstream and should return true for each tuple
that should not be discarded.

The function returns a new window stream where only accepted tuples
remain.

Examples Filtering on continuous relations in CQL and FCQL:

SELECT time , receiver , amount
FROM Transaction [ROWS 10]
WHERE amount > 50 ;

Listing 21: CQL filtering highlighted in green.

create function filter Transaction(Vector tuple) -> Boolean as

tuple[res idx(’Transaction’, ’amount’)] > 50;

w_project(
{res_idx(’Transaction ’, ’time’),
res_idx(’Transaction ’, ’receiver ’),
res_idx(’Transaction ’, ’amount ’)},

w filter(
w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)),
#’ filter Transaction’ ));

Listing 22: FCQL filtering with the filtering function filter Transaction/1
highlighted in green. The filtering function is given each tuple of the contin-
uous relation Transaction() and will return true for all tuples where amount
is larger than 50.
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w join(Vector wstream, Function join fn) → Stream of Window
wstream takes a vector of window streams wstream that should be n-
theta joined based on an variadic joining function join fn with the signature
join fn(Vector 1, Vector 2, ..., Vector n) → Boolean. The joining function
is given n arguments, where each argument i is a tuple taken from window
stream i in wstream, and should return true if the tuples are joinable.

The function returns a new window stream where the windows of wstream
have been joined.

Examples Joining of continuous relations in CQL and FCQL:

SELECT B.time , T.sender , T.receiver , T.amount
FROM BalanceQuery [NOW] AS B, Transaction [RANGE 30 DAYS] AS T
WHERE B.user id = T.receiver OR

B.user id = T.sender ;

Listing 23: CQL joining highlighted in green.

create function join TransactionBalance(Vector B, Vector T) -> Boolean as

B[res idx(’BalanceQuery’, ’user id’)] =

T[res idx(’Transaction’, ’receiver’)] OR

B[res idx(’BalanceQuery’, ’user id’)] =

T[res idx(’Transaction’, ’sender’)];

w_project(
{join_res_idx ({’BalanceQuery ’, ’Transaction ’}, ’time’),
join_res_idx ({’BalanceQuery ’, ’Transaction ’}, ’sender ’),
join_res_idx ({’BalanceQuery ’, ’Transaction ’}, ’receiver ’),
join_res_idx ({’BalanceQuery ’, ’Transaction ’}, ’amount ’)},

w join(

{w now(BalanceQuery(), res idx(’BalanceQuery’, ’time’)),

w time(Transaction(), 30*24*60*60, 1, res idx(’Transaction’, ’time’))},
#’ join TransactionBalance’ ));

Listing 24: FCQL joining with the joining function
join TransactionBalance/2 highlighted in green.

w join amosfn(Stream of Window wstream, Function amosfn) →
Stream of Window wstream is used to join continuous relations with
static relations. The function takes a window stream wstream that should be
joined with the AmosQL function amosfn, which has the signature amosfn(Vector
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tuple) → Bag of Vector. The AmosQL function is given each tuple t from
wstream, and should for each t return a bag of tuples which are joinable with
t.

w join amosfn 2 returns a stream of windows where each window is cre-
ated by joining each window of wstream with amosfn.

Examples Joining a continuous relation with a static relation in CQL
and FCQL:

SELECT B.query_id , B.user_id , U.name
FROM BalanceQuery [NOW] AS B, User AS U
WHERE B.user id = U.user id ;

Listing 25: CQL joining with a static relation highlighted in green.

create function join amosfn BalanceUser(Vector tuple) -> Bag of Vectoras

select other tuple

from Vector other tuple

where other tuple in streamof(User()) and

tuple[res idx(’BalanceQuery’, ’user id’)] =

other tuple[res idx(’User’, ’user id’)];

w_project(
{join_res_idx ({’BalanceQuery ’, ’User’}, ’query\_id’),
join_res_idx ({’BalanceQuery ’, ’User’}, ’user\_id’),
join_res_idx ({’BalanceQuery ’, ’User’}, ’name’)},

w join amosfn(

w now(BalanceQuery(), res idx(’BalanceQuery’, ’time’)),

#’ join amosfn BalanceUser’) );

Listing 26: FCQL joining with the static relation User() highlighted in green.
The joining function join amosfn BalanceUser/1 is given each tuple of
the continuous relation BalanceQuery() as tuple and will return all joinable
tuples from the relation User().

w union(Vector wstream) → Stream of Window wstream takes a
vector of window streams wstream and forms a union of the windows where
one window each is taken from each stream. The elements of each union
formed this way is emitted as a window in a new window stream. Unlike
w join/2, which stops if one window stream runs out of windows, w union/1
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continues until all window streams are exhausted.

Examples Union of continuous relations in CQL and FCQL:

SELECT * FROM Transaction [ROWS 10]
UNION
SELECT * FROM TransactionVISA [ROWS 10];

Listing 27: CQL union highlighted in green.

w union( {
w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)),
w_tuple(TransactionVISA (), 10, 1, res_idx(’TransactionVISA ’, ’time’))});

Listing 28: FCQL union highlighted in green.

w group by(Vector key idx, Vector val idx, Vector agg fn, Stream
of Window wstream) → Stream of Window wstream groups each
window in the stream wstream based on keys in vector key idx and applies
the aggregate functions in agg fn on the corresponding columns of val idx.
The result of the function is a stream of windows where each window is made
up of the calculated aggregate values.

Examples Continuous relation aggregation in CQL and FCQL:

SELECT user_id , SUM(amount)
FROM Transaction [RANGE 30 DAYS]
GROUP BY user_id;

Listing 29: CQL aggregation highlighted in green.
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create function meta GroupbyTransaction() ->

<Integer user id, Integer amount>;

w_project(
{res_idx(’GroupbyTransaction ’, ’user_id ’),
res_idx(’GroupbyTransaction ’, ’amount ’)},

w group by(

{res idx(’Transaction’, ’user id’)},
{res idx(’Transaction’, ’amount’)},
{#’sum’},
w_time(Transaction (), 30*24*60*60 , 1, res_idx(’Transaction ’, ’time’)));

Listing 30: FCQL aggregation highlighted in green. The metadata function
meta GroupbyTransaction/0 defines the schema of the group by operators’

output.

3.3.6 Relation-to-Stream Operators

When continuous relations (Streams of Window) must be converted back to
streams, the operators istream/1, dstream/1, rstream/1 can be used. First a
formal definition is given [2]:

ISTREAM(R) Defines a stream of elements (r, T) such that each r is in
the continuous relation R at time T, but was not in R at time T-1.

DSTREAM(R) Defines a stream of elements (r, T) such that each r was
in the continuous relation R at time T-1, but is not in R at time T.

RSTREAM(R) Defines a stream of elements (r, T) such that each r is in
the continuous relation R at time T.

The operators are documented bellow:

istream(Stream of Window wstream) → Stream of Vector s takes
a stream of windows and produces a stream of those tuples added to the
window stream. A tuple is added when it exists in one window but not in
the previous.

Examples Istream operator in CQL and FCQL:
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ISTREAM( SELECT *
FROM Transaction [ROWS 10]);

Listing 31: CQL istream operator highlighted in green.

istream(
w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)));

Listing 32: FCQL istream operator highlighted in green.

dstream(Stream of Window wstream) → Stream of Vector s takes
a stream of windows and produces a stream of those tuples removed to the
window stream. A tuple is removed when it exists in one window but not in
the next.

Examples Dstream operator in CQL and FCQL:

DSTREAM( SELECT *
FROM Transaction [ROWS 10]);

Listing 33: CQL dstream operator highlighted in green.

dstream(
w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)));

Listing 34: FCQL dstream operator highlighted in green.

rstream(Stream of Window wstream) → Stream of Vector s takes
a stream of windows and produces a stream of all tuples in each window.

Examples Rstream operator in CQL and FCQL:

RSTREAM( SELECT *
FROM Transaction [ROWS 10]);

Listing 35: CQL rstream operator highlighted in green.
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rstream(
w_tuple(Transaction (), 10, 1, res_idx(’Transaction ’, ’time’)));

Listing 36: FCQL rstream operator highlighted in green.

3.3.7 Stream-to-Stream Operators

As previously mentioned, the STREAM CQL implementation has no stream-
to-stream operators and all data manipulation is performed by relation-to-
relation operators; in FCQL, we can manipulate streams directly.

Stream projection and filtering is handled by existing AmosQL function-
ality.

union all(Vector s) → Stream of Vector s takes a vector of tuple
streams s and outputs a new tuple stream such that tuples are taken from s
in order and as they become available. As w union/1, union all terminates
only when all input streams are exhausted.

Examples Union all on streams in CQL and FCQL:

SELECT * FROM Transaction
UNION ALL
SELECT * FROM TransactionVISA;

Listing 37: CQL union all highlighted in green. Note that this query implic-
itly converts the Transaction and TransactionVISA streams to continuous
relations and then back to streams.

s union all( {
Transaction (),
TransactionVISA ()});

Listing 38: FCQL union all highlighted in green.

4 Conclusions and Future Work

We extended SCSQ with the functional continuous query language FCQL
and implemented all operators available in STREAM CQL. Furthermore, in
appendix A we show that FCQL is robust enough to express all CQL queries
in the STREAM implementation of the LR benchmark. We have also shown
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how CQL operators and queries can be translated to FCQL and that this
process is systematic and mechanic enough to be well suited for an automatic
CQL-to-FCQL translator.

Although FCQL has the same expressive power as CQL, CQL queries
are easier to write, read and understand. Therefore, future work involves
a parser that translates CQL queries to FCQL. Syntactically, CQL is very
similar to SQL and large parts of the SQLFront parser [12] can be reused by
a CQL parser.

Since CQs run indefinitely — or until they are terminated — and queries
are often used as sub-queries, there is often more than one query using any
given query as a sub-query. In such a scenario the sub-query should be able
to feed its output to all its consumer queries. In FCQL, a query may only
have a single consumer. This problem can be solved by using SCSQ stream
processes [31] and splitstream functions [32]; queries that have more than one
consumer should execute in separate SCSQ stream processes and disseminate
their output to all consumers using splitstream functions.
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A Evaluation

To evaluate the completeness of FCQL we choose to translate the complete
LR benchmark specification as it is defined by the Stanford STREAM project
in [19]. The benchmark queries are translated in the same order as they are
defined in [19] and each translation is preceded by the original CQL query
together with explanatory comments. With the help of these translations we
will show that the translation process is systematic and mechanic. Further-
more, the LR benchmark is complicated enough to make use of all FCQL
operators and makes these translations well suited to be used as a template
for an automatic CQL-to-FCQL translator. Finally, they serve as a compli-
ment to the FCQL documentation in 3.3.

/* **************************************************************

*

* AMOS2

*

* Author: (c) 2010 Robert Kajic , UDBL

* $RCSfile: lr.osql ,v $

* $Revision: 1.14 $ $Date: 2010/10/18 14:52:42 $

* $State: Exp $ $Locker: $

*

* Description : Translations of the linear road benchmark

* specification as specified in CQL by the Stanford STREAM

* project. The CQL specification can be found at:

* http :// infolab.stanford.edu/stream/cql - benchmark.html

* ============================================================

* $Log: lr.osql ,v $

* Revision 1.14 2010/10/18 14:52:42 roka4241

* *** empty log message ***

*

* Revision 1.13 2010/10/13 02:25:15 roka4241

* Changed the n-theta join to call its joining funtion with n arguments instead of a vector with n elements.

*

* Revision 1.12 2010/10/12 13:08:20 roka4241

* Removed s_project and s_filter , using AmosQL functions instead.

*

* Revision 1.11 2010/10/08 02:33:27 roka4241

* res_idx and join_res_idx now take the name of the query function for which to resolve an output field , instead of the query metadata function associated with the query.

*

* Revision 1.10 2010/09/07 23:31:42 roka4241

* Removed old regression tests. Fixed conflicts in lr.osql.

*

* Revision 1.9 2010/09/07 23:25:34 roka4241

* Started using s_project.

*

* Revision 1.8 2010/08/22 03:47:24 roka4241

* Started using amos_join_fn .

*

* Revision 1.7 2010/08/10 02:57:11 roka4241

* Fixed all syntax errors. Added some forgotten functions . Fixed some bugs , mostly typo related. All queries now compile successfully but have not yet been run.

*

*

* Revision 1.5 2010/08/07 15:25:36 roka4241

* Translated the remaining lr queries from the cql specification . Fixed some bugs.

*
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* Revision 1.4 2010/08/07 04:10:45 roka4241

* Added this CVS header.

*

*

************************************************************* */

/*

parteval (" res_idx ");

parteval (" join_res_idx ");

*/

/* Static amos function that returns all segments. Currently , the function

returns a static bag of segments but it should eventually compute the bag

of segments based on the size of the LR benchmark being run. */

create function __meta__AllSeg () ->

<Integer exp_way , Integer dir , Integer seg >;

create function AllSeg () -> Bag of Vector as select

bag(

{0, 0, 0},

{0, 0, 1},

{0, 1, 0},

{0, 1, 1},

{1, 0, 0},

{1, 0, 1},

{1, 1, 0},

{1, 1, 1});

/* The SegToll and AccAffectedSeg streams are used before they are

defined and we must define stub functions to satisfy the compiler. */

create function __meta__SegToll () ->

<Integer time , Integer exp_way , Integer dir , Integer seg , Integer toll >;

create function SegToll () -> Stream of Window;

create function __meta__AccAffectedSeg () ->

<Integer time , Integer exp_way , Integer dir , Integer seg >;

create function AccAffectedSeg () -> Stream of Window;

/* ********

*********

********* INPUT

*********

******** */

/* CarLocStr: Stream of car location reports. This forms primary input to the system.

CarLocStr (car_id , unique car identifier

speed , speed of the car

exp_way , expressway : 0..10

lane , lane: 0,1,2,3

dir , direction : 0( east), 1( west)

x-pos ); coordinate in express way */

create function __meta__CarLocStr () ->

<Integer time , Integer car_id , Integer speed ,

Integer exp_way , Integer lane , Integer dir , Integer x_pos >;

create function CarLocStr () -> Stream of Vector as select streamof(

select vector(v[1], v[2], v[3], v[4], v[5], v[6], v[8])

from Vector v

where v in streamfile("data/lr32")

and v[0] = 0);
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/* AccBalQueryStr : Stream of account -balance adhoc queries. Each query

requests the current account balance of a car.

AccBalQueryStr (car_id ,

query_id ); id used to associate responses with queries */

create function __meta__AccBalQueryStr () ->

<Integer time , Integer car_id , Integer query_id >;

create function AccBalQueryStr () -> Stream of Vector as select streamof(

select vector(v[1], v[9], v[10])

from Vector v

where v in(streamfile("data/lr32"))

and v[0] = 1);

/* ExpQueryStr : Stream of adhoc queries requesting the expenditure of

a car for the current day.

ExpQueryStr (car_id ,

query_id ); */

create function __meta__ExpQueryStr () ->

<Integer time , Integer car_id , Integer query_id >;

create function ExpQueryStr () -> Stream of Vector as select streamof(

select vector(v[1], v[11], v[12])

from Vector v

where v in(streamfile("data/lr32"))

and v[0] = 2);

/* TravelTimeQueryStr : Stream of expected -travel -time adhoc queries.

TravelTimeQueryStr (query_id ,

exp_way ,

init_seg , initial segment

fin_seg , final segment

time_of_day ,

day_of_week ); */

create function __meta__CreditStr () ->

<Integer time , Integer car_id , Integer query_id >;

create function CreditStr () -> Stream of Vector as select streamof(

select vector(v[1], v[13], v[14])

from Vector v

where v in(streamfile("data/lr32"))

and v[0] = 3);

/* ********

*********

********* TOLL NOTIFICATION

*********

******** */

/* CarSegStr (stream ): This is just the input CarLocStr stream , but

with the location of the car replaced by the segment corresponding to

the location. For simplicity , we assume that each segment is

equi -length , and therefore the segment number for a location is just

the location (integer -) divided by the length of each segment.

SELECT car_id , speed , exp_way , lane , dir , (x-pos /52800) as seg
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FROM CarLocStr; */

create function __meta__CarSegStr () ->

<Integer time , Integer car_id , Integer speed ,

Integer exp_way , Integer lane , Integer dir ,

Integer seg >;

create function CarSegStr () -> Stream of Vector as select streamof(

select

{v[res_idx("CarLocStr", "time")],

v[res_idx("CarLocStr", "car_id")],

v[res_idx("CarLocStr", "speed")],

v[res_idx("CarLocStr", "exp_way")],

v[res_idx("CarLocStr", "lane")],

v[res_idx("CarLocStr", "dir")],

floor(cast(v[res_idx("CarLocStr", "x_pos")] as Number) / 52800)}

from Vector v

where v in CarLocStr ());

/* CurActiveCars (relation ): The relation containing the set of cars

"currently" on the freeway: cars that have reported their location in

the last 30 seconds.

SELECT DISTINCT car_id

FROM CarSegStr [RANGE 30 SECONDS ]; */

create function __meta__CurActiveCars () ->

<Integer time , Integer car_id >;

create function CurActiveCars () -> Stream of Window as select

w_distinct(

{res_idx("CurActiveCars", "car_id")},

w_project(

{res_idx("CarSegStr", "time"),

res_idx("CarSegStr", "car_id")},

w_time(CarSegStr(), 30, 1, res_idx("CarSegStr", "time"))));

/* CurCarSeg (relation ): The relation containing the current segment

for each car on the freeway. This relation is obtained by computing

the latest segment for all the cars (the partition window below), and

picking only those cars that are currently active (by joining with

CurActiveCars relation above ). Note that a segment is identified by

the expressway , the direction of travel , and the segment number within

the expressway .

SELECT car_id , exp_way , dir , seg

FROM CarSegStr [PARTITION BY car_id ROWS 1], CurActiveCars

WHERE CarSegStr.car_id = CurActiveCars .car_id; */

create function __meta__CurCarSeg () ->

<Integer time , Integer car_id , Integer exp_way , Integer seg >;

create function __join__CurCarSeg(Vector seg , Vector car) -> Boolean as

seg[res_idx("CarSegStr", "car_id")] = car[res_idx("CurActiveCars", "car_id")];

create function CurCarSeg () -> Stream of Window as select

w_project(

{join_res_idx ({"CarSegStr", "CurActiveCars"}, "time"),

join_res_idx ({"CarSegStr", "CurActiveCars"}, "car_id"),

join_res_idx ({"CarSegStr", "CurActiveCars"}, "exp_way"),

join_res_idx ({"CarSegStr", "CurActiveCars"}, "dir"),

join_res_idx ({"CarSegStr", "CurActiveCars"}, "seg")},
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w_join(

{w_partition(CarSegStr(), {res_idx("CarSegStr", "car_id")}, 1, 1,

res_idx("CarSegStr", "time")),

CurActiveCars ()},

#’__join__CurCarSeg ’));

/* CarSegEntryStr (stream ): Stream of tuples each corresponding to

entry of a car into a new segment. A car enters a new segment when a

new entry appears in the CurCarSeg relation.

ISTREAM (CurCarSeg );

Some subtle issues arise when a car exits a segment , and re -enters the

same segment; unless we make some additional assumptions not specified

in the original benchmark specification , we cannot distinguish between

the case of a car continuing in a segment , and that of the car exiting

and subsequently re -entering the same segment. Presently , we assume

that a car that has exited remains outside the freeway network for

atleast 30 seconds , which enables the system to distinguish between

the two cases above. */

create function __meta__CarSegEntryStr () ->

<Integer time , Integer car_id , Integer exp_way , Integer seg >;

create function CarSegEntryStr () -> Stream of Vector as select

istream(CurCarSeg ());

/* TollStr (stream ): Stream of tolls. This is one of the output

streams of the benchmark. Each car , on entering a segment , pays a toll

determined by the current state of traffic in the segment. The

formulation of TollStr below uses a relation , SegToll , that contains

the current toll for each segment. The SegToll relation is specified

later.

SELECT RSTREAM(E.car_id , T.toll)

FROM CarSegEntryStr [NOW] AS E, SegToll as T

WHERE E.exp_way = T.exp_way AND E.dir = T.dir AND E.seg = T.seg;

The toll notification stream does not incorporate the

frequent -traveler discount as required by the original benchmark

specification . Doing so involves "recursion " (since the tolls depend

on the previous tolls), and CQL currently does not handle

recursion . */

create function __meta__TollStr () ->

<Integer time , Integer car_id , Integer toll >;

create function __join__TollStr(Vector entry , Vector toll) -> Boolean as

entry[res_idx("CarSegEntryStr", "exp_way")] = toll[res_idx("SegToll", "exp_way")] and

entry[res_idx("CarSegEntryStr", "dir")] = toll[res_idx("SegToll", "dir")] and

entry[res_idx("CarSegEntryStr", "seg")] = toll[res_idx("SegToll", "seg")];

create function TollStr () -> Stream of Vector as select

rstream(w_project(

{join_res_idx ({"CarSegEntryStr", "SegToll"}, "CarSegEntryStr", "time"),

join_res_idx ({"CarSegEntryStr", "SegToll"}, "CarSegEntryStr", "car_id"),

join_res_idx ({"CarSegEntryStr", "SegToll"}, "SegToll", "toll")},

w_join(

{w_now(CarSegEntryStr (), res_idx("CarSegEntryStr", "time")),

SegToll ()},

#’__join__TollStr ’)));
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/* ********

*********

********* TOLL COMPUTATION FOR SEGMENTS

*********

******** */

/* SegAvgSpeed (relation) : The average speed of the cars in a segment

over the last 5 minutes.

SELECT exp_way , dir , seg , AVG(speed) as speed ,

FROM CarSegStr [RANGE 5 MINUTES]

GROUP BY exp_way , dir , seg; */

create function __meta__SegAvgSpeed () ->

<Integer exp_way , Integer dir , Integer seg , Integer speed >;

create function __meta__GroupbySegAvgSpeed () ->

<Integer exp_way , Integer dir , Integer seg , Integer speed >;

create function SegAvgSpeed () -> Stream of Window as select

w_project(

{res_idx("GroupbySegAvgSpeed", "exp_way"),

res_idx("GroupbySegAvgSpeed", "dir"),

res_idx("GroupbySegAvgSpeed", "seg"),

res_idx("GroupbySegAvgSpeed", "speed")},

w_group_by(

{res_idx("CarSegStr", "exp_way"),

res_idx("CarSegStr", "dir"),

res_idx("CarSegStr", "seg")},

{res_idx("CarSegStr", "speed")},

{#’avg’},

w_time(CarSegStr(), 300, 1, res_idx("CarSegStr", "time"))));

/* SegVol (relation ): Relation containing the number of cars currently

in a segment. The relation CurCarSeg is used to determine the cars in

each segment.

SELECT exp_way , dir , seg , COUNT (*) as volume

FROM CurCarSeg

GROUP BY exp_way , dir , seg; */

create function __meta__SegVol () ->

<Integer exp_way , Integer dir , Integer seg , Integer volume >;

create function __meta__GroupbySegVol () ->

<Integer exp_way , Integer dir , Integer seg , Integer volume >;

create function SegVol () -> Stream of Window as select

w_project(

{res_idx("GroupbySegVol", "exp_way"),

res_idx("GroupbySegVol", "dir"),

res_idx("GroupbySegVol", "seg"),

res_idx("GroupbySegVol", "volume")},

w_group_by(

{res_idx("CurCarSeg", "exp_way"),

res_idx("CurCarSeg", "dir"),

res_idx("CurCarSeg", "seg")},

{res_idx("CurCarSeg", "speed")},

{#’count ’},

41



CurCarSeg ()));

/* SegToll (relation ): Relation containing the toll for each

segment. There are no entries in the relation for segments having no

toll. A segment is tolled only if the average speed of the segment is

less than 40, and if it is not affected by an accident ( represented

here by the relation AccAffectedSeg which is specified later ). If a

segment is tolled , its toll is basetoll * (# cars - 150) * (# cars -

150).

SELECT S.exp_way , S.dir , S.seg , basetoll *(V.volume -150)*(V.volume -150)

FROM SegAvgSpeed as S, SegVol as V

WHERE S.exp_way = V.exp_way and S.dir = V.dir and S.seg = V.seg

and S.speed < 40

and (S.exp_way , S.dir , S.seg) NOT IN ( AccAffectedSeg );

Pity the lone car of a segment traveling at less than 40! */

create function __meta__SegToll () ->

<Integer time , Integer exp_way , Integer dir , Integer seg , Integer toll >;

create function __join__SegToll(Vector speed , Vector vol , Vector acc) -> Boolean as

speed[res_idx("SegAvgSpeed", "exp_way")] = vol[res_idx("SegVol", "exp_way")] and

speed[res_idx("SegAvgSpeed", "dir")] = vol[res_idx("SegVol", "dir")] and

speed[res_idx("SegAvgSpeed", "seg")] = vol[res_idx("SegVol", "seg")] and

speed[res_idx("SegAvgSpeed", "exp_way")] < 40 and True !=

(speed[res_idx("SegAvgSpeed", "exp_way")] = acc[res_idx("AccAffectedSeg", "exp_way")] and

speed[res_idx("SegAvgSpeed", "dir")] = acc[res_idx("AccAffectedSeg", "dir")] and

speed[res_idx("SegAvgSpeed", "seg")] = acc[res_idx("AccAffectedSeg", "seg")]);

create function __toll__SegToll(Vector of Vector row) -> Number as

666 * (cast(vol[res_idx("SegVol", "volume")] as Number )-150) * (cast(vol[res_idx("SegVol", "volume")] as Number ) -150);

create function SegToll () -> Stream of Window as select

w_project(

{join_res_idx ({"SegAvgSpeed", "SegVol"}, "SegAvgSpeed", "exp_way"),

join_res_idx ({"SegAvgSpeed", "SegVol"}, "SegAvgSpeed", "dir"),

join_res_idx ({"SegAvgSpeed", "SegVol"}, "SegAvgSpeed", "seg"),

#’__toll__SegToll ’},

w_join(

{SegAvgSpeed (),

SegVol(),

AccAffectedSeg ()},

#’__join__SegToll ’));

/* ********

*********

********* ACCIDENT DETECTION AND NOTIFICATION

*********

******** */

/* AccCars (relation ): Relation containing cars currently involved in

an accident , and the position of the accident. Note that AVG(x-pos)

below is just a hack to get the common location of 4 identical

location reports of a car involved in an accident.

SELECT car_id , AVG(x-pos) AS acc_loc

FROM CarLocStr [PARTITION BY car_id ROWS 4]

GROUP BY car_id

HAVING COUNT DISTINCT (x-pos) == 1; */
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create function __meta__AccCars () ->

<Integer car_id , Integer acc_loc >;

create function __meta__GroupbyAccCars () ->

<Integer car_id , Integer acc_loc , Integer pos_count >;

create function __filter__AccCars(Vector row) -> Boolean as

row[res_idx("GroupbyAccCars", "pos_count")] = 1;

create function AccCars () -> Stream of Window as select

w_project(

{res_idx("GroupbyAccCars", "car_id"),

res_idx("GroupbyAccCars", "acc_loc")},

w_filter(

w_group_by(

{res_idx("CarLocStr", "car_id")},

{res_idx("CarLocStr", "x_pos"),

res_idx("CarLocStr", "x_pos")},

{#’avg’,

#’count_distinct ’},

w_partition(CarLocStr(), {res_idx("CarLocStr", "car_id")}, 4, 1,

res_idx("CarLocStr", "time"))),

#’__filter__AccCars ’));

/* AccSeg (relation ): Relation containing the set of segments involved in an accident. This relation is obtained by joining

CurCarSeg relation with AccCars relation.

SELECT DISTINCT exp_way , dir , seg , acc_loc

FROM CurCarSeg , AccCars

WHERE CurCarSeg.car_id = AccCars.car_id; */

create function __meta__AccSeg () ->

<Integer time , Integer exp_way , Integer dir , Integer seg , Integer acc_loc >;

create function __join__AccSeg(Vector car , Vector acc_car) -> Boolean as

car[res_idx("CurCarSeg", "car_id")] = acc_car[res_idx("AccCars", "car_id")];

create function AccSeg () -> Stream of Window as select

w_distinct(

{res_idx("AccSeg", "exp_way"),

res_idx("AccSeg", "dir"),

res_idx("AccSeg", "seg"),

res_idx("AccSeg", "acc_loc")},

w_project(

{join_res_idx ({"CurCarSeg", "AccCars"}, "time"),

join_res_idx ({"CurCarSeg", "AccCars"}, "exp_way"),

join_res_idx ({"CurCarSeg", "AccCars"}, "dir"),

join_res_idx ({"CurCarSeg", "AccCars"}, "seg"),

join_res_idx ({"CurCarSeg", "AccCars"}, "acc_loc")},

w_join(

{CurCarSeg (),

AccCars ()},

#’__join__AccSeg ’)));

/* AccNotifyStr (stream ): Output stream notifying an accident to cars

currently in the upstream 5 segments from the accident segment. The

ISTREAM operator streams a new accident being inserted into AccSeg

relation; a new accident tuple is joined with CurCarSeg relation to

determine cars in the upstream 5 segments.
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SELECT RSTREAM (car_id , acc_loc)

FROM (ISTREAM (AccSeg )) [NOW] AS A, CurCarSeg as S

WHERE (A.exp_way = S.exp_way and A.dir = EAST and S.dir = EAST and

S.seg < A.seg and S.seg > A.seg - 5) OR

(A.exp_way = S.exp_way and A.dir = WEST and S.dir = WEST and

S.seg > A.seg and S.seg < A.seg + 5); */

create function __meta__AccNotifyStr () ->

<Integer time , Integer car_id , Integer acc_loc >;

create function __join__AccNotifyStr(Vector acc , Vector car) -> Boolean as

(acc[res_idx("AccSeg", "exp_way")] = car[res_idx("CurCarSeg", "exp_way")] and

acc[res_idx("AccSeg", "dir")] = "EAST" and

car[res_idx("CurCarSeg", "dir")] = "EAST" and

car[res_idx("CurCarSeg", "seg")] < acc[res_idx("AccSeg", "seg")] and

car[res_idx("CurCarSeg", "seg")] > cast(acc[res_idx("AccSeg", "seg")] as Number) - 5) or

(acc[res_idx("AccSeg", "exp_way")] = car[res_idx("CurCarSeg", "exp_way")] and

acc[res_idx("AccSeg", "dir")] = "WEST" and

car[res_idx("CurCarSeg", "dir")] = "WEST" and

car[res_idx("CurCarSeg", "seg")] > acc[res_idx("AccSeg", "seg")] and

car[res_idx("CurCarSeg", "seg")] < cast(acc[res_idx("AccSeg", "seg")] as Number) + 5);

create function AccNotifyStr () -> Stream of Vector as select

rstream(w_project(

{join_res_idx ({"AccSeg", "CurCarSeg"}, "time"),

join_res_idx ({"AccSeg", "CurCarSeg"}, "car_id"),

join_res_idx ({"AccSeg", "CurCarSeg"}, "acc_loc")},

w_join(

{w_now(istream(AccSeg ()), res_idx("AccSeg", "time")),

CurCarSeg ()},

#’__join__AccNotifyStr ’)));

/* AccAffectedSeg (relation ): Relation of segments not tolled due to

accidents (see SegToll relation ). The 10 upstream segments of an

accident segment are not tolled until 20 minutes after an accident is

cleared. For simplicity , the CQL specification of this relation

assumes a fixed relation AllSeg containing the set of all all segments

in all the freeways. The relation AccAffectedSeg is specified below as

a union of two relations ---the relation containing 10 upstream

segments of segments currently having an uncleared accident , and the

relation containing 10 upstream segments of segments that had an

accident cleared within the last 20 minutes.

SELECT A.exp_way , A.dir , A.seg

FROM AllSeg AS A, AccSeg AS S

WHERE (A.exp_way = S.exp_way AND A.dir = EAST AND S.dir = EAST AND

A.seg < S.seg AND A.seg > S.seg - 10) OR

(A.exp_way = S.exp_way AND A.dir = WEST AND S.dir = WEST AND

A.seg > S.seg AND A.seg < S.seg + 10)

UNION

SELECT A.exp_way , A.dir , A.seg

FROM AllSeg AS A, DSTREAM ( AccSeg )[ RANGE 20 MINUTES] AS S

WHERE (A.exp_way = S.exp_way AND A.dir = EAST AND S.dir = EAST AND

A.seg < S.seg AND A.seg > S.seg - 10) OR

(A.exp_way = S.exp_way AND A.dir = WEST AND S.dir = WEST AND

A.seg > S.seg AND A.seg < S.seg + 10); */
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create function __meta__AccAffectedSeg () ->

<Integer time , Integer exp_way , Integer dir , Integer seg >;

create function __join_amosfn__AccAffectedSeg(Vector accseg_row) -> Bag of Vector as

select allseg_row

from Vector allseg_row

where allseg_row in streamof(AllSeg ()) and

(( allseg_row[res_idx("AllSeg", "exp_way")] = accseg_row[res_idx("AccSeg", "exp_way")] and

allseg_row[res_idx("AllSeg", "dir")] = "EAST" and

accseg_row[res_idx("AccSeg", "dir")] = "EAST" and

accseg_row[res_idx("AllSeg", "seg")] < allseg_row[res_idx("AccSeg", "seg")] and

accseg_row[res_idx("AllSeg", "seg")] > cast(allseg_row[res_idx("AccSeg", "seg")] as Number) - 10) or

(allseg_row[res_idx("AllSeg", "exp_way")] = accseg_row[res_idx("AccSeg", "exp_way")] and

allseg_row[res_idx("AllSeg", "dir")] = "WEST" and

accseg_row[res_idx("AccSeg", "dir")] = "WEST" and

accseg_row[res_idx("AllSeg", "seg")] > allseg_row[res_idx("AccSeg", "seg")] and

accseg_row[res_idx("AllSeg", "seg")] < cast(allseg_row[res_idx("AccSeg", "seg")] as Number) + 10));

create function AccAffectedSeg () -> Stream of Window as select

w_union ({

w_project(

{join_res_idx ({"AccSeg", "AllSeg"}, "AccSeg", "time"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "exp_way"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "dir"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "seg")},

w_join_amosfn(

AccSeg(),

#’__join_amosfn__AccAffectedSeg ’)),

w_project(

{join_res_idx ({"AccSeg", "AllSeg"}, "AccSeg", "time"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "exp_way"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "dir"),

join_res_idx ({"AccSeg", "AllSeg"}, "AllSeg", "seg")},

w_join_amosfn(

w_time(dstream(AccSeg ()), 1200, 1, res_idx("AccSeg", "time")),

#’__join_amosfn__AccAffectedSeg ’))});

/* ********

*********

********* NEGATIVE TOLL GENERATION

*********

******** */

/* CarExitStr (stream ): Stream of events of cars exiting from the

freeways. A car has exited if it is no longer "active" (i.e., it has

not reported its location in the last 30 seconds ). The exiting of cars

is determined by applying the DSTREAM operator on the CurActiveCars

relation. The relation CurActiveCars does not store the latest segment

of the car; this is determined by using the last location report of

the car in CarSegStr.

SELECT RSTREAM (S.car_id , S.exp_way , S.dir , S.seg)

FROM (DSTREAM ( CurActiveCars )) [NOW] AS A,

CarSegStr [ PARTITION BY car_id ROWS 1] AS S

WHERE A.car_id = S.car_id; */

create function __meta__CarExitStr () ->

<Integer time , Integer car_id , Integer exp_way , Integer dir , Integer seg >;

create function __join__CarExitStr(Vector car , Vector loc) -> Boolean as

car[res_idx("CurActiveCars", "car_id")] = loc[res_idx("CarSegStr", "car_id")];
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create function CarExitStr () -> Stream of Vector as select

rstream(

w_project(

{join_res_idx ({"CurActiveCars", "CarSegStr"}, "CurActiveCars", "time"),

join_res_idx ({"CurActiveCars", "CarSegStr"}, "CarSegStr", "car_id"),

join_res_idx ({"CurActiveCars", "CarSegStr"}, "CarSegStr", "exp_way"),

join_res_idx ({"CurActiveCars", "CarSegStr"}, "CarSegStr", "dir"),

join_res_idx ({"CurActiveCars", "CarSegStr"}, "CarSegStr", "seg")},

w_join(

{w_now(dstream(CurActiveCars ()), res_idx("CurActiveCars", "time")),

w_partition(CarSegStr(), {res_idx("CarSegStr", "car_id")}, 1, 1,

res_idx("CarSegStr", "time"))},

#’__join__CarExitStr ’)));

/* NegTollStr (stream ): Stream of negative tolls to cars exiting on a

segment. The amount of the negative toll for an exiting car is equal

to the latest charged toll (TollStr) for the car.

SELECT RSTREAM (E.car_id , T.toll)

FROM CarExitStr [NOW] AS E, TollStr [PARTITION BY car_id ROWS 1] AS T

WHERE E.car_id = T.car_id; */

create function __meta__NegTollStr () ->

<Integer time , Integer car_id , Integer exp_way , Integer dir , Integer seg >;

create function __join__NegTollStr(Vector car , Vector toll) -> Boolean as

car[res_idx("CarExitStr", "car_id")] = toll[res_idx("TollStr", "car_id")];

create function NegTollStr () -> Stream of Vector as select

rstream(

w_project(

{join_res_idx ({"CarExitStr", "TollStr"}, "CarExitStr", "time"),

join_res_idx ({"CarExitStr", "TollStr"}, "CarExitStr", "car_id"),

join_res_idx ({"CarExitStr", "TollStr"}, "TollStr", "toll")},

w_join(

{w_now(CarExitStr (), res_idx("CarExitStr", "time")),

w_partition(TollStr(), {res_idx("TollStr", "car_id")}, 1, 1,

res_idx("TollStr", "time"))},

#’__join__NegTollStr ’)));

/* NegAccTollStr (stream ): Stream of negative tolls given to cars

exiting less than five segments upstream from an accident segment

(relation AccSeg ).

SELECT RSTREAM (car_id , X)

FROM CarExitStr [NOW] as E, AccSeg as A

WHERE (E.exp_way = A.exp_way AND E.dir = EAST AND A.dir = EAST and

E.seg < A.seg AND E.seg > A.seg - 5) OR

(E.exp_way = A.exp_way AND E.dir = WEST AND A.dir = WEST and

E.seg > A.seg AND E.seg < A.seg + 5); */

create function __meta__NegAccTollStr () ->

<Integer time , Integer car_id , Integer neg_toll >;

create function __join__NegAccTollStr(Vector car , Vector acc) -> Boolean as

(car[res_idx("CarExitStr", "exp_way")] = acc[res_idx("AccSeg", "exp_way")] and

car[res_idx("CarExitStr", "dir")] = "EAST" and

acc[res_idx("AccSeg", "dir")] = "EAST" and

acc[res_idx("AccSeg", "seg")] < car[res_idx("CarExitStr", "seg")] and

acc[res_idx("AccSeg", "seg")] > cast(car[res_idx("CarExitStr", "seg")] as Number) - 5) or

46



(car[res_idx("CarExitStr", "exp_way")] = acc[res_idx("AccSeg", "exp_way")] and

car[res_idx("CarExitStr", "dir")] = "WEST" and

acc[res_idx("AccSeg", "dir")] = "WEST" and

acc[res_idx("AccSeg", "seg")] > car[res_idx("CarExitStr", "seg")] and

acc[res_idx("AccSeg", "seg")] < cast(car[res_idx("CarExitStr", "seg")] as Number) + 5);

create function __neg_toll__NegAccTollStr(Vector row) -> Number as

42;

create function NegAccTollStr () -> Stream of Vector as select

rstream(

w_project(

{join_res_idx ({"CarExitStr", "AccSeg"}, "CarExitStr", "time"),

join_res_idx ({"CarExitStr", "AccSeg"}, "car_id"),

#’__neg_toll__NegAccTollStr ’},

w_join(

{w_now(CarExitStr (), res_idx("CarExitStr", "time")),

AccSeg ()},

#’__join__NegAccTollStr ’)));

/* ********

*********

********* ACCOUNTING

*********

******** */

/* AccTransStr (stream ): The union of all the transaction of a car

account - the " historical " credit stream (CreditStr ), the toll stream

(TollStr), the negative toll stream ( NegTollStr ), and the negative

toll stream due to accidents ( NegAccTollStr ).

SELECT *

FROM CreditStr

UNION ALL

SELECT car_id , toll AS credit

FROM NegTollStr

UNION ALL

SELECT car_id , toll AS credit

FROM NegAccTollStr

UNION ALL

SELECT car_id , -1 * toll AS credit

FROM TollStr; */

create function __filtered__NegTollStr () -> Stream of Vector as select streamof(

select

{v[res_idx("NegTollStr", "time")],

v[res_idx("NegTollStr", "car_id")],

v[res_idx("NegTollStr", "toll")]}

from Vector v

where v in NegTollStr ());

create function __filtered__NegAccTollStr () -> Stream of Vector as select streamof(

select

{v[res_idx("NegAccTollStr", "time")],

v[res_idx("NegAccTollStr", "car_id")],

v[res_idx("NegAccTollStr", "toll")]}
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from Vector v

where v in NegAccTollStr ());

create function __filtered__TollStr () -> Stream of Vector as select streamof(

select

{v[res_idx("TollStr", "time")],

v[res_idx("TollStr", "car_id")],

-1 * cast(v[res_idx("TollStr", "toll")] as Number )}

from Vector v

where v in TollStr ());

create function __meta__AccTransStr () ->

<Integer time , Integer car_id , Integer credit >;

create function AccTransStr () -> Stream of Vector as select

s_union_all ({

CreditStr(),

__filtered__NegTollStr (),

__filtered__NegAccTollStr (),

__filtered__TollStr ()});

/* AccBal (relation ): Relation corresponding to the current account

balance of each car.

SELECT car_id , SUM(credit) AS balance

FROM AccTransStr

GROUP BY car_id; */

create function __meta__AccBal () ->

<Integer car_id , Integer balance >;

create function __meta__GroupbyAccBal () ->

<Integer car_id , Integer balance >;

create function AccBal () -> Stream of Window as select

w_project(

{res_idx("GroupbyAccBal", "car_id"),

res_idx("GroupbyAccBal", "balance")},

w_group_by(

{res_idx("AccTransStr", "car_id")},

{res_idx("AccTransStr", "credit")},

{#’sum’},

w_now(AccTransStr (), res_idx("AccTransStr", "time"))));

/* ********

*********

********* ADHOC QUERY ANSWERING

*********

******** */

/* AccBalOutStr (stream ): Output stream of account balance queries.

SELECT RSTREAM(query_id , B.car_id , B.balance)

FROM AccBalQueryStr [NOW] AS Q, AccBal AS B

WHERE Q.car_id = B.car_id; */

create function __meta__AccBalOutStr () ->

<Integer time , Integer query_id , Integer car_id , Integer balance >;

create function __join__AccBalOutStr(Vector query , Vector bal) -> Boolean as
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query[res_idx("AccBalQueryStr", "car_id")] = bal[res_idx("AccBal", "car_id")];

create function AccBalOutStr () -> Stream of Vector as select

rstream(

w_project(

{join_res_idx ({"AccBalQueryStr", "AccBal"}, "AccBalQueryStr", "time"),

join_res_idx ({"AccBalQueryStr", "AccBal"}, "query_id"),

join_res_idx ({"AccBalQueryStr", "AccBal"}, "car_id"),

join_res_idx ({"AccBalQueryStr", "AccBal"}, "balance")},

w_join(

{w_now(AccBalQueryStr (), res_idx("AccBalQueryStr", "time")),

AccBal ()},

#’__join__AccBalOutStr ’)));

/* ExpOutStr (stream ): Output stream of current -day - expenditure adhoc queries.

SELECT RSTREAM(query_id , E.car_id , -1 * SUM(credit ))

FROM ExpQueryStr [NOW] as Q, AccTransStr [Today Window] as T

WHERE Q.car_id = T.car_id;

Note that this query is incomplete , i.e., the alias E is used but never defined.

Furthermore , the aggregate function sum is applied on AccTranStr .credit but the

group by operator is never used. We will rewrite the query:

ExpToday (relation ): Relation of todays expenditure for each car.

SELECT car_id , SUM(credit) as expenditure

FROM AccTransStr [RANGE 24 HOURS SLIDE 24 HOURS]

GROUP BY car_id;

ExpOutStr (stream ): Output stream of current -day - expenditure adhoc queries.

SELECT RSTREAM(time , query_id , car_id , expenditure )

FROM ExpQueryStr [NOW] as Q, ExpToday as T

WHERE Q.car_id = T.car_id; */

create function __meta__ExpToday () ->

<Integer car_id , Integer expenditure >;

create function __meta__GroupbyExpToday () ->

<Integer car_id , Integer expenditure >;

create function ExpToday () -> Stream of Window as select

w_project(

{res_idx("GroupbyExpToday", "car_id"),

res_idx("GroupbyExpToday", "expenditure")},

w_group_by(

{res_idx("AccTransStr", "car_id")},

{res_idx("AccTransStr", "credit")},

{#’sum’},

w_time(AccTransStr (), 24*60*60 , 24*60*60 , res_idx("AccTransStr", "time"))));

create function __meta__ExpOutStr () ->

<Integer time , Integer query_id , Integer car_id , Integer expenditure >;

create function __join__ExpOutStr(Vector query , Vector trans) -> Boolean as

query[res_idx("ExpQueryStr", "car_id")] = trans[res_idx("AccTransStr", "car_id")];

create function ExpOutStr () -> Stream of Vector as select

rstream(

w_project(

{join_res_idx ({"ExpQueryStr", "ExpToday"}, "time"),
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join_res_idx ({"ExpQueryStr", "ExpToday"}, "query_id"),

join_res_idx ({"ExpQueryStr", "ExpToday"}, "car_id"),

join_res_idx ({"ExpQueryStr", "ExpToday"}, "expenditure")},

w_join(

{w_now(ExpQueryStr (), res_idx("ExpQueryStr", "time")),

ExpToday ()},

#’__join__ExpOutStr ’)));

B Source Code

The FCQL source code is available at http://user.it.uu.se/ roka4241/fcql.

B.1 Window Datatype

Continuous relations are represented using a new window datatype which is
implemented in C and used by most FCQL operators.

/scsq/include/swin.h Stream window datatype header.

/scsq/C/swin.c Stream window datatype source.

B.2 FCQL Operators

FCQL operators are implemented in ALisp and found in /scsq/cql/opera-
tors/.

/scsq/cql/operators/window.lsp Relation-to-relation operators.

/scsq/cql/operators/aggregate.lsp Continuous relation aggregation.

/scsq/cql/operators/stream.lsp Relation-to-stream operators.

/scsq/cql/operators/join.lsp Stream and continuous relation joining.

B.3 Common Functionality

/scsq/cql/lsp/base.lsp Common FCQL functionality.
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B.4 Regressions tests

The correctness of the FCQL system is verified using a series of regressions
tests which can be found in /scql/cql/regress/. These tests make use of several
test data files available in /scql/cql/data/.

/scsq/cql/regress/window.osql Relation-to-relation operator tests.

/scsq/cql/regress/aggregate.osql Continuous relation aggregation tests.

/scsq/cql/regress/stream.osql Relation-to-stream operator tests.

/scsq/cql/regress/join.osql Stream and continuous relation joining tests.

/scsq/cql/regress/base.osql Common FCQL functionality tests.
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