

ACTA UNIVERSITATIS UPSALIENSIS
Uppsala Dissertations from the Faculty of Science and Technology

80

Ruslan Fomkin

Optimization and Execution of
Complex Scientific Queries

Dissertation presented at Uppsala University to be publicly examined in Häggsalen,
Ångströmslaboratoriet, Lägerhyddsvägen 1, Polacksbacken, Uppsala, Monday, February 2,
2009 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in
English.

Abstract
Fomkin, R. 2009. Optimization and Execution of Complex Scientific Queries. Acta
Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology
80. 157 pp. Uppsala. ISBN 978-91-554-7382-2.

Large volumes of data produced and shared within scientific communities are analyzed by many
researchers to investigate different scientific theories. Currently the analyses are implemented in
traditional programming languages such as C++. This is inefficient for research productivity, since
it is difficult to write, understand, and modify such programs. Furthermore, programs should scale
over large data volumes and analysis complexity, which further complicates code development.

This Thesis investigates the use of database technologies to implement scientific applications, in
which data are complex objects describing measurements of independent events and the analyses
are selections of events by applying conjunctions of complex numerical filters on each object
separately. An example of such an application is analyses for the presence of Higgs bosons in
collision events produced by the ATLAS experiment. For efficient implementation of such an
ATLAS application, a new data stream management system SQISLE is developed. In SQISLE
queries are specified over complex objects which are efficiently streamed from sources through the
query engine. This streaming approach is compared with the conventional approach to load events
into a database before querying. Since the queries implementing scientific analyses are large and
complex, novel techniques are developed for efficient query processing. To obtain efficient plans
for such queries SQISLE implements runtime query optimization strategies, which during query
execution collect runtime statistics for a query, reoptimize the query using the collected statistics,
and dynamically switch optimization strategies. The cost-based optimization utilizes a novel cost
model for aggregate functions over nested subqueries. To alleviate estimation errors in large
queries the fragments are decomposed into conjunctions of subqueries over which runtime statistics
are measured. Performance is further improved by query transformation, view materialization, and
partial evaluation. ATLAS queries in SQISLE using these query processing techniques perform
close to or better than hard-coded C++ implementations of the same analyses.

Scientific data are often stored in Grids, which manage both storage and computational
resources. This Thesis includes a framework POQSEC that utilizes Grid resources to scale
scientific queries over large data volumes by parallelizing the queries and shipping the data
management system itself, e.g. SQISLE, to Grid computational nodes for the parallel query
execution.

Keywords: scientific databases, query processing, data streams, cost-based query optimization,
query rewritings, databases and Grids

Ruslan Fomkin, Department of Information Technology, Box 337, Uppsala University, SE-75105
Uppsala, Sweden

© Ruslan Fomkin 2009

ISSN 1104-2516
ISBN 978-91-554-7382-2

urn:nbn:se:uu:diva-9514 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9514)

Printed in Sweden by Universitetstryckeriet, Uppsala 2009
Distributor: Uppsala University Library, Box 510, SE-751 20 Uppsala
www.uu.se, acta@ub.uu.se

Моей семье

Contents

1. Introduction ...13

2. Background..19
2.1 The ATLAS Application ..19

2.1.1 Application Data ..19
2.1.2 Application Analyses...22

2.2 Database Technologies...25
2.2.1 Query Processing ...27
2.2.2 Data Stream Management Systems28
2.2.3 Distributed Databases ..29

2.3 The Functional DBMS Amos II ...29
2.3.1 Functions in Amos II ...31
2.3.2 Query Language and Query Processing in Amos II32

2.4 Grid Technologies ..34
2.4.1 ARC Grid Middleware...34

3. The Loading Approach ..37
3.1 High Energy Physics Queries...39
3.2 The Aggregate Cost Model ..42
3.3 Profiled Grouping...44
3.4 Performance Measurements ...46

3.4.1 Experimental Setup..47
3.4.2 Experimental Results ...48

3.5 Summary ..51

4. The Streaming Approach, SQISLE ...53
4.1 Defining a SQISLE Application...55
4.2 Stream Objects ...57
4.3 Query Processing in SQISLE ...58
4.4 Optimization of Stream Queries ...61

4.4.1 The Profile-Controller Operator ..63
4.4.2 Event Statistics Profiling ...65
4.4.3 Group Statistics Profiling...66
4.4.4 Two-Phase Statistics Profiling...67

4.5 Query Rewrite Strategies..68
4.5.1 Rewritten and Materialized Transformation Views...............69

4.5.2 Materialized Computational Views72
4.5.3 Vector Rewritings ..73
4.5.4 Applying Partial Evaluation...75

4.6 Performance Measurements ...75
4.6.1 Evaluated Strategies...78
4.6.2 Measured Variables ...81
4.6.3 Setting Optimization and Profiling Parameters82

4.7 Evaluation Results ..83
4.7.1 Impact of Query Optimization ...84
4.7.2 Impact of Query Rewrites..87
4.7.3 Manually Coded Strategies ..90

4.8 Summary ..91

5. Managing Long-Running Queries in a Grid Environment93
5.1 POQSEC Architecture..94
5.2 HEP Queries ...96
5.3 Implementation...97
5.4 Summary ..101

6. Related Work...103
6.1 High-Level Analysis Tools for HEP Applications104
6.2 Data Stream Management Systems ..104
6.3 Adaptive Query Processing ..106
6.4 Processing of Complex Queries ...107
6.5 Databases and Distributed Computational Infrastructures109
6.6 Scientific Databases ...110

7. Summary and Future Work ...113

Summary in Swedish ..115

Acknowledgments...119

A. Definition of the Six Cuts Analysis in Natural Language121

B. Definition of the Particle Schema in ALEH123

C. Definition of Analysis Cuts in ALEH..125

D. Implementation of Stream Objects ..129

E. The ROOT Wrapper Interface ...131

F. The Transformation Views in SALEH ..135

G. The Particle Schema Definition in SALEH.......................................137

H. SQISLE Utility Functions..143

I. Definitions of Analysis Cuts in SALEH..145

J. The Stream Fragmenting Algorithm..151

Bibliography ...153

Abbreviations

ALEH query system for Analysis of LHC Events for containing
charged Higgs bosons

ARC Advanced Resource Connector (earlier called the NorduGrid
middleware, NG)

DB Data Base
DBA Data Base Administrator
DBMS Data Base Management System
DSMS Data Stream Management System
ER Entity-Relationship
EER Extended ER
HEP High Energy Physics
LHC Large Hadron Collider
OO Object-Oriented
POQSEC Parallel Object Query System for Expensive Computations
RDBMS Relational DBMS
SALEH Streamed ALEH
SPJ Select-Project-Join
SQISLE DSMS for processing Scientific Queries over Independent

Streamed Large Events

 13

1. Introduction

The scientific community produces lots of data, on which scientists perform
complex analyses to test hypotheses and theories. The amount of data is
usually huge so it is important to scale the analyses for large data volumes.
Scientists also need to understand the analyses and be able to modify them in
a simple way. Therefore the computer definition of the analyses should be
simple and easy to understand by a scientist. Furthermore, the complex
analyses contain many numerical operations that should be executed
efficiently.

For example, in High Energy Physics (HEP) a lot of data is generated by
simulation software from the Large Hadron Collider (LHC) experiment
ATLAS [7]. The data describes effects from collisions of particles. A
collision generates measurements of new particles, which are summarized in
a collision description called an event. Every collision is performed
independently from others, thus events are also independent. Events are
stored in files, which are generated and stored using Grid infrastructures [31]
that provide uniform access to pools of stored files and computational
resources [35]. Physicists test their theories on these data by selecting
interesting events. An event is interesting if it satisfies some conditions,
which are called cuts. Cuts are complex conditions over properties of an
independent event involving joins, aggregate functions, and complex
numerical computations. An example of a scientifically interesting event is a
collision event which is likely to produce Higgs bosons [15][47].

Currently physicists implement their theories using regular programming
languages, e.g., C++, and write scripts for a Grid infrastructure to access
event files and to execute analyses over the files. The analysis programs
retrieve events from files through specific data management libraries, for
example the C++ framework ROOT [18]. However, it takes lots of efforts for
physicists to express their analyses as C++ programs. Furthermore, good
knowledge of programming methodologies is necessary for writing
extensible and understandable programs for complex analyses. Because of
this it is often difficult to debug, understand, and modify the analysis
programs. Moreover, when the amount of data grows, scientists have to
manually modify programs and scripts to improve performance by code
optimization and parallelization.

On the other hand database management systems (DBMSs) [44] provide
high level query language interfaces to specify data analyses that scale over

 14

large amounts of data. Query languages like SQL have been shown to enable
much higher productivity than manual programming of regular programs
that traverse databases [24][89]. High level query languages furthermore
give flexibility for a database query optimizer to automatically generate
efficient and scalable query plans [89]. Parallelization of query execution
plans to run on many computing nodes is transparent for the user [76].
Furthermore, modern DBMSs can be extended with accesses to new kinds of
data sources, user-defined query functions, and user-defined data types,
which make it possible to use them for new applications such as scientific
ones.

In this Thesis it is investigated how database query processing
technologies can improve scientific analyses and novel database query
processing techniques are proposed for this. It aims at answering the
following research questions:
1. Can a DBMS and database queries be used to implement scientific

applications and scientific analyses? In particular, how should a DBMS
be extended for implementing a complex scientific application?

2. Can query processing improve performance and scalability of complex
scientific analysis queries? What query rewriting and optimization
techniques are needed for these?

3. How can storage and computational resources available through a Grid
infrastructure be utilized for scaling scientific analyses queries over
large amounts of data?

The Thesis focuses on those scientific applications where data are
measurements of independent events and the analyses are selections of those
events satisfying conjunctions of complex numerical filters on each event
separately. Furthermore, each event has a lot of associated data and therefore
can be seen as a small database, i.e. a complex object. The ATLAS
experiment is an example of such an application, since each collision is
performed independently from other collisions and each analysis is specified
as a conjunction of complex conditions on each collision event. The answers
to the research questions are illustrated on examples of the ATLAS
application from [15] and [47].

To show the feasibility of the proposed database approach, a first
prototype implementation of the ATLAS application from [15][47] was
made as extensions of a main memory DBMS Amos II [79]. The prototype is
called ALEH (query system for Analysis of LHC Events for containing
charged Higgs bosons). Events are there modeled as objects and functions in
a high-level functional data model [79], and a functional schema of event
data is designed. The analyses are expressed as conjunctive queries in a
functional query language. This way of implementing the application is
simple and natural since it is close to the textual application description as
expressed by the scientists in [15][47]. Therefore, it is more natural and

 15

much easier for the physicists to implement the analysis in queries than in
traditional way in C++ programs.

The amount of data in scientific applications is huge and the data is often
stored in distributed Grid files. Therefore, a framework was implemented
that connects ALEH with a Grid infrastructure called the Advance Resource
Connector, ARC [32]. The framework is called POQSEC (Parallel Object
Query System for Expensive Computations) and it utilizes resources of
Swegrid [90]. POQSEC provides a query interface to specify the analyses,
parallelizes queries into subqueries, generates job scripts for subqueries,
submits jobs to ARC for execution, monitors job executions, downloads job
results, and delivers results to users. POQSEC demonstrates an architecture,
where not only analysis subqueries and data are shipped to computational
nodes for execution but also the DBMS itself.

The implemented analysis queries and views are large and complex
compared to traditional database queries. Thus naïve processing of the
queries on each node takes a lot of time. It was therefore investigated how
local execution on one computation node can be improved by query
rewriting and optimization techniques. Two different query processing
architectures were studied with regard to query performance:
• First the conventional loading approach was studied, where first data is

loaded into a database and then queries are executed over the loaded data.
The ALEH prototype uses the loading approach.

• Then the streaming approach was studied, where data is not loaded, but
the scientific queries are executed directly over streams of data read from
the files or other sources. The streaming approach is natural for those
applications targeted by the Thesis, since every event is analyzed
separately from other events.
The loading approach is used in ALEH to analyze query optimization of

complex scientific queries. The ALEH implementation uses a functional
schema to represent events and analysis queries are implemented over the
functional schema. A cost-based query optimizer relies on cost models of
operators used in queries. To improve the optimization of the targeted kind
of scientific queries, a novel cost model is developed for aggregate functions
over nested subqueries. It is shown that this substantially improves ALEH
performance. However, the query optimizer still produces suboptimal plans
because of estimate errors. Furthermore, the time to do optimization is very
long because of the large query size.

The optimization is improved by a profiled grouping strategy where an
analysis query is first automatically fragmented into subqueries based on
application knowledge that all data are referenced by events and each event
is analyzed independently. Each fragment is then independently profiled on a
sample of events to measure real execution cost and fanout. An optimized
fragmented query with the measured cost model is shown to execute faster
than an ungrouped query optimized with the estimated cost model alone.

 16

Furthermore, the total optimization time, including fragmentation and
profiling, is substantially improved.

In ALEH the database of events is stored in main memory. The strategy
of loading events into the main memory DBMS has two main disadvantages:
• The time to load the data can be substantial.
• There is normally not sufficient main memory to fit the entire data set so

an even slower disk representation would be required to load all events to
analyze.
To alleviate these bottlenecks a streaming approach to query processing

was implemented in a new Data Stream Management System (DSMS) called
SQISLE (Scientific Queries over Independent Streamed Large Events).
Unlike a conventional DBMS, into which data has to be loaded before it can
be queried, a DSMS [9] like SQISLE manages and analyzes streamed data
not stored permanently in a DBMS, and the data streams are considered
infinite and cannot be re-read in general. In SQISLE the queries are selecting
complex objects streamed through the system. The streaming approach is
natural for our kind of scientific applications where each event is analyzed
independently from other events. Thus it is sufficient to access only one
currently analyzed complex object at the time from a stream and temporarily
materialize it in main memory only during the execution of an analysis query
over it.

SQISLE is implemented as an extension of the research DBMS Amos II
by extending its functional data model with a new data type Sobject to
represent complex objects participating in streams. Such stream objects are
allocated efficiently, are defined as user-defined types, and are deallocated
automatically and efficiently by an incremental garbage collector when they
are not referenced any more. The events streamed from sources are
represented as stream objects and the transformation between the event
representation in the sources and the event representation in a high-level
functional application schema is defined as transformation views by queries.
Therefore a user query always contains the following kinds of query
fragments:
• A source access query fragment specifies sources to access and calls a

stream function that generates a stream of events from the sources to
process.

• A processing query fragment specifies the scientific analyses in terms of
complex filters over the generated events. The processing query fragment
includes transformation views.
To understand the implications of the streaming approach, the ALEH

application was reimplemented in SQISLE in a streamed way. The
implementation is called SALEH (Streamed ALEH). In SALEH events and
their derived properties are represented in terms of the same functional
schema as used in the loading approach. In contrast to the loading approach,
where the schema is defined in terms of traditional objects, in SALEH the

 17

functional schema is defined in terms of stream objects. The cuts as defined
in ALEH can be directly used also in the processing query fragment of
SALEH queries, since the cut definitions in terms of the functional schema
are logically independent from the schema implementation.

In the Thesis it is shown that naïve execution of SALEH stream queries
without advanced query optimization is slow. It is therefore investigated
whether the query optimization strategies from the loading approach can be
utilized also for the streaming approach. Since, with the streaming approach
events are not stored in SQISLE, there are no statistics available for cost-
based optimization about the data collections, and statistics instead must be
collected dynamically during query execution. For this we introduce a new
operator, the profile-controller, which enables different runtime query
optimization strategies. During query execution it checks goodness of
statistical estimates, and, when it has determined that sufficient statistics are
collected, it dynamically reoptimizes the query and switches to query
execution without profiling overhead by disabling collecting and monitoring
statistics. It is shown that the runtime query optimization strategies improve
performance of stream analysis queries substantially compared to naïve
execution.

However, even with the profile-controller, the performance of some
stream queries is still much slower than the corresponding manually coded
C++ programs performing the same analyses. The bottleneck is in the
transformation views, which are called many times for the same event from a
file stream. Therefore, some general rewriting rules of complex expressions
are introduced to improve the performance of the transformation views.
Furthermore, to avoid repeated execution of them, materialization of the
transformation views is implemented. In addition, materialization of nested
subqueries and rewriting rules to remove unnecessary vector constructions
are done for the analysis query fragments. The source access query fragment
and transformation views need to access meta-data from the schema during
query execution. To eliminate the access to the schema, compile time
evaluation [59][77] is applied to expressions in queries accessing the
schema.

All these techniques together with the presented novel query optimization
techniques make performance of the stream analysis queries close to the
corresponding C++ programs.

In summary the results of this Thesis are:
• It is shown that the HEP application and its analyses can be implemented

in terms of high-level queries. The events are represented using a
functional data model, and queries are defined using a functional query
language.

• It is shown that, based on our contributions to query processing, the
scientific application queries can be executed as efficiently as with a hard-
coded C++ approach.

 18

• The streaming approach is used to select complex objects from files. It is
shown to perform much better than the loading approach. The streaming
approach is based on the implementation of the data type Sobject, which
efficiently represents complex objects such as events with complex
structures. The streaming approach obtains efficient plans by runtime
query optimization strategies utilizing the profile-controller operator,
which encapsulates in each query the query fragment that tests complex
conditions over event properties. It controls collection of statistics for the
fragment, reoptimizes the fragment at runtime based on collected
statistics, and dynamically switches optimization strategies.

• A novel cost model for aggregate functions over nested subqueries is
developed, and it is shown to improve performance of complex queries
with many aggregate functions over complex nested subqueries.

• The profiled grouping approach automatically fragments a query into
groups and profiles each group to measure its real cost and fanout on a
subset of events. It is shown that, with the profiled grouping approach and
the cost model for aggregate functions, the query optimizer is able to find
better performing plans than without the profiled grouping approach.

• Rewritings of query expressions and materializations of views called in a
query further improve performance. It is shown that these techniques
significantly improve performance of queries with low selectivities.

• The integration of a DBMS with a Grid infrastructure utilizes Grid
computational resources for scalable execution of the application queries
over data stored in a Grid. The integration is based on an architecture
where data, queries, and a database system are shipped to computational
resources accessible through the Grid infrastructure. It is shown that this
architecture allows executing queries in parallel on non-dedicated external
resources managed by a Grid infrastructure.
The rest of the Thesis is organized in the following way. Chapter 2

describes the ATLAS application, which motivates the Thesis, and gives
background on the technologies extended in the Thesis. Chapter 3 presents
contributions on the query optimization and evaluates the contributions for
the loading scenario, based on our paper [38]. The stream system SQISLE
and the streaming implementation of ALEH are described in Chapter 4.
Chapter 5 describes integration of the DBMS with a Grid infrastructure
based on our paper [37]. The chapter presents the parallel architecture of
executing expensive queries in the Grid environment. It is followed by
related work in Chapter 6, which describes work related to all parts of the
Thesis. Chapter 7 summarizes the Thesis and presents future work.

 19

2. Background

This chapter describes the basis for the Thesis. First, the scientific
application used in the Thesis is described in Section 2.1. Related database
technologies are described in Section 2.2. They are followed by description
of the DBMS Amos II, which is extended in this work, in Section 2.3.
Finally Section 2.4 presents Grid technologies and in particular the
Advanced Resource Connector (ARC).

2.1 The ATLAS Application
Our test application is from HEP, where lots of data is produced by LHC
detectors, e.g. ATLAS [7]. Currently the ATLAS experiment simulates data
to test its software infrastructure and to provide test data for physicists. The
physicists use the simulated data during development and testing their
theories. Many more physicists are going to be involved in the analyses of
real data after LHC and ATLAS detector start to produce collision events at
very high rate.

2.1.1 Application Data
The data produced by the ATLAS experiment describe collisions of
particles. Each collision generates new particles, which are measured by the
ATLAS detector, or the measurements are simulated by the ATLAS
experiment. The measurements of particles produced in a collision form a
collision event. Each event is conditionally independent given experimental
run conditions, since each collision is preformed independently. Distribution
of event property values are the same for events produced with the same
experimental run conditions.

The ATLAS experiment generates measurements as raw data, which are
processed by several phases of ATLAS software and summarized in high-
level collision descriptions [8]. This work focuses on the high-level
descriptions of simulated collision events as in [47]. Each such event is
described by event properties, which are general measurements about the
collision and sets of generated particles of various types. An example of a
general collision measurement is the missing momentum in x and y
directions (PxMiss and PyMiss). The generated particles of an event are, e.g.,

 20

electrons, muons, and jets. The particles of the events are described by the
same set of properties such as the ID-number of the type of a particle (Kf),
momentum in x, y, and z directions (Px, Py, and Pz), and the amount of
energy (Ee). Therefore, our application data are sets of independent events
described by their properties.

The events are stored in files, which are usually generated on Grid
computational resources and then stored on Grid storage resources or locally.
The test data for [47] and this Thesis were produced in NorduGrid [31], and
the files used in the Thesis are stored in NorduGrid storage resources. The
names of the files reflect experimental run conditions and contain data
partition identifiers within the experiment, thus we assume that two events
are produced with the same experimental run condition if the names of the
source files differ only by the partition identifiers.

Events are accessed from the files through the C++ framework ROOT
[18]. ROOT is a general framework, which provides ability to store data as
collection of tuples of simple C values or as collection of C++ objects. One
ROOT file can contain several independent collections of data. Thus it is
necessary to specify the ROOT file, the internal path to a collection, the
name of the collection, and the tuple or object positions in the collection to
retrieve data. ROOT also provides an interface to retrieve metadata about the
files that includes, for example, which collections are stored in the file, paths
to the collections, structure for each collection, and amount of data stored in
each collection.

The simulated events available for this Thesis are stored in ROOT files in
a collection called h51 as tuples of simple C values. Each element of a
ROOT tuple contains either a real or integer number or a C array of
numbers. The element values are accessed by their position in the ROOT
tuple. The metadata about the collection of tuples describe attributes and
mappings of the attribute names to position identifiers and types of the
corresponding elements in the tuples.

All ROOT files, which store events of the Thesis’ application, have the
same structure and the file names contain meta-information about stored
events. Events are stored in a collection object, named h51, located in
/ATLFAST in the ROOT files. Examples of file names are
bkg2Events_000.root, bkg2Events_001.root, and signalEvents_000.root. The
names of the first two files describe that their events are from the same set
produced in an experiment named bkg2 and have the same distribution. The
numbers 000 and 001 in the file names identify subsets of the event set. The
experiment bkg2 simulates background events, which are unlikely to
produce Higgs bosons and therefore the analysis queries searching for Higgs
bosons have high selectivities. The events from signalEvents_000.root are
simulated in a different experiment named signal and have another
distribution than the events produced in the experiment bkg2. The
experiment signal produces signal events, which are likely to produce Higgs

 21

bosons and therefore the analysis queries searching for Higgs bosons have
low selectivities.

The structure of the ROOT tuples is the same in all test files. Each ROOT
tuple contains 58 attributes. Some of the attributes are presented in Table
2.1. Position 0 of the tuples stores a unique ID number of an event within the
file (EventId). Attribute Nele at position 1 describes how many electrons are
contained in the event. The properties of electrons are presented in attributes
at positions 2-6. They are followed by properties of other particles of events
and general event properties. For example, attributes at positions 54 and 55
contains values of the missing momentum.

Table 2.1 includes examples of values for some events. For example,
event with EventId equal to three contains two electrons. The properties of
the electrons are stored as vectors in the attributes Kfele, Pxele, Pyele, Pzele,
and Eeele. In the example each attribute array contains two elements to store
property values for both the electrons. Then one of the electrons is
constructed by values stored in the attribute vectors at position zero and is
uniquely identified by the source event, which is from bkg2Events_000.root
and has EventId three, and the position in the source event (particle
identifier), which is zero. The other electron is constructed by values stored
in the attribute vectors at position one and is uniquely identified by the
source event and the particle identifier equal to one.

Table 2.1. Structure of the event tuples and example of events from file
bkg2Events_000.root. The first row contains logical names of the attributes, the
second row defines positions of the attributes in the tuples, and the third row
presents the types of the tuple elements. The remaining rows contain values of
example event attributes, where arrays are denoted by the notation {…}.

EventId Nele Kfele Pxele Pyele Pzele Eeele Nmuo Kfmuo
0 1 2 3 4 5 6 7 8

int int int [] float [] float [] float [] float [] int int []
0 0 null Null null null null 0 null
1 0 null Null null null null 1 {13}
…
3 2 {-11,11} {-20.67,

49.11}
{98.32,
67.51}

{36.43,
-29.14}

{106.8,
88.43}

1 {13}

…

Pxmuo Pymuo Pzmuo Eemuo … Pxmiss Pymiss Pxnue Pynue
9 10 11 12 54 55 56 57

float [] float [] float [] float [] float float float float
null null null null 20.43 19.80 0.039 19.93

{-32.03} {2.640} {33.81} {46.65} 107.5 -4.065 101.9 -10.37
…

{-41.23} {-21.16} {-41.06} {61.92} 43.77 8.846 36.94 17.30
…

 22

The above way of modeling events in the files is not natural, since every
particle is split between several attributes and one attribute contains values
from several particles indexed by the particle identifier. It is more natural to
represent particles as instances of corresponding particle types, e.g., as
electron or muon objects contained in the event objects.

An extended entity-relationship (EER) diagram [44] in Figure 2.1 models
the event collision data as objects of different types. The diagram describes
only those event properties, which are required by analyses in [15] and [47].
Analyses there are defined in terms of leptons and jets, which are
represented by types Lepton and Jet, respectively. A lepton is either an
electron or a muon, thus the types Electron and Muon are subtypes of type
Lepton. Since all kinds of particles have the same attributes, the general type
Particle is defined and all particle subtypes inherit its properties. The
attributes of particles are the ID-number of a specific kind of a particle (Kf),
momentum in x, y, and z directions (Px, Py, and Pz), the amount of energy
(Ee), and the identifier of the particle within an Event (PId). Particles are
contained in events. The attributes of an event are the missing momentum in
x and y directions (PxMiss and PyMiss), the name of a source file
(Filename), and the identifier within the file (EventId).

In the Thesis the same logical schema is defined based on this schema for
both the loading and streaming approaches. The logical schema is called the
particle schema and is defined using a functional data model [79], presented
later in the Thesis (Figure 2.3). Scientific analyses of event data are specified
as queries over events, which are expressed in terms of the particle schema.
However, different physical implementations of the particle schema are used
for the two approaches.

2.1.2 Application Analyses
Scientists analyze the event data to select interesting events. An analysis of
the events consists of selecting those events that can potentially contain
charged Higgs bosons [7]. A number of complex predicates, called cuts, are

Figure 2.1. An EER diagram of the event collision data.

 23

applied to each event and the events that satisfy all cuts are selected.
Selectivities of cuts are similar for the event sets that are produced with the
same experimental run condition. Since events are independent, the analysis
of each event is performed independently from other events.

Example 2.1. An example of a scientific analysis of the events is presented
in [47]. It defines four cuts: Jet Cut, Top Cut, Three Lepton Cut, and Two
Lepton Cut, and is called Four Cuts Analysis. Top Cut and Jet Cut are the
most complex cuts defined over jets. The definition of Top Cut in paper [47]
is:

The Top Cut requirements are:
Events must have at least three jets, each with pT > 20 GeV in |η| < 4.5.
Among these, the three jets most likely to come from the top quark are

selected by minimizing |mjjj – mt|, where mjjj is the invariant mass of
the three-jet system. It is required that |mjjj – mt| < 35 GeV.

Among these three top jets, the two jets most likely to come from the W
boson is selected by minimizing |mjj – mW|, where mjj is the invariant
mass of the two-jet system. It is required that |mjj – mW| < 15 GeV.

Where pT (called Pt in the Thesis) is calculated over the momentum of a
particle by formula:

22 PyPxpT += (2.1)

, η (called Eta in the Thesis) is calculated over the momentum of a particle
by formula:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−++

+++
⋅=

PzPzPyPx

PzPzPyPx
222

222

ln5.0η (2.2)

, the invariant mass is calculated over set of n particles by:

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⎟
⎠
⎞

⎜
⎝
⎛+⋅=

∑

∑

∑

∑∑∑∑∑

=

=

=

=====
n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

i
i

Pz

Py

Px

PzPyPxEeEem

1

1

1

11111

 (2.3)

, mT is the invariant mass of the top quark (174.3 GeV), and mW is the
invariant mass of the W boson (80.419 GeV). The definition of Jet Cut can
be found in [47].

Three Lepton Cut and Two Lepton Cut are simpler than the cuts above
and they are defined over leptons. The paper [47] describes Three Lepton
Cut as:

 24

The Three Lepton Cut requires:
Exactly three isolated leptons (l = e or μ) with |η| < 2.4, with pT > 7 GeV

and at least one of which with pT > 20 GeV.

Where l means a lepton, e means an electron, and μ means a muon. The
definition of Two Lepton Cut can be found in [47]. ■

The scientists implement their cuts in some programming language and
experiment with the implemented cuts and combinations of the different cuts
during developing and testing their scientific theories. Currently the analyses
are usually implemented in C++, which requires a lot of effort. Furthermore,
the event collision data are stored in ROOT files in an unnatural way as
discussed in the Section 2.1.1. Therefore, it can be difficult to understand
and modify programs implementing the analyses. Furthermore, modification
and extension of analyses requires code recompilation and uploading
compiled binaries to external computational resources.

Example 2.2. The theory presented in [47] and Example 2.1 is result of
several years of research. The work continued the theory presented in [15].
To be able to test new ideas, the requirements for the interesting events from
[15] were implemented as six cuts in a C++ program, which was then
modified and extended with the new ideas. The six cuts were Hadr Top Cut,
B Tag Cut, Jet Veto Cut, Z Veto Cut, Three Lepton Cut, and Other Cuts.
Then Hadr Top Cut was modified first and B Tag Cut was removed. The
definition of the implemented and modified cuts at this point is used in the
Thesis for evaluation. This analysis is called Six Cuts Analysis and can be
found in Appendix A in natural language.

The cuts over ROOT tuples from Table 2.1 were implemented by a
scientist in a C++ program without abstracting into a high level data model,
e.g., as presented in Figure 2.1. Thus duplicated code was introduced, for
example, in implementation of isolated leptons for electrons and muons in
Three Lepton Cut. Global variables were used to keep intermediate results
between cuts, for example, set of isolated leptons, which are used in Three
Lepton Cut, Jet Veto Cut, and Other Cuts. As result it is difficult to
understand and modify the code.

During the implementation of the cuts in the C++ program a manual
optimization of the code was done. The cuts were ordered in such a way that
the program should execute efficiently. The implemented order of the cuts is
Three Lepton Cut, Z Veto Cut, Hadr Top Cut, Jet Veto Cut, and finally Other
Cuts. Furthermore, materialization of temporary results of calculations is
manually implemented in the C++ program by storing the temporary results
in global variables, which are reset at the beginning of the analysis of each
event. The results of calculating isolated leptons, ok jets, b-tagged jets, and
w jets are materialized in C++ vectors. The materializations limit the

 25

possibility to reorder cuts, since the reordering sometimes requires manually
moving materialization code from one cut to another. ■

To investigate how database query processing technologies can improve
scientific analyses, Six Cuts Analysis (Example 2.2) is implemented in a
query language as six cut functions over the events modeled by a high-level
schema (Figure 2.1) and Four Cuts Analysis (Example 2.1) is implemented
as four cut functions. Six Cuts Analysis queries are evaluated for both the
loading and streaming approaches. It is demonstrated that the query language
implementation has comparable performance as the C++ implementation
described in Example 2.2. Four Cuts Analysis queries are evaluated only for
the streaming approach.

2.2 Database Technologies
Database technologies provide efficient and scalable processing of large
volumes of data. The traditional way to use these technologies is to store
data in a database managed by a database management system (DBMS) and
then specify data processing by queries to the DBMS [44]. This approach
does not suit all applications. In some cases, data can not be stored in a
DBMS and instead they are streamed through a data stream management
system (DSMS) [9]. In a DSMS queries are processed over streams instead of
querying stored data. In other cases, data are distributed in a network or
Internet and then a middleware DBMS (called a federated or mediator
database) integrates the data to answer a user query [76].

The database community has developed and continues to develop
technologies to support different applications to process data in efficient and
scalable ways [53]. Therefore, data-intensive applications can gain a lot by
utilizing appropriate database technologies. For example, the application
described in Section 2.1 does not utilize any database technology for
analyzing the huge amount of produced scientific data. This Thesis
investigates how database technologies can be utilized for applications of
this kind and develops new database techniques to achieve efficiency and
scalability in execution of analysis queries.

The first step in using databases is designing a conceptual schema of data.
Entity-Relationship (ER) modeling [20] is commonly used to model data on
high-level. During the ER modeling entity types with their attributes are
defined to model real world objects with properties. Entity types are related
to each other by relationships. The result of modeling can be presented on a
diagram, for example, by using the entity-relationship notation. ER model
can be extended with inheritance. For example, in Figure 2.1 an extended
entity-relationship (EER) notation is used to represent a conceptual schema.

 26

The conceptual schema is implemented in a DBMS and mapped into the
DBMS’s data model. A data model is a collection of data types, operators
manipulating data stored using the data types, and general integrity rules
constraining the stored data [24]. The relational data model [23] is most
commonly and widely used in databases, and many commercial DBMSs are
based on it. Such DBMSs are called Relational DBMSs (RDBMSs). In the
relational data model entity types are represented by relations, which can be
seen as tables. Entities are stored as tuples (called table rows in the standard
query language SQL [27]). Attributes of a tuple (column values in a table
row) correspond to attribute values of an entity. RDBMSs maintain extents
for every relation to represent its tuples. They also maintain primary key,
unique key, and foreign key constraints on attributes. Values of the primary
key attribute(s) of a relation identify uniquely tuples of the relation. Unique
key on an attribute specify that values of the attribute should be unique in
different tuples. Foreign key attributes of relations store relationships to
other relations. RDBMSs provide support for keys on single attributes and
compound keys defined over several attributes. For faster access values of
some attributes are indexed. Most RDBMSs always maintain indexes on
primary keys. Other attributes are indexed on requests of a database
administrator (DBA).

Each DBMS implements a query language, which is used to store,
modify, and search data from the RDBMS. Commercial RDBMSs
implement the high-level, nonprocedural standard query language SQL [27].
A query expressed in SQL specifies which data to retrieve. How data is
going to be physically accessed from a database is decided by the DBMS.

In SQL data retrievals specify data source relations, selection conditions
on tuples, and which attributes to be presented in the result. If data are
retrieved from more than one relation, tuples from different relations are
joined with each other using some join condition, e.g. equality on a foreign
key. A selection condition is specified as a set of operators on attribute
values of tuples. The operators can be logical, numerical, string, or complex
logical operators. Results of queries are formed by values of specified
attributes and values of other attributes are projected away. Queries with
joins, selection conditions, and attribute projection are called Select-Project-
Join (SPJ) queries.

SQL queries can be more complex than SPJ queries. Selected tuples can
be grouped and aggregate functions are applied over attribute values of the
tuples grouped together. Selection condition of the queries can contain
nested subqueries with aggregate functions over their results. A nested
subquery can access a variable bound to a relation from the a parent query.
Such a relation variable is called a correlated variable.

RDBMSs support views, which are virtual relations defined by queries on
top of physical relations or other views. Views provide modularity in query
definitions. Some DBMSs extend SQL to allow parameterized views.

 27

The main limitation of the relational data model is its limited
expressiveness. For example, it does not support inheritance. The Thesis
uses and extends a DBMS, which is based on a functional data model [40].
The functional data model provides higher expressiveness than the relational
data model, and naturally supports relational and object-oriented data.
Functional data models are based on mathematical notion of functions.
DBMSs with a functional data model, functional DBMSs, implement a
functional query language. Functional query languages give ability to
declaratively specify through functions complex data processing in addition
to the selection of which data to retrieve.

2.2.1 Query Processing
When a DBMS receives a query to select data it processes the query in
several phases. The query processing phases are presented in Figure 2.2 [52].
In the first phase a parser checks syntactic and semantic correctness of an
input query and creates a calculus representation of the query. Then a
rewriter transforms the calculus representation by applying different
rewriting rules. One of the most important rewriting is view expansion,
where views are substituted with their definitions.

Figure 2.2. General query processing steps.

After the pre-processing phase the query optimizer transforms the
predicates from the calculus representation of the query into algebra
operators implementing the query. The operators are placed in an order
called the execution plan of the query. Since there are many possible
execution plans for a given query, the query optimizer has the goal to find an
efficient execution plan. The query optimizer can be based on heuristics, cost
models, or usually a mixture of both heuristics and cost models. In a
heuristic based query optimizer heuristic rules define choice of operators and
their order. In a cost-based optimizer the cost of each operator is estimated
based on data statistics and an operator cost model and then the total cost of

 28

an execution plan is minimized based on the cost model. Query optimizers of
relational DBMS usually mix these two approaches. For example, RDBMSs
often use a heuristic rule that selection operators should be executed as early
as possible [57]. Then the order of joins and the choice of physical operators
implementing joins, e.g. a nested loop join [44], are optimized by
minimizing the cost of the final plan. The optimization is usually performed
by an optimization algorithm based on dynamic programming [87]. Such
algorithms can find optimal plan in terms of estimated cost. However,
optimization algorithms based on dynamic programming can handle only
small number of joins. Thus some DBMSs implement randomized
optimization [56][82] or greedy optimization [60] to handle larger queries.

In the last phase an execution engine executes the execution plan by
interpreting the plan. For example, a nested loop join of two relations called
outer and inner relations loops over all tuples from the inner relation for
each accessed tuple of outer relation to produce the join result. The result of
the query execution is shipped to the user.

This Thesis extends a DBMS that implements all these phases. After
parsing a query, several rewriting rules are applied including view
expansion. The Thesis proposes additional rewriting rules to reduce the
amount of operators in the execution plan. Query optimization is performed
by a cost-based optimizer. A novel cost model for operators used in the
application queries is presented in the Thesis. The DBMS provides three
optimization algorithms: based on dynamic programming, randomized
optimization, and greedy optimization. All the three algorithms are used in
the Thesis. The execution plan produced by the query optimizer is
interpreted during the query execution.

2.2.2 Data Stream Management Systems
There are applications, where data is constantly produced as streams. Storing
such data can be inefficient or impossible. To enable queries for such
applications Data Stream Management Systems (DSMSs) were developed
[9]. In DSMSs analyses are specified in high level query languages similar to
SQL over data which are streamed from sources [85]. It is common to
assume that data is ordered in a stream, and a data stream is infinite and
cannot be repeated. In a DSMS data is not available all the time and
execution is performed when data arrives, data driven execution, while in a
DBMS data is always available and execution is performed when a query is
issued, demand driven execution.

Since a stream is assumed to be infinite and not repeatable, DSMS queries
cannot be executed in the same way as by a DBMS. For example, the nested
loop join in a DBMS accesses data from inner tables many times. In the case
if inner relation is a stream, it cannot be called several times and data of the
stream cannot be stored either. Therefore, a concept of data windows is

 29

implemented in DSMSs [85]. Usually a data window contains only the most
recent data. Thus operators that require accessing the same data several
times are executed only over recent data and therefore the query results for
the entire stream are approximated.

This Thesis investigates scalability and efficiency of query processing
over complex objects streamed from sources, e.g. ROOT files in the ATLAS
application, and implements a new DSMS. In contrast to data driven DSMS
our DSMS is demand driven, i.e. it controls when each new complex object
is produced by a stream. In DSMSs the elements of the streams are usually
relatively simple records, while is our case the elements are complex objects.
Since in our kind of applications each complex object is analyzed
independently, our DSMS needs to process only one most recent element of
the stream at a time. Furthermore, our streams are finite, thus exact query
results can be obtained over entire stream. Therefore, windows and orders
are not utilized.

2.2.3 Distributed Databases
Distributed database systems [76] allow to process queries on more than one
database server distributed over a network. Usually DBMSs with data are
preinstalled on server machines and available before queries are issued.
Submitted queries are processed on distributed DBMSs transparently for the
user. Distributed database systems take care on splitting a submitted query
into query fragments, executing the query fragments on relevant source
DBMSs, and integrating results of the query fragment executions.
Traditionally distributed database systems minimize data volumes shipped
over network between the distributed DBMSs.

This Thesis presents a distributed architecture, where DBMSs are not pre-
installed. Instead the DBMS itself is shipped to computational resources in
addition to shipped query fragments and data. This makes possible to
dynamically utilize computational resources of Grids without preinstalling
DBMSs.

2.3 The Functional DBMS Amos II
This Thesis extends a research DBMS Amos II [79]. Amos II provides a
functional data model with user-defined data types, a functional query
language, external interfaces to C/C++, Lisp, and Java, query processing
with abilities to implement new rewriting rules and different optimization
methods, support for wrappers and mediators, and support for distribution
and stream environments.

The basic concepts of the functional data model of Amos II are objects,
types, and functions. All data are represented by objects, which can be literal

 30

objects or surrogate objects. Literal objects represent primitive data such as
numbers, strings, and collections and belong to literal types, e.g. Integer,
Real, Charstring, Vector, and Bag. Complex data are stored as surrogate
objects, which are associated with object identifiers (OIDs). Objects are
classified to types. Types are defined by users, are used to model real world
entities, and are arranged into hierarchies. Amos II maintains extents of
surrogate objects for every user-defined type. Values of surrogate objects are
related to the objects by functions. Functions also define relationships
between objects of different types. Therefore, both attributes and
relationships are modeled by functions, which are called stored functions.

The functional data model of Amos II is well suited to model scientific
data. For example, the EER model of the application data presented on
Figure 2.1 is mapped into the particle schema in the functional data model as
presented on Figure 2.3 and defined in Amos II. All presented entities are
directly mapped to types, which are organized in a type hierarchy. Attributes

Event Particleevent particles

Filename

Eventid Pxmiss

Pymiss

Lepton

JetElectronMuon

Pid

Px
Py

Pz

Kf

Ee

leptons

muons

electrons

jets

Legend
Type

Entity type

Attr.

Attribute of a
type

Fn

Relationship
defined by a
function Fn in
one direction

Fn1 Fn2

Relationship defined by
two functions in both

directions

Direction of a
function that

returns a single
tuple per single

input tuple

Direction of a
function that

returns a bag of
tuples per single

input tuple

is-a
relationship

Figure 2.3. The particle schema of the event collision data in the functional data
model.

 31

of the type Event are implemented as stored functions named EventId,
FileName, PxMiss, and PyMiss. These functions take objects of type Event
as argument and return literal objects of types Integer, Charstring, Real, and
Real, respectively, as results. Analogously attributes of entity Particle are
implemented as functions over type Particle and return numbers. Types
Lepton and Jet are implemented as subtypes of type Particle, and therefore,
inherits all functions defined for the type Particle. Type Lepton is supertype
for types Electron and Muon. The relationship between Event and Particle is
implemented by the function event, which takes an object of type Particle as
argument and returns an object of type Event as result, and by the functions
from type Event to each particle type, which return all particles of the kind
belonging to an input event.

2.3.1 Functions in Amos II
A function in Amos II can be a stored function implementing attributes or
relationships, a derived function implementing parameterized views, or a
foreign function implemented in a procedural sub-language of Amos II or
some external programming language. Basic operators such as less, equality,
plus, absolute value are implemented as foreign functions in C. Queries and
functions return a single value or bags of values.

Functions can be defined as multidirectional to represent different
implementations for a function for each of its inverses. A multidirectional
function has different implementations for different binding patterns [44],
i.e. which argument or result parameters are bound in a query.
Multidirectional functions can be defined explicitly by providing different
implementations for different binding patterns. Multidirectional functions
provide flexibility for the query optimizer to implement access to external
data structures. For example, a function vref returning an element of a vector
is defined as multidirectional foreign function for two binding patterns bbf
and bff:

create function vref(Vector v, Integer i) -> Object o

 as multidirectional

 (“bbf” foreign ‘vrefbbf’)

 (“bff” foreign ‘vrefbff’);

The first binding pattern bbf means that both the vector v and the position i
of the element in the vector are known. Therefore, the implementation
vrefbbf is going to be called to access the element in the vector directly. With
the second binding pattern bff only the vector v is known. Therefore, the
implementation vrefbff is used to iterate over all elements of the vector v and
emit values for both the index i and element o.

 32

2.3.2 Query Language and Query Processing in Amos II
The query language of Amos II is called AmosQL. In AmosQL queries are
specified in SELECT-FROM-WHERE statements. The FROM clause
specifies type extents to access, the WHERE clause specifies selection
conditions, and the SELECT clause specifies the values to return. SELECT
and WHERE clauses can contain calls to any kind of functions.

AmosQL queries are processed in four phases as presented in Figure 2.2.
First, a query is parsed and translated in a logical calculus representation
called ObjectLog [66], which is a dialect of Datalog [44]. Then various
rewriting rules are applied to the query. View expansion is performed by
substituting derived functions with their definitions. Another rewriting rule
applied to the query is partial evaluation, which reduces query fragments by
evaluating them during the rewriting phase [77]. After rewriting the query
represented in ObjectLog is optimized by a cost-based query optimizer,
which produces an execution plan represented in an object algebra.

In Amos II each function is associated with cost models consisting of
execution costs and fanouts. Costs of functions indicate if one function is
more expensive in terms of its execution time than another one. The fanout
of a function estimates how many tuples are produced by the function per
one input tuple. The fanout of selection predicates (called selectivity) are less
than one since they filter their inputs. Numerical functions usually transform
an input value into some output tuple; thus their fanouts are equal to one.
The fanout of a function returning a bag (called its cardinality) is equal to
the size of the bag. Default statistics are defined for different groups of
common functions, e.g., bag valued functions have fanout 100, selective
predicates have fanout 0.4, and other foreign functions have fanout one.
More specific cost models can be defined for functions by providing either
cost hints, which are constant numbers, or cost functions, which dynamically
calculate operator costs and fanouts on the query optimizer’s requests.
Different cost models can be used for different binding patterns of a
function.

The query optimizer chooses the operators that implement the functions
for one of their binding patterns, and places operators in a sequential
execution plan in certain order. The choice and place of operators depends
on two factors: each operator should be executable, i.e., the operator’s
arguments should all be bound, and the total cost of the execution plan
should be minimized. Three optimization methods are available in Amos II.
They are dynamic programming, greedy optimization, and randomized
optimization. The optimization method based on dynamic programming [87]
finds the optimal execution plan according to the cost model, i.e. the optimal
plan has the smallest total cost among all possible execution plans for the
query. The total cost for nested loop joins is calculated by formula [66]:

 33

∑ ∏
=

−

=
⎟
⎠
⎞

⎜
⎝
⎛ ⋅

n

k

k

l
ki pfopcost

1

1

1

)()((2.4)

, where pk is an operator placed at position k in the sequential execution plan
consisting of n operators. The cost of operator pk is cost(pk) and its fanout is
fo(pk). Calculation of the total cost assumes that all n operators are
independent from each other.

Dynamic programming can handle only queries with few operators, since,
e.g., the worst case complexity of System R algorithm [87] is O(2N) for a
query with N joins. The other optimization methods, greedy optimization
and randomized optimization, are able to handle queries of any size, but they
do not guarantee to find the optimal plan.

Greedy optimization [66] is assigning ranks to operators and sorting the
operators according their ranks. An execution plan is constructed by chosing
an executable operator with smallest rank among all operators, which are not
yet in the plan. The rank for an operator pk is calculated by formula:

)(
1)(

k

k

pcost
pfo − (2.5)

The idea behind the rank formula is that selective operators are placed as
earlier as possible and operators with fanouts bigger than one are placed as
late as possible. Among selective operators the cheapest is placed first.
Among operators with fanouts bigger than one the most expensive is placed
first. To be able to compare operators with fanouts equal to one, their fanouts
are replaced with 0.99 while calculating of their ranks.

This greedy optimization finds suboptimal plans in complex cases, but it
is very fast.

The randomized optimization [71] is a two-phase algorithm based on
random walk. It minimizes plan cost calculated by formula (2.4). The first
phase is called Iterative Improvement (II), which randomly generates an
executable query plan and searches for local minimum in its each iteration.
The cheapest plan among of all iterations is returned as result of the iterative
improvement. On the result plan of the iterative improvement Sequence
Heuristic (SH) is applied. Each iteration of the sequence heuristic randomly
chooses a neighbor plan to the best known plan and searches for local
minimum from the neighbor by random walks. The result plan of sequence
heuristic is provided as the final execution plan. The number of iterations for
iterative improvement and sequence heuristic phases can be tuned. For large
and complex queries the randomized optimization needs to run for a long
time to obtain a good plan. Randomized optimization is able to find much
better plans than greedy optimization, but it can take a lot of time for the
randomized optimization to find a good plan.

 34

The execution engine interprets an execution plan obtained by one of the
optimization methods. Operators in a query plan are executed iteratively in a
stream fashion in the same order as in the plan by a nested loop join.

This Thesis implements the ATLAS application, a DSMS SQISLE, and
parallel query management system POQSEC as extensions of Amos II. The
query language of Amos II is extended with numerical and aggregate
functions to define analyses queries for the ATLAS application. The data
model of Amos II is extended with data type Sobject for efficient processing
events with complex structures streamed from files or other sources. The
query processing of Amos II is extended with runtime query optimization,
which collect data statistics and optimizes queries at runtime, and profiled
grouping, which fragments queries in groups, measures execution time and
fanout of each group, and optimizes join-order of groups. Operators cost
models of Amos II are extended with aggregate cost model for aggregate
functions over nested subqueries. These extensions are important
contribution of the Thesis.

2.4 Grid Technologies
Grid technologies are being developed to establish infrastructures for
coordinating and sharing distributed heterogeneous resources between
multiple users and across organizations [35]. Grid infrastructures emerged
first within scientific communities. The goal of Grid there is to provide
uniform access to heterogeneous computational resources, e.g., clusters,
through Grid infrastructures. Most of Grid infrastructures are based on
kernel software developed and provided by the Globus Alliance [41]. The
standardization of Grid is managed by the Open Grid Forum (OGF) [75].

In Sweden most commonly used Grid infrastructure is the Advanced
Resource Connector (ARC) [32]. The Thesis utilizes resources of Swedish
National Grid, Swegrid [90]. Swegrid consists of six computational clusters,
which are accessible through ARC. Section 2.4.1 describes ARC based on its
state at the beginning of 2005.

2.4.1 ARC Grid Middleware
The Advanced Resource Connector (ARC) [73] is a middleware between
Grid users and computational resources that are managed by local batch
systems. Thus ARC does not control computational resources; instead it
submits user tasks to local batch systems on clusters. Each local batch
system allocates cluster nodes according to its policy and the current load of
the cluster.

The Computing Elements (CE) are clusters where Grid jobs are executed
while Storage Elements (SE) are file servers where the data to be queried are

 35

stored. The CEs and SEs are managed by ARC and are accessible by
submitting Grid jobs to an ARC Client. The ARC client is a set of command
line tools to submit, monitor, and manage jobs on the Grid. It also has
commands to move data between storage elements and clients, and to query
Grid resource information such as loads on different CEs and job statistics.
Users of ARC always first initiate communication with an ARC client.

The ARC client includes a resource brokering service [33] to find suitable
resources for jobs. Jobs are described in a resource specification language,
xRSL [86], which includes specification of, e.g.:
• A user executable and its arguments to be run on some suitable

computing element.
• Files to be transported to and from the chosen computing element before

and after the execution.
• Maximal CPU time for the execution.
• Runtime environments for the execution. A runtime environment is an

additional software package, e.g., an application library such as ROOT
[18].

• Standard input, output, and error files for the execution.
• Optional names of the computing elements where the executable can run.
• The number of parallel sub-jobs to be run on the computing element.
In summary ARC requires detailed user specifications to describe
computation tasks as xRSL scripts.

POQSEC simplifies this considerably by automatically generating ARC
interactions and job scripts to execute a task specified as a declarative query
over contents of data files. To manage jobs generated by POQSEC, to track
their executions, and to download results we provide a babysitter integrated
with the POQSEC framework.

 37

3. The Loading Approach

We implemented the ATLAS application (Section 2.1) in Amos II [79] and
its analyses as AmosQL queries. The application data are sets of independent
events, where each event has properties that describe sets of particles of
various types produced by the collision. Scientists define the analysis queries
in terms of these event properties. As every collision is simulated
independently of other collisions, the queries contain no joins between
properties of different events. The scientist searches for events satisfying
certain conditions, called cuts, and the query results are sets of interesting
events. A typical query is a conjunction of a number of cuts. Queries over
events are complex since the cuts are complex containing many predicates
applied on properties of each event. The query conditions involve selections,
arithmetic operators, aggregate functions, foreign functions, and joins. The
aggregate functions compute complex derived event properties. A complex
query used as the test example in this chapter is implementation of Six Cuts
Analysis (Appendix A), which searches for the events likely producing
Higgs bosons by applying scientific theories.

The implementation is called ALEH (query system for Analysis of LHC
Events for containing charged Higgs bosons). Naïve execution of a complex
query described in ALEH performs much worse than the C++
implementation of the corresponding analysis (Example 2.2). This chapter
investigates how execution of the query can perform better by improving
optimization of the query. To analyze optimization of the queries, the events
are loaded into the main-memory database of ALEH. Then query
optimization and execution is analyzed for the loaded database. The
architecture of the loading approach is presented in Figure 3.1. The loading
phase is presented in Figure 3.1(a). To load data ALEH accesses an Amos II
meta-database called File DB, which contains information about files storing
events. Then ALEH calls the ROOT library [18] for each file and
materializes every event in the ALEH database (DB). After data is loaded a
user can issue queries to analyze the stored data. During query execution
data are accessed from DB and processed by ALEH as presented in Figure
3.1(b).

The complex queries need to be optimized for efficient and scalable
execution. However, optimizing such complex queries is challenging
because:
• The queries contain many joins of event properties within each event.

 38

• The size of the queries makes optimization slow.
• The cut definitions contain many more or less complex aggregations.
• The filters defining the cuts use many numerical functions.
• There are dependencies between event properties that are difficult to find

or model.
• The foreign functions cause dependencies between query variables.

We first investigated whether cost-based optimization improves query
execution compared to no optimization. To enable effective cost-based
optimization over our kind of scientific queries, we developed an aggregate
cost model [38] for the operators occurring in the queries. As a comparison
we also manually optimized a reference query by experimenting with
different orders of cuts and measuring the actual execution times. Since the
queries are very large, regular dynamic programming [87] could not be used.
Instead randomized optimization [56][71][82] running for a long time and
greedy heuristic optimization [60][66] were used. Performance
measurements showed that cost-based optimization with the aggregate cost
model produced a substantially faster execution plan (1000 times) than an
unoptimized one.

For some data sets, our manually optimized plan was still somewhat
faster. The main reason for this is that the aggregate cost model becomes
unreliable for large plans [54] because i) there are dependencies between
query variables and ii) the cost estimate errors are compounded by the very
large queries. It is difficult to define a cost model dealing with the
dependencies. Another problem is that the time to optimize the query to
produce a good plan is substantial; it took around half minute by randomized
optimization to find a sufficiently good plan for a test query.

To alleviate this, we developed a profiled grouping method [38] where
the query is first split into query fragments, called groups, where each group
has no join with other groups on event properties. Then each group is
optimized separately and profiled for real execution time over a sample set
of events in order to obtain measurements of actual fanouts and costs per
group called profiled group cost model. Finally the join order of the groups
representing the query is optimized by the cost-based query optimizer using
the profiled group cost model.

(a)

(b)

Figure 3.1. Architecture of ALEH with data flow. (a) Modules participating in
loading phase; (b) modules participating in query execution.

 39

Profiled grouping is based on measuring real execution time of different
query fragments rather than computing estimates based on a cost model. In
addition, the number of groups is much smaller than the number of
predicates in the ungrouped query. Therefore the query optimization time is
improved substantially by the grouping. Furthermore, profiled grouping
turns out to be less sensitive to optimization errors, so even a greedy
optimization method combined with profiled grouping produces better plans
than an ungrouped approach.

An important problem is how to fragment the query. The set of all
possible groups is very large and therefore a heuristic method for forming
the groups is used. The grouping heuristic uses the knowledge that in our
application each event is analyzed independent of other events when
selecting the events satisfying conjunctions of cuts. The grouping heuristic
fragments a conjunctive query into groups where joins between groups are
performed only on the event identifier; no joins are made between event
properties from different groups.

We implemented the aggregate cost model, profiled grouping, and the
application query in Amos II and evaluated the effectiveness of both
ungrouped strategies and profiled grouping in combination with different
optimization strategies: dynamic programming, randomized optimization,
and greedy heuristic optimization. As references we also compared with a
best effort manual optimization. The measurements were made with the two
data sets in Section 2.1.1. One data set is with high selectivities of the cuts,
and the other one is with low selectivities. We show that for high selectivity
data sets profiled grouping combined with any optimization method
produces better plans than the ungrouped strategies.

The rest of the chapter is organized as follows. Section 3.1 describes
implementation of the application analysis in ALEH and a test query used in
the rest of the chapter. The aggregate cost model is presented in Section 3.2.
Profiled grouping is described in Section 3.3. It is followed by performance
measurements for the query execution strategies in Section 3.4. Section 3.5
concludes the chapter.

3.1 High Energy Physics Queries
The data are events and their properties were described in Section 2.1.1.
They are loaded into the DBMS from the ROOT files. The ROOT files are
associated with meta-data conditions for each file, which describe, e.g.,
experiment settings and what kinds of events were produced. Events and
particles from the schema in Figure 2.1 are defined by the particle schema in
our functional data model as presented in Figure 2.3.

The analysis of the events consists of selecting those events that can
potentially contain charged Higgs bosons. A number of predicates, called

 40

cuts, are applied to each event and events that satisfy all cuts are selected.
Selectivities of cuts are assumed similar for event sets from files with the
same meta-data condition.

The scientists experiment with combinations of different cuts. An
example of a cut, named Three Lepton Cut, is to select an event if it has
exactly three isolated leptons and at least one isolated lepton has Pt bigger
than 20 GeV. An isolated lepton is a lepton, which has absolute value of Eta
smaller than 2.4 GeV and Pt bigger than 7 GeV. Pt and Eta are
computational functions on event properties.

The events are delivered in binary files managed by the ROOT library
[18]. A ROOT loader is implemented to load events from ROOT files into
the Amos II database. The particle schema of the collision events is
implemented in the query language AmosQL [79] (see Appendix B) and
presented in Figure 2.3. Events are represented by entities of type Event with
two attributes PxMiss and PyMiss. Particles are represented by objects with
attributes Kf, Px, Py, Pz, and Ee and several relationships to entities of type
Event. Particles of different types are represented by different entity subtypes
Muon, Electron, and Jet. Muon and Electron are generalized by an abstract
entity type Lepton, which is used in definitions of some cuts.

A number of basic numerical foreign functions, e.g. Pt and Eta, are
defined in the database in order to make the analyses. The cuts are expressed
as derived functions in terms of these basic functions. The analysis is usually
defined as conjunctions of several different cuts, where each cut is defined as
a conjunction of many predicates. As each event is always analyzed
independently of other events, the analysis queries have the important
property that no joins are performed between events. In general the queries
have the form ...})()()(|{ 21 ∧∧∧ ececede , where ci are cuts and d(e) is a
predicate to scan the events.

For example, a general query, which implements Six Cuts Analysis
(Appendix A), is:

select e

from Event e

where hadrtopcut(e) and jetvetocut(e) and

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e);

(3.1)

Here the functions jetVetoCut, zVetoCut, hadrTopCut, missEeCuts,
leptonCuts, and threeLeptonCut are examples of cuts that provide necessary
conditions for the collision event e to produce a Higgs boson according the
theory described in Appendix A. Other Cuts is split into missEeCuts and
leptonCuts here. The implementation of these cut functions is presented in
Appendix C. The predicate d(e), which accesses events of type Event, is

 41

generated by the from clause. This general query is a reference query for the
rest of the chapter.

The definition of the Three Lepton Cut is:

create function threeLeptonCut (Event e) -> Boolean as

select true

where count(isolatedLeptons(e))=3 and

 some(select r

 from Real r

 where r=Pt(isolatedLeptons(e)) and

 r>20.0);

The function isolatedLeptons has the definition:

create function isolatedLeptons (Event e) -> Lepton as

select l

from Lepton l

where l=leptons(e) and

 abs(Eta(l))<2.4 and

 Pt(l)>7.0;

The other cuts are defined as functions in a similar way.
The Pt and Eta functions call foreign functions Pt and Eta over a

momentum triple for a given particle l. The formulas of the functions are
presented in (2.1) and (2.2), respectively.

Before query optimization, derived functions are expanded as views and
the query is represented in ObjectLog (see Section 2.3). The plan for the
query (3.1) is a conjunction of 51 operators. The predicates are comparisons,
numerical operations, aggregate functions, foreign function calls, and joins.
The large size of the query makes it difficult to optimize, and dynamic
programming [87] cannot be used. We were able to optimize it using
randomized optimization [56][71][82], which, however, uses a lot of time to
produce a good plan.

Another problem is that there are many dependencies between predicates.
This makes it difficult to estimate the cost. For example, a part of an
unoptimized predicate in the definition of function isolatedLeptons is the
conjunction:
em = Eta(m) AND

aem = Abs(em) AND

aem < 2.4 AND

pm = Pt(m) AND

pm > 7.0

Here m is the momentum triple of a lepton of a given event, and em, aem,
and pm are query variables containing results of the foreign functions Eta,

 42

Abs, and Pt. It is difficult to estimate selectivities for such predicates defined
in terms of foreign functions. For example, the estimate of the selectivity of
the comparison aem < 2.4 depends on original data distribution of event
properties and on the distribution of results from the functions Eta and Abs
applied on the these properties to calculate aem. Because of the data
dependencies the selectivity estimates contain large errors. The same holds
for the comparison pm > 7.0, etc. Furthermore, there is also a dependency
between the two comparisons, as they operate on the same event properties.
Such dependencies influence cost and fanout estimates and therefore
suboptimal execution plans are chosen [54].

To alleviate the problems of slow optimization and data dependencies, we
investigated the profiled grouping strategy based on measuring real costs of
query fragments. Each group is individually optimized using the aggregate
cost model described next. Then the optimized groups are profiled over
event set samples. Finally, the so obtained profiled grouping cost model is
used to optimize the fragmented query. In our measurements, we compare
this approach to a cost-based approach using the aggregate cost model
without applying the profiled grouping method.

3.2 The Aggregate Cost Model
We developed a cost model for aggregate functions and numerical functions
used in our application, assuming data independence between predicates.
Table 3.1 and Table 3.2 define the aggregate cost model. The aggregate cost
model is rather ad hoc, but, as will be shown, it still produces good execution
plans for our test query, in particular in combination with profiled grouping.
It is defined so that the costs of different functions are comparable. For
example, the cost of aggregate functions SOME and NOTANY should be
complementary and SOME is a special case of ATLEAST.

The costs of complex numerical functions are approximated according
their measured execution time. The costs of basic numerical functions, such
as plus, minus, and times, are set to one. The costs for the numerical
functions that are used in ALEH queries are presented in Table 3.1. The
fanouts of the numerical functions are always one.

The costs and fanouts of aggregate functions are based on the estimated
costs and fanouts of subqueries they are applied on.

The cost of an aggregate function depends on the estimated number of
tuples produced by its subquery sq. For aggregate function SUM(sq) all
tuples emitted by sq have to be processed, while for other aggregate
functions, such as SOME(sq) and COUNT(sq)=N, only a limited number of
tuples emitted by sq are processed. Therefore the cost of an aggregate
function is the cost of producing the required tuples by sq plus the cost of
processing the emitted tuples by the aggregate function. The cost per

 43

produced tuple by subquery sq is the estimated total cost of executing the

subquery, cost(sq), divided by its estimated fanout, fo (sq), i.e.
)(
)(

sqfo
sqcost

.

The cost for the aggregation function to process one received tuple from sq
is set to one. For example, SUM(sq) has the cost cost(sq)+fo(sq). The cost of
SOME(sq) when fo(sq)<1 is cost(sq)+fo(sq). If sq emits at least one tuple the

cost becomes 1
)(
)(+

sqfo
sqcost since only the first tuple is processed by SOME.

Analogous cost model formulas are developed for other aggregate functions.
The fanout of SUM(sq) is always one. The fanouts of SOME(sq) and

NOTANY(sq) depend on the estimated fanout of sq. If sq emits less than one

result tuple the fanout of SOME(sq) is set proportional to fo(sq),
2

)(sqfo .

Otherwise it is set to
)(2

11
sqfo⋅

− . Basically, the model converges to one as

fo(sq) increases since it becomes more and more likely that SOME is true.

Table 3.1. Costs of numerical functions, where x, y, and z are numbers (integers or
reals), i is integer, v, v1, v2, and v3 are vectors, and vs is bag of vectors.

Numerical operator Cost Description
PLUS(x,y)=z 1 z = x + y
TIMES(x,y)=z 1 z = x · y
ABS(x)=y 1 y is absolute value of x
v[i]=x 1 x is element i of vector v
TIMES(v1,v2)=x 5 x is scalar product of two vectors v1 and v2
SQRT(x)=y 1 y is square root of x
PLUS(v1,v2)=v3 15 v3[i] = v1[i] + v2[i] for all i
LOG(x)=y 2 y is natural logarithm of x
ATAN2(x,y)=z 2 z is arctangent of x / y
CEILING(x)=y 1 y is ceiling of x
COS(x)=y 2 y is cosine of x

MAGNITUDE(v)=x 9 222]2[]1[]0[vvvx ++= , where v is a vector of size three

ETA(v)=x 16 ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−++

+++
⋅=

]2[]2[]1[]0[

]2[]2[]1[]0[
ln5.0

222

222

vvvv

vvvv
x , where v is a

vector of size three

PT(v)=x 6
22]1[]0[vvx += , only first two dimensions of 3D vector v

are used in the calculation
SUM(vs)=v 36 v is sum of all vectors in bag of vector vs

 44

The factor two allows NOTANY to have a complementary model (see Table
3.2).

The fanouts of functions COUNT(sq)=N, and ATLEAST(sq)=N, where N
is known, depends on the relationship between N and fo(sq). For example,
for COUNT(sq)=N if fo(sq)<N the fanout is increasing until N tuples are

emitted from sq, and it is computed as
N
sqfo

⋅3
)(. After N tuples are emitted

the fanout goes down and is therefore computed as
)(3 sqfo

N
⋅

. The fanout is

set to 1/3 when fo(sq) is estimated to be N.

3.3 Profiled Grouping
The profiled grouping fragments a conjunctive query into groups where the
groups are joined only on the event variable e. The groups are minimal in the
sense that none of the groups can be split further into subgroups joined only

Table 3.2. Cost model for aggregate functions over subquery sq, where cost(sq) is
the estimated total cost of executing sq, and fo(sq) is the estimated fanout of sq.
Operator Cost Fanout
SOME(sq) if 1)(<sqfo then)()(sqfosqcost +

else 1
)(
)(+

sqfo
sqcost

if 1)(<sqfo then
2

)(sqfo

else
)(2

11
sqfo⋅

−

NOTANY(sq) if 1)(<sqfo then)()(sqfosqcost +

else 1
)(
)(+

sqfo
sqcost

if 1)(<sqfo then

2
)(1 sqfo− else

)(2
1

sqfo⋅

ATLEAST(sq)=N if Nsqfo <)(then)()(sqfosqcost +

else N
sqfo
sqcostN +

)(
)(

if Nsqfo <)(then
N
sqfo

⋅2
)(

else
)(2

1
sqfo

N
⋅

−

COUNT(sq)=N if 1)(+< Nsqfo then)()(sqfosqcost +

else 1
)(
)()1(+++ N

sqfo
sqcostN

if Nsqfo <)(then
N

sqfo
⋅10

)(

else
)(10 sqfo

N
⋅

SUM(sq),
COUNT(sq)

)()(sqfosqcost + 1

MINAGG(sq),
MAXAGG(sq)

)()(sqfosqcost + if 1)(<sqfo then
2

)(sqfo

else
)(2

11
sqfo⋅

−

 45

on the event variable e. Thus, a fragmented query has the form
...})()()(|{ 21 ∧∧∧ egegede , where d(e) is the domain predicate and gj(e)

are groups and gj(e) cannot be further fragmented, i.e.
)()()(:))(),((2121 egegegegeg jjjjj ∧=¬∃ . Notice that the original cuts do

not fulfill the minimality as some of the cuts can be split into further groups.
For example, the definition of threeLeptonCut forms two minimal groups.
One group is:

count(isolatedLeptons(e))=3

Another group is

some(select r

 from Real r

 where r=Pt(isolatedLeptons(e)) and

 r>20.0)

The result of the grouping is a set of subqueries where each predicate from
the original query belongs to exactly one group.

After the groups are formed each group is optimized using the aggregate
cost model and assuming that e is bound by the domain predicate d(e). Both
randomized and greedy optimization were used and compared, with no
significant impact on the final execution efficiency. Therefore, in our
measurements we show the time to do the cheap greedy optimization only.

Since each group is a complex conjunctive query an aggregate cost model
may not produce good estimates [54]. Therefore we wrap each group and
profile it on a sample of the set of events that are queried. This requires that
the queried data are already loaded to the main memory by the ROOT
loader. The profiler executes each group on the same sample set and
calculates fanouts and real cost estimates for each group and these estimates
are then used for cost-based reordering of the groups.

In the experiments we varied the number of events used in the sample set.
Based on this we estimated the required sample size to obtain sufficiently
efficient optimization.

Finally, the join order of groups is optimized using the profiled group cost
model obtained by the profiling.

In our grouping algorithm (Algorithm 3.1) the input is a conjunctive
query predicate S and an event variable varE. The output is a conjunction of
groups, Groups, representing S. On lines (3-5) the algorithm forms a new
group by picking one predicate at a time from S. The variable V will contain
the set of variables to be processed in order to form the group. On line (6) V
is initialized to the variables in p, except the event variable. On lines (7-9)
the algorithm processes one variable at a time from V and on lines (10-11) it

 46

searches for all predicates that use the processed variable. Each predicate
using the processed variable is added to the new group on lines (12-13) and
its other variables are added to the set of unprocessed variables V on line
(14). The group is formed on line (15) when no more variables in the group
need to be processed. The algorithm stops forming groups when all
predicates in S have been moved to some group in Groups.

3.4 Performance Measurements
To investigate the effectiveness of our approaches we evaluated the
following strategies both with respect to execution time and time to do the
optimization:

Unoptimized plan (UNOPT). The unoptimized plan is obtained directly
from our query (1) by using a very simple cost model, where all aggregate
functions have the same cost and all foreign functions also have the same
cost. Thus the query optimizer does not change the order of aggregate
functions and foreign functions and their execution order is the same as the
order of the cuts in the query.

Best manual effort plan (MAN). We use the same simple cost model as for
UNOPT but we manually reordered the plan, by extensive experimentation
with different cut orders, to get the plan that was fastest to execute. The best
effort query formulation is:

Algorithm 3.1. The grouping algorithm.
1: Groups = {}

2: while (S != {})

3: pick a predicate p from S

4: S = S \ p

5: G = {p}

6: V = variables(p) \ varE

7: while (V !={})

8: pick a variable v from V

9: V = V \ v

10: for each q in S

11: if v ∈ variables(q) then

12: G = G∪ q

13: S = S \ q

14: V = V∪ variables(q)\{v,varE}

15: Groups = Groups ∪ {G}

16: return Groups

 47

select e

from Event e

where threeleptoncut(e) and leptoncuts(e) and

 misseecuts(e) and zvetocut(e) and

 hadrtopcut(e) and jetvetocut(e);

(3.2)

Ungrouped strategies (UR and UG). Query (3.1) was optimized without
grouping using the aggregate cost model after the database was populated.
Because of the large number of predicates in the query, the query optimizer
could not use dynamic programming. Instead randomized optimization (UR)
and greedy optimization (UG) (see Section 2.3.2) were used. We first made
extensive experiments to determine the minimal number of iterations in the
randomized optimization to get a converged plan. For comparing
optimization time of UR with other strategies we used the time to find the
converged plan. This optimization time is regarded as the best case for the
time to do randomized optimization.

Profiled group cost model (DCD, DCR, and DCG). We evaluated our
profiled grouping strategy. Because the grouping decomposes a flat query
with 51 predicates to a join of 8 groups, dynamic programming optimization
can be used to optimize the join order of the groups (DCD). We also
optimized the group join order using randomized (DCR) and greedy (DCG)
optimization.

3.4.1 Experimental Setup
The experiments were performed on a PC with a CPU Intel Pentium 4 2.40
GHz and 1 GB of RAM.

The same large query (3.1) was used in all the performance studies. As
test cases we used real data sets produced by ATLAS. The evaluation was
first performed on data sets from experiment bkg2 with high query
selectivity, where only 0.008% of the events satisfy the query. Each data set
contains 25000 events. As comparison, the performance was also measured
for a data set from experiment signal with low query selectivity where 16%
of the events passed the query. It contained 8623 events.

Before each experiment the main memory database is loaded only with
those events participating in the experiment. It takes about 15 seconds to
load one file containing 25000 events with the high selectivity. The loading
of events scale linearly.

 48

3.4.2 Experimental Results
Figure 3.2 shows the execution times for three data sets with high query
selectivity. All optimization strategies (MAN, UR, UG, DCD, DCR, or
DCG) produced plans being a factor 1000 faster than the unoptimized plan
(UNOPT), so optimization certainly pays off. Profiled grouping strategies
(DCD, DCR, and DCG) perform best for all three data sets, independent on
what optimization method is used for joining the groups. The best ungrouped
strategy (UR) produces a plan that performs 18% worse than any of the
profiled grouping strategies. Not surprisingly, randomized optimization for
ungrouped queries (UR) produced much better plans than corresponding
greedy optimization (UG).

Figure 3.3 measures the time to do the query optimization. All profiled
grouping strategies (DCD, DCR, and DCG) are significantly faster than

0

0.5

1

1.5

2

2.5

1 2 3
High selectivity data sets

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UNOPT MAN UR UG DCD DCR DCG

1411 1421 1409

Figure 3.2. Comparing execution times for three data sets with high selectivity.

36.266

0.172

7.047

0.047 0.047

0.01

0.1

1

10

100

High selectivity data set

O
pt

im
iz

at
io

n
tim

e
(s

ec
on

ds
)

UR

UG

DCD

DCR

DCG

Figure 3.3. Comparing optimization time (logarithmic scale).

 49

ungrouped randomized optimization (UR). With profiled grouping both
randomized (DCR) and greedy (DCG) optimization methods find the same
optimal plan much faster than dynamic programming (DCD). Ungrouped
greedy optimization UG is rather fast but it produces a bad execution plan
(Figure 3.2).

The effectiveness of DCD, DCR, and DCG also depends on the profiling
time. The profiling should be done for every query so this adds to the
optimization time. The query execution performance for different profiling
sample sizes is presented in Figure 3.4. The performance is independent of
the optimization method (DCD, DCR, or DCG) but is proportional to the
sample size. Different data sets require different sample sizes for optimal
query performance. Query plans that were obtained with small samples are
noticeably worse than query plans with large samples. The smallest sizes of
the samples for which good plans are produced depend on the data sets. For
example, good plans for data set one starts with a sample size of 40 events,
taking approximately 5.5 seconds to profile. Data set two requires 70 events
(9.5 seconds), and data set three requires 15 events (2 seconds). Based on
these measurements the sample sizes are conservatively set to 70 by default.
The user can tune the system by changing the sample size. Notice that, even
with the conservative sample setting ungrouped randomized optimization
(UR) is still much slower to optimize than grouped optimization when
adding the profiling time.

0

0.5

1

1.5

2

2.5

3

5 20 35 50 65 80 95
Sample size (events)

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Data set 1

Data set 2

Data set 3

Figure 3.4. Execution performance for different sample sizes.

In Figure 3.5 we investigate the execution times of the optimization
strategies when scaling the data size with the high selectivity data sets. With
profiled grouping all three optimization methods find the same optimal plan
and therefore the three strategies are presented as one curve (DC). The
profiled group cost model for the query was obtained by profiling only data
set one on the first 40 events. The execution emeasurements were done for
25 000 events (data set one), 50 000 events (data sets one and two), 75 000
events (data sets one, two, and three), and 100 000 events (data sets one,
two, three and one more). The reference query was optimized using the

 50

aggregate cost model (UR, UG) for each size of the data set. The execution
time increases linearly with the data set size, since all events of a data set are
always processed. The query plan from the profiled grouping strategies
performs always better than any query plan from an ungrouped strategy.

The profiled grouping strategies scaled well using an execution plan
obtained by profiling a single sample. This indicates that the profiled group
cost model can be obtained once on a single sample data set and then it can
be used for all data sets having the same query selectivity. We assume that
data sets from the same experiment have the same selectivity.

Finally, Figure 3.6 shows the performance for a data set with low query
selectivity. Here the impact of query optimization is less significant. The
manual plan turns out to be slower than any optimized plan since it was
obtained for high selectivity data sets. A new manual plan would have to be
developed here (with great manual effort). This shows that automatic query
optimization can improve the effectiveness of the scientists, in particular
since they currently implement the cuts in C++ manually using manual

0

2

4

6

8

10

12

25000 50000 75000 100000
Size of data set w ith high selectivity (events)

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UG

UR
DC
MAN

Figure 3.5. Scaling the data size with high selectivity queries.

0
10
20
30
40
50
60
70
80
90

100

Low selectivity data set

R
ea

l e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

UNOPT

MAN

UR

UG

DCD

DCR

DCG

Figure 3.6. Comparing optimization strategies for low selectivity data.

 51

optimization. The profiled grouping strategies (DCD, DCR, and DCG)
performed 5% worse than the ungrouped strategies (UR and UG), indicating
that the grouping here provides less good heuristics.

3.5 Summary
We implemented the ATLAS application as an extension of the main-
memory DBMS Amos II. Scientific queries performing analyses are
complex and naïve query processing of them is slow. Therefore, we
developed a cost model for aggregate functions and other functions used in
scientific queries from the ATLAS application. It was showed that
optimization of large scientific queries can reduce execution time by a factor
1000. Automatic query optimization can improve the effectiveness of the
scientists, in contrast to manually implementing the queries in C++ (Section
2.1.2) as they currently do. Furthermore, data sets from different
experiments will have different optimal execution plans and it is very costly
to manually construct them.

Scientific work in particle physics includes experimenting with different
cuts to implement new theories. The flexibility to specify the cuts using non-
procedural database queries could improve the effectiveness of the scientific
work.

Complex scientific queries are very large having many predicates. This
makes cost-based optimization difficult and slow. Furthermore, the
predicates contain many dependent variables. It is difficult or even
impossible to define a reliable cost model dealing with large predicates with
many dependencies. Therefore, as an alternative, we developed a new
method, the profiled grouping, where the query is first fragmented into
groups and then the execution of each group is measured on samples of real
data. The profiled group cost model is finally used in cost-based
optimization of the group join-order.

We evaluated both the aggregate cost model and the profiled grouping
method on real data. We investigated the time to do the optimization for both
approaches and with different optimization strategies, i.e. dynamic
programming, randomized optimization, and greedy optimization. Our
results show that the profiled grouping gives significant improvement in
optimization time compared with an ungrouped strategy and produces better
execution plans. A greedy approach with the aggregate cost model also has
fast optimization, but the plan is around twice slower than the other plans.
Still, it is shown to be substantially better than no optimization at all.

In this chapter the evaluation of the optimization approaches was
performed on pre-loading events into the DBMS. This loading approach has
two main drawbacks: it takes significant amount of time to load data, and the
data normally cannot fit the main-memory requiring slow disk access. To

 52

alleviate these drawbacks the next chapter investigates the streaming
approach.

 53

4. The Streaming Approach, SQISLE

A time consuming part of the loading approach used in the ALEH
implementation is loading complex objects describing events from ROOT
files into the indexed database of surrogate objects. For example, it takes
about 15 seconds to load the ROOT file bkg2Events_000.root, which
contains 25000 events, while the analysis alone of the 25000 events takes
just 1.5 seconds, i.e. a total processing time of 16.5 seconds. Furthermore,
the loading approach requires sufficient memory to store all queried events
as surrogate objects with indexes.

Instead of preloading the data into a DBMS we therefore investigate a
streaming approach, where data stays in their sources, e.g. ROOT files, and
are streamed through the system. The system accesses complex objects from
sources through a wrapper interface where each independent complex object
is analyzed one-by-one as they are streamed. Thus the streaming approach
accesses and analyzes the complex objects in a stream fashion by reading,
e.g., ROOT files sequentially without populating the database and therefore
the streaming approach requires limited memory and should be efficient. We
implemented a DSMS called SQISLE (Scientific Queries over Independent
Streamed Large Events) as a stream extension of Amos II [79] with facilities
for processing streams of scientific events with complex structures as
required for applications selecting events satisfying a number of complex
conditions.

 The architecture of SQISLE is illustrated by Figure 4.1, where the arrows
show the data flow during query execution. A scientist specifies the analysis
as a query over a stream of events from event sources processed by SQISLE
through a wrapper interface. The scientists write their analysis queries in
terms of a high level application schema (App. schema), such as the particle
schema (Figure 2.3), that defines events and objects of different types

Figure 4.1. Architecture of SQISLE with data flow.

 54

derived from events emitted by the wrapper interface. The source database
(Source DB) contains meta-data about stream sources. It is accessed in
queries to locate sources containing data for the analyses. The wrapper
interface is defined in terms of an application data management library
(App. Library), e.g., ROOT.

In the loading approach sources were specified by the names of files
loaded into the database. Therefore, source specifications could be omitted
in user queries over preloaded events. In contrast, in the streaming approach
data are not preloaded into the database. Thus analysis queries in SQISLE
always include the specifications of stream sources.

We made a streamed implementation of ALEH using SQISLE, called
SALEH (Streamed ALEH). The SALEH implementation provides the same
particle schema as in the loading approach with ALEH (Figure 2.3), while
queries are slightly different, since they must specify also the ROOT files to
access as sources.

For example, a SALEH query formulating the Six Cuts Analysis is an
extension of the corresponding ALEH query (3.1) with specification of the
source files:

1:

2:

3:

4:

5:

6:

7:

8:

select e

from Event e, EventFile f

where name(experiment(f)) = “bkg2” and

 fileid(f) < 15 and

 e = saleh_events(filename(f)) and

 hadrtopcut(e) and jetvetocut(e) and

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e);

(4.1)

The query selects the events satisfying all cuts constituting the Six Cuts
Analysis. Each cut is a complex condition on properties of event e involving
joins, aggregate functions, and complex numerical computations. On lines 3-
5 the query specifies the sources to query by selecting the files produced by
the experiment named bkg2. The source database is searched in lines 3-4,
while the function saleh_events calls the wrapper interface to read events
from the selected ROOT files. The rest of the query specifies the Six Cuts
Analysis as in the loading approach.

As with the loading approach, naïve execution of analysis queries in
SQISLE without query optimization strategies is slow. Therefore the
optimization strategies from the loading approach are utilized here too.
However, since events are not stored in a database the cost-based query
optimizer has no information of data statistics. Therefore runtime query
optimization mechanisms are implemented that dynamically, at query
execution time, collect statistics on a subset of a stream. The query is
automatically reoptimized when enough statistics is collected. Once

 55

reoptimized, the query execution is immediately continued using the
reoptimized query execution plan for the rest of the stream.

The query processing is further improved by query transformations, use
of materialized views, and compile time evaluation of query fragments. The
query transformations reduce the number of predicates in queries.
Materialized views are executed only once per event and then materialized
view results are accessed during processing the same event. Partial
evaluation [59][77] executes some predicates of a query at compile time
before query execution and replaces predicates with execution results.

By evaluating the performance of SQISLE for SALEH queries over
ROOT files with different selectivities it is shown that these SQISLE query
processing techniques improve performance of queries very significantly.
The query performance is compared with the performance of a manually
coded C++ program provided by the physicists doing the same analysis as
the queries. The SALEH implementation is shown to have performance
close to or better than the C++ implementation.

The rest of this chapter is organized as follows. Section 4.1 presents what
is needed to implement a new application with SQISLE. Section 4.2
describes SQISLE stream objects, which represent the data streamed through
the system. Section 4.3 gives an overview of the different query processing
techniques we have developed in SQISLE. Section 4.4 describes query
optimization using dynamic query optimization at runtime. Further
improvements by query transformations and materializations are presented
in Section 4.5. Section 4.6 describes the experimental setup for the
performance evaluation. Section 4.7 compares the performance of SALEH
queries using the different implemented approaches, including a comparison
with a manually coded C++ program. The chapter is concluded with
summary in Section 4.8.

4.1 Defining a SQISLE Application
Before SQISLE can be used for querying data from files for a new
application the application schema and the wrapper interface are defined by
a SQISLE administrator.

First, wrapper interface functions are implemented to access data from
the sources using the application data management library. The same
wrapper interface can be used for every application that stores data in the
same format.

The objects representing events are constructed by the wrapper interface
functions. Such stream objects must be efficiently streamed and processed
by complex scientific queries, and SQISLE provides a special datatype,
Sobject, for that.

 56

For example, the SALEH application includes wrapper interface functions
to access data from the ATLAS experiment stored in files managed by
ROOT as collections of tuples of simple C values. The wrapper interface is
called the ROOT wrapper interface, and described in details in Appendix E.
The ROOT wrapper interface functions allocate stream objects to represent
tuples read from ROOT files preserving the original structure of the data.
The ROOT wrapper interface includes also functions to read meta-
information about the structure of data stored in ROOT files. The ROOT
wrapper interface can be used for any application accessing data stored in
collections of tuples in ROOT files.

For each new application the SQISLE administrator defines an
application schema in terms of the wrapper interface functions. The schema
definition provides a set of types and functions used in user queries.

Since an application schema is usually different from the structure of the
data emitted by the wrapper interface functions, mappings between the
original structure and the application schema are defined as transformation
views. The objects derived from the events by transformation views are also
represented as stream objects.

For example in SALEH, ROOT events in a source are mapped to different
kinds of particle objects by transformation views, described in details in
Appendix F. The transformation views map the representation of particle
data on each event to the different representation of particle objects
according to the particle schema.

Meta-information about data sources is stored in the source database. This
meta-information is used to select sources of stream objects.

 For example, SALEH stores meta-properties of files (Figure 4.2)
associated withthe particle schema. The files are described by the attribute
Filename, which is set to the name of a ROOT file along a path to the file. In
addition to the name, the path, and the size of the ROOT file a file identifier
is stored for each event file. The file identifier is used by the ATLAS
software to partition an event set over several files. Since event files are
produced by experiments, they are related to the type Experiment, which
describes1 each experiment producing event files.

Figure 4.2. Schema of the Source Database in SALEH.

1 Currently the description contains only the name of the experiment.

 57

 The particle schema is defined in SALEH in terms of the ROOT wrapper
interface functions, the transformation views, the stream objects, and the
source database. The definition is presented in Appendix G.

An example of a query in SALEH is (4.1). The query is defined in terms
of cuts analogous the cuts defined in the loading approach. To support
scientific applications more elegantly and efficiently, SQISLE includes some
new utility functions compared to the loading approach, as presented in
Appendix H. The implementations of cuts in SALEH using these functions
are presented in Appendix I.

4.2 Stream Objects
Stream objects are implemented in SQISLE by a system data type Sobject
and the types of the applications are all subtypes of Sobject.

For example, in SALEH the particle schema is defined in terms of the
type hierarchy in Figure 4.3.

ParticleEvent

Lepton

JetElectronMuon

Sobject

Figure 4.3. Type hierarchy in SALEH.

Events are emitted by wrapper interface functions, and objects derived
from these events are materialized as stream objects. Each stream object
belongs to a type defined by the application schema. This enables
specification of queries in terms of stream objects analogous to the queries
over surrogate objects stored in the database in the loading approach. The
difference between stream objects and surrogate objects is that the stream
objects are automatically deallocated by a garbage collector rather then
explicitly removed, and the extents of stream object types need not be
maintained by the system. By contrast, surrogate objects are more heavy-
weight, have system-maintained extents, and are allocated and deallocated
explicitly by the user.

Since the extents of stream object are not maintained, a stream object
requires an explicit key consisting of its type, source, and identifier within a
source. This allows duplicate stream objects to be eliminated and the same
stream objects represented by different instances of Sobject to be considered
equal.

 58

Implementation details of stream objects are presented in Appendix D.

4.3 Query Processing in SQISLE
The query processing steps in SQISLE are illustrated by Figure 4.4. The
query pre-processor expands views and applies a number of rewrite rules on
the user query. The cost-based query optimizer produces an execution plan
interpreted by the execution engine. The execution plan contains operators
that call a wrapper interface implemented in terms of an application data
management library (App. library) to access the event sources.

Figure 4.4. Query processing steps in SQISLE.

A SQISLE query consists of fragments accessing sources, implementing
transformation views, and doing the analysis. Figure 4.5 presents the general
structure of a query execution plan with the data dependencies between the
different kinds of operators grouped in three blocks. The wrapper argument

Wrapper argument
operators

Source
DB

App.
schema

Wrapper interface
operator

Event processing
operators

<a1,a2,…>

<e>

<e>

Event
sources

Figure 4.5. Structure of naïve query plan in SQISLE.

 59

operators are placed first in the plan. They access both the source database
(Source DB) and the application schema meta-data (App. schema) to bind
parameters a1, a2 for a wrapper interface operator. The wrapper interface
operator accesses the event sources and creates stream objects representing
source events e. The query execution engine then executes the event
processing operators doing both event transformations and analyses. Those
event processing operators that perform transformations access the
application schema meta-data to map event objects to other objects in the
application schema. Finally, the result of the query execution, e.g., those
events e that passed all cuts, is streamed to the user.

Figure 4.6 illustrates the different query processing alternatives
investigated for SQISLE. Naïve query processing (Figure 4.6(a)) optimizes
stream queries using a simple cost model without runtime query
optimization. The dashed arrows indicate how data flows when answering a

(a)

(b)

(c)

Figure 4.6. Query processing in SQISLE: (a) naïve query processing; (b) dynamic
query processing with aggregate cost model; (c) rewritten query processing using all
proposed rewrites in addition to runtime query optimization.

 60

query. The execution plans have the structure as in Figure 4.5 containing
operators that access the wrapper interface, the source database, and the
application schema meta-data.

Naïve query execution performs badly because the static cost model does
not contain any statistics about the contents of the streams. Figure 4.6(b)
illustrates dynamic query processing using runtime query optimization to
collect data statistics at runtime. The optimizer uses the data statistics and
the aggregate cost model (Table 3.2) to reoptimize the query while it is
running. Similar to the loading approach profiled grouping is used to
fragment the query into groups joined only of the event variable e. Each
group is profiled and their join-order is optimized using the statistics on the
groups collected at runtime.

When runtime profiling is enabled, for each emitted event object the
wrapper interface operator collects statistics about the created event object
and stores it in the statistics database (Stat. DB). Next the profile-controller
operator is executed to encapsulate the event processing operators. It first
calls the execution engine to execute the event processing operators. Then
the profile-controller checks if enough statistics has been collected. If so,
profiling is disabled and the query fragment is reoptimized to obtain a more
efficient query subplan. After the profile-controller is ready the evaluation is
immediately continued with the next event using the new query subplan. The
query optimizer uses collected statistics from the statistics database for the
query reoptimization.

Dynamic query processing for selective queries produces very efficient
execution plans, even faster than a manually coded unoptimized C++
program. However, performance of queries with low selectivities is still
substantially slower than C++. The reason is that query optimization will not
significantly improve performance of queries with low selectivities, where
most operators are always executed for each event. Figure 4.6(c) illustrates
rewritten query processing in SQISLE where a number of query
transformation techniques described in this chapter are used, including view
materializations, simplifications, and compile time evaluation. On the
architecture level, the difference from Figure 4.6(b) is that with rewritten
query processing the application schema meta-data is accessed already
during the pre-processing phase by evaluating at compile time all predicates
accessing the application schema meta-data. In the rewritten query, these
meta-data predicates are replaced with their results by the query
preprocessor. Therefore there is no access to the application schema meta-
data from the query execution plan. This makes the rewritten query simpler,
which improves the performance of both query optimization and execution.

 61

4.4 Optimization of Stream Queries
As illustrated by query (4.1) scientific analysis queries are often large and
complex as each event processing filter is a complex view. A detailed
structure of query plans analyzing an event stream is illustrated in Figure
4.7. The query plans can be split into two subplans: the source access plan
and the event processing plan. The source access plan contains a wrapper
interface operator and wrapper argument operators. The number of
operators in the source access plan for query (4.1) is ten. The source access
plan produces a stream of events, which are analyzed by the event
processing plan. The event processing plan contains many operators and
several calls to nested subqueries. A general structure of the execution plans
for the nested subqueries is presented in Figure 4.8. They perform the
analyses in terms of objects derived by the transformation views.

The number of operators in the event processing plan for query (4.1) is
22, and 8 of them are nested subqueries. The number of operators in the

Wrapper argument
operators

Source
DB

App.
schema

Wrapper interface
operator

<a1,a2,…>

<e>

Nested
subquery

Analysis
operators

Nested
subquery ...

Join on e

<e>

Analysis
operators

<e,v1> <e,v2>

<e>

<e>

Nested
subquery

<e>

Event processing
plan

Source
access plan

Event
sources

Figure 4.7. Detailed structure of a query plan.

 62

nested subquery plans is between 9 and 59, including transformation
operators performing transformation views and analysis operators
implementing the selections. The nested subqueries may also contain calls to
further nested subqueries having the same structure as in Figure 4.8.

There are many possible orders of the operators in the event processing
plan. Thus query optimization is difficult, and the query plans obtained with
naïve query processing perform very slowly. To improve query processing,
the runtime query optimization approach (Figure 4.6(b)) collects data
statistics for the query optimizer and reoptimizes the query at runtime using
the collected statistics.

Runtime query optimization was investigated together with three profiling
strategies:
1. Event statistics profiling maintains statistics on the sizes of event

attribute vectors as the events are read. The collected statistics is used in
operator cost models for optimizing the query.

2. Group statistics profiling decomposes the queries into fragments, called
groups, joined only on the event variable and then maintains runtime
statistics of executing each group. The collected statistics per group is
used for optimizing the join order between the groups.

3. Two-phase statistics profiling combines the two strategies above by in a
first phase collecting statistics of event attribute vector sizes to optimize
the group definitions, and in a second phase switching to group statistics
profiling for ordering the groups.

These strategies are evaluated by the SALEH application. It is shown that
the performance of SALEH queries with dynamic query processing is
significantly improved compare to the naïve query processing with a static

Figure 4.8. Structure of a nested subquery plan.

 63

cost model. Furthermore, the performance of SALEH with the different
variants of runtime query optimization is compared with the loading
approach (ALEH) and the total processing time for SALEH is shown to be
significantly faster for the different queries.

4.4.1 The Profile-Controller Operator
The goal of the profile-controller operator is to monitor statistics collected
during query execution in order to dynamically reoptimize a query fragment
according to some runtime query optimization strategy, and then switch into
another runtime query optimization strategy or non-profiled execution. Once
the switch is made into non-profiled execution there is no profiling
overhead.

To enable runtime query optimization, the query pre-processor modifies
the view expanded query to include the profile-controller operator. The
query is thereby split into the source access query fragment that generates
the events and the processing query fragment that filters the events by
complex conditions. To optimize these complex conditions at runtime, the
event processing fragment is controlled by the profile-controller operator.

The source access query fragment contains calls to a wrapper interface
function and functions that compute parameters of the wrapper interface
function. The wrapper interface function has a single result variable the
event variable holding the currently processed event. The source access
query fragment is constructed by joining the wrapper interface function with
all functions having other variables in common except the event variable.
The rest of the query forms the processing query fragment that needs to be
optimized carefully, since it is defined as a complex condition over each
event.

For example, the source access query fragment for query (4.1) will be:

name(experiment(f)) = “bkg2” and

fileid(f) < 15 and

e = saleh_events(path(f))

The source access fragment generates each event e, which is the output
variable from the wrapper interface function called inside the derived
function saleh_events. The processing query fragment will be:

hadrtopcut(e) and jetvetocut(e) and

misseecuts(e) and zvetocut(e)and

threeleptoncut(e) and leptoncuts(e)

 The predicates of the event processing fragments are defined as complex
conditions over each event e.

 64

After the query is split into the two fragments, calls to the profile-
controller operator are inserted to encapsulate the event processing fragment
as a subquery. The structure of a query plan with the profile-controller is
illustrated in Figure 4.9. The profile-controller operator takes an event
variable e generated by the wrapper interface operator as its input and
applies the event processing plan on this event. It returns the result of the
event processing plan. The structure of an event processing plan is presented
in Figure 4.10.

Figure 4.10. Structure of an event processing plan.

The profile-controller performs the following operations for each event:
1. It executes the event processing plan for the event.

Wrapper argument
operators

Source
DB

App.
schema

Wrapper interface
operator

Profile-controller
operator

<a1,a2,…>

<e>

<e>

Event
sources

Event processing
plan

Figure 4.9. Structure of query rewritten with profile-controller.

 65

2. It checks if profiling is enabled. If so it calls a subroutine, the switch
condition monitor, which supervises collection of data statistics. The
switch condition monitor returns true if sufficient statistics is collected.
To enable different kinds of profiling the switch condition monitor can
be different for different strategies and can also be dynamically changed
during query execution.

3. If item two is satisfied it calls another subroutine, the switch procedure,
which reoptimizes the processing query fragment and switches to
another runtime query optimization strategy or disables profiling. The
switch procedure is also dynamically replaceable.

4. The result of the processing query fragment executed in item one is
always emitted as result of the profile-controller operator.

4.4.2 Event Statistics Profiling
With event statistics profiling enabled statistics on event attribute sizes is
collected when each new event is constructed by the wrapper interface
operator. Statistics to maintain means and variances of each event is stored
for each event attribute vector in an internal table.

The event statistics profiling assumes that data statistics over the stream is
stable so that the estimated average of the statistics collected in the
beginning of the stream is expected to be close to the mean of the entire data
stream. The switch condition monitor here maintains the statistics to check
whether the following confidence interval is satisfied for every tenth read
event:

αδμδ −=⋅≤−≤⋅− 1)Pr(xxx (4.2)
This formula checks if an estimate x of the mean size of an attribute

value (μ) is close enough to μ with probability 1-α. The closeness is defined

by δ. The estimate of the mean size x is calculated by ∑
=

=
n

i
ix

n
x

1

1 , where xi

is the size of an attribute value (e.g., Kfele) for the ith event, and n is the
number of events read so far. The confidence interval (4.2) is checked by
following inequality:

xSz E ⋅≤⋅ δα 2/ (4.3)

Where SE is an estimate of n/σ and calculated by

n
xx

n
S

n

i
iE

2

1

2
2

1 −= ∑
=

. The inequality (4.3) is obtained by normalizing the

confidence interval and applying the central limit theorem [67].
The switch condition monitor the test condition (4.3), for which α and δ

are provided as tuning parameters, and if the condition is satisfied for every
event attribute, the switch procedure is called. It reoptimizes the processing

 66

query fragment and disables collecting statistics and profiling. After this,
when the wrapper interface operator constructs a new event, it does not
collect statistics any more. For new events the profile-controller executes
only the event processing plan and does not call the switch condition
monitor or the switch procedure.

When the query is started there no statistics and the query is initially
optimized using default statistics where the event attribute sizes, i.e. the
number of particles per event, is approximated by a constant (equal to nine).

4.4.3 Group Statistics Profiling
With group statistics profiling, first, a stream fragmenting algorithm
(Appendix J) is applied to a query. The algorithm splits the query into source
access and processing query fragments and decomposes the processing query
fragment into groups. The groups have only the event variable e in common
and thus the groups are equi-joined only on e. The event is selected by the
query if it satisfies the inner join of all groups.

After optimization, each group is implemented by a separate group
subplan, which is encapsulated by a group monitor operator. The group
monitor operator takes a group subplan and an event as arguments and
returns the result of applying the subplan on the event. If profiling is
enabled, it measures execution time and fanout of the subplan.

Figure 4.11 illustrates the structure of an event processing plan after
grouping. In the figure three monitored group subplans are formed and noted
by Group plan 1, Group plan 2, and Group plan 3. The query optimizer
orders the executions of the monitored subplans based on available statistics
on the groups. An internal table keeps track of the groups and their statistics.
When a query is initially optimized, before any query execution, no group
statistics have been collected and therefore the first ordering of the groups
will be based on heuristic default estimates of data sizes and the aggregate
cost model.

The profile-controller operator encapsulates the entire event processing
plan containing the joined groups. It invokes the event processing plan at
runtime. If some join fails, the entire event processing plan fails. Thus, to
answer the query the event processing plan only executes those first group
subplans up to the first subplan that fails. No group subplans joined after the
failed one are executed. However, statistics need to be collected for all
groups, even those not executed by the event processing plan. Thus, if
profiling is enabled, the switch condition monitor executes those groups that
were not executed by the event processing plan in order to collect statistics
on real execution time and fanout by their group monitor operators. The
switch condition monitor checks the current group statistics after invoking
the remaining group subplans. Rather than testing for stable statistics as with
event statistics profiling, the check here determines if the new statistics does

 67

not affect the optimized join order of the groups. This is done by greedily
reordering the groups for every new event based on the measured estimates
of the group costs and fanouts. To minimize overhead the event processing
plan is reoptimized once per event, there is no dynamic reordering per
operator as with Eddies [4]. The profiling is disabled if the order of the
groups in the new event processing plan is the same as earlier for a number
of events in a row, called the stable reoptimization interval (SI), which is
provided as a tuning parameter. Together with disabling the profiling the
group monitor operators are removed from the final event processing plan by
substituting them with their group subplans. This removes overhead of
invoking the group monitor operators.

4.4.4 Two-Phase Statistics Profiling
As with group statistics profiling, with the two-phase statistics profiling
queries are first fragmented into groups before executing them. Initially
during query execution event statistics profiling is enabled. When the
profiling condition (4.3) is satisfied, the entire query is optimized, including
the group fragments, and event statistics profiling is disabled. Then the
switch condition monitor and switch procedure are changed to perform
group statistics profiling and produce a further optimized group join order.

Figure 4.11. Structure of the event processing plan with formed groups.

 68

The main advantage with the two-phase statistics profiling is that it
enables optimization of group subqueries based on initially collected event
statistics. With group statistics profiling alone, where the events are not
monitored, the groups themselves are optimized based on heuristic estimates
of costs and fanouts. Two-phase statistics profiling could potentially be
faster since the optimization of groups is based on monitored statistics rather
than heuristics.

4.5 Query Rewrite Strategies
A comparison of query performance with runtime query optimization with a
manually code C++ program shows that the query plans of selective queries
may perform better than a C++ implementation, while queries with low
selectivities are still around 28 times slower.

In order to improve the performance of queries with low selectivities,
their performance bottlenecks were analyzed. It was found that most of the
time is spent on computing the transformation views many times for the
same event. To remove this bottleneck, the use of query transformation rules
to simplify and speed up the transformation views were investigated. One
kind of rewriting is based on observing that in SALEH the transformations
can be regarded as a two-dimensional matrix transposition. Different
variants of operators for the transpositions were implemented and evaluated.
The most efficient matrix transpose operator creates new particle stream
objects as the result of the transposition and caches them as an attribute on
the event object. This strategy is called transformation view materialization.
It improves performance of queries with low selectivities about 1.5 – 2.5
times compared with only runtime query optimization, which is still around
13 times slower than the C++ program.

Queries are further simplified in SALEH by removing unnecessary vector
constructions appearing in queries and view definitions. Some vectors are
first constructed out of variables and then only specific element values are
accessed explicitly; the constructions of such vectors are removed and the
original variables are instead accessed directly without vector construction
and access overheads. These vector rewritings improve performance of
queries with low selectivity with factor 1.5 – 2, i.e. around 7 times slower
than C++.

In addition computational view materialization is implemented to
improve query performance. Computational views perform complex
numerical calculations for computing properties of derived stream objects
used in analysis queries, e.g. in cut definitions. Their materializations pay off
when a query does the same complex numerical calculations several times.
The materialization of the computational views improves the queries with
low selectivities with at least another 32% in SALEH, i.e. about six times

 69

faster than only using runtime query optimization, but still around 5 times
slower than the C++ program.

Finally, the performance of queries is further improved by partial
evaluation [59][77], which is a general technique to evaluate predicates at
query compilation time and replace predicates with computed values. The
partial evaluation is used to remove accesses to application schema meta-
data, which simplify the queries. The partial evaluation improves
performance of queries with low selectivities an additional 20%, i.e. seven
times faster than only using runtime query optimization and about 4 times
slower than C++.

Notice that the execution plan is interpreted in SQISLE. Further
performance improvements can be made by making an execution plan
compiler, which is expected to make the plan as fast as C++ also for non-
selective queries.

4.5.1 Rewritten and Materialized Transformation Views
In SALEH queries the cuts are defined in terms of particle properties
according to the particle schema. Thus every time events are analyzed the
transformation views deriving particles are used. Therefore, it is investigated
how performance of scientific queries in SQISLE can be improved by
applying a number of rewriting rules to simplify transformation views and to
materialize the transformation views.

The number of operators performing transformations is first reduced by
defining rewriting rules that transform a conjunction of ObjectLog predicates
(Section 2.3.2) before query optimization. First of all, the transformation
views defining particles in the particle schema can be seen as matrix
transposition of the event attribute vectors. A matrix transposition rewriting
rule recognizes query fragments where new vectors are constructed by
transposing original vectors. Such query fragments are replaced with a
matrix transposition function. The matrix transposition function takes as
argument a matrix of size mxn, which is represented as vector of size m
containing m vectors of size n. The function returns as result the
transposition as a new matrix of size nxm, which is represented as vector of
size n containing n vectors of size m.

For example, values of electron properties can be represented by a matrix,
where rows contain values for each electron and columns contain values for
each event attribute. Originally values of electron properties are stored in the
attribute vectors of an event object, represented by columns in Figure
4.12(a). The indexes of the vectors identify the particles. The result of the
electron transformation view is a set of electron stream objects where the
value of each electron attribute corresponds to an element value of an
attribute vector in the event. Each electron is represented as a row as in
Figure 4.12(b).

 70

(a) (b)

Figure 4.12. Transformation view for electrons. (a) Electron properties originally
stored in event objects as attribute vectors; (b) After transposition the values are
stored as attributes per electron object.

Thus the transformation view can be seen as a matrix transposition, and
the matrix transposition rewriting rule defines it. The transformation view
new_electrons has the following definition (Appendix F) in terms of basic
functions after view expansion:

 V1 = get_slot(e,1) AND Get event attribute vector Kfele of event

object stored in position one
 E2 = V1[ei] AND Iterate over all values ei of attribute

vector Kfele
 V2 = get_slot(e,2) AND Get event attribute vector Pxele
 E2 = V2[ei] AND Get each value of attribute vector Pxele
 … etc.
 V = {E1,E2,E3,E4,E5} AND Construct vector of attribute values for

each electron
 T = typenamed(“ELECTRON”) AND Obtain type object
 el = new_sobject(T,e,ei,V) Create a steam object for each electron

The view new_electrons first constructs a vector in variable V and calls
the basic function new_sobject to construct the new stream object. The event
attribute vectors Kfele, Pxele, Pyele, Pzele, and Eeele are assigned to
variables V1, V2, V3, V4, and V5.

After rewrite the definition of new_electrons to use matrix transposition
the query defining the view becomes:

 V1 = get_slot(e,1) AND Get event attribute vector Kfele
 V2 = get_slot(e,2) AND Get event attribute vector Pxele
 …
 V = {V1,V2,V3,V4,V5} AND Form an input vector of the event

attribute vectors
 VT = transpose(V) AND Transpose the vector of the event

attribute vectors
 T = typenamed(“ELECTRON”) AND Obtain type object
 A = VT[ei] AND Iterate over all elements of the

transposed result vector
 el = new_sobject(T,e,ei,A) Create a stream object for each electron

 71

To enable matrix transposition, a vector V of the event attribute vectors is
formed by the vector construction operator noted by “{}”, and then the
matrix transposition function is applied on the constructed vector. After the
call to the matrix transposition function, the elements (rows in Figure 4.12)
of the transposed result vector VT are accessed to create each stream object el
representing the electrons of the event.

The rewritten definition is smaller and it does not access individual
elements of the event attribute vectors, as in the original definition. Before
the rewriting the number of operators to call in the execution plan is
1+m·(2·(i-1)+4), where i is the number accessed attributes (here 5) and m is
the size of the attribute vectors, i.e., the number of electrons. After the
rewriting the number of operator calls is i+3+2·m, thus the rewritten query
scales better for in the number of called operators when many event
attributes are accessed and there are many particles in each event, There is
thus less overhead during the interpretation of the execution plan. The
number of predicates in the view definition is reduced from 2·i+3 to i+5,
which makes query optimization faster.

The new definition can be further rewritten to reduce the number of
functions in the rewritten expanded view. Since the attribute vectors are
originally stored in a stream object e and the result of the transformation
view is a stream object el, a specialized version of the matrix transposition
sobject_transpose is implemented to operate directly on stream objects
rather than first accessing event attributes. The stream object transposition
function takes as input a stream object e, a vector of slots containing
attribute vector positions for the accessed attributes, and the type of the
result stream object. The result of sobject_transpose is a vector of new
stream objects, representing, e.g., a set of electrons.

The definition of new_electrons in terms of sobject_transpose is:

 I = {1,2,3,4,5} AND Form vector of indexes
 T = typenamed(“ELECTRON”) AND Obtain type object
 V = sobject_transpose(e,I,T) AND Transpose the event attribute

vectors of e specified in I and
create stream objects for all
electrons

 el = V[ei] Iterate over all electrons in the
vector

In this definition the number of called operators is further reduced to 3+m
calls and the total number of predicates to 4. Therefore query optimization is
much faster since the predicate to optimize is of fixed size.

To avoid recomputing the transformation views, materialization of
transformation view results is implemented by a stream object transposition
function mat_sobject_transpose. It stores transposed vectors of stream
objects directly in the event object. This materialization is made as soon as

 72

possible in the query plan. Therefore, it is guaranteed that all objects derived
from an event by transformation views are materialized before they are
analyzed. During analyses the materialized objects are accessed directly
from the event objects.

The original definitions of the analysis queries and the transformation
views were manually rewritten to investigate impact on query performance
of different rewriting rules and materialization of the transformation views.

A structure of a subplan containing the mat_sobject_transpose operator is
shown in Figure 4.13. In the subplan the first two operators bind arguments
for the mat_sobject_transpose operator. As for sobject_transpose, I is bound
to the vector of attribute vector positions, and T is bound to the type
Electron. Then the mat_sobject_transpose operator creates the new stream
objects representing electrons and stores them in the event stream object e at
position 17. The last operator, get_slot_bag, accesses the event stream object
for the stored electrons and returns the electrons into el one by one.

I={1,2,3,4,5}

T=typenamed(“ELECTRON”)

mat_sobject_transpose(I,e,T,17)

el=get_slot_bag(e,17)

Figure 4.13. Structure of a subplan with materialization of a transformation view.

4.5.2 Materialized Computational Views
In analysis queries different computational views, defined as derived
functions, are often applied more than once on the same event. For example,
a derived function defining isolated leptons is applied several times over the
same event in different cuts in query (4.1) and the function defining Ok jets
is applied several times. To investigate if materialization of such
computational views can improve performance of less selective queries a
materialize operator was implemented to perform lazy materialization of
derived functions over stream objects, e.g., events. The materialize operator
encapsulates a call to a derived function for a stream object and materializes
its results in the stream object.

 73

The query is rewritten to call the materialize operator for specific derived
functions. When the materialize operator is called for a function and a stream
object, it first checks whether a materialized result is already stored in the
stream object. If so, the materialized result is emitted. If the result is not
already materialized, the function is applied on the stream object and the
result of the execution is materialized and emitted.

Materialization of different derived functions used in SALEH queries was
investigated by manually rewriting the queries to call the materialize
operator. The measurements demonstrate that materialization of the view
OkJets gives 32% improvement in execution performance of the queries
with low selectivities on top of pervious optimizations, while
materializations of other functions did not give improvements in
performance.

An approximate cost model for the materialize operator is defined as the
cost of executing the view definition. This is a conservative estimate for the
case when the materialize operator is called the first time for a given
argument. Later, when a call to the materialize operator accesses a
materialized value, this gives too high cost, while the fanout is correct.
Future work would implement a cost model that estimates cost of the
materialize operator correctly by recognizing if the call to the materialized
view is first in a query plan or if it is previously called in the plan.

4.5.3 Vector Rewritings
Scientific analysis queries are large and complex and are defined using many
views. This can lead to unnecessary vector constructions and vector accesses
that can be avoided. In particular, rewritings are investigated to remove
unnecessary vector constructions where the constructed vectors are not
needed, since only the vector elements are accessed. For example, the
following query fragment can be replaced with f(x2) if v is not used
anywhere else:
v={x1,x2,x3) AND

f(v[2])

Four rewriting rules are proposed to rewrite queries with vector
constructions and accesses after view expansion:
1. The element replacement rule applies when both the vector construction

and an access to an element of the vector are presented in the query. The
rewriting rule replaces the vector accesses with a corresponding variable
used when constructing the vector.
Thus

a query fragment is transformed into
v={…,xi,…} AND

f(v[i])

v={…,xi,…} AND

f(xi)

where i is an integer constant.

 74

2. The argument spreading rule applies when a vector constructed in the
query is used as the argument of a function that has an equivalent
‘spread’ definition with separate arguments for each element. The
original function call is then replaced with a call to the spread function
applied on of the variables used to construct the vector. This rewriting
rule requires that the system either automatically builds the spread
functions for the original functions or maintains pairs of equivalent
functions, where one function is applied on a vector and another function
is applied on separate arguments.

Thus given a function f(v), where v is a vector of size n, has equivalent
spread definition f’(x1,…,xn) in terms of vector elements, the argument
spreading rule makes the following rewrite:

a query fragment is transformed into
v={x1,…,xn} AND

a=f(v)

v={x1,…,xn} AND

a=f’(x1,…,xn)

3. The result spreading rule applies when a function returns a vector and

has an equivalent definition with spread results for each element. The
original function is replaced with the spread function and the result of
the spread function is assigned to spread variables. Then the vector is
formed by the spread variables. This rewriting rule requires that the
system either builds equivalent functions with spread results for original
functions or maintains such pairs of equivalent functions. For example,
if an original function is an aggregate function over a nested subquery,
the equivalent function with spread result can be automatically
constructed.

Given that a function f(a), which returns a vector, has an equivalent
spread definition f’(a) that returns vector elements, the result spreading
rule makes the following rewrite:

a query fragment is transformed into
v=f(a) {x1,…,xn}=f’(a) AND

v={x1,…,xn}

4. The constructor removal rule removes a vector construction if the

constructed vector is not used anywhere else.

For example, if constructed vector v is not used anywhere as in the
following example, the vector construction is removed:

a query fragment is transformed into
v={x1,…,xn} AND

f(x2)

f(x2)

 75

First the result spreading rule is applied to a query. Then the element
replacement rule and the argument spreading rule are applied to remove
vector accesses. Finally, the constructor removal rule removes all
constructions of vectors that are not used in the queries.

To measure impact of the proposed rewriting rules the scientific queries
are manually rewritten. Experiments demonstrate that the vector rewritings
improve performance of queries with low selectivities about twice.

4.5.4 Applying Partial Evaluation
A rewriting technique for reducing the size of a query is partial evaluation
[59][77]. Partial evaluation evaluates some predicates at query compilation
time and replaces them with the evaluated result if possible. It is applied to
queries by the query pre-processor together with other rewriting rules. Using
partial evaluation, the size of a query can be reduced before query
optimization and execution. In SQISLE partial evaluation is used to evaluate
at compile time all predicates accessing meta-data about the application
schema.

For example, several of the views in SALEH call the function
typenamed("Event"). This call is replaced by partial evaluation with the
object representing the type named Event, e.g. #[OID 1242 "EVENT"].

Experiments demonstrate that the partial evaluation improve performance
on queries with low selectivities by 20%.

4.6 Performance Measurements
Performance experiments were done for scientific analyses expressed as
queries to SALEH for the ATLAS application. The experiments were
performed on a cluster node having 2.8 GHz Intel P4 CPU with 2GB RAM,
and running Linux OS.

The SALEH queries implement the Four Cuts Analysis (Example 2.1)
and the Six Cuts Analysis (Example 2.2). The Four Cuts Analysis is defined
in terms of particle properties by four cuts. The Six Cuts Analysis is more
complex and is defined in terms of both event properties (attributes PxMiss
and PyMiss) and particle properties by six cuts.

The performance was evaluated for the different query processing
strategies and queries implementing both scientific analyses. The
performance of the C++ implementation was demonstrated only for the Six
Cuts Analysis, since this implementation was the only one provided by the
physicists.

The query performance was measured by evaluating SALEH queries over
events from two different experiments. The events were stored in ROOT
files accessed as streams. The first experiment bkg2 simulates background

 76

events, which unlikely produce the Higgs bosons, so the selectivities of both
kinds of analysis queries are very high (<0.2%). The other experiment signal
simulates signal events that are likely to produce the Higgs bosons, and the
selectivities of the two kinds of queries are low (16% and 58%).

Events from the bkg2 experiment are stored in 41 ROOT files, where each
file contains 25000 events, i.e., a stream with 1025000 events in total. Events
from the signal experiment are stored in a single file, which contains 8623
events.

The evaluations were performed by scaling the size of the event streams
by reading subsets of these streams. For this four queries were defined for
both scientific analyses and both experiments as a number of functions
where a parameter is used to specify the number of events to read and
analyze, i.e. the stream size.

The query implementing the Six Cuts Analysis (Example 2.2) over events
from experiment bkg2 is defined as a derived function bkgsixcuts. The
stream size is specified as the number of files to analyze:
create function bkgsixcuts(Integer nrFiles) -> Event e

select e

from EventFile f

where name(experiment(f)) = “bkg2” and

 fileid(f) < nrFiles and

 e = saleh_events(filename(f)) and

 hadrtopcut(e) and jetvetocut(e) and

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e);

The query implementing the Six Cuts Analysis over events from experiment
signal is defined by a derived function signalsixcuts, which processes only
the single file produced in experiment signal having identity zero. The upper
limit on the event identity to read from the file is specified as parameter:
create function signalsixcuts(Integer idEvent) ->

 Event e

select e

from EventFile f

where name(experiment(f)) = “signal” and

 fileid(f) = 0 and

 e = saleh_events(filename(f),0,idEvent) and

 hadrtopcut(e) and jetvetocut(e) and

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e);

Analogously, the query implementing the Four Cuts Analysis (Example 2.1)
over events from experiment bkg2 is defined as:

 77

create function bkgfourcuts(Integer nrFiles) -> Event e

select e

from EventFile f

where name(experiment(f)) = “bkg2” and

 fileid(f) < nrFiles and

 e = saleh_events(filename(f)) and

 jetCut(e) and topcut(e) and

 threeLeptonCut(e) and twoLeptonCut(e);

Finally, the query that implements the Four Cuts Analysis over events from
experiment signal is defined analogous to the function signalsixcuts:

create function signalfourcuts(Integer idEvent) ->

 Event e

select e

from EventFile f

where name(experiment(f)) = “signal” and

 fileid(f) = 0 and

 e = saleh_events(filename(f),0,idEvent) and

 jetCut(e) and topcut(e) and

 threeLeptonCut(e) and twoLeptonCut(e);

The sizes of input streams in the evaluations were scaled over six points
for each experiment. The sizes of the event streams from the ROOT files
produced in experiment bkg2 are presented in Table 4.1. The difference
between successive sizes is eight files (200000 events). The table also
demonstrates for each stream size how many events pass the Six Cuts
Analysis and the Four Cuts Analysis, respectively, along with their
selectivities. Table 4.2 presents the sizes of measured streams of events from
experiment signal (the difference between neighbor sizes is 1437 events)
along with the numbers of events that pass each the scientific analysis and
their selectivities. For both the data sets the Six Cuts Analysis is more
selective than the Four Cuts Analysis. Both analysis queries are much more
selective for substreams of events from experiment bkg2 than from signal.

Table 4.1. The sizes of the event substreams from files produced in experiment bkg2
(lines 1 and 2), the number of events selected by the scientific analysis queries (lines
3 and 5) and their query selectivities (lines 4 and 6).
Number of files 1 9 17 25 33 41
Number of events 25000 225000 425000 625000 825000 1025000
Six Cuts Analysis 2 47 72 103 139 187
% 0.008% 0.021% 0.017% 0.016% 0.017% 0.018%
Four Cuts Analysis 32 424 826 1240 1607 2002
% 0.12% 0.18% 0.19% 0.19% 0.19% 0.19%

The queries over events from bkg2 experiment (bkgsixcuts and
bkgfourcuts) selects less than 0.2% of the events. The query bkgsixcuts is

 78

more selective than the query bkgfourcuts, and is also larger and more
complex, since the Six Cuts Analysis (Appendix A) is more complex than the
Four Cuts Analysis (Example 2.1).

 The query signalsixcuts is less selective and has low selectivity around
16%. It is more selective than query signalfourcuts, which has selectivity of
58%.

4.6.1 Evaluated Strategies
First, the impact of runtime query optimization strategies is investigated,
without the query rewrite strategies. The following strategies were
evaluated:

Naïve query processing (NaiveQP). As a reference point, this strategy
demonstrates performance of naive query optimization without reordering
aggregated subqueries. The aggregate cost model and runtime query
optimization are not enabled. Since the aggregate cost model is disabled the
costs of different nested subqueries with aggregate functions are the same,
and the query optimizer will not reorder them. Thus the cuts are executed in
the same order as they are specified in the queries.

Static query processing with the aggregate cost model (StatQP). This
strategy demonstrates the impact of static cost-based optimization based on
the aggregate cost model. The aggregate cost model is enabled, but not
runtime query optimization strategies. Therefore, unlike a loaded database,
no data statistics is available when the query is optimized and default
statistics are used. Since queries are very large, they were optimized using
randomized optimization (Section 2.3.2), which is able to find a good plan in
terms of estimated cost. The strategy is compared with NaiveQP to
demonstrate impact of the aggregate cost model.

Event statistics profiling (EventSP). This strategy demonstrates the impact
of event statistics profiling (Section 4.4.2) compared with StatQP. The
query is initially optimized with the aggregate cost model and default

Table 4.2. The sizes of the streams of events from experiment signal (line 1), the
numbers of events selected by the scientific analyses (lines 2 and 4) and their query
selectivities (lines 3 and 5).
Number of events 1437 2874 4311 5748 7185 8622
Six Cuts Analysis 234 476 705 932 1154 1387
% 16% 16% 16% 16% 16% 16%
Four Cuts Analysis 835 1691 2524 3363 4226 5083
% 58% 58% 58% 58% 58% 58%

 79

statistics. During execution of the query the statistics on sizes of the event
attribute vectors is collected and query reoptimization is performed using
collected statistics. The initial optimization uses the fast greedy optimization
method (Section 2.3.2) and default statistics. The query reoptimization uses
the randomized optimization.

Group statistics profiling (GroupSP). This strategy demonstrates the
impact of group statistics profiling (Section 4.4.3) compared with StatQP
and EventSP. After query fragmentation into groups, the created groups and
their order are initially optimized by the greedy optimization method using
default statistics. Fast greedy optimization is used to reoptimize the group
order since dynamic programming produced the same execution plans.

Two-phase statistics profiling (2PhaseSP). The impact of two-phase
statistics profiling (Section 0) is compared with the other strategies. The
initial optimization uses greedy optimization and default statistics. In the
first reoptimization both groups and group orders are reoptimized using
greedy optimization, the aggregate cost model, and collected event statistics.
In the final reoptimization, group join order is reoptimized again using
greedy optimization and collected group statistics.

The differences between the strategies used to investigate query optimization
approaches are summarized in Table 4.3.

Table 4.3. Query optimization strategies and features used in them.
Strategy The aggregate cost

model
Event statistics
profiling

Group statistics
profiling

NaiveQP – – –
StatQP + – –
EventSP + + –
GroupSP + – +
2PhaseSP + + +

In the next set of experiments, the impact of different rewriting and
materialization strategies (Section 4.5) is investigated. All queries are
optimized using group statistics profiling and they are compared with
GroupSP alone in which no materialization or rewriting is implemented.

Rewritten and materialized transformation views (Trans). This strategy,
described in Section 4.5.1, is compared with GroupSP.

Trans with vector rewritings (TransVect). This strategy extends the
previous strategy with vector rewritings (Section 4.5.3) to evaluate the
impact of the vector rewritings.

 80

TransVect with caching the computational view OkJets
(TransVectCache). The impact of caching the computational view OkJets
(Section 0) is measured and compared with the previous strategy TransVect.

Full query processing (FullQP). This strategy extends TransVectCache
with partial evaluation of predicates that access the particle schema meta-
data (Section 4.5.4). This strategy implements the all proposed query
processing methods.

The difference between these strategies is summarized in Table 4.4.

Table 4.4. Query rewriting and materialization strategies and features used in them.
Strategy Rewritten and

materialized
transformation views

Vector
rewritings

Caching
computational
views

Partial evaluation

GroupSP – – – –
Trans + – – –
TransVect + + – –
TransVectCache + + + –
FullQP + + + +

As reference points FullQP is also compared with manually coded
strategies:

Best effort manual plan (MAN). This strategy demonstrates the
performance of a manually optimized query plan of a query being simplified
by the rewritings and materializations in Section 4.5. The order of cuts was
manually optimized by experimenting with different orders. The orders were
optimized only for the selective queries from experiment bkg2, because
query reordering has most impact on selective queries and the manual effort
to do the optimization is substantial (many hours). The optimal cut order for
the definition of the Six Cuts Analysis in query bkgsixcuts was found to be
Three Lepton Cut, Lepton Cuts, Miss EE Cuts, Z Veto Cut, Hadr Top Cut,
and Jet Veto Cut. For query bkgfourcuts the optimal order was Three Lepton
Cut, Two Lepton Cut, Top Cut, and Jet Cut.

Unoptimized C++ implementation (ExpCPP). This strategy demonstrates
the performance of a manual C++ implementation of the Six Cuts Analysis
(Example 2.2) executed in the same order as in query bkgsixcuts. Thus the
cuts are executed in the following order: Hadr Top Cut, Jet Veto Cut, Z Veto
Cut, Three Lepton Cut, and Other Cuts.

Optimized C++ implementation (OptCPP). This strategy demonstrates the
performance of the Six Cuts Analysis (Example 2.2) implemented in C++,
where the order of the cuts is optimized by a researcher manually. The

 81

optimized order of cuts is: Three Lepton Cut, Z Veto Cut, Hadr Top Cut, Jet
Veto Cut, and Other Cuts.

All evaluated strategies are summarized in Table 4.5.

Table 4.5. Evaluated strategies. Abbreviations: AgCM – aggregate cost model,
Event– event statistics profiling, Group – group statistics profiling, Trans – rewritten
and materialized transformation views, Vect – vector rewriting rules, ViewMat – the
function OkJets is materialized, Parteval – partial evaluation of schema access
predicates, Man – manually optimized cuts ordering.
Strategy AgCM Event Group Trans Vect ViewMat Parteval Man
NaiveQP – – – – – – – –
StatQP + – – – – – – –
EventSP + + – – – – – –
GroupSP + – + – – – – –
2PhaseSP + + + – – – – –
Trans + – + + – – – –
TransVect + – + + + – – –
TransVectCache + – + + + + – –
FullQP + – + + + + + –
MAN – – – – – – – +
ExpCPP C++ implementation with the expensive order of cuts
OptCPP C++ implementation with the cuts ordered by a researcher

4.6.2 Measured Variables
In the measurement the total query processing time is the total time for
optimization, profiling, and execution of a query. The final plan execution
time is the time to just execute the optimized plan. The measures for the C++
strategies (ExpCPP and OptCPP) and manual query optimization (UNOPT
and MAN) do not include any optimization times and therefore both times
are the same. The measurements of the total query processing time for static
query processing (StatQP) consist of time to optimize a query and time to
execute the query.

Figure 4.14 illustrates what is included in the total query processing time
for one-phase runtime query optimization strategies, i.e. EventSP and
GroupSP. After initial optimization, the profiling is enabled for the first k

Figure 4.14. Total query processing time with one-phase runtime query
optimization.

 82

events, e1, …, ek. Then, after reoptimizing the query execution continues
without profiling for the remaining events. In the two-phase statistics
profiling strategy (2PhaseSP) execution with profiling and reoptimization
are performed two times and then execution is continued without profiling
overhead.

The final plan execution time measures how well the different strategies
improve the execution plan. For runtime query optimization strategies this is
measured by executing the query again using the reoptimized plan for the
entire event stream.

4.6.3 Setting Optimization and Profiling Parameters
The strategies that rely on runtime query optimization require setting
different tuning parameters. For event statistics profiling the confidence
interval parameters δ (closeness of sampled mean) and α (probability of the
closeness) have to be chosen. As result of tuning experiments, δ is chosen to
be equal to 15% and α is 90%, which requires that estimated values should
be within 15% from the mean values with probability 90%. For formula
(4.3) it corresponds to δ = 0.15 and zα/2 = 1.65. In reality the difference
between the estimated values and the actual values were measured to be less
than 10%.

Randomized optimization finds better plans in terms of estimated costs
than the greedy optimization method. However, it takes a lot of time for
randomized optimization to find a converged plan for large queries.
Therefore, fast greedy optimization is always used for the initial
optimization of queries in all runtime query optimization strategies.
Randomized optimization is used for the final runtime reoptimization.

For randomized optimization (Section 2.3.2), the number of iterative
improvement (II) steps is chosen to II = 25 and sequence heuristic (SH) steps
to SH = 650. The aggregated subqueries are larger and therefore II = 60 and
SH = 300 when optimizing these. These setting were found to produce the
cheapest query plan in terms of estimated cost for query bkgsixcuts with full
query processing and event statistics profiling (EventFullQP) in
approximately 20 seconds. In general, each query requires different settings
of II and SH and extensive experiments have to be made to find the optimal
settings. Furthermore, with cost-based optimization a cheaper plan in terms
of estimated costs does not necessarily perform better in practice than a more
expensive plan due to the large errors in the estimates of plan costs.
Therefore, careful tuning of randomized optimization was not performed per
query for all strategies. Instead the same settings for randomized
optimization as in EventFullQP were used in all experiments.

For group statistics profiling, the stable reoptimization interval (SI)
(Section 4.4.3) was tuned experimentally, SI = 4 for both group statistics
profiling (Section 4.4.3) and two-phase statistics profiling (Section 0).

 83

Larger values of SI were not found to significantly improve performance,
while smaller values were unstable.

Join orders of groups are always optimized using greedy optimization,
since the fast greedy optimization was found to obtain the same order of
groups as randomized optimization and dynamic programming strategies.
Predicates inside the groups were always optimized using the greedy
optimization method, because the slow randomized optimization inside the
groups did not significantly improve overall performance of the final query
execution plans.

Table 4.6 illustrates the choices of optimization methods used for the
different strategies. Separate strategies and optimization methods were used
for initial optimization (Initial opt.) and the reoptimizations (Reopt.).
Optimization of group definitions (Inside groups) is different from
optimization of group join orders (Group join). The cost-based optimization
methods used are greedy and randomized. Statistics is collected either on
event attribute vector sizes (evattr.) or on group execution times and
selectivities (groups). If reoptimization or collecting statistics are not
performed in a strategy it is denoted by N/A.

Table 4.6. Optimization methods and statistics collection methods used.
Strategy Initial opt. Collect

stat.
Reopt. Collect

stat.
Reopt.

 Inside
groups

Group
Join

 Inside
groups

Group
Join

 Inside
groups

Group
Join

StatQP randomized2 N/A N/A N/A N/A
EventSP greedy2 evattr. randomized2 N/A N/A
GroupSP greedy greedy groups N/A greedy N/A N/A
2PhaseSP greedy greedy evattr. greedy greedy groups N/A greedy
Trans greedy greedy groups N/A greedy N/A N/A
TransVect greedy greedy groups N/A greedy N/A N/A
TransVectCache greedy greedy groups N/A greedy N/A N/A
FullQP greedy greedy groups N/A greedy N/A N/A

4.7 Evaluation Results
The performance of different optimization approaches without query
rewrites is investigated first. Then the additional impact of the query
rewritings is investigated. Finally, the best strategy is compared with
manually coded strategies.

2 On entire query without grouping.

 84

4.7.1 Impact of Query Optimization
Figure 4.15 presents performance of the query plans that are obtained by the
different optimization approaches for the high selectivity query bkgsixcuts.

0

5000

10000

15000

20000

25000

30000

35000

40000

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.) NaiveQP

StatQP

EventSP

2PhaseSP

GroupSP

Figure 4.15. Performance of different strategies for query bkgsixcuts.

The query plan of the naïve query processing strategy (NaiveQP)
performs substantially worse than the other strategies. Static query
optimization with the aggregate cost model (StatQP) gives a query plan that
performs four times better than the query plan from NaiveQP. This
demonstrates the importance of the aggregate cost model to differentiate
between different aggregated subqueries.

The query plan obtained with event statistics profiling (EventSP)
performs twice better than the statically optimized plan (StatQP). This shows
that runtime query optimization is better than static optimization.

The query plans from the group statistics profiling and two-phase
statistics profiling strategies (GroupSP and 2PhaseSP) perform the best and
substantially better than the strategies without grouping. They outperform
naïve query processing (NaiveQP) with a factor 450 and event statistics
profiling without grouping (EventSP) with a factor 50. This demonstrates
that the grouped strategies (GroupSP and 2PhaseSP) alleviate the problem
of errors in the estimates [54] by measuring real execution time and fanout
for each group. The difference between GroupSP and 2PhaseSP is
insignificant.

The optimization strategies are also compared by measuring the total
query processing times, including the times to obtain the query plans. Figure
4.16 shows the optimization overheads obtained by subtracting the final plan
execution time from the total query processing time for query bkgsixcuts.

 85

These overheads are independent of the stream size so the impact is
negligible in practice for large streams.

The optimization overhead of the ungrouped strategy StatQP is the time
to perform randomized optimization. Also the overhead of EventSP is
dominated by the randomized optimization (80%). The remaining time is
there spent on collecting and monitoring statistics. The overheads of the
grouped strategies (GroupSP and 2PhaseSP) are dominated (75%) by
performing group profiling. To obtain the final execution plan GroupSP
profiled only around first 20 events of the stream. So the overhead of
profiling all groups for a single event (0.25s) is substantial. The reason is
that statistics is collected for all groups, including the very complex and
expensive ones to get a good cost model. Therefore, it is necessary to disable
profiling once stream statistics is stabilized. Notice that overheads in both
the ungrouped strategies are around four times higher than overheads of the
grouped strategies, because the grouped strategies use the greedy
optimization, which performs well, while for ungrouped strategies the
greedy optimization did not produce good plans and, therefore, the slow
randomized optimization is used.

The query performance for the other selective query bkgfourcuts is similar
to query bkgsixcuts, but with lower overheads since the queries are simpler
(Figure 4.17).

Figure 4.18 presents performance of the optimization strategies for the
query signalsixcuts with the low selectivity 16%. The impact of the different
query optimization strategies is less significant here. The best strategies
(GroupSP and 2PhaseSP) are just four times faster than the slowest
(NaiveQP). Using the aggregate cost model (StatQP) gives a query plan that
performs 28% better than NaiveQP. Using the event statistics profiling

0

5

10

15

20

25

30

35

StatQP EventSP 2PhaseSP GroupSP

Strategy

O
ve

rh
ea

d
tim

e
(s

ec
.)

Figure 4.16. Optimization overhead for query bkgsixcuts.

 86

(EventSP) gives a query plan that performs twice better than the query plan
obtained without collecting statistics (StatQP). GroupSP and 2PhaseSP are
35% faster than the EventSP. The difference between GroupSP and
2PhaseSP is again insignificant. Thus query optimization has substantially
larger impact on queries with high selectivities.

The total query processing times of the optimization strategies for the low
selectivity query signalsixcuts are presented in Figure 4.19. For small stream
sizes the overhead of randomized optimization makes the performance of the

0

5

10

15

20

25

30

35

StatQP EventSP 2PhaseSP GroupSP

Strategy

O
ve

rh
ea

d
tim

e
(s

ec
.)

Figure 4.17. Optimization overhead for query bkgfourcuts.

0

10

20

30

40

50

60

70

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.)

NaiveQP

StatQP

EventSP

GroupSP

2PhaseSP

Figure 4.18. Performance for different strategies for query signalsixcuts.

 87

ungrouped strategies (StatQP and EventSP) worse than naïve query
processing (NaiveQP). However, since the overhead does not depend on
stream size, runtime query optimization and static query processing pays off
for large streams. Again the overheads of the grouped strategies (GroupSP
and 2PhaseSP) are the smallest. The query signalfourcuts with very low
selectivity (58%) performs similar to signalsixcuts.

In conclusion, query optimization, in particular runtime query
optimization, improves performance significantly for all kinds of queries.
For selective queries the improvements are dramatic. The grouped strategies
(GroupSP and 2PhaseSP) perform the best.

4.7.2 Impact of Query Rewrites
The performance of query rewritings and materializations is measured by
applying different kinds of rewritings on the best runtime query optimization
method (GroupSP).

The performance of query plans for the selective (<0.2%) query
bk2sixcuts simplified by the different rewritings and materializations
(Section 4.5) is presented in Figure 4.20. The strategy without any rewrites
(GroupSP) performs the worst. The rewritten transformation views strategy
(Trans) improves performance by approximately 10%. The vector rewritings
(TransVect) improves performance further by 5%. Materialization of the
computational view OkJets view does not give any improvements. Finally,
partial evaluation (FullQP) improves performance by 3%, giving 17% total
improvement compare to GroupSP. The conclusion is that the impact of the

0

10

20

30

40

50

60

70

80

1437 2874 4311 5748 7185 8622

Stream size (events)

To
ta

l q
ue

ry
 p

ro
ce

ss
in

g
tim

e

StatQP

EventSP

NaiveQP

2PhaseSP

GroupSP

Figure 4.19. Performance of different strategies for query signalsixcuts.

 88

simplifications is insignificant compared to query optimization for selective
queries.

The optimization overheads for the query rewrite strategies are presented
in Figure 4.21, where GroupSP is not applying query rewrites. The graph

0

10
20

30

40
50

60

70
80

90

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.) GroupSP

Trans

TransVect

TransVectCache

FullQP

Figure 4.20. Performance of the query rewrite strategies for query bkgsixcuts.

0
1
2
3
4
5
6
7
8
9

10

Grou
pS

P
Trans

Trans
Vec

t

Trans
Vec

tC
ac

he
Full

QP

Strategy

O
ve

rh
ea

d
tim

e
(s

ec
.)

Figure 4.21. Optimization overhead of the group statistics profiling approach
combined with rewritings and materializations for query bkgsixcuts.

 89

shows that query rewrites do not change significantly the time spent in query
optimization and profiling.

Similar results were obtained for the other selective query bkgfourcuts,
where improvement of all query rewrites (FullQP) was 28% compared to
GroupSP.

Figure 4.22 demonstrates performance of rewritings and materializations
for the query signalsixcuts with low selectivity (16%). Rewritten
transformation views (Trans) improve performance by a factor two.
Applying vector rewritings (TransVect) gives another factor two in
improvement. Materialization of the computational view OkJets
(TransVectCache) further improves performance by 30%. Finally, partial
evaluation (FullQP) improves performance another 20%. The total
improvement between the non rewritten strategy (GroupSP) and the strategy
with the all query rewrites (FullQP) is a factor seven. The impact of query
rewrites for the query signalfourcuts with very low selectivity (58%) is
similar to query signalsixcuts. For query signalfourcuts the strategy with all
query rewrites (FullQP) is five times better than GroupSP. Query
signalfourcuts is simpler than signalsixcuts, which explains the difference.

In conclusion, for queries with low selectivities the combination of query
optimization and query rewrite techniques significantly improve
performance.

0

2

4

6

8

10

12

14

16

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

GroupSP

Trans

TransVect

TransVectCache

FullQP

Figure 4.22. Performance of the query rewrite strategies for query signalsixcuts.

 90

4.7.3 Manually Coded Strategies
To measure the impact of the proposed query processing techniques, the best
performing strategy FullQP is compared with a manually ordered query plan
MAN and two manually coded C++ programs, ExpCPP, and OptCPP. Their
performances for query bkgsixcuts are shown in Figure 4.23. The manually
ordered query plan (MAN) and the query plan from strategy FullQP perform
almost the same. They both perform 20% better than the C++
implementation of Six Cuts Analysis. The C++ implementation where the
order of cuts is optimized manually by the physicist, OptCPP, performs 34%
better than the query plans from FullQP and MAN.

This demonstrates that for selective queries the database approach
performs as good as a manual C++ implementation of the analysis. Notice
that performance can be significantly improved further by conventional code
generation, since SQISLE interprets the query plans.

Performance of the strategies for the query signalsixcuts with low
selectivity (16%) is illustrated by Figure 4.24. For MAN the same query plan
as used as for the query with high selectivity (bkgsixcuts), because it is
extremely cumbersome to find the best order manually. MAN therefore
performs 40% worse than FullQP. However, FullQP still performs four
times worse than the C++ implementations. The reason is that since the
selectivities are low most operators are executed. Here, the cost of
interpreting an operator in SQISLE is higher than the cost of executing

0

10

20

30

40

50

60

70

80

90

100

25000 225000 425000 625000 825000 1025000

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.) ExpCPP

MAN

FullQP

OptCPP

Figure 4.23. Comparing manually coded strategies with full query processing for the
selective query bkgsixcuts.

 91

machine instructions in C++, and we are comparing interpreted SQISLE
with compiled C++. Again, implementing a compiler for query plans will
reduce the interpretation overhead significantly.

The evaluation demonstrates that query optimization techniques proposed
in this Thesis can achieve performance for large and complex scientific
queries close to or better than a manually optimized C++ program.

0

0.5

1

1.5

2

2.5

3

3.5

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n
ex

ec
ut

io
n

tim
e

(s
ec

.) MAN

FullQP

OptCPP

ExpCPP

Figure 4.24. Comparing manually coded strategies with full query processing for the
query signalsixcuts.

4.8 Summary
This chapter presented implementation of a complex scientific application in
a data stream management system (SQISLE). It shows that the streaming
approach allows to process large volumes of data efficiently. The application
specific assumption that makes streamed processing feasible is that every
event is analyzed independently from each other so there is no joins between
different events in queries. The chapter shows that query optimization
techniques enable scalable and efficient execution of large and complex
queries implementing scientific analyses. In summary the contributions of
the chapter are:
5. The stream object data type implements efficiently complex stream

objects representing application events.
6. The profile-controller operator monitors query execution and

dynamically reoptimizes the query while it is running. The profile-
controller was used to implement and evaluate several dynamic

 92

optimization methods: event statistics profiling, group statistics
profiling, and two-phase statistics profiling.

7. Various query transformation techniques were proposed and evaluated.
They were shown to improve performance.

8. The performances of the presented contributions were evaluated on
queries with different selectivities, to understand their impacts for
different kinds of queries.

Combining the all contributions together gives query performances close
to or better than with hard-coded C++ implementations of scientific
analyses.

Performance of executing queries can be further improved by
implementing an algebra compiler. The algebra compiler will remove
overhead of interpreting algebra query plans and eliminate the difference in
speed compared to C++ for queries with low selectivities. With the algebra
compiler SALEH is expected to perform better than C++ for most queries.

The profile-controller operator, which enables runtime query
optimization, can be used also for continuous adaptive query execution,
during which profiling and monitoring is performed for the entire stream.
However, since in our application the distribution of the event properties is
constant over entire stream of events, the expensive profiling and monitoring
is performed only on small part of a stream and then disabled to eliminate its
overhead.

To demonstrate the impact of the rewritings presented in Section 4.5, they
were implemented manually and evaluated. Automatic rewritings remains to
be implemented.

 93

5. Managing Long-Running Queries in a Grid
Environment

Data for the ATLAS application is usually stored on distributed storage
resources available through a Grid infrastructure. The amount of data is huge
and requires utilizing external computational resources. Therefore, we
investigated execution of ALEH queries in the Grid. We developed a
framework POQSEC [36] (Parallel Object Query System for Expensive
Computations) that processes scientific analyses specified as declarative
SQL-like queries over data distributed in the Grid. The goal of the POQSEC
project is to provide a transparent and scalable way to specify and execute
scientific queries in a Grid environment. A user should be able to specify
his/her query transparently in a client database without respect to where it
will be executed and how data will be accessed.

A high-level layered architecture of
running POQSEC is presented in Figure 5.1.
POQSEC utilizes computational resources
of Swegrid [90], which are clusters, and
storage resources of NorduGrid [31], which
store event data files, through the
middleware Grid infrastructure Advanced
Resource Connector (ARC) [32]. ARC
manages the computational resources to run
POQSEC jobs and transfers event data from
storage resources to the clusters. Query
execution is performed on the cluster nodes by ALEH, which accesses event
data from files through ROOT library [18].

POQSEC provides an interface for submitting user queries for execution
in the Grid. The system then creates jobs executing the queries, submits the
jobs to ARC, monitors execution of the jobs by ARC, downloads results of
the jobs, and delivers results of the queries to the user. The user states
queries to POQSEC in terms of a database schema available in the client
database. The schema contains both an application-oriented part and Grid
meta-data. The application schema describes data stored inside files in Grid
storage resources, for example events produced by the ATLAS experiment.
Wrappers are defined for accessing the contents of these files, e.g. in our
application we use a loader to load event data from files by calling the

Figure 5.1. High-level
architecture of running
POQSEC.

 94

ROOT library. The Grid meta-data contains information about the files.
Thus user queries can restrict data both in terms of application data contents
and meta-data about files. The latter is very important since there is a huge
amount of Grid data files and queries are normally over a small percentage
of them. User queries are parallelized to a number of jobs for execution. The
parallelization is done by partitioning data between jobs. Our preliminary
results show that the parallelization gives significant performance
improvements.

The rest of the chapter is organized as follows. Section 5.1 presents the
POQSEC architecture and describes interaction between the DBMS and the
Grid infrastructure. It is followed by a brief description of an application
query in Section 5.2. The implementation of the framework is presented in
details in Section 5.3. Section 5.4 concludes the chapter.

5.1 POQSEC Architecture
The architecture presented in Figure 5.2 illustrates implementation of
POQSEC. The POQSEC architecture considers limitations of the Advanced
Resource Connector (ARC). ARC and its limitations were described in
Section 2.4.1. Here POQSEC components and its interaction with ARC are
described.

The Query Coordinator of POQSEC manages user queries submitted to
POQSEC for execution in the Grid. It communicates with an ARC client
directly through a command line interface. Both the query coordinator and
the ARC client are running on the same node, the Grid Client Node, which is
a user accessible computer node. On it the user must first initialize his/her
Grid credentials required for using ARC client services according to the Grid
Secure Infrastructure (GSI) [93] mechanism.

The POQSEC Client component is a personal POQSEC database running
on the Grid client node and communicating with the query coordinator. It
could also run on a separate node from the Grid client node, e.g. on a user's
desktop computer, if GSI is used for the communication with the query
coordinator. Queries are submitted through the POQSEC client to the query
coordinator for further execution on Grid resources.

The components of the query coordinator are the Coordinator Server and
the Babysitter. The coordinator server contains a Grid Meta-Database, a
Submission Database, and a Job Queue. The Grid meta-database stores
information about data files and computational elements accessible trough
POQSEC. It is needed since Grid resources are heterogeneous and require
Grid users to know the computational elements that are able to execute their
jobs and properties of the computational elements required for job
executions, e.g. runtime environments. POQSEC users need not specify this

 95

information when submitting queries since it is stored in the Grid meta-
database.

The submission database contains descriptions of queries submitted from
the POQSEC client and job descriptions generated by POQSEC to execute
the queries. The job queue contains jobs that are created but not yet
submitted to ARC for execution.

The process of submitting and evaluating a query is presented in Figure
5.3. When a query is received (1) from the POQSEC client the coordinator
server first registers the query in the submission database and stores there a
number of job descriptions to parallelize the query execution. The number of
jobs to create is currently provided by the user as part of the query
submission. Information about computational resources and data files from
the Grid meta-database is used to generate these job descriptions. xRSL
scripts (Section 2.4.1) are generated from the job descriptions and are stored

Coordinator
server

POQSEC
Client BabysitterSubmission

Database

Job queue

Query
Coordinator

ARC
Client

Grid Meta-
Database

Local
Storage

Grid
Client
Node

SE

SE

CE
Storage

CE
Storage

ARC Grid
Manager

ARC Grid
Manager

Executor

CE node

Executor

CE node

Executor

CE node

CECE

Grid

control
flow

data
flow

Figure 5.2. Architecture of POQSEC implementation.

 96

(2) in the local storage. Then the jobs are registered in the job queue. The
babysitter picks (3) jobs from the job queue and submits (4) them as xRSL
scripts to the ARC client for execution on Grid resources. Once a job has
been submitted the babysitter regularly polls (5) the ARC client for its job
status and reports (6) the status to the coordinator server to update the
submission database. When a job is finished the babysitter downloads (11)
the result to the Local Storage, which is the file system of the Grid client
node, and notifies (12) the coordinator server. The result can be retrieved
(13) to the POQSEC client after the query is finished.

On each CE ARC maintains an ARC Grid Manager. It receives (7) job
descriptions from ARC clients. In our case these jobs are executing
POQSEC subqueries. The ARC Grid manager uploads (8) input files from
SEs to the local CE Storage before each job is submitted to the local batch
system. The local batch system allocates CE nodes for each job according its
policies and current load, and then starts the job executions. For POQSEC
these jobs contain Executors, e.g. ALEH, that evaluate (9) subqueries over
uploaded data and store (10) the results in local CE storage files. The
babysitter polls (5) the ARC client regularly for finished executions. After a
job has finished the babysitter requests (11) the ARC client to download (11)
the result to the local storage of the Grid client node and notifies (12) the
coordinator server that the job is ready. Since a given POQSEC query often
generates many jobs a query is ready only when all its jobs are finished.
However, partial results can be obtained once some jobs are finished.

5.2 HEP Queries
POQSEC is evaluated on the ATLAS application (Section 2.1) implemented
in ALEH (Chapter 3). Evaluation experiments are performed on the naïve
query processing of a scientific query, which implements the Six Cuts
Analysis (Appendix A) and is defined in terms of the particle schema (Figure
2.3) over data loaded from ROOT files. The query definition is:

Figure 5.3. Interactions between POQSEC components and ARC.

 97

select e

from Event e

where jetvetocut(e) and zvetocut(e) and

 hadrtopcut(e) and misseecuts(e) and leptoncuts(e)

 and threeleptoncut(e);

(5.1)

The query is expressed in terms of derived functions that define the cuts.
Definitions of the cuts are different from the ones presented in Chapter 3
(Appendix C), since the POQSEC experiments were done earlier (published
in [37]) than the experiments presented in Chapter 3 (published in [38]) and
queries were specified without the restriction to be conjunctive. The
definition of one of the cuts is:

create function zvetocut (Event e) -> Boolean as

select TRUE

where notany(oppositeleptons(e)) or

(abs(invMass(oppositeLeptons(e)) - zMass) >= minZMass);

Where invMass calculates the invariant mass of a pair of two given leptons,
zMass is the mass of a Z particle, minZMass is range of closeness, and
oppositeLeptons is a derived function defined as another query:

create function oppositeLeptons (Event e) -> <Lepton, Lepton>

as

select l1, l2

from Lepton l1, Lepton l2

where l1 = particles(e) and

 l2 = particles(e) and

 Kf(l1) = -Kf(l2);

5.3 Implementation
A POQSEC client running the ALEH application has an interface to a
coordinator server through which a user can submit queries for execution in
the Grid. It can monitor the status of submitted queries, and can retrieve
results of finished queries. To submit a query the user invokes a system
interface function named submit and specifies there the query defined in
terms of the application schema, set of file names which should be processed
by the query, number of jobs for parallelization the query, CPU time
required for processing one job, and optionally a computing element where
the query's jobs should be executed. If no computing element is specified the
jobs will be submitted to an ARC client along with a list of possible

 98

computing elements for execution. The result of the submit function is an
object used to monitor the status and to retrieve the result.

The test data are events produced by ATLAS simulation software and
stored on storage recourses accessible through ARC. Paths to the data files
are stored in the Grid meta-database of the coordinator server in a format
according to xRSL specification [86]. Thus the user provides file names
without paths during submission.

For example, the user wants to execute on any of available computational
resources of Swegrid the analysis query (5.1) over eight specific files, with
parallelization in four jobs, where each job will process two files, where the
CPU time of executing the query over the two files is 20 minutes,. The user
submits the query and assigns the result of the submission to a variable :s:

set :s = submit("select e

 from Event e

 where jetvetocut(e) and

 zvetocut(e) and

 hadrtopcut(e) and

 misseecuts(e) and

 leptoncuts(e) and

 threeleptoncut(e)",

 {"bkg2Events_000.root",

 "bkg2Events_001.root",

 "bkg2Events_002.root",

 "bkg2Events_003.root",

 "bkg2Events_004.root",

 "bkg2Events_005.root",

 "bkg2Events_006.root",

 "bkg2Events_007.root"},4,20);

(5.2)

The submission is then translated into four xRSL scripts, which are
submitted to an ARC client for execution. One of the scripts is presented in
Figure 5.4. The executable there is the ALEH application, which contains
the loader of ROOT files.

It is necessary for the user to specify which files to analyze to restrict
amount of data for processing. In the example the user specifies file names
explicitly. Alternatively the user can define a query over the meta-database
of the coordinator server to retrieve the file names. The local batch systems
of all computational elements available through ARC require specification of
CPU time and thus the user needs to provide this3.

3 With profiled grouping approach it can be estimated automatically using the measured
execution time for each group.

 99

The performance of many queries can be significantly improved by
parallelization into several jobs. Our experience shows that parallelization of
executing a query gives dramatic improvements. For example, the above
submission took 24 minutes. The time was calculated as the elapsed time
between when the query was submitted until all job results were downloaded
from the Grid. A submission of the same query without parallelization as one
job was much slower and took 3 hours and 45 minutes, where 3 hours and 10
minutes were spent for the query evaluation.

During execution of a query submitted to POQSEC the user can monitor
its status of a submission :s by calling status(:s). The status of the query is
computed from its batch jobs statuses. The status "DOWNLOADED" will be
returned only if results of all jobs of the query were downloaded. Then the
user can retrieve the result data by executing retrieve(:s). The result of the
query can be retrieved also by using the function wait(:s). The difference is
that if wait is invoked before the result of the jobs is available the system
waits until the coordinator server notifies it that all jobs are downloaded.

& (executable=aleh)
(arguments="aleh.dmp")
(inputfiles= (aleh "/home/udbl/ruslan/Amox/bin/aleh")
 (aleh.dmp "/home/udbl/ruslan/Amox/bin/aleh.dmp")
 (query2005420103329443.osql "query2005420103329443.osql")
 (bkg2Events_ruslan_001.root "gsiftp://se1.hpc2n.umu.se:2811/
se3/ruslan_poqsec/bkg2Events_ruslan_001.root")
 (bkg2Events_ruslan_000.root "gsiftp://se1.hpc2n.umu.se:2811/
se3/ruslan_poqsec/bkg2Events_ruslan_000.root"))
(outputfiles=(result.out ""))
(cputime=20)
(| (runtimeenvironment=ROOT-3.10.02)
 (runtimeenvironment=APPS/HEP/ATLAS-8.0.8)
 (runtimeenvironment=APPS/PHYSICS/HEP/ROOT-3.10.02)
 (runtimeenvironment=ATLAS-8.0.8)
 (runtimeenvironment=APPS/HEP/ATLAS-9.0.3))
(stdin="query2005420103329443.osql")
(stdout="outGen.out")
(stderr="errGen.err")
(gmlog="grid.debug")
(middleware>="nordugrid")
(| (cluster=sg-access.pdc.kth.se) (cluster=bluesmoke.nsc.liu.se)
 (cluster=hagrid.it.uu.se) (cluster=hive.unicc.chalmers.se)
 (cluster=ingrid.hpc2n.umu.se) (cluster=sigrid.lunarc.lu.se))
(jobName="POQSEC: swegrid2005420103329444.xrsl")

Figure 5.4. Example of the xRSL file with name swegrid2005420103329444.xrsl.

 100

After that it retrieves the result, while retrieve will just print a message if the
query is not finished. The user can cancel his/her query submission by
executing cancel(:s).

The coordinator server, the babysitter, and the ARC client are running on
the same Grid client node as the POQSEC client. The coordinator server
contains the Grid meta-database and the submission database. The user is
able to query the coordinator server for data from the Grid meta-database
and to request updates of the Grid meta-database through the POQSEC
client. The babysitter polls the coordinator server to pick up jobs from the
job queue and to request updates of the submission database.

A schema of the Grid meta-database and the submission database is
presented in Figure 5.5. The Grid meta-database is defined by the type
Cluster and the source database (similar to Figure 4.2) with the type
DataFile and its subtype EventData. The submission database is presented
by the types Submission and Job.

Submission Jobjobs

Query

DataFile

data

SubmitTime

Cluster

cluster

Name XRSLfile QueryFile CPUtime

SubmitTime

data

Status

LastTime

ResultFileResultDir

Name

Path

EventData Size

Name

NickName

BinaryPath RootRE

cluster

Type

entity
type

attribute of
type

relationship
between two
types

is-a
relationshi
p

Attribute Rel.

Legend

Figure 5.5. Schema of the Grid meta-database and the submission database.

 101

When the coordinator server receives query submissions from the
POQSEC client it generates job descriptions and creates xRSL files for ARC
and script files for POQSEC executors. For example, for the submission
given above the coordinator server generates four xRSL files and four script
files. Example of one of the xRSL file is given in Figure 5.4. The POQSEC
script files contain commands for executors to load the input data from the
data files through the ROOT loader and to execute the user query. In our
example one of the script files contains:

load_root_file("bkg2Events_ruslan_001.root");

load_root_file("bkg2Events_ruslan_000.root");

save("result.out",

select e

from Event e

where jetvetocut(e) and zvetocut(e) and

hadrtopcut(e) and misseecuts(e) and

leptoncuts(e) and threeleptoncut(e));

The results of the query executions are saved by the executors in files (here
in result.out) in a way that they can be read by the POQSEC client. Objects,
in our case events, which originally were the same, will be treated by the
POQSEC client as the same object regardless of that they came from
different sources.

The other three xRSL files and three script files are similar except that
they have different input data files. Automatic generation of the files by
POQSEC exempts the user from manually creating such files for each job.

The main tasks for the babysitter are to interact with the ARC client to
submit jobs, to monitor status of executing jobs, and to download finished
jobs. Each interaction with the ARC client can take from several seconds to
a minute; thus the coordinator server does not contact the babysitter
immediately when a job is created. Instead the babysitter polls the
coordinator server regularly when it is not interacting with the ARC client.

5.4 Summary
We implemented a framework that provides basic tools for executing long
running batch queries on Grid resources over scientific data distributed in the
Grid. With the framework a user specifies files to analyze by queries to the
Grid meta-database and analysis of the data from the files in queries. The
framework interacts with the Grid and executes queries there.

With use of the framework the Grid can be utilized to scale analysis
queries over big volumes of data, since the queries are parallelized and
executed on non-dedicated distributed Grid nodes in parallel.

 103

6. Related Work

This chapter presents research related to the Thesis contributions. In
summary, the major contributions are:
• The use of a query language to implement scientific application selecting

events with complex structure.
• Techniques for efficient processing of queries over streams of events with

complex structure.
• To enable efficient execution plans for streamed queries, the profile-

controller operator manages different runtime query optimization
strategies.

• The cost model for aggregate functions over nested subqueries enables
optimization of complex queries having selection conditions with many
aggregate functions.

• The profiled grouping approach fragments queries into groups, measures
execution time and fanouts for each group, and optimizes the join orders
of groups using the measured statistics.

• The performance of streamed queries with low selectivities is shown to be
improved significantly by using query transformation techniques, view
materialization, and partial evaluation.

• An infrastructure for managing queries executed in a batch-oriented grid
infrastructure enables scalable parallel execution of queries on external
computational resources over data stored in grids.

In this chapter different kinds of technologies related to these contributions
are discussed. First, high level interfaces for specifying analysis in HEP
applications are studied. Second, related work in DSMS is studied. Third,
related techniques on adaptive query processing are discussed. Fourth,
related database techniques to process complex queries are presented. Fifth,
related work on databases utilizing computational resources through Grid
infrastructures and other computational distributed infrastructures is
presented. Finally, systems that apply database technologies for scientific
applications in general are presented.

 104

6.1 High-Level Analysis Tools for HEP Applications
It is recognized that physicists need to perform their analyses of ATLAS
data by systems that are simple to use. Several systems for ATLAS
experiment (for example, ADA [3] and DIAL [28]) are developed. They
provide job submission systems oriented for executing ATLAS analyses on
distributed computational resources and hide details of different underlying
Grid infrastructures, batch systems, and ATLAS environment installations.
Physicists specify their analyses as C++ and Python programs and provide
descriptions of their jobs in some job description language to perform the
analyses on external resources. Then the high level analysis tools take care
of distributing and executing the analysis on computational resources and
return merged results to the scientists. By contrast, in our system scientists
specify analyses in a query language, which is more high-level and requires
less time to specify the analyses than writing C++ or Python programs. As
the other systems, our system also takes care of executing the analyses in
parallel on external resources managed by a Grid infrastructure.

A visual query language for specifying HEP analyses is provided by the
system PHEASANT [5]. HEP analyses are there defined in queries, which
then are compiled into a general purpose language [80] without performing
any query optimization or query simplification. By contrast, our system
rewrites and optimizes queries, which is shown to give significant
improvement in performance, approaching that of hard-coded C++
programs.

6.2 Data Stream Management Systems
Most developed DSMSs (e.g., Aurora [2], Gigascope [21], STREAM [1],
TelegraphCQ [61], and XStream [42]) focus on infinite streams of rather
simple objects and efficient processing of time-series operations including
aggregates and joins of the streams. Such DSMSs are data driven and
process the streams by continuous queries. In contrast, in SQISLE elements
of streams are complex objects (each event can be seen as a small database)
and large and complex queries are applied on each streamed object
independently from other objects. Therefore, the queries in SQISLE do not
contain time-series operations and no join between streams is performed.
Furthermore, SQISLE is demand driven, since it has full control of the
stream flow.

Aurora [2] processes rather simple continuous queries over dynamic
streams of rather simple tuples. Queries are defined on algebra level and
views are not supported in the query definitions. The performance of stream
queries is improved by rewriting and optimizing algebra execution plans of
the stream queries. The rewriting combines several algebra operators into

 105

one operator to reduce operator execution overhead. During execution of
stream queries Aurora continuously measures costs and fanouts for each
operator. Then operators in query plans are greedily reoptimized using the
measured statistics by Aurora’s cost-based optimizer. In contrast, SQISLE
processes large complex queries over stable streams of complex objects. The
queries are specified in a declarative SQL-like query language with use of
many views. Therefore, SQISLE implements different query processing
techniques. Complex large queries are optimized using group statistics
profiling, which is shown to produce better performing plans than greedily
optimization of the ungrouped query. In contrast to continuously adapt query
execution plans for dynamic streams as in Aurora, SQISLE adapts a query
execution only for a small part of a stream until group statistics are
stabilized.

In SQISLE the rewriting of transformation views combines calculus
predicates, which simplifies and speeds up cost-based query optimization
and reduces the interpretation overhead. In contrast to Aurora SQISLE in
addition applies rewrites to remove unnecessary predicates, e.g. the vector
rewriting rules that remove unnecessary vector constructions and vector
element accesses.

TelegraphCQ [61] and its extensions CACQ [70] and CBR [11] process
simple and small queries, which do not contain nested subqueries, over
streams with dynamic properties. By contrast SQISLE processes large and
complex scientific queries that contain many nested subqueries. SQISLE
aims to efficiently process large complex queries with many aggregates.

STREAM [1] has a cost-based query optimizer that optimizes query plans
for runtime memory minimization [10]. The system periodically measures
execution times and fanouts of each operator and reoptimizes the execution
order of the operators. By contrast SQISLE does not collect statistics on each
operator of a large query execution plan and, therefore, minimizes the
profiling overhead. Furthermore, in contrast to memory minimization being
the focus in STREAM, the query optimization in SQISLE minimizes
processing time of each single complex object for complex and large
queries. SQISLE does not need to minimize memory consumption, since
only one complex object is materialized in memory at a time. Another
difference is that SQISLE rewrites queries to simplify them while STREAM
does not.

MIT develops a data stream management system, XStream [42], to
process high rate scientific streams of isochronous temporal data with
application specific analysis. A high processing rate of streamed data is
enabled by implementation of a new data type, SigSeg [42], for representing
large windows of streamed tuples, and providing efficient operators executed
over these windows. By contrast each streamed event in SQISLE is a
complex object and analyzed separately from other events. Furthermore, the
analyses first derive new objects from each streamed complex object and

 106

then objects are selected in terms of properties of the derived objects.
Therefore, SQISLE focuses on efficient processing of each complex object
separately, while XStream concentrates on efficient processing of large
windows of rather simple tuples.

6.3 Adaptive Query Processing
In DBMSs and DSMSs precise statistics on data are not always available.
Therefore, adaptive query processing (AQP) techniques are developed to
improve query processing at query execution time, which utilize runtime
feedback and modify query processing [29]. AQP systems (e.g.
[4][14][65][68]) usually continuously adapt the execution plan of a query to
reflect significant changes in data statistics. By contrast SQISLE profiles a
query until no significant changes in stream properties are noticed, i.e.
statistics on the stream is stabilized, and then reoptimizes the query using the
stable statistics. Therefore, after the statistics is stabilized, the rest of a
stream is efficiently processed without profiling overhead.

Many AQP systems (e.g. [4][11][14][55][65][68]) collect statistics only
on cardinalities. Some of them [68] inject monitoring operators in a query
execution plan to measure throughput between pairs of operators. Other
[14][55] uses processing operators that also monitor their fanouts. Similarly
the event statistics profiling in SQISLE collects statistics on cardinalities of
event properties by a wrapper interface function. By contrast the group
statistics profiling in SQISLE first rewrites the processing query fragment
into groups and wraps each group with the group monitor operator. The
group monitor operator measures the execution time and fanout for each
wrapped group during query execution. In both the event statistics profiling
and group statistics profiling the measured statistics are used to optimize a
query in terms of both fanouts and costs.

Different AQP systems implement different mechanisms for changing
running query execution plans to more efficient ones during query execution.
Some AQP systems (e.g. [14][46][55][65]) generate several query execution
plans for the entire query or for query fragments during initial optimization
and switch between the plans during query execution. By contrast SQISLE
generates only a single query execution plan during the initial optimization.
Then during query execution the controlled query fragment, i.e. the
processing query fragment, is reoptimized using collected statistics to obtain
a more efficient execution plan. Generating many execution plans during
initial optimization is not feasible for large and complex queries.

A number of AQP systems [1][2][68] initially generate a single plan as
SQISLE and then reoptimize the entire query during query execution. This is
a common strategy for data driven DSMSs [1][2]. However, for demand
driven AQP systems [68], this requires implementing a mechanism to exploit

 107

already computed intermediate results. In contrast to reoptimizing the entire
query SQISLE reoptimizes only the processing query fragment. Execution of
the source access plan, which controls stream generation, is not affected by
the reoptimization.

Usually DSMSs (e.g. Aurora [2], STREAM [1], and TelegraphCQ [61])
implement scheduling operators that route tuples through processing
operators. A scheduling operator decides for each tuple which operator is
going to process the tuple. After the tuple is processed by the processing
operator it is returned back to the scheduling operator to be send to a next
operator. The scheduling operators in STREAM and Aurora route tuples
according an execution plan produced by a query optimizer, which
reoptimizes the execution plan when it notices significant changes in the
monitored stream statistics. TelegraphCQ uses the eddy operator [4], which
makes dynamic decisions for every tuple and every operator. Invoking a
scheduling operator for every tuple and every operator is important to deal
with high-rate and burst streams. However, this strategy adds an overhead to
each processing operator, thus the overall overhead in query processing is
going to be larger for larger queries. Furthermore, the overhead for the eddy
operators is much more significant than the overheads of the other
scheduling operators. By contrast SQISLE does not deal with high-rate and
bursty streams and focuses on efficient processing of queries over each
independent event. Thus the profile-controller operator is executed once per
input event before the event is filtered by the complete event processing
plan. This minimizes overhead of invoking the profile-controller operator
during execution of large queries.

6.4 Processing of Complex Queries
Modern database applications perform complex queries over stored data. For
example, on-line analytical processing (OLAP) and data mining queries are
often complex [19]. Complex queries are usually defined in terms of views
and consist of many joins, aggregate functions, nested subqueries, selections,
and user-defined functions. Various query processing techniques are
developed to improve performance of such complex queries.

OLAP and data mining queries are usually performed over data objects
loaded into a data warehouse, similar to the loading approach. Our queries
process each independent complex object separately and the performance
evaluation demonstrated that therefore the streaming approach performs
significantly better than the loading approach.

Rewriting calculus representation of queries into equivalent
representations during a pre-processing phase before cost-based query
optimization [58][49] is demonstrated to improve query performance for
different kinds of applications in, e.g., engineering [88], image processing

 108

[69], and business processing [92]. In this Thesis several novel rewrite rules
are developed for SQISLE and evaluated for a scientific test application. The
performance experiments confirm the importance of query rewrite rules for
query processing.

In SQISLE view results are temporarily materialized in the stream object
representing the event. The system provides efficient access and immediate
removal of materialized view results as the stream is progressed. This is
different from methods to cache expensive computations in a regular DBMS
where results are materialized permanently in, e.g., a hash table [51].

Cost-based query optimization is important to obtain an efficient
execution plan for a complex query. Most cost-based optimizers are based
on the System R approach [87]. Such optimizers are limited to optimize only
join-orders of relations. Therefore processing of complex queries with
expensive predicates requires either optimizing the predicates separately
from the relation join-order [48][26] or transforming queries to regard the
expensive predicates as joins of relations [6]. For example, [48] and [26]
optimize queries in the presence of expensive functions by optimizing the
order of the expensive predicates for each relation join-order. An example of
the transformation approach is the optimization of queries containing
aggregate functions over nested subqueries. In relational databases such
queries are rewritten to either regard the nested subqueries as joins of
relations or to unnest the nested subqueries into a flattened query [6][25] .
Thus, relational database optimizers are based on the fact that, for a large
disk-based database, the join is very expensive compared to selection
operators. In SQISLE all operators have similar costs. Therefore, SQISLE
needs to optimize all operators in the complex query together and does not
differentiate between various types of predicates. To deal with queries
containing aggregate functions, the aggregate cost model for aggregate
functions over nested subqueries is developed in the Thesis. To our
knowledge there is no published work presenting a cost model for aggregate
functions over nested subqueries, since such queries are usually regarded as
joins [6][25][45][63][94].

Cost-based query optimizers are often based on approximate statistics and
simplified cost models, e.g. based on the independence assumption. Thus
estimates of query plan costs are inaccurate, and the errors in the cost
estimates are propagated in large queries [54]. Therefore, query optimization
of large and complex queries is often unreliable. Many works
[13][17][34][50][78][84] focus on collecting and maintaining statistics for
different operators and their combinations. They are limited to simple SPJ
queries [13][34][78][84] or they do not cover statistical dependencies
[17][50]. In this Thesis instead of developing a cost model for large and
complex scientific queries which is reliable and covers dependences, we
develop the profiled grouping approach that fragments queries into groups,
measures costs and fanouts for the groups, and optimizes join-order of

 109

groups using the measured cost model. The performance evaluation
demonstrates that the profiled grouping approach finds better performing
plans than the cost-based query optimization alone without the query
fragmentation.

In [12] and [39] statistics on query fragments or views are used to handle
data dependencies during optimization of simple SPJ queries, without
collecting statistics for large numerical queries. They do not automatically
fragment the queries. In contrast SQISLE automatically fragments queries
using the stream fragmenting algorithm developed for our kinds of
applications.

6.5 Databases and Distributed Computational
Infrastructures

Database queries that are computation and data intensive require using
external computational resources to scale query execution. Large amounts of
computational resources are shared within communities across the Internet,
e.g. through Grid infrastructures. Therefore, different projects (e.g., DQP
[64], CODIMS-G [81], STORM [72], and LeSelect [22]) develop
frameworks to execute expensive database queries on distributed
heterogeneous external computational resources.

The distributed query processing system (DQP) [83] (its web service
version is called OGSA-DQP [64]) is a system that utilizes a Grid
infrastructure and provides a high-level declarative query language for data
access and analyses. The DQP scheduler requires that dedicated resources
for the distributed query execution are preallocated before a query is
parallelized and optimized [43]. Any of the preallocated resources can be
utilized by DQP dynamically. DQP is different from POQSEC that utilizes
ARC as a middleware above autonomous local batch systems on
computational resources. Unlike DQP, neither POQSEC nor ARC have full
control of computational resources and POQSEC therefore needs to consider
the ARC limitation that jobs are not guaranteed to start immediately.
Furthermore, as part of a job description ARC requires to specify all
descriptions of resources in advance. This includes, for example, estimating
execution time and number of computational nodes for jobs.

CODIMS-G [81] is an adaptive parallel query processing middleware on
top of a Grid infrastructure that allows dynamic allocation of dedicated
computational resources. CODIMS-G dynamically allocates computational
resources, deploys query engines on the allocated nodes, and performs query
execution on the deployed query engines. During query execution resources
can be adaptively re-allocated. In contrast POQSEC runs on top of Grids

 110

where resources are managed by batch systems, which do not allow
immediate allocation of resources.

STORM [72] is a framework for processing on distributed and parallel
resources very large multi-dimensional scientific datasets stored in
distributed files. During execution of the query, selections are performed
locally on distributed storage resources and the results of selections are
shipped to a computational cluster. Then on the computational cluster the
selected subsets are joined and the rest of the query is executed. By contrast
grid based query management in POQSEC does not assume pre-installed
database management capabilities on storage resources, and therefore
queries are executed only on computational resources to where both files and
the lightweight data management system are shipped.

LeSelect [22] is a distributed mediator system, which aims to support
scientific collaborations. Through LeSelect scientists working at different
locations share data, which are binary large objects (blobs), and analysis
code, which is represented as external expensive functions. LeSelect
assumes that functions can be executed only on LeSelect servers. Therefore
data are transferred to LeSelect servers storing the expensive functions for
processing. By contrast POQSEC transfers both data and analysis code.
Furthermore, in contrast to pre-installed LeSelect servers, POQSEC does not
require to install its components (e.g., SALEH) on computational Grid nodes
in advance.

6.6 Scientific Databases
Database technologies have been extended for scientific applications to
provide high-level easy-to-use interfaces for scientists (e.g., MauveDB [30],
LeSelect [22], SDSS [91], XStream [42], STORM [72]). Using such
scientific data management systems the scientists can analyze their scientific
data in terms of views in efficient and transparent ways without studying
details of wrapped complex underlying systems used to store or generate
scientific data.

The system MauveDB [30] focuses on supporting views, called model-
based views, which are defined in terms of statistical models over base tables
containing scientific data. MauveDB allows writing SQL queries in terms of
model-based views that transform base data into the data representing the
views. MauveDB utilizes a relational query optimizer during query
processing. For this, either the queries are rewritten in terms of base tables
by application specific rewriting rules if the rules are available [62], or,
otherwise, cost models for model-based views are defined [30]. Then the
join order of the base tables and views is optimized. In contrast to
implementing views in a foreign language and defining specific
transformation rules for expanding the views, views in SQISLE are defined

 111

as queries and, therefore, are automatically expanded by general view
expansion rules. Furthermore, the queries are optimized in order to reduce
time to analyze independent events, while in MauveDB query optimization
focuses on join ordering. Thus MauveDB reduces data accesses from disk,
while SQISLE optimizes operators processing streams of complex objects.

An example of implementing a complex scientific application in a
relational DBMS is the Sloan Digital Sky Survey (SDSS) project [91]. In the
project huge amounts of astronomical data from the SDSS telescope are
loaded into a cluster of SQL Server databases, which corresponds to data
warehousing or loading approach. The SQL queries submitted for execution
by the parallel DBMS contain application specific computations
implemented in SQL and external languages. In SQISLE the queries are also
specified in a declarative query language similar to SQL and include
application specific computations. In contrast to SDSS, in SQISLE the
application data is not loaded into the database. Instead the data is stored in
original files and accessed in a stream fashion that demonstrates significantly
better performance for our type of applications than the loading approach
(ALEH).

 113

7. Summary and Future Work

This Thesis presented implementation of a query processing system targeted
to scientific applications where data are independent events with complex
structures selected by complex large queries. The queries process large
volumes of data stored in files distributed in Grids. The new system
POQSEC for managing scientific queries in Grids was developed. POQSEC
parallelizes queries by data partitioning and executes them in a Grid through
the Grid infrastructure Advanced Resource Connector [32].

Processing of the queries on computational nodes of a Grid is performed
by new data stream management system SQISLE, which is an extension of
the functional main-memory DBMS Amos II [79]. It accesses events from
files through a wrapper interface and process them efficiently by utilizing
novel query processing techniques. SQISLE implements runtime query
optimization methods to collect runtime stream statistics and reoptimize
queries during execution. For this the profile-controller operator was
implemented. During query execution it monitors collected statistics,
reoptimizes a query fragment that processes events, and switches to another
strategy, e.g. into non-profiled execution. To alleviate large errors in
estimates of execution plan costs in large queries, group statistics profiling
was implemented in SQISLE that fragments queries into groups, measures
statistics for each group, and reoptimizes the join-order of groups at runtime.
Performance of queries with low selectivities was further improved by
transformation rules that simplify the queries.

To verify the approach, a scientific application from the ATLAS
experiment [15][47] was implemented in SQISLE. The implementation
demonstrated that performance of the application analysis queries in
SQISLE is close to or better than a hard-coded and manually optimized C++
implementation of the same analysis which requires a significant effort to
develop.

The system currently interprets the generated query execution plans. By
making a compiler of the executions plans into C or machine code, the
performance will be significantly better than the current implementation.

The demonstrated performance results inspire us to implement other
scientific applications in the future. We are looking for applications where
analyses can be written as searching for objects using conjunctive analysis
queries over streams of complex objects. Each new application requires

 114

implementing high-level interface functions in SQISLE, which can be
simplified by providing a set of high-level tools to developers.

Currently parallelization of queries in POQSEC requires specifying the
degree of parallelization and the expected execution time. Future work
would include estimating expected execution times using measured statistics
on groups obtained by group statistics profiling. Furthermore, heuristics or
learning algorithms could calculate the degree of parallelization for efficient
query execution in a Grid. This could make query processing in POQSEC
fully transparent for a user.

The impact of rewriting rules in SQISLE was investigated by manually
rewriting application queries. Since performance evaluation demonstrated
the importance of using rewriting rules, the pre-processor of SQISLE should
transform the queries automatically.

Another future work is to investigate if group statistics profiling can be
improved by using another fragmenting algorithm and more sophisticated
cost models for groups. Currently the cost model for groups assumes that
groups are uncorrelated. This assumption can lead to suboptimal join-order
of groups. The impact of measuring correlations between groups could be
investigated, e.g. by implementing algorithms proposed in [16] for adaptive
ordering pipelined stream filters.

A challenge is to support complex queries joining several streams of time
stamped complex objects.

Finally, implementing new applications in SQISLE can give more issues
for future work, e.g. cases for adaptive query processing.

 115

Summary in Swedish

Optimerad sökning bland stora mängder vetenskapliga
data
Vetenskapliga instrument producerar stora volymer mätvärden. Dessa data
analyseras av forskare som testar och utvärderar olika vetenskapliga teorier.
Ofta är analyserna utformade med hjälp av konventionella program i ett
programmeringsspråk, t.ex. C++. Sådan programmering hämmar
forskningsproduktiviteten därför att det krävs mycken specialistkunskap för
att skriva effektiva och bra C++-program. Dessutom är det svårt att förstå
och modifiera sådana program. Programutvecklingen blir extra komplicerad
eftersom programmen måste vara skalbara, d.v.s. de ska vara effektiva när
mängden data är mycket stor.

Inom databasområdet har man sedan länge utvecklat ett flertal tekniker
och system för att snabbt kunna göra avancerade frågor över stora mängder
data. I denna avhandling undersöks hur tekniker som används i stora
databaser också kan tillämpas för sökning och analys av vetenskapliga
mätdata. Avhandlingen visar att nya databassökmetoder krävs för denna
utvidgade tillämpning av databasteknik.

Följande frågeställningar tas upp:
1. Kan ett databashanteringsystem (DBHS) användas för att implementera

vetenskapliga analyser? Speciellt undersöks vilka nya tekniker som
behövs i ett DBHS för att möjliggöra effektiv sökning bland stora
mängder vetenskapliga mätvärden.

2. Kan sökteknologi förbättra prestanda och skalbarhet för komplexa
vetenskapliga analyser? Vilka nya tekniker för frågebearbetning och
optimering behövs för att uppnå detta?

3. Hur kan grid-teknik användas för att utföra sådana storskaliga
vetenskapliga sökningar?

Tillämpningsområdet för den föreslagna ansatsen är data och frågor från
ATLAS- experimentet vid den nya LHC-acceleratorn hos CERN. I ATLAS-
experimentet mäts olika fenomen producerade av mycket stora mängder
kollisioner mellan partiklar. Kollisionerna kallas händelser. Forskare testar
olika teorier för att identifiera de partiklar som producerats vid kollisionerna,
t.ex. Higgs-bosoner.

 116

I tillämpningar som ATLAS-experimentet utgörs data av stora mängder
mätvärden av egenskaper hos händelser. Varje händelse är komplex, dvs. det
finns mycket data om varje händelse. Man kan därför se varje händelse som
en egen databas. En sådan databas kallas ett komplext objekt.

Avhandlingen visar att vetenskapliga teorier kan uttryckas som
databasfrågor. Frågorna testar hypoteser genom att söka efter de komplexa
objekt som beskriver händelser där t.ex. Higgs-bosoner skapats.
Sökkriterierna uttrycks som numeriska filter i termer av olika egenskaper
uppmätta vid varje händelse. Många numeriska filter kombineras i en och
samma fråga när en sammansatt hypotes formuleras. Det gör att
sökkriterierna sammantaget blir mycket komplexa. I tillämpningsområdet
filtreras varje händelse för sig, oberoende av andra händelser. Därför
behöver man aldrig göra filter som kombinerar egenskaper hos olika
händelser. Detta oberoende kan utnyttjas i frågeoptimeringen.

 För att undersöka hur sådana avancerade databassökningar kan hanteras
generellt och effektivt har ett nytt s.k. dataströmhanteringssystem (DSHS)
utvecklats som heter SQISLE (eng. Scientific Queries over Independent
Streamed Large Events). Till skillnad från konventionella DBHS, som är
inriktade mot effektiv sökning bland data som ligger på disk, kan man med
ett DSHS som SQISLE uttrycka databasfrågor som söker direkt i stora
strömmar av händelser utan att först ladda in dem i ett DBHS. Ett speciellt
krav för SQISLE är att objekten i strömmarna är komplexa och att frågorna
väljer ut komplexa objekt ur strömmarna m.h.a. avancerade sökkriterier.

Nya metoder har utvecklas för effektiv sökning med komplicerade
sökkriterier bland strömmar av stora mängder oberoende komplexa objekt.
Metoderna har utvärderats genom att tillämpa SQISLE på strömmar
producerade av ATLAS-experimentet. Sökkriterierna i ATLAS-
experimentet är komplicerade. Dessa sökkriterier kräver nya tekniker för
effektiv och skalbar sökning.

I likhet med DBHS skapar SQISLE automatiskt en exekveringsstrategi
för varje given fråga. En sådan strategi, en frågeplan, utför sökningen på
effektivast möjliga sätt. I traditionella DBHS genererar en frågeoptimerare
en statisk frågeplan för varje fråga, baserat på statistiska egenskaper hos de
data som lagras i databasen. I avhandlingen visas att en sådan statisk
frågeplan förbättrar prestanda avsevärt också för avancerade frågor över
strömmande komplexa objekt. Emellertid blir databasstatistiken otillförlitlig
när den används för att optimera frågor med komplicerade sökkriterier. Detta
gäller för traditionella DBHS, men speciellt för DSHS eftersom statistik om
data i strömmarna inte finns tillgänglig i förväg. Därför innehåller de
frågeplaner som SQISLE genererar en operator som kallas profilövervakaren
(eng. profile-controller). Profilövervakaren övervakar de ingående
delsökkriterierna genom att samla statistik medan de körs, och anropar
regelbundet frågeoptimeraren. Frågeoptimeraren genererar dynamiskt en ny
frågeplan när tillräckligt mycket statistik finns tillgänglig från

 117

profilövervakaren. Resultatet av en sådan omoptimering är att delar av
frågeplanen dynamiskt byts ut under det att strömmen genomsöks.

Liksom för DBHS baseras optimeringen på en s.k. kostnadsmodell som
uppskattar kostnaden att utföra de funktioner som används i sökkriterierna.
För att optimeringen skall kunna skapa en effektiv frågeplan är det viktigt att
kostnadsmodellen någorlunda korrekt uppskattar tidsåtgången för att utföra
olika sökkriterier. En viktig del av sökkriterierna utgörs av aggregeringar av
data, d.v.s. summeringar och andra sammanställningar. Därför utvecklar och
utvärderar avhandlingen en ny kostnadsmodell för vanliga typer av
aggregeringar över delar av avancerade sökkriterier. Denna kostnadsmodell
för aggregeringar uppskattar körtid och hur mycket data som
sökoperatorerna filtrerar bort. En annan viktig teknik är att automatsikt dela
upp frågan i delfrågor, s.k. grupper, och samla statistik för varje grupp under
körning. Grupper förfinar kostnadsuppskattningen för varje fråga, vilket
visar sig förbättra prestanda väsentligt. Ytterligare prestandaförbättringar
uppnås genom att tillämpa olika tekniker för att transformera och förenkla
frågan.

I avhandlingen visas att de föreslagna frågeoptimeringsstrategierna ger
prestanda i närheten av eller bättre än manuellt programmerade C++-
program som utför samma analys. Vidare jämförs dataströmansatsen med
den konventionella databasansatsen att först ladda upp händelserna i en
databas innan man ställer frågorna. Det visas att strömansatsen är betydligt
snabbare än den konventionella ansatsen.

Eftersom mängden data för vetenskapliga analyser har oerhört stor volym
behövs ny infrastruktur för lagring och bearbetning av dessa data, vilket lett
till utvecklandet av grid-teknik. Grid-tekniken tillhandahåller lagrings- och
bearbetningsresurser för vetenskapliga analyser. Avhandlingen inkluderar en
ansats, POQSEC (eng. Parallel Object Query System for Expensive
Computations), som utnyttjar grid-teknik för att utföra skalbara
vetenskapliga frågor över stora datavolymer genom att köra dem parallellt på
många datorer i en grid-omgivning. POQSEC demonstrerar en
systemarkitektur där inte bara frågorna skeppas till beräkningsnoder utan
hela databashanteringssystemet.

Sammanfattningsvis visar avhandlingen:
• Att vetenskapliga analyser kan specificeras enkelt och tillämningsnära i

termer av högnivåfrågor. I analysen representeras händelser som
komplexa objekt modellerade m.h.a. en funktionell datamodell.

• Att med de föreslagna frågeoptimeringsmetoderna kan vetenskapliga
frågor uttryckas enkelt och samtidigt utföras lika effektivt som med ett
handkodat C++-program, fast betydligt mer anpassningsbart.

• Att en strömmande implementation har betydligt bättre prestanda och
skalar bättre än motsvarande traditionella implementering där data laddas
in i en databas innan frågorna specificeras.

 118

• Att profilövervakaren väsentligt förbättrar prestanda genom att övervaka
och och dynamiskt optimera om strömfrågorna under det att de utförs.

• Att en nyutvecklad kostnadsmodell för aggregeringar förbättrar prestanda
väsentligt för komplexa frågor.

• Att uppdelning av sökkriteriet i grupper kombinerat med
kostnadsmodellen för aggregeringar förbättrar prestanda väsentligt.

• Att programtransformationer signifikant förbättrar prestanda.
• Att frågor över stora datavolymer kan exekveras effektivt genom parallell

körning på icke-dedicerade externa grid-resurser.

 119

 Acknowledgments

First and foremost I would like to thank my supervisor professor Tore Risch.
With great help from Tore I learned a lot about databases and worked on an
exciting project. I really enjoyed implementing my research in our extensible
prototype Amos II.

During my time in UDBL it was a pleasure to meet the former and current
members of the group: Timour Katchaounov, Kjell Orsborn, Milena
Ivanova, Johan Petrini, Erik Zeitler, Sabesan Manivasakan, Silvia Stefanova,
and Gyözö Gidófalvi. Our group was moving around Uppsala University. In
all places within DIS and IT-department I met very nice people and I would
like to thank all of them for the time.

For the study I left my home country and started a new life in Uppsala.
My life was not boring, because I met a lot of new friends. The list of friends
is huge, thus I do not write all their names, but I would like to thank all of
them.

I am grateful to Oleg Peil, who has supported me in different activities,
including all sport activities, and helped me with different troubles, e.g., a
broken car.

Achieving my doctoral degree would not have been possible without
undergraduate studying in LETI and all teachers who have taught me there.
Furthermore, meeting Vladislav Valkovsky made my PhD study here
possible.

I am grateful to my parents Mikhail and Tatiana for their support and
guidance. Finally, I would like to thank my wife Oksana and daughters Katja
and Lena for their love and patience.

This work was supported in part by The Swedish Research Council (VR)

under contract 343-2003-955 and by Vinnova under contract 2007-02916.

 121

A. Definition of the Six Cuts Analysis in
Natural Language

This appendix presents the definition of the five cuts: Hadr Top Cut, Jet
Veto Cut, Z Veto Cut, Three Lepton Cut, and Other Cuts. The definition fully
follows the description of the analysis in [15] except that Hadr Top Cut is
modified and B Tag condition was removed.

The modified Hadr Top Cut is defined in the following way:
• Events must have at least three ok jets, each with Pt > 20 GeV in |Eta| <

4.5.
• One of these three jets must be b-tagged, meaning that Kf of the jet must

be equal to 5.
• Two other jets (w jets) of these three jets should not be b-tagged and they

are selected by minimizing |mjj – mW|. Their invariant mass, mjj, must be in
the range mW ± 15 GeV.

• Among these, the three jets that are most likely to come from a top quark
decay are selected by minimizing |mjjj – mt|, where mjjj is the invariant
mass of the three-jet system. This invariant mass mjjj must be in the range
mt ± 35 GeV.

Jet Veto Cut requires:
• Reject all events containing any jets (other than the three jets selected for

the top reconstruction) with Pt > 70 GeV and |Eta| < 4.5.

Requirement of Z Veto Cut is:
• Reject all events with di-lepton pairs with opposite charges and the same

flavor that have an invariant mass in the range mZ ± 10 GeV, where mZ is
equal to 91.1882.

Three Lepton Cut requires:
• Events must have exactly three isolated leptons (l = e, μ) with Pt > 20, 7,

and 7 GeV, respectively, all with |Eta| < 2.4.
This cut is the same as Three Lepton Cut from Example 2.1.

Requirements of Other Cuts are:

 122

• For the three isolated leptons already selected, the Pt of the hardest lepton
should be below 150 GeV whereas the Pt of the softest lepton should be
below 40 GeV.

• The missing transverse energy should be large than 40 GeV.
• The effective mass, meff, constructed from the Pt3l and Ptmiss vectors as

)cos1(2 3 φΔ−⋅⋅⋅= missleff PtPtm , is required to be lower than 150 GeV
(here Δφ is the azimuthal angle between Pt3l and Ptmiss).

The missing traverse energy is calculated over the missing momentum of an
event by formula 22 PymissPxmiss + . The Pt3l vector contains two
elements, where the first element is the sum of Px values of the three isolated
leptons and the second element is the sum of Py values for the three isolated
leptons. The Ptmiss vector contains Pxmiss as the first element and Pymiss as
the second element.

 123

B. Definition of the Particle Schema in ALEH

The particle schema for the loading approach is implemented as a database
schema representing events and their particles and views on top of the
schema. The definition here is from [38] with minor changes. For example,
the type AbstractParticle is renamed into Particle, the type JetB is renamed
into Jet. The names of the functions are also affected by these changes. The
schema is defined by:

create type Event;

create type Particle;

create type Lepton under Particle;

create type Jet under Particle;

create type Electron under Lepton;

create type Muon under Lepton;

create function PxMiss(Event) -> Real as stored;

create function PyMiss(Event) -> Real as stored;

create function filename(Event) -> Charstring as stored;

create function Eventid(Event) -> Integer as stored;

create function Pid(Particle) -> Integer as stored;

create function event(Particle) -> Event;

create function Kf(Particle) -> Integer as stored;

create function Px(Particle) -> Real as stored;

create function Py(Particle) -> Real as stored;

 124

create function Pz(Particle) -> Real as stored;

create function Ee(Particle) -> Real as stored;

create function event(Muon)-> Event as stored;

create function event(Electron)-> Event as stored;

create function event(Jet)-> Event as stored;

The view over the schema provides functions to retrieve particles of a given
event:

create function electrons(Event e) -> Electron el as

select el

where event(el)=e;

create function muons(Event e) -> Muon mu as

select mu

where event(mu)=e;

create function jets(Event e) -> Jet jt as

select jt

where event(jt)=e;

create function leptons(Event e) -> Lepton l as

select l

where event(l)=e;

create function particles(Event e) -> Particle p as

select p

where event(p)=e;

 125

C. Definition of Analysis Cuts in ALEH

The analysis cuts from Appendix A are implemented as queries over the
particle schema definition presented in Appendix B.

create function isolatedLeptons(Event e) -> Lepton as

select l

from Lepton l

where l=leptons(e)

and pt(l) > 7.0

and abs(eta(l)) < 2.4;

create function threeleptoncut (Event e-v) -> Boolean as

select TRUE

where count(isolatedLeptons(e))=3

and some (select r

from Real r

where r=Pt(isolatedLeptons(e))

 and r>20.0);

create function oppositeLeptons(Event e) -> Vector of Lepton

as

select {l1, l2}

from Lepton l1, Lepton l2

where l1 = particles(e)

 and l2 = particles(e)

 and Kf(l1)=-Kf(l2);

create function EvInvMass(Event e) -> Bag of Real r as

select r

from Vector lept, Real inv

where lept = oppositeLeptons(e)

 and inv = invMass(lept)

 and r=abs(inv-91.1882)

 and r < 10.0;

 126

create function zVetoCut(Event e) -> Boolean as

select TRUE

where notany(EvInvMass(e));

create function okJetsHelpfunc(Event e) -> Bag of Jet as

select jt

from Jet jt

where event(jt)=e

 and abs(eta(jt))<4.5

 and pt(jt)>20.0;

create function okJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt=okJetsHelpfunc(e)

 and atleast(3,okJetsHelpfunc(e));

create function bJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt=okJets(e)

 and kf(jt)=5;

create function wJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt=okJets(e)

 and kf(jt)!=5;

create function wPairs(Event e) -> Bag of Vector v as

select v

from Jet j1, Jet j2

where j1=wJets(e)

 and j2=wJets(e)

 and j1>j2

 and v={j1,j2}

 and absInvMass(v,80.419)<15.0;

 127

create function topComb(Event e) -> Bag of Vector v as

select v

from Jet j1, Jet j2, Jet bj

where v={j1,j2,bj}

 and {j1,j2}=wPairs(e)

 and bj=bJets(e)

 and absInvMass(v,174.3)<35.0;

create function hadrtopCut(Event e) -> Boolean as

select TRUE

where some(topComb(e));

create function mTopComb(Event e) -> Vector v as

select v

where v=topComb(e)

 and absInvMass(v,174.3) =

 minagg(absInvMass(topComb(e),174.3));

create function leftJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt=okJets(e)

 and notany(select jt

 where jt=in(mTopComb(e)));

create function jetVetoCut(Event e) -> Boolean as

select TRUE

where notany(select jt

from Jet jt

where jt=leftJets(e) and

 Pt(jt)>70.0);

create function leptonCuts(Event e) -> Boolean as

select TRUE

where notany(select l

from Lepton l

where l=isolatedLeptons(e)

 and Pt(l)>150.0)

 and some(select r

 from Real r

 where r=Pt(isolatedLeptons(e))

 and r<=40.0);

 128

create function missEeCuts(Event e) -> Boolean as

select TRUE

from Vector ptMiss, Vector pt31

where ptMiss={PxMiss(e),PyMiss(e)}

 and mod(ptMiss)>=40.0

 and pt31={sum(select Px(isolatedLeptons(e))),

 sum(select Py(isolatedLeptons(e)))}

 and effectiveMass(ptMiss,pt31)<=150.0;

 129

D. Implementation of Stream Objects

A stream object has the following structure:

Type
tag

Source Sid Attribute 1 Attribute 2 Attribute 3 …

The type tag represents the type of the object, a subtype of Sobject. The

attribute source contains an object representing where the data represented
by the stream object originates. The attribute Sid is an object uniquely
identifying the data within the source. The type tag, source, and Sid
attributes are used to uniquely identify stream objects. The system regards
two stream objects as equal if this compound key is the same. This allows
recognizing duplicates by comparing stream objects without maintaining an
index of all currently existing stream objects.

For example, the source of a stream object representing an event in
SALEH is the name of the ROOT file from which the event originates. The
attribute Sid of an event stream object is an integer identifying the event in
the source file. Thus each event is uniquely identified by the ROOT file
name, the event identifier, and the fact that it is a stream object of type
Event.

The remaining attributes Attribute 1, 2, 3, … of a stream object are called
non-key attributes. The attribute values can be objects of any type. Thus
stream objects can represent complex objects. Each kind of stream object has
a fixed number of attributes.

SQISLE provides internal interface functions for stream objects. They are
not used in user queries but to define the application schema by a SQISLE
administrator. There are functions to create new stream objects and to access
and update of Sobject attributes. A new stream object is constructed by
calling a function:
new_sobject(Type tpo,

Object source,

Object sid,

Vector values) -> Sobject so
The result is a stream object so belonging to the given type tpo, having the
given source object source and identifying object sid. It has the same number
of non-key attributes as the size of the vector values. The values of the non-

 130

key attributes are set to the values from the vector values in the same order
as its elements. It is also possible to create a stream object without providing
values. In this case an overloaded function is used:
new_sobject(Type tpo,

Object source,

Object sid,

Integer n) -> Sobject so

In the overloaded function the number of non-key attributes n is specified
rather than the vector of values. The non-key attribute values are initialized
to nil. The values can be later updated by a function:
set_slot(Sobject so,

Integer i,

Object v) -> Boolean b

The function takes a stream object so, a non-key attribute position i, and a
value object v as arguments, and always return true.

Values of non-key attributes are accessed by calling a function:
get_slot(Sobject so, Integer i) -> Object v

For a given stream object so and attribute position i, the function returns the
stored value v. If a slot contains a collection of values the values can
alternatively be returned as a bag b by the function:
get_slot_bag(Sobject so, Integer i) -> Bag of Object b

The function has the same arguments as get_slot, but if the accessed value is
a vector the values of the vector are emitted one by one as a bag of values.
The source and identifier of a stream object so are retrieved by calling the
following operators over the given stream object:
source(Sobject so) -> Object source

sid(Sobject so) -> Integer sid

Appendix G shows how to use these interface functions to define the
particle schema in SALEH.

 131

E. The ROOT Wrapper Interface

A general ROOT wrapper interface is implemented as a set of functions, the
ROOT wrapper interface functions to retrieve events from ROOT files that
store events as ROOT tuples containing simple C values (Section 2.1.1). The
interface provides functions to access meta-data about a ROOT file and
functions to return from a ROOT file a stream of tuples represented by
stream objects. The meta-data about a ROOT file includes internal paths
inside the ROOT file and names of ROOT collections stored in the file.
Furthermore it provides meta-data that describes the structure of the ROOT
tuples in each ROOT collection as lists of the names and types of the tuple
attributes. The ROOT wrapper interface is used by a SQISLE administrator
for defining the particle schema.

The ROOT wrapper interface functions can stream all tuples of a
collection, a subset of the tuples, or a single tuple. To retrieve data from a
ROOT collection a ROOT wrapper interface function needs at least the name
of the ROOT file, the internal path to a collection in the ROOT file, the
collection name, and the type of the result stream objects. The result type
must be subtype of the type Sobject. The sources of the stream objects are
defined by the name of the ROOT file. The Sids of the stream objects are the
identifiers of the corresponding ROOT tuples. The path to the collection and
the collection name are stored as meta-properties of their type and not in the
result stream objects. The attributes of a stream object contains values of
tuple elements in the same order as in the corresponding tuple indexed by a
slot number for each attribute.

Since not all attributes are needed for an analysis, unnecessary attributes
of the tuples can be projected away in the corresponding stream objects.
These projections are specified as an input vector of projected attribute
names, called the projection vector. The emitted stream objects contain the
same number of attributes as the size of the projection vector and the
attributes are ordered in the same way as in the projection vector.

The definition of the particle view uses the following ROOT wrapper
interface function:

 132

root_scan_project(Charstring file,

Charstring path,

Charstring collection,

Vector projections,

Type stype) -> Stream of Sobject so

The function returns all tuples of a given collection stored under a given path
in a given ROOT file. The result of the ROOT wrapper interface function is
a stream of objects so of type stype containing values of attributes from the
projection vector projections.

In the SALEH application all events in the application are stored in
ROOT files using the internal path /ATLFAST and the collection name h51.
All stream objects representing the ROOT tuples belong to the same type
Event, which is subtype of Sobject (Figure 4.3). Therefore a view function
saleh_events is defined in terms of the ROOT wrapper interface function
root_scan_project:

create function saleh_events (Charstring filename) ->

Bag of Event e as

select e

where e in root_scan_project

(filename,"/ATLFAST","h51",

{"Pxmiss","Pymiss","Kfele","Pxele","Pyele",

"Pzele","Eeele","Kfmuo","Pxmuo","Pymuo",

"Pzmuo","Eemuo","Kfjetb","Pxjetb","Pyjetb",

"Pzjetb","Eejetb"},

typenamed("Event"));

The function saleh_events takes a ROOT file name as the parameter and
returns bag of stream objects of type Event representing ROOT tuples in the
file. Since in the SALEH all events in the ROOT files are stored in
collections named h51 under path /ATLFAST these values are specified as
constants parameters to the function root_scan_project. The projection
vector of attributes is also given as a constant and it contains only those
attributes that are needed for defining the particle schema. The result type is
given by calling the function typenamed(“Event”), which returns the
SQISLE object representing the type named Event.

To be able to stream only part of a ROOT file the following interval
function is defined in terms of corresponding general ROOT wrapper
interface function:
saleh_events(Charstring filename,

Integer firstEvent,

Integer lastEvent)-> Bag of Event e

The interval function saleh_events retrieves all events from a ROOT file
with filename within an interval [firstEvent,lastEvent].

 133

To enable materializations in event objects, the following wrapper
interface function is implemented:
root_scan_project_addslots(Charstring file,

Charstring path,

Charstring collection,

Vector projections,

Type stype,

Integer slots) ->

Stream of Sobject so

It creates stream objects so having slots additional slots used for
materializing derived particle objects. Thus the actual number of non-key
attributes in the stream objects so is the size of the projection vector
projections plus the number of additional arguments slots.

 135

F. The Transformation Views in SALEH

The particle schema (Figure 2.3) contains particles of different kinds derived
from the tuples representing events in ROOT files. For each tuple a
corresponding stream object of type Event, called an event object, is
constructed by a ROOT wrapper interface function. The objects representing
particles are not explicitly stored in the event objects. Instead, attribute
values of particles are derived from several attributes of an event object as
transformation views over the event objects. The transformation views create
stream objects that represent particles derived from the event objects. The
particle schema is defined in terms of the transformation views. Each kind of
particle is specified by derived functions constructing stream objects as a
separate transformation view for each kind of particle. For example, the set
of electrons for a given event is defined by the transformation function
new_electrons in terms of the function new_sobject:

create function new_electrons(Event e)-> Bag of Electron el as

select el

from Integer i

where el=new_sobject(typenamed("Electron"), e, i,

{Kfele(e)[i],Pxele(e)[i],Pyele(e)[i],

Pzele(e)[i],Eeele(e)[i]});

Electrons are constructed from the event attribute vectors Kfele, Pxele,
Pyele, Pzele, Eeele, where each attribute vector represents a particular
attribute of all the electrons belonging to the given event. For example,
energy values of each electron in an event are stored in the event attribute
vector Eeele indexed by an integer ei identifying the electron within the
event. The same integer identifier is used in all these electron vector
attributes of an event. The function new_electrons creates as many electrons
as the size of the vectors.

The sets of stream objects representing muons and jets are created
analogously:

 136

create function new_mouns(Event e)-> Bag of Muon mu as

select mu

from Integer i

where mu=new_sobject(typenamed("Muon"), e, i,

{Kfmuo(e)[i],Pxmuo(e)[i],Pymuo(e)[i],

Pzmuo(e)[i],Eemuo(e)[i]});

create function new_jets(Event e)-> Bag of Jet jt as

select jt

from Integer i

where jt=new_sobject(typenamed("Jet"), e, i,

{Kfjetb(e)[i],Pxjetb(e)[i],

Pyjetb(e)[i],Pzjetb(e)[i],

Eejetb(e)[i]});

 137

G. The Particle Schema Definition in SALEH

The particle schema (Figure 2.3) is defined in terms of stream objects, which
are created by calling the ROOT wrapper interface functions and the
transformation functions. The types defined in the particle schema are
subtypes of the type Sobject as in Figure 4.3. The collection of events from a
file is defined by the function saleh_events(Charstring filename)-> Bag of
Event e. Each stream object e of type Event contains source and identifier for
the event, and 17 other attributes representing event values. The particle
schema contains four event attributes, which are defined by four public
functions having the following signatures:
filename(Event e) -> Charstring filename

eventid(Event e) -> Integer eventid

pxmiss(Event e) -> Real pxmiss

pymiss(Event e) -> Real pymiss

To access the other event attributes private functions are provided with
signatures, for example:
Kfele(Event e) -> Vector kfele

Pxele(Event e) -> Vector pxele

Pyele(Event e) -> Vector pyele

Pzele(Event e) -> Vector pzele

Eeele(Event e) -> Vector eeele

These functions are used internally in the transformation view definitions.
Particle objects from the particle schema are derived from events by the

transformation views. Thus to define a specific particle type (Electron,
Muon, or Jet) of the particle schema it is necessary to provide:
1. The attributes of the particle type.
2. The particle objects derived from the event object.
3. The event objects from which the particle objects are derived.

The attributes are implemented by functions of type Particle to access slots
in the created particle objects:
event(Particle) -> Event e

pid(Particle) -> Integer pid

kf(Particle) -> Integer kf

px(Particle) -> Real px

py(Particle) -> Real py

 138

pz(Particle) -> Real pz

ee(Particle)->Real ee

Items 2 and 3 define the relationship between stream objects of type Event
and stream objects of the different specific kinds of particles. This is
implemented as a multi-directional function that accesses the source in one
direction and creates all new particles of an event in the other direction. For
example, the relationship between electrons and event is defined by:

create function electrons(Event e) -> Bag of Electron el as

multidirectional

(“bf” select new_electrons(e))

(“fb” select event(el));

The function electrons is executed either in forward or in inverse directions
using different implementations. In the forward direction, noted by binding
pattern bf, for the given event e the function new_electrons constructing
electrons of the event is called. In the inverse direction, noted by binding
pattern fb, for the given electron e the function event is called, which returns
the event object of the electron.

Analogously the relationships between type Event and types Muon and
Jet are defined by the functions:

create function muons(Event e) -> Bag of Muon mu as

multidirectional

(“bf” select new_muons(e))

(“fb” select event(mu));

create function jets(Event e) -> Bag of Jet jt as

multidirectional

(“bf” select new_jets(e))

(“fb” select event(jt));

The relationships between type Event and the types Lepton and Particle are
specified as unions of their subtypes by the functions:

create function leptons(Event e)-> Bag of Lepton l as

multidirectional

 (“bf” select l

 where l=electrons(e) or l=muons(e);

(“fb” select event(l));

create function particles(Event e)-> Bag of Particle p as

multidirectional

 139

 (“bf” select p

 where p=leptons(e) or p=jets(e);

(“fb” select event(p));

The following function is used for selecting events in user queries:

create function saleh_events (Charstring filename) ->

Bag of Event e as

select e

where e in root_scan_project

(filename,"/ATLFAST","h51",

{"Pxmiss","Pymiss","Kfele","Pxele","Pyele",

"Pzele","Eeele","Kfmuo","Pxmuo","Pymuo",

"Pzmuo","Eemuo","Kfjetb","Pxjetb","Pyjetb",

"Pzjetb","Eejetb"},

typenamed("Event"));

The following functions access event attributes of the view in user queries:

create function filename(Event e) -> Charstring as

select filename

from Charstring filename

where filename=source(e);

create function eventid(Event e) -> Integer as

select id

from Integer id

where id=id(e);

create function pxmiss(Event e) -> Real as

get_slot(e,0);

create function pymiss(Event e) -> Real as

get_slot(e,1);

The following functions access the event attribute vectors in transformation
queries:

create function Kfele(Event e) -> Vector of Integer as

get_slot(e,2);

create function Pxele(Event e) -> Vector of Real as

get_slot(e,3);

 140

create function Pyele(Event e) -> Vector of Real as

get_slot(e,4);

create function Pzele(Event e) -> Vector of Real as

get_slot(e,5);

create function Eeele(Event e) -> Vector of Real as

get_slot(e,6);

create function Kfmuo(Event e) -> Vector of Integer as

get_slot(e,7);

create function Pxmuo(Event e) -> Vector of Real as

get_slot(e,8);

create function Pymuo(Event e) -> Vector of Real as

get_slot(e,9);

create function Pzmuo(Event e) -> Vector of Real as

get_slot(e,10);

create function Eemuo(Event e) -> Vector of Real as

get_slot(e,11);

create function Kfjetb(Event e) -> Vector of Integer as

get_slot(e,12);

create function Pxjetb(Event e) -> Vector of Real as

get_slot(e,13);

create function Pyjetb(Event e) -> Vector of Real as

get_slot(e,14);

create function Pzjetb(Event e) -> Vector of Real as

get_slot(e,15);

create function Eejetb(Event e) -> Vector of Real as

get_slot(e,16);

The following transformation functions define particles of the different
kinds:

create function new_electrons(Event e)-> Bag of Electron el as

select el

 141

from Integer i

where el=new_sobject(typenamed("Electron"), e, i,

{Kfele(e)[i],Pxele(e)[i],Pyele(e)[i],

Pzele(e)[i],Eeele(e)[i]});

create function new_mouns(Event e)-> Bag of Muon mu as

select mu

from Integer i

where mu=new_sobject(typenamed("Muon"), e, i,

{Kfmuo(e)[i],Pxmuo(e)[i],Pymuo(e)[i],

Pzmuo(e)[i],Eemuo(e)[i]});

create function new_jets(Event e)-> Bag of Jet jt as

select jt

from Integer i

where jt=new_sobject(typenamed("Jet"), e, i,

{Kfjetb(e)[i],Pxjetb(e)[i],

Pyjetb(e)[i],Pzjetb(e)[i],

Eejetb(e)[i]});

The following function access attributes of particles:

create function kf(Particle p)-> Integer as

get_slot(p,0);

create function px(Particle p)-> Real as

get_slot(p,1);

create function py(Particle p)-> Real as

get_slot(p,2);

create function pz(Particle p)-> Real as

get_slot(p,3);

create function ee(Particle p)-> Real as

get_slot(p,4);

This completes the definition of the particle schema in SQISLE.

 143

H. SQISLE Utility Functions

Some utility functions are provided in SQISLE to provide more elegant and
general ways to define scientific queries. For example, some functions in
SQISLE return tuples rather than anonymous vectors. These tuples are
assigned to single values by converting them to vectors.

For example, the function oppositeLeptons(event)->vector was defined in
ALEH (Appendix C) as:

create function oppositeLeptons(Event e) -> Vector as

select {l1, l2}

where l1 = particles(e) and

 l2 = particles(e) and

 kf(l1)=-kf(l2);

In SQISLE it is reformulated to return a tuple instead of a vector as:

create function oppositeLeptons(Event e) ->

<Lepton l1, Lepton l2> as

select l1, l2

where l1 = particles(e) and

 l2 = particles(e) and

 kf(l1)=-kf(l2);

This definition demonstrates the semantic of the function better than the
original definition, which returned an anonymous vector.

Another extension is some general aggregate functions to deal with tuples
of multiple values. For example, a new general aggregation function
minagg2 over bags of tuples is introduced. It operates on bags of pairs,
where the first element of a tuple is expected to be the value that is
minimized and the second a corresponding property value. With minagg2 the
definition of the function mTopComb(event)->Vector in Appendix C can be
simplified. The original definition of mTopComb in ALEH is:

create function mTopComb(Event e) -> Vector v as

select v

where v=topComb(e) and

 absInvMass(v,174.3) =

 144

 minagg(select absInvMass(tc,174.3)

 from Vector tc

 where tc = topComb(e));

The function mTopComb finds the triple of jets that has smallest invariant
mass among all triple combinations of jets and is produced by topComb.
Without the general minagg2 the function topComb has to be called twice.
First it is called to find the smallest value of invariant mass among the
triples. Then it is called to choose a triple that has the invariant mass equal to
the smallest value found by the nested subquery. With the more general
minagg2 operating on bags of tuples the function mTopComb is simplified in
SALEH:

create function mTopComb(Event e) -> Vector v as

select v

from Real r

where <r,v> = minagg2(select absInvMass(tc,174.3), tc

 from Vector tc

 where tc = topComb(e));

In this case the function topComb, which generates the triples, is called only
once, while in the original implementation of mTopComb it is called twice.

 145

I. Definitions of Analysis Cuts in SALEH

Cuts from the analyses described in Appendix A and in Example 2.1 are
defined here over the particle schema definition in SQISLE.

First, the cuts from the analyses described in Appendix A are presented:

create function isolatedLeptons(Event e) -> Bag of Lepton as

select l

from Lepton l

where l = leptons(e)

 and pt(l) > 7.0

 and abs(eta(l)) < 2.4;

create function threeLeptonCut (Event e) -> Boolean as

select TRUE

where count(isolatedLeptons(e)) = 3

 and some(select r

 from Real r

 where r = Pt(isolatedLeptons(e))

 and r > 20.0);

create function oppositeLeptons(Event e) ->

Bag of <Lepton l1, Lepton l2> as

select l1, l2

where l1 = leptons(e)

 and l2 = leptons(e)

 and kf(l1) = -Kf(l2)

 and kf(l1) > 0;

create function EvInvMass(Event e) -> Bag of Real r as

select r

from Vector v

where v = oppositeLeptons(e)

 and r = absinvMass(v,91.1882)

 and r < 10.0;

 146

create function zVetoCut(Event e) -> Boolean as

select TRUE

where notany(EvInvMass(e));

create function okJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt = jets(e)

 and abs(eta(jt)) < 4.5

 and pt(jt) > 20.0;

create function bJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt = okJets(e)

 and kf(jt) = 5;

create function wJets(Event e) -> Bag of Jet as

select jt

from Jet jt

where jt = okJets(e)

 and kf(jt) != 5;

create function wPairs(Event e) -> Baf of <Jet j1, Jet j2> as

select j1, j2

from Vector v

where j1 = wJets(e)

 and j2 = wJets(e)

 and v = <j1,j2>

 and absInvMass(v, 80.419) < 15.0

 and j1 > j2;

create function topComb(Event e) ->

Bag of <Jet j1, Jet j2, Jet bj> as

select j1, j2, bj

from Vector v

where <j1,j2> = wPairs(e)

 and bj = bJets(e)

 and v = <j1,j2,bj>

 and absInvMass(v, 174.3) < 35.0;

create function hadrtopCut(Event e) -> Boolean as

select TRUE

where some(topComb(e));

 147

create function mTopComb(Event e) -> Vector v as

select v

from Real r

where <r,v> = minagg2(select rt, vt

 from Real rt, Vector vt

 where vt = topComb(e)

 and rt = absInvMass(vt,174.3));

create function leftJets(Event e) -> Bag of Jet jt as

select jt

where jt = okJets(e)

 and not_in(jt, mTopComb(e));

create function jetVetoCut(Event e) -> Boolean as

select TRUE

where notany(select jt

 from Jet jt

 where jt = leftJets(e)

 and Pt(jt) > 70.0);

create function leptonCuts(Event e) -> Boolean as

select TRUE

where notany(select l

 from Lepton l

 where l = isolatedLeptons(e)

 and Pt(l) > 150.0)

 and some(select r

 from Real r

 where r = Pt(isolatedLeptons(e))

 and r <= 40.0);

create function missEeCuts(Event e) -> Boolean as

select TRUE

from Real x, Real y

where modulo(PxMiss(e), PyMiss(e)) >= 40.0

 and <x,y> = sum2(select Px(l),Py(l)

 from lepton l

 where l = isolatedleptons(e))

 and effectiveMass(PxMiss(e),PyMiss(e),x,y) <= 150.0;

 148

The definitions of the cuts from Example 2.1 are:

create function isolatedLeptons(Event e) ->

Bag of Lepton l as

select l

where l=leptons(e)

 and abs(eta(l)) < 2.4

 and pt(l) > 7.0;

create function threeLeptonCut(Event e) -> Boolean as

select TRUE

where count(select isolatedLeptons(e))=3 and

 some(select l

 from Lepton l

 where l=isolatedLeptons(e) and

 pt(l)>20.0);

create function TwoLeptonCut(Event e) -> Boolean as

select TRUE

where some(select l1,l2

 from Real r, Lepton l1, Lepton l2, Vector v

 where r = invMass(v) and

 v = <l1,l2> and

 l1 = isolatedleptons(e) and

 l2 = isolatedleptons(e) and

 kf(l1) = -kf(l2) and

 r > 10 and

 r < 63 and

 kf(l1) > 0);

create function okJets(Event e) -> Bag of Jet jt as

select jt

where pt(jt) > 20.0

 and eta(jt) < 4.5

 and jt = jets(e);

create function wPair(Event e) -> Bag of <Jet j1, Jet j2> as

select j1, j2

from Vector v

where j1 = okJets(e)

 and j2 = okJets(e)

 and v = <j1,j2>

 and j1 > j2

 and absInvMass(v, 80.419) < 15.0;

 149

create function threeJets(Event e) ->

Bag of <Jet j1, Jet j2, Jet bj> as

select j1, j2, bj

from Vector v

where <j1,j2> = wPair(e)

 and bj != j1

 and bj != j2

 and v = <j1,j2,bj>

 and absInvMass(v, 174.3) < 35.0

 and bj = okJets(e);

create function topCut(Event e) -> Boolean as

select TRUE

where some(select threeJets(e));

create function jetCut(Event e) -> Boolean as

select TRUE

where 300 >

 sum(select pt(jt)

 from Jet jt, Vector v, Real r

 where not_in(jt,v) and

 <r,v> = minagg2(select rt,vt

 from Real rt, Vector vt

 where vt = threeJets(e) and

 rt = absInvMass(vt,174.3))

 and pt(jt)>50

 and jt=jets(e));

 151

J. The Stream Fragmenting Algorithm

The stream fragmenting algorithm fragments an analysis query into groups
and assigns every group either to a source access query fragment or to a
processing query fragment (Section 4.4). Every group is formed by functions
that have variables in common except an event variable, which is the result
variable of a wrapper interface function and is bound to a stream of events.
The stream fragmenting algorithm is a modification of Algorithm 3.1 with
ability to check if a formed group calls a wrapper interface function. The
pseudo code of the algorithm is:

1: Groups = {}

2: while (S != {})

3: pick a predicate p from S

4: S = S \ p

5: G = {p}

6: if p is a wrapper interface function

7: then G.isWrap = true

8: else G.isWrap = false

9: V = variables(p) \ varE

10: while (V !={})

11: pick a variable v from V

12: V = V \ v

13: for each q in S

14: if v ∈ variables(q)

15: then G = G∪ q

16: S = S \ q

17: V = V∪ variables(q)\{v,varE}

18: if q is a wrapper interface function

19: then G.isWrap = true

20: Groups = Groups ∪ {G}

21: return Groups

In the new algorithm each group has a flag isWrap that indicates if the
group calls a wrapper interface function or not. On lines (6-8) the flag of a
created group is initialized with true or false depending whether or not the
function p is a wrapper interface function. The rest of the predicates in the

 152

group are added on lines (14-19), and, if a function q is a wrapper interface
function, then the flag isWrap is set to true for the group on lines (18-19).

After grouping by the stream fragmenting algorithm the source access
query fragment is constructed by merging predicates from the groups that
contain wrapper interface functions. Predicates from groups that do not
contain wrapper interface functions form the processing query fragment.

 153

Bibliography

[1] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito,
Rajeev Motwani, Itaru Nishizawa, Utkarsh Srivastava, Dilys Thomas, Rohit
Varma and Jennifer Widom. STREAM: The Stanford Stream Data Manager.
In IEEE Data Eng. Bull., volume 26, 19-26, 2003.

[2] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack,
Christian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul and
Stanley B. Zdonik. Aurora: a new model and architecture for data stream
management. In VLDB J., volume 12, 120-139, 2003.

[3] ADA – ATLAS Distributed Analysis. http://www.usatlas.bnl.gov/ADA/.
[4] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously Adaptive Query

Processing. In SIGMOD Conference, 261-272, 2000.
[5] Vasco Amaral, Sven Helmer and Guido Moerkotte. PHEASANT: A

PHysicist's EAsy ANalysis Tool. In FQAS, 229-242, 2004.
[6] Rafi Ahmed, Allison Lee, Andrew Witkowski, Dinesh Das, Hong Su,

Mohamed Zat and Thierry Cruanes. Cost-Based Query Transformation in
Oracle. In VLDB, 1026-1036, 2006.

[7] The ATLAS Experiment. http://atlasexperiment.org/
[8] The ATLAS TWiki. https://twiki.cern.ch/twiki/bin/view/Atlas/WebHome
[9] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani and Jennifer

Widom. Models and Issues in Data Stream Systems. In PODS, 1-16, 2002.
[10] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani and Dilys

Thomas. Operator scheduling in data stream systems. In VLDB J., volume 13,
333-353, 2004.

[11] Pedro Bizarro, Shivnath Babu, David J. DeWitt and Jennifer Widom.
Content-Based Routing: Different Plans for Different Data. In VLDB, 757-
768, 2005.

[12] Nicolas Bruno and Surajit Chaudhuri. Conditional Selectivity for Statistics on
Query Expressions. In SIGMOD Conference, 311-322, 2004.

[13] Nicolas Bruno, Surajit Chaudhuri and Luis Gravano. STHoles: A
Multidimensional Workload-Aware Histogram. In SIGMOD Conference,
211-222, 2001.

[14] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa and
Jennifer Widom. Adaptive Ordering of Pipelined Stream Filters. In SIGMOD
Conference, 407-418, 2004.

[15] M. Bisset, F. Moortgat and S. Moretti. Trilepton+top signal from chargino-
neutralino decays of MSSM charged Higgs bosons at the LHC. In European
Physical Journal C, volume 30, 419-434, 2003.

[16] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa and
Jennifer Widom. Adaptive Ordering of Pipelined Stream Filters. In SIGMOD
Conference, 407-418, 2004.

 154

[17] Jihad Boulos and Kinji Ono. Cost Estimation of User-Defined Methods in
Object-Relational Database Systems. In SIGMOD Record, volume 28, 22-28,
1999.

[18] Rene Brun and Fons Rademakers. ROOT - An Object Oriented Data
Analysis Framework. In AIHENP'96 Workshop, Nucl. Inst. & Meth. in Phys.
Res. A 389, 81-86, 1997. See also http://root.cern.ch.

[19] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing
and OLAP Technology. In SIGMOD Record, volume 26, 65-74, 1997.

[20] Peter P. Chen. The Entity-Relationship Model - Toward a Unified View of
Data. In ACM Trans. Database Syst., volume 1, 9-36, 1976.

[21] Charles D. Cranor, Theodore Johnson, Oliver Spatscheck and Vladislav
Shkapenyuk. Gigascope: A Stream Database for Network Applications. In
SIGMOD Conference, 647-651, 2003.

[22] Maria Cláudia Cavalcanti, Marta Mattoso, Maria Luiza Machado Campos,
Eric Simon and François Llirbat. An Architecture for Managing Distributed
Scientific Resources. In SSDBM, 47-58, 2002.

[23] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. In
Commun. ACM, volume 13, 377-387, 1970.

[24] E. F. Codd. Relational Database: A Practical Foundation for Productivity. In
Commun. ACM, volume 25, 109-117, 1982.

[25] Surajit Chaudhuri and Kyuseok Shim. Optimizing Queries with Aggregate
Views. In EDBT, 167-182, 1996.

[26] Surajit Chaudhuri and Kyuseok Shim. Optimization of Queries with User-
Defined Predicates. In ACM Trans. Database Syst., volume 24, 177-228,
1999.

[27] Database Languages - SQL, ISO/IEC 9075-*:2003
[28] DIAL – Distributed Interactive Analysis of Large datasets.

http://www.usatlas.bnl.gov/~dladams/dial/.
[29] Amol Deshpande, Zachary G. Ives and Vijayshankar Raman. Adaptive Query

Processing. In Foundations and Trends in Databases, volume 1, 1-140, 2007.
[30] Amol Deshpande and Samuel Madden. MauveDB: supporting model-based

user views in database systems. In SIGMOD Conference, 73-84, 2006.
[31] Paula Eerola, Tord Ekelöf, Mattias Ellert, John Renner Hansen, Aleksandr

Konstantinov, Balázs Kónya, Jakob Langgaard Nielsen, Farid Ould-Saada,
Oxana Smirnova and Anders Wäänänen. Science on NorduGrid. In
ECCOMAS, 2004. See also http://www.nordugrid.org.

[32] Mattias Ellert, Michael Grønager, Aleksandr Konstantinov, Balázs Kónya, J.
Lindemann, I. Livenson, Jakob Langgaard Nielsen, Marko Niinimäki, Oxana
Smirnova and Anders Wäänänen. Advanced Resource Connector middleware
for lightweight computational Grids. In Future Generation Comp. Syst.,
volume 23, 219-240, 2007. See also http://www.nordugrid.org/.

[33] Mattias Ellert. The NorduGrid Brokering Algorithm. 2004. Available at
http://www.nordugrid.org/documents/brokering.pdf.

[34] Cristian Estan and Jeffrey F. Naughton. End-biased Samples for Join
Cardinality Estimation. In ICDE, 20, 2006.

[35] Ian Foster and Carl Kesselman (ed.). The grid: blueprint for a new computing
infrastructure. Morgan Kaufmann, 2003.

[36] Ruslan Fomkin and Tore Risch. Managing Long Running Queries in Grid
Environment. In OTM Workshops, 99-110, 2004.

[37] Ruslan Fomkin and Tore Risch. Framework for Querying Distributed Objects
Managed by a Grid Infrastructure. In DMG, 58-70, 2005.

 155

[38] Ruslan Fomkin and Tore Risch. Cost-based Optimization of Complex
Scientific Queries. In SSDBM, 1, 2007.

[39] César A. Galindo-Legaria, Milind Joshi, Florian Waas and Ming-Chuan Wu.
Statistics on Views. In VLDB, 952-962, 2003.

[40] Peter M. D. Gray, Larry Kerschberg, Peter J. H. King and Alexandra
Poulovassilis. The Functional Approach to Data Management: Modeling,
Analyzing, and Integrating Heterogeneous Data. Springer, 2004.

[41] The Globus Alliance. http://www.globus.org/.
[42] Lewis Girod, Yuan Mei, Ryan Newton, Stanislav Rost, Arvind Thiagarajan,

Hari Balakrishnan and Samuel Madden. XStream: a Signal-Oriented Data
Stream Management System. In ICDE, 1180-1189, 2008.

[43] Anastasios Gounaris, Rizos Sakellariou, Norman W. Paton and Alvaro A. A.
Fernandes. A novel approach to resource scheduling for parallel query
processing on computational grids. In Distributed and Parallel Databases,
volume 19, 87-106, 2006.

[44] Hector Garcia-Molina, Jeffrey D. Ullman and Jennifer D. Widom. Database
Systems: The Complete Book, Second Edition. Prentice Hall, 2008.

[45] Richard A. Ganski and Harry K. T. Wong. Optimization of Nested SQL
Queries Revisited. In SIGMOD Conference, 23-33, 1987.

[46] Goetz Graefe and Karen Ward. Dynamic Query Evaluation Plans. In
SIGMOD Conference, 358-366, 1989.

[47] C. Hansen, N. Gollub, K. Assamagan and T. Ekelöf. Discovery potential for
a charged Higgs boson decaying in the chargino-neutralino channel of the
ATLAS detector at the LHC. In European Physical Journal C, volume 44, 1-
9, 2005.

[48] Joseph M. Hellerstein. Optimization Techniques for Queries with Expensive
Methods. In ACM Trans. Database Syst., volume 23, 113-157, 1998.

[49] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman and Hamid
Pirahesh. Extensible Query Processing in Starburst. In SIGMOD Conference,
377-388, 1989.

[50] Zhen He, Byung Suk Lee and Robert R. Snapp. Self-tuning cost modeling of
user-defined functions in an object-relational DBMS. In ACM Trans.
Database Syst., volume 30, 812-853, 2005.

[51] Joseph M. Hellerstein and Jeffrey F. Naughton. Query Execution Techniques
for Caching Expensive Methods. In SIGMOD Conference, 423-434, 1996.

[52] Joseph M. Hellerstein and Michael Stonebraker. Anatomy of a Database
System. In Joseph M. Hellerstein and Michael Stonebraker (ed.) Readings in
Database Systems: Fourth Edition. MIT Press, 2005.

[53] Joseph M. Hellerstein and Michael Stonebraker (ed.). Readings in Database
Systems: Fourth Edition. MIT Pres, 2005.

[54] Yannis E. Ioannidis and Stavros Christodoulakis. On the Propagation of
Errors in the Size of Join Results. In SIGMOD Conference, 268-277, 1991.

[55] Zachary G. Ives, Alon Y. Halevy and Daniel S. Weld. Adapting to Source
Properties in Processing Data Integration Queries. In SIGMOD Conference,
395-406, 2004.

[56] Yannis E. Ioannidis and Younkyung Cha Kang. Randomized Algorithms for
Optimizing Large Join Queries. In SIGMOD Conference, 312-321, 1990.

[57] Yannis E. Ioannidis. Query Optimization. In Allen B. Tucker (ed.) Computer
Science Handbook, Second Edition. CRC Press, 2004.

[58] Matthias Jarke and Jürgen Koch. Query Optimization in Database Systems.
In ACM Comput. Surv., volume 16, 111-152, 1984.

 156

[59] Neil D. Jones. An Introduction to Partial Evaluation. In ACM Comput. Surv.,
volume 28, 480-503, 1996.

[60] Ravi Krishnamurthy, Haran Boral and Carlo Zaniolo. Optimization of
Nonrecursive Queries. In VLDB, 128-137, 1986.

[61] Sailesh Krishnamurthy, Sirish Chandrasekaran, Owen Cooper, Amol
Deshpande, Michael J. Franklin, Joseph M. Hellerstein, Wei Hong, Samuel
Madden, Frederick Reiss and Mehul A. Shah. TelegraphCQ: An
Architectural Status Report. In IEEE Data Eng. Bull., volume 26, 11-18,
2003.

[62] Bhargav Kanagal and Amol Deshpande. Online Filtering, Smoothing and
Probabilistic Modeling of Streaming data. In ICDE, 1160-1169, 2008.

[63] Won Kim. On Optimizing an SQL-like Nested Query. In ACM Trans.
Database Syst., volume 7, 443-469, 1982.

[64] Steven Lynden, Arijit Mukherjee, Alastair C. Hume, Alvaro A.A. Fernandes,
Norman W. Paton, Rizos Sakellariou and Paul Watson. The design and
implementation of OGSA-DQP: A service-based distributed query processor.
In Future Generation Computer Systems, 2008.

[65] Quanzhong Li, Minglong Shao, Volker Markl, Kevin S. Beyer, Latha S.
Colby and Guy M. Lohman. Adaptively Reordering Joins during Query
Execution. In ICDE, 26-35, 2007.

[66] Witold Litwin and Tore Risch. Main Memory Oriented Optimization of OO
Queries Using Typed Datalog with Foreign Predicates. In IEEE Trans.
Knowl. Data Eng., volume 4, 517-528, 1992.

[67] L. Daniel Massey. Probability and Statistics. McGraw-Hill, 1971.
[68] Volker Markl, Vijayshankar Raman, David E. Simmen, Guy M. Lohman and

Hamid Pirahesh. Robust Query Processing through Progressive Optimization.
In SIGMOD Conference, 659-670, 2004.

[69] Arunprasad P. Marathe and Kenneth Salem. Query processing techniques for
arrays. In VLDB J., volume 11, 68-91, 2002.

[70] Samuel Madden, Mehul A. Shah, Joseph M. Hellerstein and Vijayshankar
Raman. Continuously adaptive continuous queries over streams. In SIGMOD
Conference, 49-60, 2002.

[71] Joakim Näs. Randomized optimization of object oriented queries in a main
memory database management system. Master's Thesis, LiTH-IDA-Ex-
93/25, 1993. Available at
http://user.it.uu.se/~udbl/Theses/JoakimNasMSc.pdf.

[72] Sivaramakrishnan Narayanan, Tahsin M. Kurç, Ümit V. Çatalyürek and Joel
H. Saltz. Database Support for Data-Driven Scientific Applications in the
Grid. In Parallel Processing Letters, volume 13, 245-271, 2003.

[73] The NorduGrid/ARC User Guide. 2005. Available at
http://www.nordugrid.org/documents/userguide.pdf.

[74] William O'Mullane, Nolan Li, Mara A. Nieto-Santisteban, Alexander S.
Szalay and Ani Thakar. Batch is Back: CasJobs, Serving Multi-TB Data on
the Web. In ICWS, 33-40, 2005.

[75] The Open Grid Forum (OGF). http://www.ogf.org/
[76] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database

Systems, Second Edition. Prentice-Hall, 1999.
[77] Johan Petrini. Querying RDF Schema Views of Relational Databases. In

Uppsala Dissertations from the Faculty of Science and Technology, 75, 2008.
[78] Viswanath Poosala and Yannis E. Ioannidis. Selectivity Estimation Without

the Attribute Value Independence Assumption. In VLDB, 486-495, 1997.

 157

[79] Tore Risch, Vanja Josifovski and Timour Katchaounov. Functional data
integration in a distributed mediator system. In The Functional Approach to
Data Management: Modeling, Analyzing, and Integrating Heterogeneous
Data. SpringerVerlag, 2003.

[80] Vasco Sousa, Vasco Amaral and Bruno Barroca. Towards a full
implementation of a robust solution of a domain specific visual query
language for HEP physics analysis. In IEEE Nuclear Science Symposium
Conference Record, volume 1, 910-917, 2007.

[81] Vincius F. V. da Silva, Márcio L. Dutra, Fabio Porto, Bruno Schulze, Álvaro
Cesar P. Barbosa and Jauvane C. de Oliveira. An adaptive parallel query
processing middleware for the Grid. In Concurrency and Computation:
Practice and Experience, volume 18, 621-634, 2006.

[82] Arun N. Swami and Anoop Gupta. Optimization of Large Join Queries. In
SIGMOD Conference, 8-17, 1988.

[83] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A.
A. Fernandes and Rizos Sakellariou. Distributed Query Processing on the
Grid. In GRID, 279-290, 2002

[84] Utkarsh Srivastava, Peter J. Haas, Volker Markl, Marcel Kutsch and Tam
Minh Tran. ISOMER: Consistent Histogram Construction Using Query
Feedback. In ICDE, 39, 2006.

[85] Praveen Seshadri, Miron Livny and Raghu Ramakrishnan. The Design and
Implementation of a Sequence Database System. In VLDB, 99-110, 1996.

[86] Oxana Smirnova. Extended Resource Specification Language Reference
Manual. 2005. Available at http://www.nordugrid.org/documents/xrsl.pdf.

[87] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond
A. Lorie and Thomas G. Price. Access Path Selection in a Relational
Database Management System. In SIGMOD Conference, 23-34, 1979.

[88] Timos K. Sellis and Leonard D. Shapiro. Query Optimization for
Nontraditional Database Applications. In IEEE Trans. Software Eng., volume
17, 77-86, 1991.

[89] Michael Stonebraker, Lawrence A. Rowe, Bruce G. Lindsay, Jim Gray,
Michael J. Carey, Michael L. Brodie, Philip A. Bernstein and David Beech.
Third-Generation Database System Manifesto - The Committee for
Advanced DBMS Function. In SIGMOD Record, volume 19, 31-44, 1990.

[90] Swegrid. http://www.swegrid.se/.
[91] Alexander S. Szalay. The Sloan Digital Sky Survey and beyond. In SIGMOD

Record, volume 37, 61-66, 2008.
[92] Marko Vrhovnik, Holger Schwarz, Oliver Suhre, Bernhard Mitschang,

Volker Markl, Albert Maier and Tobias Kraft. An Approach to Optimize
Data Processing in Business Processes. In VLDB, 615-626, 2007.

[93] Von Welch, Frank Siebenlist, Ian Foster, John Bresnahan, Karl Czajkowski,
Jarek Gawor, Carl Kesselman, Sam Meder, Laura Pearlman and Steven
Tuecke. Security for Grid Services. In HPDC'03, 48-57, 2003. See also
http://www-unix.globus.org/toolkit/docs/3.2/gsi/.

[94] Weipeng P. Yan and Per-Åke Larson. Eager Aggregation and Lazy
Aggregation. In VLDB, 345-357, 1995.

1–11: 1970–1975
12. Lars Thofelt: Studies on leaf temperature recorded by direct measurement and by thermo-

graphy. 1975.
13. Monica Henricsson: Nutritional studies on Chara globularis Thuill., Chara zeylanica Willd.,

and Chara haitensis Turpin. 1976.
14. Göran Kloow: Studies on Regenerated Cellulose by the Fluorescence Depolarization Tech-

nique. 1976.
15. Carl-Magnus Backman: A High Pressure Study of the Photolytic Decomposition of Azo-

ethane and Propionyl Peroxide. 1976.
16. Lennart Källströmer: The significance of biotin and certain monosaccharides for the growth

of Aspergillus niger on rhamnose medium at elevated temperature. 1977.
17. Staffan Renlund: Identification of Oxytocin and Vasopressin in the Bovine Adenohypophysis.

1978.
18. Bengt Finnström: Effects of pH, Ionic Strength and Light Intensity on the Flash Photolysis of

L-tryptophan. 1978.
19. Thomas C. Amu: Diffusion in Dilute Solutions: An Experimental Study with Special Refer-

ence to the Effect of Size and Shape of Solute and Solvent Molecules. 1978.
20. Lars Tegnér: A Flash Photolysis Study of the Thermal Cis-Trans Isomerization of Some

Aromatic Schiff Bases in Solution. 1979.
21. Stig Tormod: A High-Speed Stopped Flow Laser Light Scattering Apparatus and its Appli-

cation in a Study of Conformational Changes in Bovine Serum Albumin. 1985.
22. Björn Varnestig: Coulomb Excitation of Rotational Nuclei. 1987.
23. Frans Lettenström: A study of nuclear effects in deep inelastic muon scattering. 1988.
24. Göran Ericsson: Production of Heavy Hypernuclei in Antiproton Annihilation. Study of their

decay in the fission channel. 1988.
25. Fang Peng: The Geopotential: Modelling Techniques and Physical Implications with Case

Studies in the South and East China Sea and Fennoscandia. 1989.
26. Md. Anowar Hossain: Seismic Refraction Studies in the Baltic Shield along the Fennolora

Profile. 1989.
27. Lars Erik Svensson: Coulomb Excitation of Vibrational Nuclei. 1989.
28. Bengt Carlsson: Digital differentiating filters and model based fault detection. 1989.
29. Alexander Edgar Kavka: Coulomb Excitation. Analytical Methods and Experimental Results

on even Selenium Nuclei. 1989.
30. Christopher Juhlin: Seismic Attenuation, Shear Wave Anisotropy and Some Aspects of

Fracturing in the Crystalline Rock of the Siljan Ring Area, Central Sweden. 1990.
31. Torbjörn Wigren: Recursive Identification Based on the Nonlinear Wiener Model. 1990.
32. Kjell Janson: Experimental investigations of the proton and deuteron structure functions.

1991.
33. Suzanne W. Harris: Positive Muons in Crystalline and Amorphous Solids. 1991.
34. Jan Blomgren: Experimental Studies of Giant Resonances in Medium-Weight Spherical

Nuclei. 1991.
35. Jonas Lindgren: Waveform Inversion of Seismic Reflection Data through Local Optimisation

Methods. 1992.
36. Liqi Fang: Dynamic Light Scattering from Polymer Gels and Semidilute Solutions. 1992.
37. Raymond Munier: Segmentation, Fragmentation and Jostling of the Baltic Shield with Time.

1993.

Acta Universitatis Upsaliensis
Uppsala Dissertations from the Faculty of Science

Editor: The Dean of the Faculty of Science

Omslag 60 M Nilsson 05-01-21 11.05 Sida 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /RelativeColorimetric
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings true
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.16667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.16667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.08333
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Euroscale Coated v2)
 /PDFXOutputConditionIdentifier (FOGRA1)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF0054007200790063006B0069006E0073007400E4006C006C006E0069006E00670020006600F6007200200074007200790063006B006F007000740069006D006500720061006400650020005000440046002D00660069006C00650072002000760069006400200045006E0068006500740065006E0020006600F600720020006400690067006900740061006C0020007000750062006C00690063006500720069006E0067002E000D002A002000500044004600200031002E00330020002800D600700070006E006100730020006D006500640020004100630072006F00620061007400200034002E00300020006F00630068002000730065006E0061007200650029000D002A0020005000440046002F0058000D002A00200049006E00670065006E0020006B006F006D007000720069006D006500720069006E0067002000610076002000620069006C006400650072000D002A00200049006E0067006100200073006B00E40072006D00E40072006B0065006E002E00200041006E007600E4006E006400200064006F006B0075006D0065006E007400650074007300200069006E0073007400E4006C006C006E0069006E0067006100720020006600F6007200200075007400660061006C006C000D002A00200049006E00670065006E0020006600E40072006700680061006E0074006500720069006E0067>
 /SVE ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [467.717 685.984]
>> setpagedevice

