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Abstract  
Fomkin, R. 2009. Optimization and Execution of Complex Scientific Queries. Acta 
Universitatis Upsaliensis. Uppsala Dissertations from the Faculty of Science and Technology 
80. 157 pp. Uppsala. ISBN 978-91-554-7382-2.  
 
Large volumes of data produced and shared within scientific communities are analyzed by many 
researchers to investigate different scientific theories. Currently the analyses are implemented in 
traditional programming languages such as C++. This is inefficient for research productivity, since 
it is difficult to write, understand, and modify such programs. Furthermore, programs should scale 
over large data volumes and analysis complexity, which further complicates code development. 

This Thesis investigates the use of database technologies to implement scientific applications, in 
which data are complex objects describing measurements of independent events and the analyses 
are selections of events by applying conjunctions of complex numerical filters on each object 
separately. An example of such an application is analyses for the presence of Higgs bosons in 
collision events produced by the ATLAS experiment. For efficient implementation of such an 
ATLAS application, a new data stream management system SQISLE is developed. In SQISLE 
queries are specified over complex objects which are efficiently streamed from sources through the 
query engine. This streaming approach is compared with the conventional approach to load events 
into a database before querying. Since the queries implementing scientific analyses are large and 
complex, novel techniques are developed for efficient query processing. To obtain efficient plans 
for such queries SQISLE implements runtime query optimization strategies, which during query 
execution collect runtime statistics for a query, reoptimize the query using the collected statistics, 
and dynamically switch optimization strategies. The cost-based optimization utilizes a novel cost 
model for aggregate functions over nested subqueries. To alleviate estimation errors in large 
queries the fragments are decomposed into conjunctions of subqueries over which runtime statistics 
are measured. Performance is further improved by query transformation, view materialization, and 
partial evaluation. ATLAS queries in SQISLE using these query processing techniques perform 
close to or better than hard-coded C++ implementations of the same analyses. 

Scientific data are often stored in Grids, which manage both storage and computational 
resources. This Thesis includes a framework POQSEC that utilizes Grid resources to scale 
scientific queries over large data volumes by parallelizing the queries and shipping the data 
management system itself, e.g. SQISLE, to Grid computational nodes for the parallel query 
execution. 
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1. Introduction 

The scientific community produces lots of data, on which scientists perform 
complex analyses to test hypotheses and theories. The amount of data is 
usually huge so it is important to scale the analyses for large data volumes. 
Scientists also need to understand the analyses and be able to modify them in 
a simple way. Therefore the computer definition of the analyses should be 
simple and easy to understand by a scientist. Furthermore, the complex 
analyses contain many numerical operations that should be executed 
efficiently. 

For example, in High Energy Physics (HEP) a lot of data is generated by 
simulation software from the Large Hadron Collider (LHC) experiment 
ATLAS [7]. The data describes effects from collisions of particles. A 
collision generates measurements of new particles, which are summarized in 
a collision description called an event. Every collision is performed 
independently from others, thus events are also independent. Events are 
stored in files, which are generated and stored using Grid infrastructures [31] 
that provide uniform access to pools of stored files and computational 
resources [35]. Physicists test their theories on these data by selecting 
interesting events. An event is interesting if it satisfies some conditions, 
which are called cuts. Cuts are complex conditions over properties of an 
independent event involving joins, aggregate functions, and complex 
numerical computations. An example of a scientifically interesting event is a 
collision event which is likely to produce Higgs bosons [15][47]. 

Currently physicists implement their theories using regular programming 
languages, e.g., C++, and write scripts for a Grid infrastructure to access 
event files and to execute analyses over the files. The analysis programs 
retrieve events from files through specific data management libraries, for 
example the C++ framework ROOT [18]. However, it takes lots of efforts for 
physicists to express their analyses as C++ programs. Furthermore, good 
knowledge of programming methodologies is necessary for writing 
extensible and understandable programs for complex analyses. Because of 
this it is often difficult to debug, understand, and modify the analysis 
programs. Moreover, when the amount of data grows, scientists have to 
manually modify programs and scripts to improve performance by code 
optimization and parallelization. 

On the other hand database management systems (DBMSs) [44] provide 
high level query language interfaces to specify data analyses that scale over 
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large amounts of data. Query languages like SQL have been shown to enable 
much higher productivity than manual programming of regular programs 
that traverse databases [24][89]. High level query languages furthermore 
give flexibility for a database query optimizer to automatically generate 
efficient and scalable query plans [89]. Parallelization of query execution 
plans to run on many computing nodes is transparent for the user [76]. 
Furthermore, modern DBMSs can be extended with accesses to new kinds of 
data sources, user-defined query functions, and user-defined data types, 
which make it possible to use them for new applications such as scientific 
ones. 

In this Thesis it is investigated how database query processing 
technologies can improve scientific analyses and novel database query 
processing techniques are proposed for this. It aims at answering the 
following research questions: 
1. Can a DBMS and database queries be used to implement scientific 

applications and scientific analyses? In particular, how should a DBMS 
be extended for implementing a complex scientific application? 

2. Can query processing improve performance and scalability of complex 
scientific analysis queries? What query rewriting and optimization 
techniques are needed for these? 

3. How can storage and computational resources available through a Grid 
infrastructure be utilized for scaling scientific analyses queries over 
large amounts of data? 

The Thesis focuses on those scientific applications where data are 
measurements of independent events and the analyses are selections of those 
events satisfying conjunctions of complex numerical filters on each event 
separately. Furthermore, each event has a lot of associated data and therefore 
can be seen as a small database, i.e. a complex object. The ATLAS 
experiment is an example of such an application, since each collision is 
performed independently from other collisions and each analysis is specified 
as a conjunction of complex conditions on each collision event. The answers 
to the research questions are illustrated on examples of the ATLAS 
application from [15] and [47]. 

To show the feasibility of the proposed database approach, a first 
prototype implementation of the ATLAS application from [15][47] was 
made as extensions of a main memory DBMS Amos II [79]. The prototype is 
called ALEH (query system for Analysis of LHC Events for containing 
charged Higgs bosons). Events are there modeled as objects and functions in 
a high-level functional data model [79], and a functional schema of event 
data is designed. The analyses are expressed as conjunctive queries in a 
functional query language. This way of implementing the application is 
simple and natural since it is close to the textual application description as 
expressed by the scientists in [15][47]. Therefore, it is more natural and 
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much easier for the physicists to implement the analysis in queries than in 
traditional way in C++ programs. 

The amount of data in scientific applications is huge and the data is often 
stored in distributed Grid files. Therefore, a framework was implemented 
that connects ALEH with a Grid infrastructure called the Advance Resource 
Connector, ARC [32]. The framework is called POQSEC (Parallel Object 
Query System for Expensive Computations) and it utilizes resources of 
Swegrid [90]. POQSEC provides a query interface to specify the analyses, 
parallelizes queries into subqueries, generates job scripts for subqueries, 
submits jobs to ARC for execution, monitors job executions, downloads job 
results, and delivers results to users. POQSEC demonstrates an architecture, 
where not only analysis subqueries and data are shipped to computational 
nodes for execution but also the DBMS itself. 

The implemented analysis queries and views are large and complex 
compared to traditional database queries. Thus naïve processing of the 
queries on each node takes a lot of time. It was therefore investigated how 
local execution on one computation node can be improved by query 
rewriting and optimization techniques. Two different query processing 
architectures were studied with regard to query performance: 
• First the conventional loading approach was studied, where first data is 

loaded into a database and then queries are executed over the loaded data. 
The ALEH prototype uses the loading approach. 

• Then the streaming approach was studied, where data is not loaded, but 
the scientific queries are executed directly over streams of data read from 
the files or other sources. The streaming approach is natural for those 
applications targeted by the Thesis, since every event is analyzed 
separately from other events. 
The loading approach is used in ALEH to analyze query optimization of 

complex scientific queries. The ALEH implementation uses a functional 
schema to represent events and analysis queries are implemented over the 
functional schema. A cost-based query optimizer relies on cost models of 
operators used in queries. To improve the optimization of the targeted kind 
of scientific queries, a novel cost model is developed for aggregate functions 
over nested subqueries. It is shown that this substantially improves ALEH 
performance. However, the query optimizer still produces suboptimal plans 
because of estimate errors. Furthermore, the time to do optimization is very 
long because of the large query size. 

The optimization is improved by a profiled grouping strategy where an 
analysis query is first automatically fragmented into subqueries based on 
application knowledge that all data are referenced by events and each event 
is analyzed independently. Each fragment is then independently profiled on a 
sample of events to measure real execution cost and fanout. An optimized 
fragmented query with the measured cost model is shown to execute faster 
than an ungrouped query optimized with the estimated cost model alone. 
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Furthermore, the total optimization time, including fragmentation and 
profiling, is substantially improved. 

In ALEH the database of events is stored in main memory. The strategy 
of loading events into the main memory DBMS has two main disadvantages: 
• The time to load the data can be substantial. 
• There is normally not sufficient main memory to fit the entire data set so 

an even slower disk representation would be required to load all events to 
analyze. 
To alleviate these bottlenecks a streaming approach to query processing 

was implemented in a new Data Stream Management System (DSMS) called 
SQISLE (Scientific Queries over Independent Streamed Large Events). 
Unlike a conventional DBMS, into which data has to be loaded before it can 
be queried, a DSMS [9] like SQISLE manages and analyzes streamed data 
not stored permanently in a DBMS, and the data streams are considered 
infinite and cannot be re-read in general. In SQISLE the queries are selecting 
complex objects streamed through the system. The streaming approach is 
natural for our kind of scientific applications where each event is analyzed 
independently from other events. Thus it is sufficient to access only one 
currently analyzed complex object at the time from a stream and temporarily 
materialize it in main memory only during the execution of an analysis query 
over it. 

SQISLE is implemented as an extension of the research DBMS Amos II 
by extending its functional data model with a new data type Sobject to 
represent complex objects participating in streams. Such stream objects are 
allocated efficiently, are defined as user-defined types, and are deallocated 
automatically and efficiently by an incremental garbage collector when they 
are not referenced any more. The events streamed from sources are 
represented as stream objects and the transformation between the event 
representation in the sources and the event representation in a high-level 
functional application schema is defined as transformation views by queries. 
Therefore a user query always contains the following kinds of query 
fragments: 
• A source access query fragment specifies sources to access and calls a 

stream function that generates a stream of events from the sources to 
process. 

• A processing query fragment specifies the scientific analyses in terms of 
complex filters over the generated events. The processing query fragment 
includes transformation views. 
To understand the implications of the streaming approach, the ALEH 

application was reimplemented in SQISLE in a streamed way. The 
implementation is called SALEH (Streamed ALEH). In SALEH events and 
their derived properties are represented in terms of the same functional 
schema as used in the loading approach. In contrast to the loading approach, 
where the schema is defined in terms of traditional objects, in SALEH the 



 

 17 

functional schema is defined in terms of stream objects. The cuts as defined 
in ALEH can be directly used also in the processing query fragment of 
SALEH queries, since the cut definitions in terms of the functional schema 
are logically independent from the schema implementation. 

In the Thesis it is shown that naïve execution of SALEH stream queries 
without advanced query optimization is slow. It is therefore investigated 
whether the query optimization strategies from the loading approach can be 
utilized also for the streaming approach. Since, with the streaming approach 
events are not stored in SQISLE, there are no statistics available for cost-
based optimization about the data collections, and statistics instead must be 
collected dynamically during query execution. For this we introduce a new 
operator, the profile-controller, which enables different runtime query 
optimization strategies. During query execution it checks goodness of 
statistical estimates, and, when it has determined that sufficient statistics are 
collected, it dynamically reoptimizes the query and switches to query 
execution without profiling overhead by disabling collecting and monitoring 
statistics. It is shown that the runtime query optimization strategies improve 
performance of stream analysis queries substantially compared to naïve 
execution. 

However, even with the profile-controller, the performance of some 
stream queries is still much slower than the corresponding manually coded 
C++ programs performing the same analyses. The bottleneck is in the 
transformation views, which are called many times for the same event from a 
file stream. Therefore, some general rewriting rules of complex expressions 
are introduced to improve the performance of the transformation views. 
Furthermore, to avoid repeated execution of them, materialization of the 
transformation views is implemented. In addition, materialization of nested 
subqueries and rewriting rules to remove unnecessary vector constructions 
are done for the analysis query fragments. The source access query fragment 
and transformation views need to access meta-data from the schema during 
query execution. To eliminate the access to the schema, compile time 
evaluation [59][77] is applied to expressions in queries accessing the 
schema. 

All these techniques together with the presented novel query optimization 
techniques make performance of the stream analysis queries close to the 
corresponding C++ programs. 

In summary the results of this Thesis are: 
• It is shown that the HEP application and its analyses can be implemented 

in terms of high-level queries. The events are represented using a 
functional data model, and queries are defined using a functional query 
language. 

• It is shown that, based on our contributions to query processing, the 
scientific application queries can be executed as efficiently as with a hard-
coded C++ approach. 
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• The streaming approach is used to select complex objects from files. It is 
shown to perform much better than the loading approach. The streaming 
approach is based on the implementation of the data type Sobject, which 
efficiently represents complex objects such as events with complex 
structures. The streaming approach obtains efficient plans by runtime 
query optimization strategies utilizing the profile-controller operator, 
which encapsulates in each query the query fragment that tests complex 
conditions over event properties. It controls collection of statistics for the 
fragment, reoptimizes the fragment at runtime based on collected 
statistics, and dynamically switches optimization strategies. 

• A novel cost model for aggregate functions over nested subqueries is 
developed, and it is shown to improve performance of complex queries 
with many aggregate functions over complex nested subqueries. 

• The profiled grouping approach automatically fragments a query into 
groups and profiles each group to measure its real cost and fanout on a 
subset of events. It is shown that, with the profiled grouping approach and 
the cost model for aggregate functions, the query optimizer is able to find 
better performing plans than without the profiled grouping approach. 

• Rewritings of query expressions and materializations of views called in a 
query further improve performance. It is shown that these techniques 
significantly improve performance of queries with low selectivities. 

• The integration of a DBMS with a Grid infrastructure utilizes Grid 
computational resources for scalable execution of the application queries 
over data stored in a Grid. The integration is based on an architecture 
where data, queries, and a database system are shipped to computational 
resources accessible through the Grid infrastructure. It is shown that this 
architecture allows executing queries in parallel on non-dedicated external 
resources managed by a Grid infrastructure. 
The rest of the Thesis is organized in the following way. Chapter 2 

describes the ATLAS application, which motivates the Thesis, and gives 
background on the technologies extended in the Thesis. Chapter 3 presents 
contributions on the query optimization and evaluates the contributions for 
the loading scenario, based on our paper [38]. The stream system SQISLE 
and the streaming implementation of ALEH are described in Chapter 4. 
Chapter 5 describes integration of the DBMS with a Grid infrastructure 
based on our paper [37]. The chapter presents the parallel architecture of 
executing expensive queries in the Grid environment. It is followed by 
related work in Chapter 6, which describes work related to all parts of the 
Thesis. Chapter 7 summarizes the Thesis and presents future work. 
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2. Background 

This chapter describes the basis for the Thesis. First, the scientific 
application used in the Thesis is described in Section 2.1. Related database 
technologies are described in Section 2.2. They are followed by description 
of the DBMS Amos II, which is extended in this work, in Section 2.3. 
Finally Section 2.4 presents Grid technologies and in particular the 
Advanced Resource Connector (ARC).  

2.1 The ATLAS Application 
Our test application is from HEP, where lots of data is produced by LHC 
detectors, e.g. ATLAS [7]. Currently the ATLAS experiment simulates data 
to test its software infrastructure and to provide test data for physicists. The 
physicists use the simulated data during development and testing their 
theories. Many more physicists are going to be involved in the analyses of 
real data after LHC and ATLAS detector start to produce collision events at 
very high rate. 

2.1.1 Application Data 
The data produced by the ATLAS experiment describe collisions of 
particles. Each collision generates new particles, which are measured by the 
ATLAS detector, or the measurements are simulated by the ATLAS 
experiment. The measurements of particles produced in a collision form a 
collision event. Each event is conditionally independent given experimental 
run conditions, since each collision is preformed independently. Distribution 
of event property values are the same for events produced with the same 
experimental run conditions. 

The ATLAS experiment generates measurements as raw data, which are 
processed by several phases of ATLAS software and summarized in high-
level collision descriptions [8]. This work focuses on the high-level 
descriptions of simulated collision events as in [47]. Each such event is 
described by event properties, which are general measurements about the 
collision and sets of generated particles of various types. An example of a 
general collision measurement is the missing momentum in x and y 
directions (PxMiss and PyMiss). The generated particles of an event are, e.g., 
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electrons, muons, and jets. The particles of the events are described by the 
same set of properties such as the ID-number of the type of a particle (Kf), 
momentum in x, y, and z directions (Px, Py, and Pz), and the amount of 
energy (Ee). Therefore, our application data are sets of independent events 
described by their properties. 

The events are stored in files, which are usually generated on Grid 
computational resources and then stored on Grid storage resources or locally. 
The test data for [47] and this Thesis were produced in NorduGrid [31], and 
the files used in the Thesis are stored in NorduGrid storage resources. The 
names of the files reflect experimental run conditions and contain data 
partition identifiers within the experiment, thus we assume that two events 
are produced with the same experimental run condition if the names of the 
source files differ only by the partition identifiers. 

Events are accessed from the files through the C++ framework ROOT 
[18]. ROOT is a general framework, which provides ability to store data as 
collection of tuples of simple C values or as collection of C++ objects. One 
ROOT file can contain several independent collections of data. Thus it is 
necessary to specify the ROOT file, the internal path to a collection, the 
name of the collection, and the tuple or object positions in the collection to 
retrieve data. ROOT also provides an interface to retrieve metadata about the 
files that includes, for example, which collections are stored in the file, paths 
to the collections, structure for each collection, and amount of data stored in 
each collection. 

The simulated events available for this Thesis are stored in ROOT files in 
a collection called h51 as tuples of simple C values. Each element of a 
ROOT tuple contains either a real or integer number or a C array of 
numbers. The element values are accessed by their position in the ROOT 
tuple. The metadata about the collection of tuples describe attributes and 
mappings of the attribute names to position identifiers and types of the 
corresponding elements in the tuples.  

All ROOT files, which store events of the Thesis’ application, have the 
same structure and the file names contain meta-information about stored 
events. Events are stored in a collection object, named h51, located in 
/ATLFAST in the ROOT files. Examples of file names are 
bkg2Events_000.root, bkg2Events_001.root, and signalEvents_000.root. The 
names of the first two files describe that their events are from the same set 
produced in an experiment named bkg2 and have the same distribution. The 
numbers 000 and 001 in the file names identify subsets of the event set. The 
experiment bkg2 simulates background events, which are unlikely to 
produce Higgs bosons and therefore the analysis queries searching for Higgs 
bosons have high selectivities. The events from signalEvents_000.root are 
simulated in a different experiment named signal and have another 
distribution than the events produced in the experiment bkg2. The 
experiment signal produces signal events, which are likely to produce Higgs 
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bosons and therefore the analysis queries searching for Higgs bosons have 
low selectivities. 

The structure of the ROOT tuples is the same in all test files. Each ROOT 
tuple contains 58 attributes. Some of the attributes are presented in Table 
2.1. Position 0 of the tuples stores a unique ID number of an event within the 
file (EventId). Attribute Nele at position 1 describes how many electrons are 
contained in the event. The properties of electrons are presented in attributes 
at positions 2-6. They are followed by properties of other particles of events 
and general event properties. For example, attributes at positions 54 and 55 
contains values of the missing momentum. 

Table 2.1 includes examples of values for some events. For example, 
event with EventId equal to three contains two electrons. The properties of 
the electrons are stored as vectors in the attributes Kfele, Pxele, Pyele, Pzele, 
and Eeele. In the example each attribute array contains two elements to store 
property values for both the electrons. Then one of the electrons is 
constructed by values stored in the attribute vectors at position zero and is 
uniquely identified by the source event, which is from bkg2Events_000.root 
and has EventId three, and the position in the source event (particle 
identifier), which is zero. The other electron is constructed by values stored 
in the attribute vectors at position one and is uniquely identified by the 
source event and the particle identifier equal to one. 

Table 2.1. Structure of the event tuples and example of events from file 
bkg2Events_000.root. The first row contains logical names of the attributes, the 
second row defines positions of the attributes in the tuples, and the third row 
presents the types of the tuple elements. The remaining rows contain values of 
example event attributes, where arrays are denoted by the notation {…}. 

EventId Nele Kfele Pxele Pyele Pzele Eeele Nmuo Kfmuo 
0 1 2 3 4 5 6 7 8 

int int int [] float [] float [] float [] float [] int int [] 
0 0 null Null null null null 0 null 
1 0 null Null null null null 1 {13} 
…         
3 2 {-11,11} {-20.67, 

49.11} 
{98.32, 
67.51} 

{36.43, 
-29.14} 

{106.8, 
88.43} 

1 {13} 

…         
 

Pxmuo Pymuo Pzmuo Eemuo … Pxmiss Pymiss Pxnue Pynue 
9 10 11 12  54 55 56 57 

float [] float [] float [] float []  float float float float 
null null null null  20.43 19.80 0.039 19.93 

{-32.03} {2.640} {33.81} {46.65}  107.5 -4.065 101.9 -10.37 
…         

{-41.23} {-21.16} {-41.06} {61.92}  43.77 8.846 36.94 17.30 
…         
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The above way of modeling events in the files is not natural, since every 
particle is split between several attributes and one attribute contains values 
from several particles indexed by the particle identifier. It is more natural to 
represent particles as instances of corresponding particle types, e.g., as 
electron or muon objects contained in the event objects.  

An extended entity-relationship (EER) diagram [44] in Figure 2.1 models 
the event collision data as objects of different types. The diagram describes 
only those event properties, which are required by analyses in [15] and [47]. 
Analyses there are defined in terms of leptons and jets, which are 
represented by types Lepton and Jet, respectively. A lepton is either an 
electron or a muon, thus the types Electron and Muon are subtypes of type 
Lepton. Since all kinds of particles have the same attributes, the general type 
Particle is defined and all particle subtypes inherit its properties. The 
attributes of particles are the ID-number of a specific kind of a particle (Kf), 
momentum in x, y, and z directions (Px, Py, and Pz), the amount of energy 
(Ee), and the identifier of the particle within an Event (PId). Particles are 
contained in events. The attributes of an event are the missing momentum in 
x and y directions (PxMiss and PyMiss), the name of a source file 
(Filename), and the identifier within the file (EventId). 

In the Thesis the same logical schema is defined based on this schema for 
both the loading and streaming approaches. The logical schema is called the 
particle schema and is defined using a functional data model [79], presented 
later in the Thesis (Figure 2.3). Scientific analyses of event data are specified 
as queries over events, which are expressed in terms of the particle schema. 
However, different physical implementations of the particle schema are used 
for the two approaches. 

2.1.2 Application Analyses 
Scientists analyze the event data to select interesting events. An analysis of 
the events consists of selecting those events that can potentially contain 
charged Higgs bosons [7]. A number of complex predicates, called cuts, are 

 
Figure 2.1. An EER diagram of the event collision data. 
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applied to each event and the events that satisfy all cuts are selected. 
Selectivities of cuts are similar for the event sets that are produced with the 
same experimental run condition. Since events are independent, the analysis 
of each event is performed independently from other events. 

Example 2.1. An example of a scientific analysis of the events is presented 
in [47]. It defines four cuts: Jet Cut, Top Cut, Three Lepton Cut, and Two 
Lepton Cut, and is called Four Cuts Analysis. Top Cut and Jet Cut are the 
most complex cuts defined over jets. The definition of Top Cut in paper [47] 
is: 

The Top Cut requirements are: 
Events must have at least three jets, each with pT > 20 GeV in |η| < 4.5. 
Among these, the three jets most likely to come from the top quark are 

selected by minimizing |mjjj – mt|, where mjjj is the invariant mass of 
the three-jet system. It is required that |mjjj – mt| < 35 GeV. 

Among these three top jets, the two jets most likely to come from the W 
boson is selected by minimizing |mjj – mW|, where mjj is the invariant 
mass of the two-jet system. It is required that |mjj – mW| < 15 GeV. 

Where pT (called Pt in the Thesis) is calculated over the momentum of a 
particle by formula: 

22 PyPxpT +=  (2.1) 

, η (called Eta in the Thesis) is calculated over the momentum of a particle 
by formula: 
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, mT is the invariant mass of the top quark (174.3 GeV), and mW is the 
invariant mass of the W boson (80.419 GeV). The definition of Jet Cut can 
be found in [47]. 

Three Lepton Cut and Two Lepton Cut are simpler than the cuts above 
and they are defined over leptons. The paper [47] describes Three Lepton 
Cut as: 
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The Three Lepton Cut requires: 
Exactly three isolated leptons (l = e or μ) with |η| < 2.4, with pT > 7 GeV 

and at least one of which with pT > 20 GeV. 

Where l means a lepton, e means an electron, and μ means a muon. The 
definition of Two Lepton Cut can be found in [47]. ■ 

The scientists implement their cuts in some programming language and 
experiment with the implemented cuts and combinations of the different cuts 
during developing and testing their scientific theories. Currently the analyses 
are usually implemented in C++, which requires a lot of effort. Furthermore, 
the event collision data are stored in ROOT files in an unnatural way as 
discussed in the Section 2.1.1. Therefore, it can be difficult to understand 
and modify programs implementing the analyses. Furthermore, modification 
and extension of analyses requires code recompilation and uploading 
compiled binaries to external computational resources. 

Example 2.2. The theory presented in [47] and Example 2.1 is result of 
several years of research. The work continued the theory presented in [15]. 
To be able to test new ideas, the requirements for the interesting events from 
[15] were implemented as six cuts in a C++ program, which was then 
modified and extended with the new ideas. The six cuts were Hadr Top Cut, 
B Tag Cut, Jet Veto Cut, Z Veto Cut, Three Lepton Cut, and Other Cuts. 
Then Hadr Top Cut was modified first and B Tag Cut was removed. The 
definition of the implemented and modified cuts at this point is used in the 
Thesis for evaluation. This analysis is called Six Cuts Analysis and can be 
found in Appendix A in natural language. 

The cuts over ROOT tuples from Table 2.1 were implemented by a 
scientist in a C++ program without abstracting into a high level data model, 
e.g., as presented in Figure 2.1. Thus duplicated code was introduced, for 
example, in implementation of isolated leptons for electrons and muons in 
Three Lepton Cut. Global variables were used to keep intermediate results 
between cuts, for example, set of isolated leptons, which are used in Three 
Lepton Cut, Jet Veto Cut, and Other Cuts. As result it is difficult to 
understand and modify the code. 

During the implementation of the cuts in the C++ program a manual 
optimization of the code was done. The cuts were ordered in such a way that 
the program should execute efficiently. The implemented order of the cuts is 
Three Lepton Cut, Z Veto Cut, Hadr Top Cut, Jet Veto Cut, and finally Other 
Cuts. Furthermore, materialization of temporary results of calculations is 
manually implemented in the C++ program by storing the temporary results 
in global variables, which are reset at the beginning of the analysis of each 
event. The results of calculating isolated leptons, ok jets, b-tagged jets, and 
w jets are materialized in C++ vectors. The materializations limit the 
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possibility to reorder cuts, since the reordering sometimes requires manually 
moving materialization code from one cut to another. ■ 

To investigate how database query processing technologies can improve 
scientific analyses, Six Cuts Analysis (Example 2.2) is implemented in a 
query language as six cut functions over the events modeled by a high-level 
schema (Figure 2.1) and Four Cuts Analysis (Example 2.1) is implemented 
as four cut functions. Six Cuts Analysis queries are evaluated for both the 
loading and streaming approaches. It is demonstrated that the query language 
implementation has comparable performance as the C++ implementation 
described in Example 2.2. Four Cuts Analysis queries are evaluated only for 
the streaming approach. 

2.2 Database Technologies 
Database technologies provide efficient and scalable processing of large 
volumes of data. The traditional way to use these technologies is to store 
data in a database managed by a database management system (DBMS) and 
then specify data processing by queries to the DBMS [44]. This approach 
does not suit all applications. In some cases, data can not be stored in a 
DBMS and instead they are streamed through a data stream management 
system (DSMS) [9]. In a DSMS queries are processed over streams instead of 
querying stored data. In other cases, data are distributed in a network or 
Internet and then a middleware DBMS (called a federated or mediator 
database) integrates the data to answer a user query [76].  

The database community has developed and continues to develop 
technologies to support different applications to process data in efficient and 
scalable ways [53]. Therefore, data-intensive applications can gain a lot by 
utilizing appropriate database technologies. For example, the application 
described in Section 2.1 does not utilize any database technology for 
analyzing the huge amount of produced scientific data. This Thesis 
investigates how database technologies can be utilized for applications of 
this kind and develops new database techniques to achieve efficiency and 
scalability in execution of analysis queries. 

The first step in using databases is designing a conceptual schema of data. 
Entity-Relationship (ER) modeling [20] is commonly used to model data on 
high-level. During the ER modeling entity types with their attributes are 
defined to model real world objects with properties. Entity types are related 
to each other by relationships. The result of modeling can be presented on a 
diagram, for example, by using the entity-relationship notation. ER model 
can be extended with inheritance. For example, in Figure 2.1 an extended 
entity-relationship (EER) notation is used to represent a conceptual schema. 
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The conceptual schema is implemented in a DBMS and mapped into the 
DBMS’s data model. A data model is a collection of data types, operators 
manipulating data stored using the data types, and general integrity rules 
constraining the stored data [24]. The relational data model [23] is most 
commonly and widely used in databases, and many commercial DBMSs are 
based on it. Such DBMSs are called Relational DBMSs (RDBMSs). In the 
relational data model entity types are represented by relations, which can be 
seen as tables. Entities are stored as tuples (called table rows in the standard 
query language SQL [27]). Attributes of a tuple (column values in a table 
row) correspond to attribute values of an entity. RDBMSs maintain extents 
for every relation to represent its tuples. They also maintain primary key, 
unique key, and foreign key constraints on attributes. Values of the primary 
key attribute(s) of a relation identify uniquely tuples of the relation. Unique 
key on an attribute specify that values of the attribute should be unique in 
different tuples. Foreign key attributes of relations store relationships to 
other relations. RDBMSs provide support for keys on single attributes and 
compound keys defined over several attributes. For faster access values of 
some attributes are indexed. Most RDBMSs always maintain indexes on 
primary keys. Other attributes are indexed on requests of a database 
administrator (DBA). 

Each DBMS implements a query language, which is used to store, 
modify, and search data from the RDBMS. Commercial RDBMSs 
implement the high-level, nonprocedural standard query language SQL [27]. 
A query expressed in SQL specifies which data to retrieve. How data is 
going to be physically accessed from a database is decided by the DBMS. 

In SQL data retrievals specify data source relations, selection conditions 
on tuples, and which attributes to be presented in the result. If data are 
retrieved from more than one relation, tuples from different relations are 
joined with each other using some join condition, e.g. equality on a foreign 
key. A selection condition is specified as a set of operators on attribute 
values of tuples. The operators can be logical, numerical, string, or complex 
logical operators. Results of queries are formed by values of specified 
attributes and values of other attributes are projected away. Queries with 
joins, selection conditions, and attribute projection are called Select-Project-
Join (SPJ) queries. 

SQL queries can be more complex than SPJ queries. Selected tuples can 
be grouped and aggregate functions are applied over attribute values of the 
tuples grouped together. Selection condition of the queries can contain 
nested subqueries with aggregate functions over their results. A nested 
subquery can access a variable bound to a relation from the a parent query. 
Such a relation variable is called a correlated variable. 

RDBMSs support views, which are virtual relations defined by queries on 
top of physical relations or other views. Views provide modularity in query 
definitions. Some DBMSs extend SQL to allow parameterized views. 
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The main limitation of the relational data model is its limited 
expressiveness. For example, it does not support inheritance. The Thesis 
uses and extends a DBMS, which is based on a functional data model [40]. 
The functional data model provides higher expressiveness than the relational 
data model, and naturally supports relational and object-oriented data. 
Functional data models are based on mathematical notion of functions. 
DBMSs with a functional data model, functional DBMSs, implement a 
functional query language. Functional query languages give ability to 
declaratively specify through functions complex data processing in addition 
to the selection of which data to retrieve. 

2.2.1 Query Processing 
When a DBMS receives a query to select data it processes the query in 
several phases. The query processing phases are presented in Figure 2.2 [52]. 
In the first phase a parser checks syntactic and semantic correctness of an 
input query and creates a calculus representation of the query. Then a 
rewriter transforms the calculus representation by applying different 
rewriting rules. One of the most important rewriting is view expansion, 
where views are substituted with their definitions. 

 
Figure 2.2. General query processing steps. 

After the pre-processing phase the query optimizer transforms the 
predicates from the calculus representation of the query into algebra 
operators implementing the query. The operators are placed in an order 
called the execution plan of the query. Since there are many possible 
execution plans for a given query, the query optimizer has the goal to find an 
efficient execution plan. The query optimizer can be based on heuristics, cost 
models, or usually a mixture of both heuristics and cost models. In a 
heuristic based query optimizer heuristic rules define choice of operators and 
their order. In a cost-based optimizer the cost of each operator is estimated 
based on data statistics and an operator cost model and then the total cost of 



 

 28 

an execution plan is minimized based on the cost model. Query optimizers of 
relational DBMS usually mix these two approaches. For example, RDBMSs 
often use a heuristic rule that selection operators should be executed as early 
as possible [57]. Then the order of joins and the choice of physical operators 
implementing joins, e.g. a nested loop join [44], are optimized by 
minimizing the cost of the final plan. The optimization is usually performed 
by an optimization algorithm based on dynamic programming [87]. Such 
algorithms can find optimal plan in terms of estimated cost. However, 
optimization algorithms based on dynamic programming can handle only 
small number of joins. Thus some DBMSs implement randomized 
optimization [56][82] or greedy optimization [60] to handle larger queries. 

In the last phase an execution engine executes the execution plan by 
interpreting the plan. For example, a nested loop join of two relations called 
outer and inner relations loops over all tuples from the inner relation for 
each accessed tuple of outer relation to produce the join result. The result of 
the query execution is shipped to the user. 

This Thesis extends a DBMS that implements all these phases. After 
parsing a query, several rewriting rules are applied including view 
expansion. The Thesis proposes additional rewriting rules to reduce the 
amount of operators in the execution plan. Query optimization is performed 
by a cost-based optimizer. A novel cost model for operators used in the 
application queries is presented in the Thesis. The DBMS provides three 
optimization algorithms: based on dynamic programming, randomized 
optimization, and greedy optimization. All the three algorithms are used in 
the Thesis. The execution plan produced by the query optimizer is 
interpreted during the query execution. 

2.2.2 Data Stream Management Systems 
There are applications, where data is constantly produced as streams. Storing 
such data can be inefficient or impossible. To enable queries for such 
applications Data Stream Management Systems (DSMSs) were developed 
[9]. In DSMSs analyses are specified in high level query languages similar to 
SQL over data which are streamed from sources [85]. It is common to 
assume that data is ordered in a stream, and a data stream is infinite and 
cannot be repeated. In a DSMS data is not available all the time and 
execution is performed when data arrives, data driven execution, while in a 
DBMS data is always available and execution is performed when a query is 
issued, demand driven execution. 

Since a stream is assumed to be infinite and not repeatable, DSMS queries 
cannot be executed in the same way as by a DBMS. For example, the nested 
loop join in a DBMS accesses data from inner tables many times. In the case 
if inner relation is a stream, it cannot be called several times and data of the 
stream cannot be stored either. Therefore, a concept of data windows is 
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implemented in DSMSs [85]. Usually a data window contains only the most 
recent data. Thus operators that require accessing the same data several 
times are executed only over recent data and therefore the query results for 
the entire stream are approximated. 

This Thesis investigates scalability and efficiency of query processing 
over complex objects streamed from sources, e.g. ROOT files in the ATLAS 
application, and implements a new DSMS. In contrast to data driven DSMS 
our DSMS is demand driven, i.e. it controls when each new complex object 
is produced by a stream. In DSMSs the elements of the streams are usually 
relatively simple records, while is our case the elements are complex objects. 
Since in our kind of applications each complex object is analyzed 
independently, our DSMS needs to process only one most recent element of 
the stream at a time. Furthermore, our streams are finite, thus exact query 
results can be obtained over entire stream. Therefore, windows and orders 
are not utilized. 

2.2.3 Distributed Databases 
Distributed database systems [76] allow to process queries on more than one 
database server distributed over a network. Usually DBMSs with data are 
preinstalled on server machines and available before queries are issued. 
Submitted queries are processed on distributed DBMSs transparently for the 
user. Distributed database systems take care on splitting a submitted query 
into query fragments, executing the query fragments on relevant source 
DBMSs, and integrating results of the query fragment executions. 
Traditionally distributed database systems minimize data volumes shipped 
over network between the distributed DBMSs. 

This Thesis presents a distributed architecture, where DBMSs are not pre-
installed. Instead the DBMS itself is shipped to computational resources in 
addition to shipped query fragments and data. This makes possible to 
dynamically utilize computational resources of Grids without preinstalling 
DBMSs. 

2.3 The Functional DBMS Amos II 
This Thesis extends a research DBMS Amos II [79]. Amos II provides a 
functional data model with user-defined data types, a functional query 
language, external interfaces to C/C++, Lisp, and Java, query processing 
with abilities to implement new rewriting rules and different optimization 
methods, support for wrappers and mediators, and support for distribution 
and stream environments. 

The basic concepts of the functional data model of Amos II are objects, 
types, and functions. All data are represented by objects, which can be literal 



 

 30 

objects or surrogate objects. Literal objects represent primitive data such as 
numbers, strings, and collections and belong to literal types, e.g. Integer, 
Real, Charstring, Vector, and Bag. Complex data are stored as surrogate 
objects, which are associated with object identifiers (OIDs). Objects are 
classified to types. Types are defined by users, are used to model real world 
entities, and are arranged into hierarchies. Amos II maintains extents of 
surrogate objects for every user-defined type. Values of surrogate objects are 
related to the objects by functions. Functions also define relationships 
between objects of different types. Therefore, both attributes and 
relationships are modeled by functions, which are called stored functions. 

The functional data model of Amos II is well suited to model scientific 
data. For example, the EER model of the application data presented on 
Figure 2.1 is mapped into the particle schema in the functional data model as 
presented on Figure 2.3 and defined in Amos II. All presented entities are 
directly mapped to types, which are organized in a type hierarchy. Attributes 
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Figure 2.3. The particle schema of the event collision data in the functional data 
model. 
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of the type Event are implemented as stored functions named EventId, 
FileName, PxMiss, and PyMiss. These functions take objects of type Event 
as argument and return literal objects of types Integer, Charstring, Real, and 
Real, respectively, as results. Analogously attributes of entity Particle are 
implemented as functions over type Particle and return numbers. Types 
Lepton and Jet are implemented as subtypes of type Particle, and therefore, 
inherits all functions defined for the type Particle. Type Lepton is supertype 
for types Electron and Muon. The relationship between Event and Particle is 
implemented by the function event, which takes an object of type Particle as 
argument and returns an object of type Event as result, and by the functions 
from type Event to each particle type, which return all particles of the kind 
belonging to an input event. 

2.3.1 Functions in Amos II 
A function in Amos II can be a stored function implementing attributes or 
relationships, a derived function implementing parameterized views, or a 
foreign function implemented in a procedural sub-language of Amos II or 
some external programming language. Basic operators such as less, equality, 
plus, absolute value  are implemented as foreign functions in C. Queries and 
functions return a single value or bags of values. 

Functions can be defined as multidirectional to represent different 
implementations for a function for each of its inverses. A multidirectional 
function has different implementations for different binding patterns [44], 
i.e. which argument or result parameters are bound in a query. 
Multidirectional functions can be defined explicitly by providing different 
implementations for different binding patterns. Multidirectional functions 
provide flexibility for the query optimizer to implement access to external 
data structures. For example, a function vref returning an element of a vector 
is defined as multidirectional foreign function for two binding patterns bbf 
and bff: 

create function vref(Vector v, Integer i) -> Object o 

 as multidirectional 

  (“bbf” foreign ‘vrefbbf’) 

  (“bff” foreign ‘vrefbff’); 

The first binding pattern bbf means that both the vector v and the position i 
of the element in the vector are known. Therefore, the implementation 
vrefbbf is going to be called to access the element in the vector directly. With 
the second binding pattern bff only the vector v is known. Therefore, the 
implementation vrefbff is used to iterate over all elements of the vector v and 
emit values for both the index i and element o. 
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2.3.2 Query Language and Query Processing in Amos II 
The query language of Amos II is called AmosQL. In AmosQL queries are 
specified in SELECT-FROM-WHERE statements. The FROM clause 
specifies type extents to access, the WHERE clause specifies selection 
conditions, and the SELECT clause specifies the values to return. SELECT 
and WHERE clauses can contain calls to any kind of functions. 

AmosQL queries are processed in four phases as presented in Figure 2.2. 
First, a query is parsed and translated in a logical calculus representation 
called ObjectLog [66], which is a dialect of Datalog [44]. Then various 
rewriting rules are applied to the query. View expansion is performed by 
substituting derived functions with their definitions. Another rewriting rule 
applied to the query is partial evaluation, which reduces query fragments by 
evaluating them during the rewriting phase [77]. After rewriting the query 
represented in ObjectLog is optimized by a cost-based query optimizer, 
which produces an execution plan represented in an object algebra.  

In Amos II each function is associated with cost models consisting of 
execution costs and fanouts. Costs of functions indicate if one function is 
more expensive in terms of its execution time than another one. The fanout 
of a function estimates how many tuples are produced by the function per 
one input tuple. The fanout of selection predicates (called selectivity) are less 
than one since they filter their inputs. Numerical functions usually transform 
an input value into some output tuple; thus their fanouts are equal to one. 
The fanout of a function returning a bag (called its cardinality) is equal to 
the size of the bag. Default statistics are defined for different groups of 
common functions, e.g., bag valued functions have fanout 100, selective 
predicates have fanout 0.4, and other foreign functions have fanout one. 
More specific cost models can be defined for functions by providing either 
cost hints, which are constant numbers, or cost functions, which dynamically 
calculate operator costs and fanouts on the query optimizer’s requests. 
Different cost models can be used for different binding patterns of a 
function. 

The query optimizer chooses the operators that implement the functions 
for one of their binding patterns, and places operators in a sequential 
execution plan in certain order. The choice and place of operators depends 
on two factors: each operator should be executable, i.e., the operator’s 
arguments should all be bound, and the total cost of the execution plan 
should be minimized. Three optimization methods are available in Amos II. 
They are dynamic programming, greedy optimization, and randomized 
optimization. The optimization method based on dynamic programming [87] 
finds the optimal execution plan according to the cost model, i.e. the optimal 
plan has the smallest total cost among all possible execution plans for the 
query. The total cost for nested loop joins is calculated by formula [66]: 
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, where pk is an operator placed at position k in the sequential execution plan 
consisting of n operators. The cost of operator pk is cost(pk) and its fanout is 
fo(pk). Calculation of the total cost assumes that all n operators are 
independent from each other. 

Dynamic programming can handle only queries with few operators, since, 
e.g., the worst case complexity of System R algorithm [87] is O(2N) for a 
query with N joins. The other optimization methods, greedy optimization 
and randomized optimization, are able to handle queries of any size, but they 
do not guarantee to find the optimal plan. 

Greedy optimization [66] is assigning ranks to operators and sorting the 
operators according their ranks. An execution plan is constructed by chosing 
an executable operator with smallest rank among all operators, which are not 
yet in the plan. The rank for an operator pk is calculated by formula: 
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The idea behind the rank formula is that selective operators are placed as 
earlier as possible and operators with fanouts bigger than one are placed as 
late as possible. Among selective operators the cheapest is placed first. 
Among operators with fanouts bigger than one the most expensive is placed 
first. To be able to compare operators with fanouts equal to one, their fanouts 
are replaced with 0.99 while calculating of their ranks.  

This greedy optimization finds suboptimal plans in complex cases, but it 
is very fast. 

The randomized optimization [71] is a two-phase algorithm based on 
random walk. It minimizes plan cost calculated by formula (2.4). The first 
phase is called Iterative Improvement (II), which randomly generates an 
executable query plan and searches for local minimum in its each iteration. 
The cheapest plan among of all iterations is returned as result of the iterative 
improvement. On the result plan of the iterative improvement Sequence 
Heuristic (SH) is applied. Each iteration of the sequence heuristic randomly 
chooses a neighbor plan to the best known plan and searches for local 
minimum from the neighbor by random walks. The result plan of sequence 
heuristic is provided as the final execution plan. The number of iterations for 
iterative improvement and sequence heuristic phases can be tuned. For large 
and complex queries the randomized optimization needs to run for a long 
time to obtain a good plan. Randomized optimization is able to find much 
better plans than greedy optimization, but it can take a lot of time for the 
randomized optimization to find a good plan. 
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The execution engine interprets an execution plan obtained by one of the 
optimization methods. Operators in a query plan are executed iteratively in a 
stream fashion in the same order as in the plan by a nested loop join. 

This Thesis implements the ATLAS application, a DSMS SQISLE, and 
parallel query management system POQSEC as extensions of Amos II. The 
query language of Amos II is extended with numerical and aggregate 
functions to define analyses queries for the ATLAS application. The data 
model of Amos II is extended with data type Sobject for efficient processing 
events with complex structures streamed from files or other sources. The 
query processing of Amos II is extended with runtime query optimization, 
which collect data statistics and optimizes queries at runtime, and profiled 
grouping, which fragments queries in groups, measures execution time and 
fanout of each group, and optimizes join-order of groups. Operators cost 
models of Amos II are extended with aggregate cost model for aggregate 
functions over nested subqueries. These extensions are important 
contribution of the Thesis. 

2.4 Grid Technologies 
Grid technologies are being developed to establish infrastructures for 
coordinating and sharing distributed heterogeneous resources between 
multiple users and across organizations [35]. Grid infrastructures emerged 
first within scientific communities. The goal of Grid there is to provide 
uniform access to heterogeneous computational resources, e.g., clusters, 
through Grid infrastructures. Most of Grid infrastructures are based on 
kernel software developed and provided by the Globus Alliance [41]. The 
standardization of Grid is managed by the Open Grid Forum (OGF) [75]. 

In Sweden most commonly used Grid infrastructure is the Advanced 
Resource Connector (ARC) [32]. The Thesis utilizes resources of Swedish 
National Grid, Swegrid [90]. Swegrid consists of six computational clusters, 
which are accessible through ARC. Section 2.4.1 describes ARC based on its 
state at the beginning of 2005. 

2.4.1 ARC Grid Middleware 
The Advanced Resource Connector (ARC) [73] is a middleware between 
Grid users and computational resources that are managed by local batch 
systems. Thus ARC does not control computational resources; instead it 
submits user tasks to local batch systems on clusters. Each local batch 
system allocates cluster nodes according to its policy and the current load of 
the cluster. 

The Computing Elements (CE) are clusters where Grid jobs are executed 
while Storage Elements (SE) are file servers where the data to be queried are 
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stored. The CEs and SEs are managed by ARC and are accessible by 
submitting Grid jobs to an ARC Client. The ARC client is a set of command 
line tools to submit, monitor, and manage jobs on the Grid. It also has 
commands to move data between storage elements and clients, and to query 
Grid resource information such as loads on different CEs and job statistics. 
Users of ARC always first initiate communication with an ARC client. 

The ARC client includes a resource brokering service [33] to find suitable 
resources for jobs. Jobs are described in a resource specification language, 
xRSL [86], which includes specification of, e.g.: 
• A user executable and its arguments to be run on some suitable 

computing element. 
• Files to be transported to and from the chosen computing element before 

and after the execution. 
• Maximal CPU time for the execution. 
• Runtime environments for the execution. A runtime environment is an 

additional software package, e.g., an application library such as ROOT 
[18]. 

• Standard input, output, and error files for the execution. 
• Optional names of the computing elements where the executable can run. 
• The number of parallel sub-jobs to be run on the computing element. 
In summary ARC requires detailed user specifications to describe 
computation tasks as xRSL scripts.  

POQSEC simplifies this considerably by automatically generating ARC 
interactions and job scripts to execute a task specified as a declarative query 
over contents of data files. To manage jobs generated by POQSEC, to track 
their executions, and to download results we provide a babysitter integrated 
with the POQSEC framework. 
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3. The Loading Approach 

We implemented the ATLAS application (Section 2.1) in Amos II [79] and 
its analyses as AmosQL queries. The application data are sets of independent 
events, where each event has properties that describe sets of particles of 
various types produced by the collision. Scientists define the analysis queries 
in terms of these event properties. As every collision is simulated 
independently of other collisions, the queries contain no joins between 
properties of different events. The scientist searches for events satisfying 
certain conditions, called cuts, and the query results are sets of interesting 
events. A typical query is a conjunction of a number of cuts. Queries over 
events are complex since the cuts are complex containing many predicates 
applied on properties of each event. The query conditions involve selections, 
arithmetic operators, aggregate functions, foreign functions, and joins. The 
aggregate functions compute complex derived event properties. A complex 
query used as the test example in this chapter is implementation of Six Cuts 
Analysis (Appendix A), which searches for the events likely producing 
Higgs bosons by applying scientific theories. 

The implementation is called ALEH (query system for Analysis of LHC 
Events for containing charged Higgs bosons). Naïve execution of a complex 
query described in ALEH performs much worse than the C++ 
implementation of the corresponding analysis (Example 2.2). This chapter 
investigates how execution of the query can perform better by improving 
optimization of the query. To analyze optimization of the queries, the events 
are loaded into the main-memory database of ALEH. Then query 
optimization and execution is analyzed for the loaded database. The 
architecture of the loading approach is presented in Figure 3.1. The loading 
phase is presented in Figure 3.1(a). To load data ALEH accesses an Amos II 
meta-database called File DB, which contains information about files storing 
events. Then ALEH calls the ROOT library [18] for each file and 
materializes every event in the ALEH database (DB). After data is loaded a 
user can issue queries to analyze the stored data. During query execution 
data are accessed from DB and processed by ALEH as presented in Figure 
3.1(b). 

The complex queries need to be optimized for efficient and scalable 
execution. However, optimizing such complex queries is challenging 
because: 
• The queries contain many joins of event properties within each event. 
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• The size of the queries makes optimization slow. 
• The cut definitions contain many more or less complex aggregations. 
• The filters defining the cuts use many numerical functions. 
• There are dependencies between event properties that are difficult to find 

or model. 
• The foreign functions cause dependencies between query variables. 

We first investigated whether cost-based optimization improves query 
execution compared to no optimization. To enable effective cost-based 
optimization over our kind of scientific queries, we developed an aggregate 
cost model [38] for the operators occurring in the queries. As a comparison 
we also manually optimized a reference query by experimenting with 
different orders of cuts and measuring the actual execution times. Since the 
queries are very large, regular dynamic programming [87] could not be used. 
Instead randomized optimization [56][71][82] running for a long time and 
greedy heuristic optimization [60][66] were used.  Performance 
measurements showed that cost-based optimization with the aggregate cost 
model produced a substantially faster execution plan (1000 times) than an 
unoptimized one. 

For some data sets, our manually optimized plan was still somewhat 
faster. The main reason for this is that the aggregate cost model becomes 
unreliable for large plans [54]  because i) there are dependencies between 
query variables and ii) the cost estimate errors are compounded by the very 
large queries. It is difficult to define a cost model dealing with the 
dependencies. Another problem is that the time to optimize the query to 
produce a good plan is substantial; it took around half minute by randomized 
optimization to find a sufficiently good plan for a test query. 

To alleviate this, we developed a profiled grouping method [38] where 
the query is first split into query fragments, called groups, where each group 
has no join with other groups on event properties. Then each group is 
optimized separately and profiled for real execution time over a sample set 
of events in order to obtain measurements of actual fanouts and costs per 
group called profiled group cost model. Finally the join order of the groups 
representing the query is optimized by the cost-based query optimizer using 
the profiled group cost model. 

(a)  

 

(b)  

 

Figure 3.1. Architecture of ALEH with data flow. (a) Modules participating in 
loading phase; (b) modules participating in query execution. 
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Profiled grouping is based on measuring real execution time of different 
query fragments rather than computing estimates based on a cost model. In 
addition, the number of groups is much smaller than the number of 
predicates in the ungrouped query. Therefore the query optimization time is 
improved substantially by the grouping. Furthermore, profiled grouping 
turns out to be less sensitive to optimization errors, so even a greedy 
optimization method combined with profiled grouping produces better plans 
than an ungrouped approach. 

An important problem is how to fragment the query. The set of all 
possible groups is very large and therefore a heuristic method for forming 
the groups is used. The grouping heuristic uses the knowledge that in our 
application each event is analyzed independent of other events when 
selecting the events satisfying conjunctions of cuts. The grouping heuristic 
fragments a conjunctive query into groups where joins between groups are 
performed only on the event identifier; no joins are made between event 
properties from different groups. 

We implemented the aggregate cost model, profiled grouping, and the 
application query in Amos II and evaluated the effectiveness of both 
ungrouped strategies and profiled grouping in combination with different 
optimization strategies: dynamic programming, randomized optimization, 
and greedy heuristic optimization. As references we also compared with a 
best effort manual optimization. The measurements were made with the two 
data sets in Section 2.1.1. One data set is with high selectivities of the cuts, 
and the other one is with low selectivities. We show that for high selectivity 
data sets profiled grouping combined with any optimization method 
produces better plans than the ungrouped strategies. 

The rest of the chapter is organized as follows. Section 3.1 describes 
implementation of the application analysis in ALEH and a test query used in 
the rest of the chapter. The aggregate cost model is presented in Section 3.2. 
Profiled grouping is described in Section 3.3. It is followed by performance 
measurements for the query execution strategies in Section 3.4. Section 3.5 
concludes the chapter. 

3.1 High Energy Physics Queries 
The data are events and their properties were described in Section 2.1.1. 
They are loaded into the DBMS from the ROOT files. The ROOT files are 
associated with meta-data conditions for each file, which describe, e.g., 
experiment settings and what kinds of events were produced. Events and 
particles from the schema in Figure 2.1 are defined by the particle schema in 
our functional data model as presented in Figure 2.3. 

The analysis of the events consists of selecting those events that can 
potentially contain charged Higgs bosons. A number of predicates, called 
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cuts, are applied to each event and events that satisfy all cuts are selected. 
Selectivities of cuts are assumed similar for event sets from files with the 
same meta-data condition. 

The scientists experiment with combinations of different cuts. An 
example of a cut, named Three Lepton Cut, is to select an event if it has 
exactly three isolated leptons and at least one isolated lepton has Pt bigger 
than 20 GeV. An isolated lepton is a lepton, which has absolute value of Eta 
smaller than 2.4 GeV and Pt bigger than 7 GeV. Pt and Eta are 
computational functions on event properties. 

The events are delivered in binary files managed by the ROOT library 
[18]. A ROOT loader is implemented to load events from ROOT files into 
the Amos II database. The particle schema of the collision events is 
implemented in the query language AmosQL [79] (see Appendix B) and 
presented in Figure 2.3. Events are represented by entities of type Event with 
two attributes PxMiss and PyMiss. Particles are represented by objects with 
attributes Kf, Px, Py, Pz, and Ee and several relationships to entities of type 
Event. Particles of different types are represented by different entity subtypes 
Muon, Electron, and Jet. Muon and Electron are generalized by an abstract 
entity type Lepton, which is used in definitions of some cuts. 

A number of basic numerical foreign functions, e.g. Pt and Eta, are 
defined in the database in order to make the analyses. The cuts are expressed 
as derived functions in terms of these basic functions. The analysis is usually 
defined as conjunctions of several different cuts, where each cut is defined as 
a conjunction of many predicates. As each event is always analyzed 
independently of other events, the analysis queries have the important 
property that no joins are performed between events. In general the queries 
have the form ...})()()(|{ 21 ∧∧∧ ececede , where ci are cuts and d(e) is a 
predicate to scan the events. 

For example, a general query, which implements Six Cuts Analysis 
(Appendix A), is: 

select e 

from Event e 

where  hadrtopcut(e) and jetvetocut(e) and 

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e); 

(3.1) 

Here the functions jetVetoCut, zVetoCut, hadrTopCut, missEeCuts, 
leptonCuts, and threeLeptonCut are examples of cuts that provide necessary 
conditions for the collision event e to produce a Higgs boson according the 
theory described in Appendix A. Other Cuts is split into missEeCuts and 
leptonCuts here. The implementation of these cut functions is presented in 
Appendix C. The predicate d(e), which accesses events of type Event, is 
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generated by the from clause. This general query is a reference query for the 
rest of the chapter. 

The definition of the Three Lepton Cut is: 

create function threeLeptonCut (Event e) -> Boolean as 

select true  

where  count(isolatedLeptons(e))=3 and 

 some( select r 

  from Real r 

  where r=Pt(isolatedLeptons(e)) and  

   r>20.0); 

The function isolatedLeptons has the definition: 

create function isolatedLeptons (Event e) -> Lepton as 

select l  

from Lepton l 

where l=leptons(e) and 

 abs(Eta(l))<2.4 and  

 Pt(l)>7.0; 

The other cuts are defined as functions in a similar way.  
The Pt and Eta functions call foreign functions Pt and Eta over a 

momentum triple for a given particle l. The formulas of the functions are 
presented in (2.1) and (2.2), respectively. 

Before query optimization, derived functions are expanded as views and 
the query is represented in ObjectLog (see Section 2.3). The plan for the 
query (3.1) is a conjunction of 51 operators. The predicates are comparisons, 
numerical operations, aggregate functions, foreign function calls, and joins. 
The large size of the query makes it difficult to optimize, and dynamic 
programming [87] cannot be used. We were able to optimize it using 
randomized optimization [56][71][82], which, however, uses a lot of time to 
produce a good plan. 

Another problem is that there are many dependencies between predicates. 
This makes it difficult to estimate the cost. For example, a part of an 
unoptimized predicate in the definition of function isolatedLeptons is the 
conjunction: 
em = Eta(m) AND 

aem = Abs(em) AND 

aem < 2.4 AND 

pm = Pt(m) AND 

pm > 7.0 

Here m is the momentum triple of a lepton of a given event, and em, aem, 
and pm are query variables containing results of the foreign functions Eta, 
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Abs, and Pt. It is difficult to estimate selectivities for such predicates defined 
in terms of foreign functions. For example, the estimate of the selectivity of 
the comparison aem < 2.4 depends on original data distribution of event 
properties and on the distribution of results from the functions Eta and Abs 
applied on the these properties to calculate aem. Because of the data 
dependencies the selectivity estimates contain large errors. The same holds 
for the comparison pm > 7.0, etc. Furthermore, there is also a dependency 
between the two comparisons, as they operate on the same event properties. 
Such dependencies influence cost and fanout estimates and therefore 
suboptimal execution plans are chosen [54]. 

To alleviate the problems of slow optimization and data dependencies, we 
investigated the profiled grouping strategy based on measuring real costs of 
query fragments.  Each group is individually optimized using the aggregate 
cost model described next. Then the optimized groups are profiled over 
event set samples. Finally, the so obtained profiled grouping cost model is 
used to optimize the fragmented query. In our measurements, we compare 
this approach to a cost-based approach using the aggregate cost model 
without applying the profiled grouping method. 

3.2 The Aggregate Cost Model 
We developed a cost model for aggregate functions and numerical functions 
used in our application, assuming data independence between predicates. 
Table 3.1 and Table 3.2 define the aggregate cost model. The aggregate cost 
model is rather ad hoc, but, as will be shown, it still produces good execution 
plans for our test query, in particular in combination with profiled grouping. 
It is defined so that the costs of different functions are comparable. For 
example, the cost of aggregate functions SOME and NOTANY should be 
complementary and SOME is a special case of ATLEAST. 

The costs of complex numerical functions are approximated according 
their measured execution time. The costs of basic numerical functions, such 
as plus, minus, and times, are set to one. The costs for the numerical 
functions that are used in ALEH queries are presented in Table 3.1. The 
fanouts of the numerical functions are always one. 

The costs and fanouts of aggregate functions are based on the estimated 
costs and fanouts of subqueries they are applied on. 

The cost of an aggregate function depends on the estimated number of 
tuples produced by its subquery sq. For aggregate function SUM(sq) all 
tuples emitted by sq have to be processed, while for other aggregate 
functions, such as SOME(sq) and COUNT(sq)=N, only a limited number of 
tuples emitted by sq are processed. Therefore the cost of an aggregate 
function is the cost of producing the required tuples by sq plus the cost of 
processing the emitted tuples by the aggregate function. The cost per 
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produced tuple by subquery sq is the estimated total cost of executing the 

subquery, cost(sq), divided by its estimated fanout, fo (sq), i.e. 
)(
)(

sqfo
sqcost

. 

The cost for the aggregation function to process one received tuple from sq 
is set to one. For example, SUM(sq) has the cost cost(sq)+fo(sq). The cost of 
SOME(sq) when fo(sq)<1 is cost(sq)+fo(sq). If sq emits at least one tuple the 

cost becomes 1
)(
)( +

sqfo
sqcost  since only the first tuple is processed by SOME. 

Analogous cost model formulas are developed for other aggregate functions. 
The fanout of SUM(sq) is always one. The fanouts of SOME(sq) and  

NOTANY(sq) depend on the estimated fanout of sq. If sq emits less than one 

result tuple the fanout of SOME(sq) is set proportional to fo(sq), 
2

)(sqfo . 

Otherwise it is set to 
)(2

11
sqfo⋅

− . Basically, the model converges to one as 

fo(sq) increases since it becomes more and more likely that SOME is true. 

Table 3.1.  Costs of numerical functions, where x, y, and z are numbers (integers or 
reals), i is integer, v, v1, v2, and v3 are vectors, and vs is bag of vectors. 

Numerical operator Cost Description 
PLUS(x,y)=z 1 z = x + y 
TIMES(x,y)=z 1 z = x · y 
ABS(x)=y 1 y is absolute value of x 
v[i]=x 1 x is element i of vector v 
TIMES(v1,v2)=x 5 x is scalar product of two vectors v1 and v2 
SQRT(x)=y 1 y is square root of x 
PLUS(v1,v2)=v3 15 v3[i] = v1[i] + v2[i] for all i 
LOG(x)=y 2 y is natural logarithm of x 
ATAN2(x,y)=z 2 z is arctangent of x / y 
CEILING(x)=y 1 y is ceiling of x 
COS(x)=y 2 y is cosine of x 

MAGNITUDE(v)=x 9 222 ]2[]1[]0[ vvvx ++= , where v is a vector of size three 

ETA(v)=x 16 ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−++

+++
⋅=

]2[]2[]1[]0[

]2[]2[]1[]0[
ln5.0

222

222

vvvv

vvvv
x , where v is a 

vector of size three 

PT(v)=x 6 
22 ]1[]0[ vvx += , only first two dimensions of 3D vector v 

are used in the calculation 
SUM(vs)=v 36 v is sum of all vectors in bag of vector vs 
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The factor two allows NOTANY to have a complementary model (see Table 
3.2). 

The fanouts of functions COUNT(sq)=N, and ATLEAST(sq)=N, where N 
is known, depends on the relationship between N and fo(sq). For example, 
for COUNT(sq)=N if fo(sq)<N the fanout is increasing until N tuples are 

emitted from sq, and it is computed as 
N
sqfo

⋅3
)( . After N tuples are emitted 

the fanout goes down and is therefore computed as 
)(3 sqfo

N
⋅

. The fanout is 

set to 1/3 when fo(sq) is estimated to be N. 

3.3 Profiled Grouping 
The profiled grouping fragments a conjunctive query into groups where the 
groups are joined only on the event variable e. The groups are minimal in the 
sense that none of the groups can be split further into subgroups joined only 

Table 3.2.  Cost model for aggregate functions over subquery sq, where cost(sq) is 
the estimated total cost of executing sq, and fo(sq) is the estimated fanout of sq. 
Operator Cost Fanout 
SOME(sq) if 1)( <sqfo  then )()( sqfosqcost +   

else 1
)(
)( +

sqfo
sqcost  

if 1)( <sqfo  then 
2

)(sqfo  

else 
)(2

11
sqfo⋅

−  

NOTANY(sq) if 1)( <sqfo then )()( sqfosqcost +   

else 1
)(
)( +

sqfo
sqcost  

if 1)( <sqfo  then 

2
)(1 sqfo−  else 

)(2
1

sqfo⋅
 

ATLEAST(sq)=N if Nsqfo <)( then )()( sqfosqcost +   

else N
sqfo
sqcostN +

)(
)(  

if Nsqfo <)(  then 
N
sqfo

⋅2
)(  

else 
)(2

1
sqfo

N
⋅

−  

COUNT(sq)=N if 1)( +< Nsqfo then )()( sqfosqcost +  

else 1
)(
)()1( +++ N

sqfo
sqcostN  

if Nsqfo <)(  then 
N

sqfo
⋅10

)(  

else 
)(10 sqfo

N
⋅

 

SUM(sq), 
COUNT(sq) 

)()( sqfosqcost +  1  

MINAGG(sq), 
MAXAGG(sq) 

)()( sqfosqcost +  if 1)( <sqfo  then 
2

)(sqfo  

else 
)(2

11
sqfo⋅

−  
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on the event variable e. Thus, a fragmented query has the form 
...})()()(|{ 21 ∧∧∧ egegede , where d(e) is the domain predicate and gj(e) 

are groups and gj(e) cannot be further fragmented, i.e. 
)()()(:))(),(( 2121 egegegegeg jjjjj ∧=¬∃ . Notice that the original cuts do 

not fulfill the minimality as some of the cuts can be split into further groups. 
For example, the definition of threeLeptonCut forms two minimal groups. 
One group is: 

count(isolatedLeptons(e))=3 

Another group is 

some(select r 

 from Real r 

 where r=Pt(isolatedLeptons(e)) and  

  r>20.0) 

The result of the grouping is a set of subqueries where each predicate from 
the original query belongs to exactly one group. 

After the groups are formed each group is optimized using the aggregate 
cost model and assuming that e is bound by the domain predicate d(e). Both 
randomized and greedy optimization were used and compared, with no 
significant impact on the final execution efficiency. Therefore, in our 
measurements we show the time to do the cheap greedy optimization only. 

Since each group is a complex conjunctive query an aggregate cost model 
may not produce good estimates [54].  Therefore we wrap each group and 
profile it on a sample of the set of events that are queried. This requires that 
the queried data are already loaded to the main memory by the ROOT 
loader. The profiler executes each group on the same sample set and 
calculates fanouts and real cost estimates for each group and these estimates 
are then used for cost-based reordering of the groups. 

In the experiments we varied the number of events used in the sample set. 
Based on this we estimated the required sample size to obtain sufficiently 
efficient optimization. 

Finally, the join order of groups is optimized using the profiled group cost 
model obtained by the profiling. 

In our grouping algorithm (Algorithm 3.1) the input is a conjunctive 
query predicate S and an event variable varE. The output is a conjunction of 
groups, Groups, representing S. On lines (3-5) the algorithm forms a new 
group by picking one predicate at a time from S. The variable V will contain 
the set of variables to be processed in order to form the group. On line (6) V 
is initialized to the variables in p, except the event variable.  On lines (7-9) 
the algorithm processes one variable at a time from V and on lines (10-11) it 
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searches for all predicates that use the processed variable. Each predicate 
using the processed variable is added to the new group on lines (12-13) and 
its other variables are added to the set of unprocessed variables V on line 
(14). The group is formed on line (15) when no more variables in the group 
need to be processed.  The algorithm stops forming groups when all 
predicates in S have been moved to some group in Groups. 

3.4 Performance Measurements 
To investigate the effectiveness of our approaches we evaluated the 
following strategies both with respect to execution time and time to do the 
optimization: 

Unoptimized plan (UNOPT). The unoptimized plan is obtained directly 
from our query (1) by using a very simple cost model, where all aggregate 
functions have the same cost and all foreign functions also have the same 
cost. Thus the query optimizer does not change the order of aggregate 
functions and foreign functions and their execution order is the same as the 
order of the cuts in the query. 

Best manual effort plan (MAN). We use the same simple cost model as for 
UNOPT but we manually reordered the plan, by extensive experimentation 
with different cut orders, to get the plan that was fastest to execute. The best 
effort query formulation is: 

Algorithm 3.1. The grouping algorithm. 
1: Groups = {} 

2: while (S != {}) 

3:  pick a predicate p from S 

4:  S = S \ p 

5:  G = {p} 

6:  V = variables(p) \ varE 

7:  while (V !={}) 

8:   pick a variable v from V 

9:  V = V \ v 

10:  for each q in S 

11:  if v ∈ variables(q) then 

12:  G = G∪ q 

13:  S = S \ q 

14:  V = V∪ variables(q)\{v,varE} 

15:  Groups = Groups ∪  {G} 

16: return Groups 
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select e 

from Event e 

where  threeleptoncut(e) and leptoncuts(e) and 

 misseecuts(e) and zvetocut(e) and  

 hadrtopcut(e) and jetvetocut(e); 

(3.2) 

Ungrouped strategies (UR and UG). Query (3.1) was optimized without 
grouping using the aggregate cost model after the database was populated. 
Because of the large number of predicates in the query, the query optimizer 
could not use dynamic programming. Instead randomized optimization (UR) 
and greedy optimization (UG) (see Section 2.3.2) were used. We first made 
extensive experiments to determine the minimal number of iterations in the 
randomized optimization to get a converged plan. For comparing 
optimization time of UR with other strategies we used the time to find the 
converged plan. This optimization time is regarded as the best case for the 
time to do randomized optimization. 

Profiled group cost model (DCD, DCR, and DCG). We evaluated our 
profiled grouping strategy. Because the grouping decomposes a flat query 
with 51 predicates to a join of 8 groups, dynamic programming optimization 
can be used to optimize the join order of the groups (DCD).  We also 
optimized the group join order using randomized (DCR) and greedy (DCG) 
optimization. 

3.4.1 Experimental Setup 
The experiments were performed on a PC with a CPU Intel Pentium 4 2.40 
GHz and 1 GB of RAM. 

The same large query (3.1) was used in all the performance studies. As 
test cases we used real data sets produced by ATLAS. The evaluation was 
first performed on data sets from experiment bkg2 with high query 
selectivity, where only 0.008% of the events satisfy the query. Each data set 
contains 25000 events. As comparison, the performance was also measured 
for a data set from experiment signal with low query selectivity where 16% 
of the events passed the query. It contained 8623 events. 

Before each experiment the main memory database is loaded only with 
those events participating in the experiment. It takes about 15 seconds to 
load one file containing 25000 events with the high selectivity. The loading 
of events scale linearly. 
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3.4.2 Experimental Results 
Figure 3.2 shows the execution times for three data sets with high query 
selectivity. All optimization strategies (MAN, UR, UG, DCD, DCR, or 
DCG) produced plans being a factor 1000 faster than the unoptimized plan 
(UNOPT), so optimization certainly pays off. Profiled grouping strategies 
(DCD, DCR, and DCG) perform best for all three data sets, independent on 
what optimization method is used for joining the groups. The best ungrouped 
strategy (UR) produces a plan that performs 18% worse than any of the 
profiled grouping strategies. Not surprisingly, randomized optimization for 
ungrouped queries (UR) produced much better plans than corresponding 
greedy optimization (UG). 

Figure 3.3 measures the time to do the query optimization. All profiled 
grouping strategies (DCD, DCR, and DCG) are significantly faster than 
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Figure 3.2. Comparing execution times for three data sets with high selectivity.  
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Figure 3.3. Comparing optimization time (logarithmic scale).  
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ungrouped randomized optimization (UR). With profiled grouping both 
randomized (DCR) and greedy (DCG) optimization methods find the same 
optimal plan much faster than dynamic programming (DCD). Ungrouped 
greedy optimization UG is rather fast but it produces a bad execution plan 
(Figure 3.2). 

The effectiveness of DCD, DCR, and DCG also depends on the profiling 
time. The profiling should be done for every query so this adds to the 
optimization time. The query execution performance for different profiling 
sample sizes is presented in Figure 3.4. The performance is independent of 
the optimization method (DCD, DCR, or DCG) but is proportional to the 
sample size. Different data sets require different sample sizes for optimal 
query performance. Query plans that were obtained with small samples are 
noticeably worse than query plans with large samples. The smallest sizes of 
the samples for which good plans are produced depend on the data sets. For 
example, good plans for data set one starts with a sample size of 40 events, 
taking approximately 5.5 seconds to profile. Data set two requires 70 events 
(9.5 seconds), and data set three requires 15 events (2 seconds). Based on 
these measurements the sample sizes are conservatively set to 70 by default. 
The user can tune the system by changing the sample size. Notice that, even 
with the conservative sample setting ungrouped randomized optimization 
(UR) is still much slower to optimize than grouped optimization when 
adding the profiling time. 
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Figure 3.4. Execution performance for different sample sizes.  

In Figure 3.5 we investigate the execution times of the optimization 
strategies when scaling the data size with the high selectivity data sets. With 
profiled grouping all three optimization methods find the same optimal plan 
and therefore the three strategies are presented as one curve (DC). The 
profiled group cost model for the query was obtained by profiling only data 
set one on the first 40 events. The execution emeasurements were done for 
25 000 events (data set one), 50 000 events (data sets one and two), 75 000 
events (data sets one, two, and three), and   100 000 events (data sets one, 
two, three and one more). The reference query was optimized using the 
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aggregate cost model (UR, UG) for each size of the data set. The execution 
time increases linearly with the data set size, since all events of a data set are 
always processed. The query plan from the profiled grouping strategies 
performs always better than any query plan from an ungrouped strategy. 

The profiled grouping strategies scaled well using an execution plan 
obtained by profiling a single sample. This indicates that the profiled group 
cost model can be obtained once on a single sample data set and then it can 
be used for all data sets having the same query selectivity. We assume that 
data sets from the same experiment have the same selectivity. 

Finally, Figure 3.6 shows the performance for a data set with low query 
selectivity. Here the impact of query optimization is less significant. The 
manual plan turns out to be slower than any optimized plan since it was 
obtained for high selectivity data sets. A new manual plan would have to be 
developed here (with great manual effort). This shows that automatic query 
optimization can improve the effectiveness of the scientists, in particular 
since they currently implement the cuts in C++ manually using manual 
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Figure 3.5. Scaling the data size with high selectivity queries.  
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Figure 3.6. Comparing optimization strategies for low selectivity data.  
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optimization. The profiled grouping strategies (DCD, DCR, and DCG) 
performed 5% worse than the ungrouped strategies (UR and UG), indicating 
that the grouping here provides less good heuristics. 

3.5 Summary 
We implemented the ATLAS application as an extension of the main-
memory DBMS Amos II. Scientific queries performing analyses are 
complex and naïve query processing of them is slow. Therefore, we 
developed a cost model for aggregate functions and other functions used in 
scientific queries from the ATLAS application. It was showed that 
optimization of large scientific queries can reduce execution time by a factor 
1000. Automatic query optimization can improve the effectiveness of the 
scientists, in contrast to manually implementing the queries in C++ (Section 
2.1.2) as they currently do. Furthermore, data sets from different 
experiments will have different optimal execution plans and it is very costly 
to manually construct them. 

Scientific work in particle physics includes experimenting with different 
cuts to implement new theories. The flexibility to specify the cuts using non-
procedural database queries could improve the effectiveness of the scientific 
work. 

Complex scientific queries are very large having many predicates. This 
makes cost-based optimization difficult and slow. Furthermore, the 
predicates contain many dependent variables. It is difficult or even 
impossible to define a reliable cost model dealing with large predicates with 
many dependencies. Therefore, as an alternative, we developed a new 
method, the profiled grouping, where the query is first fragmented into 
groups and then the execution of each group is measured on samples of real 
data. The profiled group cost model is finally used in cost-based 
optimization of the group join-order. 

We evaluated both the aggregate cost model and the profiled grouping 
method on real data. We investigated the time to do the optimization for both 
approaches and with different optimization strategies, i.e. dynamic 
programming, randomized optimization, and greedy optimization. Our 
results show that the profiled grouping gives significant improvement in 
optimization time compared with an ungrouped strategy and produces better 
execution plans. A greedy approach with the aggregate cost model also has 
fast optimization, but the plan is around twice slower than the other plans. 
Still, it is shown to be substantially better than no optimization at all. 

In this chapter the evaluation of the optimization approaches was 
performed on pre-loading events into the DBMS. This loading approach has 
two main drawbacks: it takes significant amount of time to load data, and the 
data normally cannot fit the main-memory requiring slow disk access. To 
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alleviate these drawbacks the next chapter investigates the streaming 
approach. 
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4. The Streaming Approach, SQISLE 

A time consuming part of the loading approach used in the ALEH 
implementation is loading complex objects describing events from ROOT 
files into the indexed database of surrogate objects. For example, it takes 
about 15 seconds to load the ROOT file bkg2Events_000.root, which 
contains 25000 events, while the analysis alone of the 25000 events takes 
just 1.5 seconds, i.e. a total processing time of 16.5 seconds. Furthermore, 
the loading approach requires sufficient memory to store all queried events 
as surrogate objects with indexes. 

Instead of preloading the data into a DBMS we therefore investigate a 
streaming approach, where data stays in their sources, e.g. ROOT files, and 
are streamed through the system. The system accesses complex objects from 
sources through a wrapper interface where each independent complex object 
is analyzed one-by-one as they are streamed. Thus the streaming approach 
accesses and analyzes the complex objects in a stream fashion by reading, 
e.g., ROOT files sequentially without populating the database and therefore 
the streaming approach requires limited memory and should be efficient. We 
implemented a DSMS called SQISLE (Scientific Queries over Independent 
Streamed Large Events) as a stream extension of Amos II [79] with facilities 
for processing streams of scientific events with complex structures as 
required for applications selecting events satisfying a number of complex 
conditions. 

 The architecture of SQISLE is illustrated by Figure 4.1, where the arrows 
show the data flow during query execution. A scientist specifies the analysis 
as a query over a stream of events from event sources processed by SQISLE 
through a wrapper interface. The scientists write their analysis queries in 
terms of a high level application schema (App. schema), such as the particle 
schema (Figure 2.3), that defines events and objects of different types 

 
Figure 4.1. Architecture of SQISLE with data flow. 
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derived from events emitted by the wrapper interface. The source database 
(Source DB) contains meta-data about stream sources. It is accessed in 
queries to locate sources containing data for the analyses. The wrapper 
interface is defined in terms of an application data management library 
(App. Library), e.g., ROOT. 

In the loading approach sources were specified by the names of files 
loaded into the database. Therefore, source specifications could be omitted 
in user queries over preloaded events. In contrast, in the streaming approach 
data are not preloaded into the database. Thus analysis queries in SQISLE 
always include the specifications of stream sources. 

We made a streamed implementation of ALEH using SQISLE, called 
SALEH (Streamed ALEH). The SALEH implementation provides the same 
particle schema as in the loading approach with ALEH (Figure 2.3), while 
queries are slightly different, since they must specify also the ROOT files to 
access as sources. 

For example, a SALEH query formulating the Six Cuts Analysis is an 
extension of the corresponding ALEH query (3.1) with specification of the 
source files: 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

select e 

from Event e, EventFile f 

where  name(experiment(f)) = “bkg2” and  

 fileid(f) < 15 and 

 e = saleh_events(filename(f)) and 

 hadrtopcut(e) and jetvetocut(e) and 

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e); 

(4.1) 

The query selects the events satisfying all cuts constituting the Six Cuts 
Analysis. Each cut is a complex condition on properties of event e involving 
joins, aggregate functions, and complex numerical computations. On lines 3-
5 the query specifies the sources to query by selecting the files produced by 
the experiment named bkg2. The source database is searched in lines 3-4, 
while the function saleh_events calls the wrapper interface to read events 
from the selected ROOT files. The rest of the query specifies the Six Cuts 
Analysis as in the loading approach. 

As with the loading approach, naïve execution of analysis queries in 
SQISLE without query optimization strategies is slow. Therefore the 
optimization strategies from the loading approach are utilized here too. 
However, since events are not stored in a database the cost-based query 
optimizer has no information of data statistics. Therefore runtime query 
optimization mechanisms are implemented that dynamically, at query 
execution time, collect statistics on a subset of a stream. The query is 
automatically reoptimized when enough statistics is collected. Once 
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reoptimized, the query execution is immediately continued using the 
reoptimized query execution plan for the rest of the stream.  

The query processing is further improved by query transformations, use 
of materialized views, and compile time evaluation of query fragments. The 
query transformations reduce the number of predicates in queries. 
Materialized views are executed only once per event and then materialized 
view results are accessed during processing the same event. Partial 
evaluation [59][77] executes some predicates of a query at compile time 
before query execution and replaces predicates with execution results. 

By evaluating the performance of SQISLE for SALEH queries over 
ROOT files with different selectivities it is shown that these SQISLE query 
processing techniques improve performance of queries very significantly. 
The query performance is compared with the performance of a manually 
coded C++ program provided by the physicists doing the same analysis as 
the queries. The SALEH implementation is shown to have performance 
close to or better than the C++ implementation. 

The rest of this chapter is organized as follows. Section 4.1 presents what 
is needed to implement a new application with SQISLE. Section 4.2 
describes SQISLE stream objects, which represent the data streamed through 
the system. Section 4.3 gives an overview of the different query processing 
techniques we have developed in SQISLE. Section 4.4 describes query 
optimization using dynamic query optimization at runtime. Further 
improvements by query transformations and materializations are presented 
in Section 4.5. Section 4.6 describes the experimental setup for the 
performance evaluation. Section 4.7 compares the performance of SALEH 
queries using the different implemented approaches, including a comparison 
with a manually coded C++ program. The chapter is concluded with 
summary in Section 4.8. 

4.1 Defining a SQISLE Application 
Before SQISLE can be used for querying data from files for a new 
application the application schema and the wrapper interface are defined by 
a SQISLE administrator. 

First, wrapper interface functions are implemented to access data from 
the sources using the application data management library. The same 
wrapper interface can be used for every application that stores data in the 
same format. 

The objects representing events are constructed by the wrapper interface 
functions. Such stream objects must be efficiently streamed and processed 
by complex scientific queries, and SQISLE provides a special datatype, 
Sobject, for that. 
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For example, the SALEH application includes wrapper interface functions 
to access data from the ATLAS experiment stored in files managed by 
ROOT as collections of tuples of simple C values. The wrapper interface is 
called the ROOT wrapper interface, and described in details in Appendix E. 
The ROOT wrapper interface functions allocate stream objects to represent 
tuples read from ROOT files preserving the original structure of the data. 
The ROOT wrapper interface includes also functions to read meta-
information about the structure of data stored in ROOT files. The ROOT 
wrapper interface can be used for any application accessing data stored in 
collections of tuples in ROOT files. 

For each new application the SQISLE administrator defines an 
application schema in terms of the wrapper interface functions. The schema 
definition provides a set of types and functions used in user queries. 

Since an application schema is usually different from the structure of the 
data emitted by the wrapper interface functions, mappings between the 
original structure and the application schema are defined as transformation 
views. The objects derived from the events by transformation views are also 
represented as stream objects. 

For example in SALEH, ROOT events in a source are mapped to different 
kinds of particle objects by transformation views, described in details in 
Appendix F. The transformation views map the representation of particle 
data on each event to the different representation of particle objects 
according to the particle schema. 

Meta-information about data sources is stored in the source database. This 
meta-information is used to select sources of stream objects. 

 For example, SALEH stores meta-properties of files (Figure 4.2) 
associated withthe particle schema. The files are described by the attribute 
Filename, which is set to the name of a ROOT file along a path to the file. In 
addition to the name, the path, and the size of the ROOT file a file identifier 
is stored for each event file. The file identifier is used by the ATLAS 
software to partition an event set over several files. Since event files are 
produced by experiments, they are related to the type Experiment, which 
describes1 each experiment producing event files.  

 
Figure 4.2. Schema of the Source Database in SALEH. 

                               
1 Currently the description contains only the name of the experiment. 
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 The particle schema is defined in SALEH in terms of the ROOT wrapper 
interface functions, the transformation views, the stream objects, and the 
source database. The definition is presented in Appendix G. 

An example of a query in SALEH is (4.1). The query is defined in terms 
of cuts analogous the cuts defined in the loading approach. To support 
scientific applications more elegantly and efficiently, SQISLE includes some 
new utility functions compared to the loading approach, as presented in 
Appendix H. The implementations of cuts in SALEH using these functions 
are presented in Appendix I. 

4.2 Stream Objects 
Stream objects are implemented in SQISLE by a system data type Sobject 
and the types of the applications are all subtypes of Sobject. 

For example, in SALEH the particle schema is defined in terms of the 
type hierarchy in Figure 4.3. 

ParticleEvent

Lepton

JetElectronMuon

Sobject

 
Figure 4.3. Type hierarchy in SALEH. 

Events are emitted by wrapper interface functions, and objects derived 
from these events are materialized as stream objects. Each stream object 
belongs to a type defined by the application schema. This enables 
specification of queries in terms of stream objects analogous to the queries 
over surrogate objects stored in the database in the loading approach. The 
difference between stream objects and surrogate objects is that the stream 
objects are automatically deallocated by a garbage collector rather then 
explicitly removed, and the extents of stream object types need not be 
maintained by the system. By contrast, surrogate objects are more heavy-
weight, have system-maintained extents, and are allocated and deallocated 
explicitly by the user. 

Since the extents of stream object are not maintained, a stream object 
requires an explicit key consisting of its type, source, and identifier within a 
source. This allows duplicate stream objects to be eliminated and the same 
stream objects represented by different instances of Sobject to be considered 
equal. 
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Implementation details of stream objects are presented in Appendix D. 

4.3 Query Processing in SQISLE 
The query processing steps in SQISLE are illustrated by Figure 4.4. The 
query pre-processor expands views and applies a number of rewrite rules on 
the user query. The cost-based query optimizer produces an execution plan 
interpreted by the execution engine. The execution plan contains operators 
that call a wrapper interface implemented in terms of an application data 
management library (App. library) to access the event sources. 

 
Figure 4.4. Query processing steps in SQISLE. 

A SQISLE query consists of fragments accessing sources, implementing 
transformation views, and doing the analysis. Figure 4.5 presents the general 
structure of a query execution plan with the data dependencies between the 
different kinds of operators grouped in three blocks. The wrapper argument 
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Figure 4.5. Structure of naïve query plan in SQISLE. 
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operators are placed first in the plan. They access both the source database 
(Source DB) and the application schema meta-data (App. schema) to bind 
parameters a1, a2 for a wrapper interface operator. The wrapper interface 
operator accesses the event sources and creates stream objects representing 
source events e. The query execution engine then executes the event 
processing operators doing both event transformations and analyses. Those 
event processing operators that perform transformations access the 
application schema meta-data to map event objects to other objects in the 
application schema. Finally, the result of the query execution, e.g., those 
events e that passed all cuts, is streamed to the user. 

Figure 4.6 illustrates the different query processing alternatives 
investigated for SQISLE. Naïve query processing (Figure 4.6(a)) optimizes 
stream queries using a simple cost model without runtime query 
optimization. The dashed arrows indicate how data flows when answering a 

(a)  

 
(b)   

 
(c)   

 
Figure 4.6. Query processing in SQISLE: (a) naïve query processing; (b) dynamic 
query processing with aggregate cost model; (c) rewritten query processing using all 
proposed rewrites in addition to runtime query optimization. 
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query. The execution plans have the structure as in Figure 4.5 containing 
operators that access the wrapper interface, the source database, and the 
application schema meta-data. 

Naïve query execution performs badly because the static cost model does 
not contain any statistics about the contents of the streams. Figure 4.6(b) 
illustrates dynamic query processing using runtime query optimization to 
collect data statistics at runtime. The optimizer uses the data statistics and 
the aggregate cost model (Table 3.2) to reoptimize the query while it is 
running. Similar to the loading approach profiled grouping is used to 
fragment the query into groups joined only of the event variable e. Each 
group is profiled and their join-order is optimized using the statistics on the 
groups collected at runtime. 

When runtime profiling is enabled, for each emitted event object the 
wrapper interface operator collects statistics about the created event object 
and stores it in the statistics database (Stat. DB). Next the profile-controller 
operator is executed to encapsulate the event processing operators. It first 
calls the execution engine to execute the event processing operators. Then 
the profile-controller checks if enough statistics has been collected. If so, 
profiling is disabled and the query fragment is reoptimized to obtain a more 
efficient query subplan. After the profile-controller is ready the evaluation is 
immediately continued with the next event using the new query subplan. The 
query optimizer uses collected statistics from the statistics database for the 
query reoptimization. 

Dynamic query processing for selective queries produces very efficient 
execution plans, even faster than a manually coded unoptimized C++ 
program. However, performance of queries with low selectivities is still 
substantially slower than C++. The reason is that query optimization will not 
significantly improve performance of queries with low selectivities, where 
most operators are always executed for each event. Figure 4.6(c) illustrates 
rewritten query processing in SQISLE where a number of query 
transformation techniques described in this chapter are used, including view 
materializations, simplifications, and compile time evaluation. On the 
architecture level, the difference from Figure 4.6(b) is that with rewritten 
query processing the application schema meta-data is accessed already 
during the pre-processing phase by evaluating at compile time all predicates 
accessing the application schema meta-data. In the rewritten query, these 
meta-data predicates are replaced with their results by the query 
preprocessor. Therefore there is no access to the application schema meta-
data from the query execution plan. This makes the rewritten query simpler, 
which improves the performance of both query optimization and execution. 
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4.4 Optimization of Stream Queries 
As illustrated by query (4.1) scientific analysis queries are often large and 
complex as each event processing filter is a complex view. A detailed 
structure of query plans analyzing an event stream is illustrated in Figure 
4.7. The query plans can be split into two subplans: the source access plan 
and the event processing plan. The source access plan contains a wrapper 
interface operator and wrapper argument operators. The number of 
operators in the source access plan for query (4.1) is ten. The source access 
plan produces a stream of events, which are analyzed by the event 
processing plan. The event processing plan contains many operators and 
several calls to nested subqueries. A general structure of the execution plans 
for the nested subqueries is presented in Figure 4.8. They perform the 
analyses in terms of objects derived by the transformation views. 

The number of operators in the event processing plan for query (4.1) is 
22, and 8 of them are nested subqueries. The number of operators in the 
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Figure 4.7. Detailed structure of a query plan. 
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nested subquery plans is between 9 and 59, including transformation 
operators performing transformation views and analysis operators 
implementing the selections. The nested subqueries may also contain calls to 
further nested subqueries having the same structure as in Figure 4.8. 

There are many possible orders of the operators in the event processing 
plan. Thus query optimization is difficult, and the query plans obtained with 
naïve query processing perform very slowly. To improve query processing, 
the runtime query optimization approach (Figure 4.6(b)) collects data 
statistics for the query optimizer and reoptimizes the query at runtime using 
the collected statistics. 

Runtime query optimization was investigated together with three profiling 
strategies: 
1. Event statistics profiling maintains statistics on the sizes of event 

attribute vectors as the events are read. The collected statistics is used in 
operator cost models for optimizing the query. 

2. Group statistics profiling decomposes the queries into fragments, called 
groups, joined only on the event variable and then maintains runtime 
statistics of executing each group. The collected statistics per group is 
used for optimizing the join order between the groups. 

3. Two-phase statistics profiling combines the two strategies above by in a 
first phase collecting statistics of event attribute vector sizes to optimize 
the group definitions, and in a second phase switching to group statistics 
profiling for ordering the groups. 

These strategies are evaluated by the SALEH application. It is shown that 
the performance of SALEH queries with dynamic query processing is 
significantly improved compare to the naïve query processing with a static 

 
Figure 4.8. Structure of a nested subquery plan. 
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cost model. Furthermore, the performance of SALEH with the different 
variants of runtime query optimization is compared with the loading 
approach (ALEH) and the total processing time for SALEH is shown to be 
significantly faster for the different queries. 

4.4.1 The Profile-Controller Operator 
The goal of the profile-controller operator is to monitor statistics collected 
during query execution in order to dynamically reoptimize a query fragment 
according to some runtime query optimization strategy, and then switch into 
another runtime query optimization strategy or non-profiled execution. Once 
the switch is made into non-profiled execution there is no profiling 
overhead. 

To enable runtime query optimization, the query pre-processor modifies 
the view expanded query to include the profile-controller operator. The 
query is thereby split into the source access query fragment that generates 
the events and the processing query fragment that filters the events by 
complex conditions. To optimize these complex conditions at runtime, the 
event processing fragment is controlled by the profile-controller operator. 

The source access query fragment contains calls to a wrapper interface 
function and functions that compute parameters of the wrapper interface 
function. The wrapper interface function has a single result variable the 
event variable holding the currently processed event. The source access 
query fragment is constructed by joining the wrapper interface function with 
all functions having other variables in common except the event variable. 
The rest of the query forms the processing query fragment that needs to be 
optimized carefully, since it is defined as a complex condition over each 
event. 

For example, the source access query fragment for query (4.1) will be: 

name(experiment(f)) = “bkg2” and  

fileid(f) < 15 and 

e = saleh_events(path(f)) 

The source access fragment generates each event e, which is the output 
variable from the wrapper interface function called inside the derived 
function saleh_events. The processing query fragment will be: 

hadrtopcut(e) and jetvetocut(e) and 

misseecuts(e) and zvetocut(e)and 

threeleptoncut(e) and leptoncuts(e) 

 The predicates of the event processing fragments are defined as complex 
conditions over each event e. 
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After the query is split into the two fragments, calls to the profile-
controller operator are inserted to encapsulate the event processing fragment 
as a subquery. The structure of a query plan with the profile-controller is 
illustrated in Figure 4.9. The profile-controller operator takes an event 
variable e generated by the wrapper interface operator as its input and 
applies the event processing plan on this event. It returns the result of the 
event processing plan.  The structure of an event processing plan is presented 
in Figure 4.10. 

 
Figure 4.10. Structure of an event processing plan. 

The profile-controller performs the following operations for each event: 
1. It executes the event processing plan for the event.  
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Figure 4.9. Structure of query rewritten with profile-controller. 
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2. It checks if profiling is enabled. If so it calls a subroutine, the switch 
condition monitor, which supervises collection of data statistics. The 
switch condition monitor returns true if sufficient statistics is collected. 
To enable different kinds of profiling the switch condition monitor can 
be different for different strategies and can also be dynamically changed 
during query execution. 

3. If item two is satisfied it calls another subroutine, the switch procedure, 
which reoptimizes the processing query fragment and switches to 
another runtime query optimization strategy or disables profiling. The 
switch procedure is also dynamically replaceable. 

4. The result of the processing query fragment executed in item one is 
always emitted as result of the profile-controller operator. 

4.4.2 Event Statistics Profiling 
With event statistics profiling enabled statistics on event attribute sizes is 
collected when each new event is constructed by the wrapper interface 
operator. Statistics to maintain means and variances of each event is stored 
for each event attribute vector in an internal table. 

The event statistics profiling assumes that data statistics over the stream is 
stable so that the estimated average of the statistics collected in the 
beginning of the stream is expected to be close to the mean of the entire data 
stream. The switch condition monitor here maintains the statistics to check 
whether the following confidence interval is satisfied for every tenth read 
event: 

αδμδ −=⋅≤−≤⋅− 1)Pr( xxx  (4.2) 
This formula checks if an estimate x  of the mean size of an attribute 

value (μ) is close enough to μ with probability 1-α. The closeness is defined 

by δ. The estimate of the mean size x  is calculated by ∑
=
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is the size of an attribute value (e.g., Kfele) for the ith event, and n is the 
number of events read so far. The confidence interval (4.2) is checked by 
following inequality: 
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. The inequality (4.3) is obtained by normalizing the 

confidence interval and applying the central limit theorem [67]. 
The switch condition monitor the test condition (4.3), for which α and δ 

are provided as tuning parameters, and if the condition is satisfied for every 
event attribute, the switch procedure is called. It reoptimizes the processing 
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query fragment and disables collecting statistics and profiling. After this, 
when the wrapper interface operator constructs a new event, it does not 
collect statistics any more. For new events the profile-controller executes 
only the event processing plan and does not call the switch condition 
monitor or the switch procedure.  

When the query is started there no statistics and the query is initially 
optimized using default statistics where the event attribute sizes, i.e. the 
number of particles per event, is approximated by a constant (equal to nine). 

4.4.3 Group Statistics Profiling 
With group statistics profiling, first, a stream fragmenting algorithm 
(Appendix J) is applied to a query. The algorithm splits the query into source 
access and processing query fragments and decomposes the processing query 
fragment into groups. The groups have only the event variable e in common 
and thus the groups are equi-joined only on e. The event is selected by the 
query if it satisfies the inner join of all groups. 

After optimization, each group is implemented by a separate group 
subplan, which is encapsulated by a group monitor operator. The group 
monitor operator takes a group subplan and an event as arguments and 
returns the result of applying the subplan on the event. If profiling is 
enabled, it measures execution time and fanout of the subplan. 

Figure 4.11 illustrates the structure of an event processing plan after 
grouping. In the figure three monitored group subplans are formed and noted 
by Group plan 1, Group plan 2, and Group plan 3. The query optimizer 
orders the executions of the monitored subplans based on available statistics 
on the groups. An internal table keeps track of the groups and their statistics. 
When a query is initially optimized, before any query execution, no group 
statistics have been collected and therefore the first ordering of the groups 
will be based on heuristic default estimates of data sizes and the aggregate 
cost model. 

The profile-controller operator encapsulates the entire event processing 
plan containing the joined groups. It invokes the event processing plan at 
runtime. If some join fails, the entire event processing plan fails. Thus, to 
answer the query the event processing plan only executes those first group 
subplans up to the first subplan that fails. No group subplans joined after the 
failed one are executed. However, statistics need to be collected for all 
groups, even those not executed by the event processing plan. Thus, if 
profiling is enabled, the switch condition monitor executes those groups that 
were not executed by the event processing plan in order to collect statistics 
on real execution time and fanout by their group monitor operators. The 
switch condition monitor checks the current group statistics after invoking 
the remaining group subplans. Rather than testing for stable statistics as with 
event statistics profiling, the check here determines if the new statistics does 
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not affect the optimized join order of the groups. This is done by greedily 
reordering the groups for every new event based on the measured estimates 
of the group costs and fanouts. To minimize overhead the event processing 
plan is reoptimized once per event, there is no dynamic reordering per 
operator as with Eddies [4]. The profiling is disabled if the order of the 
groups in the new event processing plan is the same as earlier for a number 
of events in a row, called the stable reoptimization interval (SI), which is 
provided as a tuning parameter. Together with disabling the profiling the 
group monitor operators are removed from the final event processing plan by 
substituting them with their group subplans. This removes overhead of 
invoking the group monitor operators. 

4.4.4 Two-Phase Statistics Profiling 
As with group statistics profiling, with the two-phase statistics profiling 
queries are first fragmented into groups before executing them. Initially 
during query execution event statistics profiling is enabled. When the 
profiling condition (4.3) is satisfied, the entire query is optimized, including 
the group fragments, and event statistics profiling is disabled. Then the 
switch condition monitor and switch procedure are changed to perform 
group statistics profiling and produce a further optimized group join order. 

 
Figure 4.11. Structure of the event processing plan with formed groups. 
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The main advantage with the two-phase statistics profiling is that it 
enables optimization of group subqueries based on initially collected event 
statistics. With group statistics profiling alone, where the events are not 
monitored, the groups themselves are optimized based on heuristic estimates 
of costs and fanouts. Two-phase statistics profiling could potentially be 
faster since the optimization of groups is based on monitored statistics rather 
than heuristics. 

4.5 Query Rewrite Strategies 
A comparison of query performance with runtime query optimization with a 
manually code C++ program shows that the query plans of selective queries 
may perform better than a C++ implementation, while queries with low 
selectivities are still around 28 times slower. 

In order to improve the performance of queries with low selectivities, 
their performance bottlenecks were analyzed. It was found that most of the 
time is spent on computing the transformation views many times for the 
same event. To remove this bottleneck, the use of query transformation rules 
to simplify and speed up the transformation views were investigated. One 
kind of rewriting is based on observing that in SALEH the transformations 
can be regarded as a two-dimensional matrix transposition. Different 
variants of operators for the transpositions were implemented and evaluated.  
The most efficient matrix transpose operator creates new particle stream 
objects as the result of the transposition and caches them as an attribute on 
the event object. This strategy is called transformation view materialization. 
It improves performance of queries with low selectivities about 1.5 – 2.5 
times compared with only runtime query optimization, which is still around 
13 times slower than the C++ program. 

Queries are further simplified in SALEH by removing unnecessary vector 
constructions appearing in queries and view definitions. Some vectors are 
first constructed out of variables and then only specific element values are 
accessed explicitly; the constructions of such vectors are removed and the 
original variables are instead accessed directly without vector construction 
and access overheads. These vector rewritings improve performance of 
queries with low selectivity with factor 1.5 – 2, i.e. around 7 times slower 
than C++. 

In addition computational view materialization is implemented to 
improve query performance. Computational views perform complex 
numerical calculations for computing properties of derived stream objects 
used in analysis queries, e.g. in cut definitions. Their materializations pay off 
when a query does the same complex numerical calculations several times. 
The materialization of the computational views improves the queries with 
low selectivities with at least another 32% in SALEH, i.e. about six times 
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faster than only using runtime query optimization, but still around 5 times 
slower than the C++ program. 

Finally, the performance of queries is further improved by partial 
evaluation [59][77], which is a general technique to evaluate predicates at 
query compilation time and replace predicates with computed values. The 
partial evaluation is used to remove accesses to application schema meta-
data, which simplify the queries. The partial evaluation improves 
performance of queries with low selectivities an additional 20%, i.e. seven 
times faster than only using runtime query optimization and about 4 times 
slower than C++.  

Notice that the execution plan is interpreted in SQISLE. Further 
performance improvements can be made by making an execution plan 
compiler, which is expected to make the plan as fast as C++ also for non-
selective queries. 

4.5.1 Rewritten and Materialized Transformation Views 
In SALEH queries the cuts are defined in terms of particle properties 
according to the particle schema. Thus every time events are analyzed the 
transformation views deriving particles are used. Therefore, it is investigated 
how performance of scientific queries in SQISLE can be improved by 
applying a number of rewriting rules to simplify transformation views and to 
materialize the transformation views. 

The number of operators performing transformations is first reduced by 
defining rewriting rules that transform a conjunction of ObjectLog predicates 
(Section 2.3.2) before query optimization. First of all, the transformation 
views defining particles in the particle schema can be seen as matrix 
transposition of the event attribute vectors. A matrix transposition rewriting 
rule recognizes query fragments where new vectors are constructed by 
transposing original vectors. Such query fragments are replaced with a 
matrix transposition function. The matrix transposition function takes as 
argument a matrix of size mxn, which is represented as vector of size m 
containing m vectors of size n. The function returns as result the 
transposition as a new matrix of size nxm, which is represented as vector of 
size n containing n vectors of size m. 

For example, values of electron properties can be represented by a matrix, 
where rows contain values for each electron and columns contain values for 
each event attribute. Originally values of electron properties are stored in the 
attribute vectors of an event object, represented by columns in Figure 
4.12(a). The indexes of the vectors identify the particles. The result of the 
electron transformation view is a set of electron stream objects where the 
value of each electron attribute corresponds to an element value of an 
attribute vector in the event. Each electron is represented as a row as in 
Figure 4.12(b). 
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(a)   (b)   

 

Figure 4.12. Transformation view for electrons. (a) Electron properties originally 
stored in event objects as attribute vectors; (b) After transposition the values are 
stored as attributes per electron object. 

Thus the transformation view can be seen as a matrix transposition, and 
the matrix transposition rewriting rule defines it. The transformation view 
new_electrons has the following definition (Appendix F) in terms of basic 
functions after view expansion: 
   
 V1 = get_slot(e,1) AND Get event attribute vector Kfele of event 

object stored in position one 
 E2 = V1[ei] AND Iterate over all values ei of attribute 

vector Kfele 
 V2 = get_slot(e,2) AND Get event attribute vector Pxele 
 E2 = V2[ei] AND Get each value of attribute vector Pxele 
 … etc. 
 V = {E1,E2,E3,E4,E5} AND Construct vector of attribute values for 

each electron 
 T = typenamed(“ELECTRON”) AND Obtain type object 
 el = new_sobject(T,e,ei,V) Create a steam object for each electron 

The view new_electrons first constructs a vector in variable V and calls 
the basic function new_sobject to construct the new stream object. The event 
attribute vectors Kfele, Pxele, Pyele, Pzele, and Eeele are assigned to 
variables V1, V2, V3, V4, and V5.  

After rewrite the definition of new_electrons to use matrix transposition 
the query defining the view becomes: 
   
 V1 = get_slot(e,1) AND Get event attribute vector Kfele 
 V2 = get_slot(e,2) AND Get event attribute vector Pxele 
 …  
 V = {V1,V2,V3,V4,V5} AND Form an input vector of the event 

attribute vectors 
 VT = transpose(V) AND Transpose the vector of the event 

attribute vectors 
 T = typenamed(“ELECTRON”) AND Obtain type object 
 A = VT[ei] AND Iterate over all elements of the 

transposed result vector 
 el = new_sobject(T,e,ei,A) Create a stream object for each electron 
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To enable matrix transposition, a vector V of the event attribute vectors is 
formed by the vector construction operator noted by “{}”, and then the 
matrix transposition function is applied on the constructed vector. After the 
call to the matrix transposition function, the elements (rows in Figure 4.12) 
of the transposed result vector VT are accessed to create each stream object el 
representing the electrons of the event. 

The rewritten definition is smaller and it does not access individual 
elements of the event attribute vectors, as in the original definition. Before 
the rewriting the number of operators to call in the execution plan is 
1+m·(2·(i-1)+4), where i is the number accessed attributes (here 5) and m is 
the size of the attribute vectors, i.e., the number of electrons. After the 
rewriting the number of operator calls is i+3+2·m, thus the rewritten query 
scales better for in the number of called operators when many event 
attributes are accessed and there are many particles in each event, There is 
thus less overhead during the interpretation of the execution plan. The 
number of predicates in the view definition is reduced from 2·i+3 to i+5, 
which makes query optimization faster. 

The new definition can be further rewritten to reduce the number of 
functions in the rewritten expanded view. Since the attribute vectors are 
originally stored in a stream object e and the result of the transformation 
view is a stream object el, a specialized version of the matrix transposition 
sobject_transpose is implemented to operate directly on stream objects 
rather than first accessing event attributes. The stream object transposition 
function takes as input a stream object e, a vector of slots containing 
attribute vector positions for the accessed attributes, and the type of the 
result stream object. The result of sobject_transpose is a vector of new 
stream objects, representing, e.g., a set of electrons. 

The definition of new_electrons in terms of sobject_transpose is: 
   
 I = {1,2,3,4,5} AND Form vector of indexes 
 T = typenamed(“ELECTRON”) AND Obtain type object 
 V = sobject_transpose(e,I,T) AND Transpose the event attribute 

vectors of e specified in I and 
create stream objects for all 
electrons 

 el = V[ei] Iterate over all electrons in the 
vector 

In this definition the number of called operators is further reduced to 3+m 
calls and the total number of predicates to 4. Therefore query optimization is 
much faster since the predicate to optimize is of fixed size. 

To avoid recomputing the transformation views, materialization of 
transformation view results is implemented by a stream object transposition 
function mat_sobject_transpose. It stores transposed vectors of stream 
objects directly in the event object. This materialization is made as soon as 
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possible in the query plan. Therefore, it is guaranteed that all objects derived 
from an event by transformation views are materialized before they are 
analyzed. During analyses the materialized objects are accessed directly 
from the event objects. 

The original definitions of the analysis queries and the transformation 
views were manually rewritten to investigate impact on query performance 
of different rewriting rules and materialization of the transformation views. 

A structure of a subplan containing the mat_sobject_transpose operator is 
shown in Figure 4.13. In the subplan the first two operators bind arguments 
for the mat_sobject_transpose operator. As for sobject_transpose, I is bound 
to the vector of attribute vector positions, and T is bound to the type 
Electron. Then the mat_sobject_transpose operator creates the new stream 
objects representing electrons and stores them in the event stream object e at 
position 17. The last operator, get_slot_bag, accesses the event stream object 
for the stored electrons and returns the electrons into el one by one. 

I={1,2,3,4,5}

T=typenamed(“ELECTRON”)

mat_sobject_transpose(I,e,T,17)

el=get_slot_bag(e,17)

 
Figure 4.13. Structure of a subplan with materialization of a transformation view. 

4.5.2 Materialized Computational Views 
In analysis queries different computational views, defined as derived 
functions, are often applied more than once on the same event. For example, 
a derived function defining isolated leptons is applied several times over the 
same event in different cuts in query (4.1) and the function defining Ok jets 
is applied several times. To investigate if materialization of such 
computational views can improve performance of less selective queries a 
materialize operator was implemented to perform lazy materialization of 
derived functions over stream objects, e.g., events. The materialize operator 
encapsulates a call to a derived function for a stream object and materializes 
its results in the stream object. 
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The query is rewritten to call the materialize operator for specific derived 
functions. When the materialize operator is called for a function and a stream 
object, it first checks whether a materialized result is already stored in the 
stream object. If so, the materialized result is emitted. If the result is not 
already materialized, the function is applied on the stream object and the 
result of the execution is materialized and emitted. 

Materialization of different derived functions used in SALEH queries was 
investigated by manually rewriting the queries to call the materialize 
operator. The measurements demonstrate that materialization of the view 
OkJets gives 32% improvement in execution performance of the queries 
with low selectivities on top of pervious optimizations, while 
materializations of other functions did not give improvements in 
performance.  

An approximate cost model for the materialize operator is defined as the 
cost of executing the view definition. This is a conservative estimate for the 
case when the materialize operator is called the first time for a given 
argument. Later, when a call to the materialize operator accesses a 
materialized value, this gives too high cost, while the fanout is correct. 
Future work would implement a cost model that estimates cost of the 
materialize operator correctly by recognizing if the call to the materialized 
view is first in a query plan or if it is previously called in the plan. 

4.5.3 Vector Rewritings 
Scientific analysis queries are large and complex and are defined using many 
views. This can lead to unnecessary vector constructions and vector accesses 
that can be avoided. In particular, rewritings are investigated to remove 
unnecessary vector constructions where the constructed vectors are not 
needed, since only the vector elements are accessed. For example, the 
following query fragment can be replaced with f(x2) if v is not used 
anywhere else: 
v={x1,x2,x3) AND 

f(v[2]) 

Four rewriting rules are proposed to rewrite queries with vector 
constructions and accesses after view expansion: 
1. The element replacement rule applies when both the vector construction 

and an access to an element of the vector are presented in the query. The 
rewriting rule replaces the vector accesses with a corresponding variable 
used when constructing the vector. 
Thus  

a query fragment is transformed into 
v={…,xi,…} AND  

f(v[i]) 

v={…,xi,…} AND 

f(xi) 

where i is an integer constant. 
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2. The argument spreading rule applies when a vector constructed in the 
query is used as the argument of a function that has an equivalent 
‘spread’ definition with separate arguments for each element. The 
original function call is then replaced with a call to the spread function 
applied on of the variables used to construct the vector. This rewriting 
rule requires that the system either automatically builds the spread 
functions for the original functions or maintains pairs of equivalent 
functions, where one function is applied on a vector and another function 
is applied on separate arguments. 

Thus given a function f(v), where v is a vector of size n, has equivalent 
spread definition f’(x1,…,xn) in terms of vector elements, the argument 
spreading rule makes the following rewrite:  

a query fragment is transformed into 
v={x1,…,xn} AND 

a=f(v) 

v={x1,…,xn} AND 

a=f’(x1,…,xn) 

 
3. The result spreading rule applies when a function returns a vector and 

has an equivalent definition with spread results for each element. The 
original function is replaced with the spread function and the result of 
the spread function is assigned to spread variables. Then the vector is 
formed by the spread variables. This rewriting rule requires that the 
system either builds equivalent functions with spread results for original 
functions or maintains such pairs of equivalent functions. For example, 
if an original function is an aggregate function over a nested subquery, 
the equivalent function with spread result can be automatically 
constructed. 

Given that a function f(a), which returns a vector, has an equivalent 
spread definition f’(a) that returns vector elements, the result spreading 
rule makes the following rewrite: 

a query fragment is transformed into 
v=f(a) {x1,…,xn}=f’(a) AND 

v={x1,…,xn} 

 
4. The constructor removal rule removes a vector construction if the 

constructed vector is not used anywhere else. 

For example, if constructed vector v is not used anywhere as in the 
following example, the vector construction is removed: 

a query fragment is transformed into 
v={x1,…,xn} AND 

f(x2) 

f(x2) 
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First the result spreading rule is applied to a query. Then the element 
replacement rule and the argument spreading rule are applied to remove 
vector accesses. Finally, the constructor removal rule removes all 
constructions of vectors that are not used in the queries. 

To measure impact of the proposed rewriting rules the scientific queries 
are manually rewritten. Experiments demonstrate that the vector rewritings 
improve performance of queries with low selectivities about twice. 

4.5.4 Applying Partial Evaluation 
A rewriting technique for reducing the size of a query is partial evaluation 
[59][77]. Partial evaluation evaluates some predicates at query compilation 
time and replaces them with the evaluated result if possible. It is applied to 
queries by the query pre-processor together with other rewriting rules. Using 
partial evaluation, the size of a query can be reduced before query 
optimization and execution. In SQISLE partial evaluation is used to evaluate 
at compile time all predicates accessing meta-data about the application 
schema. 

For example, several of the views in SALEH call the function 
typenamed("Event"). This call is replaced by partial evaluation with the 
object representing the type named Event, e.g. #[OID 1242 "EVENT"]. 

Experiments demonstrate that the partial evaluation improve performance 
on queries with low selectivities by 20%. 

4.6 Performance Measurements 
Performance experiments were done for scientific analyses expressed as 
queries to SALEH for the ATLAS application. The experiments were 
performed on a cluster node having 2.8 GHz Intel P4 CPU with 2GB RAM, 
and running Linux OS. 

The SALEH queries implement the Four Cuts Analysis (Example 2.1) 
and the Six Cuts Analysis (Example 2.2). The Four Cuts Analysis is defined 
in terms of particle properties by four cuts. The Six Cuts Analysis is more 
complex and is defined in terms of both event properties (attributes PxMiss 
and PyMiss) and particle properties by six cuts. 

The performance was evaluated for the different query processing 
strategies and queries implementing both scientific analyses. The 
performance of the C++ implementation was demonstrated only for the Six 
Cuts Analysis, since this implementation was the only one provided by the 
physicists. 

The query performance was measured by evaluating SALEH queries over 
events from two different experiments. The events were stored in ROOT 
files accessed as streams. The first experiment bkg2 simulates background 
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events, which unlikely produce the Higgs bosons, so the selectivities of both 
kinds of analysis queries are very high (<0.2%). The other experiment signal 
simulates signal events that are likely to produce the Higgs bosons, and the 
selectivities of the two kinds of queries are low (16% and 58%). 

Events from the bkg2 experiment are stored in 41 ROOT files, where each 
file contains 25000 events, i.e., a stream with 1025000 events in total. Events 
from the signal experiment are stored in a single file, which contains 8623 
events. 

The evaluations were performed by scaling the size of the event streams 
by reading subsets of these streams. For this four queries were defined for 
both scientific analyses and both experiments as a number of functions 
where a parameter is used to specify the number of events to read and 
analyze, i.e. the stream size. 

The query implementing the Six Cuts Analysis (Example 2.2) over events 
from experiment bkg2 is defined as a derived function bkgsixcuts. The 
stream size is specified as the number of files to analyze: 
create function bkgsixcuts(Integer nrFiles) -> Event e 

select e 

from EventFile f 

where  name(experiment(f)) = “bkg2” and  

 fileid(f) < nrFiles and 

 e = saleh_events(filename(f)) and 

 hadrtopcut(e) and jetvetocut(e) and 

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e); 

 

The query implementing the Six Cuts Analysis over events from experiment 
signal is defined by a derived function signalsixcuts, which processes only 
the single file produced in experiment signal having identity zero. The upper 
limit on the event identity to read from the file is specified as parameter: 
create function signalsixcuts(Integer idEvent) ->  

 Event e 

select e 

from EventFile f 

where  name(experiment(f)) = “signal” and  

 fileid(f) = 0 and 

 e = saleh_events(filename(f),0,idEvent) and 

 hadrtopcut(e) and jetvetocut(e) and 

 misseecuts(e) and zvetocut(e) and

 threeleptoncut(e) and leptoncuts(e); 

 

Analogously, the query implementing the Four Cuts Analysis (Example 2.1) 
over events from experiment bkg2 is defined as: 
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create function bkgfourcuts(Integer nrFiles) -> Event e 

select e 

from EventFile f 

where  name(experiment(f)) = “bkg2” and  

 fileid(f) < nrFiles and 

 e = saleh_events(filename(f)) and 

 jetCut(e) and topcut(e) and  

 threeLeptonCut(e) and twoLeptonCut(e); 

 

Finally, the query that implements the Four Cuts Analysis over events from 
experiment signal is defined analogous to the function signalsixcuts: 

create function signalfourcuts(Integer idEvent) ->  

 Event e 

select e 

from EventFile f 

where  name(experiment(f)) = “signal” and  

 fileid(f) = 0 and 

 e = saleh_events(filename(f),0,idEvent) and 

 jetCut(e) and topcut(e) and  

 threeLeptonCut(e) and twoLeptonCut(e); 

 

The sizes of input streams in the evaluations were scaled over six points 
for each experiment. The sizes of the event streams from the ROOT files 
produced in experiment bkg2 are presented in Table 4.1. The difference 
between successive sizes is eight files (200000 events). The table also 
demonstrates for each stream size how many events pass the Six Cuts 
Analysis and the Four Cuts Analysis, respectively, along with their 
selectivities. Table 4.2 presents the sizes of measured streams of events from 
experiment signal (the difference between neighbor sizes is 1437 events) 
along with the numbers of events that pass each the scientific analysis and 
their selectivities. For both the data sets the Six Cuts Analysis is more 
selective than the Four Cuts Analysis. Both analysis queries are much more 
selective for substreams of events from experiment bkg2 than from signal. 

Table 4.1. The sizes of the event substreams from files produced in experiment bkg2 
(lines 1 and 2), the number of events selected by the scientific analysis queries (lines 
3 and 5) and their query selectivities (lines 4 and 6). 
Number of files 1 9 17 25 33 41 
Number of events 25000 225000 425000 625000 825000 1025000 
Six Cuts Analysis 2 47 72 103 139 187 
% 0.008% 0.021% 0.017% 0.016% 0.017% 0.018% 
Four Cuts Analysis 32 424 826 1240 1607 2002 
% 0.12% 0.18% 0.19% 0.19% 0.19% 0.19% 
       

The queries over events from bkg2 experiment (bkgsixcuts and 
bkgfourcuts) selects less than 0.2% of the events. The query bkgsixcuts is 
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more selective than the query bkgfourcuts, and is also larger and more 
complex, since the Six Cuts Analysis (Appendix A) is more complex than the 
Four Cuts Analysis (Example 2.1). 

 The query signalsixcuts is less selective and has low selectivity around 
16%. It is more selective than query signalfourcuts, which has selectivity of 
58%. 

4.6.1 Evaluated Strategies 
First, the impact of runtime query optimization strategies is investigated, 
without the query rewrite strategies. The following strategies were 
evaluated: 

Naïve query processing (NaiveQP). As a reference point, this strategy 
demonstrates performance of naive query optimization without reordering 
aggregated subqueries. The aggregate cost model and runtime query 
optimization are not enabled. Since the aggregate cost model is disabled the 
costs of different nested subqueries with aggregate functions are the same, 
and the query optimizer will not reorder them. Thus the cuts are executed in 
the same order as they are specified in the queries. 

Static query processing with the aggregate cost model (StatQP). This 
strategy demonstrates the impact of static cost-based optimization based on 
the aggregate cost model. The aggregate cost model is enabled, but not 
runtime query optimization strategies. Therefore, unlike a loaded database, 
no data statistics is available when the query is optimized and default 
statistics are used. Since queries are very large, they were optimized using 
randomized optimization (Section 2.3.2), which is able to find a good plan in 
terms of estimated cost. The strategy is compared with NaiveQP to 
demonstrate impact of the aggregate cost model. 

Event statistics profiling (EventSP). This strategy demonstrates the impact 
of event statistics profiling (Section 4.4.2) compared with StatQP.  The 
query is initially optimized with the aggregate cost model and default 

Table 4.2. The sizes of the streams of events from experiment signal (line 1), the 
numbers of events selected by the scientific analyses (lines 2 and 4) and their query 
selectivities (lines 3 and 5). 
Number of events 1437 2874 4311 5748 7185 8622 
Six Cuts Analysis 234 476 705 932 1154 1387 
% 16% 16% 16% 16% 16% 16% 
Four Cuts Analysis 835 1691 2524 3363 4226 5083 
% 58% 58% 58% 58% 58% 58% 
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statistics. During execution of the query the statistics on sizes of the event 
attribute vectors is collected and query reoptimization is performed using 
collected statistics. The initial optimization uses the fast greedy optimization 
method (Section 2.3.2) and default statistics. The query reoptimization uses 
the randomized optimization. 

Group statistics profiling (GroupSP). This strategy demonstrates the 
impact of group statistics profiling (Section 4.4.3) compared with StatQP 
and EventSP. After query fragmentation into groups, the created groups and 
their order are initially optimized by the greedy optimization method using 
default statistics. Fast greedy optimization is used to reoptimize the group 
order since dynamic programming produced the same execution plans. 

Two-phase statistics profiling (2PhaseSP). The impact of two-phase 
statistics profiling (Section 0) is compared with the other strategies. The 
initial optimization uses greedy optimization and default statistics. In the 
first reoptimization both groups and group orders are reoptimized using 
greedy optimization, the aggregate cost model, and collected event statistics. 
In the final reoptimization, group join order is reoptimized again using 
greedy optimization and collected group statistics. 

The differences between the strategies used to investigate query optimization 
approaches are summarized in Table 4.3. 

Table 4.3. Query optimization strategies and features used in them. 
Strategy The aggregate cost 

model 
Event statistics 
profiling 

Group statistics 
profiling 

NaiveQP – – – 
StatQP + – – 
EventSP + + – 
GroupSP + – + 
2PhaseSP + + + 
    

In the next set of experiments, the impact of different rewriting and 
materialization strategies (Section 4.5) is investigated. All queries are 
optimized using group statistics profiling and they are compared with 
GroupSP alone in which no materialization or rewriting is implemented. 

Rewritten and materialized transformation views (Trans). This strategy, 
described in Section 4.5.1, is compared with GroupSP. 

Trans with vector rewritings (TransVect). This strategy extends the 
previous strategy with vector rewritings (Section 4.5.3) to evaluate the 
impact of the vector rewritings. 
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TransVect with caching the computational view OkJets 
(TransVectCache). The impact of caching the computational view OkJets 
(Section 0) is measured and compared with the previous strategy TransVect. 

Full query processing (FullQP). This strategy extends TransVectCache 
with partial evaluation of predicates that access the particle schema meta-
data (Section 4.5.4). This strategy implements the all proposed query 
processing methods. 

The difference between these strategies is summarized in Table 4.4. 

Table 4.4. Query rewriting and materialization strategies and features used in them. 
Strategy Rewritten and 

materialized 
transformation views 

Vector 
rewritings 

Caching 
computational 
views 

Partial evaluation 

GroupSP – – – – 
Trans + – – – 
TransVect + + – – 
TransVectCache + + + – 
FullQP + + + + 
     

As reference points FullQP is also compared with manually coded 
strategies: 

Best effort manual plan (MAN). This strategy demonstrates the 
performance of a manually optimized query plan of a query being simplified 
by the rewritings and materializations in Section 4.5. The order of cuts was 
manually optimized by experimenting with different orders. The orders were 
optimized only for the selective queries from experiment bkg2, because 
query reordering has most impact on selective queries and the manual effort 
to do the optimization is substantial (many hours). The optimal cut order for 
the definition of the Six Cuts Analysis in query bkgsixcuts was found to be 
Three Lepton Cut, Lepton Cuts, Miss EE Cuts, Z Veto Cut, Hadr Top Cut, 
and Jet Veto Cut. For query bkgfourcuts the optimal order was Three Lepton 
Cut, Two Lepton Cut, Top Cut, and Jet Cut. 

Unoptimized C++ implementation (ExpCPP). This strategy demonstrates 
the performance of a manual C++ implementation of the Six Cuts Analysis 
(Example 2.2) executed in the same order as in query bkgsixcuts. Thus the 
cuts are executed in the following order: Hadr Top Cut, Jet Veto Cut, Z Veto 
Cut, Three Lepton Cut, and Other Cuts. 

Optimized C++ implementation (OptCPP). This strategy demonstrates the 
performance of the Six Cuts Analysis (Example 2.2) implemented in C++, 
where the order of the cuts is optimized by a researcher manually. The 
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optimized order of cuts is: Three Lepton Cut, Z Veto Cut, Hadr Top Cut, Jet 
Veto Cut, and Other Cuts. 

All evaluated strategies are summarized in Table 4.5. 

Table 4.5. Evaluated strategies. Abbreviations: AgCM – aggregate cost model, 
Event– event statistics profiling, Group – group statistics profiling, Trans – rewritten 
and materialized transformation views, Vect – vector rewriting rules, ViewMat – the 
function OkJets is materialized, Parteval – partial evaluation of schema access 
predicates, Man – manually optimized cuts ordering. 
Strategy AgCM Event Group Trans Vect ViewMat Parteval Man 
NaiveQP – – – – – – – – 
StatQP + – – – – – – – 
EventSP + + – – – – – – 
GroupSP + – + – – – – – 
2PhaseSP + + + – – – – – 
Trans + – + + – – – – 
TransVect + – + + + – – – 
TransVectCache + – + + + + – – 
FullQP + – + + + + + – 
MAN – – – – – – – + 
ExpCPP C++ implementation with the expensive order of cuts 
OptCPP C++ implementation with the cuts ordered by a researcher 
         

4.6.2 Measured Variables 
In the measurement the total query processing time is the total time for 
optimization, profiling, and execution of a query. The final plan execution 
time is the time to just execute the optimized plan. The measures for the C++ 
strategies (ExpCPP and OptCPP) and manual query optimization (UNOPT 
and MAN) do not include any optimization times and therefore both times 
are the same. The measurements of the total query processing time for static 
query processing (StatQP) consist of time to optimize a query and time to 
execute the query. 

Figure 4.14 illustrates what is included in the total query processing time 
for one-phase runtime query optimization strategies, i.e. EventSP and 
GroupSP. After initial optimization, the profiling is enabled for the first k 

 
Figure 4.14. Total query processing time with one-phase runtime query 
optimization. 
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events, e1, …, ek. Then, after reoptimizing the query execution continues 
without profiling for the remaining events. In the two-phase statistics 
profiling strategy (2PhaseSP) execution with profiling and reoptimization 
are performed two times and then execution is continued without profiling 
overhead. 

The final plan execution time measures how well the different strategies 
improve the execution plan. For runtime query optimization strategies this is 
measured by executing the query again using the reoptimized plan for the 
entire event stream. 

4.6.3 Setting Optimization and Profiling Parameters 
The strategies that rely on runtime query optimization require setting 
different tuning parameters. For event statistics profiling the confidence 
interval parameters δ (closeness of sampled mean) and α (probability of the 
closeness) have to be chosen. As result of tuning experiments, δ is chosen to 
be equal to 15% and α is 90%, which requires that estimated values should 
be within 15% from the mean values with probability 90%. For formula 
(4.3) it corresponds to δ = 0.15 and zα/2 = 1.65. In reality the difference 
between the estimated values and the actual values were measured to be less 
than 10%. 

Randomized optimization finds better plans in terms of estimated costs 
than the greedy optimization method. However, it takes a lot of time for 
randomized optimization to find a converged plan for large queries. 
Therefore, fast greedy optimization is always used for the initial 
optimization of queries in all runtime query optimization strategies. 
Randomized optimization is used for the final runtime reoptimization. 

For randomized optimization (Section 2.3.2), the number of iterative 
improvement (II) steps is chosen to II = 25 and sequence heuristic (SH) steps 
to SH = 650. The aggregated subqueries are larger and therefore II = 60 and 
SH = 300 when optimizing these. These setting were found to produce the 
cheapest query plan in terms of estimated cost for query bkgsixcuts with full 
query processing and event statistics profiling (EventFullQP) in 
approximately 20 seconds. In general, each query requires different settings 
of II and SH and extensive experiments have to be made to find the optimal 
settings.  Furthermore, with cost-based optimization a cheaper plan in terms 
of estimated costs does not necessarily perform better in practice than a more 
expensive plan due to the large errors in the estimates of plan costs. 
Therefore, careful tuning of randomized optimization was not performed per 
query for all strategies. Instead the same settings for randomized 
optimization as in EventFullQP were used in all experiments. 

For group statistics profiling, the stable reoptimization interval (SI) 
(Section 4.4.3) was tuned experimentally, SI = 4 for both group statistics 
profiling (Section 4.4.3) and two-phase statistics profiling (Section 0). 
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Larger values of SI were not found to significantly improve performance, 
while smaller values were unstable. 

Join orders of groups are always optimized using greedy optimization, 
since the fast greedy optimization was found to obtain the same order of 
groups as randomized optimization and dynamic programming strategies. 
Predicates inside the groups were always optimized using the greedy 
optimization method, because the slow randomized optimization inside the 
groups did not significantly improve overall performance of the final query 
execution plans. 

Table 4.6 illustrates the choices of optimization methods used for the 
different strategies. Separate strategies and optimization methods were used 
for initial optimization (Initial opt.) and the reoptimizations (Reopt.). 
Optimization of group definitions (Inside groups) is different from 
optimization of group join orders (Group join). The cost-based optimization 
methods used are greedy and randomized. Statistics is collected either on 
event attribute vector sizes (evattr.) or on group execution times and 
selectivities (groups). If reoptimization or collecting statistics are not 
performed in a strategy it is denoted by N/A. 

Table 4.6. Optimization methods and statistics collection methods used. 
Strategy Initial opt. Collect 

stat. 
Reopt. Collect 

stat. 
Reopt. 

 Inside 
groups 

Group 
Join 

 Inside 
groups 

Group 
Join 

 Inside 
groups 

Group 
Join 

StatQP randomized2 N/A N/A N/A N/A 
EventSP greedy2 evattr. randomized2 N/A N/A 
GroupSP greedy greedy groups N/A greedy N/A N/A 
2PhaseSP greedy greedy evattr. greedy greedy groups N/A greedy 
Trans greedy greedy groups N/A greedy N/A N/A 
TransVect greedy greedy groups N/A greedy N/A N/A 
TransVectCache greedy greedy groups N/A greedy N/A N/A 
FullQP greedy greedy groups N/A greedy N/A N/A 
       

4.7 Evaluation Results 
The performance of different optimization approaches without query 
rewrites is investigated first. Then the additional impact of the query 
rewritings is investigated. Finally, the best strategy is compared with 
manually coded strategies. 

                               
2 On entire query without grouping. 
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4.7.1 Impact of Query Optimization 
Figure 4.15 presents performance of the query plans that are obtained by the 
different optimization approaches for the high selectivity query bkgsixcuts. 
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Figure 4.15. Performance of different strategies for query bkgsixcuts. 

The query plan of the naïve query processing strategy (NaiveQP) 
performs substantially worse than the other strategies. Static query 
optimization with the aggregate cost model (StatQP) gives a query plan that 
performs four times better than the query plan from NaiveQP. This 
demonstrates the importance of the aggregate cost model to differentiate 
between different aggregated subqueries. 

The query plan obtained with event statistics profiling (EventSP) 
performs twice better than the statically optimized plan (StatQP). This shows 
that runtime query optimization is better than static optimization. 

The query plans from the group statistics profiling and two-phase 
statistics profiling strategies (GroupSP and 2PhaseSP) perform the best and 
substantially better than the strategies without grouping. They outperform 
naïve query processing (NaiveQP) with a factor 450 and event statistics 
profiling without grouping (EventSP) with a factor 50. This demonstrates 
that the grouped strategies (GroupSP and 2PhaseSP) alleviate the problem 
of errors in the estimates [54] by measuring real execution time and fanout 
for each group. The difference between GroupSP and 2PhaseSP is 
insignificant. 

The optimization strategies are also compared by measuring the total 
query processing times, including the times to obtain the query plans. Figure 
4.16 shows the optimization overheads obtained by subtracting the final plan 
execution time from the total query processing time for query bkgsixcuts. 
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These overheads are independent of the stream size so the impact is 
negligible in practice for large streams. 

The optimization overhead of the ungrouped strategy StatQP is the time 
to perform randomized optimization. Also the overhead of EventSP is 
dominated by the randomized optimization (80%). The remaining time is 
there spent on collecting and monitoring statistics. The overheads of the 
grouped strategies (GroupSP and 2PhaseSP) are dominated (75%) by 
performing group profiling. To obtain the final execution plan GroupSP 
profiled only around first 20 events of the stream. So the overhead of 
profiling all groups for a single event (0.25s) is substantial. The reason is 
that statistics is collected for all groups, including the very complex and 
expensive ones to get a good cost model. Therefore, it is necessary to disable 
profiling once stream statistics is stabilized. Notice that overheads in both 
the ungrouped strategies are around four times higher than overheads of the 
grouped strategies, because the grouped strategies use the greedy 
optimization, which performs well, while for ungrouped strategies the 
greedy optimization did not produce good plans and, therefore, the slow 
randomized optimization is used. 

The query performance for the other selective query bkgfourcuts is similar 
to query bkgsixcuts, but with lower overheads since the queries are simpler 
(Figure 4.17). 

Figure 4.18 presents performance of the optimization strategies for the 
query signalsixcuts with the low selectivity 16%. The impact of the different 
query optimization strategies is less significant here. The best strategies 
(GroupSP and 2PhaseSP) are just four times faster than the slowest 
(NaiveQP). Using the aggregate cost model (StatQP) gives a query plan that 
performs 28% better than NaiveQP. Using the event statistics profiling 
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Figure 4.16. Optimization overhead for query bkgsixcuts. 
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(EventSP) gives a query plan that performs twice better than the query plan 
obtained without collecting statistics (StatQP). GroupSP and 2PhaseSP are 
35% faster than the EventSP. The difference between GroupSP and 
2PhaseSP is again insignificant. Thus query optimization has substantially 
larger impact on queries with high selectivities. 

The total query processing times of the optimization strategies for the low 
selectivity query signalsixcuts are presented in Figure 4.19. For small stream 
sizes the overhead of randomized optimization makes the performance of the 
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Figure 4.17. Optimization overhead for query bkgfourcuts. 
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Figure 4.18. Performance for different strategies for query signalsixcuts. 
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ungrouped strategies (StatQP and EventSP) worse than naïve query 
processing (NaiveQP). However, since the overhead does not depend on 
stream size, runtime query optimization and static query processing pays off 
for large streams. Again the overheads of the grouped strategies (GroupSP 
and 2PhaseSP) are the smallest. The query signalfourcuts with very low 
selectivity (58%) performs similar to signalsixcuts. 

In conclusion, query optimization, in particular runtime query 
optimization, improves performance significantly for all kinds of queries. 
For selective queries the improvements are dramatic. The grouped strategies 
(GroupSP and 2PhaseSP) perform the best. 

4.7.2 Impact of Query Rewrites 
The performance of query rewritings and materializations is measured by 
applying different kinds of rewritings on the best runtime query optimization 
method (GroupSP).  

The performance of query plans for the selective (<0.2%) query 
bk2sixcuts simplified by the different rewritings and materializations 
(Section 4.5) is presented in Figure 4.20. The strategy without any rewrites 
(GroupSP) performs the worst. The rewritten transformation views strategy 
(Trans) improves performance by approximately 10%. The vector rewritings 
(TransVect) improves performance further by 5%. Materialization of the 
computational view OkJets view does not give any improvements. Finally, 
partial evaluation (FullQP) improves performance by 3%, giving 17% total 
improvement compare to GroupSP. The conclusion is that the impact of the 
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Figure 4.19. Performance of different strategies for query signalsixcuts. 
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simplifications is insignificant compared to query optimization for selective 
queries. 

The optimization overheads for the query rewrite strategies are presented 
in Figure 4.21, where GroupSP is not applying query rewrites. The graph 
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Figure 4.20. Performance of the query rewrite strategies for query bkgsixcuts. 

0
1
2
3
4
5
6
7
8
9

10

Grou
pS

P
Trans

Trans
Vec

t

Trans
Vec

tC
ac

he
Full

QP

Strategy

O
ve

rh
ea

d 
tim

e 
(s

ec
.)

 

Figure 4.21. Optimization overhead of the group statistics profiling approach 
combined with rewritings and materializations for query bkgsixcuts. 
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shows that query rewrites do not change significantly the time spent in query 
optimization and profiling. 

Similar results were obtained for the other selective query bkgfourcuts, 
where improvement of all query rewrites (FullQP) was 28% compared to 
GroupSP. 

Figure 4.22 demonstrates performance of rewritings and materializations 
for the query signalsixcuts with low selectivity (16%). Rewritten 
transformation views (Trans) improve performance by a factor two. 
Applying vector rewritings (TransVect) gives another factor two in 
improvement. Materialization of the computational view OkJets 
(TransVectCache) further improves performance by 30%. Finally, partial 
evaluation (FullQP) improves performance another 20%. The total 
improvement between the non rewritten strategy (GroupSP) and the strategy 
with the all query rewrites (FullQP) is a factor seven. The impact of query 
rewrites for the query signalfourcuts with very low selectivity (58%) is 
similar to query signalsixcuts. For query signalfourcuts the strategy with all 
query rewrites (FullQP) is five times better than GroupSP. Query 
signalfourcuts is simpler than signalsixcuts, which explains the difference. 

In conclusion, for queries with low selectivities the combination of query 
optimization and query rewrite techniques significantly improve 
performance. 
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Figure 4.22. Performance of the query rewrite strategies for query signalsixcuts. 
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4.7.3 Manually Coded Strategies 
To measure the impact of the proposed query processing techniques, the best 
performing strategy FullQP is compared with a manually ordered query plan 
MAN and two manually coded C++ programs, ExpCPP, and OptCPP. Their 
performances for query bkgsixcuts are shown in Figure 4.23. The manually 
ordered query plan (MAN) and the query plan from strategy FullQP perform 
almost the same. They both perform 20% better than the C++ 
implementation of Six Cuts Analysis. The C++ implementation where the 
order of cuts is optimized manually by the physicist, OptCPP, performs 34% 
better than the query plans from FullQP and MAN. 

This demonstrates that for selective queries the database approach 
performs as good as a manual C++ implementation of the analysis. Notice 
that performance can be significantly improved further by conventional code 
generation, since SQISLE interprets the query plans. 

Performance of the strategies for the query signalsixcuts with low 
selectivity (16%) is illustrated by Figure 4.24. For MAN the same query plan 
as used as for the query with high selectivity (bkgsixcuts), because it is 
extremely cumbersome to find the best order manually. MAN therefore 
performs 40% worse than FullQP. However, FullQP still performs four 
times worse than the C++ implementations. The reason is that since the 
selectivities are low most operators are executed. Here, the cost of 
interpreting an operator in SQISLE is higher than the cost of executing 
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Figure 4.23. Comparing manually coded strategies with full query processing for the 
selective query bkgsixcuts. 
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machine instructions in C++, and we are comparing interpreted SQISLE 
with compiled C++. Again, implementing a compiler for query plans will 
reduce the interpretation overhead significantly. 

The evaluation demonstrates that query optimization techniques proposed 
in this Thesis can achieve performance for large and complex scientific 
queries close to or better than a manually optimized C++ program. 

0

0.5

1

1.5

2

2.5

3

3.5

1437 2874 4311 5748 7185 8622

Stream size (events)

Fi
na

l p
la

n 
ex

ec
ut

io
n 

tim
e 

(s
ec

.) MAN

FullQP

OptCPP

ExpCPP

 
Figure 4.24. Comparing manually coded strategies with full query processing for the 
query signalsixcuts. 

4.8 Summary 
This chapter presented implementation of a complex scientific application in 
a data stream management system (SQISLE). It shows that the streaming 
approach allows to process large volumes of data efficiently. The application 
specific assumption that makes streamed processing feasible is that every 
event is analyzed independently from each other so there is no joins between 
different events in queries. The chapter shows that query optimization 
techniques enable scalable and efficient execution of large and complex 
queries implementing scientific analyses. In summary the contributions of 
the chapter are: 
5. The stream object data type implements efficiently complex stream 

objects representing application events. 
6. The profile-controller operator monitors query execution and 

dynamically reoptimizes the query while it is running. The profile-
controller was used to implement and evaluate several dynamic 
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optimization methods: event statistics profiling, group statistics 
profiling, and two-phase statistics profiling. 

7. Various query transformation techniques were proposed and evaluated. 
They were shown to improve performance. 

8. The performances of the presented contributions were evaluated on 
queries with different selectivities, to understand their impacts for 
different kinds of queries. 

Combining the all contributions together gives query performances close 
to or better than with hard-coded C++ implementations of scientific 
analyses. 

Performance of executing queries can be further improved by 
implementing an algebra compiler. The algebra compiler will remove 
overhead of interpreting algebra query plans and eliminate the difference in 
speed compared to C++ for queries with low selectivities. With the algebra 
compiler SALEH is expected to perform better than C++ for most queries. 

The profile-controller operator, which enables runtime query 
optimization, can be used also for continuous adaptive query execution, 
during which profiling and monitoring is performed for the entire stream. 
However, since in our application the distribution of the event properties is 
constant over entire stream of events, the expensive profiling and monitoring 
is performed only on small part of a stream and then disabled to eliminate its 
overhead. 

To demonstrate the impact of the rewritings presented in Section 4.5, they 
were implemented manually and evaluated. Automatic rewritings remains to 
be implemented. 
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5. Managing Long-Running Queries in a Grid 
Environment 

Data for the ATLAS application is usually stored on distributed storage 
resources available through a Grid infrastructure. The amount of data is huge 
and requires utilizing external computational resources. Therefore, we 
investigated execution of ALEH queries in the Grid. We developed a 
framework POQSEC [36] (Parallel Object Query System for Expensive 
Computations) that processes scientific analyses specified as declarative 
SQL-like queries over data distributed in the Grid. The goal of the POQSEC 
project is to provide a transparent and scalable way to specify and execute 
scientific queries in a Grid environment. A user should be able to specify 
his/her query transparently in a client database without respect to where it 
will be executed and how data will be accessed. 

A high-level layered architecture of 
running POQSEC is presented in Figure 5.1. 
POQSEC utilizes computational resources 
of Swegrid [90], which are clusters, and 
storage resources of NorduGrid [31], which 
store event data files, through the 
middleware Grid infrastructure Advanced 
Resource Connector (ARC) [32]. ARC 
manages the computational resources to run 
POQSEC jobs and transfers event data from 
storage resources to the clusters. Query 
execution is performed on the cluster nodes by ALEH, which accesses event 
data from files through ROOT library [18]. 

POQSEC provides an interface for submitting user queries for execution 
in the Grid. The system then creates jobs executing the queries, submits the 
jobs to ARC, monitors execution of the jobs by ARC, downloads results of 
the jobs, and delivers results of the queries to the user. The user states 
queries to POQSEC in terms of a database schema available in the client 
database. The schema contains both an application-oriented part and Grid 
meta-data. The application schema describes data stored inside files in Grid 
storage resources, for example events produced by the ATLAS experiment. 
Wrappers are defined for accessing the contents of these files, e.g. in our 
application we use a loader to load event data from files by calling the 

 
Figure 5.1. High-level 
architecture of running 
POQSEC. 
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ROOT library. The Grid meta-data contains information about the files. 
Thus user queries can restrict data both in terms of application data contents 
and meta-data about files. The latter is very important since there is a huge 
amount of Grid data files and queries are normally over a small percentage 
of them. User queries are parallelized to a number of jobs for execution. The 
parallelization is done by partitioning data between jobs. Our preliminary 
results show that the parallelization gives significant performance 
improvements. 

The rest of the chapter is organized as follows. Section 5.1 presents the 
POQSEC architecture and describes interaction between the DBMS and the 
Grid infrastructure. It is followed by a brief description of an application 
query in Section 5.2.  The implementation of the framework is presented in 
details in Section 5.3. Section 5.4 concludes the chapter. 

5.1 POQSEC Architecture 
The architecture presented in Figure 5.2 illustrates implementation of 
POQSEC. The POQSEC architecture considers limitations of the Advanced 
Resource Connector (ARC). ARC and its limitations were described in 
Section 2.4.1. Here POQSEC components and its interaction with ARC are 
described. 

The Query Coordinator of POQSEC manages user queries submitted to 
POQSEC for execution in the Grid. It communicates with an ARC client 
directly through a command line interface. Both the query coordinator and 
the ARC client are running on the same node, the Grid Client Node, which is 
a user accessible computer node. On it the user must first initialize his/her 
Grid credentials required for using ARC client services according to the Grid 
Secure Infrastructure (GSI) [93] mechanism. 

The POQSEC Client component is a personal POQSEC database running 
on the Grid client node and communicating with the query coordinator. It 
could also run on a separate node from the Grid client node, e.g. on a user's 
desktop computer, if GSI is used for the communication with the query 
coordinator. Queries are submitted through the POQSEC client to the query 
coordinator for further execution on Grid resources. 

The components of the query coordinator are the Coordinator Server and 
the Babysitter. The coordinator server contains a Grid Meta-Database, a 
Submission Database, and a Job Queue. The Grid meta-database stores 
information about data files and computational elements accessible trough 
POQSEC. It is needed since Grid resources are heterogeneous and require 
Grid users to know the computational elements that are able to execute their 
jobs and properties of the computational elements required for job 
executions, e.g. runtime environments. POQSEC users need not specify this 
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information when submitting queries since it is stored in the Grid meta-
database. 

The submission database contains descriptions of queries submitted from 
the POQSEC client and job descriptions generated by POQSEC to execute 
the queries. The job queue contains jobs that are created but not yet 
submitted to ARC for execution. 

The process of submitting and evaluating a query is presented in Figure 
5.3. When a query is received (1) from the POQSEC client the coordinator 
server first registers the query in the submission database and stores there a 
number of job descriptions to parallelize the query execution. The number of 
jobs to create is currently provided by the user as part of the query 
submission. Information about computational resources and data files from 
the Grid meta-database is used to generate these job descriptions. xRSL 
scripts (Section 2.4.1) are generated from the job descriptions and are stored 
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Figure 5.2. Architecture of POQSEC implementation. 
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(2) in the local storage. Then the jobs are registered in the job queue. The 
babysitter picks (3) jobs from the job queue and submits (4) them as xRSL 
scripts to the ARC client for execution on Grid resources. Once a job has 
been submitted the babysitter regularly polls (5) the ARC client for its job 
status and reports (6) the status to the coordinator server to update the 
submission database. When a job is finished the babysitter downloads (11) 
the result to the Local Storage, which is the file system of the Grid client 
node, and notifies (12) the coordinator server. The result can be retrieved 
(13) to the POQSEC client after the query is finished. 

On each CE ARC maintains an ARC Grid Manager.  It receives (7) job 
descriptions from ARC clients. In our case these jobs are executing 
POQSEC subqueries. The ARC Grid manager uploads (8) input files from 
SEs to the local CE Storage before each job is submitted to the local batch 
system. The local batch system allocates CE nodes for each job according its 
policies and current load, and then starts the job executions. For POQSEC 
these jobs contain Executors, e.g. ALEH, that evaluate (9) subqueries over 
uploaded data and store (10) the results in local CE storage files. The 
babysitter polls (5) the ARC client regularly for finished executions. After a 
job has finished the babysitter requests (11) the ARC client to download (11) 
the result to the local storage of the Grid client node and notifies (12) the 
coordinator server that the job is ready. Since a given POQSEC query often 
generates many jobs a query is ready only when all its jobs are finished. 
However, partial results can be obtained once some jobs are finished. 

5.2 HEP Queries 
POQSEC is evaluated on the ATLAS application (Section 2.1) implemented 
in ALEH (Chapter 3). Evaluation experiments are performed on the naïve 
query processing of a scientific query, which implements the Six Cuts 
Analysis (Appendix A) and is defined in terms of the particle schema (Figure 
2.3) over data loaded from ROOT files. The query definition is: 

 
Figure 5.3. Interactions between POQSEC components and ARC. 
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select e 

from Event e 

where  jetvetocut(e) and zvetocut(e) and 

 hadrtopcut(e) and misseecuts(e) and leptoncuts(e)  

 and threeleptoncut(e); 

(5.1) 

The query is expressed in terms of derived functions that define the cuts. 
Definitions of the cuts are different from the ones presented in Chapter 3 
(Appendix C), since the POQSEC experiments were done earlier (published 
in [37]) than the experiments presented in Chapter 3 (published in [38]) and 
queries were specified without the restriction to be conjunctive. The 
definition of one of the cuts is: 

create function zvetocut (Event e) -> Boolean as 

select TRUE 

where  notany(oppositeleptons(e)) or 

(abs(invMass(oppositeLeptons(e)) - zMass) >= minZMass); 

Where invMass calculates the invariant mass of a pair of two given leptons, 
zMass is the mass of a Z particle, minZMass is range of closeness, and 
oppositeLeptons is a derived function defined as another query: 

create function oppositeLeptons (Event e) -> <Lepton, Lepton>  

as 

select l1, l2 

from Lepton l1, Lepton l2 

where  l1 = particles(e) and  

 l2 = particles(e) and 

 Kf(l1) = -Kf(l2); 

5.3 Implementation 
A POQSEC client running the ALEH application has an interface to a 
coordinator server through which a user can submit queries for execution in 
the Grid. It can monitor the status of submitted queries, and can retrieve 
results of finished queries. To submit a query the user invokes a system 
interface function named submit and specifies there the query defined in 
terms of the application schema, set of file names which should be processed 
by the query, number of jobs for parallelization the query, CPU time 
required for processing one job, and optionally a computing element where 
the query's jobs should be executed. If no computing element is specified the 
jobs will be submitted to an ARC client along with a list of possible 
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computing elements for execution. The result of the submit function is an 
object used to monitor the status and to retrieve the result. 

The test data are events produced by ATLAS simulation software and 
stored on storage recourses accessible through ARC. Paths to the data files 
are stored in the Grid meta-database of the coordinator server in a format 
according to xRSL specification [86]. Thus the user provides file names 
without paths during submission. 

For example, the user wants to execute on any of available computational 
resources of Swegrid the analysis query (5.1) over eight specific files, with 
parallelization in four jobs, where each job will process two files, where the 
CPU time of executing the query over the two files is 20 minutes,. The user 
submits the query and assigns the result of the submission to a variable :s: 

set :s = submit( "select e 

  from Event e 

  where  jetvetocut(e) and  

   zvetocut(e) and 

   hadrtopcut(e) and 

   misseecuts(e) and 

   leptoncuts(e) and 

   threeleptoncut(e)", 

 {"bkg2Events_000.root", 

  "bkg2Events_001.root", 

  "bkg2Events_002.root", 

  "bkg2Events_003.root", 

  "bkg2Events_004.root", 

  "bkg2Events_005.root", 

  "bkg2Events_006.root", 

  "bkg2Events_007.root"},4,20); 

(5.2) 

The submission is then translated into four xRSL scripts, which are 
submitted to an ARC client for execution. One of the scripts is presented in 
Figure 5.4. The executable there is the ALEH application, which contains 
the loader of ROOT files. 

It is necessary for the user to specify which files to analyze to restrict 
amount of data for processing. In the example the user specifies file names 
explicitly. Alternatively the user can define a query over the meta-database 
of the coordinator server to retrieve the file names. The local batch systems 
of all computational elements available through ARC require specification of 
CPU time and thus the user needs to provide this3. 

                               
3 With profiled grouping approach it can be estimated automatically using the measured 
execution time for each group. 
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The performance of many queries can be significantly improved by 
parallelization into several jobs. Our experience shows that parallelization of 
executing a query gives dramatic improvements. For example, the above 
submission took 24 minutes. The time was calculated as the elapsed time 
between when the query was submitted until all job results were downloaded 
from the Grid. A submission of the same query without parallelization as one 
job was much slower and took 3 hours and 45 minutes, where 3 hours and 10 
minutes were spent for the query evaluation. 

During execution of a query submitted to POQSEC the user can monitor 
its status of a submission :s by calling status(:s). The status of the query is 
computed from its batch jobs statuses. The status "DOWNLOADED" will be 
returned only if results of all jobs of the query were downloaded. Then the 
user can retrieve the result data by executing retrieve(:s). The result of the 
query can be retrieved also by using the function wait(:s). The difference is 
that if wait is invoked before the result of the jobs is available the system 
waits until the coordinator server notifies it that all jobs are downloaded. 

& (executable=aleh) 
(arguments="aleh.dmp") 
(inputfiles= (aleh "/home/udbl/ruslan/Amox/bin/aleh") 
    (aleh.dmp "/home/udbl/ruslan/Amox/bin/aleh.dmp") 
    (query2005420103329443.osql "query2005420103329443.osql") 
    (bkg2Events_ruslan_001.root "gsiftp://se1.hpc2n.umu.se:2811/ 
se3/ruslan_poqsec/bkg2Events_ruslan_001.root") 
    (bkg2Events_ruslan_000.root "gsiftp://se1.hpc2n.umu.se:2811/ 
se3/ruslan_poqsec/bkg2Events_ruslan_000.root")) 
(outputfiles=(result.out "")) 
(cputime=20) 
(|  (runtimeenvironment=ROOT-3.10.02) 
    (runtimeenvironment=APPS/HEP/ATLAS-8.0.8) 
    (runtimeenvironment=APPS/PHYSICS/HEP/ROOT-3.10.02) 
    (runtimeenvironment=ATLAS-8.0.8) 
    (runtimeenvironment=APPS/HEP/ATLAS-9.0.3)) 
(stdin="query2005420103329443.osql") 
(stdout="outGen.out") 
(stderr="errGen.err") 
(gmlog="grid.debug") 
(middleware>="nordugrid") 
(|  (cluster=sg-access.pdc.kth.se) (cluster=bluesmoke.nsc.liu.se) 
    (cluster=hagrid.it.uu.se) (cluster=hive.unicc.chalmers.se) 
    (cluster=ingrid.hpc2n.umu.se) (cluster=sigrid.lunarc.lu.se)) 
(jobName="POQSEC: swegrid2005420103329444.xrsl") 

Figure 5.4. Example of the xRSL file with name swegrid2005420103329444.xrsl. 
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After that it retrieves the result, while retrieve will just print a message if the 
query is not finished. The user can cancel his/her query submission by 
executing cancel(:s). 

The coordinator server, the babysitter, and the ARC client are running on 
the same Grid client node as the POQSEC client. The coordinator server 
contains the Grid meta-database and the submission database. The user is 
able to query the coordinator server for data from the Grid meta-database 
and to request updates of the Grid meta-database through the POQSEC 
client. The babysitter polls the coordinator server to pick up jobs from the 
job queue and to request updates of the submission database. 

A schema of the Grid meta-database and the submission database is 
presented in Figure 5.5. The Grid meta-database is defined by the type 
Cluster and the source database (similar to Figure 4.2) with the type 
DataFile and its subtype EventData. The submission database is presented 
by the types Submission and Job. 

Submission Jobjobs

Query

DataFile

data

SubmitTime

Cluster

cluster

Name XRSLfile QueryFile CPUtime

SubmitTime

data

Status

LastTime

ResultFileResultDir

Name

Path
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NickName

BinaryPath RootRE

cluster

Type

entity 
type

attribute of  
type
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between two 
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is-a 
relationshi
p

Attribute Rel.

Legend

Figure 5.5. Schema of the Grid meta-database and the submission database. 
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When the coordinator server receives query submissions from the 
POQSEC client it generates job descriptions and creates xRSL files for ARC 
and script files for POQSEC executors. For example, for the submission 
given above the coordinator server generates four xRSL files and four script 
files. Example of one of the xRSL file is given in Figure 5.4. The POQSEC 
script files contain commands for executors to load the input data from the 
data files through the ROOT loader and to execute the user query. In our 
example one of the script files contains: 

load_root_file("bkg2Events_ruslan_001.root"); 

load_root_file("bkg2Events_ruslan_000.root"); 

save("result.out", 

select e  

from Event e  

where  jetvetocut(e) and zvetocut(e) and  

hadrtopcut(e) and misseecuts(e) and 

leptoncuts(e) and threeleptoncut(e)); 

The results of the query executions are saved by the executors in files (here 
in result.out) in a way that they can be read by the POQSEC client. Objects, 
in our case events, which originally were the same, will be treated by the 
POQSEC client as the same object regardless of that they came from 
different sources. 

The other three xRSL files and three script files are similar except that 
they have different input data files. Automatic generation of the files by 
POQSEC exempts the user from manually creating such files for each job. 

The main tasks for the babysitter are to interact with the ARC client to 
submit jobs, to monitor status of executing jobs, and to download finished 
jobs. Each interaction with the ARC client can take from several seconds to 
a minute; thus the coordinator server does not contact the babysitter 
immediately when a job is created. Instead the babysitter polls the 
coordinator server regularly when it is not interacting with the ARC client. 

5.4 Summary 
We implemented a framework that provides basic tools for executing long 
running batch queries on Grid resources over scientific data distributed in the 
Grid. With the framework a user specifies files to analyze by queries to the 
Grid meta-database and analysis of the data from the files in queries. The 
framework interacts with the Grid and executes queries there. 

With use of the framework the Grid can be utilized to scale analysis 
queries over big volumes of data, since the queries are parallelized and 
executed on non-dedicated distributed Grid nodes in parallel. 
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6. Related Work 

This chapter presents research related to the Thesis contributions. In 
summary, the major contributions are: 
• The use of a query language to implement scientific application selecting 

events with complex structure. 
• Techniques for efficient processing of queries over streams of events with 

complex structure. 
• To enable efficient execution plans for streamed queries, the profile-

controller operator manages different runtime query optimization 
strategies. 

• The cost model for aggregate functions over nested subqueries enables 
optimization of complex queries having selection conditions with many 
aggregate functions. 

• The profiled grouping approach fragments queries into groups, measures 
execution time and fanouts for each group, and optimizes the join orders 
of groups using the measured statistics. 

• The performance of streamed queries with low selectivities is shown to be 
improved significantly by using query transformation techniques, view 
materialization, and partial evaluation. 

• An infrastructure for managing queries executed in a batch-oriented grid 
infrastructure enables scalable parallel execution of queries on external 
computational resources over data stored in grids. 

In this chapter different kinds of technologies related to these contributions 
are discussed. First, high level interfaces for specifying analysis in HEP 
applications are studied. Second, related work in DSMS is studied. Third, 
related techniques on adaptive query processing are discussed. Fourth, 
related database techniques to process complex queries are presented. Fifth, 
related work on databases utilizing computational resources through Grid 
infrastructures and other computational distributed infrastructures is 
presented. Finally, systems that apply database technologies for scientific 
applications in general are presented. 
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6.1 High-Level Analysis Tools for HEP Applications 
It is recognized that physicists need to perform their analyses of ATLAS 
data by systems that are simple to use. Several systems for ATLAS 
experiment (for example, ADA [3] and DIAL [28]) are developed. They 
provide job submission systems oriented for executing ATLAS analyses on 
distributed computational resources and hide details of different underlying 
Grid infrastructures, batch systems, and ATLAS environment installations. 
Physicists specify their analyses as C++ and Python programs and provide 
descriptions of their jobs in some job description language to perform the 
analyses on external resources. Then the high level analysis tools take care 
of distributing and executing the analysis on computational resources and 
return merged results to the scientists. By contrast, in our system scientists 
specify analyses in a query language, which is more high-level and requires 
less time to specify the analyses than writing C++ or Python programs. As 
the other systems, our system also takes care of executing the analyses in 
parallel on external resources managed by a Grid infrastructure. 

A visual query language for specifying HEP analyses is provided by the 
system PHEASANT [5]. HEP analyses are there defined in queries, which 
then are compiled into a general purpose language [80] without performing 
any query optimization or query simplification. By contrast, our system 
rewrites and optimizes queries, which is shown to give significant 
improvement in performance, approaching that of hard-coded C++ 
programs. 

6.2 Data Stream Management Systems 
Most developed DSMSs (e.g., Aurora [2], Gigascope [21], STREAM [1], 
TelegraphCQ [61], and XStream [42]) focus on infinite streams of rather 
simple objects and efficient processing of time-series operations including 
aggregates and joins of the streams. Such DSMSs are data driven and 
process the streams by continuous queries. In contrast, in SQISLE elements 
of streams are complex objects (each event can be seen as a small database) 
and large and complex queries are applied on each streamed object 
independently from other objects. Therefore, the queries in SQISLE do not 
contain time-series operations and no join between streams is performed. 
Furthermore, SQISLE is demand driven, since it has full control of the 
stream flow. 

Aurora [2] processes rather simple continuous queries over dynamic 
streams of rather simple tuples. Queries are defined on algebra level and 
views are not supported in the query definitions. The performance of stream 
queries is improved by rewriting and optimizing algebra execution plans of 
the stream queries. The rewriting combines several algebra operators into 
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one operator to reduce operator execution overhead. During execution of 
stream queries Aurora continuously measures costs and fanouts for each 
operator. Then operators in query plans are greedily reoptimized using the 
measured statistics by Aurora’s cost-based optimizer. In contrast, SQISLE 
processes large complex queries over stable streams of complex objects. The 
queries are specified in a declarative SQL-like query language with use of 
many views. Therefore, SQISLE implements different query processing 
techniques. Complex large queries are optimized using group statistics 
profiling, which is shown to produce better performing plans than greedily 
optimization of the ungrouped query. In contrast to continuously adapt query 
execution plans for dynamic streams as in Aurora, SQISLE adapts a query 
execution only for a small part of a stream until group statistics are 
stabilized. 

In SQISLE the rewriting of transformation views combines calculus 
predicates, which simplifies and speeds up cost-based query optimization 
and reduces the interpretation overhead. In contrast to Aurora SQISLE in 
addition applies rewrites to remove unnecessary predicates, e.g. the vector 
rewriting rules that remove unnecessary vector constructions and vector 
element accesses. 

TelegraphCQ [61] and its extensions CACQ [70] and CBR [11] process 
simple and small queries, which do not contain nested subqueries, over 
streams with dynamic properties. By contrast SQISLE processes large and 
complex scientific queries that contain many nested subqueries. SQISLE 
aims to efficiently process large complex queries with many aggregates. 

STREAM [1] has a cost-based query optimizer that optimizes query plans 
for runtime memory minimization [10]. The system periodically measures 
execution times and fanouts of each operator and reoptimizes the execution 
order of the operators. By contrast SQISLE does not collect statistics on each 
operator of a large query execution plan and, therefore, minimizes the 
profiling overhead. Furthermore, in contrast to memory minimization being 
the focus in STREAM, the query optimization in SQISLE minimizes 
processing time of each single complex object for complex and large 
queries. SQISLE does not need to minimize memory consumption, since 
only one complex object is materialized in memory at a time. Another 
difference is that SQISLE rewrites queries to simplify them while STREAM 
does not. 

MIT develops a data stream management system, XStream [42], to 
process high rate scientific streams of isochronous temporal data with 
application specific analysis. A high processing rate of streamed data is 
enabled by implementation of a new data type, SigSeg [42], for representing 
large windows of streamed tuples, and providing efficient operators executed 
over these windows. By contrast each streamed event in SQISLE is a 
complex object and analyzed separately from other events. Furthermore, the 
analyses first derive new objects from each streamed complex object and 
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then objects are selected in terms of properties of the derived objects. 
Therefore, SQISLE focuses on efficient processing of each complex object 
separately, while XStream concentrates on efficient processing of large 
windows of rather simple tuples. 

6.3 Adaptive Query Processing 
In DBMSs and DSMSs precise statistics on data are not always available. 
Therefore, adaptive query processing (AQP) techniques are developed to 
improve query processing at query execution time, which utilize runtime 
feedback and modify query processing [29]. AQP systems (e.g. 
[4][14][65][68]) usually continuously adapt the execution plan of a query to 
reflect significant changes in data statistics. By contrast SQISLE profiles a 
query until no significant changes in stream properties are noticed, i.e. 
statistics on the stream is stabilized, and then reoptimizes the query using the 
stable statistics. Therefore, after the statistics is stabilized, the rest of a 
stream is efficiently processed without profiling overhead. 

Many AQP systems (e.g. [4][11][14][55][65][68]) collect statistics only 
on cardinalities. Some of them [68] inject monitoring operators in a query 
execution plan to measure throughput between pairs of operators.  Other 
[14][55] uses processing operators that also monitor their fanouts. Similarly 
the event statistics profiling in SQISLE collects statistics on cardinalities of 
event properties by a wrapper interface function. By contrast the group 
statistics profiling in SQISLE first rewrites the processing query fragment 
into groups and wraps each group with the group monitor operator. The 
group monitor operator measures the execution time and fanout for each 
wrapped group during query execution. In both the event statistics profiling 
and group statistics profiling the measured statistics are used to optimize a 
query in terms of both fanouts and costs. 

Different AQP systems implement different mechanisms for changing 
running query execution plans to more efficient ones during query execution. 
Some AQP systems (e.g. [14][46][55][65]) generate several query execution 
plans for the entire query or for query fragments during initial optimization 
and switch between the plans during query execution. By contrast SQISLE 
generates only a single query execution plan during the initial optimization. 
Then during query execution the controlled query fragment, i.e. the 
processing query fragment, is reoptimized using collected statistics to obtain 
a more efficient execution plan. Generating many execution plans during 
initial optimization is not feasible for large and complex queries.  

A number of AQP systems [1][2][68] initially generate a single plan as 
SQISLE and then reoptimize the entire query during query execution. This is 
a common strategy for data driven DSMSs [1][2]. However, for demand 
driven AQP systems [68], this requires implementing a mechanism to exploit 
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already computed intermediate results. In contrast to reoptimizing the entire 
query SQISLE reoptimizes only the processing query fragment. Execution of 
the source access plan, which controls stream generation, is not affected by 
the reoptimization. 

Usually DSMSs (e.g. Aurora [2], STREAM [1], and TelegraphCQ [61]) 
implement scheduling operators that route tuples through processing 
operators. A scheduling operator decides for each tuple which operator is 
going to process the tuple. After the tuple is processed by the processing 
operator it is returned back to the scheduling operator to be send to a next 
operator. The scheduling operators in STREAM and Aurora route tuples 
according an execution plan produced by a query optimizer, which 
reoptimizes the execution plan when it notices significant changes in the 
monitored stream statistics. TelegraphCQ uses the eddy operator [4], which 
makes dynamic decisions for every tuple and every operator. Invoking a 
scheduling operator for every tuple and every operator is important to deal 
with high-rate and burst streams. However, this strategy adds an overhead to 
each processing operator, thus the overall overhead in query processing is 
going to be larger for larger queries. Furthermore, the overhead for the eddy 
operators is much more significant than the overheads of the other 
scheduling operators. By contrast SQISLE does not deal with high-rate and 
bursty streams and focuses on efficient processing of queries over each 
independent event. Thus the profile-controller operator is executed once per 
input event before the event is filtered by the complete event processing 
plan. This minimizes overhead of invoking the profile-controller operator 
during execution of large queries. 

6.4 Processing of Complex Queries 
Modern database applications perform complex queries over stored data. For 
example, on-line analytical processing (OLAP) and data mining queries are 
often complex [19]. Complex queries are usually defined in terms of views 
and consist of many joins, aggregate functions, nested subqueries, selections, 
and user-defined functions. Various query processing techniques are 
developed to improve performance of such complex queries. 

OLAP and data mining queries are usually performed over data objects 
loaded into a data warehouse, similar to the loading approach. Our queries 
process each independent complex object separately and the performance 
evaluation demonstrated that therefore the streaming approach performs 
significantly better than the loading approach. 

Rewriting calculus representation of queries into equivalent 
representations during a pre-processing phase before cost-based query 
optimization [58][49] is demonstrated to improve query performance for 
different kinds of applications in, e.g., engineering [88], image processing 
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[69], and business processing [92]. In this Thesis several novel rewrite rules 
are developed for SQISLE and evaluated for a scientific test application. The 
performance experiments confirm the importance of query rewrite rules for 
query processing. 

In SQISLE view results are temporarily materialized in the stream object 
representing the event. The system provides efficient access and immediate 
removal of materialized view results as the stream is progressed. This is 
different from methods to cache expensive computations in a regular DBMS 
where results are materialized permanently in, e.g., a hash table [51]. 

Cost-based query optimization is important to obtain an efficient 
execution plan for a complex query. Most cost-based optimizers are based 
on the System R approach [87]. Such optimizers are limited to optimize only 
join-orders of relations. Therefore processing of complex queries with 
expensive predicates requires either optimizing the predicates separately 
from the relation join-order [48][26] or transforming queries to regard the 
expensive predicates as joins of relations [6]. For example, [48] and [26] 
optimize queries in the presence of expensive functions by optimizing the 
order of the expensive predicates for each relation join-order. An example of 
the transformation approach is the optimization of queries containing 
aggregate functions over nested subqueries. In relational databases such 
queries are rewritten to either regard the nested subqueries as joins of 
relations or to unnest the nested subqueries into a flattened query [6][25] . 
Thus, relational database optimizers are based on the fact that, for a large 
disk-based database, the join is very expensive compared to selection 
operators. In SQISLE all operators have similar costs. Therefore, SQISLE 
needs to optimize all operators in the complex query together and does not 
differentiate between various types of predicates. To deal with queries 
containing aggregate functions, the aggregate cost model for aggregate 
functions over nested subqueries is developed in the Thesis. To our 
knowledge there is no published work presenting a cost model for aggregate 
functions over nested subqueries, since such queries are usually regarded as 
joins [6][25][45][63][94]. 

Cost-based query optimizers are often based on approximate statistics and 
simplified cost models, e.g. based on the independence assumption. Thus 
estimates of query plan costs are inaccurate, and the errors in the cost 
estimates are propagated in large queries [54]. Therefore, query optimization 
of large and complex queries is often unreliable. Many works 
[13][17][34][50][78][84] focus on collecting and maintaining statistics for 
different operators and their combinations. They are limited to simple SPJ 
queries [13][34][78][84] or they do not cover statistical dependencies 
[17][50]. In this Thesis instead of developing a cost model for large and 
complex scientific queries which is reliable and covers dependences, we 
develop the profiled grouping approach that fragments queries into groups, 
measures costs and fanouts for the groups, and optimizes join-order of 



 

 109 

groups using the measured cost model. The performance evaluation 
demonstrates that the profiled grouping approach finds better performing 
plans than the cost-based query optimization alone without the query 
fragmentation. 

In [12] and [39] statistics on query fragments or views are used to handle 
data dependencies during optimization of simple SPJ queries, without 
collecting statistics for large numerical queries. They do not automatically 
fragment the queries. In contrast SQISLE automatically fragments queries 
using the stream fragmenting algorithm developed for our kinds of 
applications. 

6.5 Databases and Distributed Computational 
Infrastructures 

Database queries that are computation and data intensive require using 
external computational resources to scale query execution. Large amounts of 
computational resources are shared within communities across the Internet, 
e.g. through Grid infrastructures. Therefore, different projects (e.g., DQP 
[64], CODIMS-G [81], STORM [72], and LeSelect [22]) develop 
frameworks to execute expensive database queries on distributed 
heterogeneous external computational resources. 

The distributed query processing system (DQP) [83] (its web service 
version is called OGSA-DQP [64]) is a system that utilizes a Grid 
infrastructure and provides a high-level declarative query language for data 
access and analyses. The DQP scheduler requires that dedicated resources 
for the distributed query execution are preallocated before a query is 
parallelized and optimized [43]. Any of the preallocated resources can be 
utilized by DQP dynamically. DQP is different from POQSEC that utilizes 
ARC as a middleware above autonomous local batch systems on 
computational resources. Unlike DQP, neither POQSEC nor ARC have full 
control of computational resources and POQSEC therefore needs to consider 
the ARC limitation that jobs are not guaranteed to start immediately. 
Furthermore, as part of a job description ARC requires to specify all 
descriptions of resources in advance. This includes, for example, estimating 
execution time and number of computational nodes for jobs. 

CODIMS-G [81] is an adaptive parallel query processing middleware on 
top of a Grid infrastructure that allows dynamic allocation of dedicated 
computational resources. CODIMS-G dynamically allocates computational 
resources, deploys query engines on the allocated nodes, and performs query 
execution on the deployed query engines. During query execution resources 
can be adaptively re-allocated. In contrast POQSEC runs on top of Grids 
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where resources are managed by batch systems, which do not allow 
immediate allocation of resources. 

STORM [72] is a framework for processing on distributed and parallel 
resources very large multi-dimensional scientific datasets stored in 
distributed files. During execution of the query, selections are performed 
locally on distributed storage resources and the results of selections are 
shipped to a computational cluster. Then on the computational cluster the 
selected subsets are joined and the rest of the query is executed. By contrast 
grid based query management in POQSEC does not assume pre-installed 
database management capabilities on storage resources, and therefore 
queries are executed only on computational resources to where both files and 
the lightweight data management system are shipped. 

LeSelect [22] is a distributed mediator system, which aims to support 
scientific collaborations. Through LeSelect scientists working at different 
locations share data, which are binary large objects (blobs), and analysis 
code, which is represented as external expensive functions. LeSelect 
assumes that functions can be executed only on LeSelect servers. Therefore 
data are transferred to LeSelect servers storing the expensive functions for 
processing. By contrast POQSEC transfers both data and analysis code. 
Furthermore, in contrast to pre-installed LeSelect servers, POQSEC does not 
require to install its components (e.g., SALEH) on computational Grid nodes 
in advance. 

6.6 Scientific Databases 
Database technologies have been extended for scientific applications to 
provide high-level easy-to-use interfaces for scientists (e.g., MauveDB [30], 
LeSelect [22], SDSS [91], XStream [42], STORM [72]). Using such 
scientific data management systems the scientists can analyze their scientific 
data in terms of views in efficient and transparent ways without studying 
details of wrapped complex underlying systems used to store or generate 
scientific data. 

The system MauveDB [30] focuses on supporting views, called model-
based views, which are defined in terms of statistical models over base tables 
containing scientific data. MauveDB allows writing SQL queries in terms of 
model-based views that transform base data into the data representing the 
views. MauveDB utilizes a relational query optimizer during query 
processing. For this, either the queries are rewritten in terms of base tables 
by application specific rewriting rules if the rules are available [62], or, 
otherwise, cost models for model-based views are defined [30]. Then the 
join order of the base tables and views is optimized. In contrast to 
implementing views in a foreign language and defining specific 
transformation rules for expanding the views, views in SQISLE are defined 
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as queries and, therefore, are automatically expanded by general view 
expansion rules. Furthermore, the queries are optimized in order to reduce 
time to analyze independent events, while in MauveDB query optimization 
focuses on join ordering. Thus MauveDB reduces data accesses from disk, 
while SQISLE optimizes operators processing streams of complex objects. 

An example of implementing a complex scientific application in a 
relational DBMS is the Sloan Digital Sky Survey (SDSS) project [91]. In the 
project huge amounts of astronomical data from the SDSS telescope are 
loaded into a cluster of SQL Server databases, which corresponds to data 
warehousing or loading approach. The SQL queries submitted for execution 
by the parallel DBMS contain application specific computations 
implemented in SQL and external languages. In SQISLE the queries are also 
specified in a declarative query language similar to SQL and include 
application specific computations. In contrast to SDSS, in SQISLE the 
application data is not loaded into the database. Instead the data is stored in 
original files and accessed in a stream fashion that demonstrates significantly 
better performance for our type of applications than the loading approach 
(ALEH). 
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7. Summary and Future Work 

This Thesis presented implementation of a query processing system targeted 
to scientific applications where data are independent events with complex 
structures selected by complex large queries. The queries process large 
volumes of data stored in files distributed in Grids. The new system 
POQSEC for managing scientific queries in Grids was developed. POQSEC 
parallelizes queries by data partitioning and executes them in a Grid through 
the Grid infrastructure Advanced Resource Connector [32]. 

Processing of the queries on computational nodes of a Grid is performed 
by new data stream management system SQISLE, which is an extension of 
the functional main-memory DBMS Amos II [79]. It accesses events from 
files through a wrapper interface and process them efficiently by utilizing 
novel query processing techniques. SQISLE implements runtime query 
optimization methods to collect runtime stream statistics and reoptimize 
queries during execution. For this the profile-controller operator was 
implemented. During query execution it monitors collected statistics, 
reoptimizes a query fragment that processes events, and switches to another 
strategy, e.g. into non-profiled execution. To alleviate large errors in 
estimates of execution plan costs in large queries, group statistics profiling 
was implemented in SQISLE that fragments queries into groups, measures 
statistics for each group, and reoptimizes the join-order of groups at runtime. 
Performance of queries with low selectivities was further improved by 
transformation rules that simplify the queries. 

To verify the approach, a scientific application from the ATLAS 
experiment [15][47] was implemented in SQISLE. The implementation 
demonstrated that performance of the application analysis queries in 
SQISLE is close to or better than a hard-coded and manually optimized C++ 
implementation of the same analysis which requires a significant effort to 
develop. 

The system currently interprets the generated query execution plans. By 
making a compiler of the executions plans into C or machine code, the 
performance will be significantly better than the current implementation. 

The demonstrated performance results inspire us to implement other 
scientific applications in the future. We are looking for applications where 
analyses can be written as searching for objects using conjunctive analysis 
queries over streams of complex objects. Each new application requires 
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implementing high-level interface functions in SQISLE, which can be 
simplified by providing a set of high-level tools to developers. 

Currently parallelization of queries in POQSEC requires specifying the 
degree of parallelization and the expected execution time. Future work 
would include estimating expected execution times using measured statistics 
on groups obtained by group statistics profiling. Furthermore, heuristics or 
learning algorithms could calculate the degree of parallelization for efficient 
query execution in a Grid. This could make query processing in POQSEC 
fully transparent for a user. 

The impact of rewriting rules in SQISLE was investigated by manually 
rewriting application queries. Since performance evaluation demonstrated 
the importance of using rewriting rules, the pre-processor of SQISLE should 
transform the queries automatically. 

Another future work is to investigate if group statistics profiling can be 
improved by using another fragmenting algorithm and more sophisticated 
cost models for groups. Currently the cost model for groups assumes that 
groups are uncorrelated. This assumption can lead to suboptimal join-order 
of groups. The impact of measuring correlations between groups could be 
investigated, e.g. by implementing algorithms proposed in [16] for adaptive 
ordering pipelined stream filters. 

A challenge is to support complex queries joining several streams of time 
stamped complex objects. 

Finally, implementing new applications in SQISLE can give more issues 
for future work, e.g. cases for adaptive query processing. 
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Summary in Swedish 

Optimerad sökning bland stora mängder vetenskapliga 
data 
Vetenskapliga instrument producerar stora volymer mätvärden. Dessa data 
analyseras av forskare som testar och utvärderar olika vetenskapliga teorier. 
Ofta är analyserna utformade med hjälp av konventionella program i ett 
programmeringsspråk, t.ex. C++. Sådan programmering hämmar 
forskningsproduktiviteten därför att det krävs mycken specialistkunskap för 
att skriva effektiva och bra C++-program. Dessutom är det svårt att förstå 
och modifiera sådana program. Programutvecklingen blir extra komplicerad 
eftersom programmen måste vara skalbara, d.v.s. de ska vara effektiva när 
mängden data är mycket stor. 

Inom databasområdet har man sedan länge utvecklat ett flertal tekniker 
och system för att snabbt kunna göra avancerade frågor över stora mängder 
data. I denna avhandling undersöks hur tekniker som används i stora 
databaser också kan tillämpas för sökning och analys av vetenskapliga 
mätdata. Avhandlingen visar att nya databassökmetoder krävs för denna 
utvidgade tillämpning av databasteknik. 

Följande frågeställningar tas upp: 
1. Kan ett databashanteringsystem (DBHS) användas för att implementera 

vetenskapliga analyser? Speciellt undersöks vilka nya tekniker som 
behövs i ett DBHS för att möjliggöra effektiv sökning bland stora 
mängder vetenskapliga mätvärden. 

2. Kan sökteknologi förbättra prestanda och skalbarhet för komplexa 
vetenskapliga analyser? Vilka nya tekniker för frågebearbetning och 
optimering behövs för att uppnå detta? 

3. Hur kan grid-teknik användas för att utföra sådana storskaliga 
vetenskapliga sökningar? 

Tillämpningsområdet för den föreslagna ansatsen är data och frågor från 
ATLAS- experimentet vid den nya LHC-acceleratorn hos CERN. I ATLAS-
experimentet mäts olika fenomen producerade av mycket stora mängder 
kollisioner mellan partiklar. Kollisionerna kallas händelser. Forskare testar 
olika teorier för att identifiera de partiklar som producerats vid kollisionerna, 
t.ex. Higgs-bosoner. 
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I tillämpningar som ATLAS-experimentet utgörs data av stora mängder 
mätvärden av egenskaper hos händelser. Varje händelse är komplex, dvs. det 
finns mycket data om varje händelse. Man kan därför se varje händelse som 
en egen databas. En sådan databas kallas ett komplext objekt. 

Avhandlingen visar att vetenskapliga teorier kan uttryckas som 
databasfrågor. Frågorna testar hypoteser genom att söka efter de komplexa 
objekt som beskriver händelser där t.ex. Higgs-bosoner skapats. 
Sökkriterierna uttrycks som numeriska filter i termer av olika egenskaper 
uppmätta vid varje händelse. Många numeriska filter kombineras i en och 
samma fråga när en sammansatt hypotes formuleras. Det gör att 
sökkriterierna sammantaget blir mycket komplexa. I tillämpningsområdet 
filtreras varje händelse för sig, oberoende av andra händelser. Därför 
behöver man aldrig göra filter som kombinerar egenskaper hos olika 
händelser. Detta oberoende kan utnyttjas i frågeoptimeringen. 

 För att undersöka hur sådana avancerade databassökningar kan hanteras 
generellt och effektivt har ett nytt s.k. dataströmhanteringssystem (DSHS) 
utvecklats som heter SQISLE (eng. Scientific Queries over Independent 
Streamed Large Events). Till skillnad från konventionella DBHS, som är 
inriktade mot effektiv sökning bland data som ligger på disk, kan man med 
ett DSHS som SQISLE uttrycka databasfrågor som söker direkt i stora 
strömmar av händelser utan att först ladda in dem i ett DBHS.  Ett speciellt 
krav för SQISLE är att objekten i strömmarna är komplexa och att frågorna 
väljer ut komplexa objekt ur strömmarna m.h.a. avancerade sökkriterier. 

Nya metoder har utvecklas för effektiv sökning med komplicerade 
sökkriterier bland strömmar av stora mängder oberoende komplexa objekt. 
Metoderna har utvärderats genom att tillämpa SQISLE på strömmar 
producerade av ATLAS-experimentet. Sökkriterierna i ATLAS-
experimentet är komplicerade. Dessa sökkriterier kräver nya tekniker för 
effektiv och skalbar sökning. 

I likhet med DBHS skapar SQISLE automatiskt en exekveringsstrategi 
för varje given fråga. En sådan strategi, en frågeplan, utför sökningen på 
effektivast möjliga sätt. I traditionella DBHS genererar en frågeoptimerare 
en statisk frågeplan för varje fråga, baserat på statistiska egenskaper hos de 
data som lagras i databasen. I avhandlingen visas att en sådan statisk 
frågeplan förbättrar prestanda avsevärt också för avancerade frågor över 
strömmande komplexa objekt. Emellertid blir databasstatistiken otillförlitlig 
när den används för att optimera frågor med komplicerade sökkriterier. Detta 
gäller för traditionella DBHS, men speciellt för DSHS eftersom statistik om 
data i strömmarna inte finns tillgänglig i förväg. Därför innehåller de 
frågeplaner som SQISLE genererar en operator som kallas profilövervakaren 
(eng. profile-controller). Profilövervakaren övervakar de ingående 
delsökkriterierna genom att samla statistik medan de körs, och anropar 
regelbundet frågeoptimeraren. Frågeoptimeraren genererar dynamiskt en ny 
frågeplan när tillräckligt mycket statistik finns tillgänglig från 
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profilövervakaren. Resultatet av en sådan omoptimering är att delar av 
frågeplanen dynamiskt byts ut under det att strömmen genomsöks. 

Liksom för DBHS baseras optimeringen på en s.k. kostnadsmodell som 
uppskattar kostnaden att utföra de funktioner som används i sökkriterierna. 
För att optimeringen skall kunna skapa en effektiv frågeplan är det viktigt att 
kostnadsmodellen någorlunda korrekt uppskattar tidsåtgången för att utföra 
olika sökkriterier. En viktig del av sökkriterierna utgörs av aggregeringar av 
data, d.v.s. summeringar och andra sammanställningar. Därför utvecklar och 
utvärderar avhandlingen en ny kostnadsmodell för vanliga typer av 
aggregeringar över delar av avancerade sökkriterier. Denna kostnadsmodell 
för aggregeringar uppskattar körtid och hur mycket data som 
sökoperatorerna filtrerar bort.  En annan viktig teknik är att automatsikt dela 
upp frågan i delfrågor, s.k. grupper, och samla statistik för varje grupp under 
körning.  Grupper förfinar kostnadsuppskattningen för varje fråga, vilket 
visar sig förbättra prestanda väsentligt. Ytterligare prestandaförbättringar 
uppnås genom att tillämpa olika tekniker för att transformera och förenkla 
frågan. 

I avhandlingen visas att de föreslagna frågeoptimeringsstrategierna ger 
prestanda i närheten av eller bättre än manuellt programmerade C++-
program som utför samma analys. Vidare jämförs dataströmansatsen med 
den konventionella databasansatsen att först ladda upp händelserna i en 
databas innan man ställer frågorna. Det visas att strömansatsen är betydligt 
snabbare än den konventionella ansatsen. 

Eftersom mängden data för vetenskapliga analyser har oerhört stor volym 
behövs ny infrastruktur för lagring och bearbetning av dessa data, vilket lett 
till utvecklandet av grid-teknik. Grid-tekniken tillhandahåller lagrings- och 
bearbetningsresurser för vetenskapliga analyser. Avhandlingen inkluderar en 
ansats, POQSEC (eng. Parallel Object Query System for Expensive 
Computations), som utnyttjar grid-teknik för att utföra skalbara 
vetenskapliga frågor över stora datavolymer genom att köra dem parallellt på 
många datorer i en grid-omgivning. POQSEC demonstrerar en 
systemarkitektur där inte bara frågorna skeppas till beräkningsnoder utan 
hela databashanteringssystemet. 

Sammanfattningsvis visar avhandlingen: 
• Att vetenskapliga analyser kan specificeras enkelt och tillämningsnära i 

termer av högnivåfrågor. I analysen representeras händelser som 
komplexa objekt modellerade m.h.a. en funktionell datamodell. 

• Att med de föreslagna frågeoptimeringsmetoderna kan vetenskapliga 
frågor uttryckas enkelt och samtidigt utföras lika effektivt som med ett 
handkodat C++-program, fast betydligt mer anpassningsbart. 

• Att en strömmande implementation har betydligt bättre prestanda och 
skalar bättre än motsvarande traditionella implementering där data laddas 
in i en databas innan frågorna specificeras. 
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• Att profilövervakaren väsentligt förbättrar prestanda genom att övervaka 
och och dynamiskt optimera om strömfrågorna under det att de utförs. 

• Att en nyutvecklad kostnadsmodell för aggregeringar förbättrar prestanda 
väsentligt för komplexa frågor. 

• Att uppdelning av sökkriteriet i grupper kombinerat med 
kostnadsmodellen för aggregeringar förbättrar prestanda väsentligt. 

• Att programtransformationer signifikant förbättrar prestanda. 
• Att frågor över stora datavolymer kan exekveras effektivt genom parallell 

körning på icke-dedicerade externa grid-resurser. 
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A. Definition of the Six Cuts Analysis in 
Natural Language 

This appendix presents the definition of the five cuts: Hadr Top Cut, Jet 
Veto Cut, Z Veto Cut, Three Lepton Cut, and Other Cuts. The definition fully 
follows the description of the analysis in [15] except that Hadr Top Cut is 
modified and B Tag condition was removed. 

The modified Hadr Top Cut is defined in the following way: 
• Events must have at least three ok jets, each with Pt > 20 GeV in |Eta| < 

4.5. 
• One of these three jets must be b-tagged, meaning that Kf of the jet must 

be equal to 5. 
• Two other jets (w jets) of these three jets should not be b-tagged and they 

are selected by minimizing |mjj – mW|. Their invariant mass, mjj, must be in 
the range mW ± 15 GeV. 

• Among these, the three jets that are most likely to come from a top quark 
decay are selected by minimizing |mjjj – mt|, where mjjj is the invariant 
mass of the three-jet system. This invariant mass mjjj must be in the range 
mt ± 35 GeV. 

Jet Veto Cut requires: 
• Reject all events containing any jets (other than the three jets selected for 

the top reconstruction) with Pt > 70 GeV and |Eta| < 4.5. 

Requirement of Z Veto Cut is: 
• Reject all events with di-lepton pairs with opposite charges and the same 

flavor that have an invariant mass in the range mZ ± 10 GeV, where mZ is 
equal to 91.1882. 

Three Lepton Cut requires: 
• Events must have exactly three isolated leptons (l = e, μ) with Pt > 20, 7, 

and 7 GeV, respectively, all with |Eta| < 2.4. 
This cut is the same as Three Lepton Cut from Example 2.1. 

Requirements of Other Cuts are: 
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• For the three isolated leptons already selected, the Pt of the hardest lepton 
should be below 150 GeV whereas the Pt of the softest lepton should be 
below 40 GeV. 

• The missing transverse energy should be large than 40 GeV. 
• The effective mass, meff, constructed from the Pt3l and Ptmiss vectors as 

)cos1(2 3 φΔ−⋅⋅⋅= missleff PtPtm , is required to be lower than 150 GeV 
(here Δφ is the azimuthal angle between Pt3l and Ptmiss). 

The missing traverse energy is calculated over the missing momentum of an 
event by formula 22 PymissPxmiss + . The Pt3l vector contains two 
elements, where the first element is the sum of Px values of the three isolated 
leptons and the second element is the sum of Py values for the three isolated 
leptons. The Ptmiss vector contains Pxmiss as the first element and Pymiss as 
the second element. 
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B. Definition of the Particle Schema in ALEH 

The particle schema for the loading approach is implemented as a database 
schema representing events and their particles and views on top of the 
schema. The definition here is from [38] with minor changes. For example, 
the type AbstractParticle is renamed into Particle, the type JetB is renamed 
into Jet. The names of the functions are also affected by these changes. The 
schema is defined by: 

create type Event; 

create type Particle; 

create type Lepton under Particle; 

create type Jet under Particle; 

create type Electron under Lepton; 

create type Muon under Lepton; 

create function PxMiss(Event) -> Real as stored; 

create function PyMiss(Event) -> Real as stored; 

create function filename(Event) -> Charstring as stored; 

create function Eventid(Event) -> Integer as stored; 

create function Pid(Particle) -> Integer as stored; 

create function event(Particle) -> Event; 

create function Kf(Particle) -> Integer as stored; 

create function Px(Particle) -> Real as stored; 

create function Py(Particle) -> Real as stored; 
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create function Pz(Particle) -> Real as stored; 

create function Ee(Particle) -> Real as stored; 

create function event(Muon)-> Event as stored; 

create function event(Electron)-> Event as stored; 

create function event(Jet)-> Event as stored; 

 
The view over the schema provides functions to retrieve particles of a given 
event: 

create function electrons(Event e) -> Electron el as  

select el 

where event(el)=e; 

create function muons(Event e) -> Muon mu as 

select mu 

where event(mu)=e; 

create function jets(Event e) -> Jet jt as 

select jt 

where event(jt)=e; 

create function leptons(Event e) -> Lepton l as 

select l 

where event(l)=e; 

create function particles(Event e) -> Particle p as 

select p 

where event(p)=e; 
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C. Definition of Analysis Cuts in ALEH 

The analysis cuts from Appendix A are implemented as queries over the 
particle schema definition presented in Appendix B.  

create function isolatedLeptons(Event e) -> Lepton as 

select l  

from Lepton l 

where  l=leptons(e)  

and pt(l) > 7.0  

and abs(eta(l)) < 2.4; 

create function threeleptoncut (Event e-v) -> Boolean as 

select  TRUE 

where  count(isolatedLeptons(e))=3  

and some (select r  

from Real r  

where  r=Pt(isolatedLeptons(e))  

 and r>20.0); 

create function oppositeLeptons(Event e) ->  Vector of Lepton  

as 

select {l1, l2} 

from Lepton l1, Lepton l2 

where  l1 = particles(e)  

 and l2 = particles(e)  

 and Kf(l1)=-Kf(l2); 

create function EvInvMass(Event e) -> Bag of Real r as 

select r 

from Vector lept, Real inv 

where  lept = oppositeLeptons(e)  

 and inv = invMass(lept)  

 and r=abs(inv-91.1882)  

 and r < 10.0; 
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create function zVetoCut(Event e) -> Boolean as 

select TRUE 

where notany(EvInvMass(e)); 

create function okJetsHelpfunc(Event e) -> Bag of Jet as 

select jt  

from Jet jt  

where  event(jt)=e  

 and abs(eta(jt))<4.5  

 and pt(jt)>20.0; 

create function okJets(Event e) -> Bag of Jet as 

select jt 

from Jet jt 

where  jt=okJetsHelpfunc(e)  

 and atleast(3,okJetsHelpfunc(e)); 

create function bJets(Event e) -> Bag of Jet as 

select jt 

from Jet jt 

where  jt=okJets(e)  

 and kf(jt)=5; 

create function wJets(Event e) -> Bag of Jet as 

select jt 

from Jet jt 

where  jt=okJets(e)  

 and kf(jt)!=5; 

create function wPairs(Event e) -> Bag of Vector v as 

select v  

from Jet j1, Jet j2 

where  j1=wJets(e)  

 and j2=wJets(e)  

 and j1>j2  

 and v={j1,j2}  

 and absInvMass(v,80.419)<15.0;  
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create function topComb(Event e) -> Bag of Vector v as 

select v  

from Jet j1, Jet j2, Jet bj 

where  v={j1,j2,bj}  

 and {j1,j2}=wPairs(e)  

 and bj=bJets(e)  

 and absInvMass(v,174.3)<35.0; 

create function hadrtopCut(Event e) -> Boolean as 

select TRUE 

where some(topComb(e)); 

create function mTopComb(Event e) -> Vector v as 

select v 

where  v=topComb(e)  

 and absInvMass(v,174.3) =  

   minagg(absInvMass(topComb(e),174.3)); 

create function leftJets(Event e) -> Bag of Jet as 

select jt 

from Jet jt 

where  jt=okJets(e)  

 and notany(select jt 

  where jt=in(mTopComb(e))); 

create function jetVetoCut(Event e) -> Boolean as 

select  TRUE 

where notany(select jt 

from Jet jt 

where  jt=leftJets(e) and  

 Pt(jt)>70.0); 

create function leptonCuts(Event e) -> Boolean as 

select  TRUE 

where notany(select l 

from Lepton l  

where  l=isolatedLeptons(e)  

 and Pt(l)>150.0)  

 and some(select r  

  from Real r  

  where  r=Pt(isolatedLeptons(e))  

   and r<=40.0); 
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create function missEeCuts(Event e) -> Boolean as 

select  TRUE 

from Vector ptMiss, Vector pt31 

where ptMiss={PxMiss(e),PyMiss(e)}  

 and mod(ptMiss)>=40.0  

 and pt31={sum(select Px(isolatedLeptons(e))), 

  sum(select Py(isolatedLeptons(e)))}  

 and effectiveMass(ptMiss,pt31)<=150.0; 
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D. Implementation of Stream Objects 

A stream object has the following structure:  
 
Type 
tag 

Source Sid Attribute 1 Attribute 2 Attribute 3 … 

 
The type tag represents the type of the object, a subtype of Sobject. The 

attribute source contains an object representing where the data represented 
by the stream object originates. The attribute Sid is an object uniquely 
identifying the data within the source. The type tag, source, and Sid 
attributes are used to uniquely identify stream objects. The system regards 
two stream objects as equal if this compound key is the same. This allows 
recognizing duplicates by comparing stream objects without maintaining an 
index of all currently existing stream objects. 

For example, the source of a stream object representing an event in 
SALEH is the name of the ROOT file from which the event originates. The 
attribute Sid of an event stream object is an integer identifying the event in 
the source file. Thus each event is uniquely identified by the ROOT file 
name, the event identifier, and the fact that it is a stream object of type 
Event. 

The remaining attributes Attribute 1, 2, 3, … of a stream object are called 
non-key attributes. The attribute values can be objects of any type. Thus 
stream objects can represent complex objects. Each kind of stream object has 
a fixed number of attributes. 

SQISLE provides internal interface functions for stream objects. They are 
not used in user queries but to define the application schema by a SQISLE 
administrator. There are functions to create new stream objects and to access 
and update of Sobject attributes. A new stream object is constructed by 
calling a function: 
new_sobject(Type tpo,  

Object source,  

Object sid,  

Vector values) -> Sobject so  
The result is a stream object so belonging to the given type tpo, having the 
given source object source and identifying object sid. It has the same number 
of non-key attributes as the size of the vector values. The values of the non-
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key attributes are set to the values from the vector values in the same order 
as its elements. It is also possible to create a stream object without providing 
values. In this case an overloaded function is used: 
new_sobject(Type tpo,  

Object source,  

Object sid,  

Integer n) -> Sobject so  

In the overloaded function the number of non-key attributes n is specified 
rather than the vector of values. The non-key attribute values are initialized 
to nil. The values can be later updated by a function:  
set_slot(Sobject so,  

Integer i,  

Object v) -> Boolean b 

The function takes a stream object so, a non-key attribute position i, and a 
value object v as arguments, and always return true. 

Values of non-key attributes are accessed by calling a function:  
get_slot(Sobject so, Integer i) -> Object v 

For a given stream object so and attribute position i, the function returns the 
stored value v. If a slot contains a collection of values the values can 
alternatively be returned as a bag b by the function: 
get_slot_bag(Sobject so, Integer i) -> Bag of Object b 

The function has the same arguments as get_slot, but if the accessed value is 
a vector the values of the vector are emitted one by one as a bag of values. 
The source and identifier of a stream object so are retrieved by calling the 
following operators over the given stream object:  
source(Sobject so) -> Object source  

sid(Sobject so) -> Integer sid 

Appendix G shows how to use these interface functions to define the 
particle schema in SALEH. 
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E. The ROOT Wrapper Interface 

A general ROOT wrapper interface is implemented as a set of functions, the 
ROOT wrapper interface functions to retrieve events from ROOT files that 
store events as ROOT tuples containing simple C values (Section 2.1.1). The 
interface provides functions to access meta-data about a ROOT file and 
functions to return from a ROOT file a stream of tuples represented by 
stream objects. The meta-data about a ROOT file includes internal paths 
inside the ROOT file and names of ROOT collections stored in the file. 
Furthermore it provides meta-data that describes the structure of the ROOT 
tuples in each ROOT collection as lists of the names and types of the tuple 
attributes. The ROOT wrapper interface is used by a SQISLE administrator 
for defining the particle schema. 

The ROOT wrapper interface functions can stream all tuples of a 
collection, a subset of the tuples, or a single tuple. To retrieve data from a 
ROOT collection a ROOT wrapper interface function needs at least the name 
of the ROOT file, the internal path to a collection in the ROOT file, the 
collection name, and the type of the result stream objects. The result type 
must be subtype of the type Sobject. The sources of the stream objects are 
defined by the name of the ROOT file. The Sids of the stream objects are the 
identifiers of the corresponding ROOT tuples. The path to the collection and 
the collection name are stored as meta-properties of their type and not in the 
result stream objects. The attributes of a stream object contains values of 
tuple elements in the same order as in the corresponding tuple indexed by a 
slot number for each attribute. 

Since not all attributes are needed for an analysis, unnecessary attributes 
of the tuples can be projected away in the corresponding stream objects. 
These projections are specified as an input vector of projected attribute 
names, called the projection vector. The emitted stream objects contain the 
same number of attributes as the size of the projection vector and the 
attributes are ordered in the same way as in the projection vector. 

The definition of the particle view uses the following ROOT wrapper 
interface function: 
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root_scan_project(Charstring file,  

Charstring path,  

Charstring collection,  

Vector projections,  

Type stype) -> Stream of Sobject so 

The function returns all tuples of a given collection stored under a given path 
in a given ROOT file. The result of the ROOT wrapper interface function is 
a stream of objects so of type stype containing values of attributes from the 
projection vector projections. 

In the SALEH application all events in the application are stored in 
ROOT files using the internal path /ATLFAST and the collection name h51. 
All stream objects representing the ROOT tuples belong to the same type 
Event, which is subtype of Sobject (Figure 4.3). Therefore a view function 
saleh_events is defined in terms of the ROOT wrapper interface function 
root_scan_project: 

create function saleh_events (Charstring filename) ->  

Bag of Event e as 

select e 

where e in root_scan_project 

(filename,"/ATLFAST","h51", 

{"Pxmiss","Pymiss","Kfele","Pxele","Pyele", 

"Pzele","Eeele","Kfmuo","Pxmuo","Pymuo", 

"Pzmuo","Eemuo","Kfjetb","Pxjetb","Pyjetb", 

"Pzjetb","Eejetb"}, 

typenamed("Event")); 

The function saleh_events takes a ROOT file name as the parameter and 
returns bag of stream objects of type Event representing ROOT tuples in the 
file. Since in the SALEH all events in the ROOT files are stored in 
collections named h51 under path /ATLFAST these values are specified as 
constants parameters to the function root_scan_project. The projection 
vector of attributes is also given as a constant and it contains only those 
attributes that are needed for defining the particle schema. The result type is 
given by calling the function typenamed(“Event”), which returns the 
SQISLE object representing the type named Event. 

To be able to stream only part of a ROOT file the following interval 
function is defined in terms of corresponding general ROOT wrapper 
interface function: 
saleh_events(Charstring filename,  

Integer firstEvent,  

Integer lastEvent)-> Bag of Event e  

The interval function saleh_events retrieves all events from a ROOT file 
with filename within an interval [firstEvent,lastEvent]. 
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To enable materializations in event objects, the following wrapper 
interface function is implemented:  
root_scan_project_addslots(Charstring file,  

Charstring path,  

Charstring collection,  

Vector projections,  

Type stype,  

Integer slots) ->  

Stream of Sobject so 

It creates stream objects so having slots additional slots used for 
materializing derived particle objects. Thus the actual number of non-key 
attributes in the stream objects so is the size of the projection vector 
projections plus the number of additional arguments slots. 

 



 

 

 
 



 

 135 

F. The Transformation Views in SALEH 

The particle schema (Figure 2.3) contains particles of different kinds derived 
from the tuples representing events in ROOT files. For each tuple a 
corresponding stream object of type Event, called an event object, is 
constructed by a ROOT wrapper interface function. The objects representing 
particles are not explicitly stored in the event objects. Instead, attribute 
values of particles are derived from several attributes of an event object as 
transformation views over the event objects. The transformation views create 
stream objects that represent particles derived from the event objects. The 
particle schema is defined in terms of the transformation views. Each kind of 
particle is specified by derived functions constructing stream objects as a 
separate transformation view for each kind of particle. For example, the set 
of electrons for a given event is defined by the transformation function 
new_electrons in terms of the function new_sobject: 

create function new_electrons(Event e)-> Bag of Electron el as 

select el 

from Integer i 

where el=new_sobject(typenamed("Electron"), e, i, 

{Kfele(e)[i],Pxele(e)[i],Pyele(e)[i], 

Pzele(e)[i],Eeele(e)[i]}); 

Electrons are constructed from the event attribute vectors Kfele, Pxele, 
Pyele, Pzele, Eeele, where each attribute vector represents a particular 
attribute of all the electrons belonging to the given event. For example, 
energy values of each electron in an event are stored in the event attribute 
vector Eeele indexed by an integer ei identifying the electron within the 
event. The same integer identifier is used in all these electron vector 
attributes of an event. The function new_electrons creates as many electrons 
as the size of the vectors. 

The sets of stream objects representing muons and jets are created 
analogously: 
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create function new_mouns(Event e)-> Bag of Muon mu as 

select mu 

from Integer i 

where mu=new_sobject(typenamed("Muon"), e, i, 

{Kfmuo(e)[i],Pxmuo(e)[i],Pymuo(e)[i], 

Pzmuo(e)[i],Eemuo(e)[i]}); 

create function new_jets(Event e)-> Bag of Jet jt as 

select jt 

from Integer i 

where jt=new_sobject(typenamed("Jet"), e, i, 

{Kfjetb(e)[i],Pxjetb(e)[i], 

Pyjetb(e)[i],Pzjetb(e)[i], 

Eejetb(e)[i]}); 
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G. The Particle Schema Definition in SALEH 

The particle schema (Figure 2.3) is defined in terms of stream objects, which 
are created by calling the ROOT wrapper interface functions and the 
transformation functions. The types defined in the particle schema are 
subtypes of the type Sobject as in Figure 4.3. The collection of events from a 
file is defined by the function saleh_events(Charstring filename)-> Bag of 
Event e. Each stream object e of type Event contains source and identifier for 
the event, and 17 other attributes representing event values. The particle 
schema contains four event attributes, which are defined by four public 
functions having the following signatures:  
filename(Event e) -> Charstring filename 

eventid(Event e) -> Integer eventid 

pxmiss(Event e) -> Real pxmiss 

pymiss(Event e) -> Real pymiss 

To access the other event attributes private functions are provided with 
signatures, for example: 
Kfele(Event e) -> Vector kfele 

Pxele(Event e) -> Vector pxele 

Pyele(Event e) -> Vector pyele 

Pzele(Event e) -> Vector pzele 

Eeele(Event e) -> Vector eeele 

These functions are used internally in the transformation view definitions.  
Particle objects from the particle schema are derived from events by the 

transformation views. Thus to define a specific particle type (Electron, 
Muon, or Jet) of the particle schema it is necessary to provide: 
1. The attributes of the particle type. 
2. The particle objects derived from the event object. 
3. The event objects from which the particle objects are derived. 

The attributes are implemented by functions of type Particle to access slots 
in the created particle objects: 
event(Particle) -> Event e 

pid(Particle) -> Integer pid 

kf(Particle) -> Integer kf 

px(Particle) -> Real px 

py(Particle) -> Real py 
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pz(Particle) -> Real pz 

ee(Particle)->Real ee 

Items 2 and 3 define the relationship between stream objects of type Event 
and stream objects of the different specific kinds of particles. This is 
implemented as a multi-directional function that accesses the source in one 
direction and creates all new particles of an event in the other direction. For 
example, the relationship between electrons and event is defined by: 

create function electrons(Event e) -> Bag of Electron el as  

multidirectional 

(“bf” select new_electrons(e)) 

(“fb” select event(el)); 

The function electrons is executed either in forward or in inverse directions 
using different implementations. In the forward direction, noted by binding 
pattern bf, for the given event e the function new_electrons constructing 
electrons of the event is called. In the inverse direction, noted by binding 
pattern fb, for the given electron e the function event is called, which returns 
the event object of the electron. 

Analogously the relationships between type Event and types Muon and 
Jet are defined by the functions: 

create function muons(Event e) -> Bag of Muon mu as  

multidirectional 

(“bf” select new_muons(e)) 

(“fb” select event(mu)); 

create function jets(Event e) -> Bag of Jet jt as  

multidirectional 

(“bf” select new_jets(e)) 

(“fb” select event(jt)); 

 
The relationships between type Event and the types Lepton and Particle are 
specified as unions of their subtypes by the functions: 

create function leptons(Event e)-> Bag of Lepton l as  

multidirectional 

 (“bf” select l 

 where  l=electrons(e) or l=muons(e); 

(“fb” select event(l)); 

create function particles(Event e)-> Bag of Particle p as  

multidirectional 
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 (“bf” select p 

 where  p=leptons(e) or p=jets(e); 

(“fb” select event(p)); 

The following function is used for selecting events in user queries: 

create function saleh_events (Charstring filename) ->  

Bag of Event e as 

select e 

where e in root_scan_project 

(filename,"/ATLFAST","h51", 

{"Pxmiss","Pymiss","Kfele","Pxele","Pyele", 

"Pzele","Eeele","Kfmuo","Pxmuo","Pymuo", 

"Pzmuo","Eemuo","Kfjetb","Pxjetb","Pyjetb", 

"Pzjetb","Eejetb"}, 

typenamed("Event")); 

The following functions access event attributes of the view in user queries: 

create function filename(Event e) -> Charstring as 

select filename 

from Charstring filename 

where filename=source(e); 

create function eventid(Event e) -> Integer as 

select id 

from Integer id 

where id=id(e); 

create function pxmiss(Event e) -> Real as 

get_slot(e,0); 

create function pymiss(Event e) -> Real as 

get_slot(e,1); 

The following functions access the event attribute vectors in transformation 
queries: 

create function Kfele(Event e) -> Vector of Integer as 

get_slot(e,2); 

create function Pxele(Event e) -> Vector of Real as 

get_slot(e,3); 
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create function Pyele(Event e) -> Vector of Real as 

get_slot(e,4); 

create function Pzele(Event e) -> Vector of Real as 

get_slot(e,5); 

create function Eeele(Event e) -> Vector of Real as 

get_slot(e,6); 

create function Kfmuo(Event e) -> Vector of Integer as 

get_slot(e,7); 

create function Pxmuo(Event e) -> Vector of Real as 

get_slot(e,8); 

create function Pymuo(Event e) -> Vector of Real as 

get_slot(e,9); 

create function Pzmuo(Event e) -> Vector of Real as 

get_slot(e,10); 

create function Eemuo(Event e) -> Vector of Real as 

get_slot(e,11); 

create function Kfjetb(Event e) -> Vector of Integer as 

get_slot(e,12); 

create function Pxjetb(Event e) -> Vector of Real as 

get_slot(e,13); 

create function Pyjetb(Event e) -> Vector of Real as 

get_slot(e,14); 

create function Pzjetb(Event e) -> Vector of Real as 

get_slot(e,15); 

create function Eejetb(Event e) -> Vector of Real as 

get_slot(e,16); 

The following transformation functions define particles of the different 
kinds: 

create function new_electrons(Event e)-> Bag of Electron el as 

select el 
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from Integer i 

where el=new_sobject(typenamed("Electron"), e, i, 

{Kfele(e)[i],Pxele(e)[i],Pyele(e)[i], 

Pzele(e)[i],Eeele(e)[i]}); 

create function new_mouns(Event e)-> Bag of Muon mu as 

select mu 

from Integer i 

where mu=new_sobject(typenamed("Muon"), e, i, 

{Kfmuo(e)[i],Pxmuo(e)[i],Pymuo(e)[i], 

Pzmuo(e)[i],Eemuo(e)[i]}); 

create function new_jets(Event e)-> Bag of Jet jt as 

select jt 

from Integer i 

where jt=new_sobject(typenamed("Jet"), e, i, 

{Kfjetb(e)[i],Pxjetb(e)[i], 

Pyjetb(e)[i],Pzjetb(e)[i], 

Eejetb(e)[i]}); 

The following function access attributes of particles: 

create function kf(Particle p)-> Integer as 

get_slot(p,0); 

create function px(Particle p)-> Real as 

get_slot(p,1); 

create function py(Particle p)-> Real as 

get_slot(p,2); 

create function pz(Particle p)-> Real as 

get_slot(p,3); 

create function ee(Particle p)-> Real as 

get_slot(p,4); 

This completes the definition of the particle schema in SQISLE. 
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H. SQISLE Utility Functions 

Some utility functions are provided in SQISLE to provide more elegant and 
general ways to define scientific queries. For example, some functions in 
SQISLE return tuples rather than anonymous vectors. These tuples are 
assigned to single values by converting them to vectors.  

For example, the function oppositeLeptons(event)->vector  was defined in 
ALEH (Appendix C) as: 

create function oppositeLeptons(Event e) ->  Vector as 

select {l1, l2} 

where  l1 = particles(e) and  

 l2 = particles(e) and  

 kf(l1)=-kf(l2); 

In SQISLE it is reformulated to return a tuple instead of a vector as: 

create function oppositeLeptons(Event e) ->   

<Lepton l1, Lepton l2> as 

select l1, l2 

where  l1 = particles(e) and  

 l2 = particles(e) and  

 kf(l1)=-kf(l2); 

This definition demonstrates the semantic of the function better than the 
original definition, which returned an anonymous vector. 

Another extension is some general aggregate functions to deal with tuples 
of multiple values. For example, a new general aggregation function 
minagg2 over bags of tuples is introduced. It operates on bags of pairs, 
where the first element of a tuple is expected to be the value that is 
minimized and the second a corresponding property value. With minagg2 the 
definition of the function mTopComb(event)->Vector in Appendix C can be 
simplified. The original definition of mTopComb in ALEH is: 

create function mTopComb(Event e) -> Vector v as 

select v 

where  v=topComb(e) and  

 absInvMass(v,174.3) =  
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  minagg(select absInvMass(tc,174.3) 

   from Vector tc 

   where tc = topComb(e)); 

The function mTopComb finds the triple of jets that has smallest invariant 
mass among all triple combinations of jets and is produced by topComb. 
Without the general minagg2 the function topComb has to be called twice. 
First it is called to find the smallest value of invariant mass among the 
triples. Then it is called to choose a triple that has the invariant mass equal to 
the smallest value found by the nested subquery. With the more general 
minagg2 operating on bags of tuples the function mTopComb is simplified in 
SALEH: 

create function mTopComb(Event e) -> Vector v as 

select v 

from Real r 

where  <r,v> = minagg2(select absInvMass(tc,174.3), tc 

 from Vector tc 

 where tc = topComb(e)); 

In this case the function topComb, which generates the triples, is called only 
once, while in the original implementation of mTopComb it is called twice. 
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I. Definitions of Analysis Cuts in SALEH 

Cuts from the analyses described in Appendix A and in Example 2.1 are 
defined here over the particle schema definition in SQISLE.  

First, the cuts from the analyses described in Appendix A are presented: 

create function isolatedLeptons(Event e) -> Bag of Lepton as 

select l  

from Lepton l 

where  l = leptons(e)  

 and pt(l) > 7.0  

 and abs(eta(l)) < 2.4; 

create function threeLeptonCut (Event e) -> Boolean as 

select  TRUE 

where  count(isolatedLeptons(e)) = 3  

 and some(select r  

  from Real r 

  where  r = Pt(isolatedLeptons(e))  

   and r > 20.0); 

create function oppositeLeptons(Event e) ->  

Bag of <Lepton l1, Lepton l2> as 

select l1, l2 

where  l1 = leptons(e)  

 and l2 = leptons(e)  

 and kf(l1) = -Kf(l2)  

 and kf(l1) > 0; 

create function EvInvMass(Event e) -> Bag of Real r as 

select r 

from Vector v 

where  v = oppositeLeptons(e)  

 and r = absinvMass(v,91.1882)  

 and r < 10.0; 
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create function zVetoCut(Event e) -> Boolean as 

select TRUE 

where notany(EvInvMass(e)); 

create function okJets(Event e) -> Bag of Jet as 

select jt  

from Jet jt  

where  jt = jets(e)  

 and abs(eta(jt)) < 4.5  

 and pt(jt) > 20.0; 

create function bJets(Event e) -> Bag of Jet as 

select jt  

from Jet jt  

where  jt = okJets(e)  

 and kf(jt) = 5; 

create function wJets(Event e) -> Bag of Jet as 

select jt  

from Jet jt  

where  jt = okJets(e)  

 and kf(jt) != 5; 

create function wPairs(Event e) -> Baf of <Jet j1, Jet j2> as 

select j1, j2 

from Vector v 

where  j1 = wJets(e)  

 and j2 = wJets(e)  

 and v = <j1,j2>  

 and absInvMass(v, 80.419) < 15.0  

 and j1 > j2;  

create function topComb(Event e) ->  

Bag of <Jet j1, Jet j2, Jet bj> as 

select j1, j2, bj 

from Vector v 

where  <j1,j2> = wPairs(e)  

 and bj = bJets(e)  

 and v = <j1,j2,bj>  

 and absInvMass(v, 174.3) < 35.0; 

create function hadrtopCut(Event e) -> Boolean as 

select TRUE 

where some(topComb(e)); 
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create function mTopComb(Event e) -> Vector v as 

select v 

from Real r 

where <r,v> = minagg2( select rt, vt 

 from Real rt, Vector vt 

 where  vt = topComb(e)  

  and rt = absInvMass(vt,174.3)); 

create function leftJets(Event e) -> Bag of Jet jt as 

select jt 

where  jt = okJets(e)  

 and not_in(jt, mTopComb(e)); 

create function jetVetoCut(Event e) -> Boolean as 

select TRUE 

where notany( select jt  

 from Jet jt  

 where  jt = leftJets(e)  

  and Pt(jt) > 70.0); 

create function leptonCuts(Event e) -> Boolean as 

select  TRUE 

where notany( select l  

  from Lepton l  

  where  l = isolatedLeptons(e)  

   and Pt(l) > 150.0) 

 and some( select r  

  from Real r  

  where r = Pt(isolatedLeptons(e))  

    and r <= 40.0); 

create function missEeCuts(Event e) -> Boolean as 

select TRUE 

from Real x, Real y 

where  modulo(PxMiss(e), PyMiss(e)) >= 40.0  

 and <x,y> = sum2( select Px(l),Py(l)  

  from lepton l 

  where  l = isolatedleptons(e))  

 and effectiveMass(PxMiss(e),PyMiss(e),x,y) <= 150.0; 
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The definitions of the cuts from Example 2.1 are: 

create function isolatedLeptons(Event e) ->  

Bag of Lepton l as 

select l 

where  l=leptons(e)  

 and abs(eta(l)) < 2.4  

 and pt(l) > 7.0; 

create function threeLeptonCut(Event e) -> Boolean as 

select TRUE 

where  count(select isolatedLeptons(e))=3 and 

 some( select l  

  from Lepton l  

  where  l=isolatedLeptons(e) and  

   pt(l)>20.0); 

create function TwoLeptonCut(Event e) -> Boolean as 

select TRUE 

where some( select l1,l2 

 from Real r, Lepton l1, Lepton l2, Vector v 

 where  r = invMass(v) and  

  v = <l1,l2> and 

  l1 = isolatedleptons(e) and 

  l2 = isolatedleptons(e) and 

  kf(l1) = -kf(l2) and  

  r > 10 and  

  r < 63 and  

  kf(l1) > 0); 

create function okJets(Event e) -> Bag of Jet jt as 

select jt 

where  pt(jt) > 20.0  

 and eta(jt) < 4.5  

 and jt = jets(e); 

create function wPair(Event e) -> Bag of <Jet j1, Jet j2> as 

select j1, j2 

from Vector v 

where  j1 = okJets(e)  

 and j2 = okJets(e)  

 and v = <j1,j2>  

 and j1 > j2  

 and absInvMass(v, 80.419) < 15.0; 
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create function threeJets(Event e) ->  

Bag of <Jet j1, Jet j2, Jet bj> as 

select j1, j2, bj 

from Vector v 

where  <j1,j2> = wPair(e)  

 and bj != j1  

 and bj != j2  

 and v = <j1,j2,bj>  

 and absInvMass(v, 174.3) < 35.0  

 and bj = okJets(e); 

create function topCut(Event e) -> Boolean as 

select TRUE 

where  some(select threeJets(e)); 

create function jetCut(Event e) -> Boolean as 

select TRUE 

where 300 >  

 sum(select pt(jt) 

 from Jet jt, Vector v, Real r 

 where not_in(jt,v) and 

  <r,v> = minagg2(select rt,vt 

   from Real rt, Vector vt 

   where vt = threeJets(e) and 

    rt = absInvMass(vt,174.3)) 

  and pt(jt)>50  

  and jt=jets(e)); 
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J. The Stream Fragmenting Algorithm 

The stream fragmenting algorithm fragments an analysis query into groups 
and assigns every group either to a source access query fragment or to a 
processing query fragment (Section 4.4). Every group is formed by functions 
that have variables in common except an event variable, which is the result 
variable of a wrapper interface function and is bound to a stream of events. 
The stream fragmenting algorithm is a modification of Algorithm 3.1 with 
ability to check if a formed group calls a wrapper interface function. The 
pseudo code of the algorithm is: 

  

1: Groups = {} 

2: while (S != {}) 

3:  pick a predicate p from S 

4:  S = S \ p 

5:  G = {p} 

6:  if p is a wrapper interface function 

7:  then G.isWrap = true 

8:  else G.isWrap = false 

9:  V = variables(p) \ varE 

10:  while (V !={}) 

11:   pick a variable v from V 

12:  V = V \ v 

13:  for each q in S 

14:  if v ∈ variables(q) 

15:  then G = G∪ q 

16:  S = S \ q 

17:  V = V∪ variables(q)\{v,varE} 

18:  if q is a wrapper interface function 

19:  then G.isWrap = true 

20:  Groups = Groups ∪  {G} 

21: return Groups 

  

In the new algorithm each group has a flag isWrap that indicates if the 
group calls a wrapper interface function or not. On lines (6-8) the flag of a 
created group is initialized with true or false depending whether or not the 
function p is a wrapper interface function. The rest of the predicates in the 
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group are added on lines (14-19), and, if a function q is a wrapper interface 
function, then the flag isWrap is set to true for the group on lines (18-19). 

After grouping by the stream fragmenting algorithm the source access 
query fragment is constructed by merging predicates from the groups that 
contain wrapper interface functions. Predicates from groups that do not 
contain wrapper interface functions form the processing query fragment. 
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